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Abstract

Time-frequency transforms, including wavelet and wavelet packet transforms, are
generally acknowledged to be useful for studying non-stationary phenomena and, in
particular, have been shown or claimed to be of value in the detection and characteri-
zation of transient signals. In many applications time-frequency transforms are simply
employed as a visual aid to be used for signal display. Although there have been several
studies reported in the literature, there is still considerable work to be done investigat-
ing the utility of wavelet and wavelet packet time-frequency transforms for automatic
transient signal classification. In this paper we contribute to this ongoing investiga-
tion by exploring the feasibility of applying the wavelet packet transform to automatic
detection and classification of a specific set of transient signals in background noise.
In particular, a noncoherent wavelet-packet-based algorithm specific to the detection
and classification of underwater acoustic signals generated by snapping shrimp and
sperm whale clicks is proposed. We develop a systematic feature extraction process
which exploits signal class differences in the wavelet packet transform coefficients. The
wavelet-packet-based features obtained by our method for the biologically generated
underwater acoustic signals yield excellent classification results when used as input for
a neural network and a nearest neighbor rule.
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1 Introduction

Signals possessing non-stationary information are not suited for detection and classification
by traditional Fourier methods. An alternate means of analysis needs to be employed so
that valuable time-frequency information is not lost. The wavelet packet transform is one
such time-frequency analysis tool. This paper examines the feasibility of using the wavelet
packet transform in automatic transient signal classification through the development of
a simple noncoherent feature extraction procedure for biologically generated underwater
acoustic transient signals in ocean noise.

The ability to classify underwater acoustic signals is of great importance to the Navy.
Today, detection and classification, tailored for stationary signals, is done by Naval personnel
who listen to incoming signals while viewing computer generated displays such as time vs.
angle-of-arrival and time vs. frequency. The signal of interest is monitored and the primary
frequencies contained in the signal are noted. An initial guess as to the source is made. In
efforts to confirm or contradict the guess, the Naval officer will, perhaps repeatedly, consult
tables which contain the frequency information on a large range of possible signals.

Transient signals, lasting only a fraction of a second, are of particular concern because
they will typically appear as broadband energy on the frequency display. Thus, the Naval
officer cannot rely on any visual displays for assistance in the classification process. At
present the human observer must be able to detect and classify transient signals by only
listening for them. These brief signals may be missed by the listener. An automatic method
of classification for transient signals would greatly aid in the detection/classification process.

The frequency display which uses standard spectral analysis methods is useful for sta-
tionary signal classification; transient signals are not well matched to these methods. In
particular, Fourier-based methods are ideally suited to the extraction of narrow band signals
whose durations exceed or are at least on the order of the Fourier analysis window length.
That is, Fourier analysis, particularly the short-term Fourier transform (STFT), does an
excellent job of focusing the information for sources of this type, thus, providing features
(spectral amplitudes) perfectly suited to detection and discrimination. The STFT does allow
for some temporal as well as frequency resolution, but it is not well suited for the analysis
of many transient signals and, in particular, to the generation of features for detection and
discrimination.

The STFT may be viewed as a uniform division of the time-frequency space. It is
calculated for consecutive segments of time using a predetermined window length. The
accuracy of the STFT for extracting localized time/frequency information is limited by
the length of this window relative to the duration of the signal. If the window is long in
comparison with the signal duration there will be time averaging of the spectral information
in that window. On the other hand, the window must be long enough so that there is
not excessive frequency distortion of the signal spectrum. The STFT with its non-varying
window is not readily adaptable for capturing signal-specific characteristics.

In contrast, the wavelet packet transform offers a great deal more freedom in dealing with
this time-frequency trade-off. Indeed, the development of wavelet transforms [2,7,8,10,11]



and wavelet packets [1,15] has sparked considerable activity in signal representation and in
transient and non-stationary signal analysis. In this paper we are particularly interested in
the research that has dealt with automatic detection and classification of transients. These
works can roughly be grouped into two categories. One group of methods has focused on
problems in which the classes of transients to be detected are well characterized by prior para-
metric models that identify the distinguishing characteristics of each class. Such methods
generally operate based on coherent processing, i.e. on using wavelets as the basis for detec-
tion procedures that resemble matched filtering. In particular, Friedlander and Porat [5] find
the optimal detector via the generalized likelihood ratio test for three linear time-frequency
transforms of the received signal which is characterized by a signal model and a mismatch
error in additive white Gaussian noise. They examine the performance of their detector with
the short-term Fourier transform, the Gabor transform, and the wavelet transform. Frisch
and Messer [6] also formulate a detector by using the generalized likelihood ratio test for the
wavelet transform coefficients of the received signal model. They restrict their signal model
to an unknown transient with known relative bandwidth and time-bandwidth product. This
assumption greatly reduces the complexity of the detector.

