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Abstract

In this thesis a simple technique for controlling structure via holographic interference
lithography was established and implemented.

Access to various space groups including such important structures as the level
set approximations to the Diamond, the Schwartz P structure, the FCC, and the
non centrosymmetric Gyroid structures were demonstrated. The ability to make 3D
structures over a large area, with low defect densities and periodicities on the sub/i
scale opens a whole range of opportunities including such diverse areas as photonic
crystals, phononic crystals, drug delivery, microtrusses, tissue scaffolds, microfluidics
and colloidal crystallization.

A correlation between structure and photonic band gap properties was established
by systematically exploring the 11 FCC space groups. This resulted in a technique to
search for p:hotonic band gap structures. It was found that a fundamental connectivity
caused by simple Fourier elements tended to support gaps. 2-3, 5-6 and 8-9 gaps were
opened in the f.c.c lattices. The F-RD and 216 structures were newly shown to have
complete band gaps.

Two of the three previously established champion photonic crystal structures,
viz. the Diamond and the Gyroid presented practical fabrication challenges, approx-
imations to these structures were proposed. A scalable P structure and the 3-FCC
structure were fabricated by single and multiple exposure techniques. Both negative
and positive tone photoresist systems were demonstrated. Line defects were written
into the negative tone system using two-photon lithography.
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The single crystalline, porous nature of the structures was exploited to examine the
possibility for their use as hypersonic phononic crystals and microfluidic microlenses.
Two dimensional single crystalline patterns were created using interference lithog-
raphy. Their phononic band structure was probed by Brillioun light scattering to
yield a phononic band diagram, which clearly demonstrates the effect of periodicity
on the phononic density of states. The ability to control the density of states at these
length scales holds the potential for control over thermal properties. The two dimen-
sional structures fabricated in negative photoresist were also tested as microlenses
with the integrated pores acting as microfluidic channels. This combination resulted
in a structure reminiscent to that of the biological species ophiocoma wendtii.

Thesis Supervisor: Edwin Lorimer Thomas
Title: Director, Inst for Soldier Nanotech and Morris Cohen Professor of Materials
Science and Engineering
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Chapter 1

Introduction

This thesis is the subject of two simple fascinations: structure and light. At the

scale of a micron this fascination is frequently accompanied by interest fueled by

application. The fabrication of three dimensional structures on this scale is not just a

challenge but an opportunity. Any technique utilised for such a purpose is frequently

measured against such metrics as its ability to yield structures rapidly and cheaply,

while covering large areas and simultaneously affording the controlled introduction of

purposeful defects. The bulk of this thesis deals primarily with one such technique viz.

holographic interference lithography. In this chapter we briefly outline the potential

applications for single crystalline periodic structures with lengthscales on the order

of a micron. Various alternate fabrication techniques that can potentially acheive

such structures are then described. Since, applicationwise, the primary interest of

this thesis is related to the area of 3D photonic crystals, this aspect is emphasized.

1.1 Applications of Porous Single Crystalline Pe-

riodic Structures

1.1.1 Photonic Crystals

Photonic crystals can be described as being dielectric composites with periodically

varying refractive indices which allow for the control of the interaction of light and
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matter. This functionality depends both on the materials parameters as well as the

geometry of the system employed. The idea, first proposed by Yablonovitch [1], cen-

ters around the concept that full three dimensional spatical periodicity of A/2 in the

refractive index can result in a range of frequencies in the electromagnetic spectrum

near the wavelength A not being able to propagate, irrespective of direction. This is

an extension of the principle behind Fabry-Perot resonators into three dimensions.

The use of such photonic crystals holds the promise of numerous application in in-

tegrated optical circuits such as the control of the spontaneous emission of light [1],

bending of light around sharp corners for waveguides [2], and all on-chip optical tran-

sistors [3].

1.1.2 Optimised Composites

It was recently demonstrated that certain, "minimal" three dimensional structures,

viz. the bicontinuous simple cubic primitive Schwartz (P), and diamond (D) are

optimal for the simultaneous transport of heat and electricity [4]. A minimal sur-

face is one which is locally area minimizing. More specifically, from an application

perspective, these are the optimal structures when a weighted sum of the effective

thermal and electrical conductivities are maximised for the case in which one com-

ponent is a good thermal conductor and a poor electrical conductor and the second

component is a poor thermal conductor but a good electrical conductor. The demand

that this sum is maximised sets up a competition between the two effective transport

properties. Importantly the optimality of these composites applies to any pair of

the following scalar effective properties: electrical conductivity, thermal conductivity,

dielectric constant, magnetic permeability and diffusion coefficient.

1.1.3 icrotrusses

The study of structures which are load sustaining while also being lightweight and

compact has lead to the study of truss like structures[5]. In addition to being load

bearing, these structures impart functionalities such as cooling due to the presence
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of open spaces. The reduction of such structures to the micron scale could result in

interesting mechanical properties since at these size scales some materials undergo

transformations such as ductile to brittle transitions [6].

1.1.4 Phononic Crystals

Phononic crystals are the acoustic analogue of photonic crystals. In this case, for an

appropriate periodic arrangement of elastic moduli gaps can appear in the phononic

band structure [7]. Phononic band gaps have their origin in the destructive inter-

ference of multiply scattered phonons in periodic structures. As in materials with

photonic band gaps, this gives rise to potential applications as novel acoustic de-

vices, such as refractive devices with low relectivity despite high solid content such as

lenses and Fabry-Perot interferometers[8], as well as a platform to study the physics

governing elastic and acoustic wave propagation in periodic media.[9, 10, 11, 12, 13]

1.1.5 Biomimetic Structures

Single Crystalline Exoskeletons

Naturally occurring bicontinuous structures can be found in the skeletons of sea

urchins (frequently termed stereoms) [14]. In any one skeletal element, which may

be centimeters in length, the calcite behaves optically as a single crystal. It has been

suggested that the single crystalline nature probably owes its origin to the micropat-

terned framework of the stereom [15, 16]. The exact purposes of these structures are

not well established, they were earlier believed to to have evolved to provide excellent

nutrient access and to prevent crack propagation through the calcite plates, although

this notion has been recently challenged [17].

Tissue scaffolds

The field of tissue engineering exploits living cells in a variety of ways to restore,

maintain, or enhance tissues and organs. To engineer living tissues, cultured cells

are grown on bioactive degradable scaffolds that provide the physical and chemical
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signals to guide their assembly into 3-D tissue. [18] A frequent requirement of these

scaffolds is that they be porous and possess a three dimensional construct. In certain

cases there is a need for a well characterised, reproducible, in-vitro system or device

that can replicate the in-vivo behaviour of the corresponding tissue. For example, in

the use of engineered liver tissue in the testing of the disposition and toxicity of drugs

[19]. A case could thus be made for the utility of ordered, porous, three-dimensional

structures as superior tissue engineering scaffolds.

1.2 Fabrication Techniques

Methods of achieving structures that allow for the fabrication of three dimensional

periodic structures on the submicron scale can be broadly classified into "construction-

based" assembly and self assembly based techniques. Self assembly relies on the use

of thermodynamic forces to spontaneously pattern components into stable structures

whereas construction based techniques require the piece by piece placement of the

various components of the appropriate structure.

1.2.1 Construction-based Assembled Structures

Layer by Layer Conventional Semiconductor Fabrication

The use of conventional semiconductor fabrication techniques is currently the most

advanced technique available in the fabrication of three dimensional structures. Since

the method is inherently a two dimensional patterning technique, the desired structure

is approximated by a sum of thin slices. The slices are fabricated sequentially to yield

the final 3L) structure. In order to fabricate subsequent layers it is necessary to ensure

alignment between layers and to undertake laborious procedures of planarization via

back filling followed by CMP (chemical mechanical polishing) [20] or wafer bonding

[21].
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Two-Photon Lithography

Two-photon lithography allows for the creation of 3D structures on a sub-micron scale

by focusing a pulsed, typically near-infrared, laser beam point by point into a pho-

toactive resin, such that the higher light intensity chemically activates the photoactive

resin at those points leading to the formation of solid structures.[22, 23, 24, 25] A

schematic of the setup is shown in Figure 1-1(a). The ability to create changes within

the volume of the photoresist is possible since it is based on the concept that under

sufficient illumination intensity, electronic transitions that would normally require

absorption of one high energy photon for excitation can be accomplished by simul-

taneous absorption of two low energy IR (infra-red) photons, such that their total

energy is equivalent to that required for the transition. Femtosecond laser pulses to

whose wavelength the photoresist is transparent are tightly focused inside the resin.

The pulse intensity is adjusted so that the light power density at the focal spot of

the laser beam exceeds the threshold of the two-photon absorption (TPA) and strong

absorption takes place. The rate of TPA can be defined as:

TPA = xI2

where a is the TPA cross-section of photoactive molecule ( 10-50 cm4 s/photon) and

I is the photon intensity (photon/cm2 s). The quadratic dependence of two-photon

absorption on the incident intensity ensures confinement of the absorption to very

small volumes or voxels near the focal region while the incoming and exit beam

intensity is insufficient to cause absorption along its path. By high-speed scanning

of the focal spot of the laser beam, virtually any predesigned 3D structure can be

fabricated even acheiving resolutions which are below the diffraction limit. The best

resolution to date is approximately 120nm[23]. A concern with any serial writing

technique such as two-photon writing or the direct writing technique discussed in

the next subsection is the time taken to write such patterns, a parameter which is,

unfortunately, usually not revealed in this regard, since such serial writing processes

are inherently very slow.
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(a) Two-Photon Lithography Setup

.

i ..

(b) Woodpile
[25]

structure fabricated via two photon lithography

Figure 1-1: 3D structures throughTwo Photon Lithography
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3D Printing and Direct Writing with Polyelectrolytes

Three Dimensional Printing is a solid free form process used in the manufacture

of functional prototype parts directly from computer models. It functions by the

deposition of polymer powder in layers and the selective binding of the powder by

"ink-jet" printing of a binder material. Following the sequential application of layers,

the unbound powder is removed resulting in a complex three dimensional part [26].

The resolution achieved in this technique is on the order of 200 . An alternative

to 3D printing that is based on very similar methodology that is more viable for

the length scales in consideration in this thesis is the technique of direct writing

[27]. This technique uses fluid inks that are made up of concentrated polyelectrolyte

complexes that consist of non-stoichiometric mixtures of polyanions - polyacrylic acid

and polycations - polyethylenimine or polyallylamine hydrochloride. By regulating

the ratio of anionic to cationic groups and combining these species under solution

conditions they are able to get the solutions to have viscosities that are suitable

for deposition through nozzles of 05.-5.0u in diameter. The patterns are written by

deposition into an alcohol-water reservoir, in which the polyelectrolyte inks coagulate

to form sell'f supporting filaments or rods. The write times for structure with the area

shown in Fig.1-2 are typically on the order of 5 minutes.

Micromanipulation and Robotic Assembly

The concept of building a structure through micromanipulation is the most intuitive of

the "construction-based" assembly approaches. At the size scale of interest, though,

this can be a serious technological challenge and involves the use of either optical

tweezers [28], an AFM tip [29] or the use of a micromanipulator [30] to manipulate

the requisite building blocks. The ability to integrate the micromanipulator with an

imaging system such as an SEM has made this technique the most facile of the three

approaches. Here a probe is used to pick up and position objects larger than 100 nm

with an accuracy of a few nanometers. This happens because electrostatic and Van

derWaals forces dominate the dynamics of micro-objects.

27



Figure 1-2: Direct writing technique via polyelectrolytes. a) The ink-deposition pro-
cess (not drawn to scale). A concentrated polyelectrolyte ink is housed in a syringe
(yellow) immersed in a coagulation reservoir (grey hemispherical drop) and deposited
on to a glass substrate (light grey). b, Optical image acquired in situ during deposi-
tion reveals the features drawn in a, including the deposition nozzle that is patterning
L three-dimensional lattice, as well as a completed radial array. This image is blurred

by the reservoir (scale bar: 100 ttm). c, Three-dimensional periodic structure with a
face-centred tetragonal geometry (filament diameter: 1 m; 10 layers; scale bar: 10
/um). d, Three-dimensional radial array (filament diameter: 1 m; 5 layers; scale bar:
10 /um) [27].
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Two approaches have been successfully demonstrated in the attempt to build

three-dimensional structures using this technique. In the first, latex and silica mi-

crospheres were used as the building blocks to form a self supporting mixed BCC

structure 131, 32]. This lattice consisted of two interpenetrating silica and latex

sphere diamond lattices respectively. After assembly, the latex lattice was removed

by plasma etching to yield a diamond lattice of silica spheres as shown in Fig. 1-3. The

second approach uses a combination of the layer by layer conventional semiconduc-

tor fabrication technique and micromanipulation to build up the three-dimensional

structure [33]. First all the layers are fabricated simultaneously, in a large 2D array

and micromanipulation is used to cut sections apart and place them one on top of the

other. Registration between subsequent layers is ensured by creating circular fiducial

holes on each layer and inserting a polystyrene microsphere into the aligned holes of

successive layers.

1.2.2 Self Assembly

Block Polymers and Surfactant Based Self Assembly

Block polymer structures are an example of chemically directed self-assembly [34].

The simplest block polymer is a linear A/B diblock consisting of chemically distinct

A and B polymer chains covalently linked to form a single molecule. The driving

force behind the patterns that are formed by block polymer self assembly lies in the

thermodynamic balance resulting from energy minimization. The main competing

forces in this minimization are the enthalpy associated with the mutual repulsion of

dissimilar blocks and the entropy associated with the number of conformational states

available to the polymer chain in a given configuration. Various factors that affect

these two forces, such as molecular weight, composition, temperature, A-B interaction

parameter etc. determine the nature of the patterns formed. Under certain conditions

three dimensional bicontinuous patterns can be formed. [35].

At the length scales of concern, however the use of block polymers is not so

straightforward. This is related to the fact that in order to realize structures with
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Figure 1-3: Six-layer diamond structure grown in the {001} direction. a) mixed BCC
structure made of 165 latex and 177 silica spheres. b) the same sample after plasma
etching resulting in a diamond lattice. Sphere diameter is 1.18/um. The pitch of
the silicon template is 1.35/um. Hole depths are 450 nm and 1.08/um, respectively.
Layer-to-layer distance is 680 nm. Scale bars are 5.O/im [32]
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Figure 1-4: Assembly of 3D structures through micromanipulation. a) Two micro-
spheres are inserted into pore openings of a substructure. b) A bridge of a plate is
broken by pushing it with a probe tip. c) A photonic plate separated from a substrate
is picked up with a probe. d) The separated plate is transferred to the substructure
in a. e) The tops of microspheres inserted into the substructure guide the photonic
plate into alignment by catching the holes of the plate. f) The 2D photonic plate is
fixed on the substructure by inserting a microsphere into residual pore opening and
two more rnicrospheres are inserted into holes of the plate for stacking of the next
layer. Pressure was applied to the plate with the probe to promote self-bonding of
plates. g) Side view of a 20-layer woodpile structure. The periods of rods, rod width
and layer thickness are 1.4 /um, 0.37 j/m and 0.5 m, respectively. The size of the
structure is 25 x 25 x 10 j/m 3 and that of patterned region is 15 x 15 x 10 m3 [33]
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appropriate length scales, the size (molecular weight) of the blocks must increase and

the associated kinetics involved with pattern formation get more difficult to over-

come, resulting in the formation of grains and various types of uncontrolled defects, if

structures are formed from cooling above the order disorder temperature. A variety

of biases, including mechanical flow fields, electric fields, temperature gradients and

surface interactions have been utilized to create large area single crystalline patterns

on smaller length scales. Successful attempts at larger length scales have been limited

[36].

