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Abstract

We derive a nonparametric training algorithm which
asymptotically achieves the minimum possible error
rate, over the set of linear classifiers, for decentralized
binary hypothesis testing (detection) networks. The
training procedure is nonparametric in the sense that
it does not require the functional form of the proba-
bility densities or the prior probabilities to yield an
optimal set of decision thresholds in the limit. How-
ever, knowledge of the network topology is required
by the algorithm. We suggest that models of the vari-
ety in this study provide a paradigm for the study of
adaptation in human organizations.

I Introduction

We have been attempting to model and analyze adap-
tation in coupled organized systems by devising algorithms
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which train decentralized detection networks to optimize a
given measure of organizational performance.

In this paper, we present one of a collection of training
algorithms we have developed. The algorithm uses succes-
sive approximation to solve for the optimal decision rules,
with stochastic approximations taking the place of function
evaluations. Each network node, hereafter denoted decision
maker (DM), solves approximately using stochastic approxi-
mation a subproblem which is coupled to subproblems being
solved by the other DMs in the network. The computation
is truly distributed as the DMs must communicate partial
results with one another and update their subproblems upon
receiving new information.

2 Decentralized Binary Hypothesis Test-
ing

This section presents two examples of decentralized bi-
nary hypothesis testing problems which will be used to demon-
strate the algorithm. The examples are small networks which
give clear evidence of the noncombinatorial type complexity
typical of these problems. We note that an excellent and very
general overview of the field of decentralized detection theory
is presented in [12], while the small teams which concern us
have been extensively studied in [4].

A critical assumption in this work is that the observa-
tions of the DMs are conditionally independent. Without
this assumption, the decision rules not only become messy,
but the problem has been shown to be NP-complete [12],
[13]. We also assume for simplicity that the observations are
scalar valued, although generalization to vector lid observa-
tions presents no difficulty.

The decision criterion on which we focus, namely the min-
imum probability of error criterion, will penalize only the in-
correct decisions of the so called primary DM, or the DM
which outputs the final decision of the network. The role of
the other DMs in the organization is simply to contribute
to the decision process in a way which minimizes the prob-
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ability of the primary DM being incorrect. Their individual
decisions are not reflected in the cost. We have chosen the
minimum probability of error criterion for its intuitive com-
patability with the organizational paradigm as well as its
general usefulness.

A critical issue which arises in the team problem is the
size of the message set available to each DM. We restrict
ourselves to the case in which each DM chooses messages
from the set {0, 1}. Thus, each DM will be allowed only
one bit of communication capacity. Allowing more messages
clearly improves the performance of the team since in the
limit each DM will be able to transmit its entire observa-
tion, thus achieving the centralized solution which provides
an unattainable lower bound on the performance of the team.

2.1 Two-Member Tandem Architecture

The first topology we will examine is illustrated in Fig.1.
This type of structure is referred to as tandem, and the two-
member tandem team will hereafter be referred to as 2-Tand.
The operation of 2-Tand may be described as follows: DM
A receives a scalar observation YA which it uses to choose a
message UA E {0, 1} to send to DM B. DM B, the primary
DM, takes into account the message uA from DM A as well
as its own observation YB to compute the overall team deci-
sion UB E {0, 1}. Thus, if YA and YB denote the respective
observation spaces of A and B, then the decision rules em-
ployed by A and B are of the form 7A: YA -- {0, 1} and
?B: YB x {0, 1} -* {0, 1} respectively. It remains to deter-
mine just what -YA and YB should be in view of the minimum
probability of error criterion.

The necessary conditions for optimality of the decision
rules 7A and yB, under the minimum probability of error
criterion, were derived in [4]. Perhaps surprisingly, as in the
centralized case, they are likelihood ratio tests (LRTs). With

Vx 2, these LRTs are
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YA YB

A B ~UB

Figure 1: 2-Tand

For DM B:

1 pA

P(YBIH1) u=1 (2.1)

P(Y I HO) PAif UA = 1

For DM A:

p(YA IH1) A=1 PFB - PFB
P(YAIO) =O -1_ (2.2):~yAIAo) PA D I o

where PF, PDA are the probabilities of false alarm and detec-

tion of A and PFi, pDBi, i = 0, 1 are the probabilities of false
alarm and detection of B when A selects message i.