The second set of techniques, into which this research falls, deals with the detection
and classification of transient signal classes that are not well-characterized in terms of prior
models; consequently, somewhat different methods of detection and classification must be
developed. In particular, recent work in the area of underwater acoustic transient classifica-
tion using wavelet related concepts has been done by Lemer, Nicolas, and Legitimus [13] and,
more recently, Desai and Shazeer [3]. Both [13] and [3] employ a wavelet packet transform
as a means of generating features from various classes of underwater acoustic transients for
input to a neural network. The authors of [13] use the energy in the wavelet decomposition of
the transients along with features derived from autoregressive signal models and histograms
of the data. The authors of [3] use the eight signals resulting from the third level of the
wavelet packet decomposition, i.e. each transient signal is separated into eight components,
one corresponding to each of eight equal bandwidth channels. The Fourier transform and
curve length of these eight sequences are used as features.

One characteristic common to both of these efforts is that the choice of the wavelet packet
basis is not considered as part of the feature selection process, consequently, exploitation of
class dependent frequency characteristics are suppressed by using a predetermined wavelet
packet basis. A natural direction extending beyond these efforts is to address the issue of
finding a wavelet-packet-based feature set that offers maximum feature separability due to
class-specific characteristics. Our work explores the utility of the wavelet packet transform
as a tool in the search for features that may be used in the detection and classification of
transient signals in background noise. In particular, we formulate a systematic method of
determining wavelet-packet-based features that exploit class-specific differences of the signals
of interest.

This paper is organized as follows. Section 2 summarizes wavelet packet notation and
establishes the energy mapping of the wavelet packet transform used in this paper. The
Charles Stark Draper Laboratory and the Naval Undersea Warfare Center furnished an



extensive collection of acoustic signals in background noise which allowed for an empirical
study of some typical occurrences of snapping shrimp and whale clicks. These data are
discussed in Section 3. Section 4 details our systematic method for determining wavelet-
packet-based features by the formulation of a wavelet-packet-based feature set for snapping
shrimp and whale clicks. The focus of our method is on the enhancement of class-specific
differences obtained through careful examination of the feature separation attainable from
the wavelet packet decomposition of the transients. Using the features from Section 4 with a
nearest neighbor rule and a neural network we obtain 98% to 99% classification. These test
and results are summarized in Section 5. Other data are analyzed and tested in Section 5.2.
Section 6 offers concluding remarks and a discussion of possible future work.

2 The Wavelet Packet Transform and its Energy Map-
ping

In this section we briefly review the structure of the wavelet packet decomposition (WPD)
that was developed by Coifman and Wickerhauser in [1]. We also introduce the notation
and quantities to be used in the rest of this paper. The WPD, which can be viewed as a
natural extension of the wavelet transform, provides a level by level transformation of the
signal from the time domain to the frequency domain. The top level of the WPD is the
time representation of the signal. As each level of the decomposition is calculated there is a
decrease in temporal resolution and a corresponding increase in frequency resolution.

Using the notation in [1], let A(n) and g(n) be the finite impulse response lowpass and
highpass filters used for the decomposition, where the Daubechies 14-point filters [2] are used
for all the wavelet packet decompositions in this work. Let #(n) denote the original signal
which is of finite length N, where N is a power of 2.

Let Fy and F; be the operators which perform the convolution of z(n) with kh(n) and
g(n), respectively, followed by a decimation by two. For example, let z,(n) and z4(n)
denote the sequences resulting from the lowpass filter-decimation operation and highpass
filter-decimation, respectively. We have

z,(n) = Fo{z(k)} = ;z(k)h@n — k)

2an) = Fifa(k)} = Y a(k)g(2n — ).
k

Due to the decimation, z,(n) and z4(n) each contain half as many samples as z(n). As
Coifman and Wickerhauser do in [1], we also use the s and d notation here because the
lowpass Fp operation may be compared to a sum and the highpass F; operation may be
compared to a difference.

The wavelet decomposition may be calculated using a recursion of these filter-decimation
operations. Figure 1 shows a WPD tree for a signal of length eight. The full WPD is displayed

as a tree with a discrete sequence at every branch. Each branch sequence is referred to as a
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bin vector for the remainder of this paper. The decomposition may be continued down to the
final level where there is only one element in each bin vector. Note that each bin vector is the
result of a linear operation (successive applications of the convolution-decimation operators)
on the original sequence.