Chemically directed self assembly can also be acheived through surfactant based

self-assembly of binary systems, such as surfactant-water, or surfactant-oil, or ternary

systems comprised of surfactant, oil and water. Block polymers can be thought of

as large amphiphiles. Thus, surfactant based self assembly is very similar in nature,

inasmuch that the basis of the formation of the patterns is thermodynamic energy

minimization with similar competing forces. Self assembling surfactant systems usu-

ally involve two or more dissimilar phases which are partitioned into a periodic mor-

phology by surfactant interfaces. As in the case of block copolymers, under certain

conditions three dimensional bicontinuous structures can be formed [37]. The range

of volume fractions occupied by a given structure for both surfactants and block

polymers is limited. Further, this technique faces the usual problems that plague self

assembly such as the presence of defects and grain formation. In addition ab-initio

design of desirable structures is hard and the set of structures available is limited.

Colloidal Crystallisation

Colloids are small particles, in the range of nanometers to microns, that are suspended

in a liquid or a gas. These particles can be made to self assemble, owing to their

electrostatic or other interactions and give rise to crystalline structures. Owing to

the easy availability of monodisperse silica and polymer colloids in the appropriate

size range, a large number of workers have created colloidal photonic crystals[38]. The

most common structure for monodispersed spheres is the close packed face centered

cubic structure. This tends to limit both the volume fraction and the symmetries
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Figure 1-5: SEM image of the UV-etched styrene/isoprense block copolymer with
double gyroid structure. UV exposure along with ozonolysis removes the isoprene
component leaving behind the two polystyrene networks. The inset is the level set
approximation to the double gyroid structure with 0 = 0.34 [36].

accessible via this technique, although a number of work-arounds have been suggested,

such as the use of binary colloids [39], use of non spherical particles etc. [40]. The

primary challenge while dealing with colloidal crystals is in the creation of large size

samples with low defect densities (Fig. 1-6). A variety of guiding fields have been

applied in this endeavour including sedimentation via gravity [41], electric fields [42],

grapho-epitaxy [43] and capillary forces [44] to name a few.

Figure 1-6: SEM image of FCC close packed silica colloidal particles [44]

33

i!

'Wir 'W Ib t''',' 0;!Qr *·, s'M& . __ 

I;II



1.3 Holographic Interference Lithography: Back-

ground

Holographic interference lithography is a technique that allows one to create 1D, 2D

and 3D patterns very simply using coherent beams of light. Light is an electromag-

netic wave and it is the inherent periodicity present in the light that we exploit while

creating structures using holographic lithography. Essentially holographic lithography

involves the formation of a time independent spatial variation of intensity created by

the interference of two or more beams of light. These periodic variations of intensity

can then be transferred into a light sensitive medium to yield structures.

The idea of using light to create 1D gratings and 2D patterns as a sequence of

exposures had been around for some time. The first suggestion that a 2D pattern

could be made in a single exposure came from Cowan and Slafer [45]. The idea of

using light to create 3D patterns comes from the field of condensed matter physics

and laser cooling [46]. Standing waves are created by multiple beams of light resulting

in a periodic field. A process called laser cooling causes atoms moving through such

optical lattices to lose enough energy so that they become trapped at the points of

minima of the periodic field. The interest in this area is to do with the dynamics

of these trapped atoms and to examine such issues as Bose-Einstein condensates.

To date the main areas of interest from the perspective of 3D patterns created by

holographic interference lithography has been in the areas of laser cooling via optical

lattices [46], photonic crystals [47] and holographic-polymer dispersed liquid crystals

[48].

The first suggestion that holographic interference lithography could be used to

create 3D photonic crystals came from Mei et al.[49]. They were able to show optical

images of slices of some larger spacing 3D structures created by visible light. Berger et

al.took the idea of using 3D patterns formed by holographic lithography for photonic

crystals a step further. They observed that while an FCC pattern could be simply

created, a diamond pattern would be accessible through a multiple exposure routine.

Their technique relied on phase shifts to ensure the requisite registered translation
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of the pattern since a diamond lattice is a sum of two FCC lattices shifted in space

from one another by 1/4 th of the body diagonal of the unit cell. They demonstrated

via a 2D hexagonal lattice case the multiple exposure routine based on phase shifts.

Turberfield and co-workers were the first to actually demonstrate the transfer of

a 3D holographic interference pattern into a photoresist with an eye towards its pho-

tonic band gap properties [47]. The structure that they created was one with an

FCC translational periodicity with a motif that was reminiscent of an interconnected

diamond network. The polarisations that they used were presumably designed to

maximise contrast in the resist and thus, although the photonic band gap properties

had been emphasised, it resulted in a structure whose inverse' has a maximum gap

of only -2%, even at a dielectric contrast of 13:1. Nevertheless, this work served to

create a great deal of interest in this area. It was the first convincing experimental

demonstration that large area photonic crystals with low defect densities could be

fabricated rapidly. Further the photoresist system employed by Turberfield, SU8,

has become the standard for transferring interference patterns into polymer. In-

dependently, and almost simultaneously Shoji and Kawata [50] demonstrated a 3D

structure transfered into a photoresist. This structure however is not bicontinuous,

making its use as a template dubious. Further, although its photonic crystal prop-

erties were touted, calculations by Maldovan have shown that it does not possess a

band gap.

Subsequent work of note has tended to be engineering in nature based on the

'diamond-like' structure proposed in [47]. Yang et al.[51] demonstrated a modified

SU8 photoresist platform that could be employed at visible wavelengths, and included

a contrast enhancer, in the form of a base. Miklyaev et al.[52] noted the need for a

prism in order to access the correct angles within the high index photoresist. They

however did not index match the prism resulting in shifts in polarisation. Divliansky

et al. [53] suggested the use of a set of gratings in order to split the beams and generate

the requisite angles, thereby simplifying the optical setup. Their setup however does

not consider control of polarisations.

1The inverse structure is defined as one in which the regions of high and low dieletrics are switched.
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Although example beam directions giving rise to the 14 translational periodicities

have been listed [54], prior to this work limited attention has been paid to the con-

trol of structures that are available through the technique of interference lithography.

Bunning and co-workers [48, 55] have applied the concepts of 3D structures via holo-

graphic interference lithography to their holographic-polymer dispersed liquid crystal

(h-PDLC) sytems. They wrote a variety of patterns including an orthorhombic P

structure [48] and some Orthorhombic F structures [55] in their acrylate based liquid

crystal system. Escuti et al.wrote an FCC pattern into a similar h-PDLC system [56].

From a structure perspective, an interesting area is that of quasicrystals. Quasicrys-

tals via interference lithography was demonstrated by Burns et al.[57]. The effort in

this area, though, have been mainly based on 2D structures [58, 59].

1.4 Objective

It is amply evident from this summary of construction and self-assembly based ap-

proaches to 3D structures, holographic interference lithography is a versatile and

promising technique. Clearly, given the strong impact that a technique for fabricat-

ing three dimensional structures on the submicron scale can potentially have, there

is an opportunity and a need to understand the control over the range of structures

available via holographic interference lithography. The objective of this thesis is thus

both scientific as well as engineering in nature. We seek to understand and exploit

the opportunities that the technique of holographic lithography affords in the fabri-

cation of structures. In order to do this we first establish an understanding of the

structures that can be created using the interference of light with just a few beams.

Having identified the general set of structures that are accessible using this technique

we then identify what structural parameters are of interest from the perspective of

photonic band gap properties. Some of the structures are then experimentally re-

alised. Finally we examine some of these structures as templates for phononic band

gap structures and plenses.
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Chapter 2

Correlating Structural Symmetries

and Beam Parameters in

Holographic Lithography

In this chapter we examine the technique of interference lithography. We then study

the structures that are accessible using this technique 1

2.1 The Intensity Equation

Light is an electromagnetic wave and it is this inherent periodicity that we exploit

while creating structures using holographic lithography. Holographic lithography in-

volves the formation of a spatial variation of intensity created by the inteference of

two or more beams of coherent light. In order to understand the patterns that are

formed it is thus instructive to look at the intensity equation. The electric field asso-

ciated with a planar monochromatic beam of light can be described mathematically

as

Em( r, t)= Eome i( k -t+ ) (2.1)

1The primary results of this chapter have been published by Ullal et al. [60]
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where m is simply the index identifying the particular beam, E is the polarisation,

k is the wave vector, w is the angular frequency, and 0 is the phase of the beam. If

we have more than one coherent electromagnetic wave present, then the net electric

field is simply the vector sum of the electric fields. The intensity variation created

by these electric fields is proportional to the square of the magnitude of the resultant

vector sum. Since the polarisation associated with an electromagnetic wave need

not be linear, but can be circularly or elliptically polarised as well, the intensity is

arrived at by the inner product of the electric field with its complex conjugate. From

this equation we see that the interference pattern has only a spatial variation and no

temporal variation.

I( ) = (E- + E2 + ES + ...) (E ~ + E2 + E + ...)
(. E+ i(kmo,+t + ) *( *.*+. . ( -. + * * ) (2.2)= -- . -I 4 ei(k,-,,l

= ( E*zi(k r +0. ) .(........ + E +Wt-Omr) +- . )
n n

= E EEl · Eme ( ' ( k - kn). r )+Ol-0m
m=l 1=1

For n=2, with linear polarisation the intensity equation reduces to a one dimen-

sionally periodic pattern given by

--42 --2 - - (2.3)
I( + Eo, + 2E, E0,1cos(A k + o - 1) (2.3)

This is the equation for a grating with spatial period of IA k I = I k o-k l. The use

of three and four beams results in two dimensionally and three dimensionally periodic

structures respectively. The addition of a fifth interfering beam would create a pattern

with a translational periodicity in four dimensions. The resultant pattern that would

be observed would thus be a three dimensional cut through four dimensional space,

just as a particular plane is a two dimensional cut through three dimensional space.

The magnitude of the relative phase amplitudes fixes the position of the origin. Thus

for four beams, a change in phase causes a translation of the intensity pattern. In the
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case of five beams the shift is in four dimensional space and the three dimensional cut

that we observe will be completely changed as a result of this shift. This complication

with phases makes it difficult to work with more than four beams. We thus primarily

focus on the patterns formed by the interference of four coherent beams of light.

2.2 The Fourier analogy and achieving the trans-

lational periodicities of the Bravais Lattices

It is useful to view the intensity patterns created in holographic lithography as the

sum of gratings. This is true because any structure can be expressed as a sum of

Fourier terms. Each Fourier term would thus correspond to a grating arising from

the interference of two beams and if one had the ability to easily and reproducibly

control phase we would be able to make any arbitrary pattern that we wanted through

multiple exposures. This phase problem of registration is not easily overcome and

we are once again restricted to using four beams since the registration between the

gratings in this case is guaranteed.

The interference of four beams of light with arbitrary directions, amplitudes and

phases results in a maximum of thirteen terms (eqn. 2.2), of which there are six terms

along distinct directions (some terms only differ from each other by 7r/2 in phase).The

set of thirteen terms clearly places a restriction on the sort of structures one can form

through a four beam approach. In order to get an understanding of the patterns

created by these six gratings we go back to the analogy between the Fourier series of

a periodic structure and the intensity equation. The Fourier series approximation to

the function I( r) is given for n terms by

n n

I( ) = E: z almeiam (2.4)
m=l 1=1

If we compare eqns (2.2) and (2.4) we can see that the intensity equation has

its translational periodicity determined by the difference between the wave vectors

(kt - k m) of' the interfering beams while the polarizations, represented by a set of
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complex electric field vectors el = {ex,re + i ,im, %,re + iE im ere + Zezim}, determine

the pattern or motif placed within the unit cell. The combination of the motif and

the translational periodicity determines the full set of symmetries associated with,

and hence the space group, of the resultant structure.

We first turn our attention to the translational periodicity associated with these

structures. As with all translationally periodic structures the minimum set of vectors

that we need to consider is the set of basis vectors, since the remaining vectors can be

achieved by a linear combinations of this set. In two dimensions there are five lattice

nets, while! in three dimensions there are fourteen Bravais lattices. Thus in order to

get a desired translational periodicity it is necessary to equate the difference between

the wave vectors with basis vectors associated with that translational periodicity.

One way to do this is to set the first wave vector, k 0 to the reciprocal lattice vector

that is equidistant from the origin and the basis vectors { bm}. The remaining wave

vectors are then given simply given by k m = b m + k 0. Since there are an infinite

number of choices of basis vectors for a particular type of translational symmetry, we

can vary the size of the unit cell simply by changing the angle between the beams.

Obviously the control of the lattice size is discrete and not continuous. A list of wave

vectors for the translational periodicities associated with the fourteen Bravais lattices

can be found in ref. [54]

2.3 Space Groups and Polarisations

It is important to remember that the construction of a Bravais lattice through the

choice of a set of four noncoplanar k vectors is only a necessary condition to get the

translational symmetry of the Bravais lattice expressed in the holographic structure.

When the polarisations are taken into account, the material pattern that emerges out

of the interference of the beams will give rise to some overall symmetry that may

or may not respect all the various site symmetries of the particular Bravais lattice.

Indeed, it may not even correspond to any of the space groups of the originally

specified Bravais lattice. Moreover, if, say, we chose to consider cubic lattices and we
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choose beam parameters such that we always obey the site symmetries of the three

cubic Bravais lattices, then we would have managed to get only three of the possible 36

space groups. Clearly to correctly establish the symmetries of the structures formed.

one must pay attention to the resultant space groups. An excellent introduction to

the theory of symmetries and space groups can be found in the text by Buerger [61]

To guarantee a particular space group, we thus need to make a suitable choice

of not just the k vectors but also the polarisation vectors. Although previous work

has recognised the influence of the polarisation interactions on the resultant struc-

ture, no systematic investigation of the influence of the choice of polarisations on

the structural symmetry has been developed [62, 46] One further restriction that we

place on the beam parameters is that they all have the same wavelength. Choosing a

particular value for the wavelength has the effect, in most but not all cases, of fixing

the sizescale of the pattern that is formed. This is true, since, if we change the angle

between the beams we may not be able to get all the elements that we want since all

of the trigonometric terms that we need may no longer be available. Clearly all the

patterns are still scalable from the point of view of the laser wavelength. Finally and

importantly, from the perspective of targeting practical three dimensional structures

an important property is that of bicontinuity. We define a structure as being bicon-

tinuous if it; consists of two distinct regions or phases each of which is self-supporting

and completely connected within itself.

