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ABSTRACT

In this dissertation, we develop a collection of techniques and approx-
imations that provide information about the transient behavior of many sta-
tionary queueing systems for which tractable theoretical transient solutions
are not available. The primary contribution is a set of bounds to estimate
the effective duration of the transient period of the expected queue length.

We describe and extend a method due to Koopman for obtaining both exact
numerical solutions to stationary Markovian:queueing systems and approximate
solutions to partially deterministic systems in which the embedded chain is
a first-order Markov process. A truncated set of state equations is solved
numerically yielding the state probabilities as a function of time. In ad-
dition to k-server, single-queue systems, multiple-queue systems with pri-
ority schemes can be solved.

Solutions generated through use of this numerical technique are used to
empirically demonstrate that for ergodic, infinite-capacity, single-queue,
single-server systems, the expected queue length decays in an approximately
exponential manner for large t. We suggest a closed-form expression for
estimating the time constant of the exponential function used to approximate
this behavior. In addition, empirical results indicate four categories of
initial behavior of the expected queue length as a function of the initial
state of the system. For each category, an upper bound is determined empi-
rically for the amount of time required for the transient effects of the
initial conditions to become negligible.

Finally, we propose a technique for approximating the transient ex-
pected queue length of ergodic, infinite-capacity, single-queue, single-
server systems that begin at rest. Based on the above observation that the
expected queue length can, in many systems, be approximated by an exponen-
tial function, the exact numerical transient solution of an M/M/1 queueing
system is scaled, using simple arithmetic operations, yielding approximate
solutions for more complex systems. Comparison with numerical solutions
indicates that, except for small values of t, the accuracy of this approx-
imation is good, and that solution costs will typically be significantly
lower than those for numerical solution of the original system.

Thesis Supervisor: Amedeo R. Odoni

Title: Professor of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

"...as a practical decision aid, there appears to be
little value in queueing theory models."

Jack Byrd Jr., "The Value of Queueing Theory."

"The fact that some of the queueing literature is ar-
cane and useless is irrelevant, for much of the lit-
erature is exactly what we practitioners need."
Peter Kolesar, "A Quick and Dirty Response to the
Quick and Dirty Crowd; Particularly to Jack Byrd's
'The Value of Queueing Theory."'

Most of the extensive research on queueing systems to date has been

geared primarily toward determination of exact results for steady-state

conditions. These results are frequently of questionable use to the prac-

titioner , either because of their complexity or due to the fact that they

are derived under special sets of assumptions which are not often satis-

fied in practice. In fact, the usefulness of queueing theory as a whole

has been the subject of rather heated debate in the literature (e.g.,

[3, 4, 24, 40]).

One important example in which existing theoretical results are

inadequate is the situation where behavior of a queueing system before it

reaches steady-state is of particular interest. In this work, we focus

on the development of useful techniques and approximations for this sit-

uation--i.e., we are concerned with the transient behavior of stationary

queueing systems.

Due to severe difficulties encountered in attempting to derive

exact, closed-form solutions, there exist virtually no useful general

results for time-varying behavior of queueing systems. Even the simple
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case of a stationary, infinite-capacity M/M/1 queueing system falls

into this category. The exact transient solution of this system

includes an infinite sum of weighted modified Bessel functions; it

is seldom practical to evaluate this type of expression even using

numerical techniques [18].

Since theoretical approaches have met with little success in

analyzing transient behavior of queueing systems, we have chosen here

to approach the problem almost entirely in an empirical manner. Through-

out, our intent is to develop results and insights which will be of use

in applications. Rather than considering specific applications in

depth, we focus instead on the development of methods general enough

to be of use in a broad class of applications. We illustrate such po-

tential applications through the following two examples.

Consider a production line which is subject to machine failures.

After each failure, the production process is halted until the machine is

repaired. The firm might be interested in assessing the cost of these

failures: for example, such information would be useful when deciding on

the number of repairpersons that should be available.

The time period influencing the cost of any machine failure can be

separated into two distinct segments; the repair time during which pro-

duction is at a complete halt, and the start-up period during which the

production line returns to full operating capacity. The cost due to the

former will depend on system characteristics such as the availability of

repair personnel and the length of the actual repair time. This thesis,

however, is more concerned with the second time segment, the start-up

period. Quite often these start-up periods are assumed to have a neg-

ligible effect on the overall production. Under this assumption,
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equilibrium analysis will be sufficient to determine production levels

and,in many cases, existing closed-form results can then be used.

Whether or not this approach is valid is clearly dependent on the

accuracy of the assumption that the system is, for all practical purposes,

in steady-state at all times. We will suggest here a method for testing

the validity of this assumption.

Our work can also be useful in the solution of certain nonstationary

systems. We illustrate with the following application pertaining to airport

runway operations. Airport planners frequently use steady-state queueing

models to estimate the delays experienced by arriving and departing air-

craft. The demand profile for runway use at a major airport typically

exhibits considerable variation over time, with peaks during morning and

evening rush hours and little demand during the late-night/early-morning

period. The standard approach to estimating airport delays has been to

approximate the time-varying demand profile by a piecewise constant curve

and to use theoretical steady-state results to calculate the expected delay

during each time period [39]. These values provide an estimate of the ex-

pected delay to an aircraft arriving or departing during each time period.

This type of analysis once again relies heavily on the assumption

that transient effects are of negligible importance. However, with

approximations introduced in this dissertation, we will show that in many

typical airport situations the transient period is in fact long enough to

cause the analysis standardly used to be invalid.

1Time points to, tl, ... are chosen. Then, the demand profile (t) is
estimated by (t) = i' i=1,2,... where

A(ti) - A(ti 1 )

Ai 2

i.e., the arrival rate is constant during each time period (ti - ti_
i=1,2,...
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In this work we consider two types of systems: "Markovian" sys-

tems, which will be defined as queueing systems that have a first-order

Markov process representation, and "partially deterministic" systems in

which either the interarrival or service time distribution is determin-

istic and the embedded chain is a first-order Markov process.

We restrict our work to these two classes as they are the only types

of systems for which we can obtain accurate numerical transient solutions

on which to base our empirical analysis. This will be discussed in more

detail in Chapter 2.

We consider only stationary processes, i.e., processes for which the

arrival and service rates are independent of time during the period of in-

terest. Systems are further restricted to be ergodic. Clearly, any sys-

tem which is not ergodic (e.g., an infinite-capacity system with traffic

intensity greater than 1) will never attain an equilibrium condition. The

expected number of customers in queue (not including those in service) at

time t, and the expected delay at time t, are measures which are frequently

of interest in applications. This analysis focuses on the former measure;

comparable results can be derived for the expected delay in an analogous

manner.

Our strategy is to examine and compare the transient behavior of

the expected queue length of many queueing systems in an attempt to char-

acterize similarities in their responses. In Chapter 2, we address the

problem of obtaining the transient solutions for stationary queueing sys-

tems which will be needed for our empirical work. We begin with a survey

of many of the solution techniques developed in the literature. We want
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to observe the dominant features of the behavior of the expected queue

length over time in order to develop a reasonably good approximation to

its actual functional form. Therefore, accuracy is a particularly impor-

tant attribute to consider in our evaluation of existing solution techniques.

Also, we will compare many different queueing systems; thus, the technique

must have the flexibility to handle various levels of traffic intensity,

initial conditions, and a range of interarrival and service time distributions.

With these considerations in mind, a particular numerical solution technique

is selected with which to solve the class of systems examined in this dis-

sertation. This technique is described in detail in Section 2.2.

Chapter 3 begins with a brief examination of the few available

theoretical transient solutions. A particular form is postulated for Q(t),

the expected queue length as a function of time. In Section 3.1, we present

empirical confirmation of this hypothesis for infinite-capacity, single-

queue, single-server systems, considering a range of levels of traffic inten-

sity and several specific forms of interarrival and service time distribu-

tions. In Section 3.2, the amount of time until the transient effects

become negligible is examined. Specifically, a closed-form approximation

is obtained which can be used to estimate the amount of time until the

transients of Q(t) have been reduced by n% (for any 0 < n < 100).

In Chapter 4, we consider the effect of initial conditions on the

decay of transients. In particular, we parallel the analysis in Chapter

3, first making general comments on the form of Q(t), and then developing

a means to estimate the amount of time required until the transient effects

are negligible.

In Chapter 5, we present a new approximate solution technique based

on the results of Chapter 3. For a rather broad class of stationary queueing
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systems which begin at rest, our results suggest that this method can be

used to determine transient solutions to an accuracy close to that of

numerical solution techniques but at a significantly lower computation cost.

Finally, in Chapter 6 we summarize the work and indicate several

directions for further research.
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CHAPTER 2

SOLUTION TECHNIQUES FOR STATIONARY QUEUEING SYSTEMS

The main purpose of this work is to investigate the manner in which

ergodic, stationary queueing systems approach steady-state. In particular,

we seek a closed-form expression for estimating the amount of time re-

quired for the transient effects to become negligible. In order to

accomplish this goal, it is necessary to examine transient solutions to

many types of queueing systems.

In Section 2.1, various techniques for determining transient

response of stationary queueing systems are summarized. These techniques

may be grouped into four categories:

(i) exact, closed-form solutions

(ii) simulation

(iii) approximations

(iv) numerical techniques

As a result of this discussion, we argue that, given the nature of

the problem being examined, a particular numerical technique is preferred.

In Section 2.2, a thorough description of this technique is provided.

2.1 Review of Alternative Approaches

For our purposes, a solution technique is needed which will allow

us to compare the manner in which different queueing systems approach

equilibrium. In particular, we must have the ability to trace the

expected queue length (our representative measure of system behavior) from

time t = 0 until the system has reached equilibrium. In addition to being

sufficiently flexible to solve many types of finite- and infinite-capacity
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stationary queueing systems at moderate cost, the solution technique must

be capable of handling varying initial conditions and the entire range

of traffic intensities (0 < p < 1).

2.1.1 Exact, Closed-Form Solutions

Most early research on transient behavior of stationary queueing

systems was geared towards finding exact solutions to the equations

representing the evolution of the system over time. Given that these

equations only rarely yield closed-form solutions, this approach is of

little use unless combined with more recent, computer-oriented methods

(see Section 2.1.4).

Several examples which illustrate the complexity of transient

solutions for even the simplest queueing systems are provided in Table 2.1.

In each case, the expression for Pi(t), the probability that there are i

customers ( i = 0,1,...) in the system at time t is listed.

Note that, in general, the expressions in the table are so complex

that their usefulness in applications is questionable. For example, note

the infinite sum containing Bessel functions in the expression for Pi(t)

for an infinite-capacity M/M/1 system. These Bessel functions must be

recomputed for each new value of t--a process which is time consuming.

Also, as there is no closed-form expression for I (y), numerical errors

are introduced.

In view of the fact that the queueing systems covered by the expres-

sions listed in Table 2.1 are among the simplest known, one can justifiably

be pessimistic about the likelihood that future attempts to obtain closed-

form, exact solutions for the transients of more complex systems will be

successful. Except for the M/M/| case, available closed-form results

will not yield useful solutions to our problem.



- 21 -

" 44

coI W c Ao
0 4i 4.

.1 0 0

c 4 -

+ Q 0 ¢ N 0

Q 0 0 4 :

00 1.4 w w

-

- Y

e N

Q wa
0 N Ue
N

*i-4 0

0

"4

a

+

0

0 c

0

0

0 r
U~ Z

a

a

+

4-

+

-I 0

IC"4I

"-

0

I
n

-)-4-

0

I-

4I

"4

'I 0

I -
'-I I

0)

1-4 4.

a !<

N N

8 8

9 8

C, -. -z z

8

"4
z

z:t

U(

0a)

4>1EJbD

0.,4O3

H.O3

U)

4,
4-

.

-4
too

J 4.J

,4 C

00

0 a
, 

cu

W C

oO .

4 C4.1k .44. C

0 o 

0

:Y i

0 0ao, c

C 4.1 ff

>iC u

U I

HO 4.

0 0

o0 W

0
00 0

d 0
8 0.

0 o

W C 0
0 0

.o 8

0

0 r~cu O 

a)

E-In
Hd



- 22 -

2.1.2 Simulation

Simulation of a queueing system involves sampling from the distri-

bution of all possible sequences of events in the system. Given an

infinite number of independent sample paths from this distribution, one

can determine actual system behavior (e.g., the expected queue length,

Q(t)). In principle then, simulation can be used to determine Q(t) for

virtually any queueing system. A major problemwith the technique is that

in practice, one must use only a finite number of these sample paths and

thus obtain, at best, point estimates and confidence intervals for Q(t).

Simulation can be useful in estimating steady-state statistics,

such as Q(), in systems for which exact expressions do not exist or are

intractable. An important consideration here, is that the initial portion

of each sample path is affected by the initial conditions of the simula-

tion run. Wilson and Pritsker [43,44] survey various policies for selecting

initial conditions for the purpose of minimizing the duration of this

transient period and identifying the "truncation point", the time after

which the simulation can be considered to be of a system in steady-state.

One way to lessen the importance of the start-up policy in the

estimation of Q(c) is to use the results from one long simulation run

rather than aggregating those of several shorter replications (each having

a start-up period). If the initial portion of a single long run is dis-

carded (to remove the transients) and the remainder is divided into many

segments, the mean queue lengths of all segments may be averaged to provide

an estimate of Q(-).2

A good general discussion of techniques for simulating queueing systems
is provided in the two-volume text by Kleijner [19,20].

2Law and Carson [27] discuss and compare several methods to obtain con-
fidence intervals for the mean of a stochastic process. They include
several examples of queueing systems for which they estimate the
steady-state expected delay.
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Care must be used in choosing the length of these segments.

Ideally, we want to aggregate many independent sample paths. Since the

segments are all from the same simulation run, there will be correlation

between points at the end of one segment and those at the start of the

next segment. Therefore, the segments must be long to reduce this cor-

relation.

In this work, our interest is to determine the functional form of

Q(t), not Q(o). For this purpose, we must have very close estimates of

Q(t) for all values of t. In simulation, this corresponds to achieving

a very narrow confidence band for Q(t) for each t. As the number of com-

putations increases (roughly) with the square of the desired precision[25],

obtaining these narrow confidence bands leads to prohibitive costs. In ad4

dition, it has been shown by Daley [6] that the variance of the queue length

for a GI/M/1 system increases as l/(l-p) . Thus, as p + 1, more simulation

runs are needed to achieve the same level of accuracy.

Therefore, while simulation may be useful in many situations (e.g.,

calculating steady-state measures of system behavior), for our purposes

other methods may be preferable.

2.1.3 Approximations

The solution techniques in this category cover a wide range and

are geared toward obtaining estimates of one or more aspects of queueing

system behavior through use of simplifying assumptions. These assumptions

3Although it has not been proven, it is likely that a similar type of
relationship holds for more general queueing systems, e.g., GI/G/1. This
conjecture is based on the result that the mean queue length, Q(-), is
proportional to l/(l-p) for queueing systems ranging from M/M/1 to
GI/G/k (see Kleinrock [21]).
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may be based on prior knowledge or intuitive notions of how the queueing

system works: in some cases, simplifying assumptions are made ri-

marily for purposes of mathematical convenience. Frequently, no bounds

can be determined to measure the extent of error introduced by these

assumptions. In such cases, the validity of the approximate technique

would have to be reevaluated for each new system by comparing the approx-

imate solution with results provided by an alternative method (typically

simulation).

Most of the methods cited in this section were actually developed

to solve nonstationary systems. As time-varying parameters frequently

cause the system to be continuously in the transient state, such solution

techniques can certainly be used to determine the approximate transient

behavior of stationary queueing systems.

The following two methods, due to Moore and Newell, apply to rather

general systems. Each simplifies the solution procedure by removing some

of the randomness present in the original system.

Moore [30] proposes an approximate technique for solving a finite-

capacity MX/G/1 queueing system in which the single server processes each

customer according to a service time distribution which is given by a

probabilistic choice among Erlang random variables. As a direct function

of time, the MX/G/1 system is not Markovian since the number of customers

in the system at any time is specified by the number at the instant before,

and the length of time the current customer has been in service. This is

due to the fact that the service time distribution has memory--i.e., the

amount of time remaining in a particular service interval depends on how

long ago the service began. Moore first eliminates the memory in the

system by examining it only at the instant following a service completion
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(the start of an epoch). He then recursively solves the embedded chain

equations to determine the state probabilities at these points in time,

and then approximates the length of an epoch by the expected service

time.

Thus, through use of this procedure, one can compute exact,

numerical estimates of the state probabilities at the start of each epoch

as well as obtain an approximate idea of where these epochs occur along

the time axis. From the state probabilities it is then a simple matter

to obtain values for such measures as the expected number in queue.

There are two errors which arise during use of this method. The

first is due to numerical solution of the embedded chain equations and

should be negligible. The second is caused by the approximation of the

length of each epoch by its expected value--in a sense, by approximating

the service time as a deterministic random variable. Moore does not

determine a method to bound the magnitude of this error except by com-

parison to simulation results. Thus, the accuracy of the solution for

each new system must be examined by comparison to results from an alter-

native solution technique.

