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Abstract

Given a linear iteration of the form x := F(x), we consider modified versions of the form x := F(x+-yd),

where d is a fixed direction, and y is chosen to minimize the norm of the residual lix + yd - F(x + yd)lI.
We propose ways to choose d so that the convergence rate of the modified iteration is governed by the

subdominant eigenvalue of the original. In the special case where F relates to a Markovian decision problem,

we obtain a new extrapolation method for value iteration. In particular, our method accelerates the Gauss-

Seidel version of the value iteration method for discounted problems in the same way that McQueen's error

bounds accelerate the standard version. Furthermore, our method applies equally well to undiscounted

problems.
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1. Introduction

1. INTRODUCTION

Consider a linear iteration of the form x := F(x), where

F(x) = h + Qx, (1)

Q is a given n x n matrix with eigenvalues strictly within the unit circle, and h is a given vector in

Rn. Let x* be the unique fixed point of F. We focus on modified iterations of the form

z := F(x + ad) = F(z) + Zz,

where

z = Qd, (2)

and ' is obtained by minimizing over y

II| + yd - (F(x) + yz)11.

(In our notation, II-11 is the standard norm in the n-dimensional Euclidean space Rn. Furthermore,

all vectors in this paper are viewed as column vectors, and prime denotes transposition.) It is

straightforward to show that
(d- z)'(F(z) - ()

lid- Z112

We write the iteration x := F(x + ad) as

x := M(x),

where

M(x) = F(x) + Az, (4)

and we note that it requires only slightly more computation than the regular iteration x := F(x),

since the vector z is computed once and the computation of q is simple. However, the iteration

x := M(x) need not converge to x* when the direction d is chosen arbitrarily.

Extrapolation methods of the form x := M(x) have been considered in the context of Markovian

decision problems starting with the work of McQueen [McQ66] for discounted problems, and followed

by many others; see the surveys [Por8la], [Put90O], and the textbook presentation [Ber87]. (A

Markovian decision problem is referred to as discounted in this paper if all the row sums of Q are

strictly less than one; otherwise it is referred to as undiscounted.) In particular, when Q = cP where

ac E (0, 1) is a discount factor, P is a stochastic matrix, and d is the unit vector e = (1, 1,..., 1),
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it is known [Mor71] that the iteration xk+l = M(xk) converges geometrically at a rate governed by

the subdominant eigenvalue of Q. (By this we mean that for every s that is larger than the second

largest eigenvalue modulus of Q, there is a c > 0 such that lIxk - xz*l < cs k for all k.) This method

is often much more effective than the ordinary value iteration method xk+l = F(xk) that converges

geometrically at a rate governed by a, the dominant eigenvalue of Q.

Additional rank-one and higher-rank extrapolation methods have been considered by Porteus

and by Totten [Por75], [Por8lb], [PoT78], [Tot71], in connection with other types of value iteration

methods for problems involving a matrix Q y aP (such as Gauss-Seidel with and without row

reordering). Of the methods in these works, the ones that are closest to ours are based on L2

norm extrapolation [PoT78], and use a correction of F(x) along the unit vector e, or along the

subspace spanned by e and F(x)- x (every two iterations), or along the subspace spanned by e, and

(F2() - F(x)) - (F(x)- x) (every three iterations), supplemented with an overrelaxation factor.

No theoretical convergence result was provided, but in tests with some randomly generated problems

these methods required relatively few iterations [PoT78].

The purpose of this note is to recommend a new and simple method for choosing d, which guar-

antees convergence, and achieves comparable acceleration to that provided by McQueen's bounds for

discounted problems. Our method applies to a broad class of problems, including undiscounted prob-

lems for which no effective rank-one acceleration method with guaranteed convergence is currently

available.

Our main observation is that if d is chosen to be an eigenvector of Q, then extrapolation along d

nulifies the effect of the corresponding eigenvalue in the convergence rate of the iteration x := M(x)

(Prop. 1 in the next section). In particular, if d is an eigenvector corresponding to a dominant simple

eigenvalue of Q, then this iteration converges at a rate governed by the subdominant eigenvalue. This

result holds for any matrix Q that has a real eigenvector corresponding to a dominant eigenvalue

with modulus less than one. We thus propose using such an eigenvector as the vector d in the

extrapolation scheme x := F(x) + ~Qd [cf. Eqs. (1)-(4)].

