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ABSTRACT

A process known as Constant Denaturant Capillary Electrophoresis is used to
separate mutant from wild-type DNA at fractions down to 10-7. A device known as an
Ultra-high Throughput Mutational Spectrometer is being created to run 10,000 parallel
channels of CDCE in order to correlate multiple point mutations in DNA with the
diseases that they can cause, such as cancer. By separating the DNA in large populations,
the underlying causes of such diseases can be identified. To successfully run CDCE, a
high viscosity polymer gel must be loaded into each of the 10,000 channels, each of
which are composed of an individual glass capillary with a 75 tm inner diameter. A
mechanism was designed and tested which loaded gel into 8 channels simultaneously.
The mechanism was used to test the relationship between gel loading time in relation to
varied pressure and capillary length, through 45 total runs, with 8 channels per run. The
relationships were characterized, resulting in two equations that enable an accurate
prediction of the fill time necessary to load 10,000 parallel channels simultaneously
under varied conditions.

Thesis Supervisor: Ian W. Hunter

Title: Hatsopoulos Professor of Mechanical Engineering
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1.0 Introduction

Detection of mutated genes within the human genome is becoming an increasingly

important endeavor. Rising numbers of human disease genes are being identified, along

with growing numbers of disease-causing mutations within the genome [1]. Many

methods are in use today that successfully detect genetic mutations, but with varying

limits of throughput and accuracy. The aim of this project is to create an Ultra-high

Throughput Mutational Spectrometer (UTMS) which is capable of separating and

isolating genetic mutations at a rate several orders of magnitude higher than the best

contemporary machines. By running 10,000 parallel channels of mutation detection at

once, the UTMS will enable entire population bases to be analyzed in a matter of weeks,

quickly and accurately correlating combinations of genetic mutations with specific

diseases [6]. The process by which the separation of DNA is performed requires a high-

viscosity polymer gel to be loaded into each of the 10,000 channels. The goal of this

work was to create and characterize a mechanism that would accomplish that task.

2.0 Genetic Mutations

The double helix of the DNA strand which comprises the human genome is

composed of four base molecules; adenine, thymine, cytosine and guanine. These four

molecules, referred to by their initials A, T, C and G, bond together to form base pairs: A

to T, and G to C [9]. A point mutation in the genome is a mismatch in a single base pair

of DNA; for instance, an A that has bonded with a C instead of a T. When a gene that

encodes a particular protein includes a mismatched base pair, the protein may not be

produced properly by the cell, potentially causing disease within the individual.
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The problem of genetic mutation is significant because mutations can be inherited.

During cell reproduction, the linkage of chromosomes tends to cause genes in close

regions to be inherited together [9]. These regions are known as hot spots. If a genetic

mutation is located in a hot spot, it will likely be passed on to the new cell during

meiosis. If an individual inherits a particular set of genomic mutations that are

responsible for a disease, he will be genetically predisposed to contracting that disease in

the future [9]. Though many other types of mutations and mutation-caused diseases exist,

the UTMS project aims to identify specifically the diseases caused by single and multiple

point mutations, both within the same gene, and across different genes.

2.1 Mutation Detection

Point mutations can occur in human DNA in fractions lower than 1/10,000,000 (10-7)

[1]. Of the 3 x 10 base pairs in the entire genome, this means that fewer than 0.33% of the

base pairs are likely to be mismatched. High-fidelity mutation detection is required to

identify and separate mutated DNA segments from wild-type (un-mutated) segments for

analysis. One technique suitable for this is called Denaturing Gradient Gel

Electrophoresis (DGGE) [7].

DGGE utilizes the difference in electrophoretic mobility between mutant and wild-

type segments for separation. Electrophoresis is performed by placing DNA samples in a

high-voltage electric field. Since DNA carries a net negative charge, the strands are

pulled toward the positive end of the field. The electrophoresis is carried out in a medium
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of polymer gel, whose polymer matrix creates a molecular sieve. The DNA samples

travel through this sieve toward the cathode.

Separation between the mutant and wild-type strands occurs due to the reduced

electrophoretic mobility of the mutant strands compared to the wild-type strands: when

DNA is heated to a high temperature (typically near 80 C, depending on the sequence),

the molecular bonds begin to break between base pairs in the DNA, and the double helix

splits apart, or denatures. Because the molecular bond of a mismatched pair is weaker

than that of a wild-type base pair, less energy is required to break the bond. Thus, a

mutated DNA strand will denature at a lower temperature than its wild-type counterpart

[7]. As a DNA strand denatures, its "arms" spread apart and get caught in the polymer

gel matrix, inhibiting its motion toward the high-voltage cathode. If a mixture of mutant

and wild-type is brought to a temperature between the denaturing temperatures of both

strands, the mutant strands will denature and slow, while the wild-type strands maintain

their speed toward the cathode [9].

By attaching a phosphorescent molecule to every strand, a gradient can be observed

via fluorescence detection which clearly shows a spatial gradient formed by the uneven

mobility of the strands [7]. This gradient in a DGGE gel is shown in Figure 1, below.
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Figure 1: Separation of mutant and wild-type DNA in DGGE 101

An improvement on DGGE is a process known as Constant Denaturing Capillary

Electrophoresis (CDCE) [7]. Instead of performing the separation in a large gel slab, a

quartz capillary with a small inner diameter (75 m) is filled with the polymer gel.

Conducting the separation across a quartz capillary rather than a gel slab allows for a

higher voltage, increasing the speed of the entire process. The small thermal mass of the

capillary compared to a gel slab allows for precise temperature control as well. Thus,

instead of approximating the separation temperature and observing a spatial DNA

separation gradient, the system can be run at a precise temperature, and the separation is

instead observed through time [7]. By measuring the phosphorescent signal through a

window in the capillary, five clear signal peaks will occur-two homoduplexes (both

sides of the double helix are either mutated wild type), two heteroduplexes (a double

helix with one wild type and one mutated strand), and one peak for the primers. The

primers arrive first. The wild-type homoduplex is next, followed by the mutated

homoduplex, and the heteroduplexes are last. A separation signal from a CDCE run is

shown in Figure 2, below.

10



is

is

10

5

a-

i i i is ! i i is i as i
lTme Oaa:o

Figure 2: Three of the five separation peaks of mutant and wild-type DNA in CDCE I111

The time gradient can be used to separate wild-type and mutant samples in

separate channels as well. Two capillaries can be run simultaneously, one with a mutant

sample and one with a wild-type sample. The wild-type signal will appear first, revealing

which sample is mutated and which is not. This capability is highly useful because it

allows for mutagenic analysis without prior phenotypic selection [5]-the basis for

mutational spectrometry, and the greater goal of this project.

2.2 Mutational Spectrometry

The capability enabled by CDCE to separate mutant from wild-type DNA segments

based on temperature facilitates the creation of a mutational spectrum: a set of data that

correlates specific point mutations and combinations of mutations with the diseases that

they cause [6]. With CDCE, phenotypic selection is not necessary to create a mutational

spectrum [5]. This means that mutated DNA can be identified in a set of people

independently of traits that might indicate its presence, such as test subjects with cancer.

DNA segments from millions of individuals can be compared against one another, and
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the phenotypes can be correlated with the results of the mutational spectral scan to gather

information about specific mutations and their associated diseases [6].

To create a large mutational spectrum that spans as much of the genome as possible

and identifies the resulting diseases of as many mutations and mutational combinations as

possible, a massive amount of data is required. Current methods of sequencing and

scanning only allow throughputs of up to several hundred channels at a time. With these

methods, a prohibitively large amount of time and costs is required to gather the data

necessary to be useful in population genetics. The goal of this large-scale project is to

create a massively parallel DNA scanning machine capable of up to 10,000 parallel

channels of mutational analysis. With such a device, the data throughput will enable

genetic population analysis to reveal the underlying causes of many forms of cancer and

other diseases.

3.0 Instrument Concept

The Ultra-high Throughput Mutational Spectrometer (UTMS) is an instrument that

will conduct simultaneous mutational scanning of 10,000 different individuals via 10,000

parallel channels of CDCE. The mutational sensitivity of each channel will detect

mutations at fractions of 10-7, allowing for the detection of extremely rare mutations and

combinations of mutations. To accomplish successful separation in such a massive

instrument, several significant design innovations have been achieved.
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To maintain precise (0.1 °C) temperature resolution, a large liquid flow chamber

encloses all of the 100 x 100 capillaries. This chamber contains cross-flow impedance

blocks, which maintain orthogonal flow to the capillaries along most of their 300 mm

length. For a high insulative value to allow high voltage separation, and to minimize

thermal mass and maximize heat dissipation due to joule heating, the capillaries are

small-diameter quartz tubes coated with polyimide. The inner diameter is 75 ,Im, and the

outer 3501am. A picture of the tip of one capillary is shown below, in Figure 3.

Figure 3: Cleaved quartz capillary with polyamide coating, 75 lm ID, 350 gm OD, made by

Polymicro.

Fluorescence detection is typically accomplished for CDCE by shining a 488 nm

laser normal to the capillary through a window in the polyimide coating. With a 100 x

100 array of capillaries, this is impossible. Two-dimensional end-on fluorescence
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detection is an alternative design to collect signals from each capillary in such an array.

To achieve the intensity of fluorescence excitation necessary for 10,000 capillaries, lasers

are impractical and expensive. Fluorescence excitation is accomplished with a 170 W

array of forty-two ultra-bright LEDs which shine directly down onto the tips of the

capillaries. Instead of a one-dimensional photomultiplier tube, a high-sensitivity impact

ionization CCD is used to observe the array end-on, and collect the data via fluorescence

imaging through time.

To conduct electrophoresis across the capillaries, the tip of each channel must be in

contact with the high voltage cathode. And to be able to detect fluorescence at the tip of

the capillaries, the tip must be visible to the CCD which collects the fluorescent signals.

This means that the electrode must not block the view, and yet must still contain

conductive fluid buffer to complete the circuit.

A micro-manufactured array of wells with a silicone sealer has been created to

accomplish this task. A clear window constitutes the top layer, with a ring-shaped

electrode that encircles the capillary without obstructing the view of the tip. A layer of

silicone seals around the capillary at the bottom layer, preventing evaporation of the fluid

buffer. To increase the intensity of 488 nm excitation from the LED array, a micro-

manufactured LED array is placed over the buffer wells. With one lens over each buffer

well, the signal to noise ratio is increased by over 250x. The lens both multiplies the

excitation intensity and enhances signal viewing to the CCD by magnifying the
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fluorescent image. A diagram of a single buffer well and lens setup is shown below in

Figure 4.

