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Abstract
We present a new technique, boundless memory blocks, that automatically eliminates
buffer overflow errors, enabling programs to continue to execute through memory
errors without memory corruption.

Buffer overflow vulnerabilities are caused by programming errors that allow an
attacker to cause the program to write beyond the bounds of an allocated memory
block to corrupt other data structures. The standard way to exploit a buffer overflow
vulnerability involves a request that is too large for the buffer intended to hold it.
The buffer overflow error causes the program to write part of the request beyond the
bounds of the buffer, corrupting the address space of the program and causing the
program to execute injected code contained in the request.

Our boundless memory blocks compiler inserts checks that dynamically detect all
out of bounds accesses. When it detects an out of bounds write, it stores the value
away in a hash. Our compiler can then return the stored value as the result of an out
of bounds read to that address. In the case of uninitialized addresses, our compiler
simply returns a predefined value.

We have acquired several widely used open source applications (Apache, Send-
mail, Pine, Mutt, and Midnight Commander). With standard compilers, all of these
applications are vulnerable to buffer overflow attacks as documented at security track-
ing web sites. Instead, our compiler enables the applications to execute successfully
through buffer overflow attacks to continue to correctly service user requests with-
out security vulnerabilities. We have also found that only one application contains
uninitialized reads, which means that in most cases, the net effect of our compiler is
to (conceptually) give each allocated memory block unbounded size and to eliminate
out of bounds accesses as a programming error.

Thesis Supervisor: Martin C. Rinard
Title: Associate Professor
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Chapter 1

Introduction

Standard programming languages (C, Java, C++) allow programmers to create and

then access memory blocks (such as buffers, objects, structs, or arrays) of a fixed

size. A attempt by the program to use a reference to a block to access memory

outside the block is considered to be a programming error. The meaning of a program

containing such an error varies from language to language. Java implementations, for

example, check all accesses and throw an exception if the program attempts to access

out of bounds data. The ANSI C standard, on the other hand, specifies that the

meaning of a program is undefined if it uses pointer arithmetic or other means to

access data outside of the block boundaries. In practice, most C implementations

do not check for out of bounds accesses, leaving C programs vulnerable to data

structure corruption errors that occur when an out of bounds access to one block

corrupts data stored in another block. Because the effect of these kinds of errors is so

dependent on aspects of the implementation (such as the layout of the data structures

in memory) that are outside of the basic programming model of the language, they

call be extremely difficult to reproduce and eliminate. And because they can corrupt

language implementation structures such as return addresses and function pointers,

they often leave the program vulnerable to buffer overflow attacks, which attackers

can exploit to inject and execute arbitrary code over the network.

In this thesis we present a different approach, boundless memory blocks, to out of

bounds accesses. We generate code that checks all accesses, but instead of allowing

13



out of bounds accesses to corrupt other data structures or responding to out of bounds

accesses by throwing an exception, the generated code takes actions that allow the

program to continue to execute without interruption. Specifically, it stores the values

of out of bounds writes in a hash table indexed under the written address (expressed

as an offset relative to an identifier for the written block). It can then return the

stored value as the result of out of bounds reads to that address. It simply returns

a value from a predefined sequence for out of bounds reads that access uninitialized

addresses.

Conceptually, our technique gives each memory block unbounded size. The initial

memory block size can therefore be seen not as a hard boundary that the programmer

must get; right for the program to execute correctly, but rather as a flexible hint to

the implementation of the amount of memory that the programmer may expect the

program to use in common cases.

We have developed a C compiler that implements boundless memory blocks and

used this compiler to generate code for a collection of widely used server programs

drawn from the open-source Linux community. As documented at security tracking

web sites such as http://www.securityfocus.com and http://www.securiteam.

con, all of these programs have security vulnerabilities related to out of bounds ac-

cesses such as buffer overflow errors. Our results show that the use of boundless

memory blocks makes these programs invulnerable to these security vulnerabilities

and that the overhead associated with using boundless memory blocks is acceptable

in practice.

Note that boundless memory blocks have the potential to introduce a new denial of

service security vulnerability: the possibility that an attacker may be able to produce

an input that will cause the program to generate a very large number of out of bounds

writes and therefore consume all of the available memory. We address this problem by

treating the hash table that stores out of bounds writes as a fixed-size least recently

used (LRU) cache. This bounds the amount of memory that an attacker can cause

out of bounds writes to consume.

This thesis makes the following contributions:

14



* Boundless Memory Blocks: It introduces the concept of using boundless

memory blocks to eliminate problems (security errors, data structure corruption,

premature program termination due to thrown exceptions) currently caused by

fixed-size memory blocks.

* Implementation: It shows how to implement boundless memory blocks in a

compiler that is capable of generating code for unmodified legacy C programs.

* Evaluation: We evaluate how well boundless memory blocks work in practice

by generating versions of widely used open source server programs. Our results

show that boundless memory blocks make these program invulnerable to secu-

rity vulnerabilities (such as buffer overflows) caused by out of bounds memory

accesses and that the overhead of using boundless memory blocks is acceptable

for this set of programs.
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Chapter 2

Example

We start; by presenting a very simple example that illustrates how computations with

boundless memory blocks operate. Figure 2-1 presents a C program that computes

the sum of all positive integers found in an input file. During initialization, the

program allocates an array of size 100. Then, it starts reading the input file, and

whenever it finds a positive integer, it adds it to the array and updates the sum. In

the end, the program prints all the integers in the array, followed by their sum.

Since the program doesn't check whether there are too many positive integers in

the input file, the program will write past the end of the allocated array whenever the

file contains more than 100 positive integers. While in this case the program usually

terminates with a segmentation fault, an attacker may be able to fabricate a request

that corrupts other potential data structures or language implementation structures,

leaving the system vulnerable to executing arbitrary code contained in the malicious

request.