A first difficulty with our approach is that it assumes the existence of a real eigenvector that

corresponds to a maximal modulus eigenvalue. For Markovian decision problems where the matrix

Q has nonnegative elements, this is not an issue in view of the Perron-Frobenius theorem. A

second difficulty with our approach is that it requires finding the eigenvector d. This can be done

approximately, however, by using the power method, that is, by applying F a sufficiently large

number of times k to some vector x to obtain Fk(x), and estimating d as the normalized residual

d Fk(x) - Fk-l(x) (5)
IlFk(x) - Fk-'(x)ll'
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In particular, let A1,..., Am be the eigenvalues of Q. Suppose that

IAjl < IAlI < 1, V j = 2,...,m

and that the eigenspace corresponding to Al has dimension equal to the multiplicity of A1. The

initial error x - x* can then be decomposed as

x- x* = j=ej,

j=l

where each ej is a vector in the eigenspace of the corresponding eigenvalue Aj, and (l,... ,m, are

some scalars. The residual Fk(x)- Fk-l(x) can be written as

Fk(x) - Fk-l(x) = Qk-l(F(x) - x) = Qk-l (F(x) - F(x*) - (x - x*)) = Qk-l(Q _ I)(x - X*),

so it will be nearly equal to lA-l(A1 - 1)el for large k, implying that the vector d = el/llelll can be

obtained approximately from Eq. (5). In order to decide whether k has been chosen large enough,

one can test to see if the successive residuals Fk(x) - Fk-l() and Fk-l(x) - Fk-2(x) are very close

to being aligned; if this is so, the components of Fk(x) - Fk-l(x) along the eigenspace elements

e2, .. ., em must also be very small.

We thus suggest a two-phase approach: in the first phase, we apply several times the regular

iteration x := F(x) both to improve our estimate of x and also to obtain an estimate d of an

eigenvector corresponding to a dominant eigenvalue; in the second phase we use the modified iteration

x := M(x) that involves extrapolation along d. It can be shown that the two-phase method converges

to x* provided the error in the estimation of d is small enough, that is, the absolute value of the

cosine of the angle between d and Qd as measured by the ratio

(Fk(x) - Fk-(x))'(Fk-l(x) - Fk-2(x)) I6

IFk(x) - I .Fk- Fk(x) - Fk-2()I (

is sufficiently close to one. This approach turned out to be practically feasible and often surprisingly

effective in our computational experiments, as reported in Section 3.

Note that the computation of the first phase is not wasted since it uses the regular iteration

x := F(x) that we are trying to accelerate. Furthermore, since the second phase involves the

calculation of F(x) at the current iterate x, any error bounds or termination criteria based on F(x)

can be used to terminate the algorithm. As a result, the same finite termination mechanism can be

used for both iterations x := F(x) and x := M(x). Thus our approach can be considered successful

as long as by passing onto the second phase, we end up doing fewer iterations up to termination

than if we were to continue exclusively with the first phase.
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We mention, however, that our method is ineffective if there is little or no separation between

the dominant and the subdominant eigenvalue modulii, both because the convergence rate of the

power method for obtaining d is slow, and also because the convergence rate of the modified iteration

x := M(x) is not much faster than the one of the regular iteration x := F(x). Such problems are not

suitable for rank-one correction methods that use a fixed direction d, but it is possible that they can

be dealt with effectively through the use of adaptive low-rank aggregation methods, such as those

proposed in [BeC89].

Another shortcoming of the two-phase method outlined above when applied to Markovian

decision problems is that it assumes a fixed policy. In the case of optimization over several policies,

the mapping F has the form

Fi(x) = min{ hi(u) + qij(u)xj -} 1 .. , n, (7)

where U(i) is a finite set of control actions for each state i. One can then use our approach in two

different ways:

(1) Compute iteratively the cost vectors of the policies generated by a policy iteration scheme

(see e.g. [Ber87]).

(2) Guess at an optimal policy within the first phase, switch to the second phase, and then

return to the first phase if the policy changes "substantially" during the second phase.

