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Abstract

We develop a series expansion for the unnormalized conditional estimate of nonlinear filter-
ing. The expansion is in terms of a specific complete orthonormal system in the Hilbert space of
square-integrable random variables on Wiener space. This expansion decouples the observation
dependence from the dependence on the state dynamics and has an appealing recursive feature
which suggests its use for developing approximate filters.
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1 Introduction

Recently Mikulevicius and Rozovskii [4] proposed a spectral approach to nonlinear filtering. In
this, they expand the unnormalized estimate of a function of the state into a Fourier series over a
complete orthonormal system (CONS) of square integrable functionals of the observation process.
A truncation of this series then serves as an approximate filter. The specific CONS used is the Wick
polynomials of stochastic integrals of a CONS for L2[0, t] ([0, t] being the observation interval) with
respect to the observation process.

In this note, we follow exactly the same program, but with a different choice of CONS. The
advantages are very significant. As in [4], the series expansion decouples the observation-dependent
part of the filter (now captured in the aforementioned CONS) and the state dynamics-dependent
part (which now becomes a deterministic problem). Our expressions for these are, however, much
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simpler than those of [4]. Furthermore, [4] requires a separate CONS of L2[0, t] for each t, whereas
we fix a T > 0 and a CONS for L2[0, T] that works for all t E [0, T]. There is also a simple scheme
for repeating this procedure for successive time intervals of length T.

The paper is organized as follows: The next section introduces the estimation problem. Section
III introduces our CONS for the Hilbert space of square integrable random variables on Wiener
space. The series expansion in terms of this CONS is derived in Section IV. Section V discusses
some computational issues.

2 Notation

Our signal process and observation process will be respectively, a d-dimensional diffusion process
X(.) = [X1 (i), " ,Xd(')]T and an m-dimensional process Y(.) = [Y1 ( '), , Ym(')]T, satisfying the
stochastic differential equations

X(t) = X() + J (X(s))ds + f o(X (s))dW(s),
Y(t) = J(t h(X(s))ds + W'(t),

for t E [0,T]. Here m(.) = [m(. ),. .,md(.)]T : d -- Rd, a(.) = [[aij(')]]<ij<d : R'd - Rdxd,

h(.): [hi (), ... , ha(.)]T : TR --* Rm are bounded Lipschitz (for simplicity, this can be relaxed) and
the least eigenvalue of a(.)aT(.) is uniformly bounded away from zero. W(.), W'(.) are respectively
d and m-dimensional standard Wiener processes, with (W(.), W'(.), X0) independent. The law of
X( will be denoted by 7r0.

For t _ [0, T], let Ft. = the completion of f) (Y(y),y < s) with respect to the underlying
s>t

probability measure P. The problem of nonlinear filtering is to compute E[f(X(t))/Ft] for t E
[0, T], f E Cb(Rd). An equivalent ('Zakai') formulation is as follows: For t > 0, define

r = exp(J < h(X(s)),dY(s) >-2 Jo lh(X(s))lds).

Define a new probability measure P0 on the underlying probability space by P(A) = fA rtdPo for
A E a(X(y),Y(y),y < t). Under Po,Y(.) is an m-dimensional standard Wiener process indepen-
dent of X(.), W(.). Letting E([.] denote the expectation/conditional expectation under Po, one
has

E[f(X =(t))/,] = eE0 [f(X(t))rt/ht]/Eor[rt/t], t [O, T].

Thus it suffices to compute the 'unnormalized' estimate Eo[f(X(t))rt/t-,] for t E [0, T], f E Cb(R d).
This can be viewed as f fdp(t) where p(t) is a random finite nonnegative measure on TRd, called
the unnormalized conditional law of X(t) given ~Ft. Our aim is to develop a 'series expansion' for
this quantity. For a more detailed account of nonlinear filtering, see [1].

We conclude the section with some notation for later use. For a finite signed measure p on R d
and f E Cb(Rd), let p(f) = f fdp. For x = [x1, x, x,], let
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3 A CONS for £2.

