Sanov's theorem for sub-sampling from individual sequences

Amir Dembo *

Department of Mathematics and Department of Statistics Stanford University

Ofer Zeitouni[†]

Department of Electrical Engineering Technion- Israel Institute of Technology, Haifa, ISRAEL

September 8, 1994

1 Main Result

Let $\mathbf{x} = (x_1, x_2, \dots, x_m, \dots)$ be a Σ -valued deterministic sequence such that $L_m = m^{-1} \sum_{i=1}^m \delta_{x_i}$ converge to P_X weakly. Consider the following random sub-sampling scheme. Fix $\beta \in (0, 1)$, and m = m(n) such that $n/m \to \beta$, generating the random variables X_1^m, \dots, X_n^m by sampling n values out of (x_1, \dots, x_m) without replacement, i.e. $X_i^m = x_{j_i}$ for $i = 1, \dots, n$ where each choice of $j_1 \neq j_2 \neq \dots \neq j_n \in \{1, \dots, m\}$ is equally likely (and independent of the sequence \mathbf{x}).

The next proposition shows that perhaps somewhat surprisingly (see Remark 1 immediately following its statement), the large deviations of the empirical measure of the resulting sample admits a rate function which is independent of the particular sequence x but different from the

^{*}Partially supported by NSF DMS92-09712 grant and by a US-ISRAEL BSF grant.

[†]Partially supported by a US-Israel BSF grant and by the Army Research Office under grant ARO DAAL03-92-G-0115 (Center for Intelligent Control Systems).

Key Words: Large deviations, sampling without replacement, empirical measure.

AMS (1991) subject classifications: 60F10

rate function of Sanov's theorem.

Proposition 1.1 The sequence $L_n^m = n^{-1} \sum_{i=1}^n \delta_{X_i^m}$ satisfies the large deviation principle (LDP) in $M_1(\Sigma)$ with the convex good rate function

$$I(\nu|\beta, P_X) = \begin{cases} H(\nu|P_X) + \frac{1-\beta}{\beta} H\left(\frac{P_X - \beta\nu}{1-\beta} \middle| P_X\right) & \text{if } \frac{P_X - \beta\nu}{1-\beta} \in M_1(\Sigma) \\ \\ \infty & \text{otherwise.} \end{cases}$$
(1.2)

Remarks:

1) Consider the probability space $(\Omega_1 \times \Omega_2, \mathcal{B} \times \mathcal{B}_{\Sigma}^{\mathbb{N}}, P_1 \times P_2)$, with $\Omega_2 = \Sigma^{\mathbb{N}}$, P_2 stationary and ergodic with marginal P_X on Σ , and let $\omega_2 = \mathbf{x} = (x_1, x_2, \dots, x_m, \dots)$ be a realization of an infinite sequence under the measure P_2 . $(\Omega_1, \mathcal{B}, P_1)$ represents the randomness involved in the sub-sampling. Since Σ is Polish, by the ergodic theorem the empirical measures $L_m = m^{-1} \sum_{i=1}^m \delta_{x_i}$ converge to P_X weakly for (P_2) almost every ω_2 . It follows that Proposition 1.1 may be applied for almost every ω_2 , yielding the same LDP for L_n^m under the law P_1 for almost every ω_2 . Note that for P_2 a product measure (corresponding to an i.i.d. sequence), the LDP for L_n^m under the law $P_1 \times P_2$ is given by Sanov's theorem and admits a different rate function !

2) Using a projective limit approach, the LDP for the empirical measures in sampling without replacement is derived in [2, Section 7.2] assuming that $L_m \to P_X$ in the τ -topology. In the context of sub-sampling described in the previous remark this assumption fails as soon as P_X is non-atomic, and a completely different method of proof is thus needed.

Let $g_{\beta}(x) = (1 - \beta x)/(1 - \beta)$ and denote by $M_{+}(\Sigma)$ the space of all non-negative, finite Borel measures on Σ . The first step in the proof of Proposition 1.1 is to derive the LDP for a closely related sequence of empirical measures of deterministic positions and random weights which is much simpler to handle.

