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Abstract

The Lagrange multiplier theorem and optimal control theory are applied to a continuous
shape optimization problem for reducing the wave resistance of a submerged body
translating at a steady forward velocity well below a free surface. In the latter approach,
when the constraint formed by the boundary conditions and the Laplace's governing
equation is adjoined to the objective functional to construct the Lagrangian, the
dependence of the state on the control is disconnected and they are treated as independent
variables; whereas in the first approach, dependences are preserved for the application of
Lagrange multiplier theorem. Both methods are observed to yield identical solutions and
adjoint equations. Two alternative ways are considered for determining the variation of the
objective functional with respect to the state variable which is required to solve the adjoint
equation defined on the body boundary. Comparison of these two ways also revealed
identical solutions. Finally, a free surface boundary is included in the optimization problem
and its effect on the submerged body shape optimization problem is considered. Noting
that the analytical solution to the local optimization problem holds for any initial body
geometry, it is therefore concluded that the above study will provide theoretical
background for an efficient hydrodynamic shape optimization module to be coupled with
up-to-date flow solvers currently available such as SWAN.
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Chapter 1

Introduction
1.1 Background and Motivation

There is in general no analytical formula for the solution of convex optimization

problems but, as with the linear problems, there are very effective methods for solving

most of them. This is due to the fact that convex optimization is a generalization of linear

problems. In convex optimization problems, we replace the more restrictive equality for

linearity condition with an inequality which is enough to satisfy convexity.

Convex optimization problems are to be stated such that both the objective

functional and the constraints are convex. If one can formulate a problem as a convex

optimization problem, then it is most likely to be solved efficiently almost like the linear

optimization problems. However, we can not yet surely claim that solving general convex

optimization problems is a mature technology like linear programming problems. Research

for various methods is still continuing actively and no consensus has emerged yet as to

what the best methods are. Difficulty also arises due to the fact that recognizing convex

optimization problems, or those that can be transformed to convex optimization problems

can be challenging.

An optimization problem in which the objective or constraint functionals are not

linear, but not known to be convex, is called a nonlinear optimization. There are no

effective methods for solving the general nonlinear optimization problem. Even simple

looking problems with a few variables can be extremely challenging. Methods for the

general nonlinear optimization problems therefore take several different approaches, each

of which involves some compromise.
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In local optimization problems, the compromise is to give up seeking the optimal

which minimizes the objective over all feasible points. Instead we seek a point that is only

locally optimal, which minimizes the objective functional among feasible points that are

near it, but is not guaranteed to have the lowest objective value. Local optimization

problems can handle large scale problems and are widely applicable, since they only

require differentiability of the objective and constraint functions. They are widely used in

applications where there is value in finding a good point, if not the very best. In an

engineering design application as we did in this study, local optimization can be used to

improve the performance of a design originally obtained by manual, or other design

methods.

The local optimization methods require an initial guess for the optimization

variable. This starting point is critical and can greatly affect the objective value of the local

solution obtained. Little information is provided about how far from globally optimal the

local solution is. Therefore, local optimization methods are considered to include some

level of art. Since differentiability of the objective and constraint functionals is the only

requirement for most local optimization methods, formulating a practical problem as a

nonlinear optimization problem is relatively straightforward. The art is in solving the

problem once it is formulated. In convex optimization, the art and challenge is in problem

formulation; once it is formulated as a convex optimization problem, it is relatively

straightforward to solve it.

In global optimization, the exact global solution of the optimization problem is

found, but the compromise is efficiency. Global optimization is used for problems with a

small number of variables, where the computing time is not critical, and the value of

finding the true global solution is very high.

Based on the considerations briefly discussed above, it is possible to benefit from

the advantage of both approaches, if we can reduce the nonlinearity to a convex

optimization problem in the application. This can be achieved in a few ways. One obvious
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way is to combine convex optimization with a local optimization method. Starting with a

non-convex problem, we first find an approximate, but convex, formulation of the

problem. By solving this approximate problem, which can be done easily and without an

initial guess, we obtain the exact solution to the approximate convex problem. This point is

then used as the starting point for a local optimization method, applied to the original non-

convex problem.

Another approach is to compute a lower bound on the optimal value of the non-

convex problem for global optimization. Two standard methods for doing this are based on

convex optimization. In 'relaxation', each non-convex constraint is replaced with a looser,

but convex, constraint. In Lagrangian duality approach, the convex Lagrangian dual

problem is solved and a lower bound on the optimal value of the non-convex problem is

obtained.

A continuous shape optimization problem in hydrodynamics will be analyzed in

this study. Leaving aside the difficulty of recognizing convexity of objective and

constraint functionals, Lagrange dual functional will be defined which will yield a lower

bound on the optimal value of the original optimization problem. Thus, the lower bound

depends on the adjoint or Lagrange multiplier value, which needs to be determined to

answer the question: What is the best lower bound that can be obtained from Lagrange

dual functional'? Although we construct the problem as a Lagrange dual problem which is

most likely to be convex independent of the original problem, uncertainty remains due to

other conditions, namely constraint qualifications, to be satisfied. However, we will still

obtain a very valuable inequality due to the weak duality property. This property will give

the gap between the optimal value of the primal problem and the best lower bound on it.

The magnitude of this duality gap will enable us to comment on the result that we will

obtain based on the initial geometry that we start from.

The continuous nature of the shape optimization problem at hand and the relatively

easier case governed by Laplace's equation will provide us with the flexibility to consider
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the problem also in terms of local optimization by simply necessitating the differentiability

of the objective and constraint functionals. The result will be affected by the selected initial

geometry, i.e the starting point. However, the continuous solution to the problem will be

valid for any arbitrary initial geometry, which will therefore maximize the efficiency of

local optimization approach to the problem. Along with the continuous Lagrange

multipliers approach, the problem will be formulated also in terms of optimal control

theory and the two approaches will be compared. Finally, a free surface boundary

condition will be included in the problem to observe the effects on it. All these efforts are

intended to form a theoretical background for an efficient hydrodynamic shape

optimization routine to be coupled with the currently available state-of-the-art flow solvers

such as SWAN.

1.2 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 gives the essential theory such as generalization of the concepts of

differentials, gradients and the definition of the first variation of functionals. It states the

first necessary condition for a local extremum and derives the Euler-Lagrange equations

which has found extensive use for a long time for simplistic approaches to the

hydrodynamic shape optimization problem.

Chapter 3 provides the theoretical background for constrained local optimization

problem, leading to the Lagrange multiplier theorem.

Chapter 4 provides the theoretical background for optimal control theory, and states

a simplified extension of it to be applied to our steady case.

Chapter 5 applies the optimal control theory to the shape optimization problem,

derives the gradient leading to the optimal solution and also defines the adjoint equations

and boundary conditions.

Chapter 6 evaluates the variation of the objective functional with respect to the

state variable which is necessary for the solution of the body boundary adjoint equations

derived.
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Chapter 7 gives the application of the Lagrange multiplier theorem to the same

problem, compares the adjoint equations and the gradient solution with the ones that are

obtained by means of optimal control theory. It also briefly considers the addition of the

fiee surface boundary condition and its effect on the submerged body shape optimization

problem.

Chapter 8 concludes the thesis study.

12



Chapter 2

2.1 Introduction to Variational Theory

The principles of orthogonality and projection theorem, expressed in various ways,

form the basis of the optimization principle. In spite of the large variety of norm

definitions available for minimum or least-norm problems, many optimization problems

can not be formulated directly in these terms and therefore, optimization of more general

objective functionals needs to be considered. Yet, geometric interpretation and the theory

obtained from minimum norm problems provide insight to the more general optimization

problems [1,7]., also considered in this thesis.

Before aiming at the general optimization problems, we first need to generalize the

concepts of differentials, gradients etc. to normed spaces. By using these tools, it is

possible to relate the variational theory of general optimization to the familiar theory in the

finite dimensional case.

2.2 The First Variation in the Calculus of Variations

In the calculus of variations, integral functionals of the form

12

J(x) = f[t,x(t),£(t)]dt
11

are considered on the interval [t1 t2], where x is a member of some functional

space. One then seeks the extremals x of the functional J, such that J(x) - J(x) has the

same sign for all in a neighborhood around x.

The requirements of the particular problem at hand determine a neighborhood. For

example, a strong extremum is given when we consider x as an element of the space

D[tl t2] of continuous functions on [tl t2] with the norm

IIx = sup x(t)1
E[t ,t2 ]

Here, the term norm defines an abstraction of our usual concept of length.
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Definition. If a real-valued function defined on a vector space X maps each element x in X

into a real number 1[xl[, the vector space is called a normed linear vector space and the real

number jlxjj is called the norm of x.

In the above definition, sup stands for the least upper bound or supremum of a set

of real numbers, here [tl t2], bounded above by the smallest real number y such that

x < y for all x E [tl,t2 ].

A weak extremum arises when we choose x from a space D [t t2] of continuously

differentiable functions with the norm defined as

11XI = sup Ix(t)l+ sup x'(t)l.
It [t ,t2 ] t [tl ,t2 

In either case, a neighborhood of x is given by all those functions x such that

[ix -- x < for some > 0. Since there are fewer functions in a weak neighborhood of x, it

is easier for x to be an extremal in the second case.

Let us now define the variation of the functional J.

Definition. The variation of SJ of the functional J is the linear part, if exists, of the

increment:

AJ[h] = J[x + h] - J[x]

that is, J[h] is the linear functional, which differs from AJ[h] by an infinitesimal of

order higher than 1 relative to hll.

Variation, like the differential of a real valued function, is defined at a specific

point x of the domain of the functional and it is a functional on the tangent space at x.
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Before laying the foundation for a theory of extreme values of functionals and

deriving the first necessary condition for a relative minimum of a functional, let us

generalize the concept of the derivative to functionals that are defined on normed linear

spaces over R, or at least on open subsets thereof.

2.3 Gateaux and Frechet Differentials

Let T be a transformation defined on an open domain D in a normed space X and

having range in a normed space Y. Here, transformation is an extension of the familiar

notion of ordinary functions. It is simply a function defined on one vector space X, taking

values in another vector space Y. And a special case of this situation is that in which the

space Y is taken to be the real line. In this case, a transformation from a vector space X

into the space of real (or complex) scalars is said to be a functional on X.

Returning to our definition, we call ST (x;h) the Frechet differential or Strong

differential of T at x with increment h if there is a 6 > 0 such that for all h E X, 1|h|| < ,

T(x + h) - T(x) = ST(x; h) + e1 (h)

where ST (x;h) is a linear functional of h and where lim [cE (h) / h1] = 0. Note that T(x;h) is

called a linear functional of h if it is additive, that is, if T(x;h+k) = T(x;h) + T(x;k) for all

h.k eX.

A second, somewhat weaker concept of the differential of a functional is the

Gateaux or weak differential. Again, let X be a vector space, Y a normed space, and T a

transformation defined on a domain D c X and having range R c Y. ST (x;h) is called the

Gateaux or Weak differential of T at x with increment h if there is a S > 0 such that for

all h E X, h|| < ,

T(x + crh) - T(x) = ST(x; h) + c2 (h)

15



where ST (x;h) is a linear functional of h and where lim[cE (ah) / a] = 0. ( a real ).
a-O

The concept of the Gateaux differential is somewhat weaker than the concept of the

Frechet differential, since in the case of Frechet differential, C, (h) has to tend to zero

uniformly in h, while in the case of Gateaux differential, c£ (h) only has to tend to zero

along each h E X. It is called weak differential because its definition requires no norm on

X; hence, properties of the Gateaux differential are not easily related to continuity. When

X is normed, a more satisfactory definition is given by the Frechet differential.

We can see that for fixed x D and h regarded as variable, the Gateaux differential

defines a transformation from X to Y. In the particular case where T is linear, we have, by

linearity explained above, T(x; h) = T(h).

In the case where Y is the real line, the transformation reduces to a real-valued

functional on X. Thus, iffis a functional on X, the Gateaux differential off, if it exists, is

d
f (x; h) = d f (x + ah) Ja=oda

and for each fixed x X, 5f(x; h) is a functional with respect to the variable h X.

The Gateaux differential generalizes the concept of directional derivative that we

are familiar with in finite dimensional space. The following example will make similarity

more obvious.