An intuitively pleasing way to view the wavelet packet decomposition tree is by displaying
the bins at a given level so that they occur in increasing frequency order from left to right.
The method of decomposition described above does not result in a WPD tree displayed in
this intuitively pleasing manner. Aliasing occurs which exchanges the frequency ordering of
some branches of the tree. A simple swapping of the appropriate bins corrects the problem.
All decomposition trees as well as Figure 1 have been rearranged to reflect the “intuitive”
frequency ordering of bins.

The bin locations within a tree will be represented by the notation b(lc) where a bin is
indexed by two parameters, level, [, and column, ¢. Figure 2 shows each bin of a WPD tree
labeled with the appropriate bin position notation. For example, the notation b(1,1) refers
to the bin at the top level containing the time domain signal. This bin is at level 1 and,
since there is only one column at the top level, column 1.

A few examples will illustrate the display we use for the WPD of a signal and the time-
frequency trade-off inherent in the WPD. Each bin vector of the WPD tree is displayed as
a rectangular intensity plot at its appropriate position in the tree. The magnitude of each
element of a bin vector is displayed with black corresponding to the maximum absolute value
in the tree and white corresponding to zero.

We begin with Figure 3, a signal comprised of two sinusoids. From Figure 3 we see that
as the levels of the WPD tree are traversed, the information becomes more focused. The
lowest level of the tree essentially agrees with the discrete Fourier transform of the signal.
Shown in Figure 4 is a time and frequency localized signal corresponding exactly to one of
the wavelet packet basis functions. Note the focusing of information at bin(5,6) of the tree.
The information is less focused at the top and bottom of the tree, thus, the most compact
or focused representation would be at bin b(5,6) of the WPD tree.

Two points about these examples are worth noting. First, recall that the wavelet trans-
form corresponds to a very particular set of bins, namely those corresponding to successive
lowpass/decimation (Fp) operations followed by a single highpass/decimation (F;) operation.
As pointed out in [1], only certain types of signals are well-focused in these bins. For exam-
ple, the signal in Figure 4 is focused at bin(5,6) which is not part of the ordinary wavelet
decomposition. Second, the principle idea that we wish to exploit in finding useful features
for transient detection and classification is precisely this focusing property, i.e. transients
with different time-frequency characteristics will focus differently. To exploit this property
for signals as in Figure 4 we must use the full wavelet packet transform and not simply the
wavelet transform.




2.1 Energy Mapping of the Wavelet Packet Decomposition Tree.

In detection terms the formation of the wavelet packet transform can be viewed as a coherent
processing step, i.e. each sample of each signal in each bin in the full WPD can be viewed as
the output of a matched filter tuned to a particular basis function. At the top of the WPD
tree these basis functions are simply unit impulses at each successive time instant, and as we
move down the WPD tree the basis functions become more resolved in frequency and more
highly decentralized in time. The matter to be determined, then, is how we use this tree of
coherently processed signals to perform detection. If the signals that we wish to detect are
also described coherently, i.e. as weighted linear combinations of WPD basis functions, then
we can use a fully coherent system in which we simply take as our test statistics the same
weighted linear combinations of the WPD of the received signal. However, in the problems
of interest here, we do not have such a prior model for the signals to be classified, and,
indeed, a fundamental premise is that the variability in these signal classes precludes such a
precise representation. A second premise, however, is that the energy in the WPD for these
signal classes does focus in a robust and useful way. This suggests a second noncoherent
(i-e. energy-based) processing step after the WPD has been performed. Specifically, in this
work we have done a simple energy mapping of the wavelet packet transforms of our data
in order to begin the feature extraction process with a rudimentary exploration of signal
specific characteristics.
Let ey denote the energy of a vector y having N elements. The average energy in y is
1

ey= Y'Y (1)
An example of this energy mapping is shown in Figure 5 for the WPD tree from Figure 1
where a single energy value has been calculated for each bin vector. The formation of one
energy value over an entire bin obviously loses whatever further time resolution there is
within each bin vector. For example, at the top of the WPD we are simply calculating
total average energy, a classic test statistic in noncoherent processing. Clearly, we can trade-
off between fully coherent and fully noncoherent processing by computing several average
energies over smaller windows within each bin vector: windows of length one correspond
to coherent processing and windows equal to bin length to noncoherent processing. Our
intent here, however, is to explore the idea of energy detection in the coherently processed
WPD, and thus we restrict attention to the use of a single energy value for each bin. As our
results show for the application considered in this paper, this restriction still allows us to
achieve excellent performance. In other applications, however, one may wish to use windowed
energies in order to determine robust features for signal classification; the procedure outlined
in this paper is directly applicable in such cases as well.

