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1 Main Result

Let x = (X1, 2,-...,m,. .. ) be a Z-valued deterministic sequence such that Lm = m-1 =1 S,

converge to Px weakly. Consider the following random sub-sampling scheme. Fix 6 E (0, 1), and

m = m(n) such that n/m --, 3, generating the random variables Xl', .. ., Xnm by sampling n values

out of (xl,..., xm) without replacement, i.e. X? = xj; for i = 1,...,n where each choice of

jl 7 j2 ' ... # jn E { 1, ... , m} is equally likely (and independent of the sequence x).

The next proposition shows that perhaps somewhat surprisingly (see Remark 1 immediately

following its statement), the large deviations of the empirical measure of the resulting sample

admits a rate function which is independent of the particular sequence x but different from the
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rate function of Sanov's theorem.

Proposition 1.1 The sequence Ln = n - 1 _ 6xm satisfies the large deviation principle (LDP)

in Ml (E) with the convex good rate function

J H(vIPx) + 12H (EPx- |3 Px) if X -'pxE Ml (, )
I(vlp, Px ) = (1.2)

oo otherwise.

Remarks:

1) Consider the probability space (Ql x Q2, B x BI, P1 x P2), with Q2 = ZiN, P2 stationary and

ergodic with marginal Px on Z, and let w2 = x = (xl, X2, ... , xm,.. .) be a realization of an infinite

sequence under the measure P2. (Q 1, B, P1) represents the randomness involved in the sub-sampling.

Since E is Polish, by the ergodic theorem the empirical measures Lm = m- _=l i 6, converge to

Px weakly for (P2) almost every w2. It follows that Proposition 1.1 may be applied for almost

every w2, yielding the same LDP for Lm under the law P1 for almost every w2. Note that for P2 a

product measure (corresponding to an i.i.d. sequence), the LDP for L' under the law P1 x P2 is

given by Sanov's theorem and admits a different rate function !

2) Using a projective limit approach, the LDP for the empirical measures in sampling without

replacement is derived in [2, Section 7.2] assuming that Lm -k Px in the r-topology. In the context

of sub-sampling described in the previous remark this assumption fails as soon as Px is non-atomic,

and a completely different method of proof is thus needed.

Let g93(x) = (1 - fx)/(1 - ,) and denote by M+(S) the space of all non-negative, finite Borel

measures on E. The first step in the proof of Proposition 1.1 is to derive the LDP for a closely

related sequence of empirical measures of deterministic positions and random weights which is much

simpler to handle.

Lemma 1.3 Let Ji be i.i.d. Bernoulli(3) random variables, and xi E E non-random such that

m-1 ~1 6i~ -+ Px weakly in M 1 (E). Then, the sequence L' = n -1 E =i Ji6,, satisfies the LDP

in M+(E), equipped with the weak (Cb(E)-)topology, with the convex good rate function

I) ( f flogfdPx+ l- fga(f)logga(f)dPx if v E M+() andf =f --- < I ~(v) =~ PdPx - (1.4)
o otherwise.
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Proof: Clearly, I(.) > 0 is convex, and the convex set · = {f E LI(Px) : I(v) < a, f = dx}

is uniformly integrable, hence weakly sequentially compact as a subset of Li(Px). Note that

Fp = {f E L1() : 0 < f < } is a closed set, and f '-* g3(f) a continuous mapping between Fg

and Fi-p. Since f I-f f log fdPx : Fb --+ IR is continuous for every fixed b < oo, it follows that 'I

is closed in Li(Px), and by convexity it is also weakly closed and hence weakly compact in LI(Px).

Since weak convergence in Li(Px) gives rise to convergence in M+(S) of the associated measures,

it follows that {zv: I(v) < a} is compact.

For X E Cb(E) we have
m m

log E[exp(n Jif(dLi))] = E logg(3e (x ) + 1-3),
i=l i=l

implying that

A(X)- lim 1log E[exp(n | cdL')]= | log(,3e"(x) + IA Px (dx)
n-roo n 1°g(~e(x +1 -n)Px dx).