In this section we view Y(-) as having been canonically realized on (Q, 3, P') (i.e., Y(w,t) =w(t)
for w C Q2, t E [O,T]). For 1 L j < m, i > 1, t C [O,T], let

Aij(t) = exp(J ei(s)dYj (s) - J e (s)ds).

Then it is easy to see that (Aij(t), 't), t E [0, T], are martingales. Let

~, = 1, ij = (Aij(T) - 1)/v7- , i > 1,1 < j < m.

Theorem 3.1 {(o,ijj, i > 1, 1 < j < m} is a CONS for 1C2.

Proof. The proof is in two parts.

Proof of orthonormality: Clearly E'[ 21 = 1 and

E't[ijo] = (E'[Aij(T)] - 1)/V-ZT1 = 0 V i, j

by the martingale property of Aij(.). For i, k > 1, 1 < j, £ < m,

E'[ijEk'] = (Cijk£ - 1)/(e- 1)

where

Cijkf = E'[exp(J ei(s)dyj(s) + J ek(s)dY() + (e () + ( e ))ds)].
For j $ £, Yj(.), Y.(.) are independent. Thus

Cijk = E'[Aij(T)]E'[Ak(T)] = 1.

Let j = i, i # k. Then, since fT ei(s)ek(s)ds = 0, we have

Cijkj = E'[exp( (ei(s) + ek(s))dYj(s)-- I (ei(s) + ek(s))2ds)] = 1.2 2

In either case E'[$ijdke] = 0. If i = j, k = £, then

Cijij = E'[exp(2J ei(s)dYj(s) - eie(s)ds)]

1 jT
= eE [exp(J (2eI(s))dYj(s) - - (2ei(s))2ds)]

= e.

where we use the facts that f J ei2(s)ds = 1 and the expectation of the exponential martingale in
question is 1. Thus

E [i] = (e- 1)/(e- 1) = 1.
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Proof of completeness: Let Zij = foT ei(s)dYj(s), i > 1, 1 < j < m. Then

00 t
Yj(t) = zij ei(s)ds, 1 < i < m,

i-=1

where the right hand side converges in mean square (in fact, uniformly in t, a.s. [2]). Thus
o(Y(t),t E [O, T])= o(zij, 1 < j < m, i > 1). But

=ij = (exp(zij - e) - 1)/v- ,

implying

zij = 2 + £n(vte-T 7ij + 1)

V i,j. Hence or((o,~ij,i > 1,1 < j < m) = o(Y(t),t C [O,T]). Let Z E £2 be orthogonal to
{(o, ij, i > 1,1 < j < m}. Then E'[Z 0(] = E'[Z~ij] = 0 V i,j, implying

E'[Z/(o,~ ij, i > 1,1 < j < m] = 0 = E'[Z/Y(t),t E [0, TJ] = Z.

Thus {(o,f ij, i > 1, 1 < j < m} is complete.

4 Series Expansion for the Unnormalized Estimate

By Theorem 3.1, we may write p(t)(f),t E [0, T], f E Cb(Rd) as

p(t)(f) = go (t)) + E E gij (t)ij (4.1)
i=1 j=l

where go(t) = Eo[f(X(t))] and gij(t) = Eo[,ijp(t)(f)] V i,j. Fix i,j and define a deterministic
nonnegative measure-valued process 7l, t C [O,T], by

J qd J = E([q(X(t))rFiAj )) i(t)], t [0, T], q E Cb(), 1 < j < m, i> 1.

Let C 2(Rd) = bounded twice continuously differentiable functions Rad - with bounded first and
second derivatives.

Lemma 4.1 For q C C2(,Rd), l (q), t E [0, T], satisfies

() = (7r(q) + ij r(Aq)ds + 7J ?1(hjq)ei(s)ds.

Proof. This follows easily on applying the Ito differentiation rule to q(X(t))rtPAj(t) and taking
expectations.
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Corollary 4.1 For t > 0, rn" has a density iiJ(t, .) with respect to the Lebesgue measure on R d .