3 The Data

This paper uses a collection of ocean recordings made available by the Charles Stark Draper

Laboratory and the Naval Undersea Warfare Center (NUWC). The data consists of several
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hours of naturally occurring biologically generated underwater sounds in ambient ocean
noise. The recordings have been lowpass filtered with a cutoff frequency of 5KHz and,
subsequently, sampled at 25KHz. (The Nyquist sampling rate is 10KHz.) The biologically
generated sounds are sperm whale clicks and snapping shrimp and are used to illustrate our
method of feature extraction for classification. A typical whale click will have a duration
of approximately 80 to 120 milliseconds and a single snap of a shrimp will have a duration
on the order of 1 millisecond. In addition to the signals, each record contains portions of
background noise alone. Figure 6 shows excerpts of whale clicks and snapping shrimp in
ambient ocean noise.

A single whale click can be encompassed by a 163.8 millisecond or 4096-sample window
which also holds one to an uncountably large number of snaps. Figure 7 shows three 163.8
millisecond excerpts from the NUWC recordings. We use 75 of these excerpts for the feature
derivation discussed in Section 4 and 240 additional excerpts to run simulations of the
classification algorithms discussed in Section 5.

Using our implementation of Wickerhauser’s algorithm presented in [15] with the Daubechies
14 point wavelet [2], the first six levels of the wavelet packet transform of each of the 75 data
excerpts were calculated. An energy map was calculated for each of these 75 WPD trees.
Each energy map contains 63 bin energies. Figure 8 shows the energy maps of the wavelet
packet transforms of three data excerpts.

This mapping of the WPD trees shows promising clarification of information. At a glance,
one can see a definite difference in the intensity distributions between the three energy maps
shown in the figure. A quantitative analysis of the patterns exhibited by the energy maps is
discussed in the next section.

4 Choice of an Optimum Reduced Parameter Feature
Set

In the formulation of a decision rule, it is desirable to find a feature set which uniquely
represents each class of signals. Typically, the feature set uses a greatly reduced number of
parameters in comparison with the number of samples used to represent the signal. In this
section, a feature set which best separates characteristics specific to each class is derived
from the wavelet packet transforms of the three classes of signals.

4.1 Vector Representation of the Energy Maps

An energy map was found from the WPD of each of the 75 excerpts discussed in Section 3.
For ease of manipulation, each energy map is represented as an energy vector by assembling
the bin energies of an energy map into a column using lexicographic ordering of the bins.
We number the bins from one to 63 and create and energy vector, e, for each of our data
excerpts. The element e; x[b] is the energy from bin number b of the energy map for the k**
signal of class t where t = ¢ (click), n (noise), and s (shrimp).




Next, we create a matrix for each signal class by aligning column vectors of the same
class. We denote the energy matrix by E,

E, = €1 €2 - €M, (2)

where M, represents the number of examples for the given class. Thus, E; is a 63 x M,
matrix, and in our case M, < 63.

4.2 Examination of the Top Six Levels of the Energy Maps

A first step in the analysis of the transients is to quantitatively identify significant features
of all energy maps from a given class. This can be done by looking at the singular value
decomposition [14] (SVD) of the matrices, E;.

E. =UxVT (3)
The 63-element singular vectors, ug, make up the columns of the 63 x 63 orthogonal matrix
U. The first M; columns of U span the column space or range of E;.

U= |uw u - ue (4)

The 63 x M, singular value matrix, ¥, displays the rank in the first M, diagonal elements.
The rank (or effective rank) of E; is equal to the number of non-zero (or non-negligible)
singular values.

K 1
a2
Y = oM, (5)
o 0 --.. 0
0 0 .- 0

The row space and nullspace of E, are defined in the M; x M, matrix, VT. The information
in V7T is not used in the analysis of the energy maps.

For the energy matrices E., E,, and E,, we found that each had a single dominant
singular value. In particular, define the difference ratio, §;, between the largest and second
largest singular values for each class to be

, t =¢ m, s (6)




Table 1: Difference ratio between the largest and second largest singular values of the three
FE; matrices.

Class t o1 X 108 | 0y x 108 | 6,
whale clicks 2221 285 0.87
snapping shrimp 762 79 0.90
background noise 412 43 0.89

and is displayed in Table 1.

These values suggest that there is a single representative energy vector, corresponding to
the first singular vector u, 1, for each class, t, with only a relatively small amount of variation
across class members.

