
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-045 June 15, 2006

Approximate Correspondences in High Dimensions
Kristen Grauman and Trevor Darrell

Approximate Correspondences in High Dimensions

Kristen Grauman and Trevor Darrell
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{kgrauman,trevor}@csail.mit.edu

Abstract

Pyramid intersection is an efficient method for computing an approximate partial
matching between two sets of feature vectors. We introduce a novel pyramid em-
bedding based on a hierarchy of non-uniformly shaped bins that takes advantage
of the underlying structure of the feature space and remains accurate even for sets
with high-dimensional feature vectors. The matching similarity is computed in
linear time and forms a Mercer kernel. We also show how the matching itself
(a correspondence field) may be extracted for a small increase in computational
cost. Whereas previous matching approximation algorithms suffer from distortion
factors that increase linearly with the feature dimension, we demonstrate that our
approach can maintain constant accuracy even as the feature dimension increases.
When used as a kernel in a discriminative classifier, our approach achieves im-
proved object recognition results over a state-of-the-art set kernel.

1 Introduction

When a single data object is described by a set of feature vectors, it is often useful to consider the
matching or “correspondence” between two such sets’ elements in order to measure their overall
similarity or recover the alignment of their parts. For example, in computer vision, images are often
represented as collections of local part descriptions extracted from regions or patches (e.g., [10, 12]),
and many recognition algorithms rely on establishing the correspondence between the parts from
two images to quantify similarity between objects or localize an object within the image [2, 3, 5].
Likewise, in text processing, a document may be represented as a bag of word-feature vectors; for
example, Latent Semantic Analysis can be used to recover a “word meaning” subspace on which
to project the co-occurrence count vectors for every word [7]. The relationship between documents
may then be judged in terms of the matching between the sets of local meaning features.

The critical challenge, however, is to compute the correspondences between the feature sets in an
efficient way. The optimal correspondences—those that minimize the matching cost—require cubic
time to compute, which quickly becomes prohibitive for sizeable sets and makes processing realistic
large data sets impractical. Due to the optimal matching’s complexity, researchers have developed
approximation algorithms to compute close solutions for a fraction of the computational cost [6, 4,
1, 5]. However, previous approximations suffer from distortion factors that increase linearly with
the dimension of the features, and they fail to take advantage of structure in the feature space.

In this paper we present a new algorithm for computing an approximate partial matching between
point sets that can remain accurate even for sets with high-dimensional feature vectors, and benefits
from taking advantage of the underlying structure of the feature space. The main idea is to derive a
hierarchical, data-dependent decomposition of the feature space that can be used to encode feature
sets as multi-resolution histograms with non-uniformly shaped bins. For two such histograms (pyra-
mids), the matching cost is efficiently calculated by counting the number of features that intersect
in each bin, and weighting these match counts according to geometric estimates of inter-feature dis-

tances. Our method allows for partial matchings, which means that the input sets can have varying
numbers of features in them, and outlier features from the larger set can be ignored with no penalty
to the matching cost. The matching score is computed in time linear in the number of features per
set, and it forms a Mercer kernel suitable for use within existing kernel-based algorithms.

In this paper we demonstrate how, unlike previous set matching approximations (including the orig-
inal pyramid match algorithm described in [5]), the proposed approach can maintain consistent
accuracy as the dimension of the features within the sets increases. This makes our approach more
generally applicable to situations where high-dimensional features are necessary or may improve
performance. We also show how the data-dependent hierarchical decomposition of the feature space
results in more accurate correspondence fields than a previous approximation method that uses a
uniform decomposition. Finally, using our matching measure as a kernel in a discriminative classi-
fier, we achieve improved object recognition results over a state-of-the-art set kernel on a benchmark
data set.

2 Related Work

Several previous matching approximation methods have also considered a hierarchical decomposi-
tion of the feature space to reduce matching complexity, but all suffer from distortion factors that
scale linearly with the feature dimension [4, 6, 1, 5]. In this work we show how to alleviate this
decline in accuracy for high-dimensional data by tuning the hierarchical decomposition according
to the particular structure of the data, when such structure exists.