A significant reduction in the decision rules of equations
2.1 - 2.2 can be effected if we work with a particular class
of decision problems, namely those in which the network's
objective is to decide which of two constant signals occurred
with each DM's measurement corrupted by zero-mean Gaus-
sian noise. For this case the observations at A and B are of
the form

YA = { l ° + N(O, o) :H (2.3)

YB = go + N(O, aB) : Ho (2.4)

l + N(O,,a) : H1
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We can use the ln(.) function to reduce 2.1 - 2.2 to the fol-
lowing set of equivalent optimal tests, which happen to be
linear in the observations:
For DM B:

13o if UA = 0

YB > (2.5)

LB=O 31/3 if UA = 1

For DM A:
uA=1

YA X a (2.6)
UA=O

where the fixed observation azis thresholds a, 0o,,31 are de-
termined by a system of three coupled nonlinear algebraic
equations. First define, for k = 0, 1, the functions

C, = A e -/ k 2/2d (2.7)

Po -Ak'boBk =1 __/2d (2.8)

4,~(k)= f ' 1 e 2/2d (2.9)

Then the thresholds are given by

~30-~ ln + ln + P1
A1 -,uo 1( 1 ) A1 - IO po 2

(2.10)

aB in (1-+ I o +/I0)1)A
l -to I1-- Plo p 2

(2.11)

a I=n + In _ + 'o) A
isll -fo40(- - Po p 2

(2.12)
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Figure 2: 3-Vee

2.2 Three-member V architecture

The three-member V structure is illustrated in Fig.2. The
decision rules employed by DM A and DM B are of the form
7A : A -+ {0, 1} and B: YB -+ {0, 1}, while the decision
rule of DM C is of the form yc : YC x {O, 1} x {O, 1} -, {0, 1}.

The necessary conditions for optimality of the decision
rules 7YA, YB, and -y under the minimum probability of error
criterion were derived in [4] and are given by
For DM C:

[ (j_pA)(j - p&) if UA = OUB 0(11-P)(1 
7PD A(1-P) if UA = O, UB = 0

(1-pA)pB77 rA r if uA = O, uB = 1
p(yclHl ) uc=1 1 PD'

p(ycIHo) u=o PA ( B
if UA = , UB = 0

pD (1,-pDO)

77/ pA-p if UA = 1, uB = 1

(2.13)
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For DM A:

p(yAIH1) UA1 (1-PB)[PC(10) PF(OO)] + PF C(11) P 1)
_P(YAIHO) U (1 _ P#B)[poC(lO)_ -P(OO)] + P[P(r ) _ F[D(oF)]

(2.14)
For DM B:

p(YBIH1) B=: (1 - P)[P-(O) _ p(OO)] + PFR[p(11) _ plO)]

p(YBIHo) u=O ~(1- PDA)[PD(O1) P(OO)]- + P[PD11 _ pC()]

(2.15)

where PFC(i;j), PDC(ij) denote the probabilities of false alarm
and detection ofDM C when receiving messages uA = i, uB =
j with i,j E ({0, 1}.

For the Gaussian problem, the decision rules of equations
2.13 - 2.15 may be reduced to the equivalent linear rules
For DM C:

noo if uA = O. UR = O

uc:=l ol if UA = O, UB = 1

YC ~ .(2.16)
C=o HO10 if UA = , UB=O

k 11 if UA = 1, UB = 1

For DM A:
uA=l

YA p a (2.17)

For DM B:

YB /3 (2.18)

where the fixed observation axis thresholds a, /3, too, 'o1, lo, 1
are determined by the following system of six coupled non-
linear algebraic equations (with the functions · defined sim-
ilarly to those in equations 2.7-2.9):

Ioo = ~ n _ ao,(O)43(O) i+ - ,- = 
UC=1 - 61 C1ail)~pl) ys -if0 p=\l 2

(2.19)