All 63 elements of the primary singular vector for each class are displayed in Figure 9.
Notice that high valued elements for the noise coincide with both the high valued elements
for the snapping shrimp and the whale clicks. The figure also reveals that the high valued
elements for whale clicks differ from the high valued elements for snapping shrimp. Before
continuing the search for a reduced parameter feature vector from the energy maps of the
sample signal data set, the influence of noise may be compensated for.

4.3 Compensating for the Noise

Each bin energy, i.e. each component of the energy vector, e, contains both signal and
noise energies. The energy maps of background noise displayed consistent energy distribution
patterns. An example is seen in the sample energy map of background noise from Figure 8.
This distribution of background noise energy within the energy maps may mask dominant
features that may be useful in distinguishing between the shrimp and clicks. We wish to
normalized each bin energy by an average noise energy so that features may be chosen
without the influence of noise.

Let r denote the portion of the received signal vector that is due to the signal source
alone. Let w denote the portion of the received signal vector that is due to background
noise. The received signal vector, x, may be written as a linear combination of the source




signal and the background noise.
X =r+w (7

Let x; denote the vector at bin b of the WPD of x. We denote the vector at bin b of the
WPD of r and w as r;, and w,, respectively. Because the wavelet packet decomposition is
a linear transform, the bin vector at each bin of the WPD tree can be written as a linear
combination of the bin vector due to the source and the bin vector due to the noise, i.e.

Xp = Ip+ Wp. (8)

In agreement with (1), the energy due to the bin vector x, will be denoted by ex,.
Likewise, the energy in r is denoted by er, and the energy in wy denoted by ew,. Assuming
that the noise is uncorrelated with the signal allows us to write the energy at any bin of
the WPD tree as a linear combination of the energy due to the source and the energy due
to noise.footnoteHere by “uncorrelated” what we are in essence assuming is that the time-
averaged product of the noise and signal components over each bin is zero.

exb = el'b + ewb (g)
Normalization of the bin energy, ex,, by the energy in that bin due to noise alone would
give €x,.

E‘J’.:.e_rb__;_l (10)

Ew, €w,

éx, =
Performing the normalization described in the above paragraphs allows for a source-signal-
energy to noise-energy ratio analysis of the patterns exhibited by the energy maps.

Recall from Section 4.2 that we found an energy vector, e, for each of our data excerpts.
We now wish to find a normalized energy vector, &, for each e;r. Element by element
normalization of e; ) by the average noise energy elements is done by

et,k[b]

ét,k[b] = e [b],

(11)
where the element index is b = 1,...,63, the signal number is k£ = 1,...,M;, and each class is
denoted by t = c, s, n. The average noise energy for bin b of the energy maps from our noise
excerpts is used for the noise energy, €, ove. Element by element (or bin by bin) calculation
of the average noise energy is done by

Cuavell] = Min X enslt) (12)

As discussed in Sections 4.1 and 4.2, we may align these normalized energy vectors into
three matrices and perform singular value decomposition. The effective rank of each of these
matrices was also found to be one so that one singular vector may be used as a representative
energy map for each class. Figure 10 shows all 63 elements of the singular vectors found
from SVD of the noise normalized energy matrices. We see that the high valued elements of
the shrimp singular vector differ from the high valued elements of the whale click singular
vector and that there is no longer high valued elements for noise.
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4.4 Searching the Noise Normalized Energy Maps for a Reduced
Feature Set

In forming a reduced parameter feature set, we look for dominant bin energies that will
give us the best separation between whale clicks and snapping shrimp. We begin by finding
a collection of bins that contain significant information by examination of the components
of the primary singular vectors shown in Figure 10. Let us denote these noise normalized
singular vectors by ti.; (whale clicks) and i, (snapping shrimp).

To make this specific, we have chosen to consider a bin to be significant if the value of its
corresponding element of the primary singular vector lies within 20 percent of the maximum
component of that singular vector.footnotelf the number of bins included in this collection
needs to be increased, the threshold may be lowered, step by step, until the desired number
of bins is chosen. The significant components of @i.; correspond to elements 9, 18 and 19.
The significant components of 1,1 correspond to elements 8 and 17. The two classes have no
dominant bins in common. The bins corresponding to elements 8, 9, 17, 18 and 19 containing
the dominant information are shaded in Figure 11.

Reduction of the feature vector is desirable for the simplification of the decision rule,
therefore, including superfluous information should be avoided. A feature set which contains
a parent bin energy and all of its descendant bin energies may be redundant because any
parent bin vector of the WPD tree can be constructed from its children bin vectors. There-
fore, a feature set that does not incorporate both parent and child energy bins of the energy
map should be considered. Reducing the number of features used for classification will also
minimize the computational complexity of the algorithm because most bins of the WPD tree
will not be used and will, therefore, not be calculated.