2.4 Achieving Space Groups via the Elimination

of Terms

To ensure a particular space group, the minimum number of conditions that we need to

impose is the number of generators for that space group as listed in the International

Tables of Crystallography [63]. A first approach is thus to use the appropriate beam

directions to achieve the required translational symmetries commensurate with the

chosen space group. We then satisfy the remaining symmetries of the space group by
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eliminating undesired terms and equating coefficients of others as required. This is

done by adjusting the amplitudes and phases of the polarisation vectors so as to obtain

zeroes in the coefficients of the undesired terms (or net zero sums of several unwanted

terms) and the desired values in the remaining terms of the intensity equation.

A specific example is illustrative: consider a two dimensional pattern, which be-

longs to the plane group p2mm . The generators for this plane group are the trans-

lations [10], and [01], a two fold axis at the origin, and a mirror at x,O. We first

choose three beams that yield a rectangular lattice net (e.g., k 0 = [-7r/a - /b -

W/C], k =- [7r/a - 7r/b - /c], k2 = [-7r/a 7r/b - /c]). We then ensure the

two fold axis by using linearly polarised light, since structures without a center of

inversion are achieved by use of elliptically polarized light.

The resultant intensity equation is given by

---4 -4 -4 4 --4 + -4
I(-r) = Eo EO + Eo + El + E 2 E 2 + 2Eo E1cos(2rx/a)

+ 2E 0 . E2 cos(27ry/a) + 2E 1 . E1 cos(27r(x - y)/a) (2.5)

The mirror is now introduced by enforcing the condition I(x, y) = I(x, -y). The

imposed condition results in the relation El 1 E2 = 0. Care must be taken at this

stage to ensure that no additional undesired symmetries have been introduced. For

example in the case of the creating a two-dimensional structure with plane group pm

by use of three beams and a single exposure. one always introduces a two fold axis

along with the mirror. The resultant structure has p2mm symmetry rather than the

desired pm.

We could thus attempt to access a desired space group by choosing polarisation

vectors that would leave us with an equation that possessed only symmetries com-

patible with the generators. However this can be an onerous task given the number

of generators that each group can possess. This approach has been attempted by two

other groups subsequent to our examination of the subject via the level set approach

[64, 65].
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2.5 Achieving Space Groups through Level Set Equa-

tions

A simpler, more efficient and sytematic alternative to guaranteeing that the interfer-

ence structure has the desired space group is to adopt a level set approach [66]. The

level-set technique can be utilized to rapidly find suitable candidate functions that

are invariant under the space group symmetry operations. This technique is used to

describe interface surfaces in microphase separated morphologies such as those typi-

cally found, in block copolymer systems. The level surfaces are functions that are of

the form F: R3 - R of points {x, y z}eR3 that satisfy the equation F(x, y, z) = t,

where t is a constant. As specific detailed examples in this chapter we deal only with

functions that are also triply periodic, bicontinuous with cubic symmetry. The level

set equation is then compared with the intensity equation. The final step involves

solving for an appropriate set of polarisations from the set of nonlinear simultaneous

equations that are obtained by equating the coefficients of the linearly independent

terms. The constant term present in the final intensity equation does not affect the

symmetry of the structure but does have strong practical significance. In fact it af-

fects the volume fraction of the final pattern and it can also affect the contrast of the

pattern in the photoresist.

The level-set technique uses the structure factor of the chosen space group to

generate the functions that possess the requisite symmetries. The structure factor

describes the amplitudes and phases of the three-dimensional diffraction pattern that

are due to the scattering of incident radiation off of planes (hkl) of atoms in the

crystalline structure. Care must be taken, however since for special values for h,k

and 1, the particular factor F(hkl) can have extra symmetries belonging to that of a

supergroup. The simplicity of the level set approach can be seen by returning once

again to the plane group p2mm.

The plane group p2mm has four Wyckoff sites: x, y; x, y; x, y; x, y. We introduce

these into the structure factor and take the first terms of the allowed reflections given
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by F(1o)+F(ol). We obtain the equation:

F(1o) + F(ol) = cos x + cos y (2.6)

which is the same as what we arrived at in the previous approach. Thus the structure

factor already has the desired p2mm symmetry, and we are saved the trouble of

building the equation. Next, we simply compare the structure factor equation with

the intensity equation to give us the beam parameters that we desire. The constraint

for the p2mm structure is as before, E E 2 = 0 with the beam directions as listed in

section 2.4. We now examine the level-set approach in detail and the approximations

to four important triply periodic bicontinuous cubic structures.

2.5.1 Level Surface of Pm3m (No. 221): Approximation to

t:he Schwarz P surface

Following the derivation of the level set equation given in Wohlgemuth et al [66] for

space group Pm3m we see that the first nonzero F(hkl) (h=l, k=O, 1=1) is given by

F(1oo) = cos 27rx - cos 2Try + cos 27rz (2.7)

We first choose the beam directions and phase angles to give us the trigonometric

terms that we desire. In this case the k vectors need to satisfy the conditions

- ko = 27r/a[100]

- ko = 27/a[010]

- k o = 2/a[001]

Ik il = 2r/A (2.8)
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A set of vectors that satisfy this condition is given by

ko = 7/a[Mi]

k = 7r/a[1ii]

k2= 7r/a[11]

k3 = r/a[1ll] (2.9)

Since P'm3m is a centrosymmetric group, we choose the polarisations to be linear2 .

In this case since a difference in phases causes only a translation in the pattern, we

set 4i = 0. The intensity equation now becomes

1(r) =Eo Eo

+2Eo

+2Eo

-- +4

+ E1 E1 + E 2 · E 2 + E3 · E 3

E cos 2rx/a

E2 cos 27rx/a

E3 cos 2rx/a

E2 cos 2r(x - y)/a

E3 cos 27r(x - z)/a

E3 cos 27r(y - z)/a

Now we compare coefficients with the terms in the

the required polarisation magnitudes and directions.

constraints is given by

(2.10)

equation F(oo) and solve for

One solution to the resultant

-4
Eo =1.000[0.0, 0.707, -0.707]

E 1 =0.632[-0.5, 0.309, -0.809]
--4
E 2 =0.874[0.809, 0.5, -0.309]

E 3 =2.288[-0.309, 0.809, 0.5] (2.11)

2 This is an arbitrary choice since in this case we could allow elliptically polarised solutions as
well. For noncentrosymmetric structures it is necessary that the light not be linearly polarised.
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This gives us an intensity equation of

I( r ) = 7.4 + cos 27rx/a + cos 2iry/a + cos 27rz/a (2.12)

which has the same symmetry as F(loo), namely Pm3m. The plot for the 50:50 volume

fraction of this isointensity surface is shown in figure 2-1

(a) Single Unit Cell (b) Multiple Unit Cells

Figure 2-1: Plot of the approximation to the
cells. The level set corresponds to space group
fraction of f=0.5

2.5.2 Level Surface of Fd3m (N

P surface showing one and eight unit
Pm3m (No. 221) and provides a filling

o. 227): Approximation to

the D surface

Schwarz's I:) surface is a triply periodic minimal surface with the symmetries of space

group Fd3r (No. 277). The level-set equation for the lowest order nonzero term for

this space group is

F(111) = cos 27rx cos 27ry cos 27rz + sin 27rx sin 27ry cos 27rz

+ sin 27rx cos 27ry sin 27rz + cos 27x sin 2ry sin 2rz (2.13)
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Using identities, we recast this equation in a form that allows us to readily compare

it with the terms of the intensity equation:

F(111) = sin 2X(x + y + z) + sin 27r(x + y - z)

+ sin 2(x - y + z) + sin 27r(-x + y + z) (2.14)

where we have shifted the origin by (7r/2, /2,2, 7r/2) and dropped the factor of 0.5.

Once again we choose the k vectors and phase angles to give us the trigonometric

terms we desire. A choice of k vectors and phase angles that satisfy the given

conditions is

ko = /a[201]; ¢o = /2

k= r/a[201]; 1 = 7r/2

k 2 = 7r/a[021]; 2 = 0

k3 = r/a[021]; 03 = 0 (2.15)

As noted previously, the choice of phase angles in the case of four or fewer beams

causes only an origin shift, leaving the symmetries unaffected. As in subsection 2.5.1

we obtain a set of constraints by comparing the coefficients of the linearly independent

terms of the resultant intensity equation. One solution to this set of constraints is

given is

E = 2.163[0.116, -0.966, -0.231]

E = 0.566[0.442, -0.158, 0.883]

E2 = 1.225[0.890, 0.204, 0.408]

E 3 = 1.274[0.294, 0.427,-0.855] (2.16)
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The resultant intensity equation is

1( r ) =8.125 + sin 27r/a(x + y + z) + sin 27r/a(-x + y + z)

+ sin 27r/a(x - y + z) + sin 2/a(x + y - z) (2.17)

By varying the value of the constant term, we can access a family of surfaces with

different volume fractions as shown in Fig.2-2 . In an experimental setup, this would

correspond to varying the time of exposure, intensity of light or the chemistry of the

photoresist.

(a) f=0.5, t=O

Figure 2-2: Plots of the level set approximation to the D surface for a range of filling
fractions. The volume fraction can be changed by simply varying the constant term
t in the level set equation, in this case equation 2.14. It is important to note that in
figure d the surfaces are reversed from parts a, b and c, such that the components in
the network and in the matrix are reversed.
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2.5.3 Level Surface of I4132 (No.

the Noncentrosymmetric Gyroid surface

The lowest-order F(hkl) term for the space group I4132, to which the chiral gyroid

belongs, is the {110} and is given by

F(llo) = sin 27r(x + y) + sin 2r(x - y)

+ sin 2r(y + z) + sin 27r(y - z)

+ sin 27r(x + z) + sin 27r(z - x) (2.18)

The choice of k vectors that yields the desired trigonometric arguments is given by

ko = 7r/a[111]

k2 = 7r/a[111]

k = 7r/a[l111]

k3 = 7r/a[111]

The requirement for chirality stipulates the need for elliptically polarised light as

represented by complex polarisations. Given this added level of difficulty, we look at

the solution in more detail3 . For ease of comparison between the intensity equation

and the structure factor equation we rewrite equation 2.2 more explicitly as

I(r) =E. E + El E + E2.E+ E3 E

+ 2Re(Eo Eicos((ko

+ 2Re(Eo E cos((ko

+ 2Re(Eo Ecos((ko

+ 2Re(E1 E*cos((kl

+ 2Re(E2 Ei cos ((k2

+ 2Re(E2 E* cos((k2

- k1) -r)) -2Im(E Esin((ko-k) - ))
-k 2) r))- 21m(Eo E*sin((ko - k2 ))
-k3) r))-2Im(Eo E3sin((ko-k 3)r))

- k2) r))-21m(E1 Esin((ko-k 2) .))
-k 3) r.))-21m(E1 Esin((ko-k 3) 7))

- k3) r))-2Im(E2. Esin((ko- k 3) '))
(2.20)

3The solution to this set of nonlinear equations was determined by Martin Maldovan.
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The set of constraints can now clearly be written as

Re(Eo E*)=0 Im(Eo E*) =c

Re(Eo E*)=O Im(Eo E*)=c

Re(EoE)=O Im(Eo.E 3=c
Re(Eo E) = 0 Im(Elo E) = 

Re(Ei E;)=0 Im(El E;)=c
Re(E2 E3) =0 Im(E E3)=c

Eo E=ao E E= a l E2 .E=a 2 E3 .E=3 a3

ko' E0 =0 kl' E 1 =O k2 E2 =0 k 3 .E 3 =0 (2.21)

This set of nonlinear constraints must now be solved. Since an overall phase does

not affect the final intensity distribution, we can further simplify this by assigning

the value of the imaginary z component of E 3 to be zero. At this point we have 23

unknowns. To have 23 equations, we release the constraint on the modulus of E 3.

The ease of solution strongly depends on the the choice of c and the initial value guess

for the variables. The values of ao - a3 and c are not independent. A possible solution

to this set of nonlinear constraints is given by the complex polarisation vectors:

Eo = {-0.153 - iO.342, 0.520 - i0.470, -0.367 + i0.813}

E1 = {-0.520 - i0.725, 0.373 + iO.039, -0.147 - i0.686}

E2 = {0.667 + i0.215, 0.888 - iO.088, 0.220 - i0.303}

E3 = {-0.209 + iO.362, 0.209 + iO.362, 0.418} (2.22)

The resultant intensity equation, which has the same symmetries as the space group

I4132 is the approximation to the gyroid and is plotted in Fig. 2-3. The equation is
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given by

I( r ) =4.811 - sin (27r/a(y - x)) - sin (27r/a(x + y)) - sin (27r/a(x - z))

- sin (27r/a(z - y)) - sin (27/a(x + z)) - sin (27r/a(y + z)) (2.23)

Figure 2-3: Plot of the level set approximation to the G surface, with a filling fraction
of 0=0.17

2.6 Elimination and addition of Level Set Terms

by Phase Shifts and Multiple Exposure

From a reductionist perspective an interference lithography pattern is simply a sum of

registered gratings. The elimination of the problem of registration is what makes the

formation of patterns via single exposure very practical. However from the perspective

of achieving length scalable structures the idea of multiple exposure is very attractive.

A further motivation behind this lies in the fact that for more complicated level

set equations it might be possible that the constraint equations resulting from the

comparison of the level set equation and the intensity equation are either difficult

to solve, yield only trivial results, or require the utilization of polarisations that are

challenging to achieve from an experimental perspective.
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2.6.1 The scalable P structure

The P structure is a particular case of a cubic bicontinuous structure, in which the

three terms that constitute the level set equation approximating this structure are all

orthogonal to one another. This means that a shift in one of the gratings relative to

the other two only produces a translation of the origin to the extent of the shift. The

P structure can thus be viewed simply as a sum three perpendicular gratings, each

of which can be written separately 4 . Since it is trivial to scale the size of a grating

by changing the angle between the beams it is possible to make the P structure

scalable without resorting to a change in wavelength. Tondiglia et al. [48] created

an orthorhombic P structure in a Polymer Dispersed Liquid Crystal Matrix using a

similar approach.