For queueing systems which are heavily congested, (i.e., utiliza-

tion factor near or greater than 1), past results (e.g., Kingman [15,16])

suggest that the specific forms of the interarrival and service time

distributions do not heavily influence system behavior. Work by Newell

[33,34] uses this notion and the idea that, in a system under heavy traf-

fic, it is permissible to approximate the behavior of the discrete-state

queueing system by that of a continuous-state diffusion process. A

4The magnitude of this type of error will be discussed further in
Section 2.2.4.
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diffusion equation can then be written and solved to determine the ex-

pected queue length or the expected delay as a function of time. (We

study the diffusion equation in more detail in Chapter 3.) Gaver [8] and

Kobayashi [23] discuss use of this diffusion approximation for transient

analysis of queueing systems.

This solution procedure has promise for many applications, but the

two assumptions that form the basis for this method are not valid when

traffic intensity is low. Thus, it is not particularly suitable for our

purposes.

Several more recent investigations deal with systems which are

described completely by an infinite set of Chapman-Kolmogorov equations.

In all of these cases, this infinite set of differential equations is

reduced, by means of a "closure assumption", to a finite set which

is then solved. These closure assumptions are often motivated more by

mathematical convenience than by intuitive arguments.

Among researchers following this approach, Rider [35] combines the

state equations for an infinite-capacity M/M/1l queueing system into a

single differential equation for the expected queue length. Since this

equation is dependent on the probability of an empty system, it is

necessary, for solution, to relate the idle probability to the expected

queue length. This is achieved by means of a closure assumption.

A similar closure technique has been introduced by Rothkopf and

Oren [37]. In their method both the mean and variance of the queue length

are related to the probability of an empty system by means of a closure

assumption (different from that of Rider) in order to obtain an approx-

imate solution for an M/M/k system. Rothkopf and Oren also report that

Chang [5] uses a similar method to analyze networks of M/M/1 queues
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and that Wang [41] is trying to extend Chang's method to handle more

general queueing systems.

As mentioned above, the closure assumptions for the above methods

seem to be chosen more for computational reasons rather than to exploit

known attributes of the systems. For instance, Rothkopf and Oren [37]

assume that the state probabilities have a negative binomial distribution.

This leads to an efficient solution technique but one whose accuracy must

be verified by comparison to simulation.

In applications, a mathematical model is typically only a rough

representation of the actual system. In these instances, additional

error incurred through use of an approximate technique to solve this

model may not be important due to the approximate nature of the model

itself. For our purposes, the mathematical models are assumed to be

exact--i.e., the only error is due to the solution of a given mathematical

model; therefore, we seek a solution technique which will accurately deter-

mine the behavior of the model. Since most approximate solution tech-

niques do not allow us to bound this error, for our purposes these

techniques are not particularly attractive.

2.1.4 Numerical Techniques

Unlike the approximate techniques, exact numerical solutions

require no assumptions once the particular queueing system to be solved

has been specified and the equations describing system behavior have been

written. These equations are then solved to any desired degree of accuracy

using an appropriate numerical method.

When numerical solution is feasible, it is often significantly less

expensive than simulation. In addition, the class of systems for which

such numerical solution is feasible will certainly become progressively
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larger with the development of more sophisticated computer hardware

and software.

All of the numerical techniques we consider5 produce the state

probabilities, Pi(t)--the probability that there are i customers in the

system at time t (i=O,1,...). From these probabilities the expected

queue length can be determined.

The first approach we consider was developed by Kotiah [26] and

is different from the other techniques presented in this section. Kotiah

uses numerical techniques to invert the transforms of the desired pro-

babilities. This method applies to systems for which obtaining closed-

form expressions for the exact transforms of the number of customers in

the system and the expected queue length require finding a root to a

polynomial. (Examples include infinite-capacity M/M/1 and M/Ek/1 systems.)

Kotiah compares three numerical techniques to determine a sequence of

rational approximations to this root--the method of successive approx-

imations, Newton's method, and the series method. Given an approximate

root, the transforms are inverted yielding Pi(t), i=O,l,..., and Q(t).

Comparison of exact values of P0(t), Pl(t) and Q(t) for an

M/M/1 queueing system with those obtained through use of Kotiah's

technique suggest that Newton's method will yield good approximations

for Pi(t), i=0,1,..., for small t. It is not clear that the approxima-

tions will remain close as t increases. In particular, it is not

apparent that accuracy will remain good until steady-state is reached.

In addition, while the method can, in principle, be used for Erlangian

systems, computational complexity would be greatly increased.

5As in the methods discussed in the previous section, most of these
techniques were developed to solve nonstationary queueing systems.
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The remaining solution approaches in this category are similar in

that each relies upon a numerical method to directly solve the set of

state equations. In order to solve this set through use of a computer,

there must be a finite number of state equations or equivalently, system

capacity must be finite. Frequently, this is not restrictive as in most

cases it is possible to choose a number N, such that the probability of

the system having N or more customers is negligible. Thus solving the

system with a finite capacity N is effectively the same as solving the

corresponding infinite-capacity system.

Neuts [32] developed a numerical technique which can determine

state probabilities of finite-capacity GI/G/1 systems. By approximating

the random variables describing the interarrival and service times as

bounded, discrete random variables, the state probabilities of the

resulting discrete-state, discrete-time Markov chain can be obtained

recursively. These calculations are very complex unless the system is

small. Also, the method is intended only for determining short-range

behavior in systems which have interarrival and service time distributions

that are concentrated about one value. Since we require knowledge of

Q(t) from time t=O until the system reaches steady-state, this solution

technique is not sufficiently flexible for our purposes.

Finally, we consider two numerical techniques which can be used

to solve systems in which the state equations are a finite set of simul-

taneous, first order-differential equations. In each case, these systems

are solved numerically yielding the state probabilities as a function

of time.
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The first of these techniques is used in an important paper by

Koopman [25] to solve finite-capacity M/M/1 queueing systems. Koopman

employs a standard Runge-Kutta numerical method to solve the state

equations. He'.gsbach and Odoni [13] extended this solution technique to

handle systems with k servers and greatly improved the efficiency of the

computer programs.7

The second approach to solving finite-capacity systems defined by

a set of Chapman-Kolmogorov equations is presented in the work of Grassmann

[9,10,11]. Many standard numerical techniques (including Runge-Kutta)

rely on the calculation of powers of the transition matrix (infinitesimal

generator) of the queueing system. Computationally, the presence of both

positive and negative elements in this matrix can lead to high round-off

errors. Grassmann, using a technique he calls "randomization", eliminates

this source of error by introducing a new matrix which has only positive

elements. By expressing the original solution in terms of this new matrix,

it is no longer necessary to calculate powers of the infinitesimal

generator.

Either of these last two techniques can be used to determine the

transient behavior (e.g., Q(t)) for the same class of queueing systems.

6Finite capacity M/D/1 systems are solved in a similar way--the embedded
chain equations are solved recursively yielding the state probabilities
at the start of each epoch. In this case this is strictly an approxi-
mate technique as it is necessary to add the assumption that all arrivals
and service completions occur at the instant before the start of an epoch.
This will be discussed further in Section 2.2.1.

7It is interesting to note that in a 1965 paper, Leese and Boyd 128] had
dismissed this technique as numerically intractable. Extensive improve-
ments in computer hardware and software since 1966 have, in fact, permitted
tractable numerical solution.
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They will handle any level of traffic intensity and any specified set of

initial conditions. In each case, the error due to the numerical routine

can be made arbitrarily small. If the capacity of the system is large,

randomization is preferred as storage requirements are not as great.

Grassmann [10] shows that if solutions are not needed at frequent time

points, randomization is less expensive than Runge-Kutta. Also, he

states that accuracy is improved. On the other hand, if solutions are

required at a large number of time points, Runge-Kutta would probably be

more efficient.

We have elected to use the method developed by Koopman for our study.

In Section 2.2, this technique is described in detail and extended to

handle any system in which behavior can be described by a set of Chapman-

Kolmogorov equations.

2.2 Description of a Numerical Solution Technique

In this section, we provide a detailed description of the numerical

solution technique which will be used in Chapter 3 for our empirical study

of the manner in which stationary, ergodic queueing systems approach

equilibrium. As mentioned in Section 2.1.4, this solution technique was

first used successfully by Koopman. Recall that the basic strategy

is to:

(i) set up the state equations for the particular system

under consideration, and

(ii) solve this set of equations numerically to obtain

the state probabilities as a function of time.

8Grassmann [10] has solved systems with over 10,000 states.
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Given the particular problem addressed in this thesis, this discus-

sion will be limited to stationary queueing systems. However, it should

be noted that this solution technique may be applied to many non-

stationary queueing systems. (See Appendix 1 for details.)

First, we apply this numerical solution technique to single-queue

systems. (This material will be used in Chapters 3-5.) Then, in

Section 2.2.2, an extension to multiple-queue systems under priority

schemes is illustrated. In Section 2.2.3 we summarize the ways in which

error is introduced through use of this solution technique. Finally, in

Section 2.2.4 we discuss computational characteristics.

2.2.1 Single-Queue Systems

2.2.1.1 Markovian Systems

This section is an examination of a technique for solving a variety

of finite-capacity queueing systems which can be characterized as 'Markov-

ian." We define a Markovian queueing system as a system which at all times

has a discrete-state description in which behavior is according to a first-

order Markov process.9 (Supplementary variables may be needed to represent

a higher-order process as a first-order Markov chain.) This class includes

M/M/k, MX/M/1, M/MX/1, M/Hk/l, and Ek/Ek/l queueing systems. In all cases,

the behavior of the queueing system can be described through the Chapman-

Kolmogorov equations, the set of simultaneous, first-order differential

equations that describe the rate of transitions for each network state. 1 0

Recall that closed-form solutions have been obtained for

9This definition excludes systems in which only the embedded chain is
first-order (e.g., M/G/1).

10For details on deriving the state equations, see [12] or 121].
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only very special cases. Given the arrival and service rates and any

specified set of initial conditions, these system equations can be solved

using standard numerical techniques that will be discussed in Section

2.2.4. Solving the Chapman-Kolmogorov equations yields the state pro-

babilities as a function of time. From the state probabilities one can

easily determine many characteristics of system behavior.

As an example, consider a finite-capacity, M/M/k queueing system

in which the interarrival and service time distributions are independent

and exponential with means 1/A and 1/p, respectively. A maximum of N

customers are allowed in the system at any time. For this queueing

system, a convenient state descriptor is the number of customers in the

system (in queue plus in service). The state transition diagram is

shown in Figure 2.1. By defining

Pi(t) = P(i customers in the system at time t),

i = 0,1, ...N, the Chapman-Kolmogorov equations can be derived directly

from the state transition diagram. They also appear in Figure 2.1.

For any given set of initial conditions Pi(0), i=O,l,...,N,

these N+l simultaneous differential equations can then be solved numeri-

cally for the state probabilities Pi(t), i = 0,1,...,N, as a function of

time. Examples of the time-dependent characteristics of system behavior

obtainable from the state probabilities include:

(i) the expected number of customers in the system at time T,

N

L(T) = iP i (T), (2.1)
i=l
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State Transition Diagram

k-1) k
(k-1l) kV

A

11

A

kV

state i: i customers in the system

Chapman-Kolmogorov Equations

io(t)= -Po 0 (t) + Pl(t)

i.(t) = -(x + i) Pi(t) + AP il(t) + (i+l)P i+l(t)

i = 1,2,...,k-1

P.(t) = -(A + k) Pi(t) + Pi-l(t) + kP i+l (t)

i = k,k+l,...,N-l

N(t) =-kp PN(t) + PN-l(t)

Figure 2.1: State Transition Diagram and Chapman-Kolmogorov
Equations for a Finite-Capacity M/M/k Queueing
System

· · e
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(ii) the expected number of customers in the queue at time T,

N

Q(T) = Z (i-l)Pi(T)

i=l

= L(t) - [l-PO(t)], (2.2)

and

(iii) the expected delay at time T,

N-1
W(T) = E (i-l)PI(T) (2.3)

i=2

where the expected delay at time T is the average amount of time a custo-

mer would have to wait if she were to enter the system at time T.

2.2.1.2 Partially Deterministic Systems

We next consider a class of queueing systems in which either the

interarrival or service time distribution is deterministic. A further

requirement is that the embedded chain have a first-order Markov process

representation. Queueing systems in this category include M/D/k, D/M/k,

Ek/D/1, D/Ek/l, and bulk arrival/bulk service systems. The basic solution

technique is the same: derive the system equations and solve them Xiumer-

ically to obtain the state probabilities as a function of time. Unfortu-

nately, for these systems the state transition equations represent only

the embedded chain behavior--deriving these equations requires the assump-

tion that all arrivals and service completions occur either the instant

before or after the start of an epoch.

As an example, we consider a finite-capacity, M/D/k queueing system.

We define epochs to begin at t = to,tl,..., where (ti+1 - ti), i = 0,1,...

is the length of the deterministic service time and t =0 is the specified

initial starting time. With the assumption that all service completions
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and customer arrivals occur only at the instant before the start of an

epoch (at times t = to, tl, ...), we can derive the state transition

equations for the embedded chain. This set of simultaneous difference

equations is shown in Figure 2.2. Given arrival rate X, service rate ,

and a set of initial conditions Pi(O), i = 0,1,...,N, the (N+1) equations

can be solved recursively to determine the state probabilities at times

t = to,tl,.... As with Markovian systems, we can obtain many of the desired

measures of system behavior from these state probabilities.

The added assumption that the state of the system changes only at

the end of an epoch leads to an implicit error in these models of partially

deterministic systems. Consider, for instance, an M/D/k system in which each

service time lasts exactly one minute. Our model essentially assumes that

service completions and customer arrivals can occur only at the instant

before the start of an epoch. This implies that if the system empties at

time t=4 and the next customer arrival actually occurs at time t=4.5,

this customer, according to our model, will not begin service until time

t=5. In reality, however, service would have begun at t=4.5. Since the

error is introduced only when the system is in the empty state, this

difference becomes negligible as the traffic intensity, p, approaches 1.

2.2.2 Multiple-Queue Systems Under Priorities

In the previous section we described a numerical solution tech-

nique for a wide variety of simple single-queue systems. It can also be

used to solve multiple-queue versions of many of these systems provided

system capacity is small.
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2.2.2.1 Description of the Basic Multiple-Queue System

Figure 2.3 illustrates the basic system under consideration.

Customers of class c, c = 1,2,...,C, enter the corresponding queue c

according to a probabilistic process with mean interarrival time /Ac

Arrivals to each queue are assumed to be statistically independent. Once

a customer enters a queue she maintains her position ensuring first-come,

first-served (FCFS) treatment within each queue.

The service facility contains k independent identical servers,

serving all types of customers in either a preemptive or nonpreemptive

manner. (Preemptive service allows an incoming customer of one type to

interrupt the service of another type.) The service time for a customer

of class c is probabilistic with mean l/pc .

The physical capacity of the system can be specified either by the

maximum number of spaces in each queue (not including those in service)

or by the total number of each type of customer allowed in the system

(in queue and in service). We have chosen to use the latter definition.

Each time a server becomes idle, the type of customer to next begin

service must be determined by a set of priority rules. Examples include

strict priority queueing (also known as head-of-the-line priority) and

alternating priority (as described in the following subsection).

2.2.2.2 Example

To illustrate use of the technique and possible priority schemes,

we will discuss in detail the solution technique for a finite-capacity,

two-queue (C = 2), nonpreemptive, M/M/1 system under four priority

schemes described below. At the same time, we will make comments on

the analysis of more general systems.
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1 Queue 1
--- Queue 1

2 Queue 2
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type of customer
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by some specified
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Figure 2.3: Basic Multiple-Queue System
With Priority Schemes
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2.2.2.2.1 Priority Schemes

The "strict type 1" scheme specifies absolute priority for type 1

customers. Whenever the server completes a service, type 1 customers,

if present, are given preference on a FCFS basis. If queue 1 is empty

the first customer in queue 2 begins service. In the "alternating"

scheme, as soon as a customer completes service, a customer of the other

type, if there is one in the system, will begin service.

The "strict type /alternating threshold" scheme combines these

two sets of priority rules. As long as the number of type 2 customers in

the system remains at or below an arbitrary threshold, type 1 customers

are given absolute priority. If the number of type 2 customers exceeds

the threshold value, an alternating priority scheme is used. As soon as

the number of type 2 customers in the system is at or below the threshold

level, type 1 customers are once again given absolute priority.

The "strict type /strict type 2 threshold" scheme also gives type

1 customers absolute priority unless the number of type 2 customers in

the system exceeds the threshold value. If the threshold is exceeded,

type 2 customers are given absolute priority, until the number of type 2

customers is at or below the threshold level.

In summary, the schemes are outlined below:

- strict type 1: Absolute priority given to type 1 customers.

- alternating: Priority is given to the type of customer

other than that which last completed service.

- strict type 1/ In intervals during which the number of type 2

alternating threshold: customers in the system exceeds the threshold

value, alternating priority is used; otherwise

type 1 customers have absolute priority.
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- strict type 1/ As in strict type 1/alternating threshold,

strict type 2 except that, while the number of type 2 customers

threshold: in the system exceeds the threshold value, type 2

customers have absolute priority.

2.2.2.2.2 State Equations

The state transition equations for this system with the listed

queue disciplines are first-order, differential equations describing the

rate of change of the probability of the number of each type of customer

in each state of the system as a function of time. (See [36] for a

description of a technique for deriving these equations.) Each of the

priority schemes listed above entails solving a set of 2(Nl+l)(2+1) + 1

of these simultaneous, first-order equations. As an example, the state

transition diagram and state equations for strict type 1 priority are

presented in Figures 2.4 and 2.5.

