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Abstract

Cancer development and progression typically features genomic instability frequently
resulting in genomic changes involving DNA copy number gains or losses. Identifying the
genomic location of these regional alterations provides important opportunities for the
discovery of potential novel oncogenes and tumor suppressors. Recently, array based
competitive genomic hybridization (array-CGH) has become available as a powerful
approach for genome-wide detection of DNA copy number changes. Array-CGH assesses
DNA copy number in tumor samples through competitive hybridization on microarrays
containing probes for thousands of genes. The datasets generated are complex and require
statistical methods to accurately define discrete and uniform copy number from the data
and to identify transitions between genomic regions with altered copy number. Several
approaches based on different statistical frameworks have been developed. However, a
fundamental informatic issue in array-CGH analysis remains unsolved by these methods.
In particular, sample-specific data compression, a result of tumor cells being commonly
admixed with normal cells in many tumor types, must be accounted for in each sample
analyzed. Additionally, in order to accurately assess deviations from normal copy number,
the copy number readout must be shifted to faithfully represent the baseline copy number
in each tumor sample. Failure to appropriately address these issues reduces the accuracy of
the data in hard-threshold based high-level analysis. By using the natural framework
Hidden Markov Models (HMM) to model the distribution of array-CGH signals, a method
infer the absolute copy number and identify change points has been developed to address
the above problems. This method has been validated on independent dataset and its utility
in inference on array-CGH data is demonstrated here.
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1. Background

Tumorigenesis progression in human require the accrual of genetic lesions that result in

aberrantly functioning genes that control many aspects of cellular function including

proliferation, apoptosis, genome integrity, angiogenesis, and invasion of metastasis . The

discovery and functional evaluation of these cancer-relevant genes is essential for

understanding the biology of cancer and for clinical applications, including identification

of therapeutic targets, early detection and improved prediction of cancer risk and disease

course. Many factors can result in variant gene function including point mutations,

epigenetic modifications, and changes in genome copy number and structure (chromosome

aberrations).

1.1. Chromosome aberration, technology and functional significance

Chromosome aberrations are defined by a broad range of changes including alteration on

ploidy, gain or loss of individual chromosomes or portions thereof and structural

rearrangement (fig 1.1, modified from2). These structural changes may involve

translocation of chromosome material from one chromosome to another. Equal exchanges

of material between two chromosomal regions are referred to as balanced or reciprocal

translocations. On the other hand, unequal exchanges may also occur and are termed

unbalanced or non-reciprocal translocations. These unbalanced translocations and other

forms of structural rearrangement may result in amplifications or deletions of chromosome

material. Amplifications may present as small acentric fragments (double minute

chromosomes) or may be incorporated into tumor chromosomes in nearly contiguous

homogeneously staining regions (HSRs) or interspersed throughout the genome. Notably,

individual HSRs or other sites of amplified DNA may include genomic DNA originating

from multiple different regions.

An increasing number of genomic and molecular genetic technologies have been

developed to detect chromosome aberrations. These include analysis of chromosome

banding (Mitelman Database of Chromosome Aberration in Caner), high-throughput

analysis of loss of heterozygosity (LOH; 3,4), conventional and array-based comparative

genomic hybridization (CGH5-7), fluorescence in situ hybridization (FISH; 8,9), restriction

3



landmark genome scanning (RLGS; 10) and representational differential analysis (RDA;

1 ) . Some technologies, such as RLGS, analysis of LOH and RDA can also detect allelic

imbalance that occurs by somatic recombination without net copy number change.

Normal diplold genom

III
"Polypiold iAnupoid lnteritiUal Reciprocal Non-reciprocal Amplifcation Amplification Amplificllon

Deld ton Tramloction Trnlocation (double minutes) (HSR) (distributed insertions)

Ii I I'II ll Pu* * N* :
* *

I,
11*

Copy Number Imbalance

Array-CGH

Figure 1.1 Schematic illustration of mechanisms of chromosomal aberrations and

which will cause copy number change. Modified from 2

It is widely believed that regions of recurrent genomic aberrations contain genes that are

important for tumor initiation and development. In many cases, such aberrations contain

known oncogenes or tumor suppressor genes whose expression levels are altered by the

genomic change. Classic examples in solid tumors include amplifications of established

oncogenes, such as EGFR 12, MYC13, ERBB214, CCND115 and Ras family members 16

Other aberrations involve loss of specific regions of the genome. Deletions involving

specific loci are important in the inactivation of tumor suppressor genes, such as PTEN and

CDKN2A. Elimination of the remaining normal alleles in cases of inherited mutation has

been implicated in the inactivation of known tumor suppressor gene RB 1, BRCA1,

BRCA2, PTPRJ and TP53.
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1.2. CGH and array-based CGH

Comparative genomic hybridization (CGH) was developed as a molecular cytogenetic

technique that overcomes difficulties presented by conventional fluorescence in situ

hybridization (FISH) analysis5 . It allows the entire genome to be scanned, in a single step,

for copy-number aberration in chromosomal material. In standard CGH procedures,

genomic DNAs isolated from test and reference samples are labeled respectively with red

and green fluorescent dyes. Each labeled DNA is subjected to competitive hybridization to

normal metaphase chromosomes; hybridization of repetitive sequences is blocked by

addition of Cot- DNA. The ratios of red and green fluorescent signals in paired samples,

usually tumor-normal pairs, are measured along the longitudinal axis of each chromosome.

Chromosomal regions involved in deletion or amplification in test DNA appear green or

red respectively, but chromosomal regions that are equally represented in test and

reference DNAs appear yellow.

CGH analyses of solid tumors have revealed a number of recurrent copy-number

aberrations including amplifications that had not been detected previously by any other

technique. In an early example, CGH revealed frequent tumor-specific amplifications at

chromosomes 3q26-27 and 20q13 in various tumors where the oncogenic target genes

were subsequently identified, PIK3CA (3q26) 17in ovarian cancers and ZNF21 7 (20ql 3) in

breast cancers18. However, CGH to metaphase chromosomes can provide only limited

resolution of 5-10 Mb for detection of copy-number losses and gains, and 2 Mb for

amplifications. However, many of the most informative events are small to contain only

involved a few genes and spans only a few hundreds of kilo-base pairs.

With the availability of human and mouse genome sequence and map, this limitation has

been overcome by adapting the evolving microarray platform. Figure 1.2 19 illustrates the

procedure of how array based CGH is conducted with bacterial artificial chromosome

(BAC). BAC-based arrays were the first to be proven highly effective in defining the

location of regional copy number changes6 . Current BAC arrays typically offer

approximately 1 Mb of coverage (containing 3000 BACs), translating into a resolution

limit of 2 Mb20 -22. Using this platform, the additional delimitation of regional alterations is
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made possible by custom microarrays containing BAC contigs that tile across the locus of

interest in an iterative locus specific manner. Prior work has clearly documented the

effectiveness of iterative BAC array-CGH profiles to identify candidate cancer genes

residing in a focal amplicon. Several studies have documented the utility of cDNA-based

microarrays for CGH profiling of human cancers. These studies have demonstrated that

commercially available cDNA array-CGH platforms are sufficiently robust to detect

regional single-copy changes 23, provided the high background probes are eliminated by

empirical and bioinformatics means. Oligo-based CGH experiments were first introduced

by using commercially available expression microarray. The median resolution of a 22K

expression array is - 50kb for human and mouse. With elimination of -5K probes not

suitable for CGH hybridization, these oligo probes designed for expression do offer

improved signals and noise when compared to cDNA platform. Genomic oligo

microarrays (Agilent) recently developed specifically for CGH hybridization have been

shown to perform with even higher signal to noise ratio while achieving a higher resolution

of 30kb on 44kb probes.
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Figure 1.2. Procedures of array-CGH experiment 19

(A) Large-insert clones, derived from a human chromosome, are printed onto a glass

microscope slide (arrayed). The array can be stained to show the morphology and

placement of each 'spot' of cloned DNA (far right).

(B) Genomic DNA samples from a control (left) and test (right) are differentially labeled

with two different fluorochromes. The labeled DNA is mixed and placed on the microarray.