We build on our pyramid match algorithm [5], a partial matching approximation that also uses
histogram intersection to efficiently count matches implicitly formed by the bin structures. However,
in contrast to [5], our use of data-dependent, non-uniform bins and a more precise weighting scheme
results in matchings that are consistently accurate for structured, high-dimensional data.

The idea of partitioning a feature space with vector quantization (VQ) is fairly widely used in prac-
tice; in the vision literature in particular, VQ has been used to establish a vocabulary of prototypical
image features, from the “textons” of [9], to the “visual words” of [16]. Spatial pyramids were
shown to be effective for matching quantized features in [8]. More recently, the authors of [13]
have shown that a hierarchical quantization of image features provides a scalable means of index-
ing into a very large feature vocabulary. The actual tree structure employed is similar to the one
constructed in this work; however, whereas the authors of [13] are interested in matching single fea-
tures independently to one another to access an inverted file, our approach computes approximate
correspondences between sets of features. Note the similar distinction between the problem we are
addressing—approximate correspondence matching between sets—and the problem of efficiently
identifying approximate or exact nearest neighbor feature vectors (e.g., via k-d trees): in the former,
the goal is a one-to-one correspondence between sets of vectors, whereas in the latter, a single vector
is independently matched to a nearby vector.

3 Approach

The main contribution of this work is a new very efficient approximate bipartite matching method
that measures the correspondence-based similarity between unordered, variable-sized sets of vec-
tors, and can optionally extract an explicit correspondence field. Unlike previous approaches, our
method uses the feature distribution to aid the approximation, and it can efficiently produce accurate
correspondences even for high-dimensional feature sets. We call our algorithm the vocabulary-
guided pyramid match, since the histogram pyramids are defined by the “vocabulary” or structure of
the feature space, and the pyramids are used to count implicit matches.

The basic idea is to first partition the given feature space into a pyramid of non-uniformly shaped
regions based on the distribution of a provided corpus of feature vectors. Point sets are then encoded
as multi-resolution histograms determined by that pyramid, and an efficient intersection-based com-
putation between any two histogram pyramids yields an approximate matching score for the original
sets. The implicit matching version of our method estimates the inter-feature distances based on their
respective distances to the bin centers. To produce an explicit correspondence field between the sets,
we simply use the pyramid construct to divide-and-conquer the optimal matching computation. As

(a) Uniform bins (b) Vocabulary-guided bins

Figure 1: Rather than carve the feature space into uniformly-shaped partitions (left), we let the vocabulary
(structure) of the feature space determine the partitions (right). As a result, the bins are better concentrated on
decomposing the space where features cluster, particularly for high-dimensional feature spaces. These figures
depict the grid boundaries for two resolution levels for a 2-D feature space. In both (a) and (b), the left plot
contains the coarser resolution level, and the right plot contains the finer one. Features are small points in red,
bin centers are larger black points, and blue lines denote bin boundaries.

our experiments will show, the proposed algorithm in practice provides a good approximation to the
optimal partial matching, but is orders of magnitude faster to compute.

3.1 Preliminaries

We consider a feature space F of d-dimensional vectors, F ⊆ �d. The point sets our algorithm
matches will come from the input space S, which contains sets of feature vectors drawn from F :

S =
{
X|X = {x1, . . . ,xm}

}
, where each xi ∈ F ⊆ �d, and the value m = |X| may vary across

instances of sets in S. Please note that throughout the text we will use the terms feature, vector, and
point interchangeably to refer to the elements within a set.

A partial matching between two point sets is an assignment that maps all points in the smaller set
to some subset of the points in the larger (or equal-sized) set. Given point sets X and Y, where
m = |X|, n = |Y|, and m ≤ n, a partial matching

M (X,Y;π) = {(x1,yπ1), . . . , (xm,yπm
)} (1)

pairs each point in X to some unique point in Y according to the permutation of indices specified
by π = [π1, . . . , πm], 1 ≤ πi ≤ n, where πi specifies which point yπi

∈ Y is matched to xi ∈ X,
for 1 ≤ i ≤ m. The cost of a partial matching is the sum of the distances between matched points:

C (M(X,Y;π)) =
∑
xi∈X

||xi − yπi
||2. (2)

The optimal partial matching M(X,Y;π∗) uses the assignment π∗ that minimizes this cost:

π∗ = argmin
π

C (M(X,Y;π)) . (3)

It is this matching that we wish to efficiently approximate. In Section 3.3 we describe how our
algorithm approximates the cost C (M(X,Y;π∗)), and then we describe how for a small increase
in computational cost we can also extract explicit correspondences to approximate π∗ itself.