Example. Let X=E n and let f(x) = f(x,,x, ..., x, ) be a functional on En having continuous

partial derivatives with respect to each of its variables. Then the Gateaux differential of f is

df (x;h) = f h
i=1 axi

This is a more general abstract expression of the well known directional derivative;

16



D,f = Vf.h

of the function f, in the direction of h.

Before closing our discussion of more general differentials, let us give one more

example of the frequently used Gateaux differentials, use of which will be made in the

following parts.

t2

Example. Let X = C[tl, t2] and let f(x) = g[x(t), (t), t]dt where it is assumed that
11

g and g and continuous with resect to x', x and t Then,

J f (x; h) - g[x(t) + ah(t), X(t) + ah(t), t]dt
dt1 a=O

by replacing the order of integration with differentiation and expanding in power series,

differential takes the form:

t2 t2

S f(x;h) = gx (x,X, t)h(t)dt + g (.,x,,t)h(t)dt
11 11

2.4 First Necessary Condition for a Local Extremum

We are now ready to extend the well known technique of minimizing a function of

a single variable to a similar technique based on more general differentials briefly defined

in the previous section. Therefore, we can obtain the analogs of the first necessary

condition for local extrema.

Let f be a real valued functional defined on a subset Q of a normed space X. Q,

on which the extremum problem is defined denotes the space of competing functions, in

other words, it is the admissible set. We assume that Q admits a linear space of admissible

variations K.

17



Definition. For a given space of competing functions Q E X, K E X is called a space of

admissible variations of Q if, for all x E , h E K, (x + h) cE Q.

If f(x) assumes a relative minimum at x E Q relative to elements x E Q, then it is

necessary that

f(x 0 + h)- f(Xo) 0

for all h E K, where K is a space of admissible variations of Q, so long as ||h|| < S for

some 8 > 0.

If f(x) possess a Gateaux variation f (x; h) at x, Then,

f (xo + h) - f (xo) = f (x; h) + e(h)

for all h c X for which 11h|l < 6 for some 6 > 0.

From the two equations given above, we have

6f(x; h) + £(h) > O

for all hE K, for which 11h|| < 6. We choose an arbitrary h0 c K for which ho || < . Then,

because K is a linear space, we have aho Ec K for all a E , and if 11al < 1, we have

|a0ho < 6. By considering the homogeneity of6f(x; h),

a6 f(x o; ho) + (ah o) > O.

6f(xo;ho)+

(for all a <1.)

e(ah 0) Ž0_> 0.
a

and if -1 < a < O,

18
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(aho)f (xo; h) + -- ) < 0.
a

From the definition of the Gateaux differential lim[E, (ah) / a] = 0. We obtain
a-0O

8f(xo; h0 ) 0

Since h0 was an arbitrary element of K with h0 < 8, we obtain immediately the

necessary condition;

/5f (x ; h) = O

for all h E K, for which Ilh|| < 8 for some 8 > 0.

Theorem. If the functional f(x) , which is presumed to possess a Gateaux variation at

x0 (- c X, assumes a relative minimum (maximum) in Q at x = xO and if Q admits a

linear space of admissible variations K, then it is necessary that

Sf(xO; h) = 0 for all h E K

Jf(x) does not need to be defined on the entire space Q as long as it is defined in an open

subset Y c X that contains x0.

A point at which 8f (x o ; h) = 0 for all h is called a stationary point, hence, the

above theorem states that extrema occurs at stationary points. A similar result holds for a

local extremum of a functional defined on an open subset of a normed space, the proof

being identical for both cases.

The simplicity of the above theorem is of great utility. Much of the calculus of

variations can be regarded as a simple application of this one result. Many interesting

problems are solved by careful identification of an appropriate vector space X and some

algebraic manipulations to obtain the differential.
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2.5 The Euler-Lagrange Equation

Let us find the function x on the interval [tl ,t2] which minimizes an integral

fimctional of the form

,2

J = f [x(t), x(t), t]dt
11

We assume that the function f is continuous in x, x and t, and it has continuous

partial derivatives with respect to x and . We seek a solution in the space D[tl,t2]. For

the simpler case, we assume that the end points x(tl) and x(t2) are fixed. This will further

restrict the admissible set, the class of functions within which we seek the extremum.

Starting with a given admissible vector x, we consider vectors of the form x+h that

are admissible, too. The class of vectors h E K is called admissible variations. In our

problem, the class of admissible variations becomes the subspace of D[tl,t2], with the

elements (functions) that vanish at t and t2. The necessary condition for the extremum

problem is derived in the previous section and stated again as below,

Sf(xo; h) = 0 for all h E K

The differential of J is,

t 2

5J(x; h) = d if[x+ ah, x +c l, t]dt
dx a=O

or as we have presented previously as in one of the most commonly used format;

, 2 ,2

(5J(x; h) = f (x, x, t)h(t)dt + f (x, x, t)h(t)dt
11 II

for all ht E K as a point of departure. We denote;

I

tfl [s, x(s), (s)]ds = (t)
11
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applying integration by parts to the first term of the differential above, we obtain

12

/l

t2

I (t)h(t)dt
11

Since h(tl) = h(t2) = 0 and since 0 is continuous, the first term on the right hand

side of the above equation vanishes and we have consequently;

fh(t) {,f [t, x(t), x(t)] -0(t)} dt = 0
tl

for all h E K . Lemma of Dubois-Reymond will enable us to transform this

condition still further.

Lemma of Dubois-Reymond. If a(t) is continuous in [tl,t2] and Ja(t)h(t)dt = for
tl

every h E D[tl, t2] with h(tl) = h(t2) = 0, then a(t) -c in [tl,t2] where c is a constant.

Proof. Let c be the unique constant satisfying
t2

f[a(t) - c]dt = 0 and let

h(t)= [a(s)- c]ds
/I

Then,

J[a(t) - c]h(t)= a(t)h(t)dt - c [h(t2) -h(tl)] = O

and hence a(t)- c.

By making use of the Lemma of Dubois-Reymond we can say that

fi [t, x(t), (t)] - (t) = c

And replacing the term (t) with its definition we can state first necessary

condition for a relative extremum:

21
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Theorem. For x to yield a relative extremum for the integral J = f[x(t), x(t), t]dt, it is
I

necessary that there be a constant c such that the integro-differential equation

f- it, x(t), x(t)] = f, is, x(s), (s)]ds + c

is satisfied by x = x (t) for all t E [tl, t2] except for the points where xO has a jump

discontinuity. The above equation is called the Euler-Lagrange equation in integrated form.

By noting that f, [s, x(s),:i(s)]ds =O(t) again, we can write the Euler-Lagrange
11

equation in its differential form;

f, [t, x(t), x(t)] - { f [t, x(t), x(t) ]} = 0

Euler Lagrange equation and isoperimetric problems, in which one is required to

find an extremum of an integral with a subsidiary condition (such as the volume or the

waterline area is constant) has found many applications in the theoretical study of the

problem of determining the ship form of minimum wave resistance. However, these

studies could achieve only results for simple geometries or approximations (such as thin

ship theory) and they do not correspond to real ships. Therefore, as we direct the interested

reader to a good collection of all these efforts [5,9], it should be noted that the above stated

theory of generalized differentials will be utilized to form the background of the more

general optimization routines which, later in this study, will be put into practical

applications.
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Chapter 3

3.1 Theoretical Background for Constrained Optimization

Due to the difficulty which is met to define a practical problem involving

convexity of the functionals, the local theory of Lagrange multipliers provides a wider

applicability and a general convenience for most of the optimization problems. Although

the theory itself becomes simpler and more elegant with convex functionals involved in

global constrained optimization problem, the above consideration makes the local theory

better known and it is most commonly applied in practical sense.

The principles of both the local and global theories are essentially the same.

Optimization problems with inequality constraints are almost identical for both of the

theories. Particularly, some important difference is observed for equality constraints[7]. As

one can see in the following sections of this chapter, the difference for equality constraints

arise from the fact that we base the local theory on acceptable approximations in the primal

space X, the space where we define our objective functional (or we define it on a subset of

the primal space X; mostly defined as D). An auxiliary operation is then required to relate

these approximations to the constraint space Z, the space on which the constraint is

mapped. These two spaces are related to each other because the objective function

optimization in the space X is achieved within the constraint limits defined in the space Z.

In fact, as we will see later, we need to relate the approximations in the primal

space X with the space Z*, the space where we will define Lagrange multipliers. A linear

operator is then used in the development of the local theory, namely adjoint operator,

which enables us to transfer optimization results in X* back to Z*. Here X* represents the

space of all bounded linear functionals on X and is called the normed dual or dual of X.

Usually an effective algorithm can be built on the dual approach, which depends in

an essential way on convexity and therefore on global theory. The theory of conjugate
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convex functions [2,3,1] furnishes a fairly complete answer to the question of how to

construct the duality. Although the main results of conjugate function theory apply only to

optimization problems of convex type, being attracted by the convenience that they

provide, we can see many applications also to non-convex problems [13]. Some of these

concern the derivation of necessary conditions for optimality. Others arise because, in the

course of a proper algorithm, a non-convex problem is approximated locally at each step

by a convex problem, as a way of defining the optimal direction for gradient based

optimization problems.

We need to mention a little more about the dual spaces here, because as will be

seen in the following pages, interrelations between a space and its corresponding dual, that

is the space consisting of all bounded linear functionals on the original space, plays a very

important role in the optimization theory defined on normed spaces. Dual space provides a

'dual' setting for the optimization problem defined in the original (primal) space, as

commonly denoted as X. It creates the alternative in a sense that if the primal problem is a

minimization problem, the dual problem becomes a maximization problem. Lagrange dual

functional gives a lower bound on the optimal value of the optimization problem, which

depends on the values of Lagrange multipliers. In that case, we try to reach the best lower

bound that can be obtained from the Lagrange dual functional.

Lagrange dual problem is a convex optimization problem, since the objective to be

maximized is concave (it is point wise infimum of a family of affine functions depending

on the Lagrange multiplier values) and the constraint is convex. This is the case whether or

not the primal problem is convex.

Optimal values of both of these objective functions are equal and the solution of

one of the problems leads to the solution of the other. Dual spaces are also essential for the

development of the concept of a gradient and they also provide the setting for Lagrange

multipliers, which become the fundamental tool for the constrained optimization problem.

Dual spaces also play a role that is analogous to the inner product defined in Hilbert space.
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Therefore we can develop results that are the extension of the projection theorem solution

of the minimum norm problems into arbitrary normed linear spaces [7].

One brief explanation about the notation might be useful for the remaining part of

this text. As a general rule, functional on a normed space X, linear or not, are denoted by f,

g, h etc., that is analogous to the common function denotation. However, for the specific

steps of development, certain bounded linear functionals will be shown as x *, x2, , etc. as

elements of the dual space X*. The value of the linear functional x* E X * at the point

x E X is denoted by x*(x) or by the more symmetric notation <x, x*>.

General Lagrange multiplier theorem forms the basis for all of the constrained

optimization problems, and it was devised by Lusternik. This theorem will be given in the

next section. Generalized inverse function theorem, a difficult analysis underlying this

theorem, is contained, but not given in detail at the beginning of this part. For the practical-

aimed purpose of this study, it is considered to be enough to understand the statement of

the theorem. However for a complete proof, one is directed to the relevant reference [8].

3.2 Definition of a Regular Point

We will base our derivation of generalized Lagrange multiplier theorem onto the

inverse function theorem. Before introducing this theorem, the notion of the regular point

will be discussed first.

Definition. Define a continuously Frechet differentiable transformation; T, from an open

set D in a Banach space X into a Banach space Y. If x0 D is such that T'(xo) maps X

onto Y; the point x0 is said to be a regular point of the transformation T.

The existence of a regular point, i.e. being able to map a certain point defined on a

space onto another space by both a transformation and the Frechet differential of that
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transformation provides the flexibility to define a neighborhood region that satisfies the

solution as will be seen in the Generalized Inverse function theorem definition. This is the

acceptable approximation in the primal space X, as we have mentioned in the beginning of

this chapter, which the local theory of equality-constrained optimization is based on. We

will later relate this approximation to the Z* space by means of adjoint operators. Regular

point definition also enables the use of gradients, and therefore instead of the variations

defined on actual surfaces, we can deal with the variations in the tangent space, and look

for the availability of a stationary case, which gives an extremum.