Our boundless memory blocks compiler automatically extends the size of the array

by hashing all out of bounds writes on line 20, and returning them to the correspond-

ing out of bounds reads on lines 21 and 26. However, in order to avoid a denial of

service vulnerability, by allowing an attacker to come up with a file that will consume

all of the available memory, we restrict the size of the hash, by implementing it as a

fixed-size LRU cache. In this case, the compiler will return a predefined value every

time the program tries to read a location which is not in the cache. Note that even

17



in this case, our simple program will compute the sum correctly, although the actual

array will contain some invalid integer values.

Every time an out of bounds read or write is detected, the compiler (optionally)

writes into a log file the type of the out of bounds access (new write, overwrite, read

from the cache, uninitialized read), its address in memory, its location (source file

and line number), the ID of the process that generated it, and the time at which the

out of bounds access was detected. This allows the developer to inspect the invalid

accesses, and to correct the associated errors if desired.

1. #include <stdio.h>

2.

3. #define N 10

4.

5. int main() {

6.

7. FILE *f = fopen("input.txt", r");

8. if (f == NULL) {

9. printf("Error opening input file.\n");

10. return;

11. }
12.

13. int *p; // an array of integers

14. int n = 0; // the actual size of the array

15. int i, aux, sum = 0;

16. p = (int*) malloc(N*sizeof(int));

17.

18. while (fscanf(f, "%d", &aux) != EOF)

19. if (aux > 0) {

20. *(p+n) = aux;

21. sum += *(p+n);

22. n++;

23. }

24.

25. for (i=0; i<n; i++)

26. printf("Integer %d: %d\n", i+1, *(p+i));

27.

28. printf("The sum of the integers in the input file is %d\n", sum);

29.

30. return 0;

31. }

Figure 2-1: A Simple Example

We next present an example extracted from the Mutt mail client discussed in

Section 4.4. Figure 2-2 presents a somewhat simplified version of a procedure from
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Mutt which takes as input a string encoded in the UTF-8 format and returns as

output the same string encoded in modified UTF-7 format. This conversion may

increase the size of the string; the problem is that the procedure fails to allocate

sufficient space in the return string for the worst-case size increase. Specifically, the

procedure assumes a worst-case increase ratio of 2; the actual worst-case ratio is 7/2.

When passed (the very rare) inputs with large increase ratios, the procedure attempts

to write beyond the end of its output array.

With standard compilers, these writes succeed, corrupt the address space, and

the program crashes with a segmentation violation. To eliminate the possibility of

this kind of corruption, researchers have developed safe-C compilers that generate

code that dynamically checks for and intercepts out of bounds accesses. With such

compilers, Mutt exits with an out of bounds access error and does not even start

the user interface. With boundless memory blocks, the program stores the additional

writes away in a hash table, enabling the mail server to correctly translate the string

and continue to execute correctly. Again, the developers are able to inspect the log

file generated by our compiler, and to correct the errors if desired.

These examples illustrate two key aspects of using boundless memory blocks:

* Subtle Errors: To successfully specify a hard limit for each memory block,

the programmer must reason about how all executions of the program can pos-

sibly access memory. The difficulty of performing this reason means that, in

practice, real-world programs often contain subtle memory errors that can be

very difficult to detect by either testing or code inspection, and these errors can

have significant negative consequences for the program and its users.

* Different Aspects of Correctness: The fact that the programmer has failed

to correctly compute the maximum possible size of the memory block or to

check any possible overflows does not mean that the program as a whole is

incorrect. In fact, as these examples illustrate, the rest of the computation can

be completely correct once it is provided with conceptually unbounded memory

blocks.
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static char *utf8_to-utf7 (const char *u8, size-t u81en) {
char *buf, *p;
int ch, int n, i, b = 0, k = 0, base64 = 0;

/* The following line allocates the return string.
The allocated string is too small; instead of
u8len * 2 +1, a safe length would be u8len * 4 + 1 */

p = buf = safemalloc u81en * 2 + 1);

while (u8len) {
unsigned char c = *u8;
if (c < Ox80) ch = c, n = 0;
else if (c < Oxc2) goto bail;
else if (c < OxeO) ch = c & Oxf, n = 1;
else if (c < OxfO) ch = c & OxOf, n = 2;
else if (c < Oxf8) ch = c & Ox07, n = 3;
else if (c < Oxfc) ch = c & Ox03, n = 4;
else if (c < Oxfe) ch = c & OxO1, n = 5;
else goto bail;

u8++, u81en--;
if (n > u8len) goto bail;
for (i = ; i < n; i++) {

if ((u8[i] & OxcO) != Ox80) goto bail;
ch = (ch << 6) I (u8[i] & Ox3f);

}
if (n > 1 && !(ch >> (n * 5 + ))) goto bail;
u8 += n, u81en -=n;

if (ch < Ox20 1[ ch >= Ox7f) {
if (!base64) {

*p++ = '&';
base64 = 1;
b = O;
k = 10;

}
if (ch & -Oxffff) ch = Oxfffe;
*p++ = B64Chars[b I ch >> k];
k -= 6;
for (; k >= ; k -= 6)

*p++ = B64Chars[(ch >> k) & Ox3f];
b = (ch << (-k)) & Ox3f;
k += 16;

} else {
if (base64) {

if (k > 10) *p++ = B64Chars[b];
*p++ = -,;
base64 = 0;

}
*p++ = ch;
if (ch == '&') *p++ = -;

}

if (base64) {
if (k > 10) *p++ = B64Chars[b];
*p++ = , _ .