. . LED array
I ~',i ,, x Ih~ .

CCD

r…

I I
I ~~~~~~I ".

I .~I

I
-- - -

gold -
silicone

capillary coated

Figure 4: Micro-manufactured buffer well and micro-lenslet above capillary [121.

A critical component of the entire system is the mechanism to load the polymer gel

separation matrix into the 75 pum inner diameter of each of the 10,000 capillaries. This is

the purpose of this thesis: to design, analyze and construct a device to load gel into the
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IJTMS for all I ,OOO capillaries, and to use it to characterize the loading performance as

affected by temperature. capillary length, and system pressure.

The gel loader is placed below the entire system, and can accommodate the DNA

sample loading card which is used during actual analysis. This is shown at the bottom of

the diagram in Figure 5, below. Above the system is the optical data acquisition setup,

consisting of the LED array, light collimators, excitation filter, dichroic beam splitter, and

high-sensitivity impact ionization CCD. The entire system appears as follows in Figure 5.

Water cooled blue l.EI)
array

Ice
F erai-'r riie

Dichroic beam splitter

Mliro-l ellslet Array

.licro-llutdic DNlA extraction well arra'

( '[Illrlla
voltage 
supply 

iechanismn

- DN A loadin card

Figure 5: Ultra-high Throughput Mutational Spectrometer 1131.
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3.1 Design Requirements for Gel Loader

The gel loading mechanism for the UTMS is a simple device which accomplishes the

task of loading polymer gel into the full 300 mm length of each of the 10,000 capillaries.

The mechanism must load gel reliably and in a controlled manner, with minimal waste.

Additionally, the mechanism must be able to accommodate the 10,000 well DNA loading

card from which the DNA segments are inserted into the channels, and be able to switch

out the gel for capillary wash in order to clean out and reinsert new el into the

capillaries.

Additionally the mechanism must be able to be temperature controlled, in the case

that a heat-thinning polymer gel is used and its dynamic viscosity must be reduced to

adequately load all of the channels. The gel loading system must be modular in order to

accommodate different polymer matrix gels and capillary washes, and must be removable

completely in order to allow a plugged capillary to be replaced from the device.

Additionally, the gel loader must interface with the capillary clamp at the lower end

which maintains a hold on the capillaries during use. This interface must be sealed to

pressures greater than 200 kPa in order to safely load gels of very high viscosity in an

acceptable period (<30 min) of time.

Two final goals of this apparatus are that it be a scalable prototype capable of loading

100 simultaneous capillaries, and proves the concept and technology for loading all

10,000 simultaneously, and that it be usable outside the UTMS. Usability outside the

UTMS is important for two reasons: first, that the mechanism can quickly and easily load
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small numbers of capillaries (down to a single capillary) for individual channel testing,

and second, that it be able to do many runs in a row for characterization purposes.

A parallel objective tfor this device and this thesis is to use the scaled-down gel loader

to perform a statistical analysis of different loading conditions, and to characterize the

statistically distributed arrival time of gel into each capillary and how it varies in relation

to loading pressure, capillary length. and system temperature. With a characterization of

the gel loading times in terms of these factors, an expectation can be set for the

percentage of the 10,000 capillaries which are full after a given amount of time.

To do this, a mathematical model was first constructed to predict the loading time of a

capillary under the given conditions. Then the mathematical model was experimentally

verified using the apparatus under various changes of those conditions, and a statistical

distribution of loading times was measured for each set of conditions. With this

information, a directly scaled statistical expectation of gel loading performance for all of

the 10,000 capillaries was constructed, which will be useful in testing and use of the fully

scaled, 0,000 channel UTMS.
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4.0 Theory

4.1 Viscous Fluid Model of Gel Loader

In order to describe the velocity and subsequently the loading time of polymer gel

into the capillary under given conditions of temperature and pressure, an equation was

needed which correlated the viscous behavior of the gel in relation to those given

conditions. The energy equation for steady incompressible flow [2] was used, as follows:

V2 VI

pi + I +pz = p + - +pz, +hL 
2g 2g

where p is the pressure, p is the fluid density, V is the flow velocity, g is the

acceleration of gravity, is the height, and hL is the head loss, or energy loss in the flow

due to viscous shear. The Darcy-Weisbach Equation [2], determines the major head loss

in the conduit as

I k' 2

h =f 2
D2g'

where hL is the head loss, is the pipe length, D is the pipe diameter, V is the fluid

velocity, ,g is the acceleration of gravity, and is known as the Darcy Friction Factor [2],

which for laminar flow in a smooth pipe is

64f =- 3
Re

where Re is the Reynolds number, as

Re = pVD 4
#'

19



where p is the fluid density and pt is the fluid viscosity. Because of the flow geometry

from the gel bath into the tip of the capillary, there is a minor head loss term of K = 0.8.

Minor head loss hL is described as

h L KL 2g'

where KL is a coefficient corresponding to the inflow geometry of the capillary in the

gel bath. Thus, for the total head loss of the system, Figures and 4 are added to yield

V 2 VI
hLtota/ =KL 2g 6D 2

With all terms defined, Figure 1 was rearranged in order to solve for the velocity in

terms of the other parameters, viz.

7

Since the velocity was being used to ultimately calculate the time required to fill the

capillary, it was necessary to find the change in velocity as the gel progressively filled its

tube. To do this, the velocity was calculated in MATLAB at lmm intervals all along the

length of the capillary. Then each velocity was multiplied by its length segment, mm, to

get the amount of time spent in each section. The times were added up, and the total fill

time was thus calculated.

For this model to be accurate, it was necessary to verify that the turbulent entry length

at the beginning of the capillary was not long enough to nullify the fully developed flow

condition assumed for the validity of the above derivations. To calculate the entry length,

20
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the approximate entry length equation for laminar flow was utilized. First, it was verified

that the Reynolds number was below 2100 to make sure the flow was laminar. Then the

equation

_0.06Re 8
D

was used, where Le is the entry length. By this calculation, the entry length was found

to be less than 0.1 mm for the shortest length of capillary. Thus, the entry length was

negligible, and the flow could be considered fully developed along its entirety.

In order to find measure the relationship between injection time and varied length and

pressure, three measurements were taken for each parameter: one baseline measurement,

and two additional for both length and pressure. The data points for the average fill times

of each parameter were graphed, and a least squares line was fit to the data. With the

equation of that line, predictions could be made for the performance of the gel loader

when varying the conditions even further.

4.2 t-Test Statistical Analysis of Results

Due to the non-feasibility of testing on the same scale of runs as an ultra-high

throughput gel load, the statistical performance of the gel loader must be analyzed and

extrapolated approximately two orders of magnitude forward in order to predict the

performance of an actual 10,000 channel parallel load. In order to calculate the accuracy

of a smaller statistical sample size, some analysis of the data is necessary. To do this, the

significance of each parameter is measured between sets of data using the t-test. This is a

method of calculating the significance of the difference in means between two varied

21



groups. Though it is especially useful to compare the means of two randomly sampled

groups to determine significance of variability, it is directly applicable to measuring the

differences between gel loads in varying pressure and length.

An analogy of the t-test is a signal to noise ratio. The difference in means between the

two groups is effectively the signal, as illustrated below in Figure 6. The noise" is the

variability within those groups, which may make it harder to see that difference.

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

/ \

/ 1

* !/ / ,

'I~~~~~~~~~~~~~~~~~~'

180 200 220 240 260 28 3 320 340 360

Figure 6: Illustration of two signal probability density functions and the difference between their

means.

The equation to determine "t" in the t-test is shown below as Equation 10:

signal difference between group means , 11
- =t ~~~~~~~~~~~~~~~ 11

noise var iability of groups

which is mathematically calculated as
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Xlx,
12|varl var1ar2

n n,

where , i and X 2 are the means of groups 1 and 2, varl and varn are the variability

of groups I and 2, i.e. the squares of the standard deviations, and nl and n2 are the sizes

of groups I and 2. Once the ratio t is found, a standard t-table from any statistics book

can be consulted to determine the percentage dictating the range within which the actual

mean samples can be found [14].

By using the t-test between each of the sample sets taken during gel runs, the

significance of the variance can be found between the groups being compared. This is

most useful to compare runs within a data set against one another, to determine how

accurate the run is with respect to the actual mean of the data, as calculated by the t-test.

However, in order to execute a t-test between every run within every dataset, a

massive number of t-tests are required, with significant data sorting afterward to make

meaningful use of the testing. ANOVA (ANalysis Of VAriance) is a method which

gathers all the data that would be acquired by multiple t-tests and puts them into a single

number, F (the found variation of the group averages divided by the expected variation),

and gives a probability for the null hypothesis for the entire data set as p [8]. By using

one-way ANOVA within the varying pressure and varying length data runs, the p value

can be calculated that indicates the significance of the independent variable. A p value

below 0.05 indicates that the particular variable is significant [15].

23



5.0 Prior Art in Polymer Gel Loading

In single capillary CDCE, a syringe is used to inject gel into the small-bore quartz

capillary. Because high viscosity gels are sometimes used, the pressure necessary to

inject the gel through the length of the capillary can get very high if the process is to be

done quickly. In order to make a seal between the syringe and the capillary that is capable

of handling the necessary pressures, a small Teflon tube is stretched over the ends of both

the capillary and the syringe, as shown in Figure 7 below.

Figure 7: Teflon tubing is stretched over a syringe tip and a capillary to seal for gel injection.

This is clearly impractical for 10,000 capillaries, as it is difficult to create such a seal

for a single capillary, much less thousands. Current state of the art for multi-channel

DNA sequencers and scanners is to dip the ends of the capillaries (the most of which are

384 in the largest scanner to date) into a bath of gel within a pressure vessel, and utilize

high-pressure inert gas such as nitrogen to impose a pressure differential across the

capillary.
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A notable and disadvantageous feature of these systems is that the capillaries are

potted permanently within a hard resin to create an environmental seal for the pressure

vessel. If a capillary becomes plugged in such a system, it cannot be replaced. With the

high likelihood of many non-functional capillaries in a 10,000 channel system, it is

imperative to be able to replace the capillaries. Because of this, it is necessary for the gel

injection pressure vessel to accommodate a modular and replaceable capillary clamping

mechanism that enables capillary replacement when necessary. This was taken into

consideration for the design of the UTMS gel loader.