Computer imaging reveals a yellow hybridization color for all clones that are in equal

proportion between the control DNA and test DNA (middle and lower left). Those clones

deficient in the test DNA, will appear more green; those clones in excess in the test DNA,

as compared to the control DNA, will appear, more red (middle). A plot of the ratio

between control and test DNA for each clone (lower right) will reveal dosage differences,

visualized as a deviation of the ratio from zero (horizontal red line).
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1.3. Data features of array-CGH log2 ratio

1.3.1 Type of changes defined in array-CGH log2 ratio

Array-CGH measures the relative copy number of the tumor (T) against reference(R)

genomic DNA, which is reflected in its log2 T/R ratio. After the signal is normalized, they

are aligned and plotted along the chromosome by their physical position (figure 1.3).

Biologically, loss is defined as a relative decrease of 1 or 2 copies relative to a diploid

reference (R), and gain is defined as a gain of 1 or more copies. However, since underlying

ploidy of a tumor is not necessarily diploid, the T/R ratio in fact reflects merely the gain or

loss relative to the underlying ploidy of a particular sample.

In our analysis, an array-CGH log2 ratio of +/-0.2 is often used as a threshold to make the

call of changed clone, for most platform and samples with a profile standard deviation of

0. 1-0.3. A threshold of +/- 1-1.5 is often used to define the high amplitude change like

amplification and homozygous deletion. The low amplitude gain and loss tends to involve

large region like entire chromosome or its arms, while amplification and homozygous

deletion tends to be focal and only involves loci up to several mega bases and has more

functional significance.

In a normal female - male hybridization profile (figure 1.4), autosomal chromosomes are

present in 2 copies with aCGH probes showing log2 ratio around 0. One-copy or actually

two-fold change gain on chromosome X of the female is represented by a plateau of

elevated log2 ratio with mean around 0.5. Chromosome Y is completely deleted seen as

scattered negative log2 ratios, with the wide scatter due to non-specific hybridization of

non-Y labeled products in the female sample. Figure 1.4 is a typical tumor profile from a

primary melanoma. All major types of change are presented in this profile: entire

chromosome gain of 7, loss of 6q, amplification of lq and deletion of 9p. The gain and loss

change are classically wide giving a plateau shape and amplification and deletion events

are much sharper.
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Figure 1.3. Genomic profiles of female versus male normal genomic DNAs.

Array-CGH profiles of female DNA against male DNA as reference (both pooled samples)

with X-axis coordinates representing oligo probes ordered by genomic map positions.

Average log2 ratio of the probes on X-chromosome is around 0.5. Y chromosomes are

deleted with log2 ratio scattered between 0--3.
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Figure 1.4. Genomic profiles of tumor (melanoma, versus male normal genomic

DNAs. Array-CGH profiles of female DNA against male DNA as reference (both pooled

samples) with X-axis coordinates representing oligo probes ordered by genomic map

positions. Different types of change are present is this profile as (1) gain on 7, 1 lp. (2) loss

of 6q and 8p. (3) amplification of 1 q. (4) homozygous deletion of 9p (yellow arrow).
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1.3.2 Spatial correlation of the array-CGH log2 ratio

In homogenous samples, array-CGH should report integer copy numbers change

representative of the unit copy gains and losses seen, for instance, in SKY experiments.

Biologically, there have to be limited numbers of genomic events for cancer cell to survive

and proliferate, so large parts of cell chromosomal materials remains intact. This

phenomenon translates visually into array-CGH profile as step-wise up and down like

consecutive segments with some focal change as in figure 1.4. All the probes on a single

segment are measuring a uniform copy number thus should share the same log2 ratio, aside

from the effects of noise and artifact. This strong spatial correlation between the

neighboring probes along the chromosome is a unique feature of array-CGH compared to

other profiling, such as gene expression. The closer the two probes, the more likely they are

detecting the same segments and reporting the same copy number. Also, a stepwise pattern

in the profile suggests that a copy number change happens between 2 probes, and the

change is discrete instead of continuous or gradient. Thus, the uniform log2 ratios carried

by all probes are in a discrete distribution and can be translated into relative copy number.

1.3.3 Absolute quantification of array-CGH data

Since the normal male or female pooled genomic DNA is routinely used as common

reference, the reference copy number is known to be 2 for all autosomes and 1 or 2 on the X

chromosome. If relative gene copy number of each probe is definable, the absolute copy

numbers are generally definable as well, except for cases of extreme aneuploidy. Unlike

the expression data which is continuous and is comparable only gene wise with no inherent

reference expression level, array-CGH has a "ground-truth" that permit comparison of the

gene copy number comparable across samples. This justifies the strong need for

development of appropriate analytical tools for CGH analysis which takes into account of

these unique features and enable the definition of "ground-truth".

However, there're several hurdles to achieve such absolute quantitative analysis on

array-CGH data. First, in the normal and tumor profiles shown previously, the observed

signals are lower than theoretical, as phenomenon of so-called "data compression". For

example, the log2 ratio signal mean of the probes on X-chromosome in normal
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female/male hybridization is supposed to be 1, the actually observed is only around 0.5

(figurel.3). Mostly caused by cross-hybridization, this problem has been addressed in

many previous studies. Pollack et al 24 hybridized samples with 1-5 copies of

X-chromosome to normal female samples on cDNA platform. When mean fluorescence

ratios of X-chromosomal cDNAs from each experiment were plotted against number of X

chromosomes and fitted with a linear regression model, the slope of the model is only 0.7.

This factor can be used to correct the data. Meanwhile, normal tissue contamination is

another source commonly contributing to the reduction the signals. Hodgston et al showed

the signal will decrease linearly with the increasing of the proportion of the contaminated

normal tissue 25. This reflects in real data as that the signals of primary tumors usually are

slightly lower than the signals of cell lines. This is reflected in real data in that the signals

of primary tumors, admixed with normal stroma and infiltrating leukocytes, usually are

slightly lower than the signals of cell lines. Moreover, this factor depends on the degree of

contamination and experiment variation: different samples show different levels of data

compression. Figure 1.5 shows an example of BxPC from pancreatic cell lines. The log2

ratio has been median-filtered to reduce probe noise and make the change pattern easier to

observe. The karyotype of the sample is 53<2n>, the signal mean of 2 copy resides at

-0.17-0.18 and 0.14 for 3 copy and 0.3 for 4 copies. The log2 ratio 0 is in the middle of the

signal mean of 2 copy and 3 copy. In other words, there is no direct translation between the

uniform segment log2 ratio and absolute copy number.

11



Figure 1.5. Genomic profiles of BxPC3, a pancreatic cell line versus male normal

genomic DNAs. Array-CGH profiles of female DNA against male DNA as reference (both

pooled samples) with X-axis coordinates representing oligo probes ordered by genomic

map positions. Median-filtering has been applied to reduce the noise. DNA which 2 (red

arrow) and 3 copy (green arrow) has an average log2 ratio of-0.18 and 0.14 respectively.
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1.4. Current analysis methods and limitations

To date, several methods have been developed utilizing the special features of the

array-CGH data. These methods report uniform relative copy number in terms of median

log2 ratio of segments, but avoided defining the absolutely copy number of each profile.

1.4.1 Circular Binary Segmentation (CBS)

Oshen et al first developed a method called circular binary segmentation to define the

change points on array-CGH data 26 . For indexed data set xl, x2, ...xi, xj, xn (l<iij<n) and

Sii-xi+i+l+..+xj l+xj be the partial sum. The circular binary segmentation is derived using

the statistics Zi defined as.

Z (S -Si) /(j -i) -(S -Sj+ Si) /(n -j + i)
1/(j -i) + (n- j + 1)

Under null hypothesis, Zij have zero mean. Basically, Zij is calculating the difference of the

mean between the segments i. j andj.. n, adjusted by the position of thej. A change is

declared if z=maxdzijl) exceeds an appropriate threshold level defined by normality of xi's.

As a modification of original binary segmentation method, they added a permutation

approach to relax the normality assumption of the binary segmentation procedure.

1.4.2 Unsupervised HMM partitioning

Fridlyand et al proposed an unsupervised partitioning method to define the boundary of

uniform copy number using Hidden Markov Model 27 (details about HMM will be given in

the method section). The procedure starts with a predefined k-state HMM, each data points

was first given a state they individually most close to in terms of the distance to the log2

ratio mean of those states. Then they use iterative Baum-Welch algorithm to re-estimate

the parameters of the model. The procedures are repeated for all models with states from 1

to k-l and the best model (k) was chosen based on the penalized maximum likelihood

defined as:

y(K) = - log(Lik( I 0)) + qxD(L) / L, K = 1,..., K max,

where qK is the number of the parameters corresponding to the number of states, K;

and D(L) is a function of the number of L clones (probes) on a chromosome. Note that

D(L) = 2 gives AIC or Akaike's information criterion [1] and D(L) = log(L) one

13



obtains the Schwartz BIC or Bayesian information criterion. They claimed usually a five-

states HMMs are enough to describe almost all the changes even the complicate ones.