61 C hi - +-d(°))\ In tPo+Ao + l1
A1= - Po ()( ()) +1-Po p 2

(2.20)

0= C In ((1- d(O))4ip(O)) + Ia n (P) o + +1
Al -Po - -) --(- ()) Al -glo p1 2

(2.21)

(11 = - In 1(0 -a°) -+(°)) + D In (P-IA +It
ol -/- (1- 'c,(1))(1- ~3(1))\ 4 _ - pi +2l -(1o 'I - O 2

(2.22)

_ - _A In 0 (3(O)[(4oo(O) - 4,o(0)] + (1 - p(o))[$1o,(0) - l.(o)])

+ p in (po 9 + o 4- Al (2.23)
l1 - Po P1 2

3 (=(0)soo(InO) -Ion(0)] + (1 - (0))[1o(0) - 1. (0)]I
/1 - H/o ,, l)[ oo(()- o(1)] + (1 - (1))[ io()- )]

a+ InPo V + +1 (2.24)
l1- -o i \PO 2

3 The Training Algorithm

By training we refer to the use of a set of correctly classi-
fied examples to evaluate and subsequently improve the deci-
sion process. Each training example for the network consists
of a set of sensor observations together with the desired net-
work output, i.e. the correct hypothesis. We assume that
during training the statistics according to which the obser-
vations are generated are stationary. Using this information,
the DMs attempt to gradually adapt their decision rules,
i.e. the locations of their observation azis thresholds, so that
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the organization will have a lower error rate in the future.
Training schemes of this variety are known as "supervised
learning" schemes.

Of course, the training problem posed here really repre-
sents an attempt to minimize the error probability through
the (possibly extensive) use of labeled training data. The ob-
ject of merit is the probability of error function P,(.), and the
set of thresholds resulting from training are to be judged by
how close they come to the thresholds which result from opti-
mizing P,(.). This optimization, as can already be surmised,
is nontrivial. It is discussed extensively in [10].

3.1 Successive Approximation

As we have seen for the Gaussian case, the optimal thresh-
olds may be expressed as a system of coupled nonlinear al-
gebraic equations which specify the necessary conditions for
optimality. This system is often solved in practice using suc-
cessive approximation to obtain a fixed point solution. The
thresholds are arbitrarily initialized and then the equations
are iterated until the thresholds converge. More precisely, for
2-Tand the process is as follows. Note that equations 2.10 -
2.12 are of the form

3o = f(a)

31 = g(a)
a = h(/3o, 31 ) (3.25)

This system can be solved by fixing fo and 31 and then de-
ternmining a, then plugging in the new a to update 3o0 and
i3, and so on, provided that certain conditions are met. In
particular, in order to guarantee the existence and unique-
ness of a fixed point solution, as well as convergence from
arbitrary starting values, the system must be shown to have
a contraction property [1].

Unfortunately, showing this property directly is difficult
since the Gaussian error functions are very algebraically cum-
bersome. However, our numerical studies have uncovered no
problems whatsoever with the convergence of successive ap-
proximation. It appears numerically that these systems do
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possess the required contraction property, at least for those
cases we have studied.

Prompted by the success of the successive approxima-
tion method, we developed a nonparametric training method
based on the same approach. It required finding a way to
make the correct updates without doing any function evalu-
ations. We subsequently discovered, in the adaptive pattern
classification literature, a modification of the Robbins-Monro
stochastic approximation method [8] which was well suited
for solving this problem and which we subsequently extended
to the decentralized setting.

3.2 Stochastic Approximation

In this section, we modify the "window algorithm" pre-
sented in [9], [15], [16] to construct a nonparametric dis-
tributed training method.