3.2 Building Vocabulary-Guided Pyramids

The first step is to generate the structure of the vocabulary-guided pyramid to define the bin place-
ment for the multi-resolution histograms used in the matching. This is a one-time process performed
before any matching takes place. We would like the bins in the pyramid to follow the feature dis-
tribution and concentrate partitions where the features actually fall. To accomplish this, we perform
hierarchical clustering on a sample of representative feature vectors from F .

We randomly select some example feature vectors from the feature type of interest to form the repre-
sentative feature corpus, and perform hierarchical k-means clustering with the Euclidean distance to
build the pyramid tree. Other hierarchical clustering techniques, such as agglomerative clustering,
are also possible and do not change the operation of the method. For this unsupervised clustering

process there are two parameters: the number of levels in the tree L, and the branching factor k.
The initial corpus of features is clustered into k top-level groups, where group membership is de-
termined by the Voronoi partitioning of the feature corpus according to the k cluster centers. Then
the clustering is repeated recursively L − 1 times on each of these groups, filling out a tree with L
total levels containing ki bins (nodes) at level i, where levels are counted from the children of the
root (i = 1) to the leaves (i = L). The bins are irregularly shaped and sized, and their boundaries
are determined by the Voronoi cells surrounding the cluster centers. (See Figure 1.) For each bin in
the vocabulary-guided pyramid we record its diameter—the maximal inter-feature distance between
any points from the initial feature corpus that were assigned to it.

Once we have constructed a vocabulary-guided pyramid, we can embed point sets from S as multi-
resolution histograms. A point’s placement in the histogram pyramid is determined by comparing it
to the appropriate k bin centers at each of the L pyramid levels. The histogram count is incremented
for the bin (among the k choices) that the point is nearest to in terms of the same distance function
used to cluster the initial corpus. We then push the point down the tree and continue to increment
finer level counts only along the branch (bin center) that is chosen at each level. So a point is
first assigned to one of the top-level clusters, then it is assigned to one of its children, and so on
recursively. This amounts to a total of kL distances that must be computed between a point and the
pyramid’s bin centers.

Given the bin structure of the vocabulary-guided pyramid, a point set X is mapped to its pyramid
Ψ(X):

Ψ(X) = [Hi(X), . . . , HL(X)]
Hi(X) = [〈p, n, d〉1, . . . , 〈p, n, d〉ki] , (4)

where Hi(X) is a ki-dimensional histogram associated with level i in the vocabulary-guided pyra-
mid, p ∈ Z

i for entries in Hi(X), and 1 ≤ i ≤ L. Each entry in this histogram is a triple 〈p, n, d〉
giving the bin index, the bin count, and the bin’s points’ maximal distance to the bin center, respec-
tively.

Storing the vocabulary-guided pyramid itself requires space for O(kL) d-dimensional feature vec-
tors, i.e., all of the cluster centers. However, each point set’s histogram is stored sparsely, meaning
only O(mL) nonzero bin counts are maintained to encode the entire pyramid for a set with m
features. This is an important point: we do not store O(kL) counts for every point set; Hi(X) is
represented by at most m triples having n > 0. We achieve a sparse implementation as follows: each
vector in a set is pushed through the tree as described above. At every level i, we record a 〈p, n, d〉
triple describing the nonzero entry for the current bin. The vector p = [p1, . . . , pi], pj ∈ [1, k]
denotes the indices of the clusters traversed from the root so far, n ∈ Z

+ denotes the count for the
bin (initially 1), and d ∈ � denotes the distance computed between the inserted point and the current
bin’s center. Upon reaching the leaf level, p is an L-dimensional path-vector indicating which of the
k bins were chosen at each level, and every path-vector uniquely identifies some bin on the pyramid.