The analysis for k-server, C-queue (C > 2) M/M/1 systems is simi-

kC
lar; the number of equations in this case will be 2k H (NI+1) + 1 where

I=1

NI is the maximum number of type 1 customers allowed in the system

(I = 1,2,...,C). In principle, this technique can be used to solve

multiple-queue versions of the Markovian and partially deterministic

systems discussed in the single queue case. For many systems, however,

the number of required equations is large enough to be an obstacle in

numerical solution; this issue will be explored in Section 2.2.4.

A straightforward extension of the basic C-queue model under

priorities includes so-called "changeover costs;" service times which

depend also on the type of customer previously in service. This allows

more realistic modeling of systems such as many production lines where a
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state (i,j,k): i type 1 and j type 2 customers in the system
and a type k customer in service

Figure 2.4: Nonpreemptive, Finite-Capacity, Two-Queue
M/M/1 System Under Strict Type 1 Priority--
State Transition Diagram



- 43 -

Notation

N1 - maximum number of type 1 customers allowed in the system.

N2 - maximum number of type 2 customers allowed in the system.

R(t) - probability that the system is empty at time t.

Pij(t) = probability that i type 1 and j type 2 customers are in the
system at time t and a type 1 customer is in service.

Qi4j(t) probability that i type 1 and j type 2 customers are in thesystem at time t and a type 2 customer is in service.

State Transition Equations

i(t) = -(X1 + 2)R(t) + l1P1 ,0(t) + 2Q,l(t)

P1,0(t) = -(A 1 + A2 + l)P10(t) + X1R(t) + l1P2 ,0(t) + P2Ql,l(t)

Pi,0(t) -( 1 + 2 + U1)Pi,(t) + 1Pil,O(t) + lPi+l,0(t) + 2qil(t) i - 2,3. Nl-l

Pij(t) = -(A1 + 2 + "1)Pij(t) + 1Pil,j(t) + 2Pij.l(t) + 1Pi+lj (t) + 2Qi,j+l(t)

i - 2,3,...,Nl-l; j - 1,2,...,N2-1

i,N2(t) -(A 1 + UI)Pi,N2(t) + AlPi-l,N2(t) + 2Pi,N2-l(t) + V1Pi+l,N2(t)

PN1,o(t) -(A 2 + PIl)PNlO(t) + AlPNl-l,(t)+ 2QNi,I(t)

PlN2 (t) = -(A1 + l)P1,N2(t) + 2 P1,N2 l(t) + 1P 2,N2(t)

,(t) - -(A1 + A+ 2 + 1)Pl,j(t) + A2Pl,jl(t) + l1P2,j(t) + 2Ql,j+l(t) j - 1,2...,N2-1

PNlj (t) - -(2 + 1)PNl,j(t) + lPNllj(t) + 2PNl,j-l(t) + 2QNj+l(t) i 1,2. N2-1

N,N2(t) -1PNl,N2t) + Nll,N2 (t) + 2PNl,N2 -1(t)

(t) - j - 1,2 ....N2

Q0,1(t) - -(A1 + 2 + 1 2)Q0,1(t) + 2R(t) + l1Pll(t) + 2Q,2(t)

4Ql(t) - -(A1+ X2 + u2)Q 1() + 2 + 1 i-,(t) i - 1,2,...,Nl-i

Qi,j(t) - -(A1+ A2 + P2)Qi,j(t) + A1Qil,(t) + 2Qi,-l(t)

i - 1,2,...,Nl-l; J - 2,3, ...,N2-1

Qi,N2(t) - -(A1+ 2)QiN2(t) + 1AQil,N2(t) + 2Qi,N2(t)i -1,2.,Nl-1
QNi,i(t) - -(A2 + 2)QN1,1(t) + 1lQNl-1,(1t)

QO,N2(t) = -(X1 + u2)Qo,N2(t) + A2Q,N2 _l(t) + iP1,N2(t)

0,j(t) - -(A1 + 2)Q0 j(t) + 2QO,-l(t) + 12)Q 1,(t) + 2Q+_(t) + lPl, - 2,3,...,N2-1

QNi,j(t) -(A2 + I2)QN ,j(t) + lQNl,(t) + 2QNl(t) j - 2,3,...,N2-1

QN,N2(t) - 2QNl,N2(t) + 1AQNll,N2(t) + 2QN1,N2-l(t)

i 1,2,...,Nl, (t) = o

Figure 2.5: Nonpreemptive, Finite-Capacity, Two-Queue M/M/1
System Under Strict Type 1 Priority--State Transition
Equations
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setup time is required when a server switches from one type of customer

to another. This situation is illustrated in Figure 2.6.

In the nonpreemptive,two-queue M/M/1 example, the basic difference

is in the state description; we now define state (i,j,k,k) to represent

i type 1 and j type 2 customers in the system (i = 0,1,...,N1; j = 0,1,...,N2),

a type k(k = 1,2) customer currently in service and a type (Z = 0,1,2)

customer last in service ( is set to zero if the current customer arrived

to find an idle server). Average service rates are now specified by kg

where k is the type of customer currently in service and is the type

previously served. The number of equations increases to 6(Nl+l)(N2+1) + 1.

(See [36] for more detail on solving these systems, including listings of

the corresponding Chapman-Kolmogorov equations for each of the four priority

schemes described in Section 2.2.2.2.1.

2.2.2.2.3 Performance Measures

As before, solving the set of differential equations for multiple

queue systems will yield the state probabilities as a function of time.

These can in turn be used to obtain statistics to describe system

behavior. Examples of expressions for the two-queue M/M/1 system are

presented below:

(i) The probability that a type 1 customer is in service at time T,

N1 N2
PROBl(T) = Pi. (T). (2.4)

i=l j=0 ,

(ii) The probability that a type 2 customer is in service at time T,

N1 N2
PROB2(T) = Z Qi. .(T). (2.5)

i=0 j=l
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Service Facility

Queue 1

Queue 2

type of customer
next served
chosen by some
specified prior-
ity scheme

PkZ = service rate for a type k customer which follows a type Z
customers k = 1,2; = 0,1,2.

P~0 = transition rate for the time to reach the idle state from
the instant the last customer in the system completes service

(frequently PO = A), £ = 1,2.

Figure 2.6: Two-Queue, Single-Server System With

Priority Schemes and Changeover Costs

2
>

PI n

.
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(iii) The expected number of type 1 customers in the system at time T,

N1 N2

ELl(T) = Z i[Pi j (T) + i(T)]. (2.6)
i=l j=0

(iv) The expected number of type 2 customers in the system at time T,

N1 N2

EL2(T) = j[P i. (T) + i ,j(T)]. (2.7)
j=,

(v) The expected number of customers in queue 1 at time T,

N1 N2
EQl(T) = Z [(i-l)Pi (T) + iQi (T)]. (2.8)

i=l j=O J

(vi) The expected number of customers in queue 2 at time T,

N1 N2

EQ2(T) = Z1 [Pij(T) + (-1)Qi,(T)]. (2.9)
i=O j=l

(vii) The total expected number of customers in queue at time T,

EQ(T) = EQ1(T) + EQ2(T) (2.10)

2.2.2.2.4 Expected Delay

One measure which is usually of great interest in evaluating

different priority schemes is the expected time delay faced by a customer

entering the system at any given time. Unfortunately, because of the

interaction between queues, this is a very difficult quantity to determine

for most multiple-queue systems under priority schemes, and a topic to

which little research has been directed. This quantity can be evaluated

for the nonpreemptive, two-queue M/M/1 system under strict priority; the

derivation is presented below.
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Assume that type 1 customers are allowed absolute priority.

Consider first a type 1 customer who enters the system at time T.

Assuming FCFS service within each queue, this customer must wait for the

customer currently in service and those ahead of her in queue 1 to com-

plete service before she can begin her service. Thus,her expected wait

in queue, W1(T), is given by

Nl-l N2

W1 (T)= 
i=l j=o

Nl-l N2

i=O j=l

E

E

time to

serve the
type 1 cus-
tomers al-
ready in
system at
time T

time to

serve the
type 1 cus-
tomers al-
ready in
system and
the type 2

customer in
service at
time T

arriving
customer
finds
system in
state
(i,j,l) at

time T

arriving
customer
finds
system in
state
(i,j,2) at
time T

P

P

arriving
customer
finds
system in
state
(i,j,l) at

time T

arriving
customer
finds
system in
state
(i,j,2) at
time T

Nl-1 N2

Pij(T) + Z 
i=0 j=1

(1 + 2)Qij(T)
W1 " 2

If the arriving customer is of type 2, her waiting time has three

components-- the remaining time for the customer currently in service,

the time for the type 1 and type 2 customers already in queue at time T

to be served, and the service time for all type 1 arrivals occurring

while the arriving customer waits. Thus, the expected delay faced by a

customer of type 2 arriving at time T, W2(T), can be found by solving the

following equation:

Nl-l

i=1

N2 .
E I
j=O "1

(2.11)
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W2(T) = E[time to serve the customers already in the system at time T]

+ E |time to serve all type 1 customers that
arrive while the type 2 customer waits

N1 1| i P i (T) + W2(t) (2.12)
i=0 j=o P 2 i'1 2

Thus

2 = (l N1 N2-1 i (t)
kl1 1 i=O j= 1 12 

Nl N2-1 (1 (2.13)
+ Z 0 +A t)
i=0 j=O 2 ij

The expected delay under other priority schemes for this system

is an open research topic at this time. One observation is that the

expected delay faced by a virtual customer of either type will be bounded

from above and below by the expected delays to that type of customer

under the strict type 1 and strict type 2 priority rules. Other direc-

tions for research include the derivation of expressions for the expected

delay in multiple-queue M/M/1 systems and in non-M/M/1 systems.

2.2.3 Sources of Error

The solution technique outlined in the previous sections can be

used, in principle, to solve any system which can be expressed as a first-

order Markov process. There are, however, three sources of error which

must be noted:

(i) error due to the numerical solution of the state equations

(round-off error),
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(ii) for partially deterministic systems in which the embedded chain

is a first-order Markov process, error due to the assumption that

all arrivals and service completions occur the instant before the

start of an epoch, and

(iii) for infinite-capacity systems and for finite-capacity systems

defined by a large number of state equations, error caused by

solving a truncated set of these equations.

The maximum size of the error due to the numerical solution of the

state equations is specified by the user and will be discussed further in

Section 2.2.4. The error introduced when solving partially deterministic

systems is a function of the traffic intensity, p. As mentioned in Section

2.2.1.2, this error is negligible on a percentage basis for large p, but

may be significant when p is close to 0.

Finally, we mention a modification which can reduce the error which

arises when solving a truncated set of state equations. After each iter-

ation, the probability of a saturated system,PN(t), is examined. If PN(t)

is larger than some small specified value (e.g., we have used = 10-8),

the computer program will increase N by some fixed number n (we have used

n=5), and continue. Conversely, if PN(t) is smaller than , and PN_ (t) is

less than , N will be reduced by n for the next iteration. Thus, by

maintaining a-- negligible probability of saturation, we can solve a

system which has effectively infinite capacity. This will be discussed

further in Section 2.2.4 along with the limitations on the number of equa-

tions which can be solved.
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2.2.4 Computational Characteristics

The IMSL subroutine DERK was used to obtain numerical solutions

to the set of first-order, differential equations which specify behavior

in a Markovian system. This program employs a fifth- and sixth-order

Runge-Kutta method to solve for the state probabilities as a function of

time. The global error (total error per call to DVERK) is proportional

to a user-specified tolerance level (we used 10 -6).

This subroutine is available in both single and double precision

arithmetic. Use of single precision results in a significant reduction

of CPU time. However, our experience indicates that the additional

accuracy afforded through use of double precision arithmetic is necessary

in solving systems with more than forty equations.

The number of equations necessary to define the system was found

to be the major contributing factor to computation cost. To illustrate,

in Figure 2.7 we show the CPU time required to solve an M/M/1 system with

p = .75, = l,and a finite capacity of N customers as a function of N.

(Note that (N+l) Chapman-Kolmogorov equations are required to define be-

havior in this system. Each case was run for 30 units of model time.

These results suggest that time increases in an approximately linear man-

ner with system capacity (or, equivalently, number of equations). Although

the size of the matrix of coefficients for the system equations increases

as N , this matrix is sparse -- in fact it is tridiagonal -- and therefore

the number of equations is the dominant factor contributing to computation

cost.

1 1International Math-Science Library.

1 2One call to DVERK is required for each point in time in the model when
output is desired.
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Computation cost is also dependent on the sparsity of the equations

being solved. For instance, solving a single-queue M/M/1 system will

require less CPU time than solving a single-queue M/H2/1 system even if

the number of equations is identical. Assuming systems that begin at

rest, the solution of an M/M/1 system with p = .75, = 1, and N = 350 for

30 units of model time will require about 17.8 CPU seconds, less than the

27.6 CPU seconds required to solve an M/H2/1 system with p = .75, = .2,

il = 1, 2 = 2, and N = 175 for an equivalent amount of model time. Note

that in each case, 351 first-order, differential equations are required to

specify system behavior.

In Table 2.2 we illustrate, for several single-queue systems, the

manner in which the number and sparsity of the system equations varies with

the interarrival and service time distributions. For comparison purposes,

we indicate the sparsity of an equation by the total number of state pro-

babilities required to compute the derivative.

As mentioned in Section 2.2.3, this numerical solution technique

can often be utilized to solve infinite-capacity queueing systems and

finite-capacity systems defined by a large number of state equations by

varying N throughout the computer run to maintain a negligible probability

of system saturation. We illustrate the cost of this through several

examples with Erlangian interarrival or service times. All systems have

p = .75, = 1, begin at rest, and were solved for 30 units of model time.

Figures 2.8 and 2.9 show how CPU time varies with k in the solution of

infinite-capacity M/Ek/l and Ek/M/1 queueing systems.

Recursive solution of the difference equations for partially

deterministic systems in which the embedded chain is a first-order

Markov process is straightforward and significantly less
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costly than solution of Markovian systems. As an example, to solve an

infinite-capacity M/M/1 system with p = .75 and = 1 for 30 minutes of

the model time requires about 2.0 CPU seconds -- if the service time is

deterministic only .4 CPU seconds are needed.

Listings of all computer programs used in this dissertation appear

in Appendix 2. Computations were performed on an IBM 370/168 computer

at the MIT Information Processing Center and on a DEC20 computer at

Carnegie-Mellon University.
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CHAPTER 3

TRANSIENT BEHAVIOR OF HE EXPECTED QUEUE LENGTH OF INFINITE-CAPACITY,
SINGLE-QUEUE, SINGLE-SERVER SYSTEMS WHICH BEGIN AT REST

The primary purpose of this dissertation is to investigate empirically

the transient response of stationary queueing systems. The technique

described in Section 2.2 can be used to obtain numerical transient solu-

tions to many systems. In this chapter, we examine a large sample of these

solutions in an attempt to determine, for these same systems, a closed-form

expression to approximate transient behavior. Such a closed-form expression

is very attractive since it may provide a rough indication of system

behavior inexpensively and without need of a computer. In addition, with

this approximation we hope to estimate the amount of time required for the

transient effects (caused by the initial state of the system) to become

negligible. This information can be very useful in applications in deter-

mining whether the system is essentially in equilibrium. If so, for many

stationary systems existing steady-state theoretical results can then be

used to easily calculate the equilibrium values of the desired performance

measures (e.g., the expected queue length or the expected delay).

Despite the importance of transient effects, we are unaware of any

previous attempt to characterize their general form. Given the techniques

available for obtaining accurate transient solutions, it is not surprising

that research has been focused on other issues. As discussed in Section 2.1,

numerical techniques seem to be best suited for this purpose. The emphasis

on these methods is, however, a recent phenomenon, and most work to date

has focused on improving the efficiency and accuracy of the numerical tech-

niques rather than using their results to draw conclusions on some general

attributes of transient behavior.
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There is, however, a small amount of literature addressing the

problem of the length of the transient period. A brief review follows.

Morse [31], in his analysis of the finite-capacity, single-queue

M/M/1 system shows that the transient behavior is governed by exponential

decay. He also suggests an approximate time constant for this system but

does not check its validity.

Newell [33] refers briefly to the problem of time to steady-state in

his work on the diffusion approximation for GI/G/1 queueing systems under

heavy traffic. A closed-form expression is obtained that he considers to

be an order of magnitude estimate of the time required for the transient

effects to become negligible. The accuracy of this expression is not

verified. (This work will be discussed in greater detail in Section 3.2.)

In his work on solution techniques for nonstationary M/G/1 queueing

systems, Kivestu [17] gave considerable attention to the study of time

constants for these systems. The thesis provides a summary of the work of

Morse and Newell, but we found the remainder of Kivestu's work to be

confusing and of little value for our purposes.

Barzily and Gross [1] examine the transient response of the stationary,

finite-source M/M/k queueing system. Their particular concern is measure-

ment of the amount of time until the system reaches equilibrium. Four

measures of the "distance" of the system from steady-state are compared.

This report contains some interesting intuitive observations as well as

several numerical examples, but the work does not progress to the point

of specifying a procedure for predicting the time to equilibrium.