The window algorithm is based on the following idea. Re-
call that the optimal minimum probability of error decision
rule for the centralized binary classification problem is the
LRT

p(yjlH) t Po (3.26)
p(ylHo) ,= Pi

It is noted in [5] that if the functions pop(ylHo) and plp(ylH1 )
have a single point of intersection, the minimum probability
of error threshold K* is that value of K satisfying

pop(y = KIHo) = Plp(y = KHl1 ) (3.27)

For the Gaussian detection problem, this equation is in fact
satisfied at a unique point, i.e. there is only one point of in-
tersection of the scaled densities. Condition 3.27 is intuitively
clear since, for the value y = K*, the LRT is satisfied with
equality. If po = p = ½, it is easily seen that the mimimum
probability of error point corresponds to the point at which
PF = PM(= 1 - PD). This is known as the "equal error"
pt. since for this value of the threshold, equal proportions of
both types of errors are made.

A natural approach is to try and determine K* using
stochastic approximation techniques. In particular, if the
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function G(y) = plp(yljH) - pop(ylHo) were a regression
function, meaning that if it were equal to the expected value
of some measurable random variable which is a function of y,
then the Robbins-Monro method [8] could be applied directly
to find K* as the zero of G(y). In [151 the authors point out
that G(y) does not seem to be a regression function. How-
ever, they are able to define a sequence of functions 0(y, c),
each of which is a regression function and which approxi-
mate G(y) in the limit as c -+ 0. Using these approximating
functions, the following solution to the above classification
problem is presented.

An adaptive classifier, which asymptotically coverges to
K* with probability 1 under very reasonable conditions, is
given by the following algorithm from [15] where K, is the
threshold at iteration n, yn is the nth observation, Pn is a
stepsize decreasing as A, and cn is the window width which

is also decreasing as .Tn:

KJ - pn if IKn - Yn < cn, Yn from Ho
-i =n+l = , if IK,- YnI > cn

Kn + pn if IKn - ynI < cn, Yn from Hl
(3.28)

This algorithm is actually a special case, using a rectangular
window, of a more general algorithm which can employ sev-
eral types of windows. Operation of the algorithm is depicted
in Fig.3.

There are several interesting aspects to note. First, cor-
rections to the current threshold are made up or down de-
pending on whether or not an observation from a certain
class falls within the rectangular window and do not depend
on which side of the threshold the observation falls. This
means that the actual decisions are irrelevant in the training
process. Second, the solution is completely nonparametric.
The functional forms of the densities are not required, and
neither are the prior probabilities. Of course, the resulting
linear classifier will only be optimal provided that the opti-
mal classifier is linear, as in the Gaussian problems we are
considering.

In [15] a generalization of the above algorithm is also con-
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Kn-cn Kn+Cn Y

Figure 3: Window Algorithm using Rectangular Window

sidered, whereby unequal costs on the types of errors made
are considered. This generalization says that the zero of an
equation of the form G(y) = Alpip(yjHi) - Aopop(ylHo),
where A0, A1 are real constants, may be found with the mod-
ified algorithm

Kn - (1-L)p. if IlK. - y,< c,, y, from Ho
Kn+l Kn if IK. - y.n > cn

K , + Lp , if IK. - y. <• c,, y. from H1
(3.29)

where
L Ao (3.30)

Thus, + into account the unequal
Thus, the modified algorithm takes into account the unequal
costs by incorporating a stepsize bias which is proportional
to the cost. This bias had to be incorporated directly since
it is not inherent in the data.

The relevance of the unequal cost modification to the
decentralized problem is that the coupling probabilities in
the decentralized problem may be treated like costs. To see
this, consider 2-Tand. If we define the three functions (from
equations 2.1 - 2.2):

GBO(YB) = (1 - PA)pp(YBIH1 )-(1- PF)POP(YBIHo)
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GB1(YB) = PAplp(yBIH1)- PFpoP(YB1HO)

GA(YA) = [pBl _- PD]PP(YAIH ) - [PF1
-PF]pop(yAIHo)

we can use the modified method to solve these equations. The
coupling probabilities are incorporated into the algorithm as
stepsize bias.

The training algorithm involves using the above method
to have each DM solve a succession of local stochastic ap-
proximation subproblems which are coupled to subproblems
being solved by the other DMs in the network. Each sub-
problem allows a DM to determine the proper setting of its
observation threshold given information about the settings
of the other DMs in the network, and it accomplishes this
without doing any function evaluations.