One other experimental version utilizes a radial configuration of capillaries which

have been etched into a silicon wafer by micro-manufacturing. The inner radius of the

array is an open tube, to which all the etched channels are exposed. Gel or capillary wash

are fed into the open tube via a valve system, and are forced through the etched channels

at over 6.9 MPa (1000 PSI) [4]. A major drawback of this etched plate design is the

limited number of channels it can accommodate. The version presented for micro-

manufacturing could hold a maximum of 96 channels. The device designed in this thesis

is scalable to 10,000 channels, and beyond. Additionally, the problem of replacing a

capillary is still faced with this system. With etched channels, if one clogs, it is ruined.

With the interface to the replaceable capillary system, the gel loader is a powerful and

versatile tool.
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5.1 Design of UTMS Scalable Gel Loader, First Iteration

Since the data from the pre-design calculations indicated that the filling time of the

capillaries was within an acceptable range, design on the simplest form of gel loading

mechanism was begun. Since the primary variable influencing the velocity of the gel was

the dynamic viscosity pt, the system was designed to accommodate several means of

reducing p, the primary means of which was applying heat.

The other parameters that the gel mechanism had to accommodate were the existing

capillary clamping mechanism, the need for gas sealing, modularity in gel-type or DNA

loading media, and easy removability from the entire UTMS system. Additionally, to

complete the capillary loading testing, the system needed to be operational outside the

UTMS.

In order to accurately time the capillary fills independently for each channel, a control

program in VisualBasic.NET program was created to work in conjunction with a data

acquisition card (DAQ) and a power supply. Because the gel allows a low conductance

across a filled capillary, it was used to complete a circuit to trip the virtual stopwatch on

each channel in the control program. A screenshot of the control program is shown below

in Figure 8.
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Figure 8: A screenshot of the control program for the gel loading system.

In order to start the virtual stopwatches in the control program at the exact moment

the compressed nitrogen was released into the pressure vessel, a solenoid valve was

controlled by the program to pressurize the system at the same instant the stopwatches

started. The valve was operated by a power supply which was controlled by the program

via a GPIB (IEEE 488) interface.

The main body at the bottom was machined from a solid block of aluminum in order

to create a pressure vessel of high thermal conductivity that could be attached easily to

the bottom of the UTMS main apparatus. In order to manipulate the viscosity of the gel

by changing the temperature, an external hot plate was able to be placed below the

apparatus and apply heat to the system via open-loop control. A hole drilled just below

the surface of the bottom of the pressure vessel allowed a thermocouple to be inserted at a
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Gel Loading Timer Program
-Gel System . . .................... -.--------------.-----..--------

Minutes Seconds Channel Voltages
Channel 0 i 19.485 f0.05081176757812

Channel 1 |1 -13.25 0.05020141601562 Start System

Channel 2 l0 [33.75 |0.05142211914062

Channel3 0 37.329 0.050048828125 Reset

Channel 4 132.235 10.05020141601562

Channel5 -18.281 0050048828125 Stopped
Stopped

Channel 1 1-7.343 0; 050048828125

Channel 7 .0 139.11 1 0.05035400390625 [PRESSURIZED



point where the thin aluminum between the base block and the gel pan was nearly

isothermal.

Holes were drilled and tapped into the base block to incorporate the NPT fittings of

the pressurized nitrogen tube and the pressure transducer. The top of the block was

machined with many holes and fitted with a silicone seal to maintain pressure within the

vessel. In the first iteration, each channel was equipped with its own Eppendorf tube in

which to place the gel for loading. The capillary would dip into this tube, and under

pressure, the gel would be forced into the capillary.

To make a timing mechanism, a circuit arrangement was fabricated that used the

moving gel to complete an electrical connection. Several iterations of the circuit were

developed en route to making a successful electrical connection through the conductive

gel. The first iteration used a wire electrode which was inserted into an Eppendorf tube

along with the empty capillary inside the pressure vessel, as shown below in Figure 9.

The electrode in the gel acted as the positive side, or the cathode. The free end of the

capillary was dipped into a second Eppendorf tube along with a second wire electrode,

the anode, and was submerged in a conductive electrolyte buffer. When the gel would

squirt out the free end of the capillary into the conductive buffer, the circuit would

complete and current would flow across the resistor, across which the DAQ would

measure a voltage and trigger the stopwatch for that channel.
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Figure 9: First iteration schematic of gel loader/timer setup with conductive electrolyte buffer.
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A 10 channel version of this setup was constructed. and is shown below in Figure 10.

Figure 10: First iteration of multichannel loader, using Eppendort tubes and electrolyte buffer.

This iteration proved the concept with the pressure vessel and the timing circuit.

However, the use was impractical and less pertinent to the final UTMS design for several

reasons. The 10,000 channels will be illed from a single bath. At mm rectangular

spacing for each of the 100 x 0 channels, an individual well plate array for filling gel is
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impractical and unnecessary. Therefore, the single Eppendorf tubes for each channel was

not indicative of the performance from a common bath.

Additionally, a 5,000 volt potential was used across the electrodes in order to achieve

a 5 v drop across the mega-ohm resister which the DAQ used to measure the signal.

This extremely high potential caused arcing within the system, as well as conducting

electric fields which induced shorts in other areas. Evaporation of the electrolyte buffer

was also a significant problem, and it was difficult and tedious to replace the exhausted

and dried buffer after each run of the system.

5.2 Design of Second Iteration

The second iteration accounted for all of these problems. First, the impracticality of

individual Eppendorf tubes tfor each channel was eliminated by changing to a common

bath, and spacing the capillaries at their designated spacing within the UTMS: mm each

direction, in a rectangular array. This allowed for a smaller el volume to be used for

loading, and reduced the waste associated with residue in many separate loading

containers. A solid model of the second iteration is shown below in Figure 11, and shows

the interface between the capillary clamping mechanism, the top plate, seal, pipe fittings,

and solenoid valve.
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Figure 11: Solid model of the scalable 100 capillary gel loading system.

A more significant and effective redesign was that of the timing mechanism. ]'he el

itself was to be used as a conductor to electrically trigger the stop of a timer. In the

previous iteration, as mentioned, a connection was made from the el to the electrical

circuit via a conductive electrolyte fluid which was in contact with both the capillary and

the anode. In order to make an electrical connection from the gel to the circuit, the fluid

contact was replaced with a tight physical constraint for the capillary which pressed its

end against a copper electrode. 'The schematic or this newer system is shown below in

FiLcure 1.
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Figure 12: Schematic for second iteration of setup.

This copper electrode was on a circuit board which included the necessary

connections to the timing circuit, so that when the gel was ejected at the end of the full

capillary, the circuit was complete. The circuit board with the electrodes was constructed

to be movable, so that in between runs it could be cleaned of gel residue to ensure a false

signal would not occur on the next run. The constraint for the capillaries was constructed

from acrylic using a laser cutter. The laser cutter precisely cut holes to align the

capillaries to the positions of the electrodes along the circuit board. This constraint and

electrode system is shown below in Figure 13.
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Figure 13: Capillary constraint and electrode system for operation of timing circuit.

The seal around the capillaries for the pressure vessel was created using the clamp

mechanism which constrains the array within the temperature control chamber. The

clamp was constructed of two plates of stainless steel with hole arrays through them. The

plates are clamped together via bolts at each corner, and squeeze three layers of soft

silicone. Due to the expansion of the silicone under pressure, a solid mechanical hold is

created which grips each capillary individually, and seals the system against significant

pressure. The entire clamp assembly is bolted to the pressure vessel and is sealed with yet

another layer of soft silicone.

It was important to incorporate this clamp mechanism into the gel loading pressure

vessel, since a similar scaled clamp will be used on the 100 x 100 array. The verification

of the compatibility of both scaled models assured the functionalitv when scaled up by

100. Additionally, by keeping the clamp fixed to the optical table. the gel system was
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able to be removed, cleaned, the gel replaced, and even capillary wash loaded without

disturbing the careful positioning of the capillaries themselves.

Finally, an additional 1/8" NPT hole was tapped to accommodate the input from the

solenoid valve. By controlling the power supply for the solenoid valve with the control

program, the timer started at the exact moment the pressure was induced. This ensured

reliable, automatic timing of the loading system. The second iteration of the gel loading

device was used successfully to collect data on the loading of capillaries at different

lengths and pressures for 45 total runs. A view of the pressure vessel and capillary clamp

is shown below in Figure 13.
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Table fixture

Figure 14: Capillary clamp and pressure vessel.
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6.0 Procedure

As can be seen in Figure 14 above, the capillary clamp and top plate of the pressure

vessel were fixtured to the optical table, and the pressure vessel itself was suspended

from them. Before each run, the tray as shown in the schematic in Figure 9 was illed

with capillary wash, and the pressure vessel was mounted to the clamp and plate.

Pressure was manually applied via a solenoid valve controlled by the Visual Basic

control program, and the capillaries were washed" until the fluid came out of each

capillary at the same constant rate.

Next the system was depressurized, and a new tray was placed in the pressure vessel

which contained the gel mixture. The pressure vessel was bolted back to the clamp-plate,

and the control program was started. The program then simultaneously opened the

solenoid valve and started its timer, scanning the DAQ channels constantly for the

prescribed voltage threshold which indicates a filled capillary. At the completion of

filling of all the channels, the control program turned off the solenoid valve and

clepressuried the system, and the fill times of each channel were recorded.

After the gel run, the gel tray was replaced again with the capillary wash tray. The

system was again manually repressurized, and was kept pressurized until the capillary

wash had pushed all the gel out of every channel and the wash exited all the capillaries at

the same constant rate. Once the capillaries were clear, the gel tray was inserted, and the

process was repeated.
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7.0 Data

Seventy-two total runs were conducted for each set of variables, with each of the 5

sets of variables corresponding to a single data point. The high number of runs was

conducted in order to ensure an accurate mean for each data point. Three data points were

found in order of increasing pressure at a constant length, and two more taken which

corresponded to increasing length at the greatest pressure. This gave 3 data points for

both the length and pressure relationships, which was enough to construct an accurate

line and equation describing the relationship. The middle point, at 300 mm length and

250 kPa, was used twice.