One can also think of the definition of regular point in terms of the ordinary regular

function definitions. However, the statement of this similarity should not cause any

misinterpretation other than providing a better understanding. As we know, if a function

can be expanded in power series near x = x0, as given below for example in Taylor series;

f(x)= f" ((x - x0 )
l=0 n 

then, it is said to be a regular function at x = x0. In order the above expansion to be defined,

all derivatives of f(x) must exist at x = x0. The general regular point definition, however,

requires the existence of first derivative, (Frechet differentiability of the transformation)

which is an extension of the classical optimization theory that is based on the first

derivative.

The optimization problem is defined in Banach Space. Determination of the most

convenient space for the problem is beyond the scope of this study. However, we must

briefly note the advantage of using this space by giving the definition first:

Definition. If every Cauchy sequence from a normed linear vector space X has a limit in

X, X is called a 'complete normed linear vector space', or Banach space.
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Cauchy sequence can be explained within the concept of convergence. In a normed

linear space, an infinite sequence of vectors { x, } is said to converge to a vector x, if the

sequence { x -- x,, } of real numbers converges to zero. In this case, we write x -> x.

Based on this, a sequence { x, } in a normed space is said to be a Cauchy sequence

if xIIX - x, I - > 0 as n, m ---> oo .i.e., given £ > 0, there is an integer N such that

I|x, - x < for all n, m> N.

Normed spaces in which every Cauchy sequence is convergent (complete) are of

particular interest in analysis; in complete spaces, it is possible to identify convergent

sequences without explicitly identifying their limits. Compared to the other problems

defined in incomplete spaces, the principal advantage of defining the optimization problem

in ]3anach space is that in such a problem, we seek an optimal vector that is maximizing/

minimizing a given objective. In this case, we often construct a sequence of vectors, each

member of which is superior to the preceding members, that is closer to the optimum

result. The desired optimal vector is then the limit of the sequence. In order that scheme be

effective, there must be a convergence test which can be applied when the limit is

unknown. If the underlying space is complete, i.e. if it is a Banach space, Cauchy criterion

for convergence meets this requirement.

3.3 Generalized Inverse Function Theorem

The proof of the theorem will not be given here but a clear description of the

statement will be given briefly. That will enable us to derive the generalized Lagrange

multiplier theorem in the next section.
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Theorem. If x0is a regular point of a transformation T mapping the Banach space X into

the Banach space Y, then there is a neighborhood N(yo) of the point y = T(xo) (such as a

sphere centered at y ) and a constant K such that the equation T(x) = y has a solution for

every y E N(yo) and the solution satisfies [Ix - || < K Ily - Yo 11

The existence of a regular point, i.e. being able to map a certain point defined on a

space onto another space by both a transformation and the Frechet differential of that

transformation provides the flexibility (acceptable approximation) to define a

neighborhood region that satisfies the solution.

3.4 Necessary conditions for the Local Theory of Optimization

Let us know give the necessary conditions for an extremum of an objective f that is

subject to the constraint H(x) = 0 (i.e. null vector), where f is a real valued functional on a

Banach space X (primal space) and H is a mapping from X into a Banach space Z

(constraint space).

Lemma. If f and H are continuously Frechet differentiable in an open set containing the

regular point x0, and if f is assumed to achieve a local extremum that is subject to H(x) = 0

at the point x0; then f '(xo )h = 0 for all h satisfying H '(xo)h = .

Assume specifically that the local extremum is a local minimum so that we can

define the sign of the variation from the extremum explicitly. A transformation is later

defined with the real-valued functional that satisfies the constraint mapping such as

T(x) = (f(x), H (x)) . This transformation maps the x values on primal space X onto a

space defined as the vector product of R and Z; i.e. T: X -> R x Z. This is because the

functional f takes values on the real-values axis R and the constraint mapping H(x) maps

the elements of the primal space onto the constraint space Z. So, the elements of the new
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transformation are defined on such a vector product space that they take real values that

also satisfy constraint mapping on the Z plane. We introduce an increment of variation h

such that H '(x,) )h = 0, f '(x0 )h • 0 . In other words we equate the Frechet differential of

the transformation H to null vector for the minimum value of xO; SH(xo; h) = H'(xo)h.

Here, H '(xo) is the Frechet derivative of H and it is a bounded linear operator from primal

space X to the constraint space Z.

We assume that for all the increments of variation h, which equates the Frechet

differential of the constraint equation to null vector, the Frechet differential of the real-

valued functional F is not equal to zero, i.e. Sf(x; h) = f '(xo)h O. Since f is a real valued

functional, Frechet derivative of this functional can be called the gradient of f at x0. It is a

linear operator from primal space X to its dual X*.

T '(xo) = (f '(x), H '(xo)) will also be onto the product space, T': X -> R x Z. This

is because of the definition above that assumes x0 to be a regular point of the constraint

mapping H. The linear operator H'(xo) maps the point x onto Z as does H(xo) by

regularity and f '(xo)h is not equal to zero but takes some real value by the initial

assumption. It would then follow, by the inverse function theorem that for any > 0, there

exists a vector x and > with I|x - x0 | < such that T(x) = [ f(xO)-d , ]. This

contradicts the initial assumption that x is a local minimum.

Let us visualize the above result geometrically in the Primal space X as given by

Luenberger [7].
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Figure 3-1: Geometric visualization of the necessary condition in Primal space.

In the figure above, contours of constant f and the constraint surface for a single

functional constraint h(x)=O are drawn in the Primal space. The above result is expressed

here with the introduction of the tangent space of the constraint surface. It is a subspace of

the primal space X and it comprises the set of all vectors h (admissible variations) for

which H '(xo)h = . As we have given the definition previously, it is also called the

nullspace of H '(xo ). When we translate it to the optimal point x, it is regarded as the

tangent of the surface N = {x: H(x) = 0} near x0. The geometric equivalent of the

necessary condition given in the above lemma is that f is stationary at the optimal point x0

with respect to the admissible variations in the tangent plane.

3.5 Local Theory of Optimization with Equality Constraints

We have showed that an extremum f is stationary with the regularity provided,

(Frechet differential of f is equal to zero) with respect to the variations in the tangent plane.

In other words, we have replaced the constraint with its linearized form and the extremum f

revealed to be stationary with respect to variations in this linearized constraint. Now, we
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can proceed to represent the Lagrange multiplier theorem by introducing the duality

relations between the range and null space of a linear operator and its adjoint.

Theorem. If the continuously Frechet differentiable functional f has a local extremum that

satisfies the constraint H(x) = 0 at a regular point x, then, there exists an element

z E Z * such that the Lagrangian functional

L(x) = f (x) + Zo * H(x)

is stationary at the point x0 , i.e.;

f '(x0 )+ z0o * H'(xo) =0.

Proof. The set of all vectors h, for which the constraint equation, H '(xo)h = 0, is satisfied

is called the nullspace of H'(x 0). With a geometric description of the statements above, it

is the tangent space at x0.

From the Lemma in part 2.4, we know that f '(xo)h = O for all h which satisfies

H '(xo)h = 0. T'his necessitates that f '(x ), the linear operator from primal space X to its

dual X*, is orthogonal to h, i.e. to the nullspace of the linear operator H '(xo).

Definition: Closed Set

The following steps that we will follow through the optimization process will

require the range of the linear operator to be closed. Therefore, we have better explain the

definitions of these concepts.

A point x E X is said to be a closure point of a set P, which is a subset of X, if,

given a c > 0, there is a point p E P satisfying |Ix - pll < c. The collection of all closure

points of P is called the closure of P and is denoted by P. In other words, a point x is a

closure point of P, if every sphere centered at x contains a point of P. It is obvious that P

becomes a subset of P. A set P is said to be closed if P = P.
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One example to the closed set definition that is easy to visualize in mind is the unit

sphere, consisting of all points x with x I < 1. A single point is a closed set, the empty set

and the whole set X are also closed (as well as open).

Definition: The Range of a Transformation

If a transformation T maps the space X into Y; T: X -> Y, the collection of all

vectors y Y for which there is an x X (or a subset of it ) with y = T(x) is called the

range of T.

Since we have approximated the constraint equation with its linearized version, we

will be focused on the linear transformations (linear operators) in our derivation of

Lagrange Multiplier theorem. Therefore, we can define the range of the linear

operator H' (xc ): X --> Z as follows: It is the collection of all vectors in Z for which there

is an x E X (That will be our solution, i.e., the vector that gives the optimum solution; x0 )

with H '(xO) = 0.

As we have stated previously, for all h satisfying H '(xo )h = 0, f is stationary at x0 .

Therefore, the space of all h vectors, i.e., nullspace of H' (xo ), represents the range of this

linear operator. h is the tangent space or linearized version of the constraint space (the

space composed of all vectors h such that H '(x0 )h = 9; nullspace). It can be represented as

a linear surface in three dimensions, or simply as a line in two dimensions. This linear

property enables the range to be closed. This is because, the collection of all the closure

points still remain on the tangent space and the closure of the tangent space equals the

tangent space. Therefore, instead of creating variations on the constraint space, we can

define variations on the tangent space, and still fulfill the closed property of the range.
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Closed range is required for the optimization process because the variations are intended to

remain in the constraint space (or as we did here, it remains in its linearized form).

Now that we know the range of H '(x0) is closed, let us proceed to define the

duality relations between the range and nullspace of an operator and its adjoint. Before

introducing this relation, let us briefly summarize the use of adjoint operators.

3.6 Adjoint Operators and Their use in optimization problems

As we have introduced above for our problem of generalizing the optimization

problem, constraints in many optimization problems can be replaced by its linearized

version. A linear operator, or an adjoint operator is then used in order to enable us to

transfer optimization results in X* back to Z*. Here X* represents the space of all bounded

linear functional on X and is called the dual of X. Z* is the space of all bounded linear

functionals on the constraint space Z, it is the dual of Z. Due to their convenient

mechanism for describing the orthogonality and duality relations, adjoint operators are of

importance in the definition of the optimization problem.

Definition. Let X and Z be normed linear spaces and let A E B(X, Z). Here B(X,Z)

denotes the normed space of all bounded linear operators from the normed space X into the

normed space Z. The adjoint operator A*: Z* - X * is defined by the following equation:

A*z*(x) = z*(Ax)

Given a fixed z* E Z *, the quantity z * (Ax) is a scalar for each x E X and is

therefore, it is a functional on X. Furthermore, by the linearity of z* and A, it follows that

this functional is linear. With the following equation:

IZ * (Ax) < Iz * IAXII< 1z *11 IIIAlIXII
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We can see that this functional is bounded and is thus an element x* of X*. Then

we define A*z*=x*. The adjoint operator A* is unique and linear. The relation between an

operator and its adjoint is illustrated below:

X (A) - Z

Z*~ (A*) ->X*

After this brief review of the definition of adjoint operators, let us now give the

relations between range and nullspace, in which adjoint operators play an important role

due to their convenience for describing the orthogonality and duality relations.

Theorem 1. Let X and Z be normed spaces and let A E B(X, Z) . Then the orthogonal

complement of the range of a linear operator is equal to the nullspace of its adjoint as

denoted below;

[9(A)]' = N(A*)

Proof. Let us remember the definitions and the spaces on which the range and nullspace of

linear operators are defined again.

The collection of all vectors z E Z for which there is an x X with z=Ax is the

range of the linear operator A. Orthogonal complements of range of A consists of elements

z* _( Z * that are orthogonal to every vector z E Z in the range of A. In our definition

above, the set {z*: A * z* = } corresponding to the linear operator A* is the nullspace of

A*. And it is a subspace of Z*.

Let z* e N(A*) and z E 9S(A). Then z=Ax for some x E X. The following

equation;

z*(z) = z*(Ax) = A* z*(x) = 0
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shows that N(A*) is a subset of [91(A)] . If we assume that z* E [9(A)] , then for every

x -X , z * (Ax) = 0. This is equivalent to A * z * (x) = 0 and therefore, [9(A)] is a subset

of N(A*). This is possible only if [91(A)]' = N(A*).