Finally, a recent paper by Marks [29], applies regression techniques

to study the manner in which the time to steady-state depends on the

traffic intensity. He fits linear, quadratic, and parabolic regression
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models to simulation results of an infinite-capacity, single-queue M/M/k

system. The work depends on an accurate determination of the point, t ,

after which the system is in equilibrium. This is a difficult problem in

simulation (see Section 2.1.2), but Marks does not present a particularly

convincing argument justifying his choice of t . Thus, his work is of

questionable validity.

In our work, we examine the transient behavior of the expected queue

length as a representative indicator of system response. The analysis

for the expected delay is comparable. All systems are assumed to be

ergodic, i.e., regardless of initial conditions, the system will eventually

be in equilibrium.

Our strategy here is to:

(i) postulate a functional form with which to approximate

the expected queue length as a function of time,

(ii) examine the validity of this functional form through an

empirical analysis, and

(iii) use these results in an attempt to determine a closed-form

expression with which to estimate the amount of time until

a system is essentially in equilibrium.

3.1 Characteristics of the Functional Form

In order to characterize dominant features of the transient behavior,

we examine, first, two representative theoretical results. In both cases

we assume the system is empty at time t=O. This is frequently an appro-

priate assumption in applications and is the least complicated way in which

to begin our analysis.
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The simplest available result is for a stationary M/M/- system.

Since, by definition, there is never a queue when the number of servers is

infinite, we use the expected number of customers in the system, L(t),

as our indicator of system behavior. L(t) is given by (see Table 2.1)

L(t) = _ e" ,t t 0. (3.1)

The second theoretical result is as follows: for a stationary M/M/1

system which has a finite capacity of N customers, Morse's work [31] (see

Table 2.1) implies that Q(t), the expected queue length at time t, is given

by

N N i/2 N ikr (i+l)kw 6 t

Q(t) = E iP .() + i E Ck sin N+1 sin +lk e Kt
i=O i:=O \ / k=1 L

t 0 (3.2a)

1This result can be seen by the following, rather intuitive derivation.
By definition, to order dx, in the increment (x, x + dx] there can be at

most one (Poisson) customer arrival to the system. Thus, if the system is

at rest at t=0,

t

L(t) IP (customer arriving in (x,x+dx]\ p there is a customer t0
still in service at time t arrival in (x,x+dx]

or

L(t) = e- (t-x) dx
o

XX e-t , t > 0
1P 
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where

k6 =- + P - 2 rt cos (k1)' k = 1,2 ,.N..N (3.2b)

Pi(X), i = 0,1,...,N, are the equilibrium state probabilities, and the

coefficients Ck, k = 1,2,...,N, are determined from the initial conditions.

Note that these two theoretical results have a common form--each is

the sum of a constant term and one or more additional terms which decay in

an exponential manner. A finite sum of exponential terms (e.g.,

expression (3.2a)) will asymptotically be dominated by a single exponential

term , i.e., the exponential term with minimal decay rate. These observa-

tions suggest that for many practical applications an adequate and simple

approximation for the expected queue length might be the sum of a constant

(equal to the steady-state expected queue length) and a decaying exponential.

In this section, we test our hypothesis that the expected queue

length, Q(t), approaches its equilibrium value in an approximately exponen-

tial manner for many stationary, ergodic queueing systems which have a

single, infinite capacity queue served by a single server. All systems are

assumed to be empty at time t = 0. Under our hypothesis, there exist para-

meters T(T > 0) and A(-o < A < 0) such that Q(t) can be expressed as

Q(t) Q() + A e t/T t > 0. (3.3)

The time constant T is the amount of time required for the expected queue

length to get l/e 37% closer to its final value. This constant T is

also frequently referred to as the "relaxation time" of the system [31].

It will be examined in Section 3.2. If (3.3) is strictly true, the para-

meter A accounts for the difference between the initial and steady-state

expected queue lengths. Thus, for a system which begins at rest,
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A = Q(O) - Q() = -Q(). (3.4)

Due to the complexity of the theoretical solutions, we must rely on

experimental confirmation of the hypothesis that the expected queue length

can be approximated by (3.3) for some A < 0. To accomplish this, we use

the numerical methods of Chapter 2 to compute the expected queue length

over time from time t = 0 until Q(t) has reached its equilibrium value

Q(c).

Intuitively, for a queueing system starting at rest, we expect the

form of Q(t) to be influenced by the traffic intensity, p(O < p < 1), and

the forms of the interarrival and service time distributions.

By fixing one of these attributes at a time we will examine the

influence of the remaining attribute on the form of Q(t) by plotting

logjQ(o)-Q(t)j versus time. In all cases Q(t) is determined by numerically

solving the state equations for a finite-capacity system. Care is taken to

ensure that the probability the system is saturated is negligible (less than

10-8). Thus, we solve a system which, for all practical purposes, is equi-

valent to an infinite-capacity system.

In order to plot logIQ()-Q(t)l, it is necessary that we know the

value of Q(-), the steady-state expected queue length. In many instances

Q(o) can be calculated using exact, closed-form expressions. For example,

for M/G/1 systems the well-known Pollaczek-Khintchine formula yields

p2+12 22

Q(=) = 2(1-p) ' (3.5)2(1-p)

where a2 is the variance of the service time.

For GI/M/1 systems, the equilibrium expected queue length is given by

Q() = P ( -) , (3.6a)
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where a solves the transcendental equation

a = f (-~P) , (3.6b)
a

and fT(s) is the Laplace transform of the interarrival time, a. We have
a

obtained either closed-form or numerical solutions of (3.6) for particular

forms of the pdf fa(ao), a ' 0, including k thorder Erlang, deterministic,

and kthorder hyperexponential distributions.
and k -order hyperexponential distributions.

For systems in which Q(c) cannot be calculated easily, one can

frequently estimate its value through simulation or by continuing to apply

the numerical solution technique until the system has reached equilibrium.

(Our working definition of "steady-state" is all t such that

[Q(t)-Q(t) < 10- 4 for all t > t.)

Q(t)

In the next several pages we exhibit graphs of log[Q(o)-Q(t) I for

several specific examples which show the dependence of Q(t) on the traffic

intensity and on the type of the interarrival and service time distributions.

A comprehensive list of the queueing systems we tested is presented in

Table 3.1, later in this section.

First, we examine the dependence of the logjQ(-)-Q(t)j curve on the

traffic intensity,p, by fixing the forms of the interarrival and service

time distributions (both negative exponential) and then varying p.

Figures 3.1 and 3.2 are plots of logjQ(-)-Q(t)[ versus time for an M/M/1

system with p = .25, .5, .75, .85, and .9. The expected service time is

fixed at 1/P = 1. Figures 3.3 and 3.4 are plots of loglQ(-)-Q(t)j for

the same five values of p and an expected service time of 1/ = 2.

In each case, after an initial period logjQ(-)-Q(t)[ appears, for all

practical purposes, to vary linearly with time. This linear relationship
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between logjQ(o)-Q(t)j and t implies exponential decay. For small t the

curves are convex. This implies that initial decay occurs at a rate faster

than that of the eventual exponential function. We will discuss this be-

havior in more detail later.

To determine the effect of the particular types of interarrival and

service time distributions on the general form of Q(t), we examine four

other queueing systems-- M/D/l, M/H2/1 (a second-order hyperexponential

service time), a particular M/G/1 system with a service time given by a

weighted sum of Erlang random variables, and the E2/E2/1 system. We also

solved several types of Ek/M/l systems; see Table 3.1.

The M/D/1 system differs from those discussed previously in that it

cannot be converted into a first-order Markov process. Since only the

embedded chain is first-order, we cannot obtain an exact numerical solution

for all t. As discussed in Chapter 2, we solve this system (approximately)

using the assumption that all arrivals and service completions occur only

at the instant before the start of an epoch. This approximation is good

for systems with large p once the queue is sufficiently long (insuring a

negligible probability of an arriving customer entering an empty system).

Figure 3.5 is a plot of loglQ(o)-Q(t)I versus time for an M/D/1

system with p = .9 and = 1. Once again, for large t, Q(t) decays in an

approximately exponential manner.

The M/Hk/1 system is "more random" (i.e., exhibits greater vari-

ability) than corresponding M/M/1 or M/Ek/1 systems since the hyper-

exponential random variable which specifies the service time has coef-

ficient of variation greater than 1. (A hyperexponential random variable

2The coefficient of variation is defined as the ratio of the standard
deviation to the mean. It can be interpreted as a normalized measure
of spread.
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is specified as a probabilistic choice among negative exponential random

variables.) To illustrate the behavior of this type of system, we con-

sider the M/H2/1 system depicted in Figure 3.6. Customers arrive according

to a Poisson process with parameter and have a service time given by a

negative exponential random variable. The mean service time for any par-

ticular customer is chosen through an independent Bernoulli trial: with

probability a, 0 < a < 1, the expected service time is 1/l1; with pro-

bability (l-a) the expected service time is 1/p2. The probability density

function for this hyperexponential service time, s,is

-Ps 0 ,-P2So
f (s) = a ple +(l-a)p2e s > 0, 37-I·12s , 5 0) (3.7)

and the unconditional expected service time for this system is

1/p = a 1/p1 + (l-a) 1/p2 . (3.8)

Figure 3.7 is a graph of loglQ(-)-Q(t)I versus time for an M/H2/1

system with = 1.25, a = .2, p = 1, p2 = 2, and p = .75. Once again,

after an initial period decay is approximately exponential.

We now examine a single-server system with Poisson arrivals and a

particular "phase type" probability density function for the service time,

s, given by

fs1So (l-=)p 2 2 2 So
fs (s ) Bple + 2 So e so > 0, (3.9)

where 0 < < 1. Clearly, random variable s is a "weighted combination"

of (or, probabilistic choice between) negative exponential and third-

order Erlang random variables. This implies that

E(s) = -- + 3(1 (3.10)
Pi U2
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and

2 2B 12(1-B) 2
a = -+ 2 [E(s)] (3.11)
s 2 2

1 2

To illustrate, Figure 3.8 is a plot of f (So), s > 0, for B = 1/6

and pi = P2 = 1. Note that this probability density function is slightly

bimodal with maxima at s = 0 and s = 1.775 and a local minimum at s = .225.

We solved a queueing system with a service time given by this random

variable s and X = .3 (note that p = .8). Figure 3.9 is a plot of

logJQ(o)-Q(t)J versus time for this system. As before, except for small t,

decay is approximately exponential.

To test our hypothesis for a system which has nonexponential inter-

arrival and service time distributions we examined an Ek/Ek/l queueing

system. Figure 3.10 is a plot of logJQ(-)-Q(t) for an E2/E2/1 system with

p = .75 and = 1.

Finally, Table 3.1 is a complete listing of the systems we examined.

In all cases behavior is similar--the expected queue length eventually

approaches its equilibrium value in an approximately exponential manner.

These results seem to confirm that, for some t > 0,

Q(t) = Q(o) + Ae t / , t > t

3.2 Examination of the Time to Equilibrium

The experimental results presented in the previous section suggest

that after an initial time period, the transients of the expected queue length

decay in an approximately exponential manner for many queueing systems which

begin at rest. Now we will examine the exponential time constant T. Deriving

a closed-form expression for T would allow estimation of the amount of time
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Table 3.1: List of Test Cases

p

System

M/M/1

E2/M/1

Al .25

.5 v
i- v

2I 

.5
L

2

E3/M/1

v

.5

IL

E4 /M/1
4

.5

/I

.5
IL

E 10/M/1

M/E2/1

M/E3/1

M/E4/1

M/E 10/110

E2/E2/1

M/D/1

.75

v
v

v
v

v
v

v

v/I

/I

/I

/I

/I

IL

.5

:L

2

v
v
v

v
v

v/I
/I

/I

v
v
v/I
/I

v

.5

IL

:2

.5

:2

IL

.5

L

/
v

v

.85 .9

¥I

v
/

v
v/

v
v
v/

/

/
v
v

v

v/
v

/
v
v

v

v
I/
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Table 3.1 (Continued)

1System

M/H2/1 .2

.4

.6

.8

.2

.4

1

1

1/6

1/6

*where the service time s,

1

1

1

3

has pdf

f (So) = tple-e So + (l-a)

3 2 -i2 s0

2 So e

2

V

s > O.
0

2
p

.75

2

M/G/l*

.5 V

V

.8.3
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required by a system until the transient effects can be ignored (e.g.,

-4 ,
after four time constants only e = 1.8% of the transients remain).

To measure experimentally we need Q(-) and two values Q(t1) and Q(t2)

for any t < t < t2, where t is the time after which decay is exponential.

We determinedt by inspection from the numerical results. This is adequate

for the purposes of this work. In future work, if more accuracy is required,

one more formal manner in which to estimate t would be to perform a log-

linear regression on Q(o)-Q(t)l for large t only and then to extrapolate

backward to include t = 0. Then, the smallest value of time which has a

small residual could be chosen as the estimate of t. It is important that

the initial regression be a good fit, i.e., a very high R2 value.

Once t has been chosen, using expression (3.3) we have

-t./T
Q(tj) -Q() + Ae , = 1, 2, (3.12)

and therefore,

Q(c)-Q(t) -(t 1-t2 ) / T

Q()-Q(t 2) e (3.13)

Rewriting expression (3.13) yields

t2-t1 t 2-t1
1(C)-Q(t) logQ(-)-Q(t ) - (3.14)

log ;(-)-Q(t1)2

for all t < t1 < t2. Thus, under our hypothesis, T is the negative recip-

rocal of the slope of log[Q(-)-Q(t)[ versus time. Therefore, if we know

Q(t) for all t > t, we can calculate T.
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Now that we can measure T empirically, we use the experimental results

of Section 3.1 to determine a closed-form approximation for T which can be

used without prior knowledge of Q(t). First, we postulate a form for 

using intuition and a result by Newell. Then, we refine this expression

using the empirical values of for a large number of queueing systems.

Intuitively, the time constant should depend on system characteristics

such as the arrival and service rates and the coefficients of variation for

both the interarrival and service times. The coefficient of variation is

a measure of the relative "variability" of a random variable (the larger the

coefficient of variation, the greater the "variability"). Therefore, we

expect T to vary directly with powers of Ca and Cs, the coefficients of

variation for the interarrival and service times, respectively, since

greater variability in a system would be expected to increase the time to

equilibrium.

We also expect that, as the system approaches saturation (p+1), or

as the expected service time becomes long, the system will require more

time to reach equilibrium. Thus, it is reasonable to expect T to vary

directly with powers of (1 and 1/p. In fact, for p = A/ fixed, T must

depend directly on 1/p.

The simplest way to understand this last relationship is through an

example. Consider a queueing system with given interarrival and service

time distributions and fixed traffic intensity, p. In case 1, let X and

p be specified in terms of customers/minute and in case 2, in terms of

customers/hour. Thus, if Xi and pi are the arrival and service rates for

case i (i=1,2), 1 X2/60 and 1 = 2/60. Let Ql(t) be defined as the expected

queue length at t minutes, Q2(t) as the expected queue length at t hours.
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Then, since the systems are equivalent with the exception of the units in

which time is measured,

Q 2 (t) = Ql(Yt), t > 0, (3.15a)

where

= 2/p1 = 60. (3.15b)

Since T1 and T2 are measured in the units of their respective systems,

Q2 (2) = Q1(T1 ). (3.16)

But, by equation (3.15b), we also have

Q2 (T2) = Q1(YT2). (3.17)

Therefore,

T 1 = YT2 = (p2/v1) T 2 (3.18)(3.18)

or

T1 = 2 T2 = constant. (3.19)

This implies that T must be proportional to 1/p. Note that this result

holds for general queueing systems; we made no assumptions about system

characteristics in the derivation.

A result from the diffusion approximation for queues under heavy

traffic suggests a form for the time constant T. A fundamental assumption

of the diffusion approximation is that queue length can be treated as a

continuous rather than a discrete random variable. Defining F(x,t) as
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the cumulative distribution function of the queue length at time t,

Newell [33] derives the following diffusion equation for the queue length:

2+2
aF(x,t) =_(_) aF(x,t) + (Ca+pC) (3.20)

at ax 2 ax2

where F(x,t) + 1 as x + , and F(x,t) + 0 as x 0. Newell than makes the

substitutions

x' x and t' =t
d TN

where

AC2+PC2

d = a (3.21)
.-X

and

AC 2IC 2

a s

TN 2 2PN(l-p)
pC2+C2
a s (3.22)

(l-p)

With these substitutions, (3.20) reduces to

aF'(x',t') t 1 a2F'(x't') t)

at ax' ax'2 (3.23)

Based on the fact that (3.20) can be transformed into a dimensionless

equation, Newell then comments that "...the relaxation time of the queue

in the original time units must be of order [TN]..." In this context the

3This equation states that the rate at which the P( x customers in the
queue) changes with time must be equal to a weighted sum of the density
function of the number in queue at time t and the rate of change of this
density function over x at time t. The weights are the negative rate of
change of the mean of the number in queue at time t and one-half the rate
of change of the variance of the number in queue at time t [22].
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relaxation time corresponds roughly to the amount of time required to

measure "significant" changes in the queue length. Note that Newell's

expression for TN is not derived as an exponential time constant, but it

is expressed in units of time, and varies directly with 1/ and powers

of C , C and 1 , as we expect of the exponential time constant T.
a (-0)

We used N as our initial estimate for T.