Initially, an input set with m features yields a total of mL such triples—there is one nonzero entry
per level per point, and each has n = 1. Then each of the L lists of entries is sorted by the index
vectors (p in the triple), and they are collapsed to a list of sorted nonzero entries with unique indices:
when two or more entries with the same index are found, they are replaced with a single entry with
the same index for p, the summed counts for n, and the maximum distance for d. The sorting is done
in linear time using integer sorting algorithms. Maintaining the maximum distance of any point in a
bin to the bin center will allow us to efficiently estimate inter-point distances at the time of matching,
as described in Section 3.3.

3.3 Vocabulary-Guided Pyramid Match

Given two point sets’ pyramid encodings, we efficiently compute the approximate matching score
using a simple weighted intersection measure. The vocabulary-guided pyramid provides a parti-
tioning of the feature space at multiple resolutions that is used to direct the matching. The basic
intuition is to start collecting groups of matched points from the bottom of the pyramid up, i.e., from
within increasingly larger partitions. In this way, we will first consider matching the closest points
(at the leaves), and as we climb to the higher-level clusters in the pyramid we will allow increasingly
further points to be matched. We define the number of new matches within a bin to be a count of

the minimum number of points either of the two input sets contributes to that bin, minus the num-
ber of matches already counted by any of its child bins. A weighted sum of these counts yields an
approximate matching score.

Let nij(X) denote the element n from 〈p, n, d〉j , the jth bin entry of histogram Hi(X), and let
ch (nij(X)) denote the element n for the hth child bin of that entry, 1 ≤ h ≤ k. Similarly, let
dij(X) refer to the element d from the same triple. Given point sets X and Y, we compute the
matching score via their pyramids Ψ(X) and Ψ(Y) as follows:

C (Ψ(X), Ψ(Y)) =
L∑

i=1

ki∑
j=1

wij

[
min (nij(X), nij(Y))−

k∑
h=1

min (ch (nij(X)) , ch (nij(Y)))

]
(5)

The outer sum loops over the levels in the pyramids; the second sum loops over the bins at a given
level, and the innermost sum loops over the children of a given bin. The first min term reflects
the number of matchable points in the current bin, and the second min term tallies the number of
matches already counted at finer resolutions (in child bins). Note that as the leaf nodes have no
children, when i = L the last sum is zero. All matches are new at the leaves. The matching scores
are normalized according to the size of the input sets in order to not favor larger sets.

The number of new matches calculated for a bin is weighted by wij , an estimate of the distance
between points contained in the bin.1 With a vocabulary-guided pyramid match there are two alter-
natives for the distance estimate: (a) weights based on the diameters of the pyramid’s bins, or (b)
more precise weights based on the maximal distances of the points in the bin to its center. The first
option is a conservative estimate of the actual inter-point distances in the bin if the corpus of features
that built the pyramid is representative of the feature space. As a similarity measure, this choice has
the advantage of providing a guaranteed Mercer kernel (see below), and it also eliminates the need to
store a distance d in the entry triples. On the other hand, we can also produce input-specific distance
estimates. The second option is to estimate the distance between any two points in the bin as the
sum of the stored maximal to-center distances from either input set: wij = dij(X) + dij(Y). In
fact, this is a true upper bound on the furthest any two points could be from one another.

Just as we encode the pyramids sparsely, we derive a means to compute intersections in Eqn. 5
without ever traversing the entire pyramid tree. Given two sparse lists Hi(X) and Hi(Y) which
have been sorted according to the bin indices, we obtain the minimum counts in linear time in the
number of nonzero entries by moving pointers down the lists and processing only entries that share
an index, making the time required to compute an approximate matching between two pyramids
O(mL). A key aspect of our method is that we obtain a measure of matching quality between
two point sets without computing pair-wise distances between their features—an O(m2) savings
over sub-optimal greedy matchings. Instead, we exploit the fact that the points’ placement in the
pyramid reflects their distance from one another. The only inter-feature distances computed are the
kL distances need to insert a point into the pyramid, and this small one-time cost is amortized every
time we re-use a pyramid embedding to approximate another matching against a different point set.