After the model fitting is done, two states with the closest median, estimated from the

signals belong to them respectively, were merged if their difference is less than d, a

pre-defined threshold. The procedure also goes iteratively until the difference exceeds d.

When the state merging is done, the sample standard deviation a computed as the median

absolute deviation (MAD) of the clones in the states containing at least 20 clones located

on the chromosomes partitioned in < 3 states. A clone is identified as an outlier if its value

differs from the median value of their state by >5 a. Focal changes was defined based on

the outlier clones. In this method the states merging was done after the model fitting and

subject to a predefined threshold d.

1.4.3 Other approaches

Jong et al. 28 applied a genetic local search algorithm to segment the clones into clusters.

Autio et al. 29 and Picard et al. 30 used dynamic programming to define change points given

known numbers of segments. Picard also implemented a penalized maximum-likelihood

model, to automatically provide the global optimum of segments. There are also a few

recent approaches; one is "Cluster Along Chromosomes" (CLAC) method. 31 It builds a

hierarchical clustering-style trees bottom up along each chromosome arm (or

chromosome), and then "interesting" clusters can be selected by controlling the FDR at a

certain level.

1.4.4 Deficiency of the current methods and Motivation of this study

All the above methods are able to recognize the step-wise change pattern in the data, define

change points and derive uniform underlying relative copy number. But the uniform copy

number for a particular segment was obtained by estimating the mean or median of the

log2 ratio on a particular segments; it does not translate to absolute copy numbers thus the

results still carries data compression problem and does not define meaningful baseline of

the reference. This could pose a problem in threshold cut off based high level analysis.

Take BxPC as example, the gain of chromosome lp, 3q will be missed if the usual cutoff of

14



+/- 0.2 or 0.25 is used for identify changes. For both single sample analysis and group

comparisons especially with a smaller sample size, this problem will cause larger false

positive/negative rate. Given the potential of absolute quantification based on the spatial

correlation, discrete distribution and known reference copy number of array-CGH data, a

method to infer biologically direct interpretable copy number will help improve the

accuracy of the high level analysis.
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2. Methods and Results

The goal of this thesis is to develop a method to derive absolute copy number from the

array-CGH data. The approach is made by starting with a clean, well-annotated dataset to

retrieve the signal distribution from the array-CGH log2 ratio and then train a HMM model

on top. Testing on a variety of independent datasets with different noise levels and

proportion of changes were conveyed to validate the method. This method was compared

to other methods mainly circular binary segmentation on break points and focal change

detection.

2.1. Datasets

Published and in-house datasets totaling 200 samples from 2 major platforms: BAC and

oligonucleotide platforms are used in this study.

2.1.1 Long oligonucleotide-array datasets

Commercially available long oligo-array (50 -70 mer) has been popular in array-CGH

experiment recently. Originally designed for expression profiling, the noise level caused

by cross-hybridization on this platform is slightly higher than BAC array. The average

standard deviation is 0.2-0.3 of the log2 ratio in unchanged part. The following datasets

have been generated in the lab with 60-mer expression microarray (Agilent Technologies).

2..1.1. Pancreatic cancer cell lines

The dataset contains 9 well-annotated profiles which have been used to demonstrate the

feasibility of oligo platform in the earlier publication 7. SKY has also been performed and

indicates a high homogenous population for all samples. With SKY observable copy

number ranges from 1 to 7 from 2 diploid, 6 triploid and 1 tetraploid sample with mediate

level of genomic complexity, this is an ideal dataset to study the signal distribution of

different copy numbers. Several interesting complicated focal loci, either high or low

amplitude are present in the dataset. Real-time quantitative PCR has been carried out to

give a more accurate measurement of the relative copy number to validate some of them.

2.1.1.2. Primary Multiple Myeloma

16



The 67 samples in this primary multiple myeloma dataset are typically diploid with less

complicated changes in terms of number of events within a profile. This data set can be

used as both for training set and testing set.

2.1.1.3. Primary Glioblastoma

Analyses of array CGH data have shown that the genomes of established tumors are

remarkably stable, as evidenced by similarity of tumor recurrences to primary tumors. Of

total 35 samples, there are 12 original and recurrent pairs and 2 duplicates in this dataset.

2.1.2 Public BAC-arrays dataset

BAC array datasets are selected. In both dataset, each array contained 2276 mapped partial

BACs spotted in triplicates. Comparing to long oligo arrays, it has much sparse resolution

(1/5) but lower noise with standard deviation around 0.1 for unchanged part. Since BAC

dataset has been largely used to demonstrate other methods, the purpose to including them

is to examine the method on a different platform but with sparser resolution.

2.1.2.1. Coriel cell lines

The data consists of single experiments on 15 fibroblast cell lines containing

cytogenetically mapped partial or whole-chromosome aneuploidy

(http://www.nature.com/ng/ioumal/v29/n3/suppinfo/ng754 S 1.html). There are only 1 or 2

characterized chromosome aberrations presented in each sample. It has been used to

demonstrate both the CBS method and unsupervised HMM partition because of its

simplicity.

2.1.2.2. MMR cell lines

The dataset includes 10 MMR deficient and 10 proficient cell lines. They are used to

demonstrate the unsupervised HMM partition method by Fridlyand (Complete data set is

available at http://cc.ucsf.edu/albertson/public.). Since many of the cell lines are from the

NCI 60 panel, the Spectrum Karyotyping (SKY) of which are also available from NCBI's

SKY/M-FISH/CGH database

17



(http://www.ncbi.nih.gov/skv/skyweb.cgi?form_ type=submitters).

2.2. Data preprocessing

The public BAC dataset were downloaded from the web and was merged into a single table.

Since the data was already normalized and all clones were annotated with the physical

position, no further preprocessing was needed. For all oligo dataset, normalization

procedures were performed to eliminate the common array experiment bias. The

annotation of the probes in terms of their physical genome position and the gene they

resides on are generated.

2.2.1 Normalization and filtering

Microarray data contain inherent systematic measurement errors arising from variations in

labeling, hybridization, spotting or other non-biological sources. Normalization

procedures, which adjust microarray data to remove such systematic variations, are

therefore important for subsequent analysis. Within-slide normalization aims to correct

dye incorporation differences which affects all the genes similarly, or genes with the same

intensity similarly 32 One scatter-plot based normalization technique that is particularly

suitable for balancing the intensities is called locally weighted scatter-plot smoothing

(LOWESS) 33 and its original application was for smoothing scatter-plots in a weighted,

least-squares fashion. Lowess normalization has been applied to all the oligo samples to

remove 2 types of bias: intensity and GC content.

The intensity-dependent bias, caused by unbalanced dye efficiency, often appears as a

curvature in MA-plot (figure 2.1 a). After lowess normalization, the log2 ratio become

independent of the signal intensity. (figure 2. lb).
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Figure 2.1. Lowess correction on intensities for array-CGH raw log2 ratio.

M-A plot of raw log2 ratio v.s. average log2 intensity from both channels

M-A plot for raw log2 ratio v.s. average log2 intensity from both channels after Lowess

normalization.

0 5000 10000 15000

Figure 2.2. Correlations between genome GC content and array-CGH profiles.

The x-axis is the probes in the order of their genomic position. The y-axis is arbitrary units.

The purple line is the profile of median smoothed (window size 5) array-CGH profile of a

nevus sample. It's DNA was whole genome amplified for this experiment. no obvious

genomic lesions. The blue line is the genome GC-content in a 70kb around of the probe,

also median smoothed with window size 5. The correlation of two between median filter is

0.25 and thereafter is 0.61.
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The probe/genome GC content related bias is unique in array-CGH experiment, especially

on whole genome PCR amplified tumor DNA sample. Unlike a curvature with the intensity,

usually the lower GC content, the lower the log2 ratio. The correlation between intensity

bias corrected log2 ratio and genomic/probe GC content can be as high as 0.25 (figure 2.2).

When those high GC correlated profile are visualized along the chromosome, they presents

as a strong wavy local data trend, which might induce undesirable breakpoints when

applying change point defining methods. Lowess correction on GC content effectively

removed this bias.