For each of the queueing systems listed in Table 3.1, we calculated

the experimental time constant by measuring the slope of the
exp

loglQ(o)-Q(t) curve. We then compared Texp to TN (calculated from

expression (3.22)). Close examination of these results led, by a trial-

and-error approach, to a modified expression for the time constant, given

by 2 2
(1+)2 ( C2+C2

TR = 2 + (3.24)
2.7 p1(l-p)

Like TN, TR varies directly with 1/p and the second powers of Ca, Cs,

1 2 2
and 1) Also note that since for many systems C and C will take

(l-p) a s

values between 0 and 1, and since 0 < p < 1, the most important contri-

butions to TR will usually be from the 1/p and factors. In
(1-p)

Table 3.2 we list, for each system in Table 3.1, the numerically obtained

-exp, along with TN and TR. Also, we indicate the ratios Texp/TN and

Texp/ R . Due to the approximate nature of this work, all ratios are

expressed to one decimal place. In most cases TR is within about 10% of the

experimental time constant. Based on these empirical results we propose TR

as an approximate time constant for all values of p (O<p<l), not only for

heavy traffic conditions (Newell's assumption).

To improve expression (3.24) for -TR, a log-linear regression on a

collection of experimental cases could be used to check the powers of the
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Table 3.2: A Comparison of Estimated and Observed Time Constants
of Systems That Begin at Rest

11 p Teexp TN TR

.5 .25

.5

.75

.85

.9

1 .25

.5

.75

.85

.9

2 .25

.5

.75

.85

.9

.5 .5

.75

.85

1 .25

.5

.75

.85
2 .5

.85

.5 .5

.75

.85
1 .5

.75

.85

2 .5

.85

.5 .75

.85
1 .75

.85
2 .85

1 .75

.5 .5

.75

.835

1 .25

.75

.9

2 .75
.835

5.4
16.4
80

231

545

2.8

7.9

40

121
279

1.4

3.7

18.8
60

133
11.5
61

178
2.4

6.4

28

95

3.1

44

11.9
53

165
5.7

27

75

2.7

40

51

150

25

75

38

22

12.6
61
200

1.8
6.4

29

95
200

13.7
47

4.4
12

56

164

380

2.2

6

28

82

190
1.1

3

1

41

95

10

44

127

2

5

22

63

2.5

32

9.3
40

114

4.7
20

57

2.3

29

38

108
19

54

27

17.2
8

40

120
1.3
4

20

60

140

10

5.9
17.3
83

243
563
3.0

8.6

41

122

281

1.5

4.3

21

61

141

13.0
62

182

2.2

6.5
31

91

3.2
46

11.5
55

162

5.8
28

81
2.9

41

52

152
26

76

38

23

13.0

62

182
2.2

6.5

31

91

211

15.5
30 46

1.2
1.4

1.4

1.4

1.4

1.3

1.3
1.4
1.5

1.5

1.3
1.2
1.3

1.5

1.4

1.2
1.4
1.4
1.2

1.3
1.3

1.5

1.2

1.4

1.3
1.3
1.4

1.2
1.4
1.3
1.2

1.4

1.3

1.4

1.3

1.4
1.4
1.3
1.6

1.5

1.7
1.4

1.6

1.5
1.6

1.4

1.4

.9

.9
1.0

1.0

1.0
.9

.9

1.0
1.0
1.0

.9

.9

.9

1.0
.9

.9

1.0

1.0

1.1
1.0
.9

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0
.9

.9

1.0

1.0
1.0

1.0
1.0

1.0

1.0

1.0
1.0
1.1
.8

1.0
.9

1.0

.9

.9
1.6 1.0

System
Texp/ R

Texp /
exp R

M/M/1

E2/M/1

E3/M/1

E4 /M/1

E /M/l
M/E2/1
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Table 3.2 (continued)

ii p

.5 .5

.7'5

.85

.25

5

.85

.9

2 .75

.85

.5 .'5

85

1 .

.75

.85

2 .75

.85
1 .75

1 . 5
.75

.135

.5 .5
.75

.85

. 9
1 .75

.385

.9

T
exp

10.5
53

159

1.5

5.3
26

79

178

13.2
39

10.1
50

164

4.8
24

82

172

12.0

38

20

4.2
189

52

7.4

40

133

278

20

66
127

TN TR

6.7

40

105

1.0

3.3

17.3
53

123

8.7

26

6

32

98

3

16

49

115

7

24

13.6

3

14

41

4

24

76

180
12

38

90

exp N

11.5
55

162

2.0

5.8
28

81

188

13.8
41

10.8
52

152

5.4
26

76

176

12.9

38

23

4.3
21

61

8.6
41

122

281

21

61
141

exp R

1.6

1.3

1.5

1.5

1.6

1.5

1.5

1.4
1.5

1.5

1.7

1.6

1.7

1.6

1.5

1.7

1.5

1.7

1.6

1.5

1.4
1.4

1.3

1.9
1.7
1.8

1.5

1.7

1.7

1.4

.9

1.0
1.0
.8

.9

.9

1.0

.9

1.0

1.0

.9

1.0

1.1

.9

.9

1.1
1.0

.9

1.0
.9

1.0
.9

.9

.9

1.0
1.1

1.0

1.0
1.1
.9

System a p1 2 exp N R rexpN expN Rexp

.2

.4

.6

.8

.2

.4

1/6

1/6

1 2 .75

.75

.75

.75
1 .5 .75

.75

1 1 .8

1 3 .3

28

33

33

40

72

71

115
2.3

18.9 28

22 32

25 36

27 39

53 78

50 72

84 129

1.5 2.6

1.5

1.5

1.3

1.5

1.4

1.4

1.4

1.5

1.0

1.0
.9

1.0
.9

1.0

.9

.9

where the service time, s, has pdf

3

-1 1 S+ (1-) 3
f(So) = ~l e + (1-B) ss 12

2
-U112s

e s 0.0

System

M/E3/1

M/E4/1

M/E /1
E2 /2/

M/D/1

M/H2/1

M/G/1
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three terms (1 + p), (C2 + C2 ) , and (1 - p) and the value of the constant,a s

1/2.7. We did not use this more formal approach to modify (3.24), as the

methods used throughout this chapter (e.g., plotting curves, then reading

slopes) are rough; in addition, any practical use of the time constant to

characterize system behavior will be at best approximate since transient

decay can be approximated by an exponential function only for large t.

The experimental results presented in Section 3.1 suggest that, for

systems which begin at rest, Q(t) eventually decays in an exponential

manner and that, initially, decay is faster than this exponential function.

Therefore, TR can be used to obtain an upper bound on the amount of time

required for a system which begins at rest to reach equilibrium. After

a length of time equal to y TR, 0. at most e-Y of the transients remain.

3.3 Summary

With the empirical results of this chapter, we feel it is reasonable

to conjecture that, for many types of infinite-capacity, single-queue,

single-server queueing systems which begin at rest, the expected queue

length can be approximated by

Q(t) Q(-) + Ae /R , t t , (3.25a)

for some A < 0,

where

(+p)2 (C2 +C2 )
T = a s

2.7 P(1-p)

and Q(-) is calculated by one of the methods discussed earlier (Section 3.1).

We have not attempted to determine a reliable method for estimating t, but

visual examination of our experimental logQ(-)-Q(t) I curves suggests that
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t is less than 2 R. This is certainly one area for further

work.

We also have not determined an expression for the parameter A,

but due to the fact that Q(t) decays initially at a faster rate than the

eventual exponential function, Q(t) is bounded below by (3.25) with

A = -Q(-). An important implication of this is that the amount of time

until the transient effects become negligible is bounded above by exponen-

tial decay with parameter TR.

The random variables specifying the interarrival and service times

of our test cases were either deterministic or composed of some combina-

tion of independent Erlang random variables. We suspect that our approxi-

mation (3.25) might hold for more general queueing systems but we do not yet

have the evidence needed for confirmation.

A closer approximation for Q(t) is given by

Q(t) = Q(o) + te- t/T + g(t), t o 0, (3.26)

where the function g(t) goes to 0 at a faster rate than the exponential

function Xe- t / T as t approaches infinity. Expression (3.26) behaves in a

purely exponential manner for large t, but the g(t) term could be chosen

to account for the nonexponential initial behavior of our experimental

log[Q(-)-Q(t) curves. In particular, (3.26) agrees with the exact

solution for a finite-capacity M/M/1 system. However, addition of the

g(t) term in expression (3.26) is probably of limited usefulness in

practice, as it provides no extra information on the amount of time

needed to reach equilibrium; the exponential decay is the determining

factor.
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CHAPTER 4

TRANSIENT BEHAVIOR OF THE EXPECTED QUEUE LENGTH OF INFINITE-CAPACITY,

SINGLE-QUEUE, SINGLE-SERVER SYSTEMS WHICH DO NOT BEGIN AT REST

In Chapter 3, we examined the transient behavior of the expected

queue length, Q(t), for two classes of queueing systems which begin at rest.

Our empirical results confirmed that for Markovian systems and for those

deterministic systems in which the embedded chain is a first-order Markov

process, the transient part of Q(t) decays in an approximately exponential

manner for large t. In addition, transients appear to decay initially at

a rate faster than that of the exponential function that eventually dominates.

Thus, the time to equilibrium can be bounded from above by exponential

decay. The time constant for this exponential function can be estimated

through use of our closed-form expression (3.24). We now examine the

effects of initial conditions other than the empty state on the transient

response of Q(t) for the same types of queueing systems considered in

Chapter 3.

Intuitively, for large t, any effects due specifically to the initial

conditions will be negligible and thus, independent of the state in which

the system begins, transient decay will eventually be of the same functional

form as when the system starts from rest. Therefore, we expect that for

large t, Q(t) will decay in an approximately exponential manner with a

time constant dependent only on the queueing system at hand, not on the

initial conditions. We also expect that for small t, the effect of

transients on the behavior of systems which begin near equilibrium will

become negligible more quickly than those of a corresponding system which

is initially empty or heavily saturated.
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In this chapter, we examine these issues in an attempt to obtain a

closed-form expression that can be used to predict the amount of time

required for a system to effectively reach equilibrium as a function of

the initial state of the system. In Section 4.1, we examine systems with

deterministic initial conditions, i.e., Pi(O)=l for some i, and Pj(O)=O

for all ji. First, we empirically confirm that, independent of initial

conditions, transient effects decay in an approximately exponential manner

for large t. Then, we examine the transient behavior for small t and

attempt to derive bounds for the time to equilibrium as a function of the

deterministic initial conditions. Finally, in Section 4.2, we consider

the effect of probabilistic initial conditions on these results.

As before, we use Q(t), the expected queue length at time t, as

our representative measure of system behavior. We restrict the discussion

to Markovian systems and those partially deterministic systems that have

an embedded chain that is a first-order Markov process. The analysis is

empirical and solutions to the systems examined are obtained through the

numerical technique discussed in Section 2.2.

4.1 Systems with Deterministic Specification of Initial Conditions

We begin this analysis with a discussion of queueing systems in which

at time t=O, for some specific i (i=0,1,...), there are i customers in

the system with probability 1. (If i>O, this implies that Q(O) = i-l).

Thus, initial conditions are specified in a deterministic manner.

4.1.1 Characteristics of the Functional Form

In the previous chapter we found that, for systems which are initially

idle, the expected queue length Q(t), can be approximated by
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Q(t) -Q(-) + Ae , t > t ,(4.1)

where A, T > 0, and t > 0 are parameters that are system-specific. We now

test the validity of this expression for the same classes of queueing systems

but with a range of deterministic initial conditions.

To begin, we fix the traffic intensity (p=.75, =1) and the types

of the interarrival and service time distributions (both negative exponen-

tial). Note that for this M/M/1 system, Q() = 2.25.

Figures 4.1-4.4 illustrate logjQ() - Q(t)I versus t for nine examples

with i ranging from 0 to 34. In each case, after an initial period,

log[Q(x) - Q(t)I varies in a linear manner with t. This implies that for

large t, Q(t) approaches Q(o) in an approximately exponential manner regard-

less of the number of customers in the system at time t=0O. Thus, for any

specified deterministic initial conditions, there exist parameters A, T,

and t such that expression (4.1) is valid.

For small t, however, it is clear that the functional form of Q(t)

varies greatly with i. To study this behavior in more detail we also

examine plots of Q(t) versus time. In Figures 4.5 - 4.8 we illustrate

Q(t) versus t for the same nine cases.

Consider Figures 4.1 and 4.5. They cover cases in which Q(O)=0.

For these systems, Q(t) approaches Q(-) in a monotonic manner. In addition,

as log[Q(-) - Q(t)j is initially convex, we can see that Q(t) is bounded

from below by (4.1) with A = -Q(o) and t=O. This is the case we studied

previously in Chapter 3.

We now examine the transient response when the initial number of

customers in queue is in the range from one to slightly above Q(-).

Three such cases are illustrated in Figures 4.2 and 4.6. In each example
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Q(t) decreases initially to a minimum value, then increases monotonically

to Q(c). Note that there is never more than one critical point for

t>O.

The initial drop in Q(t) is due to the fact that >X. (This is a

requirement for ergodicity in an infinite-capacity, single-queue, single-

server system.) For example, consider the case in which there are two

customers in queue and a customer in service at t=O(i=3). Since >X, the

server is likely to complete the current service before a new customer

enters the system. In fact, since both the interarrival and service time

distributions are given by negative exponential random variables, for this

system

p current service is completed 57 (4.2)
P before first customer arrival + (42)

Thus, there is a .57 chance that the first change of state will be caused

by a service completion, and thus result in the system containing two

customers (equivalently, one customer in queue).

This argument is valid for any i>l. If, however, p is large and

Q(O) << Q(-), the initial decrease in Q(t) will be small in magnitude and

occur within a very short time period. As an example, we consider an

M/M/1 system with p=.9 and =1l (Q(o) = 8.1). If there are initially 2

customers in the system with probability 1, Q(t) reaches a global minimum

after roughly .12 time units. This behavior is illustrated in Figure 4.9.

Thus, if Q(t) is observed only once or twice per time unit, Q(t) will

appear to be a monotonically increasing function of t.

In Figures 4.3 and 4.7, we present examples of systems in which Q(O)

is large enough to prevent the initial decrease in Q(t) from "overshooting"

Q(-), but not large enough to heavily saturate the system. In each case,
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Q(t) approaches Q() from above in a monotonic manner. The initial

convexity of the log Q(oo) - Q(t)[ curve implies transient decay which

is faster than that of the eventually dominating exponential function.

Thus, there exist positive values of the parameters A and T, such that Q(t)

is bounded from above by expression (4.1) with _=0.

Finally, we examine the case in which the system is initially heavily

saturated. In Figures 4.4 and 4.8 we illustrate the transient response

of this M/M/1 system when 33 customers are in queue at time t=0. Note that

Q(t) decreases initially in a linear manner with slope -.25.

This behavior can be explained intuitively by noting that the

dominating feature is the presence initially of 34 customers in the system.

Clearly, for a time the server will be working continuously to clear the

system of these excess customers. On average, p customers per unit time

will leave the system. Concurrently, an average of X customers per unit

time will enter the system. Thus, for small t,

Q(t) : q() - (-X)t, (4.3)

i.e., Q(t)decreases in a linear manner with slope -(p-X) (which for

this M/M/1 system equals -.25). Once the system recovers from its over-

saturated condition, the probabilistic nature of the interarrival and

service time distributions will again dominate and Q(t) will no longer

be linear but will approach its equilibrium value in an approximately

exponential manner.

To check the validity of this intuitive argument, for an M/M/1

system with =1 we specify initial conditions of 34 customers in the

system, and vary . Both the traffic intensity p and the steady-state

expected queue length Q(oo) increase with . Since in all cases the
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initial number of customers in the system is fixed at 34, if p is large

the system begins relatively closer to its equilibrium state. Therefore,

we expect Q(t) to decay in an approximately exponential manner at an

earlier time than a system with a smaller value of p. We illustrate

this behavior in Figure 4.10 through plots of Q(t) versus t for an

M/M/1 system with p = .75, .8, .85 and .9.

Note also that as expected, for small t the slope of Q(t) is

-(-A). Figure 4.11 illustrates logIQ(x) - Q(t)j versus t for these

cases, confirming that Q(t) decays in an approximately exponential manner

for large t.

The preceding results suggest that, with regard to deterministic

initial conditions, four categories of transient response can be

identified:

(i) If Q(0) = 0, Q(t) increases monotonically to Q().

In addition, Q(t) is bounded from below by (4.1) with A = -Q(-)

and t=0.

(ii) If l<_Q(0)<L, for some 1>Q (), Q(t) will not be a monotonic

function of t but will initially decrease to a global minimum

before approaching Q(o) in a monotonic manner. If Q(oo) < Q(0)< 1

this initial decrease in Q(t) will overshoot the equilibrium

value Q(o). For large t, Q(t) can be approximated by expression

(4.1) with a negative value of A.

(iii) If Q1< Q(O)<Q2, for some Q2>Q1> Q(o), Q(t) will decrease

monotonically to Q(-), bounded from above by expression (4.1)

with a positive value of A and t=0.
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(iv) If 2 < Q(0), initially Q(t) will decrease linearly, then

Q(t) will behave as in category (iii).