For the increasing pressure runs, 8 300mm capillaries were timed simultaneously, 9

times in a row, for 72 total data points. This nine-run cycle was completed at 150 kPa,

200 kPa, and 250 kPa. At 250 kPa, 9 runs were taken at additional lengths of 350mm and

400 mm to characterize fill time in relation to capillary length. Below in Figures 15 and

16, the relationships are shown between loading time and pressure, and loading time and

capillary length, respectively. The actual values for the run times for pressure and length

are listed in Appendix A in tables A 1 and A2, respectively.
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Figure 15: Loading times for constant 300mm length as pressure increases.
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Figure 16: Loading times as capillary length increases with constant pressure at 250kPa.
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In order to observe the distributions of fill times for each data point in Figures 15 and

16, histograms were created with 2-second bins. By comparing the mean of each data set

in the histograms, the linear relationship between the varied length and pressure and

capillary fill time can be observed.

Histogram of Increasing Pressure Runs
30 -

300 mm 150 kPa
25

C"" 300 mm 200 kPa
._) 

l)

z ci,~~~~~~~~~~~~~~~~~~~~~~~,
_ ~~~~~~~~~~~~300 mm 250 kPa

15. 0=10 '

,. . .: i

0 10 20 30 40 50 60

Loading Time (s)

Figure 17: Histogram of runs with increasing pressure.
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Histogram of Increasing Length Runs
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Figure 18: Histogram of runs with increasing length.

0

Variability between capillaries for each set of injection parameters was compared to

observe trends in differing injection times. Average times per capillary for increasing

pressure are shown in the appendix in T'Fable A3 below, with increasing length shown in

Table A4. The same values are illustrated graphically in the chart in Figures 19 and 20

below.
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Increasing Pressure
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Figure 19: Average injection times per channel for 300mm, for increasing pressure.
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Figure 20: Average injection times per channel at 250kPa, for increasing length.
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One-way ANOVA was also calculated for each of the 9 runs in every data point, to

see the probability that the mean of each run was close to the actual mean if many more

runs were measured. The ANOVA data for each set is listed below in Table 1, and the

graphic representation of the means, standard deviations and minimum and maximum

values are shown below in Figures 21 and 22.

Table 1: ANalysis Of VAriance (ANOVA) data for each data set.

Parameters F-Value p-value
Increasing 150 kPa, 45.92 0
Pressure 200 kPa,

250 kPa
Increasing Length 300 mm, 122.52 0

250 mm,
400 mm

ANOVA Data for Increasing Pressure
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-
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Figure 21: ANOVA data for increasing pressure. Red lines are means, blue is standard deviation,
black is max/min value.
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ANOVA Data for Increasing Length
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Figure 22: ANOVA data for increasing length. Red lines are means, blue are standard deviation for
groups, and black are max/min values.

The F-Value in the ANOVA data is the variance between group means divided by the

expected variance within the groups. The p-value is the probability of the null hypothesis,

that increasing the pressure or the length has no effect on the mean of the data.

8.0 Discussion and Implications of Data

The data collected by the gel loading instrument totaled 9 runs fr each of the 5

parameter sets, with 8 capillaries in each run. This resulted in 360 individual capillary

times. In not a single run did any channel fail to load gel all the way through the
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capillary; however, there were some trends for loading speed between capillaries which

appeared to continue across different parameter sets.

Observing the average times per channel in Figures 19 and 20, it is clear that several

channels were consistently slower during operation. In Figure 20, Channel 2 showed

significantly slower operation at 300 mm and 400 mm. In Figure 19, for pressures at 150

kPa and 200 kPa, Channel 8 was consistently slow. This trend was noticed mid-data

collection. In an attempt to identify the source of the slow performance, after each slow

run, the capillary in Channel 8 was switched in position with Channel 1. Immediately

after this switch, Channel 8 would still be slower than the rest.

This indicates that the reduced flow velocity is not due to some inhibition in the

capillary itself, but is rather due to some flow tendency in the filling container. The slow

filling time was also qualitatively observed during the capillary wash process. Channel 8

consistently took longer to wash than the rest of the capillaries. During the runs where

Channel 2 was slowest, the same situation was observed: while pressurizing the system

with a pan full of capillary wash, which would displace the used polymer gel to ready the

capillary for the next run, the displacement of the polymer gel took significantly longer.

The washing of the capillaries is described in more detail in Appendix B.

If the problem is not identified and solved, slow capillaries will potentially be a

significant problem during loading of the full-scale UTMS. Polymer gel separation

matrix is expensive, and due to the tendency of the fluid to go down the capillaries with
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the least fluid resistance, i.e. the capillaries which have already completed loading and

are not jammed, high amounts of gel waste potentially exist during loading, if the UTMS

operator waits for the slow channels to fill.

One possible solution for this is to place a fluid resistor at the end of each capillary.

This fluid resistor could take form simply as a reduced diameter which would inhibit gel

flow at the end of the capillary, but would let the air in the capillary easily escape. Then,

when the gel reached the end of the capillary, that channel would reduce its flow rate, and

pressure would be diverted to capillaries which are not yet full. A schematic of such a

fluid resistor is shown below in Figure 21.

pinhole

silicon plate EDM'd cavity

y

Figure 23: Flow inhibitor for evening of capillary array filling.
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By using a sink EDM (electron discharge machining apparatus) to remove material in

a silicon plate which would leave room for the capillary tip with a pinhole above for

airflow, a flow inhibitor could be created to even the gel flow between the faster and

slower capillaries. Using a soft silicone seal as on the buffer well array in Figure 4, a seal

could be created which would contain a small volume of gel within the flow inhibitor,

preventing unwanted gel waste during filling

Gauging the effect of varied pressure and varied length in changing the fill times for

the capillaries, the expected relationship calculated in the theory section was verified.

Increased pressure certainly does decrease fill times, just as increased length slows the

process. Interestingly, observing the variation of the standard deviation between

parameter sets, it is clear that some sets appear to have more consistent operation than

others. Increasing the pressure seemed to reduce the standard deviation, as did increasing

the length. This trend is intuitively reasonable, since increased pressure would make a

given flow inhibitor, such as a piece of dust, less of an effect on the viscous flow.

Additionally, for a longer length, the standard deviation should reduce for a given flow

inhibitor, since the decreased time from that inhibition is then a smaller fraction of the

total time.

If the variability in fill time is to be significantly decreased (and the fill time itself

decreased as well) it is the clear that the pressure for the system should be increased.

Because of the impracticality of the setup, temperature variation was not tested in the

machine. The likely result of increasing the temperature of the system, however, is also
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decreased fill times and decreased variability, due to the reduction in viscosity of the

polymer gel. At a lower viscosity, a given flow inhibitor will have less of an effect, as

will the viscous shear with the capillary walls. Since the entire UTMS system will be

temperature controlled around the 80 C range, it is certainly conceivable to manually

lower the viscosity of the gel during filling to increase the fill performance. Calculations

from the theory section with lowered viscosity indicate the proportional decrease in fill

time.

The ANOVA data at the end of section 7.0 shows statistically that by varying the

parameters of length and pressure, the data is indeed affected. Though this is the expected

outcome, it is a positive verification that the by varying the intended aspects of the

system, the null hypothesis was correct. Because the p values were both below 0.05, the

independent variables (length and pressure) were indeed significant, as predicted by the

theory, and by common sense.

From the linear fit lines in Figures 15 and 16, equations were found which can be

used to predict the fill time based on the length and pressure, and are shown below in

Equations 13 and 14 below.

Fill time (s) - 8.9xPressure(Pa) + 43, 13

where in Equation 13, the capillary length is 300mm. Equation 14 gives the

relationship for fill time versus length, at a constant pressure of 250kPa.

Fill time (s) = 8.6xLength(mm) - 6.8 14
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9.0 Conclusion and Further Testing

With the completion and successful testing of the multichannel polymer gel loader

from this thesis, it is clear that scalable, parallel gel loading is highly functional for a

large system with thousands of channels, such as the UTMS. The fluid model did not

predict numbers for the fill time that were close to what was measured, but the trend was

the same, and it showed that the linear relationship between the pressure, length, and fill

time that was measured by the data was indeed accurate.

The testing capabilities enabled by this reliable device go beyond the tests performed

for this thesis. The system was build with aluminum in order to allow for complete

isothermal operation, so that temperature tests could be performed for testing reduced

viscosity run times. Additionally, the plate can accommodate 92 more capillaries. By

sensing the current across each channel on the DAQ board instead of simply the voltage

threshold, multiple capillaries could be run on the same channel, allowing for further

scaled up testing before the full t10,000 capillaries. With the additional data, more

accurate measurement of the effect of various parameters on standard deviations can be

further explored, as well as the trends between capillary placement and fill time. Not

enough data was taken while trying to focus on these particular aspects of the filling, and

it may become more important if the effects limit the performance of a larger device.

Incorporation of a full 100 x 100 fill array into the bottom of the UTMS temperature

chamber will be simple, and will easily accommodate the 3 layer silicone capillary clamp

which holds the channels in place. If it is necessary to physically sense the arrival of gel
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in each of the 10,000 channels during filling as well, the simplified buffer well plate

created to capture the gel and trigger the timer is an effective and reliable method to do

so, if the statistical calculations from this thesis are less exact than necessary. By

multiplexing and electrically scanning each channel through time, it is a simple thing to

physically verify the presence of gel in each of the 10,000 capillaries.

Lastly, in order to test if the variability in fill time can be reduced using a flow

inhibitor array, it would be very useful to construct a prototype using layered acrylic and

test it with the system. If it is found that it significantly reduces the standard deviation in

fill times, it would be worthwhile to incorporate into the full array in order to reduce gel

waste during filling.