Looking at Figure 11, we see that the dominant bins b(4,1) and b(4,2) are parents to the
rest of the dominant bins b(5,2), b(5,3), and b(5,4). Noting the parent child redundancy, it
is reasonable first to see if there is enough feature separation using the energies from only
the dominant parent bins at the fourth level, b(4,1) and b(4,2). These two bins are shaded
in Figure 12. Figure 13 plots the normalized energies from bins b(4,1) and b(4,2) for the
energy maps of our 75 data excerpts. There is excellent separation between the click and
shrimp features.

5 Tests and Results

5.1 Original Data Set

Once a reduced parameter feature set has been derived for a given set of data classes, a
method for detection and classification must be formulated. In testing the utility of the
wavelet-packet-based feature[ll s, we used two pattern recognition techniques that lend
themselves to the classification of signals using a training set. The two different classifica-
tion techniques, the nearest neighbor rule and neural networks, were tested on the biological
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transient data using the wavelet-packet-based features discussed in Section 4. These classi-
fication methods are discussed in greater detail in Learned’s thesis [9].

The nearest neighbor rule, detailed by Duda and Hart in [4], uses as a training set feature
vectors that have been correctly classified. A feature vector is calculated for the unknown
signal. The unknown feature vector is classified with the same label as its nearest neighboring
feature vector from the training set. Euclidean distance is the measure used in determining
separation of feature vectors. The training set comprises a number of sample vectors from
each class. For example, let there be two classes of interest, class a and class . We have
n, sample vectors from class a and n; from class b. We denote the training set of sample
feature vectors as Z = {Za,1, ", Zana, Zb,1 " * * » Zbm, } and the unknown feature vector as z.
The estimation of the class of our unknown feature vector is denoted by ¢(z, Z). We have

t(z,Z) = arg Irltin(mjn 712 ;), (13)

where t = a, b.

The neural network tests were done using the Neuralware software package [12] for build-
ing, training, and analyzing a layered neural network. A back propagation network with a
tanh nonlinearity and the Widrow-Hoff-Delta Rule adaptive weighting algorithm was used in
all tests. The number of levels and adaptive linear nodes (ALN) used for the neural networks
is detailed along with the results for each test.

As mentioned previously, a total of 75 signal segments (consisting of 29 whale clicks, 20
snapping shrimp excerpts, and 26 segments of noise) were used to determine the bin energies
which were to be used as features. These features for this set of 75 examples were then used
to establish the nearest neighbor rule and to train the several neural networks that were
used. Another distinct 240 excerpts from the same overall data set were then used to test
classification performance. Each test was run twice; once with the two-parameter feature set
determined in Section 4.4 and once with an eleven-parameter feature set comprised of the
five bin energies determined in Section 4.4 and six of their adjacent bins.

The nearest neighbor rule algorithm using both the two-parameter and eleven-parameter
feature set resulted in correct classification for 97.92% of the test signals. These results
are summarized in Table 2. Both nearest neighbor rule tests resulted in identical results,
making the same errors. Gaining nothing by adding more features is not surprising because
the analysis done in Section 4 determined that the energies from bins b(4,1) and b(4,2) were
the dominant features necessary in distinguishing among the three classes.

Three neural networks were constructed for tests using two and eleven features. Excellent
results were obtained for all tests. The networks (the number of ALNs in each layer) and their
results are summarized in Table 3. The neural networks did an excellent job; classification
ranged from 98.33% to 99.17%. Here, we see that only a slight gain in performance results
from the addition of the child bins to the two-parameter feature set.

After training a neural network, the weights for the inputs to each ALN may be examined
to see which network inputs were found to be most important in the classification process.
Large weights consistently appeared at the same five inputs of each ALN in the first layer.
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Table 2: Results obtained from the nearest neighbor rule.

Number of Features

11

Overall Classification (%)

97.92%

97.92%

Click Classification (%)

97.87%

97.87%

Shrimp Classification (%)

97.26%

97.26%

Noise Classification (%)

98.63%

98.63%

Table 3: Results obtained from the neural network.

Number of Inputs 2 11 11
Number of ALNs in Layer 1 3 7 7
Number of ALNs in Layer 2 0 0 3
Overall Classification (%) 98.33% | 98.75% | 99.17%
Click Classification (%) 97.87% | 98.44% | 98.44%
Shrimp Classification (%) 98.63% | 98.63% | 100%
Noise Classification (%) 98.63% | 98.63% | 98.63%
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Table 4: The difference ratios of singular values for noise normalized energy matrices that
include the new shrimp data.