The next group of figures illustrate that these results apply also

to non-M/M/1 systems, specifically to the more general class of

Markovian systems. First, we consider an M/H2/1 system with p=.75,

a=.2, 1=1, and 2=2. This system has Q(oo) = 2.5. In Figures 4.12-4.15,

we show examples of loglQ(oo) -Q(t)I versus time for each of the four

classes of initial conditions confirming that, for large t, Q(t) approaches

Q(oo) in an approximately exponential manner. Figures 4.16 and 4.17 are

plots of Q(t) versus t. Figure 4.16 illustrates that if 1 < Q(0) < Q1

(where 1 is slightly larger than Q(o)), Q(t) overshoots its equilibrium

value once, before monotonically approaching Q(oo). Figure 4.17 shows that

if the system is initially saturated, Q(t) decreases in a linear manner

with slope -(p-X) for small t.

Figures 4.18 - 4.23 illustrate the same behavior for an E3/M/1

system with p=.75 and. p=1 (Q()=1.3479). Figures 4.18 - 4.21 are graphs

of loglQ(o)-Q(t)J for a range of initial conditions. All curves are

approximately linear for large t indicating that after an initial time

period Q(t) may be approximated by an exponential function. Figure 4.22

shows the "overshooting" characteristic of systems with initial conditions

in category (ii) and Figure 4.23 shows the initial linear decrease (with

slope -(U-X)) of Q(t) for systems in category (iv).

4.1.2 Examination of the Time to Equilibrium

We now discuss the implications of these results with regard to

the amount of time required for transient effects to become negligible.

1In each case, if there is a customer in service at time t=O, she is assumed
to have an expected service time of 1/P1 time units.
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In all cases, for large t decay has been shown to be approximately ex-

ponential. Closer examination of the loglQ(-) - Q(t) curves shows that

the time constant can be approximated by TR (expression (3.24)). In

Table 4.1, we compare TR with Texp , the experimental time constant, for

each of the examples considered previously in this section. It is im-

portant to note that as systems which begin close to equilibrium reach

equilibrium very quickly, greater accuracy (on the order of 10- 6) is needed

to graphically measure the experimental time constant.

The expected queue length has been shown empirically to approach

its equilibrium value at least as quickly as a decaying exponential

function with time constant TR for systems in which Q(O) equals 0 and also

for systems in which Q(0) is moderately larger than Q(-). Thus, for

these systems, after 4TR time units at most 1.8% of the transient

effects will remain.

Systems in category (ii) begin closer to equilibrium than those

in category (i). Therefore, as the time constant T appears to be in-

dependent of initial conditions, we expect the time to equilibrium to be

bounded above by that of a corresponding system which is initially at

rest. By comparing the Q(t) curves in Figures 4.5 and 4.6, we see that

this is, in fact, the case.

The expected queue length of systems in which Q(O) >> Q(o) has been

shown to decay initially in a linear manner with slope -(i-) and then to

approximate an exponentially decaying function which has time constant

TR. Thus, the rate of decay can be estimated for each part. Unfortunately,

at this point we do not have the means to determine at what time Q(t) begins

to appear exponential. We can determine, however, an upper bound for the

time to equilibrium by using a generous estimate for the length of the
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Table 4.1: A Comparison of Estimated and Observed Time Constants

Initial
P C V 1 V2 Conditions

T
exp TR Texp R

.75 - 1

.8 -

.85 -

.9

.75 .2

1

1

1

1

.75 - 1

Po (O)=1

P (0)=1
P3(0)1

P5 (0)=1

P6 (0)=1

P7 (0)=1

P 8(0)=1

P34(0)-1

P3 4(0)=1

P34(0)=1

P34(0)=1

P3(0)=1

P 3(0)=1

P1 5 (0)=1

P2 0 (0)=l

P2 5 (0)=1

Pl(O) =1

p3 (0)=1
P5 (0)=1P (0)=l

System

M/M/1

M/H 2/1

E3M/1

40

41

41

43

44

47

35

37

49

76

124

261

27

28

27

32

31

31

28

30

34

27

28

25

31

41

41

41

41

41

41

41

41

41

66

122

281

28

28

28

28

28

28

28

28

28

28

28

28

28

1.0

1

1.0

1.0

1.1

1.1

.9

.9

1.2

1.2

1.0

.9

1.0

1.0

1.0

1.1

1.1

1.1

1.0

1.1

1.2

1.0

1.0

.9

1.1
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linear portion of Q(t). Our results indicate that once Q(t) is within

10% of Q(o), transient decay is approximately exponential, Assuming li-

near decay, if a system initially contains i customers with probability

1 Ci >> Q(o)), t units of time will be needed for Q(t) to be equal to

(l.1)Q(o), where

(1.1)Q(o) Q() - (-X)t , (4.4)

or

t- ( ) (4.5)

Thus, the time to equilibrium is bounded above by t plus te, where

t is the time required for a function which decays in an exponential
e

manner with parameter TR to decrease from (l.l)Q() to the desired

accuracy level.

To summarize the empirical results presented in this section, let

T_ be defined as the amount of time required for (l-n)% of the initial

transient effects to dissipate, 0<q<l. For the categories defined

as in Section 4.1.1, our empirical results indicate the following bounds

for T :
n

(i) T < -R log n

(ii) T < -TR log n

(iii) T - R log 

(iv) T < (1-n) [(0) - ( ) ] , if i[Q(0) - .lQ()] > 

T < Q(O) - 1.1Q(®)
'n- -r

RlOg [Q() - (o)] , if n[Q(0) - Q(o)] < 1Q(o)
R1 lo g .1Q(o)
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4.2 Systems with Probabilistic Specification of Initial Conditions

All of the cases considered to this point have had a deterministic

specification of the number of customers in the system at time t=O.

We illustrate the effect of a probabilistic specification of the

initial conditions, with several examples of an M/M/1 system with

p=.75, p=1, Q(O) = 9, but different Pi(O) distributions, i=0,1,...

Figures 4.24 and 4.25 show plots of logfQ() - Q(t)j and Q(t) versus

t, respectively, for four such cases.

For large t, Q(t) approaches Q(o) in an approximately exponential

manner as in the cases in which initial conditions are deterministic.

For small t, behavior is heavily influenced by the probabilistic

aspect of the initial conditions. Note that as the probability increases

for the system to have a large number of customers at t=O, the time to

approach steady-state increases as well. This is a result of the initial

linear behavior of oversaturated systems which we discussed in the previous

section.

We expect Q(.t) to behave as in Figures 4.24 and 4.25 for the following

reason; the transient response of any system with given initial conditions

Pi(O), i=0,1,..., can be determined directly from the Q(t) values for

systems in which initial conditions are deterministic. Justification

is simple and will be illustrated first through a particular example;

the M/M/1 system with p=.75, =1, and P0(0) = P1 9(0) = 1/2. The transient

behavior of this system is illustrated in Figures 4.24 and 4.25.

An equivalent interpretation of this system is through use of a

Bernoulli trial, i.e., with probability 1/2, Q(t) is the "output" of an

M/M/1 system (with p=.75 and =l) which is empty at t=0, and with

probability 1/2 it is the "output" of the corresponding system which
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initially contains 19 customers. Thus, the expected queue length, Q(t),

for the system with P0 (O) = P19(O) = 1/2 is given by

Q(t) = (1/2) Q0(t) + (1/2) Q1 9(t), t > 0 , (4.6)

where Qi(t) is defined as the expected queue length at time t for a

system which contains i customers, i=0,l,..., (with probability 1) at

time t=O.

To prove this result in a more formal manner, let "system *" be

a queueing system with any specified set of initial conditions P. i(0),

i=0,1,... We define random variable q(t) to be the queue length of

"system *" at time t and Q(t) = E(q(t)). Also, let "system i" be an

equivalent queueing system with the deterministic initial conditions

Pi(0)=l, for some i=0,1,..., and P(O) = 0, for all ji. Define random

variable qi(t) as the queue length of system i at time t, i=0,1,..., and

Qi(t) = E(qi(t)), i=0,1,... . With probability Pi(O), i=0,1,...,

q(t) = qi(t) for all t. This implies that

0O

E(q(t)) = kP[q(t)=k]

k=O

c o co

= E k Pi(O) P[qi(t) = k]

k=O i=O

M3 co (4.7)

= Z P(O) Z kP[qi(t) = k]

i=O k=O

= P.(0) E(qi(t)).
i=O

Thus,

Q(t) = Pi(0) Q i(t) (4.8)
i=O 
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.Note that this is is a general result; we made no assumptions on the

type of queueing system at hand.

There are three important consequences of this result. First,

knowledge of the entire probability mass function Pi(0), i=0,1,...,

is required to specify the transient behavior of a queueing system;

as indicated in Figures 4.24 and 4.25, Q(O) will not suffice. Second,

as the expected queue length for a system with a probabilistic specifica-

tion of the initial conditions is just equal to a weighted sum of the

expected queue lengths of a collection of corresponding systems which

have deterministic initial conditions (i.e., expression (4.8)), we need

only be able to characterize systems with deterministic initial conditions

in order to understand the behavior of systems with a probabilistic

specification of initial conditions. Third, if a system has initial

conditions given by a probabilistic choice, the time required for the

transients to become negligible can be bounded above by the maximum of

the times required by each of the corresponding deterministic systems.

Note that this may be a very conservative bound if the probability is

extremely small that the actual system (with probabilistic initial conditions)

behaves like the particular component system (with deterministic initial

conditions) which requires the longest time to effectively reach equi-

librium.
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CHAPTER 5

AN APPROXIMATE SOLUTION TECHNIQUE FOR STATIONARY MARKOVIAN
AND PARTIALLY DETERMINISTIC SYSTEMS

In this chapter, we propose a heuristic in which exact numerical

solutions of M/M/1 systems are modified to yield approximations to the

expected queue length, Q(t), for Markovian systems and for partially

deterministic systems in which the embedded chain is a first-order Markov

process. This heuristic was designed to take advantage of some of the

best features of exact numerical solution techniques and also of the

approximation (3.25) developed in Chapter 3. Solution techniques such

as the one discussed in Section 2.2 can be used to determine exact

numerical values for Q(t) as it evolves with time, but each new system

must be solved individually leading potentially to high computation

costs. Expressions (3.25) were found to be useful in estimating the time

required for a system to effectively reach equilibrium with virtually no

computation cost. Unfortunately, (3.25) can, at best, represent only

some major attributes of the actual functional form of Q(t); this is due

primarily to the nonexponential nature of Q(t) for small t. The heuristic

developed in this chapter yields what appear to be excellent approximations

to Q(t) at relatively low computation cost, even for fairly small values of t.

There are two major reasons for the relatively low computation cost

of this heuristic. First, given the numerical solution to a particular

M/M/1 system, approximate solutions can be determined for a number of more

general systems with only simple arithmetic calculations. Thus, the

numerical solution to a single system yields, in effect, solutions to many

systems.

Second, the M/M/1 system has a simple state description--only (N+1)

states are required t:o define a system which has a capacity of N customers.
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The state descriptions for most other systems are substantially more

complex. As an example, consider an E10/E10/1 queueing system with capa-

city of N customers. The number of states required to define this system

as a first-order Markov process is 10ON + 10. Thus, for large N, numeri-

cally solving the M/M/L. system will be significantly less expensive than

obtaining a numerical solution to the corresponding E10 /E10o/1 system.

The key idea in our heuristic is this: we have shown empirically

that the transient effects of the expected queue length decay in a similar

manner for a rather general class of queueing systems, but that the time

constants and equilibrium values are system-specific. From this we conjecture

that by scaling the numerical solution to one system and changing the time

axis, we should be able to determine the approximate transient response

for a second system. As before, we choose the expected queue length as our

representative measure of system behavior. The analysis holds for the expected

delay as well.

The class of systems under consideration is the same as in Chapter 3;

ergodic, infinite-capacity, single-queue, single-server systems which have

a first-order Markov chain representation or, partially deterministic

systems in which the embedded chain is a first-order Markov process. In

addition, due to strong dependence of the initial functional form of Q(t)

on the initial conditions (as discussed in Chapter 4), we restrict the

discussion to systems which begin at rest.

As summarized in Section 3.3, our empirical results suggest that

the expected queue length can be approximated by

(5.la)(t) 2! Q(-)+ Ae- R , t 
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where
(1+4)2 (C2 C2s)

T = - 2 (5.lb)
R 2

2.7 (l-p)

A is a parameter dependent on initial conditions and possibly other system

characteristics, and is on the order of 2
R . In Chapter 3 we showed

empirically that expressions (5.1) with A = -Q(-) provide a lower bound

for Q(t) for systems which are in the empty state at time t=O.

We now suggest the following heuristic to approximate the expected

queue length at time , Q (t),l for any infinite-capacity, single-queue,

single-server Markovian or partially deterministic system which begins at

rest:

1. Numerically solve (for Q (t)) an M/M/1 system whichN/M/1

is initially idle, and has the same traffic intensity,

p, as the system under consideration,

2. Calculate QM/M/M/(o) Qs() TM/M/lM/1 and Ts

3. Multiply Qm/M/l(t) by the ratio Qs(c)/QM/M/1(), and

4. Scale the time axis by TM/M/1/Ts .

The resulting values provide the approximate expected queue length, Q (t),

t > 0, i.e.,

Q(t) QM/M/P() x QM/M/l T$I t |, t 
> 0. (5.2)

1 In this chapter we will use a modified notation. Qs(t) is the
expected queue length of a specific queueing system at time t. T
is the time constant for this system. Qs(t) will refer to the
approximate expected queue length at time t, resulting from use of
our approximation technique. Similarly, QM/M/l(t) and TM/M/1 are the
expected queue length and time constant for a specified M/M/1 system.

2The requirement that the two systems have the same traffic intensity
improves accuracy--this will be discussed in greater detail later.
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Note that, due to the manner in which this expression was defined,

Qs () = Q ().
To accomplish step 1, we use the numerical solution technique

described in Section 2.2. For step 2, QM/M/l( ) can be calculated

exactly (expression (3.5)). If, due to the form of the interarrival and/or

service time distributions, Q s() cannot be evaluated analytically, it may

be approximated through use of a numerical technique (such as the one

described in Section 2.2) or of simulation (see Section 2.1.2). We use

TR (expression (5.lb)) to approximate the time constants TM/M/l and T .

We illustrate this heuristic through the following example.

Consider an M/E 2/1 queueing system with p=.7
5 and =1. We will approxi-

mate the expected queue length for this system by modifying the numerical

solution of an M/M/1 queueing system with the same values of p and .

(Both systems are assumed to begin at rest.) The steady-state expected

queue lengths are different for these two systems, but both can be calcu-

lated exactly through use of the Pollaczek-Khintchine formula (3.5).

Specifically, QM/E2/l( ) = 1.6875, and QM/M/l() = 2.25. Also, the

approximate time constants are different with R/ /1 31 and /1 41.
RM/E /1 RN/M/l

Thus, if our heuristic and expressions (5.1) are valid, we should be able

to approximate the expected queue length of the M/E2/1 system, QM/E2/1(t)

by QM/E2/1(t), where

by~ , \2/

QM/E2 1(t) M / M/1 ) M// t)
1

-= .75 Q (1.3 t), t 0 .M/M/l (5.3)
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In Table 5.1, we list the true value of QM/E2/l(t) (obtained

numerically), QM/E2/l(t) (obtained through use of our heuristic), and

their ratio, for a range of t. In Figure 5.1, we show graphs of

QM/E /l(t) and QM/E/l(t) versus time. It is clear that for this example

the heuristic yields an approximate solution, QM/E /1(t), which is in very

close agreement to the exact numerical solution QM/E2/lt).

Tables 5.2 - 5.6 illustrate additional examples of the application

of this heuristic to other queueing systems. In each of these cases, the

agreement between Q (t) and Q (t) is very good. Note that Q (t) and Q (t)

differ most for small t. This is not surprising as our approximate solu-

tion technique is based on the hypothesis that Q(t) approaches Q(-) in an

approximately exponential manner and the empirical results of Chapter 3 show

that this hypothesis is, in general, valid only for relatively large t. In

each of the cases that we studied,Q s(t) was always within 6% of Qs(t) after at

most T units of time. All of these results were obtained by modifying

the numerical solution of an M/M/1 system with the same traffic intensity

as the system to be approximated. In all cases listed, QM/M/l(t) was

computed to four decimal places and the ratio /TR to one decimal

place. If p is small, greater accuracy is required. In particular, we

have found that more significant figures should be retained if system para-

meters are such that Q s() is less than 1.

Note that the M/M/1 system on which the approximation is based

need not have the same service rate -p as the system to be approximated.

This is due to the result shown in Section 3.2 that, given p, the only

dependence of Q(t) on is a scaling of the time axis by a factor of 1/u.