Let X be the algebraic dual of Cb(E) equipped with the Cb(E)-topology, and for 0 E X define

A*(e)= sup ((X, )-A(Q)}.
OECb(E)

Consider the Rk-valued random variables Sn = (f qbxdL1, ., f XckdL ) for fixed 01 ,..., Ok E Cb(E)

and observe that they have the limiting logarithmic moment generating function

A(A) = lim log E[exp(n(A, lS))] =! flog(3ei- ii() + 1 - 3)Px(dx) .
n--.oo n

The function A(A) is finite and differentiable in A throughout IRk for any collection hl,..., qk E

Cb(E). Hence, by [2, Corollary 4.6.11 part (a)], the sequence L' satisfies the LDP in X with the

good rate function A*(.).

Identify M+(E) as a subset of X. Fix v E M+(E) such that f = p < 1, and observe that for

every 0 E Cb(E)

J kdv- I(v) = =A() - P h 1 - 3f e +I 1 )dPx, (1.5)

where h(xlp) = xlog(x/p) + (1 - x) log((1 - x)/(1 - p)) for x,p E [0, 1]. Since h(xlp) > 0 with

equality iff z = p, it follows by the choice f = .+el in (1.5) that

A(X) = sup {( dv - I(v)} = sup {(,)-I()},
vEM+(Y2) i t9EX
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implying by duality that I(.) = A*(.) (see [2, Lemma 4.5.8]). In particular, Ln thus satisfies the

LDP in M+(S) (see [2, Lemma 4.1.5 part (b)]) with the convex good rate function I(.). ·

Proof of Proposition 1.1: Note that for every v E M 1(E), I(v) of (1.4) equals to I(vl3, Px)

of (1.2) which is thus a convex good rate function. Use (Xl,X2,...) to generate the sequence L'

as in Lemma 1.3. Let Vn denote the number of i-s such that Ji = 1, i.e. Vn = nL'(E). The

key to the proof is the following coupling. If V, > n choose (by sampling without replacement) a

random subset {il,..., iv,_,} among those indices with Ji = 1 and set Ji to zero on this subset.

Similarly, if V, < n choose a random subset {il,.. . in-v,} among those indices with Ji = 0 and

set Ji to one on this subset. Re-evaluate L' using the modified Ji values and denote the resulting

(random) probability measure by Z,. Note that Z, has the same law as L m which is also the

law of L' conditioned on the event {V, = n}. Since V, is a Binomial(m, 3) random variable, and

n/m -k B E (0, 1) it follows that

lim inf- log P(Vn = n) = O .
n-- oo n

Fix a closed set F C M 1(S) and observe that P(Ln E F) = P(Z, E F) < P(L' E F)/P(Vn = n)

implying that {L m'} satisfies the large deviations upper bound in Ml(S) with the rate function

I(-l,3, Px). Let FLU denote the class of Lipschitz continuous functions f: Z -. IR, with Lipschitz

constant and uniform bound 1. Recall that P(P, Q) = SUpferFLU I f fdP - f fdQI is a metric on

M+(S) which is equivalent to the Cb(E)-topology (for a proof of this elementary fact, see [1, Lemma

6]). Since for v E M 1(E)

/3(Zn, LI) = nIV, - nr = I L'n() - <1 /,(L', v) ,

it follows that

P(f3(L~n, v) < 26) = P(f3(Zn, v) < 26) > P(Z3(L', v) < 6, 3(Zn, L') < 6) = P(3(L' , v) < 6).

Consequently, by the LDP of Lemma 1.3, for every v E Ml (S) and all 6 > 0

liminf - logP(3(Ln, v) < 6) >_ -I(v) = -I(vl,3, Px) .
n-- oo n

This completes the proof of the large deviations lower bound (since the metric 3(-, -) is also equiv-

alent to the weak topology on Ml(E)). ·
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