1,2 1,3 1,4
Class t Ot Ot2 o3 Oi4 8’ 8y’ £

snapping shrimp | 65.59 | 25.25 | 13.19 | 9.26 | 0.615 | 0.799 | 0.859

whale clicks 124.20 | 25.16 | 16.30 | 10.44 | 0.797 | 0.869 | 0.916

These correspond to the five bins that were determined significant by the analysis done in
Section 4.4.

5.2 Results Including a Second Data Set

Some additional recordings of snapping shrimp that were taken at a different time of day and
in a different region of ocean than the shrimp used in the previous sections were available to
us. Testing these data with both the original two-feature and eleven-feature nearest neighbor
rules and neural networks discussed in the previous section (trained without samples of this
new shrimp data) resulted in a higher level of incorrect classification. For the new data,
the reason for this can be immediately discerned from the cluster distributions shown in
Figure 14. The figure shows the two features (energies from bins b(4,1) and b(4,2)) for
both the new shrimp data and the original training data set. Notice that the bin energies
taken from the new shrimp data records form a cluster to the left of the noise cluster and
are distinctly separated from the bin energies for the first shrimp data set. This suggests
that there is more variability in the bin energy patterns than that found in the first data
set, requiring a richer set of features to capture this behavior. The question is, of course,
whether this can be done in a way that still achieves significant feature separability between
classes.

To explain these issues, 16 excerpts of new shrimp data were appended to the shrimp
matrix and the analysis from Section 4.2 was repeated. The four largest singular values
for snapping shrimp (old and new data together) and whale clicks are shown in Table 4.
We calculate a difference ratio, §,", between the largest and ** largest singular values with
1 =2,3,4 as shown in (14).

1,4 Ot1 — O

t = T (14)

O¢,1
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Note that the second singular value for the shrimp class is a significant fraction of the
largest singular value, thus, confirming that there is indeed more variability in the energy
patterns for snapping shrimp excerpts. What we have done is to expand our set of candidate
features by examining two singular vectors for shrimp. Figure 15 shows the primary singular
vector for whale clicks, the first singular vector for snapping shrimp, and the second singular
vector for snapping shrimp scaled by :—'% This scaling was done to show the relative intensity
of the two shrimp singular vectors. '

We begin the search for a feature set by finding significant elements for each of the three
singular vectors. We consider an element to be significant if its magnitude is within 25%
of the maximum magnitude for that vector. The thirteen significant values found by this
procedure are marked with circles in Figure 15 and correspond to bins at levels four, five
and six of the energy maps. From the whale click singular vector, bins b(4,2), b(5,3), b(5,4),
b(6,6), and b(6,7) are significant. From the first singular vector for snapping shrimp, bins
b(4,1), b(5,2), b(6,3) and b(6,4) are significant. From the second singular vector for snapping
shrimp, bins b(5,2), b(6,4), b(6,8), b(6,9), b(6,24), and b(6,25) are significant. These bins
are shaded in Figure 16—(a).

We wish to have no child-parent redundant bins in our feature set, hence, we note the
following: for whale clicks, b(4,2) is an ancestor to b(5,3), b(5,4), b(6,6), and b(6,7); for
shrimp singular vector 1, b(4,1) is an ancestor to b(5,2), b(6,3) and b(6,4); for shrimp
singular vector 2, b(5,2) is the parent of b(6,4). Using only the ancestor bins, we are left
with seven bin energies in our feature set: b(4,1), b(4,2), b(5,2), b(6,8), b(6,9), b(6,24), and
b(6,25). These seven bins are shaded in Figure 16—(b).

We used the nearest neighbor rule and neural networks to test the utility of these features
for classifying excerpts that include both the old and new data sets. Each pattern recognition
rule was run twice, once with the seven-parameter feature set and once with the thirteen-
parameter feature set.

The results of the nearest neighbor rule are summarized in Table 5. Errors made by
the 13-input nearest neighbor rule are a subset of the errors made by the 7-input nearest
neighbor rule. The nearest neighbor tests using both the 13 and 7 features gave excellent
results ranging from 86.30% to 95.74% correct classification.

We have not presented results for neural networks for this set of experiments because of
serious problems with convergence to local minima. Indeed, one of the benefits of performing
the detailed feature analysis we have described is that it leads to a very small set of features
that provide excellent inter-class separation. This, in turn, allows us to use a very simple
classification rule, namely nearest neighbor, thus avoiding the convergence problems of neural
networks.