}

*p++ = '\';
saferealloc ((void **) &buf, p - buf);
return buf;

bail:
safefree ((void **) &buf);
return 0;

}

Figure 2-2: String Encoding Conversion Procedure

20



Chapter 3

Implementation

Recently, several research groups have developed compilers that augment programs

written in unsafe languages such as C with dynamic checks that intercept out of

bounds array accesses and accesses via invalid pointers (we call such a compiler a

safe-C compiler) [3, 37, 23, 14, 28, 15]. These checks use additional information

about the (dynamic) layout of the address space to distinguish illegal accesses from

legal accesses. If the program fails a dynamic check, it terminates after printing an

error message.

Our implementation of boundless memory blocks for legacy C programs builds on

CRED, an existing safe-C compiler [28]. The basic idea behind our implementation is

to modify the generated code so that, instead of terminating the execution, it stores

out of bounds writes in a hash table and implements out of bounds reads by fetching

the stored values from the hash table. There are two primary issues, both of which

relate to the representation of pointers:

* Information Content: Most safe-C compilers change the representation of

pointers to enable the generated code to distinguish in bounds and out of bounds

pointers [23]. Some representations use a single error token to represent all out

of bounds pointers. Such representations are unsuitable for the implementation

of boundless memory blocks since they do not maintain enough information to

enable the generated code to identify the memory block and offset of the out
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of bounds pointer. Our compiler therefore uses a pointer representation that

maintains enough information to retrieve the memory block and offset for each

out of bounds pointer.

* Memory Layout: Some safe-C compilers change the size of the pointer repre-

sentation, which in turn changes the memory layout of the legacy C program.

We decided to build on a safe-C compiler that leaves the memory layout intact,

in part because this enables us to support a larger range of legacy C programs.

Our compiler generates two kinds of code: checking code and continuation code.

The checking code detects out of bounds accesses; the continuation code accesses the

hash table and executes when the checking code detects an out of bounds access.

3.1 Checking Code

Our implementation uses a checking scheme originally developed by Jones and Kelly [15]

and then significantly enhanced by Ruwase and Lam [28]. The scheme is currently

implemented as a modification to the GNU C compiler (gcc). Jones and Kelly's

scheme maintains a table that maps locations to data units (each struct, array, and

variable is a data unit). It uses this table to track intended data units and distinguish

in-bounds from out-of-bounds pointers as follows:

* Base Case: A base pointer is the address of an array, struct or variable allo-

cated on the stack or heap, or the value returned by malloc. All base pointers

are in bounds. The intended data unit of the base pointer is the corresponding

array, struct, variable, or allocated block of memory to which it refers.

* Pointer Arithmetic: All pointer arithmetic expressions contain a starting

pointer (for example, a pointer variable or the name of a statically allocated

array) and an offset. We say that the value of the expression is derived from the

starting pointer. A derived pointer is in bounds if and only if the correspond-

ing starting pointer is in bounds and the derived pointer points into the same
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data unit as the starting pointer. Regardless of where the starting and derived

pointers point, they have the same intended data unit.

* Pointer Variables: A pointer variable is in bounds if and only if it was assigned

to an in-bounds pointer. It has the same intended data unit as the pointer to

which it was assigned.

Jones and Kelly distinguish a valid out-of-bounds pointer, which points to the next

byte after its intended data unit, from an invalid out-of-bounds pointer, which points

to some other address not in its intended data unit. They implement this distinction

by padding each data item with an extra byte. A valid out-of-bounds pointer points to

this extra byte; all invalid out-of-bounds pointers have the value ILLEGAL (-2). This

distinction supports code that uses valid out-of-bounds pointers in the termination

condition of loops that use pointer arithmetic to scan arrays. Finally, Jones and

Kelly instrument the code to check the status of each pointer before it dereferences

it; attempting to dereference an out-of-bounds pointer causes the program to halt

with an error.

Jones and Kelly's scheme does not support programs that first use pointer arith-

metic to obtain a pointer to a location past the end of the intended data unit, then

use pointer arithmetic again to jump back into the intended data unit and access

data stored in this data unit. While the behavior of programs that do this is un-

defined according to the ANSI C standard, in practice many C programs use this

technique [28]. Ruwase and Lam's extension uses an out-of-bounds objects (OBs) to

support such behavior [28].

As in standard C compilation, in-bounds pointers refer directly into their intended

data unit. Whenever the program computes an out-of-bounds pointer, Ruwase and

Lam's enhancement generates an OOB object that contains the starting address of

the intended data unit and the offset from the start of that data unit. Instead of

pointing off to some arbitrary memory location outside of the intended data unit

or containing the value ILLEGAL (-2), the pointer points to the OOB object. The

generated code checks pointer dereferences for the presence of OOB objects and uses
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this mechanism to halt the program if it attempts to dereference an out-of-bounds

pointer. The generated code also uses OOB objects to precisely track data unit

offsets and appropriately translate pointers derived from out-of-bounds pointers back

into the in-bounds pointer representation if the new pointer jumps back inside the

intended data unit. In practice, this enhancement significantly increases the range

of programs that can execute without terminating because of a failed memory error

check [28]. This extension also has the crucial property that, unlike the Jones and

Kelly scheme, it maintains enough information to determine the memory block and

offset for each out of bounds pointer.

3.2 Continuation Code

Our implementation of the write continuation code stores the written value in a hash

table indexed under the memory block and offset of the write. For out of bounds reads

it looks up the accessed memory block and offset and returns the stored value if it is

present in the hash table. If there is no indexed value, the continuation code redirects

the read to a preallocated buffer of values. From the five open source applications

in our test suite, only Midnight Commander contains reads that were not previously

stored in the hash. For this application, we experimented with the following four

patterns of preallocated values:

1. A sequence that contains only zeroes.

2. A sequence that contains zeroes on even positions and ones on odd positions.

3. A sequence of pseudo-random values in the interval from 0 to 255

4. A sequence which contains zeroes on even positions, ones on odd positions which

are divisible by 3, and a sequence which iterates through all integers from 0 to

255 on the other positions.