2.6.2 Diamond as two FCC lattices

Access to the bicontinuous diamond level set structure through a single exposure

technique was outlined in secion 2.5.2 This particular diamond structure could po-

tentially also be achieved via a multiple exposure route. This is instructive vis-a-vis

constructing other structures which are the sum of two or more Bravais lattices. The

diamond lattice can be viewed as two interpenetrating FCC lattices offset from one

another by a translation of {, , 1}. The first term level set equation for the FCC

lattice is

F(111) = cos 27r(x + y + z) + cos 27r(x + y - z)

+ cos 2(x - y + z) + cos 2(-x + y + z) (2.24)

4Clearly there is a consideration to be made from the perspective of the photoresist platform as it
should support the linear addition of multiple exposures. This and other experimental considerations
are examined in Chapter 4.
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the beam parameters in this case are:

ko = 7r/a[201] k 1 = 7r/a[201]

k2 = 7r/a[021] k 3 = 7r/a[021]

E = [0.183,-0.683, 0.707] E 1 = [-0.183,0.683,0.707]

E0 = [-0.683, -0.183,0.707] El = [0.683,0.183,0.707] (2.25)

The first exposure with these parameters fixes the origin. In the subsequent exposure,

we introduce a phase shift in the beams so as to produce the {, -, } translation.

Since we do not shift the beams or the sample, registration is ensured. The phase

shifts required to produce this particular translation are given by

A 0 = 7/2 Aq1 = -7r/2 A2 = -7i Aq3 = 0 (2.26)

If the second exposure is of the same time and intensity as the first then the sum

of the two exposures gives us the bicontinuous diamond level set structure. Such a

multiple exposure scheme based on phase shifts has been demonstrated in 2D and

proposed for 3D by Chelnokov et al.[67]. In the case that the two exposures are

unbalanced with respect to one another then the resultant structure will belong to

the same space group as that of GaAs, viz. group 216. We can also envision accessing

structures such as CaF 2 which is also made up by the sum of interpenetrating FCC

lattices.

2.6.3 The Gyroid structure by elimination of terms

A multiple exposure technique allows us to reduce the number of constraints on the

polarisation by eliminating the undesired terms via the superposition of multiple

exposures. The procedure involves a first exposure with all the constituent beams.

This ensures registration between subsequent exposures. A specific example is useful.

Suppose we want to remove the term cos (27rz/a) from equation 2.10. We now expose

the sample with all the beams blocked except k 0 and k 3. We also introduce a phase
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Figure 2-4: A level set structure having Fm3m symmetry. Note this structure is not
bicontinuous for any volume fraction.

shift of 7r into beam 3. The reverses the sign of the coefficient for the cosine term,

thereby eliminating its presence in the structure. A key side effect is the upward shift

in the dc intensity offset of the pattern. We now show how to create the level set

approximation to the noncentrosymmetric gyroid structure via this multiple exposure

technique.

As before, since I4132 is a noncentrosymmetric group it is necessary to use polar-

isations that are more general than linear polarisation. We achieve this by artificially

breaking each wave into two waves that possess the same wave vector but different

phases and linear polarisation vectors. Depending on the phase difference and the

magnitudes of the polarisations of each set, the resultant wave will be linearly, cir-

cularly or elliptically polarised. In our case to achieve the trigonometric terms that

we desire, we choose the difference between the phases to be 7r/2. The choice of k

vectors remains the same as in section 2.5.3. The choice of k vectors and phases

that we desire is thus given by
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ko = k4 = r/a[III]

k2 = k 6 = /a[l1]

o = 1 = 

kl = k5 = /a[111]

k 3 = k 7 = 7/a[111]

2-=O q0 3 =O

q4 = 7r/2 q5 = 7/2 6 = /2 7 7= /2

The resultant intensity has 13 terms and is given by

I(r ) = const + (Eo

+(Eo

+(E5

+(Eo

+(E1

+(E6 

+(El

+(E2

+(El

+(E3

+(E3
+(E4

+(E0 

E1

E2

E6

E3

E3

E7

E4

E4

E6

E4

E5

E7

+E4

+E4

+ E1

+E4

+-E5

+E2

+Eo

+E2

+Eo

+E 3

E5 )cos (27r/a(x + y))

E6)Cos (2r/a(x + z))

E2)cos (27r/a(y - z))

E 7)cos (27r/a(y + z))

E7)cos (27/a(x - z))

E3)cos (27r/a(x - y))

E 5) sin (2r/a(x + y))

E 6) sin (27r/a(x + z))

E5) sin (27r/a(y - z))

E7) sin (2 7/a(y + z))

E 7) sin (27r/a(x - z))

E6 ) sin (27r/a(x - y))

A multiple-exposure routine for the gyroid is thus as follows: The maximum number of

exposures that we would need to retain the six sine terms and eliminate the six cosine

terms is seven. The first exposure uses all the beams to ensure registration. Subse-

quent exposures involve the elimination of terms. For example, introducing a phase

shift of into the beams 0,1,4 and 5 would eliminate the cosine term cos[27r/a(x + y)]

while retaining the corresponding sine term. The six term-eliminating exposures are

as follows

55

(2.27)

(2.28)



Beams Phase shift of 7

0,1,4,5 1 and 4

0,2,4,6 2 and 4

5,6,1,2 1 and 6

0,3,4,7 3 and 4

1,3,5,7 3 and 5

6,7,2,3 2 and 7

In this manner we retain only terms that we desire in order to obtain a particular

set of symmetries.
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Chapter 3

Exploring for 3D photonic band

gap structures in the 11 FCC space

groups

In the previous chapter we established a technique that allowed us to target space

groups and symmetry elements in structures created via the technique of interference

lithography. The next important question that needs to be addressed is what sym-

metry elements do we wish to target? Clearly this is a very open ended question. In

this chapter we attempt to answer this question for the particular case of photonic

crystals. Towards this end we employ the level set technique to develop a method that

allows us to systematically search for structures that possess photonic band gaps. We

use this technique to explore the 11 FCC space groups and identify a new photonic

band gap structure. This search gives us an important insight into the structural

elements that help support gaps. 1

3.1 Photonic Crystals

As described in section 1.1.1, photonic crystals are the three dimensional analogue of

Fabry-Perot resonators. [1] A more complete mathematical description is obtained

'The primary conclusions of this chapter have been reported in Maldovan et al. [68]
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by examining Maxwell's equations for such systems and viewing these structures as

the optical analogues of semiconductors. In semiconductors the periodic potential of

the atoms prevents the propagation of electrons with certain energies in particular

directions, this range of energies is the energy or band gap. If the potential is large

enough the gap extends in all directions, denoted by a complete band gap. The optical

analogue in Maxwell's equations, of the lattice potential in the Schroedinger equation,

is the dielectric constant. Thus if we consider a material with a periodic variation

in the dielectric constant we could describe the dispersion relationship, w( k), of the

photons propagating in these structures by a band structure, just as in the case of

the electrons. Further, if the dielectric variation is large enough, and the absorption

of light in the crystal sufficiently low, then a photonic band gap (PBG) can arise. A

PBG is a range of frequencies for which light is forbidden to propagate within certain

directions. As in semiconductors a complete PBG is said to exist when the gap

extends in all directions. Typically when one talks about photonic crystals the target

property is the PBG of the structure. A measure of the band gap for a particular

structure is usually taken to be the gap to mid gap ratio.

Wh - WI (3.1)
(3.1)

(Wh + wl)/2

where Wh is the lowest frequency in the upper band and wl is the highest frequency

of the lower band.

3.2 Searching for Band Gaps

3.2.1 Established Structures

Since the primary promise of photonic crystals and their potential applications [69, 70]

is in dealing with wavelengths in the visible and near infra-red, this has meant creating

complicated three dimensionally periodic structures with lengthscales on the order of

a micron or less. This has meant that considerable attention has been drawn towards

the establishment of periodic dielectric structures that in addition to possessing robust
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complete b:)andgaps, can be easily fabricated by some of the techniques described in

section 1.2. A number of theoretical structures that aim to create a happy compromise

between both the requirements have been proposed [71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 47]. To date, the best ("champion") complete photonic bandgap structure is

that of diamond networks having Fd3m symmetry (2-3 gap) with a gap to mid gap

ratio of 0.31 for a volume fraction of 0.19 and a dielectric contrast of 13:1 [81]. The

only other known complete bandgap in a face-centred-cubic (FCC) lattice structure

is that of air spheres in a dielectric matrix (8-9 gap); the so called 'inverse-opal'

structure. This is a much less desirable gap with a gap to mid gap ratio of only

6% at f=0.26 and a dielectric contrast of 13:1 [71]. Importantly, to date, there is no

systematic approach to discovering champion photonic crystal structures. Here we

propose a level-set approach based on crystallography to systematically examine for

photonic bandgap structures and illustrate this approach by applying it to the 11 FCC

groups. This systematic approach gives us an insight into the effects of symmetry and

connectivity. We classify the F-space groups into four fundamental geometries on the

basis of the connectivity of high-symmetry Wyckoff sites. Three of the fundamental

geometries studied display complete bandgaps, including two: the F-RD structure

with Fm3m symmetry and a group 216 structure with F43m symmetry that have not

been reported previously. By using this systematic approach we were able to discover

structures that open gaps between the 2-3, 5-6 and 8-9 bands in the FCC systems.

3.2.2 The Level Set approach to exploring for Photonic Band

Gaps

The existence and characteristics of photonic bandgaps depend on such factors as

the dielectric contrast and volume fractions, as well as the symmetry, connectivity

and geometrical shape of the periodic dielectric structure. Although the nature of

the dependencies is not clearly established, any attempt at a structured approach to

find three-dimensional (3D) photonic crystal designs with complete bandgaps should

incorporate these parameters.
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The symmetries of a periodic structure are characterized by its space group. Our

technique is to ensure a structure with a specified space group through the level-set

approach based on structure factors [66] that was successfully employed in chapter

2. Candidate structures were modelled for each group using a 3D surface given by

f(x,y,z) - t = 0, which defines the interface that separates regions of dissimilar dielectric

properties obtained by equating f to an appropriate sum of structure factor terms.

The band structure is then calculated as a function of the remaining parameters,

such as volume fraction (determined by the parameter t), connectivity and so on.

In particular the level-set approach allows us to easily map photonic crystals with

different connectivities, within a chosen space group, as structure factor terms with

greater hkl index fill and connect Wyckoff sites of greater multiplicity and decreasing

symmetry; varying the hkl values affects the complexity of the connectivity.

The band structure calculations2 were performed by solving Maxwell's equations

numerically. The plane wave method was used in the full vectorial formulation [71].

The photonic structure is characterised by a real positive dielectric constant e(r).

The magnetic permeability is taken assumed equal to one. By combining Maxwell's

equations, the fundamental equation

W(
V x V x E = -(( r )E (3.2)

is obtained. Where V is the curl operator, w is the angular frequency and c is the

speed of light. The dielectric constant and the electric field E are expanded in a sum of

plane waves and substituted into the fundamental equation. A generalized eigenvalue

problem, represented by a Hermitian matrix, is obtained. By using standard LA-

PACK subroutines, the eigenvalues (allowed propagating frequencies) are calculated.

By mapping directions and wavelengths of the electromagnetic waves in the corre-

sponding Brillouin zone, the complete range of allowed and prohibited frequencies

(photonic bandgap) is obtained.

2 The band structure calculations were performed by Martin Maldovan using code written by him.
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In the present calculations we take

for f(x,y,z)-t< 0 network = 13

for f(x, y, z) - t > 0 Ematrix = 1 (3.3)

where is the dielectric constant. The function f(x,y,z) is equated to a structure

factor ternm F(hkl) from the chosen space group. The general structure factor term is

obtained by incorporating all the equivalent positions of the most general point in

the unit cell. This equation possesses all the symmetry elements of the chosen space

group. Certain allowed terms with special hkl values may impart more symmetry than

a general allowed term hkl. If the particular F(hkl) term contains more symmetry than

desired, then another hkl term is included. This addition of terms ensures that the

greatest common symmetries of the terms are passed to the function f(x,y,z). The

bandgaps are determined below as a function of the volume fraction by varying the

parameter t.

The 11 FCC space groups and their numbers are: F23 (196), Fm3 (202), Fd3

(203), F432 (209), F4 132 (210), F43m (216), F43c (219), Fm3m (225), Fm3c (226),

Fd3m (227), Fd3c (228). As an example derivation of an f(x,y,z) function, consider

group 203 (origin choice 2). The general structure factor formula is given by:

n

F(hkl)(x, y, z) = cos [2ir(hxi + kyi + lzi)] + i sin [27r(hxi + kyi + lzi)] (3.4)
i=l

where the presence of only one type of scatterer is assumed (this corresponds to a

two-component dielectric/air structure). For group 203, the general position has 96

equivalent positions, therefore n = 96 in equation 3.4. As there is an inversion centre

at the origin, the structure factor is real. Equation 3.4 can be written for group 203
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as

F(hkl) (x, y, ) =8 cos2 [27(h )] Cos2 [2 )]{cos [27r(hx + ky + z)]
4 4

+ cos [27(hx + ky - lz - (h + k)/4)]

+ cos [27(hx - ky + iz - (I + h)/4)]

+ cos [27r(-hx + ky + lz - (k + )/4)] + cos [27r(hy + kz + Ix]

+ cos [27r(hy + kz - x - (h + k)/4)]

+ cos [27r(hy - kz + Ix - (I + h)/4)]

+ cos [27r(-hy + kz + lx - (k + 1)/4)]

+ cos [27r(hz + kx + y] + cos [27(hz + kx - ly - (h + k)/4)]

+ cos [27r(hz - kx + y - (1 + h)/4)]

+ cos [27(-hz + kx + ly - (k + 1)/4)]} (3.5)

Appropriate hkl values are chosen to guarantee the symmetries of the 203 group. In

general, to keep the genus of the group low, smaller hkl values are used, as structures

with complex topologies tend not to support bandgaps. If the first term with the

desired symmetry has a large hkl value then a lower hkl value is added to diminish

the complexity while retaining the desired space group. Only those combinations of

hkl that are allowed reflections for the space group are examined. The first acceptable

reflection for group 203 is (135) and a suitable lower hkl term is (111). The final

surface defining the dielectric distribution is given by

f(x, y,z) - t = SF(1ll)(x, y,z) + (1 - s)F(135)(x, y,) - t = 0 (3.6)

where s can vary between 0 and 1. Varying the parameter s allows us to smoothly

traverse the intermediate structures between different connectivities[66]. A full explo-

ration of the s and t parameters could allow for possible optimization of a bandgap.

Candidate equations for the remaining 10 FCC space groups can be generated in a

similar marlner. The space groups and the hkl terms that generate the bandgaps
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calculated are listed in Table 3.1.

3.3 Gap Maps and Fundamental Geometries

0.9
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Figure 3-1: Bandgap maps for the FCC structures as a function of volume fraction.
The dielectric contrast is 13:1. Structures that possess bandgaps and share the same
fundamental geometry show gaps in the same region.