6 Concluding Remarks

This work has explored the feasibility of applying the wavelet packet transform to detection
and classification of unknown transient signals in background noise, i.e. the signals are not
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Table 5: Results obtained from the nearest neighbor rule on second data set.

Number of Features 7 13

Overall Classification (%) | 91.06% | 95.03%

Click Classification (%) | 94.68% | 95.74%

Shrimp Classification (%) | 91.11% | 94.81%

Noise Classification (%) | 86.30% | 94.52%

well characterized by a signal model. In this paper we have detailed our systematic feature
extraction process which exploits signal class differences in the wavelet packet transform
coefficients. The wavelet-packet-based features obtained by our method for these biologically
generated underwater acoustic signals yield 86% to 100% correct classification when used as
input for a neural network and a nearest neighbor rule.

The formulation of a wavelet-packet-based feature set explored here combines the coher-
ent processing of the wavelet packet decomposition with noncoherent energy calculations in
each bin. From singular value decomposition of matrices made from the energy maps of
these data, we found that only a very small number of features were necessary to distinguish
among snapping shrimp, whale clicks, and background noise.

We believe that these results are significant not because they provide a definitive algo-
rithm for biological acoustic transients, but rather because they provide convincing evidence
that the wavelet packet transform can be used effectively as the basis for robust feature ex-
traction and automatic identification of transient signals that cannot be well-characterized
by parametric signal models. Obviously, there is much more work that can be done to de-
velop these ideas. First, as the results in the preceding section make clear, the development
of robust classification rules require the availability of data sets that display the full range
of variability present in the signal classes to be distinguished (although, as the results in
Section 5.2 demonstrate, even a considerable level of variability may still be captured with
comparatively small feature sets — a maximum of 13 in this case). Also, as we have pointed
out, a simple extension of the incoherent energy feature calculated for each wavelet packet
bin is to use a set of windowed energies for each bin, thereby enhancing temporal resolution
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and expanding the set of possible features considerably. The results presented here would
seem to indicate that such an extension might lead to only marginal performance improve-
ment for the application considered in this paper, but such enhanced temporal resolution
may be of considerable value in other applications such spread spectrum communication and
active sonar.
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Figure 1: The fully decomposed wavelet packet tree for a signal of length eight.




Figure 2: The WPD tree with index label at each bin in the first four levels.
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Figure 3: The WPD of two sinusoids. (a) A frequency localized signal (b) WPD of signal.
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22




x 10

0 0.5 1 1.5 2 25 3 35 4
4 (a), time (seconds)
x 10
3
2 e

0 0.5 1 1.5 2 2.5 3 3.5 4
(b), time (seconds)

Figure 6: A four second interval of (a) whale clicks and (b) snapping shrimp.
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Figure 7: Some 4096-sample (163.8 ms) excerpts from the NUWC recordings. (a) Whale
Click. (b) Snapping Shrimp. (c) Background Noise.
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Figure 8: Energy maps of the first 6 levels of the wavelet packet transforms of (a) Whale
Click (b) Snapping Shrimp (c) Background Noise.
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Figure 9: Components of the 63-element primary singular vectors. Note that this plot dis-
plays elements of the three primary singular vectors with each vector representing the energy
maps for its class. In other words, this plot is a lexicographical display of the representative
energy bins for the three classes of energy maps.
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Figure 10: Components of the 63-element primary singular vectors for the noise normalized
case.
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Figure 11: The shaded bins of the energy map correspond to the dominant elements of the
primary singular vectors fic; and 1, ;.
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Figure 12: The feature set is composed of the normalized energies from bins b(4,1) and
b(4,2) of the energy map.

29




14 T T T T T T T T
+ +
12r ]
+
10F ¥ -
+
8r i
+
+
6r ]
+
i Ty E
+ A
4r i
X
2r )KX )K)K ?é ¥ i
KR KX KKK

%.5 1 15 2 25 3 35 4 4.5 5
Click + Shrimp* Noise o

Figure 13: Noise normalized energies from bins b(4,1) and b(4,2) of the sample energy maps
that make up the training set. b(4,2) vs b(4,1).
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Figure 14: Noise normalized energies from bins b(4,1) and b(4,2) of the energy maps for
the original data set of snapping shrimp, whale clicks, background noise and the new set of
snapping shrimp.
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Figure 15: The 63 elements of the primary singular vector for whale clicks and the two
primary singular vectors for snapping shrimp.
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Figure 16: The significant bins are shaded. (a) The 13 bins found significant for whale
clicks and all snapping shrimp data. (b) The 7 bins of 13 that do not exhibit parent-child
redundancy.
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