This is completely accounted for in the approximate time constant TR.
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TABLE 5.1: Estimate of the Expected Queue Length of an M/E2/1 System With
p=.75, =1 From an M/M/1 System With p=.75, =1

QM/E2/1 (t) QM/E2/1 (t)/ QM/E2/ (t)/ Q 2/ )

1 .1513 .1400 1.08

2 .3289 .3046 1.08

3 .4682 .4397 1.06

4 .5815 .5514 1.05

5 .6764 .6458 1.05

6 .7576 .7269 1.04

7 .8283 .7978 1.04

8 .8905 .8604 1.03

9 .9458 .9161 1.03

10 .9953 .9662 1.03

20 1.3058 1.2831 1.02

30 1.4559 1.4386 1.01

40 1.5397 1.5266 1.01/E/1

50 1.5901 1.5802 1.01

60 1.6219 1.6144 1.00

70 1.6426 1.6368 1.00

80 1.6563 1.6519 1.00

QM/E2/1(t) = .75 QM/M/1(1. 3 t), t 0

M/M/1 = 41 QM/N/1(c) = 2.25

/E / = 31 QM/E,>/1(-) = 1.6875

T/ 2/
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TABLE 5.2: Estimate of

With p=.85,

QM/D/1(t)

the Expected Queue Length of an M/D/1 System
p=1 From an M/M/1 System With p=.85, =1

M/D/1

2

4

6

.4654

.7304

.9210

8 1.0702

10 1.1924

20 1.5909

30 1.8181

40 1.9661

50 2.0689

60 2.1434

70 2.1989

80 2.2412

90 2.2738

100

110

120

2.2993

2.3194

2.3355

.3861

.6592

.8560

1.0101

1.1363

1.5485

1.7844

1.9386

2.0462

2.1245

2.1830

2.2277

2.2624

2.2896

2.3112

2.3285

1.21

1.11

1.08

1.06

1.05

1.03

1.02

1.01

1.01

1.01

1.01

1.01 /D/1

1.01

1.00

1.00

1.00

QM/D/1 = .5 QM/M/l (2t), t > 0

RM/IM/1

= 122

M/D/1 = 61

QM/M/ (X) = 4.8167

QM/D/1 () = 2.4083

_ _
QM/D/1 (06M/D/1 t
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TABLE 5.3: Estimate of the Expected Queue Length of an E4/M/1 System With
p=.75, :=1 From an M/M/1 System With p = .75, =1

QE4/M/l(t)QE4/M/(t) QE4/M/1(t)/QE4/M/1(t)

1 .0069

2 .0941

3 .2129

4 .3141

5 .3995

6 .4725

7 .5356

8 .5908

9 .6397

10 .6831

20 .9482

30 1.0697

40 1.1346

50 1.1720

60 1.1946

70 1.2087

80 1.2177

90 1.2236

.1321

.2712

.3802

.4679

.5407

.6025

.6557

.7022

.7431

.7796

1.0009

1. 1015

1. 1547

1.1851

1.2034

1. 2146

1.2218

1.2264

/M/l(t) = .5492 Q/M/i(1.6t),
/14/1 14[/MI1

RM/M/1 = 41

.05

.35

.56

.67

.74

.78

.82

.84

.86

.88

.95
T

.97 RE4/M/1

.98

.99

.99

1.00

1.00

1.00

t 0

QM/M/ ( ) = 2.25

TR = 26
E4/M/1

QE /M/1 (t)= 1.2357
4qM/
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TABLE 5.4: Estimate of the Expected Queue Length of an E2/E2/1 System With
p=.8 5, =1 From an M/M/1 System With p=.85, p=1

t
QE /E /1 (t)/QE /E /1(t)E2 /E2 /(

2

4

6

8

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

.0468

.1801

.3094

.4228

.5215

.8679

1.0777

1.2181

1.3173

1.3901

1.4448

1.. 4868

1.5195

1.5452

1.5657

1.5821

1.5953

1.6060

1.6147

1.6219

1.6278

1.6326

1.6366

QE2 /E2 /(t) = .3439

lM/M/1

.2656

.4534

.5887

.6947

.7815

1.0650

1.2273

1.3333

1.4074

1.4612

1.5015

1.5322

1.5560

1.5748

1.5896

1.6015

1.6111

1.6189

1.6252

1.6304

1.6347

1.6382

1.6411

.18

.40

.53

.61

.67

.81

.88

.91

.94

.95

.96

.97

.98

.98

.98

.99

.99

.99

.99

.99

1.00

1.00

1.00

RE2/E2/1

t> 

4. 8167= 122

= 1.6566

TRE /E2/1= 612 2

QE /E2 /1M

Q/M/1(-) 

QE /E2 /1(-
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TABLE 5.5: Estimate of' the Expected Queue Length of an M/H2/1 System
With p=.7 5, a=.2, pill, 2=2 (=1.667) From an M/M/1
System With p=.75, p=1

t QM/H/1 (t) QM/H2 / 1(t 2)/ QM,/H2/1 (t)

2 .5003 .5172 .97

3 .7072 .7315 .97

4 .8779 .9055 .97

5 1.0219 1.0507 .97

6 1.1454 1.1743 .98

7 1.2527 1.2813 .98

8 1.3470 1.3751 .98

9 1.4307 1.4581 .98

10 1.5055 1.5321 .98

20 1.9684 1.9875 .99

30 2.1863 2.1999 .99 NI/H2/1

40 2.3050 2.3148 1.00

50 2.3748 2.3818 1.00

60 2.4177 2.4228 1.00

QM/H2/(t) = 1.1111 QMM/1(1.5t), t > 0

RQ/M/ 1 M/ (m ) = 2.25

~RMN/1 =28 QM/H /1 () = 2.5RM/H2/1 *2
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Table 5.6: Estimate of the Expected Queue Length of an M/G/l* System With
p=.8, =1/6,V1=p12=l, From an M/M/1 System With =.8, p=1

t QM/G/l(t)

.1160

.2835

.4216

.5378

.6384

1.0033

1.2435

1.4186

1.5533

1.6606

1.7480

1.8204

1.8813

1.9330

1.9773

2.0155

2.0487

2.0777

2.1031

2.1254

2.1452

QM/G/1(t )

.1083

.2544

.3839

.4962

.5946

.9567

1.1979

1.3751

1.5121

1.6218

1.7116

1.7863

1.8493

1.9031

1.9493

1.9893

2.0242

2.0548

2.0816

2.1054

2.1264

1.07

1.11

1.10

1.08

1.07

1.05

1.04

1.03

1.03

1.02

1.02

1.02

1.02

1.02

1.01

1.01

1.01

1.01

1.01

1.01

1.01

TRM/ /
RN/G/1

QM/G/l(t) = .7266 QM/M/1(.5) t > 0MIG11~~~

= 66

= 129

QM/M/l(o) = 3.2

QM/G/1l(m) = 2.325

s >-0.

*where the service time, s, has pdf
3

1 o 112 2
s o0 = vi1 e (1 ) 2s o

2

4

6

8

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

T!/M/1

_ �

QM/�/1(0%/�/l(t)
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A consequence of this result is that in applications of the heuris-

tic, if the system to be approximated differs from the underlying system

only in the value of (i.e., the same type of interarrival and service time

distributions and the same arrival rate A), the solution generated through

use of the heuristic will, with one possible exception, have exactly the

same level of accuracy as the numerical solution on which the approximation

is based. The only exception occurs if, in the time scale modification of

step 4, the ratio of the time constants is not retained at a high enough

level of accuracy.

Use of this observation can lead to substantial savings in compu-

tation costs. The time constant varies inversely with i, thus equilibrium

will occur more rapidly in a system with large . This implies that if p

remains fixed, unless a variation in the behavior of the numerical subroutine

in response to the change in i dominates,the cost to solve a system

numerically until it effectively reaches steady-state will increase as

p decreases; significant variation in the behavior of the numerical routine

is likely to occur only with large changes in (greater than an order

of magnitude). Therefore, if a solution is desired for a system which has

service rate , scaling the numerical solution of a system with the same

interarrival and service time distributions and traffic intensity but a

moderately larger service rate will produce a solution at the same level

of accuracy and typically at a lower cost than that obtained through direct

numerical solution.

Although any value of can be used, the traffic intensity should be

the same for the system to be approximated and the M/M/1 system on which the

approximation is based. This requirement greatly improves the accuracy

of the approximation technique.
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To illustrate this last point, Table 5.7 is a comparison of QM/E /1(t)

and QM/E2/l(t) of a system with p=.75 and p=l obtained from the numerical

solution of an M/M/l queueing system with p=.5 and p=1. As can be seen

through comparison with Table 5.1, the approximation is significantly

better for early t if the underlying M/M/l system has the same traffic

intensity. This suggests that the actual variation of the form of Q(t)

with p is different than the 2 factor accounted for in TR.

(l-p)
Our heuristic will yield similar results if the underlying system

is something other than M/M/1l. As an example, we use the heuristic to

obtain an approximate solution for an M/E 10/1 system with p=.75 and =1l.

Table 5.8 is a comparison of QM/ElO/l(t) for this system with QM/E10/l(t)

obtained through modification of the solution for an M/M/l system with

p=.75 and p=l. In Table 5.9 we compare QM/E/l(t) with QM/E10 /l(t)

obtained from an underlying M/E5/l system with p=.75 and P=1.

In both cases the heuristic generates a good approximate solution

for the M/E1 0/1 system. The solution based on an underlying M/E5/l

system is significantly more accurate for early t. This additional

accuracy, however, also results in higher computation costs.

We chose to base the heuristic on a modification of an underlying

M/M/l system, as the M/M/l solution requires the least amount of CPU time

among the class of systems for which we can obtain exact numerical solu-

tions (as opposed to approximate solutions, e.g., M/D/1 systems). The

results of this chapter provide evidence that, for most applications,

accuracy will be quite good with an M/M/l system. In practice, if

accuracy is of greater importance than computation cost, the user might

3See Section 2.2.4 for a comparison of computation costs for these two systems.
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TABLE 5.7: Estimate of the Expected Queue Length of an M/E 2/1 System
With p=.75, =1 From an M/M/1 System With p=.5, =1

QM/ E/1(t)

.1513

.3289

.4682

.5815

.6764

.7576

.8283

.8905

.9458

.9953

1.3058

1.4559

1.5397

1.5901

1.6219

1.6426

1.6563

1.6656

1.6720

1.6764

1.6796

QM/ fl(t)

.0300

.0962

.1775

.2629

.3473

.4280

.5039

.5748

.6406

.702

1.1225

1.3426

1.4681

1.5441

1.5917

1.6227

1.6430

1.6568

1.6659

1.6723

1.6767

QM/E2/1 (t)/QM/E 2/1 (t)

5.04

3.42

2.64

2.21

1.95

1.77

1.64

1.55

1.48

1.42

1.16

1.08

1.05

1.03

1.02

1.01

1.01

1.01

1.00

1.00

1.00

QM/E2/1(t) QM/M/l (.3t), t > o

X = 8.6
RM/M/18.6T R= 31
RM/E2/12

QM/M/l (°) = .5

Q M/E/1(Xc) = 1.6875
2

t

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80

90

100

110

120

Rl:/E /1
2

= 3.37!5

__
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TABLE 5.8: Estimate of the Expected Queue Length of an M/ h 0/1 System

With p:=.7 5, =1 From an M/M/1 System With p=.75, =1

QM/ E10 /1t)

.1835

.3396

.4553

.5456

.6191

.6804

.7326

.7776

.8170

.8516

1.0540

1.1397

1.1822

1.2050

1.2179

1.2255

QM/ E1 0/1(t)

.1516

.3013

.4157

.5067

.5813

.6440

.6977

.7442

.7850

.8211

1.0344

1.1268

1.1736

1.1993

1.2140

1.2228

QM/E1 0/(t) = .55 QM/M/(1. 8t), t _ 0

T M/1 41 QM/M/1 ( ) = 2.25

T/E /1=23
10

t
QM/E10/1(t)/QM/E0/1 (t)

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

1.21

1.13

1.10

1.08

1.07

1.06

1.05

1.04

1.04

1.04

1.02

1.01

1.01

1.00

1.00

1.00

TRM/E /1
10

QM/E /1 (X) = 1.2375
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TABLE 5.9: Estimate of the Expected Queue Length of an M/E10 /1

System With p=.7 5, =1 From an M/E5/1 System With

p=. 7 5, =Il

QMIE10/ 1(t)
10

.1760

.3349

.4508

.5416

.6154

.6771

.7295

.7749

QM/E /1 (t)/QM/E /1(t)10 10

1.04

1.01

1.01

1.01

1.01

1.00

1.00

1.00

QM/E1 0/l(t) = .9167 QM/E2/l(1.lt), t > 0

QM/E /1(-) = 1.35

QM/E 10/1 () = 1.2375

t

1

2

3

4

5

6

7

8

QM/E10 / (t)

.1835

.3396

.4553

.5456

.6191

.6804

.7326

.7776

= 25

M/E 5/1

TRM/E /1
10

= 23
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want to base the heuristic on a system which has interarrival and/or

service time distributions which are more similar to those of the system

to be approximated than those of an M/M/1 system.

It is important to recognize that we have examined the accuracy

of this solution technique for Markovian systems and for partially

deterministic systems in which the embedded chain is a first-order Markov

process. Verification for truly general cases is a difficult task. At

this time, for more general systems, we are unable to obtain transient

solutions which are sufficiently accurate to verify the accuracy of ap-

proximate solutions generated by the heuristic. This is certainly one

area for further research.
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CHAPTER 6

CONCLUSIONS AND TOPICS FOR FURTHER RESEARCH

This dissertation presents a collection of techniques and approxi-

mations useful in studying the transient response of stationary queueing

systems. The primary usefulness of these methods is in applications--

in approximating the behavior of actual queueing systems for which

exact solutions are unavailable or intractable. In addition, our

empirical results on characteristics of certain queueing systems may

eventually be helpful in the development of new theoretical results. In

this chapter, we sm=arize this work and suggest directions in which it

might be extended.

In Chapter 2 we described the value of numerical solution techniques

in determining transient solutions of queueing systems. To provide a

background for the empirical work of the later chapters, we then dis-

cussed one such technique, originally developed by Koopman, that entails

solving a truncated set of state equations to obtain exact numerical

solutions for the transient behavior of stationary Markovian systems with

any given set of initial conditions. The technique can also be used to

provide approximate solutions for partially deterministic systems in

which the embedded chain has a first-order Markov process representa-

tion. We developed a set of computer programs for solving many types of

queueing systems using this numerical technique.

Application of this numerical solution technique yields the state

probabilities of the system at discrete points in time. For Markovian

systems and for partially deterministic systems in which the embedded

chain is a first-order Markov process, use of the technique is limited

only by the size of the system to be modeled, a factor that is becoming
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less of a constraint with the increasing sophistication of computer

software and hardware. A discussion of the computation cost of this

technique is included in Section 2.2.4.

The remainder of the thesis focused on ergodic, infinite-capacity

single-queue, single-server queueing systems. The analysis was confined

to Markovian and partially deterministic systems that can be solved

through use of the numerical technique discussed in Chapter 2.

The empirical results presented in Chapter 3 indicate that the

expected queue length, Q(t), has a similar form for all systems belonging

to these classes, provided that they begin at rest. In particular,

except for an initial period, Q(t) seems to approach Q() in a virtually

exponential manner. The time constant of the exponential function which

was used to approximate this behavior was shown to depend on the traffic

intensity p, the service rate , and the coefficients of variation of

the interarrival and service time distributions. A closed-form expres-

sion was determined which can be used to estimate the amount of time

required for the transient response to become negligible.

Also in Chapter 3, we have shown that for general stationary queueing

systems, the transient solutions of any two systems that differ only in

the values of their arrival and service rates (but have the same traffic

intensity) are identical except for a scaling of the time axis. In

addition, the scaling factor was shown to be equal to the ratio of the

service rates. This result has important practical implications. As

mentioned in Chapter 5, when using an exact numerical solution technique

to determine the transient response of a queueing system, application of

this result can lead 1:o a substantial cost saving since for any given type

of system, only one exact numerical solution is needed for each value of
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p. Through a simple scaling of the time axis, solutions of exactly the

same accuracy can be derived for any value of p.

In Chapter 4, the empirical results of Chapter 3 were extended to

include systems which do not begin at rest. We confirmed empirically

that, for large values of t, the rate of decay of the transients is a func-

tion only of the arrival and service processes of the system--not of the

initial conditions.

For systems with deterministic initial conditions, transient behavior

for small values of t was observed to fall into four categories, based on

the number of customers in the system at time t=O. In addition, unless

a system is initially heavily saturated, i.e., Q(O) >> Q(o), it appears

that the time to equilibrium is not longer than that indicated by exponen-

tial decay. If, however, there are a large number of customers in the

system at time t=O, we observed that for an initial period the system be-

haves as if both its interarrival and service time distributions are deter-

ministic, so that Q(t) decays linearly. After this initial time period,

our experimental results suggest that Q(t) once again decays in an approxi-

mately exponential manner.

These results were then used in the determination of similar bounds

for systems which have a probabilistic specification of initial conditions.

To accomplish this, we used the fact, valid for general stationary queueing

systems, that systems with a probabilistic specification of initial con-

ditions can be "decomposed" into sets of systems each of which has deter-

ministic initial conditions.

Our empirically determined bounds on the time until transient
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effects become negligible are perhaps the most important contribution of

this dissertation. As indicated in Chapter 1, given a particular appli-

cation, a bound on the time to equilibrium can be useful in determining

a suitable solution approach. If the system to be solved is stationary

and transient effects are shown, through use of our bounds, to be insigni-

ficant, existing theoretical steady-state results, if available, can be

used. If, on the other hand, transient effects are shown to be signifi-

cant for much of the period of interest, a technique which yields

transient solutions (such as the numerical technique described in

Chapter 2) should be used.

The empirically derived bounds on the time to equilibrium can also be

of use when the system has nonstationary parameters. We illustrate this

by returning to the airport runway application mentioned in Chapter 1.

The demand profile for a major airport is typically approximated as a

piecewise constant function with segments one hour in length. Runway

delays in each of these one hour time periods are often modeled by a

stationary M/G/1 queueing system [39]. Theoretical steady-state results

are then used to calculate the expected queue length (or expected delay)

for each time period. The approximate expression developed here for esti-

mating the exponential time constant, , can be used to obtain a rough

indication of whether it is valid, in fact, to use steady-state results

(i.e., whether transients are in fact negligible).