Figure 3-1 is a plot of bandgap versus volume fraction for the structures that were

demonstrated to display a complete gap. It is apparent that the gap map has three

regions: 2-3 gap, 5-6 gap and 8-9 gap. A basic set of symmetries defines the structural

connectivity and the essential bandgap. The remaining symmetry elements modify

the bandgap. An examination of the corresponding photonic structures shows that

they possess one of three 'basic' geometries, Figure 3-2. The structural differences
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Space Group Structure Factor Term (hkl) Fm3m occupancy Gap
(basic geometry)

196 (F23) 0.25(F 11) + F111) + F0 + F+ F 24)) 4a + half tetrahedral Yes
sites 8c (diamond)

0.5(F(lll) + F(024))

0.5(F(lll) + F(135))

0.25(F11) + F( I1) + F(135) + F(135)))

4a + all tetrahedral
sites (F-RD)

4a + half tetrahedral
sites 8c (diamond)

4a (FCC)

0.5(F(lll) + F(024))

0.75F(1ll) + 0.25F(o24)

0.25(F(0o2) + F(002)+ F(3 5) + F(135)))

225 (Fmm) F(111)

4a + half tetrahedral
sites 8c (diamond)

4a (FCC )if f<0.17
4a + half tetrahedral
sites (diamond)

4a + all tetrahedral
sites 4b (NaCl)

4a (FCC)

0.5(F(lll) +F(022))

0.5(F(oo2) + F(1 3 5 ))

F(111)

0.5(F(o2 2 ) + F(1 35 ))

4a + all tetrahedral
sites 8c (F-RD)

4a + all octahedral
sites 4b (NaCl)

4a + half tetrahedral
sites 8c (diamond)

4a + all octahedral
sites 4b (NaC1)

Table 3.1: Summary of complete bandgaps and fundamental geometries for the level-
set structures possessing a FCC lattice. The basic geometry of all 11 FCC space
groups is g:iven with reference to occupancy of Wyckoff sites specified by group 225.
f= volume fraction.
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203 (Fd3)

209 (F432)

No
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No

210 (F41 32)

216 (F43m)

219 (F43c)

Yes

Yes
Yes

No

No

226 (Fm3c)

227 (Fd3n)

228 (Fd3c)

Yes

No

Yes

No



can be visualized by placing spheres at the nodes of the networks as shown on the left

structures of Fig. 3-2. The three basic geometries with bandgaps can be described

with reference to space group 225 and the connectivity of the various types of Wyckoff

sites. These are Fm3m with Wyckoff sites 4a (m3m symmetry) occupied (for example,

simple FCC in Fig. 3-2(b).), Fm3m with sites 4a plus half of the tetrahedral sites 8c

(43m symmetry) occupied (for example, diamond, Fig. 3-2a,c), and Fm3m with sites

4a plus all of the tetrahedral sites 8c (43m symmetry) occupied (for example, F-RD,

Fig. 3-2d). Those structures with diamond-like geometry have their 2-3 bandgaps

clustered around the region defined by the bandgap of group 227 (Fig. 3-1.), whereas

the F-RD structure (group 225) has its 8-9 gap in a separate region. The 216 struc-

ture shows both 2-3 and 5-6 gaps and, for certain volume fractions, the coexistence

of both. Below pinch-off (f < 0.17) the 216 structure shows a weak 5-6 gap and

resembles a simple FCC structure. Above pinch-off (f > 0.17) this structure shows

strong 2-3 and 5-6 gaps and resembles the diamond (although it does not possess di-

amond symmetry). This is the first prediction that F-RD and 216 possess a complete

bandgap. None of the structures examined that display the NaCl basic geometries

(Fm3m with sites 4a plus all of the octahedral sites 4b (m3m symmetry) occupied)

have bandgaps. This suggests that a basic connectivity determines the existence of

a photonic gap. Additional structural complexity modifies the bandgap - sometimes

even closing it. With incorporation of higher hkl terms, the level-set approach creates

a surface that connects Wyckoff sites of lower point symmetry. Surfaces generated

with higher hkl values are less likely to have gaps because at higher hkl values the

network topology becomes too complex.

This can be cast in different words by saying that structures that are described by

low order Fourier terms tend to support band gaps. This is true since the structure

factor terms that are used to define particular structures are nothing but Fourier

terms belonging to their respective space groups. The addition of higher hkl terms

implies the addition of higher order Fourier terms. This result has been shown to

give a strong physical insight by viewing the low order Fourier terms as sinusoidal

modulations in the dielectric constant along principal directions in high symmetric
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real-space lattices [82]. Here it is argued that the sinusoidal modulations function as

Bragg gratings, each of which has a band gap associated with it. Thus, if the overlap

between the gaps of the various gratings is sufficient the resultant structure possesses

a complete photonic band gap, barring any closures due to symmetry considerations.

Shorter wavelength dielectric modulations, i.e. along the principal directions of the

reciprocal lattice, of equal modulus were found to support larger gaps.

It is interesting to note that a large number of the already established complete

bandgap structures (for example, spheres on a diamond lattice[72], rods connect-

ing nearest neighbour sites in a diamond lattice[81], the woodpile structures[83],

Yablonovite[73], the MIT structure[78], ABC-type hexagonal structure[79], the D

structure found in self-assembled polymeric structures[80] and the diamond-like struc-

ture made by interference lithography [47]) possess the connectivity of the diamond

network. Their bandgaps are therefore clustered around the region defined by the gap

of group 227. Thus, although the level-set technique will not directly yield specific

structures that are particularly suited for fabrication by specific techniques (for exam-

ple, the woodpile structure by layer-by-layer conventional semiconductor fabrication),

nevertheless, it is important to note that this technique can be used to establish less

specific structures and the important connectivities that support gaps. Once a par-

ticular connectivity has been established to support a gap, specific structures can be

modified using other considerations such as ease of fabrication.

For example, a simplification of the diamond network structure (group 227) re-

sults in a modified version[84] of the woodpile structure[83]. Furthermore, struc-

tures suggested by the sphere model might be accessible by colloidal self-assembly,

whereas structures defined by level-set equations could be accessed through interfer-

ence lithography[60] or block-copolymer self-assembly[36]. Because the body-centred-

cubic (b.c.c.)-based gyroid network structure has been demonstrated to have a com-

plete gap almost as wide as that of diamond[80], other structures with b.c.c. symme-

tries provide an interesting set for further study by this level-set technique.

In summary, the level-set approach allows exploration of space groups to find

structures with complete bandgaps. By using this systematic technique 2-3, 5-6 and
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a

a

a

El

Figure 3-2: Three-dimensional representations of the sphere and level-set models for
the basic FCC lattice geometries. a.) the connected F43m (group 216) structure
(volume fractions greater than 0.17). The structure displays the 2-3 and 5-6 gap.
Note the inequality of the two set of sites (large versus small spheres). b.) The
disconnected F43m (group 216) structure (volume fractions lower than 0.17) This
structure displays a weak 5-6 gap by virtue of being in the low volume fraction limit
of a. It resembles a simple FCC geometry but the objects occupying the normal FCC
4a positions have point symmetry 43m so the space group is F43m (group 216) not
Fm3m (group 225). c.) Diamond geometry (group 227) illustrated with a volume
of 0.27. d.) F-RD geometry having Fm3m (group 225) symmetry with a volume
fraction of 0.35. The geometry of the F-RD resembles that of the inverse-opal
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8-9 gaps were opened in the FCC lattices and we discovered the F-RD and 216

structures have complete bandgaps.
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Chapter 4

Photonic Crystal Templates

through Holographic Lithography

From the previous chapters we have gained insight into the structures that are acces-

sible through the technique of interference lithography and the nature of the elements

that we wish to incorporate into our structures. In this chapter we examine the fab-

rication of some structures that are promising particularly from the point of view of

their photonic band gap properties.1

4.1 Photonic Crystal Templates: Approximations

to the P, G and D

From the perspective of photonic crystals, the target property is clearly the band gap

associated with the structure. Of the various photonic crystal families, the diamond-

based structures have received the most attention due to their outstanding band gap

properties. As was discussed in chapter 3, in order to arrive at structures that support

band gaps we target those that have sinusoidal modulations in real space that are

along reciprocal lattice vectors that are the closest to the origin. Symmetric and short

modulations give rise to large photonic band gap structures [82]. If we apply this idea

1The primary results of this chapter have been reported in [85]
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to the simple cubic, face centered cubic and body centered cubic lattices then we end

up with the level set approximations to the Schwartz P, Diamond and Gyroid surface

families. The reciprocal lattice vectors that are used are the < 100 >, < 111 > and

< 110 > families respectively. The equations describing the structures are, as before,

Fp(x, y, z) = cos 2rx + cos 2wy + cos 27rz + t (4.1)

FD(x, y, z) = sin 27r(x + y + z) + sin 27r(x + y - z)

+ sin 27r(x - y + z) + sin 2(-x + y + z) + t (4.2)

FG(X, y, Z) = sin 27r(x + y) + sin 27r(x - y)

+ sin 27r(y + z) + sin 27r(y - z)

+ sin 27r(x + z) + sin 27r(z - x) + t (4.3)

where the parameter t is used to control the volume fraction of the structure. For

F(x, y, z) --- t > 0, e= high and for F(x, y, z) - t < 0, = 1. These structures display

large and complete band gaps, as shown in Fig. 4-1, with a maximum gap to midgap

ratio of 13%,, 27% and 24 % respectively at a dielectric contrast of 13:1.

Despite displaying large band gaps that are robust with respect to volume fraction

variations, from the point of view of fabrication via four-beam interference lithog-

raphy, however, the diamond and the gyroid structures possess some unfavorable

characteristics. The wavelength of the laser fixes the size of the unit cell. Second,

inspection of the k vectors indicates that the beams are not all launched from the

same side of the substrate. This implies that in order to fabricate these structures,

one would have to use a transparent substrate. This is an important consideration in

the fabrication of photonic crystals given the fact that many of the promising appli-

cations of photonic crystals lie in integrated on chip optical circuits for which silicon

is opaque to visible light.

The P structure, when fabricated by single exposure does not suffer from this

problem. Still, in this scheme the P structure is not scalable. However, as was men-

tioned in section 2.6.1, the P structure can be viewed as a sum of three perpendicular

gratings between which registration is not an issue. Through a careful choice of beams
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Figure 4-1: Gap Maps for the structures with the shortest and symmetrically dis-
tributed sinusoidal modulations in the principal directions for the simple cubic, FCC
and BCC lattices. The dielectric contrast assumed is 13:1.
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and directions we can ensure that that a scalable P is possible with all of the recording

beams launched from the same half-space. In the case of the diamond and gyroid to

negotiate this problem we go back to the idea of sinusoidal modulations along princi-

pal directions and relax the requirement that modulations occur in all the symmetric

directions. This is the same as using fewer terms in the level set equation and results

in structures that have all the recording beams launched from the same half space,

while still retaining band gaps, albeit reduced.

In the case of both the FCC and BCC lattices the highest number of terms we can

retain while still having all the beams launched from the same half space is three. The

equations for these two structures, which we call the "3-FCC" (FD,) and "3-BCC"

(FG') are given by:

FD(x,y,z) = sin 27r(x + y - z) + sin 2(x - y + z) + sin 27r(-x + y + z) + t (4.4)

F' (x, y, ) = sin 2r(y + z) + sin 27r(y - z) + sin 27r(z - x) + t (4.5)

The 3-FCC and 3-BCC structure are shown in Fig. 4-2. Example beam parameters for

single exposure routines for the P, 3-FCC and 3-BCC structures are listed in table 4.1

It is important to note that despite the names and the nature of the approximation

these structures are not FCC and BCC structures respectively but in fact belong

to completely different space groups. They retain gaps because their fundamental

geometries strongly related to the parent diamond and gyroid structures respectively.

Their Gap Maps are shown in Fig 4-3. It is interesting to note that the structure

with fcc translational symmetry possesses two complete band gaps. Structures that

demonstrate multiple resonances could find application in multifrequency amplifiers

and broad band reflectors.
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Table 4.1: Beam parameters for the four beam setup of the three terms simple cubic P
surface, diamond - like and two different beam parameter solutions for the gyroid-like
structures. Note that all
space.

Structure

Simple cubic

P surface

Three term
"Diamond-like"

structure

Three term

"Gyroid-like"

'structure

beams are launched into the photoresist from the same half

k vectors

= r/a[111]

= 7/a[11]
= 7/a[111]
= r/a[11I]

ko
kl
k2
k3

ko

kl
k2
k3

= 7r/a[333]
= 7r/a[511]
= 7r/a[151]
= 7r/a[115]

= 7r/a[111]
= 7/a[111]
= 7/a[111]
= 7r/a[11I]

Example Polarizations
Eoo = 1.00[0, 0.707, -0.707]

Eo1 = 0.632[-0.5, 0.309, -0.809]
Eo2 = 0.874[0.809, 0.5, -0.309]

Eo3 = 2.288[-0.309, 0.809, 0.5]

Eoo = 4.897[0.612, -0.774,0.161]

Eo = 4.000[0.25, -0.905, -0.346]
Eo2 = 5.789[0.346, -0.25, 0.905]

Eo3 = 12.94[0.905,0.346, -0.25]

Eoo= 1.414[0.707, -0.707, 0]

Eo= 1.414[0.707, 0.707, 0]

Eo2 = 1.414[0.707, 0.707, 0]

Eo3 = 2.449[0.408, 0.408, 0.816]

Three term

"G yroid-like"

structure

= r/a[333]

= 7r/a[511]
= r/a[151]

= 7r/a[115]

E oo = 5.657[0.707, -0.707, 0]

Eol = 6.164[0.162,0.162,-0-973]
Eo2 = 6.164[0.162, 0.162,-0.973]

Eo3 = 12.693[0.680,0.680,-0.272]
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(a) The 3-FCC structure. Each node has a con-
nectivity of four.

(b) The 3-BCC structure.
nectivity of three.

Each node has a con-

Figure 4-2: Fabricable 3 term approximations to the diamond and gyroid level set
structures that retain complete band gaps, although of significantly reduced widths.
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Figure 4-3: Gap maps associated with the 3-FCC and 3-BCC structures. The dielec-
tric contrast assumed is 13:1
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4.2 Transferring Interference Patterns into Tem-

plates

The P structure and the 3-FCC pattern were transferred into an epoxy based photore-

sist platform. The patterns were created using the stable, Gaussian TEMoo output

beam from a frequency doubled Nd: YV0 4 laser. The profile of the beam was not

modified any further and the /e2 beam diameter was measured to be 3.4mm. In the

beam setup, intensities were controlled by using a combination of a half wave plate

followed by a polarizing beam splitter. The half wave plate allows us to control the

incoming polarization and hence the relative intensities of the two perpendicularly

polarized output arms of the beam splitter. Appropriate beam directions were en-

sured by adjusting the position of the mirrors with respect to the sample. The final

polarization of each of the beams was controlled by placing a half wave plate in the

path of the concerned beam. This was always the last optic. Care was also taken

to ensure that the reflection from the surface of the mirrors did not introduce any

ellipticity into the linearly polarized light.

A further practical consideration is the preservation of polarisations and beam

directions once the light enters the photoresist. In order to ensure this, a coupling

prism was used whose shape was such that any of the interfering beams would always

enter normal to the prism surface. Prisms were fabricated by filling and sealing hollow

glass prisms with a refractive index fluid (Cargille series A refractive index liquid)

matching that of the photoresist. The final surface was always an index matched glass

(F7 Schott Glass). Optical contact between the photoresist surface and the final prism

surface was ensured by using a random block copolymer silicone oil (Dow-Corning)

with a refractive index matched to the photoresist.