The algorithm operates as follows for 2-Tand. Thresholds
130 and /1 of DM B are initialized and held fixed while es-
timates of the corresponding conditional probabilities P/0°,
;D:O, JFB1, PDB1 are obtained using training data. The es-
timates are taken to be the observed relative frequency of
each type of outcome over a "sufficiently large" number of
trials. The estimated probabilities are then communicated
to DM A which computes estimates of the coupling terms as
PB1 - pDBo] and [PFB1_ -pB] and then uses the stochastic

approximation algorithm to find the corresponding value of
ca as the root of GA(YA) using the algorithm

Kn- (1 - L)p, if IKn -y < I cn, YA(n) from Ho
KIn+1 = Kn if IK. - yn > cn

K, + Lp, if IKn - y, I< cn, YA(n) from H1
(3.31)

where

-- ( p-B pBO)(PF - P) + (B -PDO) (3.32)(bBl -_ Bo)+ ( g-B -pBO
Once the algorithm has generated an approximate value of a,
it is held fixed while the corresponding probabilities pA, PD
are estimated and communicated from A back to B. DM B
then trains each of its thresholds /o and /1 separately using

Lo = ( -LA ( (3.33)
(1 ) + (1 ) P13+



respectively, and the iterations continue. The algorithm op-
erates in a similar fashion for 3-Vee or any other tree [12]
structure, with the DMs in the network communicating to
resolve the coupling.

In spite of the fact that exact successive approximation
converges for a given case, this algorithm comes with no guar-
antees of convergence. The reason is that the stochastic ap-
proximation subproblems converge to the proper thresholds
only asymptotically, and in practice we must accept approx-
imate solutions resulting from truncation. If these approx-
imations become poor at some stage, the error propagates
and the sequences of thresholds generated by the algorithm
may no longer follow the sequences generated by the exact
successive approximation solution. This still does not usually
prevent convergence since the contraction property continues
to pull the thresholds in the proper directions. It is also the
case that stochastic approximation algorithms, by virtue of
requiring no information on the statistics, tend to exhibit
some variability in performance. We are also only estimat-
ing the coupling probabilities rather than computing them
exactly. Nevertheless, in spite of all these caveats, a typi-
cal sequence of thresholds generated by the algorithm does
display the same trends as the sequence generated by exact
successive approximation, and in fact usually converges very
near to the optimal solution. This behavior is illustrated in
the next section.

4 Simulations

Due to space limitations, we present simulations only for
the linear Gaussian case with parameters

0 = i, p = 3, c = aB = C = 1, pl = 0.2 5 (4.34)

Proper choice of the sequences p, and c, is critical to
the performance of the algorithm. While theoretically the
algorithm is guaranteed to converge for a wide range of these
parameters, in practice many choices result in the conver-
gence being impractically slow. Heuristics for choosing these
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sequences are discussed at length in [9]. For our simulations
we used

1 2.25
Pn = I ,Cn = - (4.35)

as recommended in [15]. The algorithm is also sensitive to
the initial starting conditions in practice, although again the-
oretically this is no problem. But as long as the starting con-
ditions are reasonable, meaning that the algorithm is started
in a region of sufficient probability density, it behaves well.

The simulations we present used 500 training examples
for each subproblem, and each subproblem was rerun 15
times with independent noise on each pass and then aver-
aged to smooth the curves. That is, each plotted threshold
point represents an average over 15 points. In addition, at
the end of each subproblem an additional 500 trials were used
to effectively estimate the coupling probabilities. Thus, the
total number of trials is given by

#trials = (# thresholds). (# subproblems/threshold)

[(# trials/pass). (# passes/subproblem)
+ (#estimation trials/subproblem)] (4.36)

including the averaging. We have made no attempt to mini-
mize the required computation to this point.

Fig.4 shows typical paths for thresholds a, ]30, and 31
and the probability of error as a result of training 2-Tand.
The paths for the exact successive approximation solution
are shown along with the approximating paths resulting from
the training algorithm. If stochastic approximation resulted
in the subproblems being solved exactly, then the thresholds
would be observed to converge exactly to the x's marking
the values computed by the exact successive approximation.