Most of the experiment has a dye-swap hybridization replicate. If R1, G1 and R2, G2 are the

intensity of the red (Cy5) and green (Cy3) channel on the same probe in both experiment,

when measurement on that probe is 100% consistent, we should get R1/GI=G2/R 1 and log2

(R1R2/ 1GG2)=O. For all the probes on the array, we calculate the statistics

(log2 (RIR2/GjG 2)), and obtain a distribution with mean and standard deviation (a). For

those probes with log2 (R1R2/G1G2) exceeding 2 a, were marked as outliers and discarded.

It's important to use the dye-swap replicates to reduce random error introduced in the

experiments.

2.2.2 Probe annotation

For oligo array, the 60 mer probe sequences were obtained from Agilent and mapped with

BLAT (Blast-like Alignment Tools, Kent) method. Human genome (hgl 7) sequences were

downloaded from UCSC website loaded into a local standalone BLAT server. The

sequences were transformed into fasta format and aligned to genome with BLAT. The

alignment results were filtered for each probe to specify its mapping position by the

following criteria: 1) The perfect alignment is >55 mer. 2) The secondary hit should have

an alignment less than 95% of the perfect alignment. For all 20K available sequences,

17Kb probes are mappable by the above standard. The genes the probes reside in were

obtained based on the file seq_gene.md from NCBI.
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2.3. Overview of Hidden Markov Model

Hidden Markov Model is a sophisticated but flexible probability model often used in

time/space related pattern discovery 34. A HMM can be visualized as a finite state machine,

moving through a series of states and producing output either when the machine has

reached a particular state or when it is moving from state to state. The HMM generates a

state sequence by emitting certain observations as it progresses through a series of hidden

states. HMM has been widely adapted to sequence analysis (gene identification, sequence

alignment and protein structural prediction), 35,36 genetic linkage 37, LOH studies38 and

time-course microarray data 39. For the above application, only time-course data analysis is

based on continuous observations. For the rest, the observations are discrete. Since the

array-CGH log2 ratio is continuous, here we only characterized a discrete time HMM on

continuous observation by the following:

(1) S: the hidden states in the model. Typically, the states are interconnected in a way that

any state can be reached from any other state. We denote the individual states as S=Sj, .., SK

and the state at location t as St, <t<T, where T is the total length of the state sequence.

(2) The initial state distribution r= {rk}, where 7rk=P{sl=Sk}, <k<K,.

(3) The state transition probability distribution A= {aij} where

aij= P{ st+l = Sj st=Si }, l<i, j <K
(4) The emission distribution or probability density function B = {bk(O)} where

{bk(O)}=G(O, Ctk, Uk), <k<K. 0 is the vector being modeled. G is Gaussian density with

mean vector 9k and covariance matrix Uk: More generally, G is any log-concave or

elliptically symmetric density and the probability density function {bk(O)} is a finite

mixture.

Thus, an HMM with the fixed number of hidden states K can be characterized in terms of

three parameters: (i) the initial state probabilities, xt; (ii) the transition probability matrix, A;

and (iii) the collection of Gaussian emission probability functions defined within each state,

B: The parameters of the model may be represented in a compact way as k(A, B, 2 ) and the

sequence of values 0 = (ol, ... , orT).

2.4. Defining HMM on array-CGH data
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To infer distinctive copy numbers on the a chain of continuous log2 T/R ratios O(ol, ... , oT)

ordered by their chromosome position, the states and model parameter 2(A, B, r ) need to

be clearly specified.

2.4.1 States

Since the goal of the method is to infer copy numbers, the state can be set to represent

integers ranging from 0 to N. Nis user defined maximum copy number as long as it clearly

describes the change. The copy numbers do not have to be consecutive integers. As the

copy number increases, the difference between log2 ratios of consecutive copy numbers

will decrease. Ultimately the difference becomes so small that it becomes un-informative

to distinguish the change in status or amplitude. For instance copy number 31 and 32. For a

diploid sample, any copy number above 8 is clearly indicating an amplification, hence a

practical set of integer states can be defined as 0, .., 8,16,32. In an ideal homogeneous

population, this is enough to describe all the changes within a single profile. In a

heterogeneous population, some changes are only carried by parts of the tumor cell

population. The non-integer states like half and quarter states can also be added in to

explain those changes. Though still discrete, the states are numerical yet not symbolic; this

is markedly different from states in sequence or LOH study.

Within the integer copies, a ploidy copy is defined as the majority copy number carried by

all probes within the profile. It usually agrees with the ploidy number defined by

cytogenetic experiments. When the cytogenetically counted chromosomes are between 2

adjacent ploidy number such as 58<2n>, majority copy number might be 2 or 3 depending

on where gains happened since the probes are not evenly distributed on each chromosome.

2.4.2 Emission probability and initial probability

Each copy number states emits log2 ratio signal according to certain statistical distribution.

As we mentioned above, the overall data compression and shift of the log2 ratio signals of

ploidy copy form zero are two major sample specific fixed effects to transform the

observation from its empirical log2 ratio. Thus, the emission probability of state Si can be

specified as:
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G(bi*log2(CiCp) + ,p, i)

The Ci is copy number represented by Si, bi is a sample specific compression scaling factor

for state Si, Cp is the ploidy copy number, tp is the signal mean of the ploidy copy, ai is the

sample specific standard deviation for state Si.

Once the mean of the emission probability (called "signal mean" and so forth) are defined

for all copy numbers states, all the data points can be partitioned with them into K sections

by normal approximation, where K is the number of the copy number states in the model.

So the mutually exclusive signal means of those states resides in one of the sections and has

different numbers of observations around it. A background probabilityp i, defined as the

proportion of the observations in 0 (ol, .., or) around the signal mean for states Si.

T

E (ot E Si)
pi = t=l where ot E Si if (+i t < +1)

T 2 2

The initial probability ri defines the likelihood of being in state Si at the initial of the

sequence ol. It's reasonable to setup ri as its corresponding background.

2.4.3 Transition probability

The transition probability describes the correlation between different copy number states

of adjacent probes. Apparently, the probability of sharing the same copy number decreases

as distance between two neighboring probes increases. Haldane's map function 0=0.5*

(1-e-2d) has been traditionally used in linkage analysis to convert the genetic distance d

between two markers to the probability that the second maker will have a meiotic

cross-over events. Recently it has been adapted to estimate the transition probability in

inferring LOH states in SNP array. Lin et al demonstrated that the empirical transition

probabilities estimated from observed LOH calls agreed well with the properly scaled

Haldane's map function defined as 0=1 -e2 (d/l0), where d is physical distance in megabase

scale. The relationship can be illustrated in figure 2.3. Biologically, genomic events

causing copy number changes have some similar mechanism to cross-over or LOH, the

haplotype state in LOH is one kind of copy number change in CGH. The incentive to use it

here is to give a guide line on how to define the probability to reflect the uneven spacing of
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the probes on the array used in this study and many others. For some regions especially for

two consecutive probes separated by a large region such as centromere, it's reasonable to

loosen the restriction on free transition between different copy numbers. Meanwhile

transition to a certain state should also be related to the background probability of the copy

number of that state. The higher the background probability, the likelier it is that the state

sequence will transfer to the next state. Thus, the transition probability from state i toj at

position t can be formally defined as:

aiu= pij*

ai = pj*O+(1-0)

for i j
for i= j

pj is the background probability at position t+1. aij only depends on whether the i,j are the

same and the background probability ofp, thus it's independent of the state at position t.

For array with median resolution of 50kb and 0 of 0.001, the relationship is naturally

favoring the copy number sequence to continue in the same states for most of the probes at

most of the positions.
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Figure 2.3. Scaled Haldane's map

mega base pair unit. Y axis is 0.

function: O=l-e2(d/l00) . X-axis is the distance in
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2.4.4 Estimating the emission probability of the model

It has been shown that for HMM with continuous distribution observations, good

estimation for emission probability is essential for making a correct inference, while a

slight loosely defined initial probability and transition probability have no essential impact

on inference results 34. Given both the initial and transition probabilities have already been

relatively well defined; the focus on inference is to fill the open slots in the emission

probability definition. The best way to specify those parameters is to obtain them from a

good training dataset, constructed by a set of clean and well-annotated samples in which

the distribution of difference copy numbers can be studied after assigning copy number to

clone/probes with a less labor intensive manner.