Lemma 1.3 Let J_i be i.i.d. Bernoulli(β) random variables, and $x_i \in \Sigma$ non-random such that $m^{-1} \sum_{i=1}^{m} \delta_{x_i} \to P_X$ weakly in $M_1(\Sigma)$. Then, the sequence $L'_n = n^{-1} \sum_{i=1}^{m} J_i \delta_{x_i}$ satisfies the LDP in $M_+(\Sigma)$, equipped with the weak $(C_b(\Sigma))$ -boology, with the convex good rate function

$$I(\nu) \stackrel{\triangle}{=} \begin{cases} \int f \log f dP_X + \frac{1-\beta}{\beta} \int g_\beta(f) \log g_\beta(f) dP_X & \text{if } \nu \in M_+(\Sigma) \text{ and } f = \frac{d\nu}{dP_X} \le \frac{1}{\beta} \\ \infty & \text{otherwise.} \end{cases}$$
(1.4)

Proof: Clearly, $I(\cdot) \ge 0$ is convex, and the convex set $\Psi = \{f \in L_1(P_X) : I(\nu) \le \alpha, f = \frac{d\nu}{dP_X}\}$ is uniformly integrable, hence weakly sequentially compact as a subset of $L_1(P_X)$. Note that $F_{\beta} = \{f \in L_1(\mu) : 0 \le f \le \frac{1}{\beta}\}$ is a closed set, and $f \mapsto g_{\beta}(f)$ a continuous mapping between F_{β} and $F_{1-\beta}$. Since $f \mapsto \int f \log f dP_X : F_b \to \mathbb{R}$ is continuous for every fixed $b < \infty$, it follows that Ψ is closed in $L_1(P_X)$, and by convexity it is also weakly closed and hence weakly compact in $L_1(P_X)$. Since weak convergence in $L_1(P_X)$ gives rise to convergence in $M_+(\Sigma)$ of the associated measures, it follows that $\{\nu : I(\nu) \le \alpha\}$ is compact.

For $\phi \in C_b(\Sigma)$ we have

$$\log E[\exp(n \int \phi dL'_n)] = \log E[\exp(\sum_{i=1}^m J_i \phi(x_i))] = \sum_{i=1}^m \log(\beta e^{\phi(x_i)} + 1 - \beta) ,$$

implying that

$$\Lambda(\phi) \stackrel{\triangle}{=} \lim_{n \to \infty} \frac{1}{n} \log E[\exp(n \int \phi dL'_n)] = \frac{1}{\beta} \int \log(\beta e^{\phi(x)} + 1 - \beta) P_X(dx)$$

Let \mathcal{X} be the algebraic dual of $C_b(\Sigma)$ equipped with the $C_b(\Sigma)$ -topology, and for $\vartheta \in \mathcal{X}$ define

$$\Lambda^*(\vartheta) = \sup_{\phi \in C_b(\Sigma)} \left\{ \langle \phi, \vartheta \rangle - \Lambda(\phi) \right\}$$

Consider the \mathbb{R}^k -valued random variables $\hat{S}_n = (\int \phi_1 dL'_n, \ldots, \int \phi_k dL'_n)$ for fixed $\phi_1, \ldots, \phi_k \in C_b(\Sigma)$ and observe that they have the limiting logarithmic moment generating function

$$\Lambda(\lambda) = \lim_{n \to \infty} \frac{1}{n} \log E[\exp(n\langle \lambda, \hat{S}_n \rangle)] = \frac{1}{\beta} \int \log(\beta e^{\sum_{i=1}^k \lambda_i \phi_i(x)} + 1 - \beta) P_X(dx) \, .$$

The function $\Lambda(\lambda)$ is finite and differentiable in λ throughout \mathbb{R}^k for any collection $\phi_1, \ldots, \phi_k \in C_b(\Sigma)$. Hence, by [2, Corollary 4.6.11 part (a)], the sequence L'_n satisfies the LDP in \mathcal{X} with the good rate function $\Lambda^*(\cdot)$.