The horizontal axis of each threshold graph shows the
number of trials required by the subproblems, but in reality
the total number of trials used in this simulation, computed
as described above with the averaging, was 3 .10(500 15 +
500) = 240, 000. From the point of view of our organizational
learning studies, the averaging is somewhat arbitrary and is
actually an implementation issue, so we prefer to take as an
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indicator of the number of trials for 2-Tand to learn the num-
ber 3.10(500 + 500) = 30, 000. The integers on the horizontal
axis of the probability of error graph mark completed cycles
of updates of all three thresholds. The probability of error
was computed after each such cycle of updates.

The spikes that appear on the graphs result from the fact
that the initial steps of the window algorithm are large. Each
spike marks the beginning of a new subproblem which is initi-
ated after the DM receives the necessary coupling probabili-
ties from the other DMs. The subproblems for each threshold
were always initialized to the same numerical value. There is
nothing to be gained by initializing the algorithm to the end
of the previous subproblem since the algorithm requires only
a region of sufficient probability to be effective. For these
simulations, the window algorithm was always reinitialized
to 2 for a, 0 for /o0, and 2 for 31. These were simply arbi-
trary choices which appeared to result in good performance.

In order that the paths of the exact successive approxi-
mation and the training algorithm be comparable, both used
the same initial values of 30o = 2.5 and E1 = 1.5. These ini-
tial guesses were reasonable choices given the problem, but
convergence occurs for a wide variety of initial choices.

It is clear from the figures that the approximate solutions
do exhibit the same trends as the exact solutions. Moreover,
when the approximation is off of the exact successive approx-
imation path, it is generally in the process of moving toward
it and is simply being cut short. But more importantly, the
rate of convergence of the approximations is comparable to
the exact computations, and the final values are very close.
We note that the simulations shown were chosen because
they were typical rather than because they were particularly
good.

Fig.5 shows the paths travelled by the thresholds of 3-
Vee, a, /, 0oo, 'oj, 1mo, 11 and the probability of error. The
total number of trials to train this network was 6 · 15(500.
15 + 500) = 720, 000. Initial values for the window algorithm
were taken to be 2 for all thresholds. So that the paths of
the exact successive approximation and the training would
be comparable, both used the same initial values of i3 = 0,
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Figure 4: Motion of 2-Tand Thresholds during Training
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Figure 4: continued
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~oo = 0, o01 = 1, 'lo = 2, n11 = 3.

5 Discussion

The training algorithm we have presented is successive
approximation using stochastic approximations instead of
function evaluations to solve for each DM's threshold(s) in
terms of the others in the network. The amount of infor-
mation required by the algorithm is minimal, but the price
for this is that a great many trials appear to be required to
solve the problems effectively, although we have in no way
attempted to improve the algorithm in this or any other re-
gard. The total numnber of trials required is a function of
several things. The number of trials required to solve a given
subproblem depends on the noisiness of the corresponding
DM's observations, while the number of subproblems which
must be solved is highly dependent on the degree of coupling
between the DMs and the overall size of the network. It is
also clear that the algorithm requires the network Likelihood
Ratio Tests in order to structure the computation of the cou-
pling probabilities. This is equivalent to saying that each DM
must know how it is tied in structurally to the organization,
but it can be initially naive to the capabilities of the other
DMs since it can infer them during training.

We wish to point out that we have investigated less elab-
orate algorithms than the one in this paper for the train-
ing of decentralized binary detection networks. Examples of
some of these more "natural" approaches are approximate
gradient descent on the probability of error surface and back
propagation based on the optimal control formulation from
[10]. However, we believe this training algorithm is of inter-
est because it represents an indirect method for solving the
underlying optimization and it is completely nonparametric
in the statistics.

An understanding of the processes by which human or-
ganizations adapt to improve performance has been slow in
coming, primarily because there is a notable lack of norma-
tive theory which addresses the inherent difficulties and fun-
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damental limitations of learning in distributed environments.
Enhancing this understanding is a long term goal of our re-
search.
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