Together, the design of the gel loader and the testing and subsequent analysis of its

performance push forward the ultra-high throughput mutational spectrometer, and bring it

one step closer to fruition. The system is highly functional and reliable, and has proven

its effectiveness for the full UTMS, as well as introduced possible design solutions for

even further improvement. Finally, the equations found by the data that was taken are

useful in determining the fill time based on the pressure and length.
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Appendix A: Detailed data representations

Table Al: Calculated and measured injection times with increasing pressure (corresponding to
Figure 15)

Parameter Parameters Calculated Measured St.Dev. (s)
Set At26 °C Time (s) Time (s)
1 300 mm, 150 kPa 5.458 34.106 11.435
2 300 mm, 200 kPa 4.725 26.107 13.250
3 300 mm, 250 kPa 4.226 16.231 8.414

Table A2: Calculated and measured injection times with increasing length
(corresponding to Figure 16)

Parameter Parameters Calculated Measured St.Dev. measured
Set At 26 °C Time (s) Time (s) (s)
3 300 mm, 250 kPa 4.226 16.231 8.414
4 350 mm, 250 kPa 5.324 22.608 3.411
5 400 mm, 250 kPa 6.503 33.530 7.245

Table A3: Average injection times per channel, for increasing pressure (corresponding to Figure
17).

Length = 300 mm 150 kPa 200 kPa 250 kPa
Channel 1 30.574 s 22.000 s 13.827 s

Channel 2 32.396 s 16.068 s 24.009 s

Channel 3 32.609 s 23.017 s 14.785 s

Channel 4 30.349 s 21.714 s 16.007 s
Channel 5 34.513 s 29.090 s 15.275 s

Channel 6 34.152 s 25.204 s 15.435 s

Channel 7 35.007 s 29.995 s 18.377 s

Channel 8 40.806 s 44.017 s 14.783 s

Table A4: Average injection times per channel, for increasing length (corresponding to Figure 18)

Pressure = 250 kPa 300 mm 350 mm 400 mm

Channel 1 13.827 s 19.968 s 29.740 s

Channel 2 24.009 s 37.267 s 23.000 s

Channel 3 14.785 s 20.722 s 30.195 s

Channel 4 16.007 s 22.228 s 31.334 s
Channel 5 15.275 s 22.972 s 33.631 s

Channel 6 15.435 s 23.124 s 34.160 s

Channel 7 18.377 s 24.259 s 37.351 s

Channel 8 14.783 s 24.914 s 37.959 s
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Figure 24: ANOVA Data of each set with increasing pressure. Red is the mean, blue the standard
deviation, and black the minimum and maximum values.
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Figure 25: ANOVA Data for each set with increasing length runs. Red is the mean, blue the standard
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Appendix B: Capillary Washing

Another important task qualitatively accomplished by the test runs performed in this

experiment was the characterization of the wash time for the capillary system. As

described in the Procedure section (6.0), it is imperative to change the gel in every

capillary in between DNA runs. Evacuating the used gel is accomplished by replacing the

gel pan in the pressure vessel with a pan filled with capillary wash. Capillary wash is then

injected through the channels until the gel has been displaced from all of them, and the

wash is exiting each capillary at the same rate.

The time required to wash the capillaries was hand-timed in order to qualitatively

characterize the washing process. It was found that in nearly ever case, if the system was

pressurized for the same amount of time as it took to load the set of capillaries, all but the

-slow" capillary would be completely washed. It consistently took approximately 10

additional seconds for the slow capillary to be completely displaced of polymer gel.

The washing process exhibited the problem with parallel capillary loading discussed

in section 8.0, but more strongly. As related in section 8.0, when a capillary exhibits a

lower fluid resistance than the others, the flow rate through that capillary will be higher,

and the flow through the higher resistance channels will be lower. Thus, if one capillary

is slow, it will become even slower if it still has gel to displace while the others have a

full flow of capillary wash.
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The different washing times due to varied fluid resistance is a difficult problem to

alleviate, since the fluid resistor solution proposed in section 8.0 would not work. A fluid

resistor system would be ineffective since the gel being displaced is of a higher viscosity

than the capillary wash, meaning the resistor would have to be added after the gel had

been displaced. Additionally, an issue that needs to be addressed is the disposal of the

capillary wash that comes out of the high-flow capillaries while the system displaces the

-slow" channels. A significant volume of capillary wash is ejected during the washing

process, and this volume will have to be disposed of properly in order to not interfere

with the rest of the instrument.

One suggestion is to place a large sponge over the tips of the capillaries. This sponge

would both catch the used polymer gel, as well as absorb the extra capillary wash. Upon

displacement and refilling of the gel, the sponge could be removed, the micro-lenses

replaced, and the system restarted on another run.
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Appendix C: MATLAB code for data manipulation

1: CAPMAIN. Primary program.

zm;a ~vsis lr.qiia 51 ,s I

-5 --- -- '-.'?' ar S :3,F l ?r e

clc;
numfiles=5;

for m=l:numfiles
filename=strcat( Pnum2str(m),
a=load (filename);
P(:, :,m)-a;

end

[x,y, z =size(P)

PAconverted = alter(P);

paraml = histo(PAconverted(:,:,l));
param2 = histo(PAconverted(:, :,2));
param3 = histo(PAconverted(:,:,3));
param4 = histo(PAconverted(:, :,4));
param5 = histo(PAconverted(:,:,5));

for n = i:numfiles
thanaves(n, :) channels(PAconverted(:, :,n));

end

bins = 0:2:100

~'-.5_{~ - 1' i -- cr:-cRi'-i- -

model

means =: eapaamleanpara: mean a3 I re;
means = [mean(param) mean(param2) mean(param3)];

means2 =[mean(param3) mean~param4) mean(param5) ];
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%-cis - _-res . g pre--s e d1:
Figure (1)

plot(dp,means)
xlabel( erassure Pa ')

ylabel( .verag. load ime (s')
title( ie]. loadin with inc-easirng presslre'
hold .t-

plot(dp,timepres)

Figure(2)
plot L,means2)
xlabel( -aelial.i- leng n (r ')

ylabel( averae, -ica- i a L i n ict S) ')
title( -Xi i. .... ir wit h irc i asibl 1l=t-rh )
hold .
plot (L, timeleng)

histl hist(param.: i .,bins) 
histl = hist(paraml,bins);
hist2 = hist(param2,bins);
hist3 = hist(param3,bins);
hist4 = hist(param4,bins);
hist5 = hist~param5,bins);

---. -, .i - .-!\ -. S _? . t a se
stddevs= [std(paraml) std(param2) std(param3) std(param4)
std(param5)];

2: MODEL: MATLAB code calculating fill time data from section 4.0 Theory

%v. ic'r Y .iv !-
~h- . r m . :i . r - h e --".I . x} '-.' _ _ , - '-. i -. -- ' ' - -- :- : - _-_-'. ' i -a i 

'- - - 8-- i, . - - - - - -_ -_ -cicccicil~ -11- iic2ccvi chIe.-I a 

clc;

R = 0.000075

D = 2*R
mu =30
dp = 150000
1 = 0.3

rho = 1000

gz = 9.8

V = 0.01
kl = 0.8

g = 9.8

Re = rho*V*D/mu;
f = 64/Re;

dp = [150000 200000
L = [0.3 0.35 0.4];

; 5~

; %< 9, s"

; 3- .1 
; %r ! 2sc'ffii:.
; %,'; , '

250000];
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for i = 1:3

for dla = 1:300;
vpres(dla,i) = sqrt((dp(1,i) -

rho*L(1,1))/((kl/(2*g))+f*(dla*.001/D)));
end

end

timepres = [0 0 0];

{~'-:- _ - - _ _ ! _ .1._ ~;i:, S Irer I I ri .v .I i , _I
for j = 1:3

for m = :length(vpres);
timepres(1,j) = timepres(1,j) + 0.001/(vpres(m,j));

end
end

for k = 1:3;

for dla = : (L(l,k)*1000);
vleng(dla,k) = sqrt((dp(1,3) -

rho*eL(,k))/((kl/(2*g))-f*(dla*.001/D)));
end

end

timeleng = [0 0 0];

for m = 1:300;

timeleng(1,1) = timeleng(1,1) + 0.001/(vleng(m,1));
end
for p = 1:350

timeleng(1,2) = timel.eng(1,2) + 0.001/(vleng(p,2));
end
for o = 1:400;

timeleng(1,3) = timeleng(1,3) + 0.001/(vleng(o,3));
end
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3: ALTER function to convert negative times in raw data

Ai.r fi. .l2~: .aiTz i.liy , i m,-v,]-5 _ ueD - - ]ii-;e -y -e-

function output = alter(x)

[r,c,d]=size(x)
output=:ones (r,c,d)

for k = :d;
for i = :r;

for j = l:c;
if x(i,j,k) < 0;

output(i,j,k) = x(i,j,k) + 60;
else output(i,j,k) = x(i,j,k);
end

end
end

end

4: HISTO function

function output2 histo(H)

Lr, c =size (H);
output2 = ones(r*c,1);

q = 0;
p = O;
n = 1;

for q = :r

for p = :c
output2(n,1)=H(q,p);
n = n + 1;

end
end
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5: CHANNELS function

q ''iR. r -.>=S-r-me- ---. '-- ?Ate P.<L~ for t:;!ii. 5 erriltAl __he' s
. ~ ~ ~ ~ ~ N __~2'-

function output = channels(x)

[r,c] = size(x);

output = ones(l,c);

for i = l:c
output(l,i)= mean(x(:,i));

end
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Appendix D: Visual Basic.NET code for timing system control program

Imports Agilent.TMFramework
Imports System.Threading
PubJic Class Forml

Inherits System.Windows.Forms.Form

#Region "Windows Form Designer generated code

Public Sub New('
MyBase.Newl'

'i .' _ .1 . :.e .i~e h - _ . i_: .s z~.: . .s _:: .. 
initializeComponent()

; \.i i . 'i i.li l f ~f- ,h li :_ ~l_ ! ,;"l ,;[1 _ i _

End ub

'2~~ *' _, . _ - J i S- Y2 - - 1 }i 'l -'n -i - -lr~ -1

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
Lf disposing Then

If Not components Is Nothing) Then
components.Dispose 

End If
End If
MyBase.Dispose(disposing)

End Sub

Private components As System.ComponentModel. IContainer

~ * , , ; .................................................. .> ",J ,l r l ..f.i l, *-- ... .1i ' / .. 1 ' ' : ' .'
·.... _.._ ' --' i - ' - -, - ' .-4 -f - -i~ -' - -- - i 'i - - --