In particular, in the first phase, the ordinary value iteration x := F(x) is used, where F

is the nonlinear mapping (7), and a switch to the second phase occurs, when the ratio

(6) gets sufficiently close to one. The vector z is taken to be equal to Q*d, where d is

obtained from Eq. (5), and Q* is the matrix whose ith row corresponds to the minimizing

control in Eq. (7) at the time of the switch. The second phase consists of the iteration

z := F(x) + 'z, where ~ is given by Eq. (3). To guard against subsequent changes in

policy, which induce corresponding changes in the matrix Q*, one should ensure that the

method is working properly, for example, by recomputing d if the policy changes and/or

the error IIF(x) - xll is not reduced at a satisfactory rate. Based on our computational

experiments, this method seems to be workable (and can lead to significant savings)

because the value iteration method typically finds an optimal policy much before it finds

the optimal cost vector.
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2. MAIN RESULT

The following proposition gives our main result and provides the basis for the two-phase method

described in the preceding section.

Proposition 1: Consider the iteration x := M(x) defined by Eqs. (1)-(4). Assume that d is a

real eigenvector of Q and let Al be the corresponding eigenvalue.

(a) M(x) can be written as

M(x) = g + Rx,

where g is some vector in Rn and

R = Q + (1 l dd'(Q- I). (8)(1- Al)lldl2 d

Furthermore, Rd = 0 and for all k we have

Rk = RQk- 1 ,

so the iteration x := M(x) converges to x*.

(b) Let A2,..., AX, be the remaining eigenvalues of Q, and assume that

IAXj < IAXl < 1, V j = 2,...,m.

Suppose that a vector x can be written as

x -= x* --+ ld.J + 6jej, (9)
j=2

where each ej is a vector in the eigenspace of the corresponding eigenvalue Aj, and

1,... , are some scalars. Then for all k > 1

Mk(x) = x* + Z sjRQk-le, (10)
j=2

so Mk(x) converges to x* at a geometric rate governed by the subdominant eigenvalue of

Q.

Proof: (a) By straightforward calculation using Eqs. (1)-(4), we have for any d with d 0 z,

M(x) = F(x) + Az

h + Qx + (d - z)'(h + Qx - x)
=h+Qx+ z

lid- zjl1
= h + h Qx+ z(d - z)'(Q - I)

lid - ·zJ1 lid - z1l2
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For the particular choice of d assumed here, we have z = Qd = Aid, so we obtain

A1dd' A1dd'
M(x) = h + (1- i)lld 2 h +Q+ (1 - i)1d1 2 (Q - I)x

By letting

= (I+ (1- A)lldl) h,

and R as given by Eq. (8), we obtain the form M(x) = g + Rx.

The relation Rd = 0 is easily verified using Eq. (8) and the fact Qd = A1d. Finally, to show

the relation Rk = RQk - l , we first show it for k = 2 by using Eq. (8), the fact Rd = 0, and the

calculation

R2 = R Q+ (1- A)lldl 2 dd (Q )) =RQ,

and we then show it for all k by using R2 = RQ and the calculation

Rk = Rk-2R2 = Rh-2RQ = Rk-3R2Q = Rk-3RQ2 = ... = RQk-1.

(b) Equation (10) follows from Eq. (9), and the fact Rd = 0 and M(x*) = z*, which has been

proved in part (a). Furthermore, by the properties of eigenspace vectors [LaT85], each sequence

{IIRQk-lejII} converges geometrically at a rate governed by IAAI. Q.E.D.

We note that there is a multidimensional version of the above proposition. In particular, let

D be a full-rank n x m matrix, and consider the iteration

x := MD(x) = F( + D=),

where 5 is the vector in "m that minimizes the residual norm

IIx+ D7 - F(x + D7 )11

over all vectors y E 3Rm. It is easily verified that

r = ((D - Z)'(D - Z))- 1 (D - Z)t(F(x)- x),

where

Z = QD.

Furthermore, a straightforward calculation shows that MD(x) has the form

MD(X) = gD + RDz,
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where go is some vector and the n x n matrix RD is given by

RD = Q Z((D - Z)(D - Z))-(D - Z)'(Q - I). (11)

From this formula and the definition Z = QD, it is seen that

RDD = O.

Suppose now that the range space of D is invariant under multiplication with Q, that is, for every

column d of Q, the vector Qd is a linear combination of columns of Q; this is true for example if

the columns of D are eigenvectors of Q or, more generally, if the range space of D is the direct sum

of eigenspaces of Q. Then the columns of Z are linear combinations of the columns of D, which

combined with RDD = 0 implies that

RDZ = 0.