The dual equivalent of the above theorem is also valid, given the range of the linear

operator A is closed. i.e.;

93(A*) = [N(A)]'

In the equivalent dual equation, since the adjoint of the linear operator A is defined

by: A*: Z* -> , *, the range of A* now becomes the collection of the vectors x* E X * for

which there is ; z* E Z * with A*z*=x*. The nullspace of the linear operator A is simply

composed of the elements of the set {x : Ax = O}, and it is a subspace of the primal space

X.

The orthogonal component of the null space, therefore, consists of elements

x* , X * that are orthogonal to every vector x X in the nullspace of the linear operator

A.

If we let x* · 93(A*), then A*z*=x* for some z* Z * . And for any x that is an

element of N(A); the following equation would be valid;

x*(x) = 0 = A* z* (x) = z*(Ax)

Then, x* is an element of the orthogonal component of the N(A) and it follows that

9i(A*) is a subset of N(A)'. In order to prove that N(A)' is also a subset of 9(A*),

which leads to the result of their equality, we need to invoke extension form of Hahn-

Banach theorem. This complicated proof is not provided in this study. However, we must

understand the general idea behind this theorem that leads to the convenient duality

relations between the range and nullspace of an operator and its adjoint.

35



Extension form of the Hahn-Banach theorem extends the projection theorem to

problems having non-quadratic objectives. This enables the simple geometric

interpretation of the projection theorem to be preserved for more complex problems.

Projection theorem, simplified in three-dimensional space, states that the shortest line from

a point to a plane is the perpendicular from the point to the plane. This simple, well-known

result finds direct applications in spaces of higher dimensions, as is the case with Hilbert

space. The extension form serves as an appropriate generalization of the projection

theorem from Hilbert space to normed spaces, such as Banach Space [1,7].

3.7 Lagrange Multiplier Theorem

Before applying the duality relations we stated in part 3.6, let us now go back and

repeat the theorem we will invoke for the constrained optimization problem.

Theorem. If the continuously Frechet differentiable functional f has a local extremum that

satisfies the constraint H(x) = 0 at a regular point x0, then, there exists an element

z0* E Z * such that the Lagrangian functional

L(x) = f (x) + zo* H(x)

is stationary at the point x0 , i.e.;

f '(x0 ) + z0 * H '(xo) = 0.

We have also showed in section 3.5 that f'(xo), the linear operator from primal

space X to its dual X*, is orthogonal to h, i.e. to the nullspace of the linear operator H '(xo).

According to the duality relations between the range and nullspace of an operator

and its adjoint that we have explained in part 3.6;

If we let x* E 9i3(A*), then A*z*=x* for some z* E Z *
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That is, in our terms for the problem; Since the range of H '(x0), (i.e. the linear

operator A) is closed,

f '(Xo) E [H'(xo)*]

then, there is some z0* E Z * so that A*z*=x*, i.e.:

H '(x0) * z = f '(x0 )

that which proves the stationary situation of our Lagrangian functional at x0 . Expressed in

the common notation:

f '(x0 )+ z0 * H'(x) = 0

The second term in this expression is the composition of linear transformations.

Based on the regularity definition, just like the constraint equation H(x o) , the linearized

version of the constraint equation H '(x0) also maps the point x0 from primal space X onto

the constraint space Z. The composition of adjoint of this linear operator, H '(xo) *, with

the Lagrange multiplier z0 * E Z * maps the optimization problem onto the dual of the

primal space, X*. This is the normed Banach space where we have established the

extension form of the projection theorem for minimum norm problems. From the

application point of view, minimum norm problems are formulated in a dual space in order

to guarantee the existence of a solution. This approach has provided to us a convenience to

relate the null space and range of a linear operator and its adjoint.

In almost most of the optimization problems, Lagrange multipliers are often treated

in a naive way as a convenient set of constants multiplied with the constraint equations.

However, as described above, we should not consider them as individual Lagrange

multipliers. In fact, they are an entire Lagrange multiplier vector defined in an appropriate

dual space. The misunderstanding or simplification of the vectoral concept is usually
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caused by the need to represent the problem in finite dimensions. In fact, if we have a

single functional equation as the constraint, on geometric grounds, the Lagrange multiplier

turns out to be a scalar, i.e. a constant that multiplies the constraint. However, this should

not cause a misinterpretation of the more general concept defined in vector spaces.

Lagrange multipliers are commonly used in the constraint optimization problem,

because of the convenient mechanism introduced for the duality relations between the

range and nullspace of an operator and its adjoint. Reviewing our arguments above, we

first showed that at an extremum,f is stationary with respect to variations in the tangent

space, in other words, we have replaced a nonlinear constraint with its linearized version

and defined the variation on it. The Lagrange multiplier then followed from the adjoint

relations.
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Chapter 4

4.1 Theoretical Background for Optimal Control Theory

With the general theorem given on Lagrange Multipliers, this part contains the

derivation of the optimal control theory, which, to some extent can be considered as an

extension or an application of the Lagrange multiplier theory. The structure of the optimal

control theory will be paid some attention and that will enable us to generalize the similar

optimization methods found in the literature with different names. After the introduction of

the optimal control theory, all these presumably different methods will be observed to

follow the same idea. This will be more mature once the theory is followed by some

applications. After all, optimal control theory will provide an additional insight into the

Lagrange multipliers as a more general application to the optimization problem.

4.2 Basic Necessary Conditions

Considering an interval [to,t, ] of the real line, we introduce a dynamic system of

the form

x?(t) = f [x(t), u(t)]

that is described by a set of differential equations. Here x(t) is an n-dimensional 'state

vector', u(t) is an m-dimensional 'control vector', and f is a mapping of E" x E"' into E".

The above dynamic system produces a vector-valued function x, when supplied with an

initial state x(t o) and a control input function u.

In addition to the dynamic equation and the initial condition, we are given an

objective functional to be minimized of the form

J = I(x,u)dt
1(

and also a finite number of terminal constraints

g, [x(tl)]=c,, i=1,2,......,r
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or given in the vector form as

G [x(t,)] =c

The functions 1 and g are assumed to possess continuous partial derivatives with

respect to their arguments. The control problem is then that of finding the pair of functions

(x,u) minimizing the objective functional J while satisfying the dynamic system and the

terminal constraint.

In order for the general variational theory to be applied, the control problem is

formulated in various spaces each with its own particular advantage. The most natural

approach is to consider the problem as one formulated in X x U and to treat the dynamic

condition and the terminal constraint as constraints connecting u and x. We can therefore

apply the general Lagrange multiplier theorem to these constraints with separate Lagrange

multipliers defined for these constraint equations individually. The optimization process

then seeks to replace the Lagrange multipliers in terms of only one multiplier and by

means of the initial and terminal conditions, the pair of functions (x,u) are found.

Another approach is to note the fact that once the control vector u is specified, the

dynamic condition uniquely defines the state vector x with the set of differential equations

and therefore, we only need to select the control vector u. The problem can then be

regarded as formulated in the space of admissible control functions, U. Lagrange multiplier

theorem needs only to be applied to the terminal constraints. Another approach is to view

the problem in the space of admissible trajectories, X, which consists of the functions x

resulting from the application of a given control u. We consider them as continuous n-

dimensional functions on the interval [t, t, ]. The problem can also be defined in the finite

dimensional space Er which corresponds to the vector of terminal constraint. As we have

previously stated each of these approaches has theoretical advantages for the purpose of

deriving necessary conditions and practical advantages for the purpose of developing

computational procedures for obtaining solutions. Our approach will be in the X x U space.
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The differential equation of the dynamic system with the initial condition x(t 0) is

equivalent to the integral equation

x(t) - x(to)- f [x(), u(r)] dr = 0
1,

that can be abstractly stated as a transformation A;

A(x, u) = 

A is a mapping from X x U into X. The Frechet differential of A is continuous

under our initial assumption and it is given by the formula

dA(x, u; h, v)= h(t)- jfxh(r)dr- jfv(r)dr

for (h,v)E XxU.

The terminal constraint is a mapping from X into E', and its Frechet differential is

given by

SG(x; h) = Gh(t, )

The transformations A and G define the constraints of the problem, and their

regularity can be proved. We can now give the basic necessary conditions satisfied by the

solution to the optimal control problem.

Theorem. Let x0, uO minimize

J = l(x,u)dt
Io

subject to the initial, terminal and dynamic conditions

x(to) = fixed, G[x(t)] = c, x = f(x,u)

and assume that the regularity conditions are satisfied. Then there is an n-dimensional

vector valued fimction 2(t) and an r-dimensional vector ,u such that for all t [to,t, ]

(4.1) -A(t) = f xo(t) uO (t)] (t) + l '{xO (t), uO (t)}
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(4.2) i '(t)l {xo(t), u o(t)} + 1, {x (t), uo(t)} = 

(4..3) 2(t ) = Gx '{x0 (t, )} A

The proof of the basic necessary conditions follows from the Lagrange Multiplier

theorem given in the third Chapter, which is briefly given below.

If the continuously Frechet differentiable functional J has a local extremum under

the constraints composed of the dynamic system and the terminal condition at the regular

pair of functions (x0 , u ), Lagrange Multiplier Theorem yields immediately the existence

of the elements A and u such that the Lagrangian functional is stationary with respect to

the variation of both the state and the control variables independently, i.e.

lx(xO,uo )h(t)dt +ld '(t) h(t)- f (XoUo)h(r)d + 'G { o(t )}h(t) = 

fi (0u v{,t d2't)J (0 , ,)v(r)dT 0
|1, (Xo, uo )v(t)dt - dA '(t) f, (o, uo )v(r)dr = 0

I,, I,, to

for all (h, v) X x U. Based on the terminal condition, we may take A(t) = 0. Integrating

the first equation above by parts, we have

I! I I

IJ. (xo, uo )h(t)dt + dA '(t)h(t) + 2 '(t)f (xo, uo )h(t)dt + ' G h(t ) = 0
I,, I,, 1,1

This equation holds for all continuous h, therefore it particularly holds for all

continuously differentiable h vanishing at to. Integrating the second term by parts, we have

for such functions

xo,uo)h(t) - (t)(t) + (t)dt = 0

l(}
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It follows that is differentiable on the interval (to,tl ) and the equation 4.1 holds.

Integrating the variation of the above Lagrangian equation with respect to U by parts,

equation 4.2 holds. Now by changing the boundary condition on A(t ) from (t ) = to

A(t, ) = G, ' to account for the jump that is necessary for the continuity, equation 4.3

holds to preserve the continuity of A. In this general formulization of the optimal control

theory, the necessary conditions 4.1, 4.2 and 4.3 along with the original dynamic, initial

and terminal conditions form a complete system of equations; 2n first order differential

equations, 2n boundary conditions, r terminal constraints and m instantaneous equations

from which x (t), (t), u, and uo (t) can be found.

4.3 A Simpler Extension of the Optimal Control Theory

Based on the Lagrange Multiplier Theorem with its wide range of applicability, let

us have a look at a simpler variation of the optimal control theory which leads to the

reduced gradient of a cost functional. This brief theoretical introduction will be later

applied to a practical application in the following section.

In most of the optimization applications, we prefer defining the problem in a

Banach space that is partitioned, or in other words, composed of the vector product of state

space and control space denoted as X = X x U. As we have previously mentioned, some

other definition of spaces can also be considered each with its own advantage of

formulization and computational reasons. In our case, X is the state space and U is the

control space. The variables in the control space U are also called design variables or

design parameters. As we have introduced in Chapter 3, according to the theorem of

Lagrange Multipliers, the mapping H introduces an equality constraint H(x, u) = 0 and it

is a mapping from the primal space X into the constraint space Z. It can be a set of

algebraic equations, ordinary differential equations or partial differential equations, here
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represented in its simpler vector form. In most of the applications, the constraint

commonly takes the form of a boundary value problem.

In terms of the control theory notation, H is the constraint mapping which is

composed of the constraints A and G. As we have previously shown, A contains the

dynamic system differential equation and the initial state, whereas G is the constraint

imposed by the terminal state.

With this most general notation introduced, we know, from the theory of Lagrange

multipliers that, if the continuously Frechet differentiable objective functional J has a local

extremum under the constraint H(x,u)=O at the regular values of the pair of functions (x,u),

then, there exists an element A* E Z * such that the Lagrangian functional is stationary, i.e.

Jx(x0 ) + 20 * H(xo) = 0.