The P structure was fabricated in two orientations - (1) with the [100] direction

perpendicular to the substrate as shown in fig 4-4; this was necessarily a multiple

exposure route, and (2) with the [111] direction perpendicular to the substrate, as

shown in Fig. 4-5. In this case, all the beams were from the same half space and this

routine could be done either by multiple exposure or a single exposure. In both cases
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the structure is scalable.

The 3-FCC structure was achieved by a single exposure. The prism configuration

for this setup is shown in fig. 4-6.

Several photoresist platforms were examined2. The most robust platform was

found to be a modified SU-8 platform [51]. Epon SU-8 is a multifunctional (8-

functional) epoxy derivative of a bisphenol-A Novolac®, which forms glassy films

at room temperature. The formulation includes a photosensitizer, a photoacid gener-

ator or PAG, the epoxy and a contrast enhancing additive, all dissolved in a solvent.

The photosensitizer serves to absorb the incident light. The photoacid generator

combines with the photosensitizer to form a charge transfer complex which results

in the formation of an acid. Exposure to the interference pattern thus results in a

spatial variation of acid in the photoresist. Upon heating the photoresist above its

glass transition temperature, the photoacids initiate ring-opening polymerization re-

actions of the epoxy groups and the acids are regenerated in the subsequent steps.

This results in the formation of crosslinked polymer in the areas of high intensity of

light. The uncrosslinked monomer is then washed away in an appropriate solvent.

One advantage of using an acid catalysed photoresist platform as opposed to one

based on free radical polymerisation lies in the fact that there is no refractive index

change during the exposure step. Such a situation would limit the thickness of the

film that could be patterned due to the fact that in thicker films the beams would

diffract off the structure as it was being written. A workaround for this might be to

use a very fast pulsed laser, whose writing times are shorter than the time scale on

which the polymerisation takes place. This can however complicate the optical setup

since overlapping very short pulses, while maintaining the required angles is not an

easy task.

In our experiments one of three photosensitizers, listed in order of increasing

quantum efficiency, were used - rubrene (Sigma-Aldrich), 2,4,5,7-tetraidoo-6-hydroxy-

3-fluorone ('hv - 535 from Spectra Group), and irgacure - 261 (CIBA-Geigy). The

2 This involved collaborative work with several skilled chemists - Dr. Shu Yang, Dr. Ji-Hyun
Jang and Dr. Lalgudi Natarajan
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(a) Exposure 1

(b) Exposure 2

(c) Exposure 3

Figure 4-4: Prism setup and multiple exposure routine for the [100] configuration
of the P structure. This routine implies the use of a transparent substrate. Beam
directions are indicated by large arrows and electric field vectors by the small side
arrows.
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Figure 4-5: Prism setup for [111] configuration of the P structure.Beam directions
are indicated by large arrows and electric field vectors by the small side arrows.

Figure 4-6: Prism setup for the fabrication of the 3-FCC structure. Beam directiong
are indicated by the large arrows. The polarisation directions are listed in table 4.1
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rubrene was found to dissolve well in the epoxy and did not suffer from inhomogeniety

that was sometimes observed with the hv-535. However thicker films were more

difficult to access using rubrene because of its higher absorption. This resulted in

thinner samples (usually 5m thick) and some chirp across the sample. While the

irgacure gave thicker films it was more difficult to get good structures for patterns with

periodicities under a micron. Furthermore it was used sparingly due to its limited

availability. The photoacid generator used in the case of hv-535 and rubrene was

diaryliodonium hexafluoroantimonate (UVACure 1600 from UCB Radcure). Irgacure

did not require a separate photoacid generator.

The need for a contrast agent3 varied depending on the structure being exposed.

The contrast for a set of beam parameters depends on the extent of overlap of the

polarisations and the variation in the magnitude of the electric fields of the interfering

beams. These factors affect the magnitude of the constant (or d.c. offset) term with

respect to the coefficients of the sinusoidal terms in the intensity equation. Since the

polymerisation reaction is acid catalysed, a base was added to scavenge some of the

acid generated in order to reduce the effect of the d.c offset as per [51]. Depending on

the boiling point of the solvent used for the photoresist either Triethylamine (TEA -

b.p. 85°C) or Tributylamine was used (TBA - b.p.215°C).

The P structure and the 3-FCC structure were transfered into the epoxy based

photoresist. Films spun cast resulting in a final thickness of 30pm. The samples were

prebaked at 950C to remove the solvent. A hot plate was used to prevent skinning4 .

After exposure the samples were postbaked at 650C for 5 minutes. The samples were

then developed in propylene glycol methyl ether acetate (PGMEA) overnight. In

order to prevent the collapse of the structure, due to surface tension forces associ-

ated with the process of drying, supercritical drying was performed. The developer

solution was exchanged with liquid CO2. The liquid CO2 was then converted into its

supercritical state by heating and pressurizing it above the supercritical point (1070

3For an intensity profile I we define contrast as being C = I
4While baking photoresists convection ovens are typically preferred due to the uniformity of

temperature. However in the case of the convection oven the sample gets dried from the top. This
can result in a phenomena called skinning in which the top portion dries while some solvent remains
trapped at the bottom of the film.
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psi and 31°C). The pressure was then gradually released while maintaining the tem-

perature, in order to convert the supercritical CO2 directly into gaseous CO2, thereby

leaving a dry sample, while also ensuring that the sample did not collapse during the

drying process. The samples were then analysed using an SEM. The results for the

3-FCC structure and the P are shown in figure 4-7 and figure 4-8 respectively.

Although the SU-8 platform was found to be the easiest to work with while cre-

ating templates, it presents a problem from the perspective of further processing.

Since SU-8 is a negative photoresist the final template is a highly crosslinked poly-

mer. Removal of the polymer after backfilling thus involves such extreme processing

conditions as burning away the polymer or plasma etching. This can result in dam-

age to the template and also limits the materials that can be used for backfilling.

An alternative to this is to simply use a positive photoresist platform. Towards this

end a commercial photoresist AZ5214 (Clariant Corp.) was employed. However the

thickness of the samples that can be made is limited due to two reasons. First, at

the wavelength used (532 nm) the photoresist is quite absorptive. Second, during the

exposure the beams were found to begin to diffract off the structure that was being

written. For thin samples this does not interfere with the writing process but is an

issue for thicker samples. The resultant structures are shown in Fig. 4-9

4.3 Purposefully Introduced Defects

The fact that the SU-8 platform supports multiple exposure suggests that additional

writing can be done in the same resist. Intentional defects can thus be introduced

by the use of two-photon lithography [86]. Fig. 4-10 shows an SEM of a grid of line

defects written into the 3-FCC pattern. The "defect" pattern was written into the

surface of a film already exposed with the 3-FCC pattern prior to its post-exposure

bake. Each line was written by focussing the beam of the writing laser onto the

surface of the sample and then translating the sample, thereby resulting in a line

of 200um. The two-photon exposure was done using a femtosecond laser (MIRA -

Coherent) with a wavelength of A =760nm at a power of 9mW and a frequency of
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(a) View off the 3 fold axis

(b) Along the 2 fold axis

(c) Cross Sectional View

Figure 4-7: SEM of the three term diamond-like structure fabricated by the exposure
of the four beam interference pattern in SU-8. Three views are shown.
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Figure 4-8: SEI micrograph of the (100) surface of a P surface structure having a
periodicty of 1.1,u. The inset shows an SEM image of a different sample with the P
surface structure having a periodicity of 0.5y1 demonstrating the size scalability of the
technique. The inset diffraction pattern is from another P surface structure showing
the (ll) orientation. Both scale bars shown are 2.

83



aaa a aa aa
(a)
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Figure 4-9: 3-FCC pattern transfered into a positive photoresist - AZ5214. The
terracing present in the structure is caused by the substrate being at a slight angle
to the [111 plane created by the incoming beams. Each terrace represents a different
cut through the unit cell.
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(a)

(b)

Figure 4-10: Introduction of a square grid defect pattern into a 3-FCC structure via
two-photon lithography
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Chapter 5

2-D Interference Lithography

Patterns as Hypersonic Phononic

Crystals

The technique of holographic interference lithography essentially uses the wave na-

ture of light to create periodic patterns. While clearly the primary interest is in

their potential use as photonic crystals it should be obvious that these structures

should lend themselves to studies of other wave based phenomena. One such class of

wave based phenomena are phonons. As described in section 1.1.4, the fundamental

property of' phononic crystals is the existence of special frequency regions, so called

phononic band gaps, where no mechanical wave can propagate. From the point of

view of phononic crystals, the size scale and the large area of the single crystalline

samples produced by interference lithography is of interest. In this chapter we ex-

amine the use of hypersonic phononic crystals to control the propagation of high

frequency pI:honons. We fabricate high quality, single crystalline hypersonic crystals

using interference lithography and show that direct measurement of their phononic

band structure is possible with Brillouin light scattering. 1

1The primary results of this chapter have been reported in [87]
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5.1 Hypersonic Phononic Crystals

Much of the attention since the first suggestion of the existence of phononic band

gaps[7] has been focussed on longer wavelength regimes such as the sonic (102-103

Hz) and ultrasonic (104-106 Hz) regimes [88, 89, 90, 91]. The interest in these regimes

has been partially due to the promise of applications in acoustics, remote sensing and

medical diagnostics, but also because of experimental convenience. Fabricating such

phononic crystals is easier given the lengthscales that are involved - elements of these

crystals are macroscopic objects that can be manually assembled into the relevant

structures [89]. Further, characterizing the band gaps presented by these structures

can be done by simple ultrasonic transmittivity measurements.

Hypersonic crystals (109-1012 Hz) are more difficult to fabricate and characterize

because of their inherently smaller length scale. In the past, there have been very

few investigations of hypersonic crystals. However, such materials influence high

energy phonons in a novel and powerful way, which opens a pathway for exploration

of entirely new phenomena. First, the presence of phononic band gaps perturbs

the phononic density of states, which impacts physical quantities such as thermal

conductivity and heat capacity [92]. Second, since the lattice spacing of hypersonic

crystals is comparable to the wavelength of light, they exhibit both phononic and

photonic band gaps. Acousto-optical interactions result in intriguing effects, such as

optical cooling [93], and shock-wave-mediated light frequency shifts [94].

5.2 Fabrication of 2D Hypersonic Phononic Crys-

tals

2D hypersonic phononic crystals were fabricated using interference lithography and

it was demonstrated that the propagation of high frequency hypersonic phonons can

be controlled by this technique. This was done by the direct measurement of the

phononic band structure via Brillouin light scattering (BLS)2. Numerical calculations

2 BLS measurements were made by Taras Gorishnyy
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were employed to explain the nature of the observed propagation modes3 .

Samples were fabricated using the modified SU-8 platform described in chapter

4. Hv-535 was used as the photosensitizer. 0.25g of hv-535, 0.625g of CD1012, 2.5g

of SU-8 and 1.35/,u of TEA were dissolved in 10g of THF. The solution was spun

cast on pre-cleaned glass at 500 rpm, which after polymerisation gave films that

were 6m thick. The samples were prebaked at 650 C for 30 minutes. The beam

setup consisted of three equal intensity beams which were distributed symmetrically

around, and made an equal angle with, the normal to the substrate. The polarisations

were such that each electric field was perpendicular to the difference of the wave

vectors between the remaining beams. The samples were exposed to a total power

of 1.5W for approximately 1.8s. The samples were then postbaked in a convective

oven at 65cC for half an hour. They were developed overnight in PGMEA. Unlike the

submicron structures described in chapter 4, supercritical CO2 drying was found to be

unnecessary for this size scale. The resultant samples consisted of triangular arrays of

cylindrical holes in an epoxy matrix. The finished sample radius was approximately

2 mm. Two samples were analyzed: sl with a cylinder radius to lattice constant

ratio of r/a=0.1 (4% porosity), and s2 with r/a=0.33 (39% porosity). The lattice

constant for both samples is a=1360 nm. The SEM images are shown in Figs. 5-1(a)

and 5-1(b)., respectively. The normal incidence transmission light diffraction pattern

shown in fig. 5-1(c) confirms single crystallinity and the hexagonal symmetry of the

structure.

5.3 Probing Phononic Modes with Brillouin Light

Scattering

In order to characterize the propagation modes in the two dimensional structures the

technique of Brillouin Light Scattering was used. This technique has been used to

study the acoustic properties of inhomogeneous polycrystalline bulk materials, such

as systems of colloidal particles [95], concentrated ordered solutions of high molecular
3 FEM calculations were done by Martin Maldovan
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(a)

(b)

(c)

Figure 5-1: SEM images of interference
r/a-0.1. (b) s2 with r/a-0.33. (c) laser

lithography patterned samples. (a) sl with
light diffraction pattern.
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weight block copolymers [96, 97] and lithographically patterned polymer nanostruc-

tures [98]. BLS provides a way to characterize elastic waves by measuring the direction

and shift in frequency of inelastically scattered light. The setup employed was a high

resolution, angle-resolved, polarized Brillouin light scattering (BLS) system, whose

measurement geometry is depicted in Fig. 5-2(a). Photons with the wave vector

qi enter the sample, where they are scattered inelastically by thermal phonons, such

that their wave vector becomes _q. A typical intensity profile consists of a very strong

elastic Rayleigh peak at w = 0 and a series of symmetric Brillouin doublets at ±w

that correspond to Stokes and anti-Stokes scattering, depending on whether a phonon

is absorbed or emitted by the scattered light. The polarization of the incident and

scattered light was maintained perpendicular to the scattering plane (s-polarized) by

a pair of polarizers. The orientation of the sample was adjusted in such a way that

the phonon wave vector k always lay in the sample plane, [Fig.5-2(a)]. Increasing

values of k; were probed by scanning along increasing values of the scattering angle 0.

Further, the sample was scanned in only one direction, i.e. the F - M direction, first

by aligning the sample by diffraction and then keeping the orientation angle A, shown

in fig. 5-2(b). constant . The light frequency shift (equal to the phonon frequency)

was measured using a tandem Fabry-Perot interferometer as a spectrum analyzer.

The smallest detectable frequency shift is determined by the wings of the Rayleigh

peak and by the intensity of the Brillouin doublet. In our case, it was roughly 1 GHz

for the stronger glass substrate peaks and 1.5 GHz for the weaker epoxy film peaks.

An example spectrum is shown in fig.5-3(b).