2.4.5 Constructing training datasets

To select samples well suited for observing the data distribution, 4 criterions were set for

the task:

a) Cleanness: the derivative standard deviation <0.3.

b) High homogeneous: the agreement of the SKY and array-CGH profile in terms of

relative change and copy number > 10 chromosome. SKY images are generated

from a few cells and may represent subclonal population, while the genomic DNA

is typically obtained from whole tumor, reflecting the average change across an

entire population. But if the population is largely homogeneous, the SKY should

have a good level of agreement with array-CGH relative copy number.

c) Range of observable copy number at SKY resolution level is greater than or equal

to 4. Since sample specific distributions are expected, it's important to have more

available copy numbers in a single profile to study the relationship among the

signal distributions of wide range of copy numbers.

d) Medium complexity, defined as average copy number transitions, excluding focal

changes within single chromosome that are less than 4. It's easier to assign copy

numbers to an entire chromosome or arm under single level of changes than

complex patterns.

Finally 17 samples were included in the training dataset: 5 pancreatic cell lines, 12 multiple
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myeloma primary tumors. CBS were applied to all the samples to get a guide line of

boundaries of the copy number changes. The plots of raw log2 ratio overlaid with uniform

relative copy number (log2 ratio median of each segment) are generated for all 18 samples

with single chromosomes. Based on SKY reports, only integer copy numbers were

assigned to 16004 oligo probes on 22 autosomes with careful visual inspection. Probes on

entire intact chromosomes and arms that matched with SKY were first identified to be

assigned the copy number. The segments left were compared to segments assigned in terms

of their median value and assigned a copy number with closest median. If the median is

>0.02 from any of other assigned segments, the segment will be considered as carrying a

non-integer copy number segment and will be excluded. Focal changes, usually with less

than 50 probes, that were not observed in SKY are also excluded. Loci with complicated

pattern (transitions >5) are also excluded from the training dataset.

2.4.6 Sample-wise signal distribution of all copy numbers in training dataset

For each profile, the count, mean, median, mode and standard deviation are calculated for

all assigned integer copy numbers, referred as the "actual" or "nominal" mean and standard

deviation.

2.4.6.1. Probes distributed on different copy numbers

First, the ploidy copy is the most dominating copy number for all probes across all samples

except TU8902 (figure 2.4, upper right panel). As the only tetraploid sample with

karyotype of 86(81-90)<4n> having gain/loss in many chromosomes, relative to its ploidy

copy of 4, the count of the probes on ploidy copy was actually little lower than its one copy

gain and loss. After the ploidy copy, one copy gain and one copy loss are next 2 major copy

numbers within all gain/loss copy number across the genome(figure 2.4), suggesting that

the most dominated genomic events are one copy loss or gains. This matches what has been

observed with SKY.

2.4.6.2. Spread and density of the log2 ratio signals in different copy numbers

The log2 ratio signals for all copy number are symmetrically distributed in the density plot

(figure 2.4, upper left panel), especially for ploidy copy number. As the nominal signal
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mean deviates from 0, the spread of the signals become wider and tends to have a longer

tail towards the log2 ratio 0. Overall, the spread suggests a t distribution should be

appropriate to describe the data, and for copy numbers with signals off from zero should

have lower degree of freedom as more outliers are present in those copy number.

2.4.6.3. .Mean of the log2 ratio signals in different copy numbers

5 samples have the mean log2 ratio of their plodiy copy within -0.05-0.05 (table 1), 3

samples are off from 0 with greater than 0. 15, the rest 9 are between 0.05-0.15. In all the

samples, the nominal log2 ratio mean of all copy numbers are in a linear relationship with

their empirical log2 ratio mean (figure 2.4 lower left panel). When fitted with a linear

regression model, slope of the regression line reflecting the data compression levels, are in

a range of 0.4-0.7(table 1).
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Figure 2.4. Examples of Log2 ratio signal distribution of different copy numbers

across training samples. Each sample includes 4 graphs, the red line (or bar, points)

marks the ploidy copy

Upper left: The density plot of the signals of all copy numbers which marked on top on

their signal density line.

Upper right: Count of probes measuring the specific copy number.

Lower left: The log2 ratio signal mean and standard deviation of each copy number. The

X-axis is the empirical log2 ratio of each copy number. The Y-axis is the nominal log2

ratio. The bar marks the one standard deviation.

Lower right: The variance of the signal of all copy numbers. The X-axis is the nominal

mean of the signal, Y-axis is the nominal standard deviation of the signal. The black dash

line is the curve fit by sj = 2(abs(mj)-abs(mp))*sp, where mj and sj is the mean and

standard deviation of the signals of the copy number j, mp and sp is the mean and standard

deviation of the signals of the ploidy copy p
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Table 1. The signal mean and compression scaling parameters of all training samples

Sample signal mean of P value of
Slope

Name ploidy copy regression model

X1002 -0.11212 0.517348 0.001744

X442 -0.0487 0.507664 0.001504

X443 -0.10582 0.45616 0.002201

X454 -0.08789 0.591258 0.00091

MM.13 -0.10855 0.501518 0.004439

MM.16 -0.10406 0.59788 0.001319

MM. 185 -0.17916 0.485883 0.005676

MM.238 -0.0862 0.498962 0.005601

MM.30 -0.10119 0.584003 0.003994

MM.313 -0.11167 0.565215 7.56E-05

MM.35 -0.07945 0.403268 0.002985

MM.389 -0.15678 0.495348 0.000308

DanG 0.001457 0.504379 0.000949

Hs766T -0.1551 0.454197 0.000316

HUP.T4 0.199933 0.626521 0.000481

PA.8902 -0.00111 0.456991 2.75E-05

Pancl 0.038737 0.442532 1.69E-06

SU86.86 -0.03189 0.527175 6.08E-06

The signal mean of ploidy copy of all training samples and the compression scaling

parameter obtained by fitting a regression model of the nominal signal mean to empirical

signal mean. The third column is the p value of the fitting results.
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2.4.6.4. Variance of the signals in different copy numbers

The standard deviation of the log2 ratio signals for most copy numbers increases with their

absolute nominal signal mean but was harder to capture in a uniform linear formula (figure

2.4, lower right). One possible relationship could be used to explain this is

S- = 2 (abs(mj ) -abs(mp))*sp,

where mi and sj are the mean and standard deviation of the signals of the copy numberj, mp

and sp is the mean and standard deviation of the signals of the ploidy copy p (black line in

figure). It fits better in samples with lower noise in terms of the standard deviation of

ploidy copy, but the standard deviation of one copy loss changes might be underestimated.

Most of the copy number sd fits reasonably well; 2 samples appear to deviate from this

relationship: Hs766T and HUPT-4 in pancreatic set.

Given the observed log2 ratio distribution described above and the fact that one copy

gain/loss are the most frequently occurring changes across the genome, a sample specific

loss/gain compression scaling parameter again/loss can be obtained from the nominal distance

between the signal mean of one copy gain/loss with the ploidy copy number. In other

words, the estimation of emission probability can actually be reduced down to the

estimation of signal mean and standard deviation of ploidy copy and mean only for one

copy gain and loss.
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2.4.7 Applying HMM on training dataset

The compression scaling parameter a was calculated for all the training samples and HMM

with integer copy number states 0..8, 16, 32 was setup based upon it. The assumed signal

distribution of copy number 0 is calculated as 1/4 copy. The standard deviation setup was

based on the formula described above as si = 2 (abs(mj)-abs (mp)) sp. For each sample, the model

was fitted per chromosome each time, the posterior distribution of log2 ratio signals for

each inferred copy numbers from all 22 autosomes were calculated after processing. The

percentage of agreement of inferred copy number with assigned copy number was used as

a measurement of the inference accuracy. Almost as expected, the average agreement is

99.8% for all 19 samples for those data points with assigned copy number. Meanwhile, the

model is given a series of compression scaling parameter from 0.3-1.2 combined with

offset range of -0.2 -0.2 from signal mean of ploidy copy to see how the output results

would deviate from the assigned copy numbers when mean of the emission probability

specification deviates from the "real mean". Comparing accuracy for all inference results

across all the combination of the 2 parameters, the closer the parameter to the original scale,

the more accurate the result is. Figure 2.5 shows the results of inference accuracy on Pancl

for such procedure. The actual compression scaling parameter of Pancl is 0.42, the figure

clearly shows the best accuracy was with scaling parameter set as 0.4-0.5 and shifts from

the true signal mean within 0.05. The results of the other samples showed similar results.