Since we have combined the constraint in just one vector form of a mapping H, we

would not need to define another extra adjoint multiplier; pu, which is needed in the more

general optimal control theory formulation to deal with the terminal constraint. The

simplicity of the problem arises from the time-independence of the state and control

variables, i.e. we would not need extra steps to integrate by parts the time variation of the

Lagrange multiplier in this example. Within this context, equations 4.1 and 4.2 appear

directly as the application of the Lagrange Multiplier theory, and one can be substituted

into another to provide an explicit term to replace the Lagrange multiplier.

As in the case of the transformation A, the constraint mapping H(x,u)=O uniquely

determines the state for given controls. It connects the state variable and control variable

with the set of constraint equations. When the constraint is adjoined to the objective

functional to construct the Lagrangian functional, the dependence of the states on the

controls are disconnected and they are treated as independent variables.
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The time-independent form of the equations 4.1 and 4.2 follow from the above

intuition and the stationary condition of the Lagrangian in this context which finds itself

many practical applications one of which will be formulized in the following chapter.

(4.4) Ji(Xo,Uo)+ o * H (x,uo) = 0

(4.5) J,,(Xo,u 0)+ o * H,, (X, U)=0

When the constraint H(x, u) can be viewed as the governing equation from which

the states x can be uniquely determined for a given set of control variables u, the above

equations can be substituted one into another to solve for the Lagrange multiplier under the

conditions that the constraint H is regular at the optimal point x0 and the Jacobian H x is

invertible.

;z4*;:= -J(x0 uO)[H(x0,u )]-1

Substituting the Lagrange multiplier into the equation 3.5, we have

J, (x 0, uo)-J (xo,uo)[H (x 0, u)] - HI,(xo,uo) = 0

The above necessary condition is stated at the local extremum point. On the way to

the optimum solution, the iterative approach provides the intermediate values of the

Lagrange multiplier and the gradient of the Lagrangian approaches to stationary with the

constraint satisfied. In other words;

J(x, u)+ * Hx (x,u ) = O

and this yields;

= -Jx(x, )[H (x, u)]-'

The gradient of the Lagrangian with respect to the control variable is given by;

L = J, (x, )- J (x, U) [HX (X, )]-' H, (x, )au
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The above equation is the gradient of the cost functional with respect to the control

variable at constant values of the constraint, H. It is also called the reduced gradient in the

literature. In other words, given as the boundary conditions of the problem, we keep the

constraint constant. i.e.,

JH = HSfx + H,,iu = 0

which gives us;

8x = -H -' H,,Su

Thus, the variation of the objective functional becomes;

SJ = Ju + J 8x
= (J, -JHx-IH,,)'U

or

= J - JH-IH,
au

This result is identical to the previous equation that we have obtained. Therefore,

the combination of the first two necessary conditions of the optimal control theory given

previously holds for this simplistic approach to the problem, and in fact the optimal

solution is obtained with the reduced gradient of the objective functional with respect to

the control variable subject to the constraint.
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Chapter 5

5.1 Application of Optimal Control Theory to the

Shape Optimization Problem

The following hydrodynamic shape optimization problem is first introduced by

Ragab[12 ]. Although, in his study, the problem is considered to be an adjoint approach as

an alternative to the gradient-based numerical optimization techniques, it lacks a detailed

reasoning of the steps followed. It is therefore intended in this part to formulate the

problem within the principles of the optimal control theory.

The sketch below gives the flow domain where the optimization problem is

defined.

Figure 5-1: Sketch of the flow domain for a deep submergence shape optimization.

A three dimensional body is translating with a steady forward velocity U well

below a free surface. We locate the body at a certain depth so that the free surface
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boundary condition is excluded in this simple example. The problem is defined relative to

a translating coordinate system. Since the body is translating with a steady forward speed,

a steady flow is defined in the opposite direction of the translation far upstream of the body

with a velocity of U. The flow domain Q is bounded by the body surface (BS) and the far-

field surface (FFS).

We would like to optimize the shape of the body for a certain objective function.

Therefore, our control (u) is the perturbation of the geometry, denoted with 0 (a set of

geometric parameters to define the body surface which is to be optimized) and for the

convenience of defining the state (x) of the flow, we choose the velocity potential as our

state variable.

The constraint H(u,x) appears as a set of boundary conditions given as;

(13.C.1) C(u,x) = V2O = O (inQ)

(B.C.2) B(u, x)= + U.n = O (on BS)
On

(B.C.3) A(u,x) = = (on FFS)

The set of constraints given above forms a constraint space that consists of the

boundary conditions. Let us consider a general objective function in the form of

J(u,x)= f ds
BS

The objective function is a function of both the state and the control variable. In

order to form the Lagrangian by adjoining the constraint to the objective function, we can

either choose to form a combination of all of the constraint equations or in an alternative

way, we can treat them as individual constraints. Following the latter, each individual

constraint equation that is defined on a certain boundary will then be transformed into the

dual of the primal space by means of its own adjoint multiplier. It will later be possible to
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express the individual adjoint multipliers on certain boundaries of the fluid domain in

terms of only one adjoint multiplier. This is because we need only one adjoint multiplier

for a problem that is constrained with a zero-order equation, i.e. no dynamic condition, and

no need for a terminal constraint to be coupled with its own adjoint multiplier.

In the formulation of the general control theory given in the previous chapter, we

have defined the constraint space as one that is composed of the transformations A and G,

where A is a combination of the initial state and the dynamic condition and G is the

constraint imposed by the terminal constraint. That is why, we have defined two elements:

A and ,u, where the second term, ji, that is the adjoint multiplier of the terminal

constraint, has been related to the first one by the necessary condition 4.3 to provide

continuity.

By adjoining the constraint equations each with its adjoint multiplier, let us define

the Lagrangian as

L(u,x)= f ds + CdQ+ fB ds + aAds
BS Q BS ITS

Following the reasoning that leads to the necessary conditions 4.4 and 4.5, we

implement the stationary condition of the Lagrangian by disconnecting the dependence of

the state and control and treating them as independent variables. Before this step, we

should distribute the constraint on the whole fluid domain imposed by the continuity

equation to the boundaries of the fluid, one of which, the body boundary, will later be

considered as the space that we are defining our optimization problem. For this aim, we

should apply Green's theorem to the continuity condition valid throughout the whole fluid

domain as below

f2 V2 dQ - If V2 i dQ f (2A - 0H>ds
f2Q boundariesan 

of the fluid domain

Leaving the first term on the left hand side of the equation alone,
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fACdQ= fAV20dQ= 0V 2AdQ + | ( o-0edsf~cdQ J,~v2~d2Q +houdaries an aj
of the fluid domain

The boundaries of the fluid domain consists of the body surface (BS) and the far-

field surface (FFS) and the last term on the right hand side of the above equation can be

separated into these parts and then can be combined with the same surface integrals in the

Lagrangian equation as given below;

L(u,x)= f ds +jV2 A d + (B+ - ) ds + (A - )ds
BS B an an a n anBS QC BS FFS

Once we have constructed the Lagrangian functional, the dependence of the states

on the controls are disconnected and they are treated as independent variables. Following

the necessary condition 4.4, we differentiate the Lagrangian with respect to the state and

obtain the adjoint multipliers on each boundary.

aL(u, x) 0

w'2Q+f I(;+af aB O + -_ ) a + aA ( as+ a
Qn S O ao an an OS-S a an an

The above equation gives us the adjoint multipliers 8/ and a in terms of A, which

relates state variable with the control variable. At the same time, adjoint equations are

obtained for each separate part of the fluid domain as given below.

ADJOINT EQIJATIONS:

(1) V2 = (in Q)
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(2) a af (on BS)
an 

(3) A = 0 (on FFS)

With the above equation (2) included in the BS integration, the following steps lead

to the definition of the adjoint , in terms of A :

aB _=_

Ad0 an

where B = - + .n. Therefore changing the order of differentiation;
an

an ad an

this gives us the relation between ,l and A;

(4) , = -A.

Similarly, considering the Far-field surface integration with the adjoint equation (3)

included;

OA aA =

ad an

Where A = ~0. Therefore, we can easily obtain the relation between a and A as;

(5) a --
an

Comparing the general optimal control theory given in Chapter-4 with our

application in the steady case here, we can say that since there is no time-dependence, the

adjoint equations fulfill the smoothness condition. Otherwise, the terminal constraint

would need to be adjoined with another multiplier, ,, and the relation between the

dynamic condition coupled with the initial condition and the terminal condition were to be
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determined with the necessary condition 4.3 such that at the terminal point, the continuity

of the Lagrange multiplier A can still be satisfied.

In the steady case that we consider in this application, dynamic condition simply

equals to zero due to the time invariance of the state variable 0 . Therefore, we would no

longer need to include a first order differential equation along with its initial condition.

Due to the time invariance property of the problem, we are not given a terminal constraint

to be satisfied, either. However, in spite of the simplicity of the appearance, the constraint

equation still has a very important role of relating the state and control variables.

Continuity of the adjoint multiplier comes by itself without necessitating a condition

between the terminal constraint and the dynamic condition due the above stated property of

the problem which makes the application more practical.

After determining the Lagrange multiplier functions, we can make us of the

condition that the Lagrangian function is stationary with respect to the variation of the

control variable as given in Equation 4.5. The adjoint equations that we have derived are

valid also for the variation with respect to the control variable; 0. Therefore, we can plug

in the adjoint equations for each part of the fluid domain that the problem is defined.

=O,(Eq.1) =-A,(Eq.4) = ,(E .5) (q.3)

L(u,x)= fds+ V2AdQ+ J( df Bf+A - )ds+ |( a A+ -- ds
On an On On

The above equation then simplifies to the following;

L(u,x)= J(f + 2 o _ -OO-B) ds
BS an an

Let us now apply Green's theorem for the familiar terms on the right hand side of

the above equation to further simplify it by making use of the boundary conditions and the

adjoint equations before taking the variation with respect to the control variable.
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L(u,x)= (f - AB)ds + f'(A 2 -7 )ds
BS BS n n

=O,(.(.I) =O,(Lq.l) =0,(Eq.3) =0.(.C.3)

f (f - AB) ds + (1i V2 -0 V2A )dQ- | ( a -- 0 O) ds
BS S In Sn

Therefore, what remains in the Lagrangian equation is an integral over the body

boundary;

L(u,x)= f (f - B)ds
BS

Now that we have adjoined the adjoints into our Lagrangian equation, we can

calculate the variation of this equation with respect to the control as given by the Equation

4.5 which will become stationary once the local optimum is reached.

dL(u, x) a |-J) ds

ao aOBS

In the above equation, the term A needs to be calculated by means of the adjoint

Equation (2). In the following chapter, we will cover the formulation to determine the

variation of the objective functional with respect to the flow variable where the objective

functional is an explicit function of the flow variable. Let us now calculate the above

expression giving the variation of the Lagrangian with respect to the control (geometry)

variable. We will denote the geometry variable with a function a(u) defined on the body

boundary. It is a function of the geometric parameters (control variables), which we

consider to be the curvilinear coordinates to define the surface shape for simplicity and we

will follow the same notation in the following chapter for the ease of formulization.

The variation is composed of two terms. The first one is caused by the change of

the incremental surface element and the second term is by the variation of the terms in the
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integration sign due to the variation of the geometry while we keep the state (flow)

variable constant.

(5.1) (f- 2B)ds = (f-
8 B. BS

B) ds +
OO~~(s BS00

A B)ds
ao

For calculating the term (ds), let us consider an infinitesimal change ofao

geometry on the body surface in the direction of the normal vector.

- a n

We define the incremental piece ds as an arc

ds = RdO

where R is the radius of curvature and dO is the incremental angle seeing the small

piece of the body surface.

As we have defined previously, a is an arbitrary geometry function defined on the

boundary of the surface. The change in the incremental element due to the above defined

change of the geometry in the normal direction is

a
R dO - c a dO = (R - e a) dO = R (1- c ) dO

B

By substituting ds in the above equation we can calculate the variation as follows;

(ds - ds) =[ (1 -
£ £

) ds-ds ]
R

oy

-(ds" -ds) =-
c R

With the above variation of the incremental surface element, the first term of the equation

(5.1) gives the following:

(f - B) (ds) =ao f (f - AB) ds
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However, the body boundary condition B(u, x) = - + U. = is equal to zero as given in
,n

the problem statement. Therefore, the first term of Equation (4. 1) simplifies to

(5.2) (f -AB) (ds) f fds
1S a BS R

The second term in the same equation will be calculated next. Since we have

disconnected the state and control variables in the formulation of the problem, no

perturbation of the state (flow) variable will be considered but we will perturb only the

geometry to calculate the variations of the terms given below once again.