The effect of periodicity on the phonon propagation can be seen by comparing

spectra of the sl sample with that of the unpatterned photoresist film, for the same

value of k (in this case k =0.0051nm- 1 ). Both spectra are shown in fig5-3. Two

peaks are present in the spectrum of the unpatterned sample: a high intensity peak

(1) at w = 4.74 GHz coming from the glass substrate, and a less intense peak (2) at

w = 2.34 G:Hz that corresponds to the longitudinal phonon of the polymer film. The

spectrum of sl is more complex. In addition to the most intense glass peak (1) at

the same frequency, we see three less intense peaks, labeled (2), (3) and (4), coming
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(a)

M
ion

(b)

Figure 5-2: BLS measurement geometry. (a) scattering plane, side view. (b) sample
plane, top view. Only phonons with k vectors essentially in the sample plane are
probed. The dotted line is the Weigner-Seitz cell
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from various bands of the phononic crystal. The frequency of the lowest frequency

longitudinal phonon peak (2) is shifted slightly from w = 2.34 GHz to w = 2.39 GHz,

in comparison with the corresponding peak (2) of the unpatterned film. This shift

can be attributed to the decrease in the effective sound velocity in the porous polymer

structure of sample sl (4% porosity). The two new peaks (3) and (4) correspond to

the propagation states in the higher bands of the phononic crystal. A band diagram

along the ' - M direction is obtained by repeating the measurements for I k I from

0.0005 nm -1 to 0.009 nm -1 .

5.4 Theoretical Analysis and modeling via the Fi-

nite Element Method

Before we examine the experimental w( k) relations it is useful to understand what

we expect to see. To provide an interpretation of the observed modes we calculate

the theoretical band diagrams and and subsequently compare them with the exper-

imental data. The finite element method (FEM), based on the weighted residual

formulation [99], is employed to model the properties of the elastic structures. The

FEM transforms the elastic wave equation

02ui a0- aat2 = V (PC2Vui) + . ( pc + [(p2pc2)V ] (5.1)

into a discrete generalized eigenvalue problem, where iu is the displacement vector

field, p is the density, and ct, cl are the transverse and longitudinal velocities re-

spectively. Due to the periodicity of the structure, the displacement field ui satisfies

Bloch's theorem. The discrete wave equation together with the enforcement of ap-

propriate boundary conditions, allow the use of numerical algorithms to calculate the

fundamental dispersion relation w( k ) for each wave vector k. This finite element ap-

proach has also recently been used successfully in the modeling of the electromagnetic

wave equation [99]. The interior air region is modeled using zero-traction boundary

conditions at the air-material interface [100]. The background was taken to be epoxy
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Figure 5-3: BLS spectrum of the samples at k=0.0051nm-1 . (a) unpatterned epoxy
film on glass substrate. (b) sl film on glass substrate.
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with p=1.19 g/cm3 , ct=1.8 km/s, and cl=3.1 km/s. The values of the sound velocity

were obtained experimentally from the BLS measurement of the unpatterned film.

Figures 5-4(a) and 5-4(b) show the calculated dispersion relationship for in-plane

propagation, where the displacement field u is normal to the axis of the cylinders

for sample sl and s2, respectively.

In order to be able to analyze the scattering data it is important to understand the

nature of the propagation modes in periodic structures. In homogeneous, isotropic

media there are three independent propagation modes: longitudinal (P) waves with

u k and two polarizations (SV (in-plane) and SH (out-of-plane)) of transverse waves

with uL k. Longitudinal and transverse waves are completely independent of each

other and propagate at different velocities cl and ct. In contrast, in phononic crystals

longitudinal and transverse waves are coupled together, such that the propagation

modes are generally mixed waves with u neither completely parallel nor perpendic-

ular to k.

To visualize the differences among various propagation modes we compute and

compare their displacement fields [Figs.5-5(a) and 5-5(b)]. For lower-lying modes, the

modes tend to be more "pure", that is iu is essentially either parallel or perpendicular

to k . We, therefore, use the terms "quasi longitudinal waves" and "quasi transverse

waves" to describe these modes and represent these modes in the theoretical band

diagrams (fig. 5-4) as solid and dashed lines respectively. In contrast, higher band

propagation modes are typically strongly mixed and cannot be approximated as either

longitudinal or transverse waves. These bands are plotted as dotted lines. It can also

be seen that the same band can have a predominantly longitudinal displacement field

for one range of k and a strongly mixed displacement field for another range of k.

This can be understood as an effect of the introduction of periodicity. When there is

no pattern present the modes are straight lines and cross each other, one going say

up from left to right, and the other going up from right to left. As a periodicity is

introduced diffraction starts occurring at these points of intersection, similar to what

one expects to see in semiconductor band diagrams, and the bands bend away from

the crossing point. The upper band is now made up of two portions with different
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Figure 5-4: Theoretical band diagrams for sl and s2 samples. Solid lines represent
quasi longitudinal modes, dashed line quasi transverse modes, dotted lines mixed
modes.
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fundamental origins. If one portion has a fundamentally mixed mode and the other

is a "quasi--mode" then there will be an abrupt change in the nature of the mode for

that band for the reason just explained.

In order to be able to correlate the scattering data with the band diagrams it is

necessary to identify which of the calculated modes are actually measured experimen-

tally. In order to do this the intensities of the light scattered by different modes are

computed. When an elastic wave passes through a material it creates changes in the

electrical permittivity due to elastic deformation. Following the treatment by Landau

[101],

Es 0C (n x (n x G)) (5.2)

where E is the electric field in the scattered wave, n is a unit vector in the scattering

direction, and the components of the vector G are given by

i= J ke dV e (5.3)

Here e is a unit vector parallel to the incident electric field vector Ei, which is

represented by

Ei = e Eoe('q r ) (5.4)

6Sik is the change in the electrical permittivity due to elastic deformation and is

determined by the equation

6Eik = al1Uik + a2llSik (5.5)

where al and a2 are the photoelastic constants of the medium and uik is a strain

tensor specified by

Uik = U + Uk (5.6)
Thxk Oxi

The integration for Eqn.5.3 is done over the scattering volume. In case of a
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Figure 5-5: Displacement field for mixed ( k = 0.0027 nm-1 , w =1.16 GHz) and
quasi-longitudinal ( k =0.0027 nm, =1.79 GHz) modes for si sample.
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plane wave propagating in a homogeneous medium, the integral can be evaluated

analytically. Thus, assuming a homogeneous sample with the scattering geometry

depicted in Fig.5-2(a) it can be noted that: (1) SV modes do not scatter light; (2)

light scattered by SH modes are p-polarized; (3) light scattered by P modes are

s-polarized. Therefore, only the signal from longitudinal phonons will be measured.

In the case of phononic crystals, the displacement fields cannot be represented

by plane waves and the integral for G must be evaluated numerically. However, the

conclusions above still provide useful guidelines for the interpretation of the measured

spectra. In particular, in the present experimental configuration, it is clear that quasi

longitudinal phonons will scatter light significantly, while contributions from the quasi

transverse modes will not be detected. The intensity of the mixed modes peaks will

depend on their field distributions and must be evaluated separately for each mode.

However, their strength will be less than the quasi longitudinal phonons peaks. For

this reason, the low frequency peak (2) in the sl spectrum of fig. 5-3(b) is more

intense than peaks (3) and, especially, (4).

5.5 Phononic Band Diagrams

Figures 5-6(a) and 5-6(b) superpose experimental data points and the theoretical

lines on the same graphs. Only quasi longitudinal modes (solid lines) and strongly

scattering mixed modes (dotted lines) are plotted. The spectrum of sample sl has

contributions from the second quasi longitudinal mode, while the first quasi longi-

tudinal mode is at frequencies too low to be detected. In addition, the signature of

the strongly scattering mixed modes can be seen at higher frequencies. The spec-

trum from sample s2 is very different. Due to the higher porosity, the effective sound

velocity decrease is so prominent that both the first and second quasi longitudinal

modes are below the detection threshold. All the higher modes are mixed. Exper-

imental data points follow the calculated lines well, but in some places along the

theoretical lines expected experimental data points appear missing. This behavior is

not surprising. The scattering from the mixed modes is k dependent and relatively
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Figure 5-6: Experimental and theoretical phononic band diagrams for sl and s2
samples respectively. Closed triangles glass mode, open triangles Bragg mode, closed
circles phononic crystal modes, solid lines
dotted lines theoretical mixed modes.
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weak. Therefore, for some values of k it may be impossible to detect peaks even

after long accumulation times. Finally, there is one mode in both sl and s2 spectra

that does not follow any theoretical line. It is labeled as a "Bragg mode" [97, 96]

and is plotted with open triangles. To speculate on the nature of this mode, it is

worth noting that its velocity is nearly equal to the glass sound velocity, while its

negative dispersion is a characteristic of crystalline samples [97]. In fact, the two

crossing points of these three branches hit the k of the first and the second BZ. These

observations strongly suggest that this mode represents a wave propagating at the

epoxy film--glass substrate interface.

It was thus demonstrated that a combination of interference lithography and Bril-

louin light scattering constitutes a complete experimental tool set for fabrication and

characterization of hypersonic phononic crystals. A variety of single crystalline, de-

fect free structures were created and their phononic band diagrams measured directly.

FE modelling was employed to perform theoretical band structure calculations to ob-

tain a very good agreement with the experimental results using no fitting parameters.

Thus interference lithography could be used in the experimental study of hypersonic

phononic crystals and opens a new pathway towards achieving control over phononic

properties of materials.
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Chapter 6

Biomimetic Microlens Arrays

through Interference Lithography

So far we have primarily exploited the interaction of periodic materials patterned

by interference lithography patterns with wave based phenomena such as light and

mechanical waves. Here we utilize another aspect of the patterns that result from

holographic interference lithography. The structures that are created are porous and

thus could lend themselves to mass transport. In addition, the light interference field

created is spatially varying which can be translated into a spatial variation in density

or height of a material. It has been demonstrated that 2D interference patterns could

be used as lens arrays albeit on the scale of 50-200um[102]. Inspired by a biological

prototype, a highly efficient optical element formed by brittlestars[103], the concepts

of porous structures and lens arrays were combined to create bio-inspired microlens

arrays with integrated pores on the submicron scale1 . The lenses are shown to have

strong focussing abilities and the ability to have light-absorbing liquids transported

in and out of the pores. The light field from the lenses is also modelled by treating

them as simple diffraction limited lenses.

1The primary results of this chapter have been reported in [104]. The bulk of this collaborative
work was done by S. Yang and J. Aizenberg at Bell Labs
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6.1 Biological Microlens Arrays

Natural optical systems, whose hierarchical architecture and hybrid character offer

outstanding optical properties and enable multi-faceted roles [105, 106, 107, 103, 108,

109, 110]. Of specific interest is an example of a biologically produced adaptive op-

tical system comprised of a close-set, nearly hexagonal array of uniform microlenses.

This device occurs in a light-sensitive brittlestar, Ophiocoma wendtii, shown in Fig.

6-1 [103]. The lenses were shown to be involved in photoreception as optical elements

that guide and concentrate light onto photosensitive tissue and offer remarkable fo-

cusing ability, angular selectivity and signal enhancement. An interesting design

feature of this bio-optical structure is the presence of a pore network surrounding the

lenses, which is essential to the diurnal migration of pigment-filled chromatophore

cells [111] i.e. these chromatophores regulate the amount of light reaching the lenses

by extending their pigment filled processes to cover the lens during the day and re-

tracting them into a lateral position during the night. Due to the presence of the pore

network, the brittlestar microlenses can be considered as an adaptive optical device

that exhibits a wide-range transmission tunability achieved by controlled transport of

radiation-absorbing intracellular particles. Other functions of the chromatocyte pig-

ment include diaphragm action, numerical aperture tunability, wavelength selectivity,

minimization of the cross-talk between the lenses, and improved angular selectivity.

6.2 Fabrication of Microlens Arrays with Integrated

Pores via Holographic Interference Lithogra-

phy

The creation of complex and small photonic devices that can mimic the unusual design

of the brittlestar optical elements and their consequent outstanding optical properties,

would require the creation of a structure that combines microlens arrays with the

porous surrounding microfluidic system. The fabrication of such a structure using
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Figure 6-1: Appearance and skeletal structure of ophiocomid brittlestars. a, Light-
indifferent species Ophiocoma pumila shows no colour change from day (left) to night
(right). b, Light-sensitive species 0. wendtii changes colour markedly from day (left)
to night (right). c, Scanning electron micrograph (SEM) of a dorsal arm plate (DAP)
of 0. wendtii cleansed of organic tissue. d, SEM of the cross-section of a fractured
DAP from O. wendtii showing the typical calcitic stereom (S) and the enlarged lens
structures (L) that constitute the peripheral layer. e, SEM of the peripheral layer of
a DAP of C). pumila showing that it lacks the enlarged lens structures. f, SEM of the
peripheral layer of a DAP from 0. wendtii with the enlarged lens structures. g, High-
magnification SEM of the cross-section of an individual lens in 0. wendtii. Red lines
represent the calculated profile of a lens compensated for spherical aberration. The
operational part of the calcitic lens (LO) closely matches the profile of the compensated
lens (bold red lines). The light paths are shown in blue. Figure is reproduced from
[103].
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existing techniques such as inkjet printing[112], melting of patterned photoresists

[113], reactive ion etching of silica and silicon [114], soft-lithography [115], or self-

assembly of monodispersed polymer beads [116] is, however, not straightforward.

Most of these techniques only create lenses without pore structures and their optical

properties are not tunable. Here the marked similarity between 2d structures created

via interference lithography and the lens structures of 0. wendtii.2 are demonstrated.

The lens like action of the interference patterns is demonstrated and also the presence

of the pores present in these structures is exploited to move fluids in a manner similar

to the movement of pigment in the brittle star stereom. Moreover, as discussed in

chapter 2, the symmetry of the resulting structures can be conveniently controlled by

the wavevectors and polarizations of the interfering beams. Prior to this work Hutley

et al. [1021 created microlens arrays using interference beams. In their approach, a

pattern with spherical concave depression regions and "chicken-wire focus" (a quasi-

cylindrical lens) was first generated from interference of laser beams through three

optical lenses. The "chicken-wire focus" was then pattern transferred to a second

surface coated with photoresist. This was followed by resist reflow to create hexagonal

packed microlens arrays, with lens sizes in the range of 50-200Lm, resulting in high

fill factors. While this data has demonstrated the feasibility and versatility of using

multi-beam interference to create lenses, however, attention has not been paid to the

integration of both lenses and pores into a more complex photonic device, nor has

the tunablity of lens optical properties been demonstrated.

The 2d biomimetic lens patterns were created in a manner similar to the procedure

described in chapter 4. The wave vectors were arranged as: k = 27r/a [0.035,0,0.999],

k2 = 27r/a [-0.017,0.03,0.999], k 2 = 2/a [-0.017,-0.03,0.999]. The resist was formu-

lated by dissolving 2 wt% of Irgacure 261 (Ciba Specialty Chemicals) and SU8 in

cyclopentarnone ( 30-50 wt%). In this case, for the size scale of the pattern created,

there was no need for a contrast enhancing agent. The solution was then spin coated

on a precleaned glass substrate followed by a soft bake at 900C to completely remove

the solvent. The film thickness was in the range of 5-15 /am depending on the spin

2 Characterisation of the lens like properties were done by S. Yang at Bell Labs
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speed and resist concentration. Exposure was done at 2W for times between 1-6s

followed by a postexposure bake at 65C for half an hour. The film was developed

in PGMEA for two hours. It was found to be unnecessary to dry the solvent using

supercritical drying.