On our standard usage workload, Midnight Commander executes successfully us-

ing any of the four patterns described above. However, since zero and one are by far
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the most common values in computer programs [1], and since sometimes these man-

ufactured values are used to determine loop conditions (and cycling through small

integers increases the chance of having the computation hit upon a value that will

exit the loop), we decided to use the fourth pattern during our experiments.

To avoid memory leaks, it is necessary to manage the memory used to store out

of bounds writes in the hash table. Our implementation devotes a fixed amount of

memory to the hash table, in effect turning the hash table into a cache of out of

bounds writes. We use a least recently used replacement policy. It is possible for

this policy to lead to a situation in which an out of bounds read attempts to access

a discarded write entry. Our experimental results show that the distance (measured

in out of bounds memory accesses) between successive accesses to the same entry in

the hash table is relatively small and that our set of applications never attempts to

access a discarded write entry. We chose to use a fixed size cache (instead of some

other data structure that attempts to store all out of bounds writes until the program

deallocates the corresponding memory blocks) to eliminate the possibility of denial of

service attacks that cause the program to exhaust the available memory by generating

and storing a very large number of writes.

Our basic philosophy views out of bounds accesses not as errors but as normal,

although uncommon, events in the execution of the program. We acknowledge, how-

ever, that programmers may wish to be informed of out of bounds accesses so that

they can increase the size of the accessed memory block or change the program to

eliminate the out of bounds accesses. Our compiler can therefore optionally augment

the generated code to produce a log that identifies each out of bounds access. Each

entry in the log file contains the type of the out of bounds access (new write, over-

write, read from the cache, uninitialized read), its address in memory, its location

(source file and line number), the ID of the process that generated it, and the time at

which the out of bounds access was detected. Programmers can use this log to locate

and eliminate out of bounds accesses if desired.
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Chapter 4

Experience

We implemented a compiler that generates code for boundless memory blocks and

obtained several widely-used open-source programs with out of bounds memory ac-

cesses. Many of these programs are key components of the Linux-based open-source

interactive computing environment; many of the out of bounds accesses in these pro-

grams correspond to exploitable buffer overflow security vulnerabilities.

4.1 Methodology

We evaluate the behavior of three different versions of each program: the Standard

version compiled with a standard C compiler (this version is vulnerable to any out

of bounds accesses that the program may contain), the Check version compiled with

the CRED safe-C compiler [28] (this version terminates the program with an error

message at the first out of bounds access), and the Boundless version compiled with

our compiler (this compiler generates code to store out of bounds writes in a hash

table and return the values for corresponding out of bounds reads). We evaluate three

aspects of each program's behavior:

* Security and Resilience: We choose a workload that contains an input that

triggers known out of bounds memory accesses; this input typically exploits

a security vulnerability as documented by vulnerability-tracking organizations

such as Security Focus [30] and SecuriTeam [29]. We observe the behavior of
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the different versions on this workload, focusing on how the different programs

execute after the execution of the out of bounds accesses.

* Performance: We chose a workload that both the Standard and Boundless

versions can execute successfully (the memory errors in some programs com-

pletely disable the Check version). We use this workload to measure the request

processing time, or the time required for each version to process representative

requests. We obtain this time by instrumenting the program to record the time

when it starts processing the request and the time when it stops processing the

request, then subtracting the start time from the stop time.

* Standard Usage: When possible, we deploy the Boundless version of each pro-

gram as part of our normal computational environment. During this deployment

we present the program with a workload intended to simulate standard usage;

we also ensure that the workload contains attacks that trigger out of bounds

accesses in each program. We focus on the acceptability of the continued exe-

cution of the Boundless version of the deployed program.

We ran all the programs on a Dell workstation with two 2.8 GHz Pentium 4

processors, 2 GBytes of RAM, and running Red Hat 8.0 Linux.

4.2 Sendmail

Sendmail is the standard mail transfer agent for Linux and other Unix systems [33]. It

is typically configured to run as a daemon which creates a new process to service each

new mail transfer connection. This process executes a simple command language that

allows the remote agent to transfer email messages to the Sendmail server, which may

deliver the messages to local users or (if necessary) forward some or all of the messages

on to other Sendmail servers. Versions of Sendmail earlier than 8.11.7 and 8.12.9 (8.11

and 8.12 are separate development threads) have a memory error vulnerability which

is triggered when a remote attacker sends a carefully crafted email message through

the Sendmail daemon [32]. When Sendmail processes the message, the memory error
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causes it to execute the injected code in the message. The injected code executes

with the same permissions as the Sendmail server (typically root).

4.2.1 Security and Resilience

We worked with Sendmail version 8.11.6. With Standard compilation, we were able

to launch an attack that exploits the memory error to provide the attacker with a

root shell. The Check version exits with a memory error during initialization and fails

to operate at all. The Boundless version is not vulnerable to the attack - when sent

the attack message, the process servicing the remote connection does not provide the

attacker with a shell (root or otherwise). Instead, it executes through the memory

error triggered by the attack to continue to successfully process subsequent Sendmail

commands. We configured one version of the attack to address mail to a legitimate

user; in this case the Boundless version of Sendmail delivers the message to that

user (the message contains the injected code which would execute if the attack had

succeeded).

4.2.2 Performance

Table 4.1 presents the request processing times for the Standard and Boundless ver-

sions of Sendmail. The Receive Small request receives a message whose body is 4

bytes long; the Send Small request sends the same message. The Receive Large re-

quest receives a message whose body is 4 KB long; the Send Large request sends the

same message. We performed each request ten times and report the mean and the

standard deviation of the request processing times.