Friend WithEvents txtbxl As System.Windows.Forms.TextBox
Friend WithEvents txtbx2 As System.Windows.Forms.TextBox
Friend Wit-hEvents txtbx3 As System.Windows Forms.TextBox
Friend WithEvents txtbx4 As System.Windows.Forms.TextBox
Friend WithEvents txtbx5 As System.Windows Forms.TextBox
Friend WithEvents txtbx6 As System.Windows.Forms.TextBox
Friend WithEvents txtbx7 As System.Windows.Forms.TextBox
Friend WithEvents txtbx0 As System.Windows.Forms.TextBox
Friend WithEvents btnStart As System.Windows.Forms. Button
Friend WithEvents Label9 As System.Windows.Forms.Label
Friend WithEvents btnReset As System.Windows.Forms.Button
Friend WithEvents Labelll As System.Windows.Forms.Label
Friend WithEvents GroupBoxl As System.Windows.Forms.GroupBox
Friend WithEvents lbll As System.Windows.Forms.Label
Friend Wit-hEvents lb12 As System.Windows.Forms.Label
Friend WithEvents lb13 As System.Windows.Forms.Label
Friend WithEvents lbl4 As System.Windows.Forms.Label
Friend WithEvents lb5 As System.Windows.Forms.Label
Friend WithEvents lb16 As System.Windows.Forms.Label
Friend WithEvents lb17 As System.Windows.Forms.Label
FriJend WithEvents lbls As System.Windows.Forms.Label
Frienr WithEvents txtVolt0 As System.Windows.Forms.TextBox
FrienrJ WithEvents txrVoltl As System.Windcws.Forns.TextBox
Friend WithEvents txtVolt2 As System.Windows.Forms.TextBox
Friend WithEvents txt'volt3 As System.Windows.Forms.TextBox
Friend WithEvents txtVolt4 As System.Windows.Forms.TextBox
Friernd WithEvenrits txtVolt5 As System.Windows.Forms.TextBox
Friend WithEvents txtVolt6 As System.Windows.Forms.TextEBox
Friend WithEvents txtVolt7 As System.Windows.Forms.TextBox
Friend WithEvents Labell As System.Windows.Forms.Label
Friend WithEvents txtMinO As System.Windows.Forms.TextBox
Friend WithEvents txtMinl As System.Windows.Forms.TextBox
Friend WithEvents txtMin2 As System.Windows.Fcrms.TextBox
Friend WithEvents txtMin3 As System Windows.Forms.TextBox
Friend WithEvents txtMin4 As System.Windows.Forms.TextBox
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Friend WithEvents txtMin5 As System.Windows.Forms.TextBox
Friend WithEvents txtMin6 As System.Windows.Forms.TextBox
Friend WithEvents txtMin7 As System.Windows.Forms.TextBox
Friend WithEvents Label2 As System.Windows.Forms.Label
Friend WithEvents btnInit As System.Windows.Forms.Button
Friend WithEvents lblPressure As System.Windows.Forms.Label
Friend WithEvents btnDepress As System.windows.Forms.Button
Friend WithEvents btnManual As System.Windows.Forms .Button
<System.Diagnostics.DebuggerStepThrough()> Private Sub nitializeComponent()

Dim resources As System.Resources.ResourceManager = New
System. Resources.ResourceManager(GetType(Forml))

Me.txtbxl = New System.Windows.Forms.TextBox
Me. cxtbx2 = New System.Windows.Forms.TextBox
Me.txtbx3 = New System.Windows .Forms.TextBox
Me.txtbx4 = New System.Windows.Forms. TextBox
Me.txtbx5 = New System.Windows.Forms.TextBox
Me.txtbx6 = New System.Windows.Fcrms.rTextBox
Me.txtbx7 = New System.Windows.Forms.TextBox
Me.lbll = New System.Windows.Forms.Label
Me.lb12 = New System.Windows.Forms.Label
Me.lb13 = New System.Windows.Forms.Label
Me.lb14 = New System.windows.Forms.Label
M4e.lbl5 = New System.Windows.Forms.Label
Me.lbl6 = New System.Windows.Forms.Label
M4e.lb17 = New System.Windows.Forms.Label
Me. txtbxO = New System.Windows.Forms.TextBox
Me.lblO = New System.Windows.Forms.Label
Me btnStart = New System.Windows.Forms.Button
Me.Label9 = New System.Windows.Forms.Label
Me.btnReset = New System.Windows.Forms.Button
Me.Labelll = New System.Windows.Forms.Label
Me.GroupBoxl = New System.Windows.Forms .GroupBox
Me.lblPressure = New System.Windows.Forms.Label
Me.btnInit = New System.Windows.Forms.Button
Me.Label2 = New System.Windows.Forms.Label
Me.txtMin7 = New System.Windows.Forms.TextBox
Me. txtMin6 = New System.Windows.Forms.TextBox
Me.txtMin5 = New System.Windows.Forms.TextBox
Me.txtMin4 = New System.Windows.Forms.TextBox
Me. txtMin3 = New System.Windows.Forms.TextBox
Me .txtMin2 = New System.Windows.Forms.TextBcx
Me.txtMinl = New System.Windows.Forms.TextBox
Me.txtMinO = New System.Windows.Forms.TextBox
Me Labell New System.Windows.Forms.Label
Me. txtVolt7 = New System.Windows.Forms.TextBox
Me.txtVolt6 = New System.Windows.Forms.TextBox
Me.txtVolt5 = New System.Windows.Forms.TextBox
Me.txtVolt4 = New System.Windows.Forms.TextBox
Me.t xtVo't3 = New System.Windows.Forms.TextBox
MNe txtVoit2 = New System.Windows.Forms.TextBox
Nle txtVoltl = New System.Windows.Forms.TextBox
M2.txtVoltO = New System.Windows.Forms.T'rextBox
Me.btnDepress = New System.Windows.Forms.Button
Me.btnManual = New System.Windows.Forms.Button
NlM-. GroupBoxl. SuspendLayout()
Ne .SuspendLayout()

Me.txtbxl.Location = New System.Drawing.Point(192, 64)
Mle.txtbxl.Name = txtbxl"
Me.txtbxl.Size= New System.Drawing.Size(96, 20)
Me.txtbxl.TabIndex = 0
Mv. txtbxl.Text = ""

Me.txtbx2.Location = New System.Drawing.Point(192, 88)
Me.txtbx2.Name = txtbx2"
Me.txtbx2.Size = New System.Drawing.Size(96, 20)
Me.txtbx2.TabIndex = 1
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Me.txtbx2.Text = ""

Me.txtbx3.Location = New System.Drawing.Point(192, 112)
Me.txtbx3.Name = 

"t
xtbx3"

Me.txtbx3.Size = New System.Drawing.Size(96, 20)
Me.txtbx3.TabIndex = 2

Me.txtbx3.Text = ""

Me.txtbx4.Location = New System.Drawing.Point(192, 136)
Me.txtbx4.Name = "txtbx4"
Me.txtbx4.Size = New System.Drawing.Size,96, 20)
Me.Cxtbx4.TabIndex = 3

Me.txtbx4.Text = ""

Me.txtbx5.Location = New System.Drawing.Point(192, 160)
Me.txtbx5.Name = "txtbx5"
Me.txtbx5.Size = New System.Drawing.Size(96, 20)
Me.txtbxS.TabIndex = 4

Me.txtbx5.Text = ""

Me.txtbxG.Location = New System.Drawing.Point(192, 184)
Me.txtbx6.Name = "txtbx5"
Me.txtbx6.Size = New Syste.Drawing.Size96, 20)
Me.txtb.x6. TabInidex = 5
Me.txtbx6.Text = ""

Me.:xtbx'7.Location = New System.Drawing.Point(192, 208)
Me.txtbx7.Name = "txtbx7"
Me.txtbx7.Size = New System.Drawing.Size(96, 20)
Me.txtbx7.TabIndex = 6
Me.t: -tbx7.Text = ""

Me.lbll.Localion = New System.Drawing.Point(24, 64)
M-.lbl!.Name = "lbll"
Me.lbll.Size = New System.Drawing.Size(56, 23)
Me.lbll.TabIndex = 7

Me.lbil.Text = "Channel 1"

Me.112.Location = New System.Drawing.Point(24, 88)
MNe.1b12.Name = "112"
NIe.lb12.Size = New System.Drawing.Size(56, 23)
Me.lb12.TabIndex = 8

Ne.lb12.Text = "Channel 2"

:. ,'

Me.lb13.Lcca'ion = New System.Drawing.Point(24, 112)
Me.lbl3.Name = "lbl3"
Me.lb13.Size = New System.Drawing.Size(56, 24)
Me.lb13.Tablndex = 9

Me.lb13.Text = "Channel 3"

Me.lb!4.Locarion = New System.Drawing.Point(24, 136)
Me.lb14.Name = "lb14"
Me.lb14.Size = New System.Drawing.Size(56, 23)
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Me.lbl4.Tabindex = 10
Me.lb14.Text = "Channel 4"

Me.lbi5.Location = New System.Drawing.Pointi24, 160)
Me.lb15.Name = "lbl5"
Me.lbiS.Size = New System.Drawing.Size(56, 23)
Me.lb15.TabIndex = 11
Me.lbl5.Text = "Channel 5"

Me.lb16.Location = New System.Drawing.Point(24, 184)
Me.lbl6.Name = "lb16"
Me.lb16.Size = New System.Drawing.Size[56, 23
Me.lb16 TabIndex = 12
Me.lbl6.Tex = "Channel 6"

Me.lb17.Location = New System.Drawing.Point(24, 208)
Me-lbl7.Name = "lb17"
Me.lb17.Size = New System.Drawing.Size(56, 23)
Me. lb17.TabIndex = 13
Me.lb17.Text = "Channel 7"

Me.txtbx0.Location = New System.Drawing.Poinlt(192, 40)
Me.txtbx0.Name = "txtbx0"
Me.txtbx0OSize = New System.Drawing.Size(96, 20)
Me.txtbxO.TabIndex = 14
Me.txtbx0.Text = ""

Me.lblD.Location = New System. Drawing Point[24, 40;
Me.lb10.Name = "lblO"
Me.lb10.Size = New System.Drawing.Size(56, 23)
MeilblO.TabIndex = 15
Me.lb10.Text = "Channel 0"

le.bcnStart.Location = New System.Drawing.Point(408, 64)
Me.btnStart.Name = "btnStart"
Me.btnStart.Size = New System.Drawing.Size{104, 23)
Me.btnStart.TabIndex = 16
Mse.btnStart.Text "Start System"