We first suggested the idea of using histogram intersection to count implicit matches in a multi-
resolution grid in [5]. However, in [5], bins are constructed to uniformly partition the space, bin
diameters exponentially increase over the levels, and intersections are weighted indistinguishably
across an entire level. In contrast, we have developed a pyramid embedding that partitions according
to the distribution of features, and weighting schemes that allow more precise approximations of the
inter-feature costs. As we will show in Section 4, our proposed vocabulary-guided pyramid match
remains accurate and efficient even for high-dimensional feature spaces, while the method given
in [5] is limited in practice to relatively low-dimensional features.

For the increased accuracy our method provides, there are some complexity trade-offs versus the
method in [5], which does not require computing any distances to place the points into bins; their
uniform shape and size allows points to be placed directly via division by bin size. On the other hand,
sorting the bin indices with the proposed method has a lower complexity, since the integer values
only range to k, the branch factor, which will typically be much smaller than the feature aspect ratio
that bounds the range in [5]. In addition, as we will show in Section 4, the cost of extracting an

1To use our matching as a cost function, weights are set as the distance estimates; to use as a similarity
measure, weights are set as (some function of) the inverse of the distance estimates.

explicit correspondence field using the pyramid of [5] in high dimensions approaches the cubic cost
of the optimal measure, whereas it remains linear with the proposed approach, assuming features
are not uniformly distributed.

Our approximation can be used to compare sets of vectors in any case where the presence of low-cost
correspondences indicates their similarity (e.g., nearest-neighbor retrieval). We can also employ the
measure as a kernel function for structured inputs. According to Mercer’s theorem, a kernel is p.s.d
if and only if it corresponds to an inner product in some feature space [15]. We can re-write Eqn. 5
as:

C (Ψ(X),Ψ(Y)) =
L∑

i=1

ki∑
j=1

(wij − pij) min (nij(X), nij(Y)) , (6)

where pij refers to the weight associated with the parent bin of the jth node at level i. Since the
min operation is p.d. [14], and since kernels are closed under summation and scaling by a positive
constant [15], we have that the vocabulary-guided pyramid match is a Mercer kernel if wij ≤ pij .
This inequality holds if every child bin receives a similarity weight that is greater than its parent bin,
or rather that every child bin has a distance estimate that is less than that of its parent. Indeed this is
the case for our first weighting option, where wij is set to be inversely proportional to the diameter
of the bin in the vocabulary-guided pyramid. It holds by definition of the hierarchical clustering:
the diameter of a subset of points must be less than or equal to the diameter of all those points. We
cannot make this guarantee for the second weighting option.

In addition to scalar matching scores, we can optionally extract explicit correspondence fields
through the pyramid. In this case, the vocabulary-guided pyramid decomposes the required match-
ing computation into a hierarchy of smaller matchings. Upon encountering a bin with a nonzero
intersection, the optimal matching is computed between only those features from the two sets that
fall into that particular bin. All points that are used in that per-bin matching are then flagged as
matched and may not take part in subsequent matchings at coarser resolutions of the pyramid.

4 Results

In this section, we provide results to empirically demonstrate our matching’s accuracy and efficiency
on real data, and we compare it to an alternative approach based on a uniform partitioning of the
feature space. In addition to directly evaluating the matching scores and correspondence fields,
we show that our method leads to improved object recognition performance when used as a kernel
within a discriminative classifier.

4.1 Approximate Matching Scores

In these experiments, we extracted local SIFT [10] features from images in the ETH-80 database,
producing an unordered set of about m = 256 vectors for every example. In this case, F is the space
of SIFT image features. We used randomly sampled features from 300 of the images to build the
vocabulary-guided pyramid, and 100 images were used to test the matching. In order to test across
varying feature dimensions, we also used some training features to establish a PCA subspace that
was used to project features onto varying numbers of bases. For each feature dimension, we build a
vocabulary-guided pyramid with k = 10 and L = 5, encode the 100 point sets as pyramids, and then
compute the pair-wise matching scores with both our method and the optimal least-cost matching.
As the distance computation does not require a Mercer kernel, we employed the second weighting
option here.