Table 4.1: Request Processing Time for Sendmail (ms)
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Request Standard Boundless Slowdown
Receive Small 230 ± 7.47% 803 ± 4.61% 3.49
Receive Large 230 i 19.29% 845 i 3.06% 2.82
Send Small 23.0 i 3.57% 88.0 ± 1.78% 3.82
Send Large 23.8 3.00% 90.5 i 0.60% 3.80



4.2.3 Standard Usage

For our standard usage workload, we installed the Boundless version of Sendmail

on one of our machines and we used it to process a set of one thousand messages,

composed of 960 valid messages and 40 attack messages (we sent one attack message

before every 24 valid messages). On this workload, Sendmail successfully executes

through the memory errors and correctly processes all the messages.

Our memory error logs indicate that Sendmail generates a steady stream of mem-

ory errors during its normal execution. In particular, every time the Sendmail daemon

wakes up to check for work, it generates a flurry of memory errors. We logged 12,056

out of bounds memory accesses. All of the out of bounds read accesses retrieved

values which had been previously stored in the hash table. Table 4.2 presents the

different types of out of bounds accesses generated by Sendmail for our workload.

Table 4.2: Out of Bounds Accesses in Sendmail

Out of bounds accesses 12,056
Out of bounds reads1 12,052
Out of bounds reads from hash 12,052
Out of bounds uninitialized reads 0
Out of bounds writes 2 4
New out of bounds writes in hash 4
Out of bounds overwrites in hash 0

4.3 Pine

Pine is a widely used mail user agent (MUA) that is distributed with the Linux

operating system [27]. Pine allows users to read mail, fetch mail from an IMAP

server, compose and forward mail messages, and perform other email-related tasks.

We use Pine 4.44, which is distributed with Red Hat Linux version 8.0. This version

of Pine has out of bounds accesses associated with a failure to correctly parse certain

2By 'reads' we denote those memory accesses which do not change the contents of the accessed
memory location.

2By 'writes' we denote those memory accesses which change the contents of the accessed memory
location.
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legal From fields; by sending a user an email message with a problematic From field,

it is possible for a remote attacker to exploit this vulnerability to execute arbitrary

code on the user's machine [26].

4.3.1 Security and Resilience

Our security and resilience workload contains an email message with a From field that

triggers this memory error. This workload causes the Standard version to corrupt

its heap and abort. The Check version detects the memory error and terminates the

computation with an error message identifying the error. With both of these versions,

the user is unable to use Pine to read mail because Pine aborts or terminates during

initialization as the mail file is loaded and before the user has a chance to interact

with the program. The user must manually eliminate the From field from the mail

file (using some other mail reader or file editor) before he or she can use Pine. While

the Check version protects the user against injected code attacks, it prevents the user

from using Pine to read mail as long as the mail file contains the problematic From

field.

The Boundless version, on the other hand, continues to execute through the out

of bounds accesses to enable the user to process their mail. This version processed

all of our workloads without errors.

4.3.2 Performance

Figure 4.3 presents the request processing time for the Standard and Boundless ver-

sions of Pine. The Read request displays a selected email message, the Compose

request brings up the user interface to compose an email message, and the Move

request moves a message from one folder to another. We performed each request

five times and report the mean and the standard deviation of the request processing

times.

As these numbers indicate, the Boundless version is substantially slower than the

Standard version for the Compose and the Move requests. However, because Pine
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Table 4.3: Request Processing Time for Pine (ms)

Request Standard Boundless Slowdown
Read 0.419 ± 1.88% 2.70 + 0.55% 6.46
Compose 0.897 + 1.35% 7.59 + 0.41% 8.47
Move 1.44 i 9.37% 1.86 ± 4.81% 1.29

is an interactive program, its performance is acceptable as long as it feels responsive

to its users. Assuming a pause perceptibility threshold of 100 milliseconds for this

kind of interactive program [6], it is clear that the application of boundless memory

blocks should not degrade the program's interactive feel. Our subjective experience

confirms this expectation: all pause times are imperceptible for all versions.

4.3.3 Standard Usage

For our standard usage workload, we used the Boundless version of Pine intensively for

one hour to read e-mail, reply to e-mails, forward e-mails, and manage e-mail folders.

To test Pine's ability to successfully execute through errors, we also periodically sent

ourselves an email that triggered the memory error discussed above in Section 4.3.1.

We configured this version of Pine to generate a memory error log file; during this

time we also observed several memory errors caused by errors other than the security

vulnerability discussed above.

Table 4.4: Out of Bounds Accesses in Pine

Out of bounds accesses 129
Out of bounds reads 38
Out of bounds reads from hash 38
Out of bounds uninitialized reads 0
Out of bounds writes 91
New out of bounds writes in hash 91
Out of bounds overwrites in hash 0

During this usage period, the Boundless version executed successfully through all

errors to perform all requests flawlessly.3 We logged 129 out of bounds accesses. Of

3These memory errors make the Check version unusable for reading remote mail files -it exits

32



these out of bounds accesses, 91 modified the accessed memory location and 38 did

not modify the accessed location. All of these latter 38 accesses accessed locations

previously stored in the hash table. Table 4.4 presents the different types of out of

bounds accesses generated by Pine for our workload.

4.4 Mutt

Mutt is a customizable, text-based mail user agent that is widely used in the Unix

system administration community [22]. It is descended from ELM [10] and supports a

variety of features including email threading and correct NFS mail spool locking. We

used Mutt version 1.4. As described at [21] and discussed in Section 2, this version

is vulnerable to an attack that exploits a memory error in the conversion from UTF-

8 to UTF-7 string formats. We were able to develop an attack that exploited this

vulnerability. It is possible for a remote IMAP server to use this attack to crash Mutt;

it may also be possible for the IMAP server to exploit the vulnerability to inject and

execute arbitrary code.