Me.Label9.Location = New System.Drawing.Point{192, 24)
Me.Label9.Narne = "Label9l"
Me Label9.Size = New System.Drawing. Size(88, 16)
Me.Label9.TabIndex = 34
M-.Label9.Pext = "Seconds"

Me.btnReset.Location = New System.Drawing Point(4D8, 112)
Me.btnReset.Name = "btnReset"
Me.btnReset.Size = New System.Drawing.Size(104, 23)
Me.btnReset.TabIndex = 36
Me.btnRese-.Text = "Reset"

_ .~ il

Me.Labelll.Font = New System.Drawing.Font("Monaco", 18.0!,
System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, CType (0, Byte))
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Me.Labelll.Location = New System.Drawing.Point(40, 8)
Me.Labelll.Name = "Labelll"
Me.Labelll.Size = New System. Drawing.Size(504, 40
Me.Labelll.TabIndex = 38
Me.Labelll.Text = "Gel Loading Timer Program"

Me GroupBoxl .Controls.Add(Me.btnManual)
Me GroupBoxl .Controls.Add(Me.btnDepress)
Me GroupBoxl .Controls .Add(Me. lblPressure)
Ye.GroupBoxl.Controls.Add(Me.btnInit)
Me GroupBoxl .Controls.Add(Me. Label2)
Me. GroupBoxl -Controls.Add(Me.txtMin7)
Me GroupBoxl .Controls.Add(Me.txtMin6)
Me.GroupBoxl .Controls.Add (Me. txtMin5
Me .GroupBoxl .Controls .Add (Me.txtMin4)
Me.GroupBoxl .Contrcls .Add Me. txtMin3)
Mle.GroupBoxl .Controls.Add(Me.txtMin2)
MNe.GroupBoxl .Controls.Add(Me.txtMinl)
Me.GroupBoxl .Controls.Add(Me.txtMinO)
Mle.GroupBoxl.Controls.Add(Me.Labell)
MNle.GroupBoxl.Controls.Add (Me.txtVolt7)
Mle.GroupBoxl .Controls .Add(Me. txtVolt6)
MNle.GroupBoxl .Controls Add (Me. txtVolt5
iMe. GroupBoxl .Controls .Add(Me. txtVolt4)
Me.GroupBoxl .Controls .Add(Me.txtVolt3
MLe-.GroupBoxl.Controls.Add(Me.txtVolt2)
NMe.GroupBoxl.Controls .Add (Me.txtVoltl)
lMe. GroupBoxl . Controls .Add (Me. txtVoltO)
MNle.GroupBoxl.Controls.Add(Me.txtbxl)
Mle.GroupBoxl.Controls.Add(Me.txtbx6)
Mle.GroupBoxl.Controls .Add(Me.txtbx7)
Mle.GroupBoxl.Controls.Add 'Me.lblil)
Me.GroupBoxl .Controls .Add(Me.lb12)
Me.GroupBoxl.Controls.Add(Me.lb3)
hle.GroupBoxl.Controls.Add(Me.lb14)
Mle.GroupBoxl.Controls .Add(Me. lb15)
Me.GroupBoxl .Controls .Add (Me lbl6)
Mle.GroupBoxl.Controls.Add(Me. lb17)
Me.GroupBoxl.Controls.Add(Me txtbxO)
Nle.GroupBoxl.Controls.Add¢Me.lbl0O)
MNle.GroupBoxl.Controls.Add{Me. bnStart)
MNle.GroupBoxl .Controls.Add{(Me. Label9)
Ne.GroupBoxl.Controls.Add(Me.btnReset)
Me.GroupBoxl.Controls.Add(Me.txtbx5)
Me. GroupBoxl .Controls .Add(Me. txtbx2)
Me .GroupBoxl.Controls.Add(Me. txtbx3)
MNle .GroupBoxl.Controls.Add(Me.txtbx4)
Me.GroupBoxl.Location = New System.Drawing.Point (8, 48)
Me.GroupBoxl.Name = "GroupBoxl"
Me.GroupBoxl.Size = New System.Drawing.Size(536, 240)
Me.GroupBoxl.Tablndex = 39
Me GroupBoxl.TabStop = False
Me .GroupBoxl.Text = Gel System"

Me.lblPressure.Font = New System.Drawing.Fontj"Albertus Extra Bold", 8.25!,
System.Dr-awing.FontStyle. Bold, System.Drawing. GraphicsUnit.Point, CType (0, Byte)

Me.lblPressure. Location = New System.Drawing.Point(416, 208)
Me. lblPressure .Name = "blPressure"
Me.lblPressure.Size = New System.Drawing.Size(96, 16)
Me.lblPressure.TabIndex = 59
Me.lblPressure.Text = "Depressurized"

Me.btnInit.Location = New System.Drawing.Point(408, 40)
Me.btnInit.Name = "btnlnit"
Me.btnInit.Size = New System.Drawing.Size(104, 23)
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Me.btnlnit.Tablndex = 57
Me.btnInit.Text = "Initialize System"

Me.Label2.Location = New System.Drawing.Point(88, 24)
Me.Labei2.Name = "Label2"
Me.Label2.Size = New System.Drawing.Size(88, 16'
Me.Labe12.Tablndex = 56
Me.Labe12.Text = "Minutes"

Me.txtMin7 Location = New System.Drawing Point(88, 208)
Me.txtMin7.Name = "txtMin7"
Me.txtMin7.Size = New System.Drawing.Size96, 20)
Me.txtMin7.T abIndex = 55
Me. txtMin7.Text = "

Me.txtMin6.Location = New System.Drawing.Point'88, 184)
Me.txtMin6.Name = "txtMin6"
Me.txtMin6.Size = New System.Drawing.Size(96, 20)
Me.txtMin6.TabIndex = 54
Me.txtMin-6.Text = "

Me.txtMin5.Location = New System.Drawing.Point(88, 160)
Me.txtMin5.Name = "txtMin5"
Me.txtMin5.Size = New System.Drawing.Size96, 20)
Me.txtMin5.TabIndex = 53
Me.txtMin5.Text = "

Me.txtMin4.Location = New System.Drawing.Point(88, 136)
Me.txtMin4.Name = "txtMin4"
Me.txtMin4.Size = New System.Drawing.Size(96, 20)
Me.txtMin4.TabIndex = 52
Me.txtMin4.Text = "

Me.txtMin3.Location = New System.Drawing.Point(88, 112)
Me.txtMin3.Name = "txtMin3"
Me.txtMin3.Size = New System.Drawing.Size(96, 20)
Me.txtMin3.TabIndex = 51
Me .txtMin3.Text ="

Me.txtMin2.Location = New System.Drawing.Point(88, 88)
Me.txtMin2.Name = "txtMin2"
Me.txtMin2.Size = New System.Drawing.Size(96, 20)
Me.txtMin2.TabIndex = 50
Me.txtMin2.Text = "

Me.txtMinl.Location = New System.Drawing Point(8, 64)
Me.txtMinl.Name = "txtMinl"
Me.txtMinl.Size = New System.Drawing.Size(96, 20)
Me.txtMinl.TabIndex = 49
Me.txtMinl Text = "

Me txtMinO.Location = New System.Drawing.Point(88, 40)
Me.txtMin0.Name = "txtMin0"
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Me.txtMinO.Size = New System.Drawing.Size(96, 20)
Me.txtMin0.TabIndex = 48
Me.txtMinO.Text = ""

Me.Labell.Location = New System.Drawing.Point(296, 24)
Me.Labell.Name = "Labell"
Me.Labell.Size= New System.Drawing.Size(100, 16)
Me.Labell.TabIndex = 47
Me.Labell.Text = "Channel Voltages"

Me.txtVolt7.Location = New System.Drawing.Point(296, 208)
Me.txtVolt7.Name = "txtVolt7"
Me.txtVolt7.TabIndex = 46
Me.txtVolt7.Text = ""

Me.txtVolt6.Location = New System.Drawing.Point(296, 184
Me.txtVolt6.Name = "txtVolt6"
Me.txtVolt6.TabIndex = 45
Me.txtVolt6.Text = ""

Me.txtVolt5.Location = New System.Drawing.Point(296, 160)
Me.txtVolt5.Name = "txtVolt5"
Me.txtVolt5.TabIndex = 44
Me.txtVoltS.Text = ""

Me.txtVot4.Location New System.Drawing.Point(296, 136)
Me.txtVolt4.Name = "txtVolt4"
Me.txtVolt4.TabIndex = 43
Me.txtVo't4.Text = ""

Me.txtVolt3.Location New System.Drawing.Point(296, 112)
lMe.txtVolt3.Name = "txtVolt3"

Me.txtVolt3.TabIndex = 42
lMe.xtVolt3.Text = ""

Me.txtVolt2.Location = New System.Drawing.Point(296, 88)
Me.txtVolt2.Name = "txtVolt2"
Me.txtVolt2.Tabindex = 41
Me.txtVolt2.Text = ""

Me.txtVoltl.Location = New System.Drawing.Point(236, 64)
Me.txtVoltl.Name = "txtVoltl"
Me.txtVoltl.TabIndex = 40
Me.txtVoltl.Text = ""

''ll Y _' ]

Me.txtVoltO0.Location = New System.Drawing.Point(296, 40)
Me.txtVoltO.Name = "txtVoltO"
Me.txtVoltO.TabIndex = 39
Me.txtVoltO.Text = ""

Me.btniDepress.Location = New System.Drawing.Point(408, 160)
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Me.btnDepress.Name = "btnDepress"
Me.btnDepress.Size = New System Drawing.Size(104, 23)
Me.btnDepress.TabIndex = 60
Me.btnDepress.Text = "Depressurize"

Me.btnManual.Location = New System.Drawing. Point(408, 136)
Me.btnManual.Name = "btnManual"
Me.btnManual.Size = New System.Drawing.Size(104, 23)
Me.btnManual.TabIndex = 61
Me.btnManual.Text = "Manual Pressure"

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
Me.ClientSize New System.Drawing.Size(552, 294)
Me.Controls .Add(Me.GroupBoxl)
Me.ContrDls.Add(Me.Labeill)
Me.Icon = Cype(resources.GetObject("$this.Icon"), System.Drawing.Icon)
Me.Name = "Forml"
Me.Text = Gel Loading Timer Program by Nate Ball"
Me.GroupBoxl.ResumeLayout (False)
Moe.ResumeLayout(False)

End Sub

#End Region

Dim myAgilent66xx As Agilent.Agilent66xx.Interop.Agilent66xx

' i :- i_-.7a ] , z '7 '::?-z::- r r :;] A L: '- :z:-.l -: :::~ r ~ .,_, e- - ' -:

Declare Function A IVRead Lib "nidaq32.dll" (ByVal deviceNumber As Intl6, ByVal chan
As Intl6, ByVal gain As Intl6, ByRef voltage As Double) As Intl6

Declare Function AO_Update Lib "nidaq32.dll" (ByVal deviceNumber As Int16) As Intl6
Declare Function AO VWrite Lib "nidaq32.dll" (ByVal deviceNUmber As Intl6, ByVal chan

As Int16, ByVal voltage As Double) As Intl6

Dim vctin0 As Double
Dim vlr Itinl As Double
Dim v ltin2 As Double
Dim voltin3 As Double
Dim v-ltin4 As Double
Dim voltin5 As Double
Dim vtin6 As Louble
Dim r tin7 As Double
Dim voltin99 As Double

Dim status As Intl6

Publi. dateStartm As Integer
Publi- dateStartms As Integer
Publi- dateStarts As Integer

Priva e date. m As Integer. .