It follows from Eq. (11) that R/ = RDQ, and more generally that

Rh = RDQk- 1,

generalizing part (a) of Prop. 1. Similar to part (b) of Prop. 1, it follows that the iteration x

MD(x) converges to x* and the convergence rate is governed by the eigenvalues of Q other the ones

corresponding to the range space of D. This result may be useful when Q has multiple dominant

eigenvalues if a suitable matrix D can be identified. One possibility is to use as the columns of D

a sufficient number of successive residuals Fk(x) - Fk-'(x), after a number of iterations k that is

sufficiently large. However, we have not investigated this possibility further.

3. COMPUTATIONAL RESULTS FOR STOCHASTIC SHORTEST PATHS

To assess the potential of our two-phase method, we have tested it with a variety of Markovian

decision problems. In this section we will present some computational results for stochastic shortest

path problems (also known as first passage problems). These are undiscounted problems, originally

introduced in [EaZ62], and investigated in several subsequent works [Ber87], [BeT89], [BeT91],

[Der70], [Kus71], [Pal67]. For these problems, there has been no proposal to date of a simple and

effective method to accelerate the convergence of value iteration. We have also obtained similar

results for discounted problems, but for such problems we have found that our method is not much

better than the regular value iteration method, supplemented with McQueen-like error bounds.
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3. Computational Results

In summary, we have verified that for stochastic shortest path problems the acceleration poten-

tial of the method depends on the problem' s structure, and particularly on the separation between

dominant and subdominant eigenvalues. When this separation is substantial, and we will see that

this happens in some fairly "normal" randomly generated problems, the resulting acceleration is

spectacular.

Let us denote by qij, i, j - 1, .. ., n the elements of Q. In the context of the stochastic shortest

path problem, the elements qij are nonnegative and all the row sums ~j l qij are less or equal to

one. We may view qlj as the probability of a system moving from state i to state j, and we may view

1 -Z>jnl qij as the probability of the system moving from i to a cost-free and absorbing termination

state. If the ith component of the vector h is the expected cost when moving from state i, then the

components of x* are the expected costs starting from the corresponding states up to reaching the

termination state.

We have tested two versions of the two-phase method, called Jacobi and Gauss-Seidel. The

Jabobi version corresponds to the mapping F with components

F?(x) = hi + qijxj, i = 1,..., n. (12)
j=1

The Gauss-Seidel version corresponds to the mapping F with components

i-1 n

Fi(x) = 1,. + E q.......x..... , n. (13)
j=i j=i

In all tests the switch to phase two (the rank-one correction iteration) was made when the cosine of

the angle betwen successive residuals, as measured by the ratio (6), was within 10- 4 of unity. The

iterations were terminated when the residual norm IIF(z)- xzl became less than 10- 7.

In all our problems the components of the cost vector h were chosen according to a uniform

distribution from the interval [0,100]. We used three types of randomly generated problems, the

first two of which involve a fixed policy:

(1) Random Transition Graphs: Here each transition probability qij is specified to be 0 or

positive according to a given probability r, called the sparsity factor. Each of the escape

probabilitities, that is, the probabilities 1 - il qij of transition from i to the termination

state is selected to be either a fixed positive number p < 1, or 0 with probabilities r and 1 - r,

respectively. The positive q1j are then selected according to a uniform distribution, and they

are appropriately normalized, taking into account the escape probabilities specified earlier.

(2) Linear Transition Graphs: Here for each state i Z 1, n there are two possible transitions,

the left transition to a fixed state randomly chosen from the set {1, . . ., i - 1}, and the right
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transition to a fixed state randomly chosen from the set {i + 1, n}. The left and the right

transition probabilities are randomly chosen from the interval [0, 1] and then are normalized

to add to one. From the state 1, there is a fixed probability p, called the escape probability,

of moving to the termination state, and a probability 1 - p of moving to state 2. Similarly,

from the state n, there is a given probability p, called the escape probability, of moving to the

termination state, and a probability 1 - p of moving to state n - 1.