If our measure is approximating the optimal matching well, we should find the ranking we induce
to be highly correlated with the ranking produced by the optimal matching for the same data. In
other words, the images should be sorted similarly by either method. Spearman’s rank correlation
coefficient ρ provides a good quantitative measure to evaluate this:

ρ = 1− 6
∑N

1 D2

N(N2 − 1)
,

where D is the difference in rank for the N corresponding ordinal values assigned by the two mea-
sures.

0 20 40 60 80 100 120
0.6

0.7

0.8

0.9

1

1.1

Feature dimension (d)

S
p

ea
rm

an
 r

an
k

co
rr

el
at

io
n

 w
it

h
 o

p
ti

m
al

 m
at

ch

Ranking quality over feature dimensions

Uniform bin pyramid
Vocabulary−guided pyramid

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Rank correlations, d=8

Uniform bins pyramid match rankings

O
p

ti
m

al
 r

an
ki

n
g

s

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Rank correlations, d=128

Uniform bins pyramid match rankings

O
p

ti
m

al
 r

an
ki

n
g

s

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Rank correlations, d=8

Vocabulary−guided pyramid match rankings

O
p

ti
m

al
 r

an
ki

n
g

s

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Rank correlations, d=128

Vocabulary−guided pyramid match rankings

O
p

ti
m

al
 r

an
ki

n
g

s

Figure 2: Comparison of optimal and approximate matching rankings on image data. Left: The set rankings
produced with the vocabulary-guided pyramid match (blue diamonds) are consistently accurate for increasing
feature dimensions, while the accuracy of an alternative approach based on uniform bins (red circles) degrades
about linearly in the feature dimension. Right: Example rankings for both approximations at d = [8, 128].

The left plot in Figure 2 shows the Spearman correlation scores against the optimal measure for
both our method and the approximation in [5] for varying feature dimensions for the 10,000 pair-
wise matching scores for the 100 test sets. While the vocabulary-guided pyramid match remains
consistently accurate (correlations above 0.94) for high feature dimensions, the accuracy of the ap-
proximation with uniform bins degrades rapidly for dimensions over 10. The four plots on the right
of Figure 2 display the actual ranks computed for both approximations for two of the 26 dimensions
summarized in the left plot. The red diagonals denote the optimal performance, where the approx-
imate rankings would be identical to the optimal ones; higher Spearman correlations have points
clustered more tightly along this diagonal. For the low-dimensional features, the methods perform
fairly comparably; however, for the full 128-D features, the vocabulary-guided pyramid match is
far superior (rightmost column). The optimal measure requires about 1.25s per match, while our
approximation is about 2500x faster at 5× 10−4s per match.

For a pyramid matching to work well, the gradation in bin sizes up the pyramid must be such
that at most levels of the pyramid we can capture distinct groups of points to match within the
bins. That is, unless all the points in two sets are equidistant, the bin placement must allow us to
match very near points at the finest resolutions, and gradually add matches that are more distant
at coarser resolutions. In low dimensions, both uniform or data-dependent bins can achieve this.
In high dimensions, however, uniform bin placement and exponentially increasing bin diameters
fail to capture such a gradation: once any features from different point sets are close enough to
match (share bins), the bins are so large that almost all of them match. The matching score is
then approximately the number of points weighted by a single bin size. In contrast, because our
method tailors the feature space partitions to the distribution of the data, even in high dimensions we
will have a gradual increase in bin size across levels, and in effect will obtain more discriminating
implicit matches. Figure 3 confirms this intuition, again using the image data from above.

4.2 Approximate Correspondence Fields

For the same image data, we ran the explicit matching variant of our method and compared the cor-
respondences between features induced by our matching to those produced by the globally optimal
measure. For comparison, we also applied the same variant to pyramids with uniform bins. Using
the notation of Section 3.1, we measure the error of an approximate matching as the sum of the
errors at every link in the field:

E (M (X,Y; π̂) ,M (X,Y;π∗)) =
∑
xi∈X

||yπ̂i
− yπ∗i ||2. (7)