Privace dateums As Integer
Private date0s As Integer
Private dateslm As Integer
Privat]e datelm As Integer
Private datels As Integer
Private datels2m As Integer
Private date2m As Integer
Private date2s As Integer
Private date3m2s As Integer
Private date3m As Integer
Private date3ms As Integer
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Private date3s As Integer
Private date4m As Integer
Private date4ms As Integer
Private date4s As Integer
Private date5m As Integer
Private dateSms As Integer
Private date5s As Integer
Private date6m As Integer
Private date6ms As Integer
Private date6s As Integer
Private date7m As Integer
Private date7ms As Integer
Private date7s As Integer

Dim h As Boolean = False
Dim i As Boolean = False
Dim j As Boolean = False
Dim k As Boolean = False
Dim Il As Boolean = False
Dim rn As Boolean = False
Dim n As Boolean = False
Dim o As Boolean = False

Private Sub btnStart_Click(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles btnStart.Click

myAgilent66xx.Output.VoltageLevel = 24
myAgilent66xx. Output .CurrentLimit = 0.2
myAgilent66xx.utput.Enabled = True

' ' , :- .- _z
dateStartm = Date.Now.Minute
dateStarts = Date.Now.Second
dateStartms Date.Now.Millisecond

]blPressure.Text = "PRESSURIZED"
lb!Pressure.Refresho)

' ifs . _ _ _ ~.'1 _i ~_ -ir..zL.'.:..r/i_.11_11 { .l.'z. i*.11\;_i-:i... ,.i'.. - _i.:.... ,?... = . .i .: _

l.: :_ iizi 1 1 2 _- 1 }1 z l- - :, 2. % l ' 1 l. 'i. r -[: ." Sl . _ l f .

While Not '(h And And j And k And 1 And m And n And o) = True)

If h = False Then
status = AI VRead(2, 0, 1, voltinO)
If voltinO 0.1 Then --. ' _ -' :'

dateOm = Date.Now.Minute
date0s = Date.Now.Second '- _xei- --- - - : -

f:i
dateOms = Date.Now.Millisecond
txtVolt0.Text = voltinO ' - :-:- :
txtMinO.Text = (dateOm - dateStartm)

_ _ , _ _ r , _ e~~~~~~~, '

.~

txtbx0.Text = (dateOs - dateStarts) + 0.001 * (dateOms -
dateStartms))

h = True '-ai- _ f '-.i
txtVoltO.Refresh)
txtMinO.Refresh()
txtbxO.Refresh()

End If
End If

If i = False Then
status = AIVRead(2, 1, 1, voltinl)
If voltinl > 0.1 Then
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datelm = Date.Now.Minute
datels = Date.Now.Second
dateims = Date.Now.Millisecond
txtVoltl.Text voltinl
txtMinl.Text = (datelm - dateStartm)
txtbxl.Text = ((datels - dateStarts) + 0.001 * (datelms -

dateStartms))
i = True

txtVoltl.Refresh()
txtMinl.Refresh()
txtbxl.Refresh()

End If
End If

If j = False Then
status = AI _VRead(2, 2, 1, voltin2)
If voltin2 > 0.1 Then

date2m Date.Now.Minute
date2s Date.Now.Second
date2ms = Date.Now. Millisecond
txtVolt2.Text = voltin2
txtMin2.Text = (date2m - dateStartm)
txtbx2.Text = ((date2s - dateStarts) + 0.001 * (date2ms -

dateStartms))
j = True
txtVolt2 .Refresh()
txtMin2.Refresh()
txtbx2.Refresh()

End If
End If

If k = False Then
status = AIVRead(2, 3, 1, voltin3)
If voltin3 > 0.1 Then

date3m = Date.Now.Minute
date3s = Date.Now.Second
date3ms = Date.Now.Millisecond
txtVolt3.Text = voltin3
txtMin3.Text = (date3m - dateStartm)
txtbx3.Text = ((date3s - dateStarts) + 0.001 * (date3ms -

dateStartms))
k True
txtVolt3.Refresh()
txtMin3 .Refresh)
rxtbx3.Refresh(

End If
End If

If 1 = False T'hen
status = AI VRead(2, 4, 1, voltin4)
If voltin4 > 0.1 Then

date4m = Date.Now.Minute
date4s = Date.Now.Second
date4mns = Date.Now.Millisecond
txtVolt4.Text = voltin4
txtMin4.Text (date4m - dateStartm)
txtbx4.Text = ((date4s - dateStarts) 0.001 * (date4ms -

dateStartrns)
1 = True
txtVolt4.Refresh()
txtMin4.Refresh(
txtbx4.Refresh()

End If
End If

If m = False Then
status = AI VRead(2, 5, 1, voltin5)
If voltin5 > 0.1 Then

dat05m = Date.Now.Minute
date5s = Date.Now.Second
date5ms = Date.Now.Millisecond
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txtVolt5.Text = voltin5
txtMin5.Text = (date5m - dateStartm)
txtbxS.Text = ((date5s - dateStarts) + 0.001 (date5ms -

dateStarcms))
m = True
txtVolt5.Refresh()
txtMin5.Refresh()
txtbx5.Refresh(

End If
End If

If n = False Then
status = AI _VRead(2, 6, 1, voltin6)
If voltin6 > 0.1 Then

date6m = Date.Now.Minute
date6s = Date.Now.Second
date6ms = Date.Now. Millisecond
txtVolt6.Text = voltin6
txtMin6.Text = (date6m - dateStartm)
txtbx6.Text = (date6s - dateStarts) + 0.001 * (date6ms -

dateStartms))
n = True
txtVolt6.Refresh()
txtMin6.Refresh()
txtbx6.Refresh()

End If
End If

If o = False Then
status = AIVRead(2, 7, 1, voltin7)
If voltin7 > 0.1 Then

date7m = Date.Now.Minute
date7s = Date.Now.Second
date7ms = Date.Now.Millisecond
txtVolt7.Text voltin7
txtMin7.Text = (date7m - dateStartm)
txtbx7.Text = ((date7s - dateStarts) + 0.001 * (date7ms -

dateStart.ms)}
o = True
txtVolt7.Refresh()
txtMin7 .Refresh()
txtbx7.Refresh()

End If
End If

End While

End Sb

Private Sub btnReset Click(ByVal sender As bject, ByVal e As System.EventArgs)
Handles btnReset.Click

ryAgilent66xx. Output.VoloageLevel = 0
myAgilent66xx.Output.CurrentLimit = 0

t _b - ; _ x -
txtbxO.Text = 0.0
txtbxl.Text = 0.0
txtbx2.Text = 0.0
txtbx3.Text = 0.0
tx:tbx4.Text = 0.0
txtbx5.Text = 0.0
txobx6.Text = 0.0
txbx7.Text = 0.0

txtMinO.Text = 0
txtMinl.Text = 0
txtMin2.Text = 0
txtMin3.Text = 0
txtMin4.Text = 0
txtMin5.Te:t = 0
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txtMin6.Text = 0

txtMin7.Text = 0

txtVoltO.Text = 0

txtVoltl.Text = 0

txtVolt2.Text = 0

txtVolt3.Text = 0

txtVolt4.Text = 0

txtVolt5.Text = 0

txtVolt6.Text = 0
txtVolt7.Text = 0

lb10.Text = "Channel 0"
lbll.Text = "Channel 1"

1bl2.Text = "Channel 2"

Lb13.Text = "Channel 3"
lb14.Text = "Channel 4"
ibl5.Text = "Channel 5"
lbl5.Text = "Channel 6"
Lbl7.Text = "Channel 7"

h = False
i = False

j = False
k = False
iL = False

m = False
n = False
o = False

iblPressure.Text = "Depressurized"
Lb-lPressure.Refresh )

End ,Sub

Private Sub btnlnitClick(ByVal sender As System. Object, ByVal e As System.EventArgs)
Handles btnlnit.Click

myAilent66xx = New Agilent.Agilent66xx.Interop.Agilent66xxClass
mnyAgilent66xx.Initialize("GPIBO: :1: :INSTR", True, True, Nothing)

End Sub

Private Sub btnDepressClick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnDepress.Click

i~~. .............:: i .£-......... , :_fl. ..i. .. : _i
myAgilent6xx Output.VoltageLevel = 0
rnyAgilent66xx.Output.CurrentLimit = 0

lblPressure.Text = "Depressurized"
lblPressure.Refresh ()

End Sub

Privae Sub btnManual_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) H.andles btnManual.Click

· _ f. ~ " l- . _ :' i: .il . fl :-- ~ i :. - ,_'-£ , . i J l .£" .< - . .. A

myAgilent66xx.Output.VoltageLevel = 24
myAgilentE66xx. Output.CurrentLimit = 0.2
myAgilent66xx.Output.Enabled = True
lblPressure.Text = "PRESSURIZED"
lblPressure. Refresh )

End Sub
End Class
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