6.3 Lens Action of 2D Interference Lithography

Patterns

The resultant structures were tested for lens-like properties. As before, the wave

vectors determine the translational symmetry of the structure, while the polarization

vectors are the key to the lens formation and its connectivity. Three polarization con-

figurations were examined. First, the polarizations of each wave were made "parallel"

to each other, i.e. their components were minimized in the direction perpendicular

to k 2- k 3 as shown in 6-2d. A periodic variation of light intensity is generated with

hexagonal symmetry, and the simulated intensity profile 6-2b resembles the shape of

the biological lens array 6-2a. In the other two configurations, shown in fig. 6-3 the

polarization of each wave was set to be perpendicular or parallel to the difference be-

tween the remaining two wave vectors as shown. In this case we obtained a three-fold

connectivity with a very small area of highest intensity, which resulted in lens areas

with very small collection areas. The first configuration was thus seen to have the

most effective lens effect of the three. Within a particular configuration it was found

that when the intensity difference between strongly exposed and adjacent weakly ex-

posed regions is above the threshold, formation of a contour of a lens is introduced.

The lens contour may be amplified by factors, such as the quantum efficiency of pho-

tosensitive molecules (i.e., sensitizers and photoacid generators), the strong nonlinear

relationship between the dose, polymerizability and solubility change of the photore-

sists, as well as the shrinkage of resist film during drying. The lens size (diameter

of 1.5 to 4.5 gim, height of 200 nm to 1.0 nm), shape, symmetry and connectivity

can be controlled by adjusting the beam wave vectors and their polarizations, while
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the pore size and porosity are determined by the laser intensity and exposure time

(porosity of about 10 % to 80 %).

d I
I

I

10O"'

k,

Figure 6-2: Structure of a biological and biomimetic porous microlens arrays. a)
Scanning electron micrograph (SEM) of a brittlestar lens design. Scale bar, 50/u.
b) Calculated light intensity profile from three-beam interference lithography. Beam
wavevectors and polarizations are described in Experimental. c) Corresponding SEM
of a synthetic, biomimetic microlens array with integrated pores. Scale bar, 5. d).
Schematic drawing of the used beam polarizations (shown in double-headed arrows)
viewed from direction to realize the biomimetic lens seen in (c).

The ability of the lens-like structures to focus light was studied by lithographic

experiments, in which a film of a positive-tone photoresist, AZ5209 (from Clariant

Ltd.), was illuminated through a synthetic lens array. A schematic of the experimental

setup is shown in fig. 6-4a. Approximately 1/m thick AZ5209 was spun on a glass
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Figure 6-3: Formation of 2D structures in three-beam interference lithography using
another two different configurations of beam polarizations (shown in double-headed
arrows) viewed from direction. In each panel, the left image shows the calculated
total intensity distribution using the consequent beam polarizations. The brightest
region corresponds to the highest intensity of light. When calculating the intensity
distribution in different beam polarizations, the change in polarization caused by
reflection at the air/photoresist (SU8) interface is taken into account. The right
image is the corresponding scanning electron micrograph (SEM) in experiment. An
enlarged SEM image is inserted in Figure 2a to better demonstrate a small lens. The
scale bar is 5p,.

109

..- 0 -W -
-0* * * Is
', 0*1*0 41
11.0*0 0
.6 A& * Ab. ... - -...

- 00 
·;O ·- 0
11.000 0I'A 0 0



substrate, followed by casting polydimethylsiloxane (PDMS) with different thickness

on top of the resist as a transparent spacer. The lenses attached to glass substrate

were then placed directly on the PDMS spacer for conformal contact. When the

illumination dose was fixed slightly below the sensitivity threshold of the photoresist

(Io) to avoid the exposure through the pores, the photoresist film appeared to be

selectively exposed under each microlens due to their strong focusing activity, showing

hexagonally packed holes 6-4b that closely matched the microlens arrays seen in

Figure 6-2c. The size of the features in the resist layer, a, can be effectively controlled

by placing transparent spacers with different thickness, h, between the lens structure

and the resist film. For example, for the lens diameters of 4.1 Ym, the feature sizes in

the photoresist gradually changed from 3 m to 700 nm near the focal point (Fig.

6-4c. When the illumination dose was set above the lithographic threshold intensity,

under each lens we observed one hole surrounded by another six, which originated

from the pores in the lens arrays.

a I I b_ ___ cI -1_
Glass

PDMS \W \ hW~' ff~ IVE 

-
2.5-

2.0-

1.5-
1.0-
0.5-

0.0O

`km
U: sS, 1_\

I.,

I i AA A -s,\

Photoresist

Figure 6-4: Focusing of light by the microlens array. a) Schematic presentation of
the experiment. b) SEM of features in a positive-tone photoresist exposed through
the lens array near the focal point. Scale bar, 5. c) Dependence of the sizes of the
produced features, a, on the distance between the array and the photoresist film, h.

The light intensity distribution from the lenses was estimated using simple Fourier

optics. The lens was assumed to be diffraction limited at its focus3. The light field is

thus an Airy ring given by the equation:

I = Io(2Jl(kaq/h)) 2 (6.1)
kaql/h

3 this approach was taken on the basis of a useful discussion with J. Walish
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where Io is the peak intensity at that plane, J1 is the First Bessel function, commonly

used in systems with cylindrical symmetry, k is the modulus of the wave vector of

light, a is the radius of the lens, q is the radial distance from the optical axis, and h

is the distance along the optical axis, which is the same as the distance between the

lens array and the photoresist. Since the light falling on the lens has to be conserved,

we normalized the value of Io against the intensity of light falling on the lens. Based

on the experimental data, the focal length of the lens, f, was set at 8m, and the

diameters of the lens and pores were assumed to be 3 and 1.5/im, respectively. Fig.6-

5a shows the calculated light field of the lens from h=f (8/u)m to h=2f (16,um). The

light passing through the lens is focussed with the highest intensity at h=f and q=0.

The peak intensity is Io. The pores were assumed to generate a cylindrical light

profile, whose peak intensity is determined by the illumination dose. The size of the

feature at the focal point can be estimated. Assuming the threshold intensity from

the pores in Fig.6-5b to be the cut off intensity for the recording photoresist, the

radius of the feature resulting on the photoresist will be 0.4[tm (0.8 ,um in diameter).

This is close to the experimental data of 0.7pm in diameter, considering that the

possible inhomogeneities of the lens shape due to the bridges at the pores etc were

not take into consideration. The calculated 3D profiles of the light field generated by

the photon:ask for I < Ith and I > Ith and at different h are shown in Fig.6-5c,d and

e.

Another application of the biomimetic microlens array is based on using the porous

network as a microfluidic system that mimics the pigment movement in the brittlestar

stereom. We studied the possibility of actuating photoactive liquids within the mi-

crolens array. The thin film containing the porous microlens arrays ( 3mm in diam-

eter) was assembled between two copper grids (3.05 mm in diameter, 50 mesh) and

sealed with instant epoxy. Two micropipette tips were carefully glued on both sides

of the of copper grids and light-absorbing liquid was introduced from one side via a

syringe. An adjustable transmission through the lenses (from 100 % to 0 %) was ob-

served depending on the concentration of the dye solution 6-6. These results suggest

that by using different liquids (e.g. with selective refractive index and/or including
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Figure 6-5: Calculated light field profiles generated by the porous microlens array in
a lithographic experiment at different illumination doses and distances. a)Light field
distribution from a single lens for h=f to h=2f b) Cross section of the field produced
by the lens vs. that from the pores for an intensity less than the threshold intensity
of the recording photoresist c)-e) 3D light intensity profiles generated for various
intensities and positions
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dyes that can absorb certain wavelength), a wide range of tunability of the lens op-

tical properties, including varied transmission, numerical aperture and wavelength

selectivity, can be achieved.

The fabrication of microlens arrays with integrated pores reported here is a first

step towards creating and mimicking complex optical devices that are prominent in

biology. The presented optical properties, tunability and application of the synthetic

structures clearly demonstrate that the lessons learned from sophisticated microlens

arrays evolved by brittlestars for successful survival and adaptation may improve

our current capabilities to construct new, adaptive, micro-scale optical devices for

a wide variety of technological applications, including tunable photonic packaging,

miniature optical sensors, biosensors, photolithography, and military optical systems.

The knowledge we gain from fabricating these complex structures will help us create

novel hybrid structures with multi-functionalities.
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t

Light absorbing liquid

b

Figure 6-6: Illustration of the transmission tunability through the lens array, using
controlled transport of light-absorbing liquid in the channels between the lenses. Light
micrographs were recorded in a transmission mode near the focal point: a) without
light-absorbing liquid, b) with the light-absorbing liquid between lenses.
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Chapter 7

Summary and Future Work

7.1 Summary

In this thesis a simple technique for controlling structure via holographic interference

lithography was established and implemented. It is strongly believed that this ap-

proach will serve as a powerful tool in a variety of applications, both scientific as well

as technological. Photonic crystals, phononic crystals and microlenses in particular

have been examined in this thesis.

The fundamental control over resultant structures stems from the application

of symmetry principles to the technique of interference lithography. Here we have

demonstrated access to various space groups including such important structures as

the level set approximations to the Diamond, the Schwartz P structure, the FCC, the

BCC-Wrapped Package and the non centrosymmetric Gyroid structures. The ability

to make 3) structures over a large area, with low defect densities and periodicities

on the sublt scale opens a whole range of opportunities including such diverse areas

as photonic crystals, phononic crystals, drug delivery, microtrusses, tissue scaffolds,

microfluidics and colloidal crystallization.

Given an ability to dial in a set of symmetries into a three dimensional structure

the important question then becomes the choice of elements that will be targeted. We

sought to establish a correlation between structure and photonic band gap properties

by systematically exploring the 11 FCC space groups. This resulted in a technique to
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search for photonic band gap structures. It was found that a fundamental connectivity

caused by simple Fourier elements tended to support gaps. 2-3, 5-6 and 8-9 gaps were

opened in the f.c.c lattices. The F-RD and 216 structures were newly shown to have

complete band gaps.

Since two of the three previously established champion photonic crystal struc-

tures, viz. the Diamond and the Gyroid presented practical fabrication challenges,

approximations to these structures were proposed. A scalable P structure and the

3-FCC structure were fabricated by single and multiple exposure techniques. Both

negative and positive tone photoresist systems were demonstrated. Line defects were

written into the negative tone system using two-photon lithography.

The single crystalline, porous nature of the structures was exploited to examine the

possibility for their use as hypersonic phononic crystals and microfluidic microlenses.

Two dimensional single crystalline patterns were created using interference lithogra-

phy. Their phononic band structure was probed by Brillioun light scattering to yield

a phononic band diagram, which clearly demonstrates the effect of periodicity on the

phononic density of states. The ability to control the density of states at these length

scales holds the potential for control over thermal properties. The two dimensional

structures fabricated in negative photoresist were also tested as microlenses with the

integrated pores acting as microfluidic channels. This combination resulted in a struc-

ture reminiscent to that of the biological species ophiocoma wendtii, which uses such

microlenses and microfluidic channels to sense light and respond with color changes

due to radiation absorbing particles.

7.2 Follow Up Work

The demonstration of these 2D and 3D interference structures is a small step in terms

of the possibilities that are opened up by the technique of interference lithography.

In terms of extending the technique itself an important challenge for the future is

to develop an optical setup that will allow for arbitrary and repeatable control over

the phase of the interfering beams. Such a development would allow us to write
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arbitrary three dimensional structures. Even with the current single exposure four

beam setup there are still several important structures which are worth pursuing.

Examples are the diamond structure, still the holy grail of photonic crystals, the

non centrosymmetric gyroid structure which could have implications, and the BCC-

wrapped package, which has the property of suppporting all angle negative refraction

at a sufficiently high dielectric contrast[117].

Another important front is that of the materials systems used in this method.

Currently the epoxy based SU-8 material system is the most extensively used. It

would be useful to have a material system that can be removed easily during the

templating process while also displaying other properties such as mechanical robust-

ness, the ability to form thick films, and to exhibit a low refractive index and low

absorption profile. The development of a scheme to infiltrate these templates with

an appropriate material is also an important near term goal from the perspective of

several properties including photonic, phononic and mechanical. This could vary from

simple backfilling with an appropriate polymeric material to CVD of high refractive

index semiconductors.

7.3 New Ventures

The periodic structures described in this thesis possess several key properties: they

are single crystalline over large areas, their symmetries can be controlled, and they

are porous and bicontinuous. Each of these features can be exploited. Here a brief

listing is presented of potential avenues of research interest, some of which have been

touched upon in Chapter 1.

* Biological Scaffolds: This was discussed in section 1.1.5. A recurring theme

in biological systems is the need for three dimensional constructs that possess

both mechanical integrity as well as connected pores that would support mass

transport. We could thus envision using these 3d structures as tissue scaffolds,

or drug delivery scaffolds that demonstrate "bulk-erosion" like properties while

still possessing constant release profiles. The single crystalline nature of these
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constructs could also prove useful for basic studies in biology such as studies of

changes in cell growth due to mechanical changes.

* MultiFunctional Microtrusses: The idea of using these 3d structures as mi-

crotrusses has been touched upon in section 1.1.3. Apart from their potentially

intruiging mechanical properties an important additional aspect of these mi-

crotrusses is that they can support mass transport. We could thus potentially

envision using these structures as microtrusses that also afford heat exchange or

mass transport of chemical species across the mechanical barrier they provide.

* Optirnised Composites: Examined in section 1.1.2

* Mixers and Sorting for Microfluidics: The motion of microscopic dielectric ob-

jects can be profoundly affected by the presence of an applied light field. It has

been demonstrated that three dimensional light fields can act as microfluidic

sorters both on the basis of size and refractive index [118]. The ability to control

the symmtries of the applied light fields could have important implications for

this sorting technique. Another potential avenue of interest from the perspec-

tive of microfluidics is that of mixers. The bicontinuous structures can perform

the function of spoilers to promote mixing in microreactors or nanoporous filter

elements[119]

* Templates for Colloidal Crystal Growth: It has been demonstrated that dielec-

tric particles can be trapped and be induced to form colloidal crystals in the

presence of spatially varying light intensities[57]. The results of this thesis could

thus b:e applied to create symmetries that might otherwise be difficult to access

via simple colloidal crystallisation technique.

* Nanoporous Structures: Most of the experimental work in this thesis dealt with

the use of 532nm light to create the periodic patterns. The use of shorter

wavelengths would result in structures with even smaller periodicities, resulting

in feature sizes on the scale of tens of nanometers. The resultant nanoporous
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structures could find application in such fields as catalyst supports and the

study of biological species such as proteins in confined spaces.
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