(3) Two-Action Linear Transition Graphs: Here the states and the possible transitions at

each state are as in the preceding class of problems. However, at each state there are two

possible actions: when the first action is chosen the state evolves probabilistically as in the

preceding class of problems; when the second action is chosen at a state i 0 1, n, the left and

the right transitions occur with equal probability 1/2. We implemented a heuristic mechanism

whereby a switch from the first to the second phase and reversely can be done, depending on

the progress of the algorithm. In particular, a switch from the second to the first phase was

done when the second phase could not maintain a "substantial" reduction factor in the normed

residual IIF(x) - x[l. Furthermore, a switch to the first phase was also done after the first five

iterations of the second phase. The motivation for this latter switch was that frequently,

following the initial switch to the second phase, the policy produced by value iteration changed

significantly, in which case it is sensible to recalculate the vector d by switching back to the

first phase.

In Tables 1-3, we give the number of iterations required by four methods. The first two are

called Jacobi-Acc and Jacobi, and are based on the Jacobi iteration [cf. Eq. (12)]; the former uses the

rank-one correction in the two-phase scheme described above, while the latter uses no corrections,

that is, it consists of just phase one. The Gauss-Seidel versions [cf. Eq. (13)] of these two Jacobi

methods are called Gauss-Seidel-Acc and Gauss-Seidel, respectively. Some of the larger problems

were not solved with the regular Jacobi and Gauss-Seidel methods in view of the excessive number

of iterations required.

The results of these tables show that the two-phase scheme is extremely effective, dramatically

reducing the number of iterations of the regular Jacobi and Gauss-Seidel value iteration methods.

This is not surprising, since similarly dramatic savings are known to be possible for discounted

problems under comparable circumstances.

We also solved some of the problems of Tables 1-3 with the rank-one correction method that

uses the unit vector e = (1, 1,... , 1) as the direction d, instead of using a dominant eigenvector.

This method does not offer convergence guarantees, but nonetheless it accelerated considerably the

regular value iteration method for the problems of Tables 1 and 2. However, the number of iterations
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required was much larger than the number of iterations for our method, frequently by a factor of

three or four. For the two-action-per-state problems of Table 3, we were not able to implement a

properly working rank-one correction method with d = e, because of difficulties due to nonmonotonic

changes in IIF(x)- xll.

Finally, it is worth repeating our earlier warning that the two-phase scheme is not effective

when there is little or no separation between the dominant and the subdominant eigenvalue modulii.

As an example consider the linear transition graph problem with two states. The matrix Q is given

by

Q= 1 -p 0p

and its two eigenvalues are (1 - p) and -(1 - p). When the two-phase Jacobi method is applied

to this problem, the switch to phase two typically never occurs because the power method cannot

identify a dominant eigenvector.

n Sparsity Esc. Prob. Jac.-Acc G.-Seidel-Acc Jac. G.-Seidel

75 1.0 0.01 12 14 2339 1221

150 1.0 0.01 11 15 2450 1245

225 1.0 0.01 11 16 2503 1274

300 1.0 0.01 10 16 2545 1314

75 0.1 0.01 395 52 22209 11631

150 0.1 0.01 129 21 21565 14318

225 0.1 0.01 146 17

300 0.1 0.01 90 18

Table 1: Experiments with random transition graph problems. Each entry gives the number of iterations averaged

over 5 randomly generated problems. For such problems the subdominant eigenvalue modulus is small, particularly

for dense problems. This explains the dramatic savings achieved by our rank-one correction method.
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n Esc. Prob. Jac.-Acc G.-Seidel-Acc Jac. G.-Seidel

100 0.1 109 57 3954 2024

200 0.1 173 97 5235 2767

300 0.1 210 86 6765 3545

400 0.1 131 67 7036 3617

500 0.1 238 82 8311 4185

Table 2: Experiments with linear transition graph problems. Each entry gives the number of iterations averaged

over 5 randomly generated problems.

n Esc. Prob. Jac.-Acc G.-Seidel-Acc Jac. G.-Seidel

100 0.1 105 59 2691 1308

200 0.1 124 72 2687 1296

300 0.1 125 71 3148 1565

400 0.1 117 69 4704 2278

500 0.1 129 73 4443 2126

Table 3: Experiments with two-action linear transition graph problems. Each entry gives the number of iterations

averaged over 5 randomly generated problems.
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