J(taf aB)ds
BSo ao

The second term in the above equation demands the variation of the no penetration

boundary condition. Let us start with this term. We will use the total velocity potential for

the ease of the following derivation which will enable us to include a steady forward speed

motion buried in this term.

B(u, x)= + U.n =-= O
an an

The variation of the above expression due to the variation of the geometry is given

by;

aB 1
(5.3) -=- [ VTI)(u).n' - V'((u).n ]

In order to represent the incremental change in the normal vector of the body

surface, a simple diagram is given below.
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n

Figure 5-2: Representation of the change of the normal vector to the body surface.

Here, n and t represents the normal and the tangential coordinates respectively

before the perturbation is applied. For the case of a three-dimensional object, we have two

tangential coordinates and a normal coordinate to define the body surface. Based on the

above diagram., n is given with the following;

(5.4)
aa aa 

ne= :i-- 0 -r-- +O(£2) =
Oq7

Oa -
n =-,I t

(D(u') term is determined by considering a shift of the control variable in the

normal direction and Taylor expanding it in the same direction.

a(u)
(5.5) ()(u ) = ( + E£ a n) = D () + E ao ± + 0(e2 )

an

We can now evaluate the Equation (5.3) by using the relations derived in Equations

(5.4) and (5.5).

B 1- - [ IV(u').n'
£B 

=- IV ( +C a ).(n- E aa t)C e an ,= at - V (.n}
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=- V (I.n- c V
52.

aB 

4Z- t+caV(*) . - .n+ (2)}
,= ,q at an

-Z
1=4,7/

at

02 D

an- 

Let us now evaluate the term -. We know that f is an implicit function of the0
state (flow) variable. Perturbation of the flow variable due to the change of geometry is

already given in the above Equation (5.5). Therefore, we here state the variation of the

function f with respect to the geometry (control) variable;

af i
f[ (U") ]-f[ cI)(U) )]

Making use of the Equation (5.5);

f[ ( (u )]=f[ (> (u) + a t(
an

Considering the second term in the brackets as the infinitesimal increment and by

expanding f around the unperturbed geometry as given below, we can express the variation

of the function on the original geometry of the body surface.

f[d ((U)+Ea i ]= f [ O (u)] + a f. (( + )
an an

Inserting this expression into the variational equation and by making use of the

initial boundary condition, we can see that the term f goes to zero if we consider only
aothe change of the geometry by keeping the flow (state) variable fixed.

the change of the geometry by keeping the flow ( state) variable fixed.

I I (U)
£

]- f[i(u)] = f [4(u)] + caf
an

=0, B(C.2

Therefore,

57

(5.6)

- f [(D(u)]



(5.7)
ef=o
a0

We can now bring the equations (5.2), (5.6) and (5.7) together to express the

variational Equation (5.1).

(f - AB)ds = (f-
BS

AB) - (ds) +
80

AY a 8t VD
t= ,,/ at

(5.8) l(f -AB)ds 00s {BS

a-f
R

8a
+ [ OatV -

t-
=~,,,
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Chapter 6

6.1 Variation of the Objective Functional with respect to the

State Variable

This part of the study is devoted to the formulation to determine the variation of the

objective functional with respect to the state variable where the objective functional is a

function of the state. The formulation of this variation is important both for the extensive

implementations in the optimal control theory and for the solution of the adjoint operators

as we have given as an example in the previous chapter. Two alternative ways have been

considered and they have proved to be giving identical results when compared to each

other at the end.

We will first formulate the problem by expanding the perturbation in power series.

This is a more general formulation compared to the second approach where we convert the

objective functional from an implicit function of the state into an explicit form by restating

it in terms of the velocities components. Both methods have been observed to give

identical results.

6.2 First Approach:

Expanding the perturbation in power series

We will consider the same domain that we have introduced in Figure 5-1. This fluid

domain Q is perturbed as a result of the perturbations on its boundary by changing the

geometry of body surface BS to find its optimal shape for the stated objective functional.

As we have previously stated the objective functional is given as

J(u,x)= J f (x) ds
BS
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where J is the objective functional of the control and the state variables determined

by the surface integration over the body surface and f is the functional defined as an

implicit functional of the state variable. We should here again state that based on the nature

of the shape optimization problem, our control variable u is a variable that defines the

shape of the body and the velocity potential 0 is the variable that specifies the state of the

flow; i.e. the state variable.

For a small perturbation of the objective functional, its variation is defined as;

1
-[ J(BSE,xE) - J(BS, x) ]

In the above statement, the superscript denotes the perturbed form of the term, as

in the perturbation of BS and the state (flow) variable x. The state variable is given as a

function of the domain boundary to be optimized, i.e. the body surface.

x = x(BS)

The change in the incremental element ds for the surface integration should also be

considered in this problem. However, as we will see later, this perturbation gives us an

additional term and therefore, it will be considered as an additional part at the end of this

formulation. For now, by neglecting the term ds', we will exclude the small change in the

length of the incremental surface element, yet the problem will be considered over the

perturbed boundary of the domain; BS'.

In order to express the variation of the functional;

[ f (x )ds - f (x)ds]
BSc BS

we should express the first term in the brackets in terms of an integral and

quantities on the unperturbed surface BS.
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Let us consider a geometry defined by the control variable u. A corresponding shift

of the control variable is given by;

U, = U + an

Here, the perturbation is defined in the normal direction. a is an arbitrary function

defined on the boundary. State (flow) variable x is a function of the control variable, i.e.

the geometry of the body to be optimized. If we consider the value of the state variable for

the perturbed control given above by Taylor expanding it;

x(u') = x(u + can) = x(u) + ea + O(C)
On

And applying the same perturbation to the state variable for the above perturbed control

variable as;

x (u') = x(u + can) + x(u + Ecan) + O(C2)

where Sx is a small variation of the state variable. We can one more time expand this

expression in Taylor series and assuming a small perturbation, we consider only the terms

of the order 0(1c);

Ox(u) Ox(u)Xe(U') = X(U) + ea + X(U) 2aX ± +0( 2 )
On an

()(E )

Ignoring the higher order terms in the above expression, we can now determine the

value of the functional f, as a function of the perturbed state (flow) variable but evaluated

only in terms of the unperturbed flow variable and unperturbed body geometry.

f(x )|BS = [x(u)+ c a + EX(U)] + 0( 2)

Assuming for now that the functional f does not explicitly depend on the control variable

u, we can reorganize the above terms by considering the last two of them as the increment

of the Taylor expansion.
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f(x)s, f (xX)IBS
±0x-(x)

n+ l fxan BS
+ £xf (x)

BS

Later the area element is included and the variation of the functional is evaluated.

-[ J(BS, x) - J(BS, x)
£

]=![ J
C BS

'

= f(x~)ls -f(x) s =f(x) 's + axf(x)sf~~~~ x~~~ ) ~~a n B S

£
1 BS':

fE (X )ds - I f(x)ds ] 1 
Dt' ..

f '(x )ds- f (x)ds ] =
BS

+e3xf (x
BS

{ x() ()d

135 i an , (x) ds

Finally., we obtain the following equation for the variation of the functional with

respect to the state variable, where the functional is given as an implicit function of it.

I f(x)ds ] =
BS

f
BS

ax
[ t-f(X) + ±XL(x) ] dsan

Let us now consider a practical case to apply the above equation for an objective

functional to determine the wave resistance as given below;

J=- p nds
BS

where p is the pressure and n, is the x-component of the unit normal. Let us take p

as our state variable (x = p in Equation 5.1) and later determine the implicit dependence on

the total velocity potential by invoking the Bernoulli equation defined on a shore-based

coordinate system. So, based on the Bernoulli equation we define p as;

(P-Po)P- - -[
P

+ I V0 2 + gz]
at 2
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Assuming that we maintain the average depth of the body, we can ignore the

hydrostatic component above. For the simplicity of the relations, let us define another

function q with its relation to the total velocity potential given below;

P = f(q), q = d + I V12
at 2

As a result of changes in the geometry of the body surface BS, the total velocity

potential changes to + 3{ + O(c2) and p changes to p + 6p + O( ) . Based on the above

relations between p, q and s, we can express Jp in terms of 0 and 50;

ap = O +V.Vo)
aq at

Let us consider a curvilinear coordinate system on the body surface with two

tangential coordinates; : and 1I and a normal coordinate . The above equation can then

be expressed as;

af af a 0as 0 af as + af a6p= + + _+
8q at aqa a aq ag O aq a q7 g

A boundary condition on the body surface that imposes a no-penetration condition

cancels the second term of the above equation with the normal coordinate of the body.

Therefore, the equation reduces to

ap Of a a af 30 s0 f a0 Osf aa0 + Of VO .V =p --- + -+ ±1 .V... 
Oq at aq a a aqarl a77 aq at Oq

Where V denotes the operation on the tangential coordinates; ; and rl only. Let us

now go back to our general equation of variation (Eq.6. 1) and substitute the relevant terms

for our problem with the p term already determined above.

ax ap

Oan a8
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f [a ax f (x) + xf(x)] ds -= J(n,) ap + (-n)p] dsan sanBS BS

Let us evaluate the term Op in the above expression;
an

ap aaq- a [ +I Vo 2 ] =Of a (0 1 af a a 
On aq an Oq n at 2 aq at a; 2 q n 01;

Where we have changed the order of differentiation to make use of the body

boundary condition in the first term and separated the second term into normal and

tangential coordinates. Since tangential velocity terms have no component in the normal

direction and the no-penetration body boundary condition applies for both of the terms on

the right hand side of the equation, the term vanishes. Therefore, our equation reduces
an

to

f[( -n,)a p + (-n,)p] ds = [ (-n )(f 0a + Of V.VrOp) ds
B an X q t aq

Substituting = 1, we can also apply integration by parts for the second term to

leave the admissible variation of the total velocity potential 0 alone.

5J = (-n ) -ads + [ (-n ) V] 0 - | (-n, ) ] + a [ (-n ) ] ds

The second term in the above equation cancels because the surface integration is

independent of the path and the tangential coordinates of the body surface starts and ends

at the same point for a closed body. Therefore we obtain the following equation for the

variation of the objective functional due to the state variable where the objective functional

is an implicit function of the state.
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(6.2) (5J f 8 a[ ] a [ d(-n),a ds+ (-n) ]+ (ds
RSN , a7 'a j Bs at

The first term in the above equation is in fact what we need for the solution of the

adjoint equation (2) in Chapter 5-1. The variation of the objective functional with respect

to the state will also find its extensive use in the more general optimal control problems.

The second term in the above equation seems to be a little more complicated to define

which takes the unsteadiness into consideration. However, once the dynamic condition is

determined for the optimal control problem, we will have an equation for x = and an
at

admissible variation of the velocity potential G0 will also satisfy the dynamic condition

given as a function of x(t);state and u(t);control.

6.3 Contribution from the independent variation of control

We have formulated the variation of the objective functional without taking the

change in the length of the incremental surface element ds into account. This independent

contribution of the control variable appears as an additional term as we will quickly

include in the following lines.

We define the incremental piece ds as an arc

ds = RdO

where R is the radius of curvature and dO is the incremental angle seeing the piece of the

body surface. A small change of geometry in the normal direction is given by

-c a n

As we have defined previously, a is an arbitrary function defined on the boundary

of the surface. Therefore the change in the incremental element due to the above defined

change of the geometry in the normal direction is
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aR dO- adO = (R - a)dO = R (1- -)dO
R

By substituting ds in the above equation we get the change in the incremental

element;

(6.3) ads- =(l- -)ds
R

The radius of curvature R for a surface element is determined by taking the product

of the two line elements of the tangential coordinates in the curvilinear coordinate system.