This observation indicates that the posterior mean of inferred ploidy copy, one copy gain

and loss estimated from entire genome are uniformly close to their nominal distribution

(figure2.6), given the initial scaling parameters, offsets from the ploidy copy signal mean,

and ploidy copy signal standard deviation within a reasonable range (0.5-0.7 for scale and

-0.05-0.05 offset). Since the emission probability specification agrees with the real data is

essential in achieving the best inference, it suggests that we can use this re-estimated

emission probability to arrive at a final model and re-fit this improved final model to make

an accurate inference. In the case where there is no large segment of one copy gain or loss

in the profile, this can be used as the reference. A default scaling parameter or most

common ones can be use as a substitute. By this way, the parameter to specify the copy

number mean in initial model has been largely simplified and reduced.
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Figure 2.5 Accuracy of the inference results with posterior mean of ploidy copy, one

copy gain/loss under different initial shift and compression scaling parameters.

X-axis of all panels represents the shift from estimated signal mean. Different color of lines

in each figure represents different scaling parameters as in legend. The Y-axes are:

a) The accuracy of the inferred copy number.

b) The posterior signal mean of probes inferred as the ploidy copy.

c) The posterior signal mean of probes inferred as one copy up regarding the ploidy

copy.

d) The posterior signal mean of probes inferred as one copy down regarding the ploidy

copy.
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2.4.8 Determine the log2 ratio signal distribution of ploidy copy number

The ploidy copy is the majority of the copy number in the genome, however, its log 2 ratio

signal mean can be off from 0 as we showed above. Since array-CGH log2 ratio is spatially

correlated, median filtering was applied to the data with a medium size window (k=2 1) to

reduce the noise. Comparing mode of median filtered data with window size 21 on all

samples, they matched quite well (figure 2.6a) with the signal mean of their ploidy copy

with correlation 0.99 and slope of 1. This suggests that the mode of the median filtered data

could be a reliable way to estimate the mean of ploidy copy number. But for the standard

deviation of the log2 ratio signal of the ploidy copy, the profile noise and the signals from

the real changes are confounding. We tried to estimate it from the part of the data which

covers the 50% quartile around the log2 ratio mean of the ploidy copy. Figure 2.6b plotted

the ploidy copy standard deviation against the standard deviation obtained from middle

50% quartile of the raw data. The linear relationship was fitted with a regression mode with

R-square of 0.94, indicating a reasonable estimation for initial model setup. And this could

be further improved by using the posterior standard deviation based on the signals inferred

as the ploidy copy. Figure 2.6c is the actual standard deviation of the ploidy copy number

signals against the standard deviation of the signals from inferred ploidy copy generated

from the model with a default scaling parameter 0.7 and initial ploidy copy number mean

and standard deviation estimated as above. The R-square is almost 1.
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2.4.9 Adding Fractional Copy Number Status and its Model Selection

As array-CGH is detecting changes in entire population, there's always a possibility of

heterogeneity in many changes resulting in non-integer copy numbers. Figure 2.7a shows a

genome profile of a diploid sample on CL7. Most of the chromosome are intact 2 copies

with mean of log2 ratio 0. Chromosome 7q, 9q, 15q has one copy gain with log2 ratio of

0.44-0.45. Chromosome 19q has 1 copy loss with log2 ratio -0.67. This gives a data

compression of around 0.79 for gain and 0.67 for loss. The loss of 17q and 18p carry a log2

ratio of around -0.35. With only integer states, the changes on both the regions were

missed.

With 1/2 copy added, 18q and 19p will both inferred as 1.5 copies. The sum of squares,

measured as the square of distance between the raw log2 ratios to the median of inferred

states, of both chromosomes reduced 70-80%. This clearly indicates a much better fit

while the inference of rest chromosome remains about the same value. If we compare the

joint maximum likelihood, both chromosomes gained 30% in loglO scale. Table 2 gives

the statistics for all the chromosomes in this sample.
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Table 2. Fractional copy improves the explanation of the intermediate states in BAC

sample CL7.

p.star Ap.star
chr p.star pstarp.star star SS(1/2) ASS ASS/SS

(1/2) /p.star

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

Y

75.17(0

111.941

54.849

111.171

73.362

50.948

91.540

89.654

82.296

76.902

112.492

56.579

31.329

72.776

42.872

46.573

45.876

52.276

41.223

59.520

32.431

21.862

64.445

12.694

75.286

112.050

54.995

111.269

73.456

51.093

91.588

89.713

82.355

77.001

112.572

56.720

31.446

69.879

42.912

46.638

45.952

36.338

27.162

59.569

32.519

22.019

64.688

12.916

-0.115

-0.109

-0.146

-0.098

-0.094

-0.144

-0.049

-0.058

-0.059

-0.100

-0.080

-0.141

-0.117

2.897

-0.039

-0.064

-0.076

15.938

14.061

-0.049

-0.088

-0.156

-0.243

-0.222

-0.002

-0.001

-0.003

-0.001

-0.001

-0.003

-0.001

-0.001

-0.001

-0.001

-0.001

-0.002

-0.004

0.040

-0.001

-0.001

-0.002

0.305

0.341

-0.001

-0.003

-0.007

-0.004

-0.017

0.812

1.485

0.611

1.505

1.263

0.708

0.871

1.050

1.035

0.995

1.522

0.765

0.422

1.429

0.737

0.808

0.566

1.638

1.896

0.856

0.904

0.816

1.374

0.300

0.812

1.485

0.611

1.505

1.263

0.708

0.871

1.050

1.035

0.995

1.522

0.765

0.422

1.243

0.737

0.808

0.566

0.485

0.334

0.856

0.904

0.816

1.374

0.300

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.186

0.000

0.000

0.000

1.153

1.562

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.130

0.000

0.000

0.000

0.704

0.824

0.000

0.000

0.000

0.000

0.000

The improvement in p.star (joint likelihood of emission and transition probability) and sum

of squares between the raw value and the emission mean of state inferred. Chromosme 17q

and 18p, which by visual inspection needs a intermediate state between 1 and 2, inferred as
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1.5 copy, their p.star improvement was more than 30% and 70% of sum of squares, while

except for chromosome 14, others all remain about the same
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a.

b.

chrl 8

chrl 9

C.

chrl 8

chrl 9

Figure 2.7. The fractional states setup improves fitting statistics.

a) The genome wide view of CL7 in Albertson dataset. The probes are plotted along

the chromosome order with their physical position. Chromosome 20 shows one

copy loss. 7q, part of 9 and 14, 15 are 1 copy gain. End of 18q and start of 19p has

log2 ratio between one copy loss and no change.

b) HMM inference with integer states only. End ofl 8q is inferred as partial no change

and 1 copy loss. 19p was inferred as 1 copy loss.

c) HMM inference with half states. Both end 18q and start of 19q are inferred as 1.5

copies.
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One concern over adding fractional copy numbers is that it might trigger spurious

transitions between close neighboring copy number states caused by local data trend.

Reducing the transition probabilities down by scaling on Haldane's map function might

help, but it also restricts the proper transition to certain focal change, which is often

important biologically. So it's a necessity to make a model selection between integer copy

models and fractional copy number models. The fitting statistics for selection can be either

sum of squares or p.star, the joint maximum likelihood of emission and transition

probabilities calculated from Viterbi algorithm or simply, the number of transitions. p.star

automatically punishes the transition between the states while measuring the good of

fitness. To check how this scheme works on other samples, we picked 12 chromosomes

with non-integer copy numbers from 9 multiple myeloma samples, whose copy number

inference is alternating between 2 integer copies or missed (table 3). After fitting with a

model with fractional copy status, all 15 chromosomes picked up a better fit with p.star

improvement over 3%. While for the rest of 193 chromosomes their p.star improvements

usually were less than 1% or negative. This suggests a 3% improvement on p.star could be

a reasonable cutoff for model selection, but it's better for it to be leaved as an option for

adjustment in real practice.
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Table 3. Improvement of fitting statistics on selected chromosomes

# probes p.star Sum of

changed in change squares
sample chr Ap.star/p.star ASS/SS

inference per on per

results count probes

X449 2 0.099 0.319 1040 0.065 0.048

X449 5 0.080 0.299 574 0.062 0.048

X449 17 0.069 0.275 930 0.044 0.038

MM.10 9 0.090 0.317 460 0.077 0.030

MM.10 22 0.085 0.156 272 0.078 0.015

MM.341 6 0.115 0.429 363 0.150 0.043

MM.341 10 0.070 0.374 604 0.040 0.015

MM.341 2 0.080 0.093 577 0.082 0.006

MM.341 15 0.064 0.183 471 0.033 0.005

MM.342 4 0.059 0.240 241 0.084 0.027

MM.35 22 0.036 0.391 361 0.021 0.077

MM.386 19 0.041 0.223 1005 0.027 0.019

MM.389 8 0.047 0.275 213 0.075 0.056

MM.393 8 0.076 0.184 498 0.050 0.013

The improvement of fitting statistics: p.star (the joint likelihood of emission and transition)

and sum of squares on selected chromosomes after fractional copy states has been added.
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2.4.10 Assumption and Algorithm

The algorithm will take normalized array-CGH log2 ratio:

1. Estimate mean and standard deviation of the ploidy copy number:

Median filter data with window size k (usually 1/40 of the total probe size).