4.4.1 Security and Resilience

We configured our security and resilience workload to exploit the security vulnera-

bility described above. On this workload, the Standard version of Mutt exits with a

segmentation fault before the user interface comes up; the Check version exits with a

memory error before the user interface comes up. The memory error is triggered by a

carefully crafted mail folder name; when the Boundless version executes, it generates

an error message indicating that the mail folder does not exist, then continues to

execute to allow the user to successfully process mail from other folders.

whenever it attempts to access a remote mail file. It can, however, successfully process local mail
files as long as they do not contain a From field that triggers the memory error.
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4.4.2 Performance

Figure 4.5 presents the request processing time for the Standard and Boundless ver-

sions of Mutt. The Read request reads a selected email message and the Move request

moves a message from one folder to another. We performed each request five times

and report the mean request processing time.

Table 4.5: Request Processing Time for Mutt (s)

Request Standard Boundless Slowdown
Read 0.80 4- 0.78% 1.65 ± 0.87% 1.25
Move 7.40 ± 4.53% 9.29 ± 1.16% 2.06

Because Mutt is an interactive program, its performance is acceptable as long

as it feels responsive to its users. These performance results make it clear that the

application of boundless computing to this program should not degrade its interac-

tive feel. Our subjective experience confirms this expectation: all pause times are

imperceptible for both the Standard and Boundless versions.

Table 4.6: Out of Bounds Accesses in Mutt

Out of bounds accesses 38
Out of bounds reads 0
Out of bounds reads from hash 0
Out of bounds uninitialized reads 0
Out of bounds writes 38
New out of bounds writes in hash 38
Out of bounds overwrites in hash 0

4.4.3 Standard Usage

For our standard usage workload, we used the Boundless version of Mutt intensively

for half an hour to process email messages. During this time, we triggered the security

vulnerability described above twice. Mutt successfully executed through the resulting

memory errors to correctly execute all of our requests. We were able to read, forward,

and compose mail with no problems even after executing through the memory error.
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An examination of the memory error log indicates that all of the memory errors

were caused by the security vulnerability. We logged 38 out of bounds accesses, all

of which were writes. Table 4.6 presents the different types of out of bounds accesses

generated by Mutt for our workload.

4.5 Midnight Commander

Midnight Commander is an open source file management tool that allows users to

browse files and archives, copy files from one folder to another, and delete files [20].

Midnight Commander is vulnerable to a memory-error attack associated with access-

ing an uninitialized buffer when processing symbolic links in tgz archives [19]. We

used Midnight Commander version 4.5.55 for our experiments.

4.5.1 Security and Resilience

Our security and resilience workload contains a tgz archive designed to exploit this

vulnerability. On this workload, the Standard version terminates with a segmentation

violation when the user attempts to open the problematic tgz archive. Because

Midnight Commander has memory errors in its initialization code, the Check version

terminates with an error message before it finishes initialization. The result is that

the user is unable to use this version of Midnight Commander at all.

The Boundless version, on the other hand, initializes with no problems. When the

user attemp)ts to open the problematic tgz archive, Midnight Commander correctly

displays the names of the two symbolic links in the archive. Because these links point

off to non-existent files, Midnight Commander correctly displays an error message

when the user attempts to open them. Midnight Commander continues to execute

successfully throughout the entire session; in particular, the user can continue to use

Midnight Commander to browse, copy, or delete other files even after processing the

problematic tgz archive. For this workload (and for all others that we know of)

the application of boundless memory blocks enables Midnight Commander to exhibit

completely correct behavior with no degradation at all.
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4.5.2 Performance

Figure 4.7 presents the request processing time for the Standard and Boundless ver-

sions of Midnight Commander. The Copy request copies a 24Mbyte directory struc-

ture, the Move request moves a directory of the same size, the MkDir request makes

a new directory, and the Delete request deletes a 3.1 Mbyte file. We performed each

request five times and report the mean and the standard deviation of the request

processing times.

Table 4.7: Request Processing Time for Midnight Commander (ms)

As these numbers indicate, the Boundless version is not dramatically slower than

the Standard version. Moreover, because Midnight Commander is an interactive pro-

gram, its performance is acceptable as long as it feels responsive to its users, and these

performance results make it clear that the application of boundless memory blocks

to this program should not degrade its interactive feel. Our subjective experience

confirms this expectation: all pause times are imperceptible for both the Standard

and Boundless versions.

4.5.3 Standard Usage

For our standard usage workload, we used the Boundless version of Midnight Com-

mander intensively for one hour. During this session, we copied, moved, browsed,

and searched for files, and we created and deleted directories.

We configured this version of Midnight Commander to generate a memory er-

ror log; during this time we observed memory errors caused by coding errors other

than the security vulnerability discussed above. Based on our observations, Midnight

Commander generates memory errors every time it initializes, whenever it interacts
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Request Standard Boundless Slowdown
Copy 360 i 0.96% 516 1.28% 1.42
Move 0.451 i 1.43 % 0.586 2.02% 1.30
MkDir 0.829 i 1.95% 1.54 i 3.51% 1.86
Delete 2.41 ± 0.87% 2.50 1.73% 1.04



with the user through a dialog box, when it searches for a file, when it changes the

current directory, and occasionally for other user interactions. The Boundless version

executed successfully through all of these errors to perform flawlessly for all requests.

Table 4.8: Out of Bounds Accesses in Midnight Commander

Out of bounds accesses 16788
Out of bounds reads 16763
Out of bounds reads from hash 11301
Out of bounds uninitialized reads 5462
Out of bounds writes 25
New out of bounds writes in hash 1
Out of bounds overwrites in hash 24

During our one hour session, we logged a total of 16,788 out of bounds accesses,

of which 5,462 were reads to uninitialized locations. As we will discuss in Section 4.7,

Midnight Commander is the only benchmark that contains reads to locations that

were not previously written by a corresponding out of bounds write. All our other

benchmarks contain only reads to locations which were previously stored in the hash

table. Table 4.8 presents the different types of out of bounds accesses generated by

Midnight Commander for our workload.