Furthermore, the latter satisfies the parabolic p.d.e.

°t (t, x) = A*',ii'(t, x) + S oi"(t, x)hj(x)ei(t), t [0, T], (4.2)

lim f q(x)(t, x)dx = ro(q) V q E Cb Ch(R), (4.2')

where A* is the formal adjoint of A.

Proof. Under our hypotheses on m, a, this follows from standard p.d.e. theory [3] and Lemma
4.1. [

Remark 4.1 The above solution of (4.2), (4.2') is unique in a class of functions satisfying suitable
regularity and growth conditions [3]. We omit the details.

Let ~ij (t, y, x),t C [0, T], x, y E Rd, denote the solution of (4.2) with initial conditions

limJ f q(x)J(t, y, x)dx = q(y) V q E Cb(Rtd)

(i.e., its 'fundamental solution' [3]). Then

i7j(t, x)= =7r,(¢'i(t, , x)).

Standard p.d.e theory [3] also ensures a transition density p(t,y,x),t > O,x,y E Rd, for the
homogeneous Markov process X(.). Let p(t, x) = 7ro(((t,, x)) denote the probability density of
X(t) for t > 0.

Theorem 4.1 p(t)(f) = f f (x)(t, x)dx, where

+b(t, ) =p(t x) + P E (oij(t, ) -- p(t, x)), t > 0,x XE R d.

i=1 j=1

Proof. For i > 1,1 < j < m,

gij(t) = E([jijp(t)(f)] = (J fdlj - E[f(X(t))])//ve- 1.

The claim follows from (4.1) and the preceding corollary. [
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5 Computational Aspects

The p.d.e.s for fij,fij are deterministic. In particular, pij(t,y,x), i > 1, 1 < j < m, can be
computed off-line for t E [0, T], x, y E R d and stored. The 'on-line' computation then requires
computing the series

p(t)(f) = f (x)p(t, x)dx + f (x)(+i(t, x)-p(t, x))dx,
i=1 j=l

for t > 0. Here {4ij} are the only observation-dependent terms. These depend on the entire
trajectory Y(s), s E [0,T]. We may, however, take conditional expectation with respect to :t on
both sides and use the martingale property of Aij(.) to obtain

p(t)() =J f (x)p(t, x)dx + f(X ii(t x) p(t, x))dx,

where
ij(t) = E(,[ij/Ft] = (Aij(t)- 1)/V- 1,t > 0.

By Ito's differentiation rule,

d<ij(t) = (e - 1) -/ 2 Aij(t)ei(t)dYj(t)

= ((e - 1)-1/2 + ±ij(t))ei(t)dYj(t), t E [0, T],

with ij(O) = 0. The ij(') can be recursively computed on-line. Alternatively, we may first compute
Aij(.) recursively by

dAij(t) = Aij(t)ei(t)dYj(t), Aij() = 1,

and then ~ij(') in terms of it. If {ei(.)} are continuously differentiable, this can be arranged so as
to avoid any stochastic integration, because

Aij(t) = exp(J ei(s)ds)
X tO

exp(ei(t)Yj(t) - Yj(s)6i(s)ds- eJ ei (s)ds),t C [0,T].
f( J() , 

This analysis was confined to the time interval [0, T]. The same procedure can be repeated on the
successive time intervals [kT, (k + 1)T], k > 1, by shifting the time orgin to kT and replacing 7r((q)

in (4.2') by p(kT)(q) available from the preceding interval.

A natural approximation for p(t)(f) in practice would be the truncated series

f (x)pt,x)dx + f(x)(pii(t, x) p(t, x))dx.
i=1 j=1

for sufficiently large N > 1. The truncation error is

q(t) = I ) Jo f(x)(~iJ(t, x) p(tx))dx.

i=N+1 j=1 f--
It would be interesting to obtain good analytic bounds on E[¢(t)2].
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