1 1 1
-- = -+ --

R R R,

Equation 6.3 leads to an additional term in the calculation of the variational

formulation. For a more accurate result the perturbed objective functional term

BJSBS'

f (x)ds is now multiplied with ds' instead of ds;

f(xe)ds' = [ f (x) + Ea -- f (x) + (x f,(X) ] (1- E ) ds

Because of the small ch ange in the length on the order of 

Because of the small change in the length on the order of e, we ignore higher order

terms and

ax
f (x )ds' - f (x)ds = c[ a - f, (x)

an
+ xf, (x) ] ds a- - f(x)ds

R

Finally, the last term on the right hand side of the above equation appears as an

additional term to the variational Equation 6.1;

1[ f (x)ds - f (x)ds ] = [a ax f(x) + xf(x)] ds- fI (x)ds
& BS, BN RN anBS R
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6.4 Second Approach:

Variation defined in terms of Velocity Components

We will verify the formulation of the objective functional variation with respect to

the state variable by expressing the implicit function in terms of velocity components.

Let us consider the same objective functional to determine the wave resistance as

given below;

J=- lpnxds
BS

where p is the pressure and n is the x-component of the unit normal. Again p will

be our state variable (x = p) and Bernoulli equation will be revisited to express the implicit

dependence of the state variable in terms of velocities. The problem is formulated on a

fixed coordinate system. We define p as;

(P-poo)
pUP

=_[ a +1 IV0|2 2
at 2

Assuming that the total velocity potential is composed of a flow in the -x direction

and a perturbation potential such that;

) = -Ux + 0

The V(I)2 term is then calculated as;

Iv(i2 (U+ a0 )2 ( )2ax ~y
+ (O)2

( Zaz

We can now substitute this into the expression for p;

p = -[ d+ v]=

a 1 (' a
at 2 ax

[oO 1

at 2

)2 ( )2

ay

0)2 +(aOax k

z+ (0)2
ADZ

aZI

-UaO
ax

!U2
2
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The objective function is a function of P. Therefore, its variation is given by

6J = af SP
UP

However, P is a function of the state variable, in our case, . So, we are able to

express this implicit variation in terms of the variation of the state variable. For this, we

should take the variation of the above equation giving p in terms of state variable.

ap- as - - a as + as + a - u a-U
at ax x ayy az z ax

by ordering the terms and denoting the perturbation velocities in the x, y and z

directions as u, v and w respectively;

p = - (U + ) v -wa- a
ax ay az at

In order to be able to make use of the no-penetration condition on the body surface,

conversion to a curvilinear coordinate system would be beneficial. For this aim, we

introduce the following coordinate conversion;

x = x(:, , ) ; y = y(,, ; z = z(,77,)

where again, ; and 7L are the tangential coordinates on the body surface and ' is

the normal coordinate. Let us now substitute the curvilinear coordinates into the Cartesian

coordinates given above.

ap -8a (U+u) + e@ + a }5
t l 077 i+

vw a 50 + 77 + 5

az 7 a a; J
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Rearranging the terms above for bringing the terms with the same curvilinear

coordinates together will enable us to apply the no-penetration condition easily by stating

that the curvilinear velocity component in the (normal) direction is equal to zero.

al aS a50 {(U+u) T+v 1 +w1}- + ) + + 
=0, no-penetraton condition

Let us denote the tangential velocity components given in the first and the second

lines of the above expression with E and N respectively and restate the variation.

dp = E - a&7 N
at 0 al7

The variation of the objective functional is then given again;

J= cafp ds=- f(-nx) a E + N ds + (-nv) td
' BSaP Oq RsaBa a B at

We can apply integration by parts to leave the admissible variation of the state

alone, as we did previously

=-[(-n)(E + N) ] - E] [(-n)N] ds+ (-n) at ds
' 1s B'ja a 7 s - at

Due to the geometry of the closed body, the first term vanishes in the above

integration and we obtain the following result for the variation of the objective functional

with respect to the state variable.

(4J = a-i [ (-n) E] + a []d
(6.4) B~S a ~ aq 7 N7 ds+ BS at
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With E and N being the tangential velocity components in the curvilinear

coordinates of ; and q respectively, we can see that this approach gives us the same

equation as Equation (6.2) that we have derived previously.

The second approach does not consider that the perturbation of the velocity

potential is in fact caused by the perturbation on the geometry of the body, i.e. the state

variable is a function of the control variable. Therefore, the additional term taking the

change in the length of the incremental element into account (given in Equation 6.3) is not

considered in this derivation. However, when we take the gradient of the objective

functional with respect to the control variable for the formulation of the optimal control

theory, or as we did previously for the simplistic approach to the problem by means of

taking the reduced gradient, this contribution is included, too.
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Chapter 7

7.1 Application of the Lagrange Multiplier Theorem to the

Shape Optimization Problem

In Chapter 5.1 we have defined a problem where a three dimensional body is

translating with a steady forward velocity U well below a free surface. We have formulated

the problem in terms of the optimal control theory. Our aim has been to optimize the shape

of the body for a general objective function which is a function of both the state and the

control variable.

In this part of the study, we would like to apply the Lagrange multiplier theorem

briefly introduced as in Chapter-3 to the same optimization problem directly to compare

with the results of the formulation based on the optimal control theory.

Although both of the methods are benefiting from the convenience of the general

Lagrange Multiplier Theorem and the adjoining of the constraint for finding an optimum

solution, there exists a difference in the way followed. It arises from the fact that optimal

control approach implements the stationary condition of the Lagrangian by disconnecting

the dependence of the state and control and treating them as independent variables. In this

approach, we have defined our control (u) as the perturbation of the geometry, denoted

with 0 (a set of geometric parameters to define the body surface which is to be optimized)

and for the convenience of defining the state (x) of the flow, we have chosen the velocity

potential as our state variable.

However, in order to define the same problem in terms of the Lagrange Multiplier

Theorem given in Chapter-3, we express the complete dependence of the variables without

disconnecting their relations which therefore causes a little more complexity and difficulty

in formulization. In other words, for optimizing an objective functional which is an
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implicit function of the flow (state) variable, we take the objective functional as a function

of the flow (state) variable, and at the same time, the state variable is the function of the

control (geometry) variable u.

Let us now start with the formulation of the problem. The sketch describing the

flow domain to be considered given in Chapter-5.1 is also valid for this formulation. In

order first to compare the results of the two approaches, we will locate the three

dimensional body well under a free surface. Later in this study, we will consider the

addition of the free surface which has a more physical meaning from the practical point of

view.

The constraint space H (u) is composed of a set of boundary conditions which maps

the design variables from the primal space X into the constraint space Z.

(B.C.1) V2o = (inQ)

(B.C.2) + U. = O (on BS)
an

(B.C.3) = (on FFS)

Note that we will need to express the flow variable (x) as a function of the design

variable u. And our design variable is a function defined on the surface of the body. In

order to be able to invoke the continuity condition which is valid throughout the whole

fluid domain, we will benefit from Green's theorem to distribute it on the boundaries of the

fluid domain. Since we perturb the flow variable only by means of the control variable

without disconnecting their dependence, we will later choose appropriate Lagrange

Multipliers so that the variation of the flow itself will vanish. Lagrange Multipliers play a

very important role here on each boundary of the fluid domain for determining the relation
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of the flow and control variables such that the flow perturbation is caused only by the

variation of the control variable, i.e. by means of the perturbation of the body surface.

We consider a general objective function in the form of

J(u,x)= f ds= pn, ds
BS BS

for minimizing the wave resistance of the submerged body. In Chapter 6-1, we have

already determined the variation of the above objective function with respect to the flow

variable, where the variation is caused both by the change of geometry and the variation of

the flow variable itself. The relevant equation is given here again:

[ Jf (x)ds -l f (x)ds ] [d f (x) + xf (x) ] ds- f (x)ds

In the same Chapter, we have also already applied the above equation to our above

defined objective functional to minimize the wave resistance. It is given in Equation (6.2)

and with the inclusion of the change in the incremental surface element given in part 6.2,

we restate the variation of the objective functional below.

(7.1) J=- 0 l{ [(-nf) a+ [ (-ax) ] P ds Jf(nx) A s
as g aq a Bs R S at

For now, we will neglect the last term of the above equation for simplicity. Note

that the above equation includes the variation of the flow variable 50 that is independent

of the body surface perturbation. Reviewing the formulization of the variation in Chapter-6

will make the above statement clear since as we may remember, we have included the

perturbation of the flow such that

x' (u ) = x(u + Ean) + Ecx(u + can) + O(c 2)

where x is the state (flow) variable and the equation included such terms as x (= S) . By

means of a proper choice of the Lagrange Multipliers on each boundary of the fluid

73



domain, the necessary conditions should be satisfied for an arbitrary admissible variation

of the state ax (= 50).

Let us now speak in terms of the Lagrange Multiplier Theorem. We have

previously stated the necessary conditions of the local theory of optimization for an

extremum of an objective functional f that is subject to the constraint H(u) = 0 (i.e. null

vector), where f is a real valued functional on a Banach space X (primal space) and H is a

mapping from X into a Banach space Z (constraint space).

According to these conditions, if f and H are continuously Frechet differentiable in

an open set containing the regular point u,, and if f is assumed to achieve a local extremum

that is subject to H(u) = 0 at the point uO; then f '(uo )h = 0 for all h satisfying

H'(uo)h = .

Therefore, for any admissible variation of the state 60/, at the local extremum u0 ,

this linear operator equates the Frechet differential of the transformation H (constraint

equation in our problem) to null vector (=O in our case, as the transformation H is simply a

real-valued functional). As we know, the admissible variation 3O is then called the null

space of the Frechet derivative of the constraint equation H '(u0 ). Following the necessary

conditions above, again, the admissible variation .5 that is satisfying the above condition,

also makes the Frechet differential of the real-valued objective functional f equal to zero.

Since both the objective functional and the constraint equation are real-valued, their

combination forms the Lagrangian functional

L(u) = f(u)+ z * H(u)

Based on the above statements and the definition of the adjoint operators, this

Lagrangian functional is stationary at the optimal point u0, i.e.;
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f '(u0) + z0o * H '(uo) = 0.

Just like the constraint equation H(uo ), the linearized version of the constraint

equation H '(u, ) also maps the point uO from primal space X onto the constraint space Z

with the regularity definition. The composition of adjoint of this linear operator, H '(uo ) *,

with the Lagrange multiplier z * E Z * maps the optimization problem onto the dual of the

primal space, X*. This is the normed Banach space where we have established the

extension form of the projection theorem for our problem. From the application point of

view, this approach is believed to provide to us a convenience to relate the null space and

range of a linear operator and its adjoint.

Although in almost most of the optimization problems Lagrange multipliers are

often treated as a convenient set of constants multiplied with the constraint equations, they

are an entire set of functions defined in an appropriate dual space for each boundary of the

domain. And they will be selected such that the stationarity condition of the Lagrangian

will be satisfied at the optimal solution.

Let us now go back to our problem. Now that we have given the variation of the

objective functional, it is to be combined with the constraint with a proper choice of the

Lagrange multiplier on each boundary so that we can relate the constraint space and the

dual of the primal space and satisfy the stationarity condition of the Lagrangian equation.

The constraint equation of continuity is valid throughout the whole fluid domain

and its variation with respect to the flow variable is given by;

V2 = O

It will be combined with a linear operator A and will need to be distributed onto

the boundaries of the fluid domain so that at the end, we will be able to choose the related

control variable that is defined on the boundary of the body surface.
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z * H'(u)= V dQ
Q

Since the problem is given in a so-called 'discrete' domain that is composed of

certain boundaries and the domain surrounded by them, we will make use of Green's

theorem to express the above constraint in such a sense.