4.6 Apache

The Apache HTTP server is the most widely used web server in the world; a recent

survey found that 64% of the web sites on the Internet use Apache [24]. The Apache

2.0.47 mod-alias implementation contains a vulnerability that, under certain circum-

stances, allows a remote attacker to trigger a memory error [2]. The vulnerability

reports indicate that this error may enable the remote attacker to inject and execute

arbitrary code on the Apache server [2].
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4.6.1 Security and Resilience

Our security and resilience workload contains a request that exploits the security

vulnerability described above. The Apache server maintains a pool of child processes;

each request is handled by a child process assigned to service the connection carrying

the request [25].

With Standard compilation, the child process terminates with a segmentation

violation when presented with the attack. The Apache parent process then creates a

new child process to take its place. The Check version correctly processes legitimate

requests without memory errors until it is presented with the attack. At this point

the child process serving the connection detects the error and terminates. The parent

Apache process then creates a new child process to take its place. In the Boundless

version, the child process executes successfully through the attack to correctly process

subsequent requests.

Because Apache isolates request processing inside a pool of regenerating processes,

the Check version eliminates the security vulnerability while enabling the server to

process subsequent requests. The overhead of killing and restarting child processes,

however, makes this version vulnerable to an attack that ties up the server by repeat-

edly presenting it with requests that trigger the error.

4.6.2 Performance

Figure 4.7 presents the request processing time for the Standard and Boundless ver-

sions of Apache. The Small request serves an 8KByte page (this is the home page

for our research project); the large request serves an 836KByte file used only for this

experiment. We performed each request five times and report the mean and the stan-

dard deviation of the request processing times. These numbers indicate that the use

of boundless memory blocks in this context entails a negligible slowdown, for both

small and large requests.
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Table 4.9: Request Processing Time for Apache (ms)

Request Standard Boundless Slowdown
Small 180 i 0.65% 183 ± 0.64% 1.02
Large 339 + 0.26% 345 ± 0.14% 1.02

4.6.3 Standard Usage

For our standard usage workload, we used the Boundless version of Apache to serve

the web site of our research project. For one hour, we requested files from this web site,

periodically presenting the web server with requests that triggered the vulnerability

discussed above. The Boundless version executed successfully through all of these

attacks tlo continue to successfully service legitimate requests.

During our one hour session, we logged a total of 347 out of bounds accesses. All

the out of bounds read accesses retrieved values which were previously stored in the

hash table.

In addition to this workload, we used the Boundless version for one week to serve

all requests directed to our research project's web site. This web site was in more or

less steady use throughout this time period; we measured approximately 400 requests

a day from outside our institution. We also generated tens of thousands of requests

from another local machine, all of which were served correctly.

During this time period we periodically presented the web server with requests

that triggered the vulnerability discussed above. The Boundless version executed

successfully through all of these attacks to continue to successfully service legitimate

requests. We observed no anomalous behavior and received no complaints from the

users of the web site. Unlike some of our other programs, the memory error logs

indicate that Apache had no memory errors other than those caused by our attack

requests. Table 4.10 presents the different types of out of bounds accesses generated

by Apache for our workload.
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Table 4.10: Out of Bounds Accesses in Apache

Out of bounds accesses 347
Out of bounds reads 284
Out of bounds reads from hash 284
Out of bounds uninitialized reads 0
Out of bounds writes 63
New out of bounds writes in hash 32
Out of bounds overwrites in hash 31

4.7 Discussion

Our results show that boundless memory blocks enable our programs to execute

through memory-error based attacks to successfully process subsequent requests.

Even under very intensive workloads the Boundless versions provided completely ac-

ceptable results. We stress that we chose the programs in our study largely based on

several factors: the availability of source code, the popularity of the application, the

presence of known memory errors as documented on vulnerability-tracking web sites

such as Security Focus [30] and SecuriTeam [29], and our ability to reproduce the

documented memory errors. In all of the programs that we tested, Boundless com-

puting successfully eliminates the negative consequences of the error - the programs

were, without exception, invulnerable to known security attacks and able to execute

through the corresponding memory errors to continue to successfully process their

normal workload. These results provide encouraging evidence that the use of bound-

less memory blocks can go a long way towards eliminating out of bounds accesses as

a source of security vulnerabilities and fatal programming errors.

One interesting aspect of our results is that although our programs generated

out of bounds read accesses, in only one of these programs did any of these accesses

read uninitialized values that were not previously written by a corresponding out of

bounds write. This result indicates that developers are apparently more likely to

incorrectly calculate a correct size for an accessed memory block (or fail to include

a required bounds check) than they are to produce a program that incorrectly reads

an uninitialized out of bounds memory location.
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Chapter 5

Related Work

We discuss related work in the areas of memory-safe programming language imple-

mentations, traditional error recovery, and data structure repair.

5.1 Safe-C Compilers

Our work builds on previous research into implementing memory-safe versions of

C [3, 37, 23, 14, 28, 15]. As described in Section 3, our implementation uses tech-

niques originally developed by Jones and Kelly [15], then significantly refined by

Ruwase and Lam [28]. Memory-safe C compilers can use a variety of techniques for

detecting out of bounds memory accesses via pointers; all of these techniques modify

the representation of pointers in some way as compared to standard C compilers. To

implement boundless memory blocks it is essential that the pointer representation

preserve the memory block and offset information for out of bounds pointers.