0 2 4 6 8
−50

0

50

100

150

200

250

Pyramid level

N
um

be
r

of
 n

ew
 m

at
ch

es
 fo

rm
ed

d = 3

Vocabulary−guided bins
Uniform bins

0 2 4 6 8
−50

0

50

100

150

200

250

Pyramid level

N
um

be
r

of
 n

ew
 m

at
ch

es
 fo

rm
ed

d = 8

Vocabulary−guided bins
Uniform bins

0 2 4 6 8
−50

0

50

100

150

200

250

Pyramid level

N
um

be
r

of
 n

ew
 m

at
ch

es
 fo

rm
ed

d = 13

Vocabulary−guided bins
Uniform bins

0 2 4 6 8
−50

0

50

100

150

200

250

Pyramid level

N
um

be
r

of
 n

ew
 m

at
ch

es
 fo

rm
ed

d = 23

Vocabulary−guided bins
Uniform bins

0 2 4 6 8
−50

0

50

100

150

200

250

Pyramid level

N
um

be
r

of
 n

ew
 m

at
ch

es
 fo

rm
ed

d = 128

Vocabulary−guided bins
Uniform bins

Figure 3: Number of new matches formed at each pyramid level for either uniform (dashed red) or vocabulary-
guided (solid blue) bins for sets with increasing feature dimensions. Points represent mean counts at each level
over 10,000 matches; bars denote standard deviations. At low dimensions, both partition styles gradually
collect matches up the pyramid. However, in higher dimensions with the uniform partitioning, points begin
sharing a bin “all at once”, i.e., at the same pyramid level. In contrast, the vocabulary-guided bins accrue new
matches consistently spread across levels—even for high dimensions—since the decomposition is tailored to
where points cluster in the feature space.

0 20 40 60 80 100 120
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

5 Error in approximate correspondence fields

Feature dimension (d)

M
ea

n
 e

rr
o

r
p

er
 m

at
ch

Uniform bins, random per
Uniform bins, optimal per
Vocab.−guided bins, random per
Vocab.−guided bins, optimal per

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

10
1

Feature dimension (d)

M
ea

n
 t

im
e

p
er

 m
at

ch
 (

s)
 (

L
O

G
 S

C
A

L
E

)

Computation time

Optimal
Uniform bins, random per
Uniform bins, optimal per
Vocab.−guided bins, random per
Vocab.−guided bins, optimal per

Figure 4: Comparison of correspondence field errors (left) and associated computation times (right). This
figure is best viewed in color. (Note that errors level out with d for all methods due to PCA; the most variance
is in the first dimensions for all vectors.)

Figure 4 compares the correspondence field error and computation times for the vocabulary-guided
and uniform pyramids. For each approximation, there are two variations tested: in one, an opti-
mal assignment is computed for all points in the same bin; for the other, a random assignment is
made. The left plot shows the mean error per match for each method, and the right plot shows the
corresponding mean time required to compute those matches.

The computation times are as we would expect: the optimal matching is orders of magnitude more
expensive than the approximations. Using the random assignment variation, both approximations
have negligible costs, since they simply choose any combination of points within a bin. It is impor-
tant to note that in high dimensions, the time required by the uniform bin pyramid with the optimal
per-bin matching approaches the time required by the optimal matching itself. This occurs for sim-
ilar reasons as the poorer matching score accuracy exhibited by the uniform bins, both in the left
plot and above in Figure 2; since most or all of the points begin to match at a certain level, the
pyramid does not help to divide-and-conquer the computation, and for high dimensions, the optimal
matching in its entirety must be computed. In contrast, the expense of the vocabulary-guided pyra-
mid matching remains steady and low, even for high dimensions, since our data-dependent pyramids
better divide the matching labor into the natural segments in the feature space.

For similar reasons, the errors are comparable for the optimal per-bin variation with either the
vocabulary-guided or uniform bins. The vocabulary-guided bins divide the computation so it can
be done inexpensively, while the uniform bins divide the computation poorly and must compute it
expensively, but about as accurately. Likewise, the error for the uniform bins when using a per-bin
random assignment is very high for any but the lowest dimensions (red line on left plot), since such
a large number of points are being randomly assigned to one another. In contrast, the vocabulary-
guided pyramid bins actually result in similar errors whether the points in a bin are matched opti-
mally or randomly, again indicating that by tuning the bins to the data’s distribution, our pyramid
achieves a much more suitable breakdown of the computation, even in high dimensions.