Calculate the mode as the estimate for mean of the pliody copy.

2. Setup a HMM with copy number states O...K, with a default scaling parameter

(usually 0.7) to fit the model on a single chromosome each time.

3. Use the 50% quartile of the data around estimated signal mean of the ploidy copy

number and pre-trained regression estimation parameter to estimate the standard

deviation of the ploidy copy.

4. Summarize signal distribution of ploidy copy number, and one copy up and down.

Only data from segments with greater than 50 probes are used.

5. Update the mean and standard deviation of the ploidy copy number .Calculate the

sample and gain/loss specific compression scale a gain/loss. If one of such change

(gain or loss) is not available, use the estimation from the other change. If both type

of change not present, use default scaling parameter.

6. Redefine the emission probability based on the new estimation and re-fit the model.

The assumption for samples to infer absolute copy numbers are:

1. Known ploidy and it is homogenous at ploidy level,

2. Heterogeneous changes are only small portions in the entire genome.

3. One copy gain and loss constitutes majority of the change in all gain/loss

events.

For samples without known ploidy copy number, usually diploid is assumed. In this case,

only relative nominal log2 ratio is recommended to use for results.
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2.5. Validation on Independent Samples

Independent samples were tested on the method including 50 primary multiple myeloma

and 31 recurrent giloma samples as along with the remaining 4 pancreatic cell lines. The

states were setup as in the training set but fractional copy numbers were added between

lower copy number states as: 1/8, /4, /2, 1, 1/2, 2, 2/2, 3, .., 8, 16, 32. The initial scaling

parameter was set to 0.7 and the regression formula used to estimate the initial ploidy

variance was setup as -0.2+3.7*sp as obtained from the training dataset.

Table 4. HMM inferred copy numbers compare to the real copy number observed in

SKY.

Inferred copy number
True copy chromosomes

number arms 1 2 3 4 5 6 7 other

1 23 23

2 12 12

3 45 45

4 22 20 2

5 3 3

6 4 2 2

total 109

109 chromosomes are randomly selected to validate the result of HMM inference. Among

all chromosomes only 4 was inferred as one copy number more than its actual SKY

observation. But this does not change the result of gain/loss call.

2.5.1 Copy number inference on genome scale at low change level

Partial or entire chromosomal gain and loss are important genomic structure aberrations

and may lead to pattern discovery if it is recurrent and associated with certain clinical

phenotype. The copy number inference results on these large scale changes are compared

with SKY data. 109 representative entire/partial chromosomes or arm length of copy

number ranging from 1 to 7 were picked from 50 samples (4 pancreatic cell lines, 15

primary multiple myelomas) where array-CGH and SKY agrees closely. The method
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predicts the copy number with 98% accuracy (table 2). For the 3 over estimated copy

number, the aberration status does not change. Figure 2.8 shows the detailed comparison of

psudo-karyotype ideogram (2.8b) generated with inferred copy number of AsPC-1

comparing with its SKY image (2.8c). The karyotype of AsPC-1 is 53<2n>, the relative

change in array-CGH log2 ratio (2.8a) match with all the 24 chromosomes (2.8c). In this

example, the inferred copy number shows exact match in entire/partial chromosome copy

number change with SKY image side by side.

2.5.2 Focal change detection

Other than the large, high-confidence regions, the method has detected many focal changes

in both training/testing dataset. Real-time quantitative PCR (qPCR) validated loci in the

pancreatic cell line data set and has been collected and compared to the inference results

(table5). The size of the loci in terms of number of probes ranges from >20 probes down to

single probe. The method has detected all the changes presented from the raw data and

inferred relative copy numbers were closer to qPCR results compared to raw log2 ratio.

Figure 2.9 shows a few such examples in better detail: a single probe deletion on CDKN2A

on chromosome 9p (Pancl), 2 probe EGFR amplicon on chromosome 7 (3R in RG), two

homozygous deletion in BxPC.
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Sample

Pancl

ASPC1

Pancl

DanG

TU8902

TU8902

TU8902

ASPC1

ASPC1

HPAC

ASPC1

DanG

Pancl

Panel

qPCR

15

14.23

13

12

6.59

4.36

3.2

2.23

2.145

0.56

0.315

0.26

0.258

0

raw

3.06165

9.902337

9.747699

8.58825

3.226567

3.646595

2.709247

0.586794

0.938917

0.763244

0.586794

0.601449

0.644477

0.362128

HMM

16

16

16

16

8

4

4

1.5

2

0.67

0.5

0.33

0.67

0

Change

amplification

amplification

amplification

amplification

amplification

gain

gain

gain

gain

loss

loss

loss

loss

deletion

Comparison of relative gene copy obtained with real-time qPCR with the raw log2 ratio

versus HMM inferred copy in pancreatic cancer cell lines.
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Table 5. Focal changes by HMM in pancreatic dataset.

Relative Gene Copy

CytoBand

19q13.2

7q22.1

19q13.2

12p12.3

12p12.3

12p12.3

12p11.21

9p21.1

7q21.12

9p21.3

9p21.3

8p21.3

8p21.3

9p2l.3

Gene

PD2

TRAAP

CLC

CPAZA3

CPAZA3

CPAZA3

MGC24039

CDKN2A

CROT

CDKN2A

CDKN2A

LZTS1

LZTS 1

CDKN2A

-



2.5.3 Copy number inference on samples with unknown ploidy copy number

Of most samples used in this study, SKY results are available to provide the ploidy

information. In RG dataset, the ploidy copies are unknown since no chromosome banding

experiment information is available. Since diploid is often dominating in most of the

primary tumors, we assumed all the samples are diploid and ran the HMM model with copy

number states as we setup in the training dataset. Half copy states between copy numbers 0

and 3 (1/2 ,11/2, 21/2) are added to explain the possible heterogeneity in those samples. Instead

of directly using inferred copy number, the median of the log2 ratio estimated from each

segments are used as results to provide a relative quantification for the change. The change

points in the data are identified at the position where transitions between different copy

number states occurred. We compared all the position of change points with the CBS

output, found the called change points are very similar for entire dataset. The major

difference between the two is that CBS does not pick single probe change. When single

probe segments are merged to the 2 neighboring segments if they agree, the two methods

have agreement on most of the transition points. The disagreement often happens when

distance related transition is involved like 2 probes across a region greater than 10Mb such

as centromere region. This method will infer the transition at centromere and CBS often

breaks the data one or two probe off it (figure 2.1 Oa). Other type of agreement is often

caused by local data trend and outliers (figure 2.1 Oa and 2. 10b). In focal change detection,

our method shows better sensitivity compared to CBS, especially on loci with larger

variance (figure 2.10b). Of the entire 35 profiles including 2 duplicates, EGFR amplicon is

present inl7 profiles, including 5 single probe amplifications. Along with the single probe

amplicons, CBS also failed to identify 3 out of 5 two probe EGFR amplicons. Though the

amplitude of the amplicons are very high (average log2 ratio >3), the variance in the 3

missed amplicons are roughly twice than those 2 that were not missed (0.7 vs. 0.4). Overall,

under the circumstance where no ploidy information is available, the method still detects

meaningful copy number transitions as well as focal change.
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Figure 2.8. Example of HMM inference results of the pancreatic cell lines of AsPC-1

a) Genome wide view of the profile AsPC- 1

b) The inference results for sample AsPC-1 in psudo-karyotype form. The x-axis

is number of chromosomes

c) Published the SKY image for Aspc-140

47

7

1L



b

oO Po l . m u

t ~ ~ I Iu oo 

_& -q sftOA?)
Ok a a 'Wl o -W.!MV

o 0

0o
0

52 523 V22 .21 D . 3I , I .20 on on q D

d.

r7

I

i a

Onat rd)8'sv -J~w4+

I 1 mm _
p'S p'4 pl3 p12 p11

I I

Figure 2.9. Examples of real-time PCR validated focal change identified by HMM.