It is also feasible to implement boundless memory blocks for safe languages such

as Java or ML by simply replacing the generated code that throws an exception in

response to an out of bounds access. The new generated code, of course, would store

out of bounds writes in the hash table and appropriately retrieve the stored value for

out of bounds reads.
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5.2 Traditional Error Recovery

The traditional error recovery mechanism is to reboot the system, with repair applied

during the reboot if necessary to bring the system back up successfully [12]. Mecha-

nisms such as fast reboots [31], checkpointing [17, 18], and partial system restarts [5]

can improve the performance of the reboot process. Hardware redundancy is the

standard solution for increased availability.

Boundless memory blocks differ in that they are designed to convert erroneous

executions into correct executions. The advantages include better availability because

of the elimination of down time and the elimination of vulnerabilities to persistent

errors -- restarting Pine as described in Section 4.3, for example, does not enable the

user to read mail if the mail file still contains a problematic mail message.

5.3 Static Analysis and Program Annotations

A combination of static analysis and program annotations should, in principle, enable

programmers to deliver programs that are completely free of out of bounds accesses.

CSSV uses programmer annotations to support an analysis that can statically find

all buffer overflow errors in C programs [9]. Fahndrich and Leino present an extended

type system that enables the compiler to statically verify the absence of null pointer

dereferences in Java programs [11]. Dhurjati, Kowshik, Adve, and Lattner present a

combination of language design techniques and static analysis to statically eliminate

bounds violations [8]. Xi presents a type system that ensures the absence of array

bounds errors [36]. All of these techniques share the same advantage (a static guaran-

tee that the program will not exhibit a specific kind of memory error) and drawbacks

(the need for programmer annotations and the possibility of conservatively rejecting

safe programs).

Researchers have also developed unsound, incomplete analyses that heuristically

identify potential out of bounds memory accesses [35, 4]. The advantage is that such

approaches typically require no annotations and scale better to larger programs; the

42



disadvantage is that (because they are unsound) they may miss some out of bounds

accesses. Once again, boundless memory blocks differ from all of these techniques

in that they eliminate out of bounds accesses as an error rather than attempting to

detect or certify the absence of potentially out of bounds accesses.

5.4 Buffer Overflow Detection Tools

Researchers have developed techniques that are designed to detect buffer overflow

attacks after they have occurred, then halt the execution of the program before the

attack can take effect. StackGuard [7] and StackShield [34] modify the compiler

to generate code to detect attacks that overwrite the return address on the stack;

StackShield also performs range checks to detect overwritten function pointers.

It is also possible to apply buffer overflow detection directly to binaries. Purify

instruments the binary to detect a range of memory errors, including out of bounds

memory accesses [13]. Program shepherding uses an efficient binary interpreter to

prevent an attacker from executing injected code [16].

A key difference between these techniques and boundless memory blocks is that

boundless memory blocks prevent the attack from performing out of bounds writes

that corrupt the address space. These writes instead are redirected into the hash table

that holds the out of bounds writes. Of course, our implementation of boundless

memory blocks also generates a log file that identifies all out of bounds accesses,

enabling the programmer to go back and update the code to eliminate such accesses

if desired.

5.5 Extensible Arrays

Many languages provide extensible array data structures, which dynamically grow to

accomodate elements stored at arbitrary offsets. Boundless memory blocks are, in

effect, an implementation of extensible arrays. They differ from standard extensible

arrays in their tight integration with the C programming language (especially the
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preservation of the address space from the original legacy implementation). This

integration forces the compiler to make large scale changes to the generated code to

perform the required checks and integrate effectively with the low-level packages that

maintain information about out of bounds pointers and accesses.
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Appendix A

Request Processing Times (All

Measurements)

Table A. 1: Receive Requests in Sendmail - all measurements (ps)
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Receive Small Receive Large
Standard Boundless Standard Boundless
239125 768168 267529 852687
267577 789174 296374 843536
242747 757481 325702 819378
225137 848461 460405 818175
234726 798887 268938 835721
212630 879602 259987 868751
206355 795144 312222 902899
221361 782940 254550 856501
237070 834096 285794 839855
213749 774003 267681 812343



Table A.2: Send Requests in Sendmail - all measurements (s)

Table A.3: Read, Compose and Move Requests in Pine - all measurements (s)

Table A.4: Read and Move Requests in Mutt - all measurements (s)
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Send Small Send Large
Standard Boundless Standard Boundless

24196 86825 23450 90162
22479 87598 23535 90601
22502 87954 23169 90435
24318 87957 25484 90050
22520 86789 22970 89831
22100 87804 23896 90048
22839 88342 23747 90907
24345 92371 23434 91831
22765 88275 24672 90648
22554 86494 23527 90667

Read Request Compose Request Move Request
Standard Boundless Standard Boundless Standard Boundless

429 2719 890 7619 1466 1748
410 2702 892 7624 1404 1936
428 2706 880 7540 1388 1943
412 2686 909 7610 1684 1761
418 2730 912 7579 1275 1932

Read Request Move Request
Standard Boundless Standard Boundless

802 1653 7552 9217
807 1622 7305 9283
790 1651 6809 9494
807 1662 7528 9228
803 1660 7805 9206



Table A.5: Copy and Move Requests in Midnight Commander -- all measurements
(Us)

Table A.6: Mkdir and Delete Requests in Midnight Commander - all measurements
(Us)

Table A.7: Small and Large Requests in Apache - all measurements (s)

47

Copy Request Move Request
Standard Boundless Standard Boundless

366698 528369 462 583
357430 509956 445 582
358492 514163 452 579
358993 511416 444 609
357721 518273 452 576

Mkdir Request Delete Request
Standard Boundless Standard Boundless

817 1459 2420 2465
809 1504 2366 2573
830 1542 2423 2509
835 1583 2403 2480
856 1610 2416 2451

Small Request Large Request
Standard Boundless Standard Boundless

181000 183000 340000 344000
181000 182000 338000 345000
178000 185000 340000 345000
181000 184000 339000 345000
180000 182000 338000 344000
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