Identify $M_+(\Sigma)$ as a subset of \mathcal{X} . Fix $\nu \in M_+(\Sigma)$ such that $f = \frac{d\nu}{dP_X} \leq \frac{1}{\beta}$, and observe that for every $\phi \in C_b(\Sigma)$

$$\int \phi d\nu - I(\nu) = \Lambda(\phi) - \frac{1}{\beta} \int h\left(1 - \beta f | \frac{1 - \beta}{\beta e^{\phi} + 1 - \beta}\right) dP_X , \qquad (1.5)$$

where $h(x|p) = x \log(x/p) + (1-x) \log((1-x)/(1-p))$ for $x, p \in [0,1]$. Since $h(x|p) \ge 0$ with equality iff x = p, it follows by the choice $f = \frac{e^{\phi}}{\beta e^{\phi} + 1 - \beta}$ in (1.5) that

$$\Lambda(\phi) = \sup_{\nu \in M_+(\Sigma)} \left\{ \int \phi d\nu - I(\nu) \right\} = \sup_{\vartheta \in \mathcal{X}} \left\{ \langle \phi, \vartheta \rangle - I(\vartheta) \right\},\,$$

implying by duality that $I(\cdot) = \Lambda^*(\cdot)$ (see [2, Lemma 4.5.8]). In particular, L'_n thus satisfies the LDP in $M_+(\Sigma)$ (see [2, Lemma 4.1.5 part (b)]) with the convex good rate function $I(\cdot)$.

Proof of Proposition 1.1: Note that for every $\nu \in M_1(\Sigma)$, $I(\nu)$ of (1.4) equals to $I(\nu|\beta, P_X)$ of (1.2) which is thus a convex good rate function. Use $(x_1, x_2, ...)$ to generate the sequence L'_n as in Lemma 1.3. Let V_n denote the number of *i*-s such that $J_i = 1$, i.e. $V_n = nL'_n(\Sigma)$. The key to the proof is the following coupling. If $V_n > n$ choose (by sampling without replacement) a random subset $\{i_1, \ldots, i_{V_n-n}\}$ among those indices with $J_i = 1$ and set J_i to zero on this subset. Similarly, if $V_n < n$ choose a random subset $\{i_1, \ldots, i_{n-V_n}\}$ among those indices with $J_i = 0$ and set J_i to one on this subset. Re-evaluate L'_n using the modified J_i values and denote the resulting (random) probability measure by Z_n . Note that Z_n has the same law as L_n^m which is also the law of L'_n conditioned on the event $\{V_n = n\}$. Since V_n is a Binomial (m, β) random variable, and $n/m \to \beta \in (0, 1)$ it follows that

$$\liminf_{n\to\infty}\frac{1}{n}\,\log P(V_n=n)=0\;.$$

Fix a closed set $F \subset M_1(\Sigma)$ and observe that $P(L_n^m \in F) = P(Z_n \in F) \leq P(L'_n \in F)/P(V_n = n)$ implying that $\{L_n^m\}$ satisfies the large deviations upper bound in $M_1(\Sigma)$ with the rate function $I(\cdot|\beta, P_X)$. Let \mathcal{F}_{LU} denote the class of Lipschitz continuous functions $f: \Sigma \to \mathbb{R}$, with Lipschitz constant and uniform bound 1. Recall that $\beta(P,Q) = \sup_{f \in \mathcal{F}_{LU}} |\int f dP - \int f dQ|$ is a metric on $M_+(\Sigma)$ which is equivalent to the $C_b(\Sigma)$ -topology (for a proof of this elementary fact, see [1, Lemma 6]). Since for $\nu \in M_1(\Sigma)$

$$\beta(Z_n, L'_n) = n^{-1} |V_n - n| = |L'_n(\Sigma) - 1| \le \beta(L'_n, \nu) ,$$

it follows that

$$P(\beta(L_n^m,\nu)<2\delta)=P(\beta(Z_n,\nu)<2\delta)\geq P(\beta(L_n',\nu)<\delta,\beta(Z_n,L_n')<\delta)=P(\beta(L_n',\nu)<\delta).$$

Consequently, by the LDP of Lemma 1.3, for every $\nu \in M_1(\Sigma)$ and all $\delta > 0$

$$\liminf_{n \to \infty} \frac{1}{n} \log P(\beta(L_n^m, \nu) < \delta) \ge -I(\nu) = -I(\nu|\beta, P_X)$$

This completes the proof of the large deviations lower bound (since the metric $\beta(\cdot, \cdot)$ is also equivalent to the weak topology on $M_1(\Sigma)$).

4

References

[1] A. Dembo and T. Zajic. Large Deviations: from empirical mean and measure to partial sums process. Preprint, 1992.

· ···-

 [2] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett, Boston, 1993.