The navy dots are raw log2 ratio. The orange segments are inferred copy number draw at

corresponding copy number states. X-axis is base pair position along a single chromosome.

a. Single probe showing homozygous deletion of CDKN2A on chromosome 9p in

Pancl. Inferred copy number is 0.

b. 2 probe EGFR amplicon in 3R (RG dataset), inferred copy number is 32.

c. 2 probe homozygous deletions. Inferred copy number is 0.
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Figure 2.10. Comparison of CBS and HMM in RG sets.

a. Plot of chromosome 20 of 3F. The raw data is plotted along the physical position as

navy circles. The HMM inferred copy number segments are in orange line overlay

on top of the raw data. The CBS output is in red dotted line. The 20q has low-level

amplification of entire arm. HMM identify the transition at centramere. CBS

identify the change including centramere (red arrow 1). HMM has the change

points at 20q end (red arrow2, probably due to the data trend).

b. Plot of chromosome in of... 5 segments are identified by CBS because of local data

trend.

c. The EGFR amplicon in RG dataset. Of 33 profiles, 17 has EGFR amplicon

including 5 only single probe amplification (black arrow). 3 of the two probe

amplicon (blue arrow) are missed by CBS.
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3. Discussion and perspective

This thesis has developed a novel method for analysis of array-CGH data based on Hidden

Markov Modeling that enables automatic assessment of complex datasets for detection of

structural aberrations in tumor genomes. By transforming the standard array-CGH output

of log2 fluorescence ratios into absolute copy number values, this approach makes possible

the meaningful and straightforward biological interpretation of array-CGH data. In

contrast to other established methods of array-CGH analysis (e.g. segmentation, CLAC,

etc), HMM overcomes two fundamental problems of copy number analysis: 1)

Establishment of a baseline copy number that faithfully reflects the ploidy of each

independent sample analyzed and 2) Elimination of the data compression seen on a

sample-specific basis. When this HMM-based method of analysis was applied to multiple

independent datasets/samples, it effectively predicted copy number values that showed

strong concordance with results confirmed by other techniques such as SKY and qPCR.

The goal of aCGH analysis is to define deviations from baseline genomic copy number

(denoted as "0" on an aCGH profile) within a sample. This baseline copy number should

reflect the ploidy of the sample, which is assumed to be diploid. However, for a large

proportion of samples, the baseline ploidy is not diploid; thus, a shift of the baseline to

account for such deviation is essential for identifying changes in those samples under a

uniform hard threshold. To establish the baseline copy number for each individual sample,

the distribution of log2 fluorescence values for all probes is examined and the mode value

is determined, regardless of whether the actual ploidy copy number is known. This mode

value is assigned as the baseline copy number. However, when supporting data (banding

experiment such as SKY) regarding the sample ploidy is available, this baseline copy

number can now be given its true copy number value.

Failure to reset the proper aCGH baseline can result in misinterpretation of gain and loss

within a sample. In the example of MM. 1 1 (figure 5c), as a diploid sample, the signal

mean of ploidy copy (i.e. 2 copies) is -0.11 and 3 copies (one copy gain) is around 0.14.

The gains on chromosomes 3, 9, 11, 15 and so on could be miscalled as insignificant

changes if we simply adhere to the widely accepted threshold of +/-0.2 to mark gain and
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loss within an aCGH sample. However, resetting the ploidy copy number as 0 results in

one copy gain being designated as 0.24 and thus correctly falls beyond the threshold for

classifying it as a gain of copy number. There are many similar examples within in the

entire myeloma dataset and proper resetting of the baseline copy number in these samples

is critical for recurrence and pattern analysis.

By inferring absolute copy number change, HMM eliminates the data compression issue

present on a sample specific basis. Identical copy number levels are transformed to an

identical y-axis value and thus are better representative of their ground truth. The uniform

hard threshold can be applied to categorize changes without affecting those highly

compressed samples (such as primary tumors). For categorical data analysis, this will

improve the accuracy at the probe level, and reduce the false positive and negative rate

especially for multiple testing and sample/group comparison with smaller sample size.

To infer absolute copy numbers for each sample, HMM analysis ideally requires two basic

parameters: 1) that each sample consists of a homogeneous composition of tumor cells and

with heterogeneous changes comprising only small proportions of the entire genome and 2)

a knowledge of the ploidy level for each individual sample. Since ploidy information is not

always available, this is certainly one significant limitation to usage of a HMM-based

approach. Furthermore, HMM may not be appropriate for extremely heterogeneous

samples when the one copy gain and loss might not be the most dominating changes.

That said, for samples with unknown ploidy but relatively homogeneous genomic content,

one may make the assumption of diploidy. Under this assumption, HMM identifies the

change points which agree well with those identified by other methods of analysis such as

CBS. In such cases of unknown ploidy, it is not possible for this HMM-based approach to

report true copy number values for each probe. Instead, we utilize HMM as a method of

identifying change points and report the baseline-adjusted log2 ratio of T/N fluorescence

values for each probe on the array. While HMM cannot determine the data compression

level in the absence of knowledge of the ploidy copy number, assessment of one copy

deviation from the mode copy number within each individual sample enables effective

determination of copy number change on a sample specific basis.
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To describe the minor heterogeneity in the sample, fractional copy number states were

added to bridge the gap between some neighboring states with a large difference in their

means. However, adding too many states with close means can easily invoke spurious

transitions between neighboring states that are caused by local data trends and may create

artificial break points. This could make the results of some high level analysis misleading.

For example, in subsequent automatic locus identification and prioritization algorithms,

short segments are given larger weight than long ones because they are believed to be more

informative on a biologic level. Thus, spurious short segments can significantly skew the

results of these analyses. So far, using a p.star based model selection has successfully

helped to decide whether partial copy states are needed. Additionally, one could choose

whether to incorporate additional partial states based on the noise level of the profile --

fewer additional states would be appropriate for profiles with higher noise levels.

The outputs of this HMM method are copy number values which can be translated into

log2 ratios that are equally representative for both gains and losses within a sample. Such

equal representation of gain and loss is important for accurate descriptions of the biology

of tumor specimens and is crucial for subsequent high level analyses at the informatic level.

Compared with the relative log2 ratio outputs from other methods, the HMM log2 ratio

data is more discrete, with copy number described in terms of a finite set of discrete log2

transformed values. Given that most current genomic data analysis methods are designed

for continuous data, further new statistical methodology must be developed to better utilize

this kind of discrete data in both probe level and segment level analyses. Such improved

methodology will facilitate utilization of this data for addressing interesting biological

problems such as pattern discovery and integrative analysis with data from other

dimensions such as microarray gene expression profiles.

52



4. Software - R package HmmCGH

To fully facilitate the computation task in this study, the algorithm was implemented into a

specific full function software system R package named HmmCGH.

4.1. Main Data structure

The main data structure includes 3 R class/object:

(1) acghSet:

This object is used to store the raw log2 ratio of the entire dataset and sample

information. The median filtered data is store in this structure mainly used for

visual inspection and estimation of mean for the ploidy copy.

(2) hmmParam

A set of parameters used to make copy number inference for a single profile:

including initial states, the ploidy copy, initial compression scaling parameter,

variance estimation model options and model selection on partial states. Wrapping

all essential parameters in one single object makes the parameter easy to access in

function calls.

(3) hmmlnferRes

The inference results for a single profile. This object encapsulates a few data

frames: the inferred copy number with initial and final states setup, the signal

distribution of different copy numbers, the uniform copy number segments

summary and the segmented data with its original log2 ratio scale. The structure

provides a convenient and ready access for visualization and data summarization.

4.2. Functionality and work flow

The major functionality integrated with its work flow can be viewed as:

· IO: read in raw data, write inference result in table format

* HMM inference: copy number inference on array-CGH data

* Model selection on different parameters

· Visualization results: graphical display of the inferred results on genome-wise,

chromosome and focal level.
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4.3. Computational performance

With the fast increasing resolution of the microarray platform, efficient computation time

is required to make durable analysis on a large dataset. The Viterbi algorithm used in this

method requires 0(3) (*k*k*N, where is the number of probes in entire profile, k is

number of states and N is a number of fixed steps in each loop). Known to be inefficient on

loop based procedures, 17K data points takes 2-3 minute to finish for one single sample

when the inference procedure is first implemented in R. To reduce the computation time,

the procedure was re-implemented in C and connected with R. The final running time is

around 3 seconds for such sample. With the final visualization and summarization factored

in, the entire procedure only takes around our hour for a dataset of 100 samples which is

fairly efficient.
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