Pyramid matching method Mean recognition rate/class (d=128 / d=10) Time/match (s) (d=128 / d=10)
Vocabulary-guided bins 99.0 / 97.7 6.1e-4 / 6.2e-4

Uniform bins 64.9 / 96.5 1.5e-3 / 5.7e-4

4.3 Realizing Improvements in Recognition

Finally, we have experimented with the proposed measure within a discriminative classifier for an
object recognition task. We trained an SVM with our matching as the kernel to recognize the four
categories in the Caltech-4 benchmark data set. We trained with 200 images per class and tested
with all the remaining images. We extracted features using both the Harris and Maximally Stable
Extremal Region [11] detectors and the 128-D SIFT [10] descriptor. We also generated lower-
dimensional (d = 10) features using PCA. To form a Mercer kernel, the weights were set according
to each bin diameter Aij : wij = e−Aij/σ , with σ set automatically as the mean distance between
a sample of features from the training set. The table above shows our improvements over another
state-of-the-art set matching kernel [5]. The results show our method is more accurate and requires
minor additional computation. Our near-perfect performance on this data set is comparable to that
reached by several others in the literature; the real significance of the result is that it distinguishes
what can be achieved with a vocabulary-guided pyramid embedding as opposed to the uniform
histograms used in [5], particularly for high-dimensional features. In addition, here the optimal
matching requires 0.31s per match, over 500x the cost of our method.

5 Conclusion

We have introduced a linear-time method to compute a matching between point sets that takes advan-
tage of the underlying structure in the feature space and remains consistently accurate and efficient
for high-dimensional inputs on real image data. Our results demonstrate the strength of the approx-
imation empirically, compare it directly against an alternative state-of-the-art approximation, and
successfully use it as a Mercer kernel for an object recognition task. We have commented most on
potential applications in vision and text, but in fact it is a generic matching measure that can be
applied whenever it is meaningful to compare sets by their correspondence.

References

[1] P. Agarwal and K. R. Varadarajan. A Near-Linear Algorithm for Euclidean Bipartite Matching.
In Symposium on Computational Geometry, 2004.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape Matching and Object Recognition Using Shape
Contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(24):509–522, April
2002.

[3] A. Berg, T. Berg, and J. Malik. Shape Matching and Object Recognition using Low Distortion
Correspondences. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, CA, June 2005.

[4] M. Charikar. Similarity Estimation Techniques from Rounding Algorithms. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing, 2002.

[5] K. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with
Sets of Image Features. In Proceedings of the IEEE International Conference on Computer
Vision, Beijing, China, Oct 2005.

[6] P. Indyk and N. Thaper. Fast Image Retrieval via Embeddings. In 3rd International Workshop
on Statistical and Computational Theories of Vision, Nice, France, Oct 2003.

[7] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to LSA. Discourse Processes, 25:259–
84, 1998.

[8] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, New York City, NY, June 2006.

[9] T. Leung and J. Malik. Recognizing Surfaces Using Three-Dimensional Textons. In Proceed-
ings of the IEEE International Conference on Computer Vision, Corfu, Greece, Sept 1999.

[10] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal
of Computer Vision, 60(2):91–110, Jan 2004.

[11] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide Baseline Stereo from Maximally
Stable Extremal Regions. In British Machine Vision Conference, Cardiff, UK, Sept. 2002.

[12] K. Mikolajczyk and C. Schmid. Indexing Based on Scale Invariant Interest Points. In Pro-
ceedings of the IEEE International Conference on Computer Vision, Vancouver, Canada, July
2001.

[13] D. Nister and H. Stewenius. Scalable Recognition with a Vocabulary Tree. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, New York City, NY, June
2006.

[14] F. Odone, A. Barla, and A. Verri. Building Kernels from Binary Strings for Image Matching.
IEEE Trans. on Image Processing, 14(2):169–180, Feb 2005.

[15] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge Univ.
Press, 2004.

[16] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in
Videos. In Proceedings of the IEEE International Conference on Computer Vision, Nice, Oct
2003.