2V2 50 d8 - f 50V2%dQ= f A 8o-gonn ds
Q houndaries an an

of the fluiddonlain

Leaving the first term on the left hand side of the equation alone,

zo H(u)= IV2 5 dQ = J0V2AdQ+ J (A0 aA ds
0 -a OnsQ Q hO1arie~s On n)s

of the fluid domain

Let us express the boundaries of the fluid domain individually to find the

corresponding Lagrange multipliers.

fgO2V2 ___ 02 ds(7.2) zo *H'(u)= j idQ+ A 5 - go)-'ds + |-f cds
Q BS an 0n ,s On O an

In order to be able to express the body surface integration above over the

unperturbed geometry, we need to transfer the no-penetration condition of the perturbation

in terms of and as an integration of the original geometry. The incremental variation will

still satisfy the no-penetration condition given with

Vb '(u).n ,Bsc =0

In Chapter-5. 1, we have derived the perturbation of the flow variable due to the

perturbation of the geometry as given in Equation (5.5) and also the change in the normal

vector as given in Equation (5.4). What we need to do then is to include the perturbation of

the flow variable itself by following the same expansion and find the product of it with the

perturbed normal vector.
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(5.5) <((u') = I) (u + a n)

cI)(E) = (u + a n)+E ,5 (u + an )+0(c2)

6-(U-) =0( U)+ a an + 5 (U) + 0(2)
an

(5.4) n = na- a E t
,=,7 at

V(I)S(u:).n'He B [ }(u)+ a ( ) 0a + £a (a)] [ e 

VD'(u).n | =V .n-V - £ V - 5. £ h V( 0 ).n - 0(£2 )= 0

6 [v@5. + )- 0 t

Therefore, we can find an expression for the no-penetration condition satisfied by

the incremental variation in terms of the unperturbed geometry as given below;

(7.3) VV¢. |iS = -a(2) + V at
an2 at

We can now combine the Frechet differentials of the objective function (Equation

7.1) and the constraint equation along with its adjoint multiplier (Equation 7.2) which

gives the variation of the Lagrangian and which according to the necessary conditions

defined previously will be stationary once the optimal body shape is obtained.
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JsI/5 {a[(~n)-] a[(-n,) a }dsDoa P nds
f`'() + z * H '(u) = - If {g[ ]+ [(-nx ) dS

+5 VA dQ + ( 5- OA ds+ A a(50 ds
Q lFS On On BS Ran An

Since the term is given as an integration over the unperturbed geometry in the
an

above equation, we will express it by means of the Equation (7.3) that we have derived

above.

Let us reorganize the above terms with the incremental variation 56 so that we can

exclude the dependence of the variation on this term by the proper choice of Lagrange

multipliers. In other words to be able to find the optimal shape, we will determine an

admissible variation such that the Lagrangian equation will go to zero as we approach the

local extremum. Reorganizing and collecting the terms under the same integration sign,

'(U+ Z H '(u) - 1,( a) [(-n) + [ (-n) + ds
S 0 t a a7 0a7 an

(7.4) +s dQ + f O5 en An 
Q FS an On 

B {R ±a P ITa -a da tV } ds

We can now choose the adjoint multipliers on each boundary to allow the above

equation to satisfy the necessary conditions for an admissible variation 60.

78



ADJOINT EQUATIONS:

(1) -A - [(-nx) ]+ a [(-n,) a] (onBS)
an a- - a aj

(2) V22'= (in Q)

(3) A = 0 (on FFS)

Comparing with the adjoint equations that we have found by means of the theory

based on optimal control in Chapter 5-1, one can see that the second and the third

equations are identical. We have also formulated the variation of the objective functional

with respect to the flow variable in Chapter 6. Equations (6.2) and (6.4) both reveal the fact

that adjoint equation (1) is also identical with the previously determined one.

(6.2) 2 a a a 8 a
(6.2) e = f a= G [ (-n,) ]+ [ (-n,) ,}

an a~ - ~ rag aq x7a7<7

With the adjoint equations determined above, what remains from Equation (7.4) is

an integral over the body surface.

(7.5) f '(u) + zo* H(u) a P + n (a On 2 =7 t dsBS

The above equation will therefore perturb the body geometry in the optimal

direction until a local extremum is obtained in which case the above Lagrangian will be

equal to zero. It is interesting to see that the above formulation has given the identical

result (Equation 5.13) with the optimal control theory formulization given in Chapter 5.3.

Therefore, we can make sure the validity of both of the approaches for finding the optimal

solution to the shape optimization problem.
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Once we have made sure that the optimization routine works fine, the next step will

be to include a free surface boundary in the same problem so as to consider the

submergence of the body just near the free surface.

7.2 Addition of the Free Surface Boundary to the Problem

Let us now consider a three dimensional body which is translating with a steady

forward velocity U just below a free surface. We locate the body at a shallower depth so

that the free surface boundary condition is now included in the problem. The problem is

defined on a translating coordinate system. Since the body is translating with a steady

forward speed, a steady flow is defined in the opposite direction of the translation far

upstream of the body with a velocity of U. The flow domain Q is bounded by the body

surface (BS), free surface (FS) and the far-field surface (FFS). The following diagram

gives the domain considered in this problem.
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Figure-7- 1: Sketch of the flow domain including the free surface boundary.



The constraint space H (u) now includes one additional boundary condition, given

as (B.C.4) below which is the Neumann-Kelvin free surface condition governing the linear

steady wave pattern generated by the translating body. We assume here, for the simplicity

of the problem, that no ambient waves are present.

V2 =0 (in Q)

0 + U.ni = O
an

(on BS)

(on FFS)

U2 a2O+ga -
ax az

0 +k 0 =; (k = g)
ax az U-

The constraint equation of continuity is valid throughout the whole fluid domain

and its variation with respect to the flow variable given by;

V 2 8 = 

will be combined with a linear operator and will need to be distributed onto the

boundaries of the fluid domain so that at the end, we will be able to choose the related

control variable! that is defined on the boundary of the body surface.

zo * H'(u) = f V2c dQ

We will again make use of Green's theorem to express the above constraint in such

a sense.

J, V2 5 dQr- fgoV2AdQ =
(Q boundaries an n )

of the fluid donmain

Leaving the first term on the left hand side of the equation alone,
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zo * H'(u) = f.V2S5f dQ = fr5fV2 AdQ+ I a3 50 ds
2 l houndaries an En d

of the fluid domain

We will now have an additional boundary of the fluid domain which defines the

free surface and this will give us an additional adjoint equation plus two adjoint boundary

conditions to be satisfied at the end.

z( HM ( )= V2 AdQ+ : A @ -t- g( OA -d- d+ I -x AWL -@ 2ids
Q BS en n FdS+J an an n an

We can now combine the Frechet differential of the objective function (Equation

7.1) and the above equation which gives the variation of the Lagrangian and which

according to the necessary conditions defined previously will be stationary once the

optimal body shape is obtained.

f '(u)±zo *H (u) ) + ao H =(-n, ) ] ds- ' ds
.s Id a g a7 07 B R

f2 i 2A d n + -A d -a3 Ids + -i ds
Q S an an I an an an an

Equ.(6 .3)

We have already reorganized the above terms, except for the newly introduced free

surface term, and have chosen the proper adjoint equations so that the necessary conditions

are satisfied for any admissible variation .S in the state variable. While doing this, we

have enforced the no-penetration body boundary condition as defined in terms of the

unperturbed geometry in Equation (7.3) and replaced the term a' with it.
en
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The same approached will be followed for the free surface term. We will enforce

the free surface boundary condition (B.C.4) by noting that an admissible variation in the

state variable 6b still complies with it.

02o 
Ox 2

k =O
az (on FS)

Without losing generality, we can assume that earth gravitational acceleration is

large enough that the restoring role it plays leads to small wave slopes in general. This will

enable us to linearize the free surface term that is included in the variation of the

Lagrangian equation so that;

|,A aOn-f)nn ds=FS a n An az
- ( dds

It is now possible to include the free surface boundary condition in the above

equation by replacing the as term from (B.C.4).
az

FS. Oa.z 
's r ( 1 0 ds

( x -)

In order to leave the admissible variation of the state variable 60 alone which will

enable us to define the proper adjoint equation, we will need to integrate the first term by

parts twice. We define the limits of the free surface as [ x,, xdO,,, , - y, y ] to break the

surface integration in terms of the coordinates x and y, as needed by the integration by

parts. Applying it twice on the first term of the above equation;

k S axl: s(·~L
= -dy

-Y 

Xup

A dx =
ax -j ax I

-1? d~~

- n - dx]
ax ax

-k (2A x)ds
k 2S

V

= dy[
-- V

ax ax
Ox - O x

±II dy o 2 dx
-d Y ax-"
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by combining the above equation with the first term of the free surface integration;

(-- ) 0 = ( - 8 - 0 )ds -- dy [ A - ]
s k k cx az FdsA(k 7 az k y ax d.ax . .

We can now bring the terms with the common factor S0 together and choose the

appropriate adjoint equations.

-&a) - j ds= [- 0 ( - + - )]ds-- dy [ A 0 ']
.S k ax 0z ~SkX d2 a Z k , ax ax 

Based on the first term in the above equation, we can define the following adjoint

equation on free surface boundary satisfied for any admissible variation of the state 58, in

addition to the previously defined equations on the other boundaries of the domain.

(4) -+ k- = 0 (on FS)
ax 2 az

In addition to the adjoint equation defined above for the free surface boundary, we

need to eliminate the boundary term given as the second term in the above equation;

k- f dy [ A -8 2 ] 
- Yax axl n

For this, we need to define the radiation or Sommerfeld condition [16] at the far

upstream boundary of the domain. The radiation condition as given below;

0a -> 0 (at x,p)
ax

is intended to preclude the possibility of an incoming wave generated at the upstream

boundary of the domain. This is given as a necessary condition for the uniqueness of the

solution. Therefore, the remainder of the above boundary term enables us to define the

proper adjoint boundary conditions given as;
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A, --- 0 (at Xdo,, )
ax

With the above definition of the adjoint equation and the adjoint boundary

conditions, free surface boundary is included in the optimization problem of the submerged

body. We should note, before closing our discussion that since the adjoint equation of the

free surface condition is defined on the free surface, it does not affect the solution of the

submerged body problem. It would be in effect in the case where we have an objective

function defined as a free surface integration (i.e. wave resistance calculation by means of

a surface cut). Similarly, an optimization approach for a surface piercing body would as

well necessitate one to solve the above free surface adjoint equation, since the perturbation

of that part of the body geometry would also need to satisfy explicity the free surface

condition, or the adjoint equivalent of it.
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Chapter 8

Conclusions
A continuous shape optimization problem is considered in this study with the

objective of reducing the wave resistance of a submerged body translating at a steady

forward velocity well below a free surface.

In order to evaluate the gradient of the objective functional efficiently and

accurately, the problem is formulated with an adjoint approach where the fluid domain

governing equations are treated as constraints on the variations in flow variables. Two

related approaches are considered in the formulation of the problem: The Lagrange

multiplier theorem and optimal control theory.

In the optimal control theory formulation, when the constraint formed by the

boundary conditions and the Laplace's governing equation is adjoined to the objective

functional to construct the Lagrangian, the dependency of the state on the control is

disconnected and they are treated as independent variables. The Lagrange multiplier has

related these two variables with each other. Dependencies are preserved for the application

of the Lagrange multiplier theorem which looks like a more straightforward formulation

but is harder to solve. Both methods yielded identical solutions and adjoint equations to the

problem.

Later, two alternative ways are considered for determining the variation of the

objective functional with respect to the state variable. It is required to solve the adjoint

equation defined on the body boundary. Comparison of these two ways also revealed

identical solutions.

Finally, a free surface boundary is included in the optimization problem. Its effect

on the submerged body shape optimization problem is considered.
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The continuous nature of the shape optimization problem at hand and the relatively

easier case governed by Laplace's equation has provided us with the flexibility to consider

the problem in terms of local optimization by simply necessitating the differentiability of

the objective and constraint functionals. The optimization results will be affected by the

selected initial geometry. However, the continuous solution to the problem which is

developed here by means of two different approaches will be valid for any arbitrary initial

geometry. Therefore, once it is successfully integrated with a numerical optimization

method and an up-to-date flow solver such as SWAN, it can be arbitrarily applied in

designs, and efficient and accurate hydrodynamic shape optimization results are obtained.

This thesis study is believed to provide a concise theoretical background for the

shape optimization problem, which later needs to be implemented into numerical

applications to obtain practical results. Another contribution aimed by this study is to relate

the general optimal control theory with the Lagrange multipliers theorem for adjoint

fonrmulation so that the close relation of these complex concepts can be formed without

being misguided by some one-sided and application-based literature available.

Although we constructed the problem in terms of Lagrange duality which is most

likely to be convex independent of the original problem, uncertainties arising due to

constraint qualifications need to be studied in detail and convex shape optimization

formulations should be investigated in the future for a global solution to the problem.
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