For a typical runway situation the expected service time, 1/p, is on

the order of 1.5 minutes, and the coefficient of variation for the service

time, C, is about equal to 1/4 [42]. At a busy airport it is not unusual

to find p ' .9 during peak periods (this implies that the arrival rate
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X = PP > .6 operations/minute). Substituting these values into expression

(3.24) yields an approximate time constant TR > 264 minutes. Thus, if

the system is not near equilibrium at the start of a one-hour time period,

more than 4 hours will be required for the transients to be reduced by

-1 %e - 37%. This implies that transient effects caused by significant

variation in the demand profile over the course of a time period would

require several hours to become negligible. Hence, unless the demand

profile exhibits only slight variation over time, the use of steady-state

results to measure the behavior of the system would not be justified.

Instead, a numerical solution technique or simulation should be used to

determine approximate transient behavior.

In Chapter 5, we proposed a new approximate solution technique for

ergodic, infinite-capacity, single-queue, single-server systems that begin

at rest. As before, systems are restricted to be either Markovian, or else

partially deterministic with an embedded chain which is a first-order

Markov process. Based on the empirical result of Chapter 3 that the

behavior of Q(t) can be approximated by the same general functional form

for all of these systems, the heuristic specifies a way to scale the exact

numerical transient solution of an M/M/1 queueing system to obtain the

corresponding approximate solutions for more complex systems using only

simple arithmetic operations.

Comparisons of the approximate values of Q(t) obtained through use

of our heuristic with exact numerical values suggest that the accuracy of

this approximation is excellent for values of t greater than one time

constant from the origin. Therefore, unless early behavior of the system

is very important, this heuristic can be used to obtain solutions almost

as accurate as those given by an exact numerical technique (e.g., the

solution technique discussed in Section 2.2), typically at a significantly
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reduced cost. Computational savings will be particularly pronounced if the

system to be solved has a Markov process representation that requires a

complex (multidimensional) state description; also, the numerical solution

of a single M/M/1 system can be modified to yield approximate solutions to

a large number of other, more complex systems.

There are two primary directions for future work in this area--

theoretical and empirical. Theoretical work might focus on a derivation or

explanation of our empirical observations. Particularly useful would be

a demonstration that the transient effects decay in an approximately

exponential manner for large t. Given the complexity of existing exact

theoretical transient solutions, it is likely that this work would be

extremely difficult.

The more promising direction is the extension of our results through

additional empirical work. For example, with numerical techniques it is

possible to explore the entire class of stationary Markovian systems, as

well as of all stationary partially deterministic systems with large p

that have an embedded chain that is a first-order Markov process.

We show some preliminary results on the transient behavior of infinite-

capacity M/M/k systems and finite-capacity, single-server systems in

Appendix 3. Other systems to be studied include those with bulk arrival/

bulk service processes, multiple-queue systems under various priority

schemes, and networks of Markovian or partially deterministic systems.

In all cases, the analysis can parallel that of our Chapters 3 and 4.

The closed-form expression for TR provides an estimate of the

exponential time constant used in our approximate expression for Q(t).

We have proven that T must vary linearly with 1/p, but more work is

needed to verify and perhaps modify the conjectured relationships between
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T and other system parameters (e.g., the traffic intensity and the co-

efficients of variation of the interarrival and service times).

We have presented initial results for the heuristic introduced in

Chapter 5. However, more thorough investigation is needed, including

confirmation for systems with more varied interarrival and service time

distributions. In addition, after a careful examination of the results

in Chapter 4, it may be possible to modify this heuristic to provide

approximate transient solutions for Markovian and partially deterministic

systems which do not begin at rest.

Another potentially useful extension is an empirical investigation

of the transient response of performance measures other than the expected

queue length. For example, the likelihood of the system containing more

than some specified number of customers might be of particular interest.

Finally, perhaps the most useful extension of this empirical work

would be the development of methods for obtaining accurate transient

solutions for more general queueing systems (e.g., M/G/k, GI/M/k, and

GI/G/k systems). We suspect that, for large t, decay of transient effects

might be approximately exponential for all ergodic, stationary queueing

systems, but at this point we do not have the means to substantiate this

hypothesis.
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APPENDIX 1

OBSERVATIONS ON APPLYING KOOPMAN'S NUMERICAL SOLUTION
TECHNIQUE TO NONSTATIONARY QUEUEING SYSTEMS

The numerical solution technique described in Section 2.2 can be used

to solve many types of nonstationary queueing systems. Since the state

equations are solved iteratively, different values of the arrival and

service rates may be used at each iteration, thus taking into account

any variation in time of these quantities. There are, however, two poten-

tial sources of error that are unique to nonstationary systems. These

will be described here.

For stationary Markovian systems and for those nonstationary systems

in which customer transitions occur according to a first-order Markov

process (e.g., nonstationary M/M/k, M /M/1, and M/M/1 systems), the

technique will yield "exact" numerical solutions (subject only to those

sources of error described in Section 2.2.3). For many other systems,

however, the time dependence of the arrival and/or service rates causes

the state equations to represent only approximate system behavior. This

error can be illustrated using the analysis of a finite-capacity M/Ek/1

queueing system. Under stationary conditions, we can consider this system

to be composed of "stages" rather than customers. A k th-order Erlang ran-

dom variable with mean 1/p is the sum of k independent, identically dis-

tributed negative exponential random variables, each with mean 1/kp. Thus,

the service of a single customer is equivalent to the service of k inde-

pendent "stages," where the service time for each stage is given by a

negative exponential random variable with mean /ku.

For this queueing system we can define states, i = 0, 1, ..., Nk,

to be the total number of stages in the system at any time (assuming that

the system can have a maximum of N customers). The state transition
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diagram and Chapman-Kolmogorov equations for this system are shown in

Figure Al.1.

If the service rate is independent of time, numerically solving the

Chapman-Kolmogorov equations is equivalent to solving an exact model of

the M/Ek/l system. For nonstationary (t), the above model is only approxi-

mate. An Erlang random variable is a sum of independent identical exponential

random variables. Thus, each of the stages associated with a particular

customer should have the same parameter. In particular, each of the k

stages of any one customer's service should have the same parameter k (t),

where t is the time at which the first stage began service. In numerically

solving the system, however, the parameter used at time t is k (t); the

system must be memoryless so we cannot retain the original service rate

p(t). Therefore, in the numerical solution each stage may have a different

parameter. For many applications this error will be negligible as (t)

frequently varies slowly with respect to the average service time l/P(t).

A second potential source of error is in the calculation of the expected

delay. If the service rate is a function of time, the expression for the

expected delay (e.g., (2.3) with ' replaced by (t)) is only approximate;

if the waiting time is long, the actual service rate for a customer

arriving at time t may vary significantly from (t), the service rate when

the customer entered the system.
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State Transition Diagram

kvP(t) ki (t) kp(t)

state i: i stages in the system

Chapman-Kolmogorov Equations

P 0 (t) = -X(t)P0(t) + kp(t)Pl(t)

i = 1,2,...,k-1Pi(t) = -(t) + k 1(t))Pi(t) + k(t)Pi+l(t)

P.(t) = -(X(t) + k(t))Pi(t) + (t)Pi t) + (t)Pi+l(t)

i = k,k-l,. . ,Nk-1

PNk(t)=-kj(t)P (t) + (t)P (t)
NNk (N-1)k

Figure Al.l: State Transition Diagram and Chapman-
Kolmogorov Equations for a Finite-
Capacity M/Ek/1 Queueing System

ki (t) k-p(t)
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APPENDIX 2

THE COMPUTER PROGRAMS

C NUMERICAL SOLUTION OF INFINITE-CAPACITY M/M/K,

C E(L)/M/1 AND M/E(R)/1 SYSTEMS
IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
INTEGER QM,QMS,STORE,CASES,L,R
DOUBLE PRECISION MU,INC
EXTERNAL QUEUE
DIMENSION Y(351),YPRIME(351),W(351,9),C(24)

- ,PM(350),DP(350)
EQUIVALENCE (PMO,Y(1)), (DPO,YPRIME((1)), (NM,MMAX)

- ,(PM(1),Y(2)),(DP(1),YPRIME(2))
COMMON MU,ARR(145),UK,PMAT0 (15),

- PMAT(65,15),INT,K,MMAX,L,R
OPEN (UNIT=20,ACCESS=' SEQOUT' ,FILE=' PLTQM6.DAT')
OPEN(UNIT=21,ACCESS='SEQOUT',FILE='PLTM13.DAT')

7701 FORMAT (////' SUM OF STATE PROBABILITIES')
7702 FORMAT ('QEXPECTED NO. IN QUEUE')

7703 FORMAT ('OEXPECTED DELAY')
7705 FORMAT ('OELAPSED TIME IN MINUTES')
7706 FORMAT ('OMAXIMUM QUEUE LENGTH')
7707 FORMAT ('OARRIVAL RATE CUSTOMERS/MIN')
7708 FORMAT('OEXPECTED NUMBER OF REJECTED TRAFFIC')
7709 FORMAT('OEXPECTED NUMBER IN SYSTEM')
8800 FORMAT ('1',F7.3,14F8.3)
8801 FORMAT (15F8.4)
8802 FORMAT (15F8.3)
8805 FORMAT(15F8.4)
9900 FORMAT (31)
9901 FORMAT (2F)
9903 FORMAT (I,1F,2I)
9907 FORMAT(2F,2I)
3301 FORMAT(315,D10.3)
3302 FORMAT(12D10.2,/,12D10.2)
C NC=NUMBER OF CASES
C QM=MAXIMUM NUMBER OF EQUATIONS
C INT=TIME INTERVAL BETWEEN SPECIFIED LAMBDA VALUES

READ(5,9900)NC,QM,INT
DO 1000 CASES=1,NC

C Q=EQUILIBRIUM EXPECTED QUEUE LENGTH
C D=EQUILIBRIUM EXPECTED DELAY

READ(5,9907) ,D,L,R
C MU IN CUSTOMERS/HOUR
C STORE=TIME INTERVAL BETWEEN PRINTED OUTPUT
C MINS=TOTAL RUN LENGTH

READ (5,9903) K,MU,STORE ,MINS
ILAM=MAXO(2,MINS/INT+1)

C ARR(I)=SPECIFIED LAMBDA VALUES(CUSTOMERS/HOUR)
READ (5,9901) (ARR(I), I=i,ILAM)
DO 200 I=1,ILAM

200 ARR(I)=ARR(I)/60.DO
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KPLUS=K+1
QMS=20
PER=STORE
UK=MU/60. DO
MU=UK/K
X=0.DO
TOL=1.D-6
ICOL=0
MMAXM=0
MMAX=50
PMO=O.DO

DO 210 I=1,MMAX

210 PM(I)=0.DO
C INIT=INITIAL STATE(DETERMINISTIC)

READ(5,222) INIT
222 FORMAT(1I)

Y(INIT)=1.DO
IND=1

DO 2000 ITIM=1,MINS
XEND=DFLOAT(ITIM)

2 N=NM+1

CALL DVERK(N,QUEUE,X,Y,XEND,TOL,IND,C,QM,W,IER)
3 IF(IND .LT. 0 .OR. IER .GT. 0) GO TO 3000

IF(DFLOAT(ITIM) .LT. PER)GO TO 2000
XP=ITIM-.0001
IHR=INT(XP/INT)+1
LAM=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
XP=ITIM-STORE/2.
IHR=INT(XP/INT)+1
LAV=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
ICOL=ICOL+1
PER=PER+STORE

202 PMATO(ICOL)=PMO
PM65=0.DO
PM68=PMO
PM66=0.DO
IF(K .GT. 1) GO TO 400

IF(R .GT. 1) GO TO 320

DO 314 I=1,L

PMAT(I,ICOL)=PM(I)
PM66=PM66+PM(L+I-1)

314 PM68=PM68+PM(I)
DO 310 I=1,L
KPLUS=L+I
DO 315 J=KPLUS,MMAX,L

PM68=PM68+PM (J)

INW=J/L-1
IF(J .LE. QMS) PMAT(J,ICOL)=PM(J)
PM66=PM66+PM(J)

315 PM65=PM65+DFLOAT(INW)*PM(J)
310 CONTINUE

PMAT(QMS+3,ICOL)=(PM66+PM65)/UK
GO TO 350

400 PM66=PM(K)
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C CALCULATION OF Q AND D FOR M/M/K SYSTEM
PEMPTY=1.DO
IF (K .EQ. 1) (3GO TO 60

DO 50 I=2,K

FAC=1.DO

DO 55 J=2,I

55 FAC=1.D0/(DFLOAT(J)-1.D0)*FAC

50 PEMPTY=PEMPTY+]FAC* (LAM/MU) ** (I-l)

60 FAC=FAC* (1.D0/DFLOAT(K))
PEMPTY=PEMPTY+FAC* ((LAM/MU) **K)*(UK/(UK-LAM))
PEMPTY=1.DO/PEMPTY
Q=PEMPTY*FAC* (K**K)*((LAM/UK)**(K+1))/( (1.D0-(LAM/UK))**2)
D=Q/LAM
SYSNUM=Q+LAM/M'U

PM67=0.DO
DO 209 I=1,K

PM67=I*PM(I)+PM67

PMAT(I,ICOL)=PM4(I)

209 PM68=PM68+PM(I)

DO 250 J=KPLUS,MMAX

PM67=PM67+J*PM (J)

PVJ=PM(J)
PM65 =PM65+(J-]K)*PVJ

PM66=PM66+PVJ
PM68=PM68+PVJ

250 IF (J .LE. QMS) PMAT(J,ICOL)=PVJ

PMAT(QMS+3, ICOL)=(PM66+PM65)/UK
PMAT (QMS+9, ICOL) =PM67
PMAT (QMS+10,ICOL)=SYSNUM-PM67
GO TO 350

320 DO 325 I=1,R

PMAT(I,ICOL)=PM(I)
PM66=PM66+I *PM(I)

325 PM68=PM68+PM(I)

DO 330 I=1,R
KPLUS=R+I
DO 340 J=KPLUS,MMAX,R
PM68=PM68+PM(J)
INW=(J-1)/R
IF(J .LE. QMS) PMAT(J,ICOL)=PM(J)

PM66=PM66+J*PM(J)
340 PM65=PM65+DFLOAT(INW)*PM(J)
330 CONTINUE

PMAT(QMS+3,ICOL)=PM66/(UK*R)
350 PMAT(QMS+1,ICOL)=PM68

PMAT(QMS+2,ICOL)=PM65
PMAT(QMS+8,ICOL)=Q-PMAT(QMS+2,ICOL)
PMAT(QMS+4,ICOL)=D-PMAT(QMS+3,ICOL)
PMAT(QMS+5,ICOL)=DFLOAT(ITIM)
PMAT(QMS+6,ICCL)=DFLOAT(MMAX)
PMAT (QMS+7,ICCL)=LAM
MMAXM=MAXO(MMA=MAX0(MMAXM,MIN0 (MMAX,QMS))

IF (ICOL .LT. 15 .AND. ITIM .NE. MINS) GO TO 201
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2261 WRITE (20,7701)
1 WRITE (20,8801) (PMAT(QMS+1,J), J=1,ICOL)

WRITE (20,7702)
WRITE (20,8805) (PMAT(QMS+2,J), J=1,ICOL)
WRITE (20,8805) (PMAT(QMS+8,J), J=1,ICOL)
WRITE (20,7703)
WRITE (20,8805) (PMAT(QMS+3,J), J=I,ICOL)
WRITE (20,8805) (PMAT(QMSt4,J), =1,ICOL)
WRITE (20,7705)
WRITE (20,8802) (PMAT(QMS+5,J), J=1,ICOL)
WRITE (20,7706)
WRITE (20,8802) (PMAT(QMS+6,J), J=1,ICOL)
WRITE (20,7707)
WRITE (20,8801) (PMAT(QMS+7,J), J=1,ICOL)
WRITE(20,7709)
WRITE(20,8805)(PMAT(QMS+ 9,J),J=1,ICOL)
WRITE(20,8805)(PMAT(QMS+lC,J),J=1,ICOL)
PROB=Y(N)
WRITE (20,100) PROB

100 FORMAT(F8.4)
ICOL=0
MMAXM=0

201 IF (PM(MMAX) .T. 1.D-8) GO TO 207

205 IF (MMAX LE.lCr .OR. PM(MMAX-5) .GT. 1.D-8) GO TO 2000

MMAX=MMAX-5
206 GO TO 2000

207 IF (MMAX .GE. QM) GO TO 2000

IF((MMAX+5).LE.QM) GO TO 2072
MMAX=MMAX+1
DO 2071 M=MMAX,QM

2071 PM(M)=0.DO
MMAX=QM
GO TO 2000

2072 PM(MMAX+1)=0.DO
PM(MMAX+2)=0.DO
PM(MMAX+3)=0.DO
PM(MMAX+4)=0.DO
PM(MMAX+5)=0.DO
MMAX=MMAX+5

2000 CONTINUE
1000 CONTINUE

STOP
3000 WRITE (20,3301)IND,IER,MMAX,TOL

WRITE (20,3302)(C(I),I=1,24)
STOP
END
SUBROUTINE QUEUE(N,X,Y,YPRIME)
IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
INTEGER L,LM,LP,R
DIMENSION Y(351),YPRIME(351)
-, P(350),DP(350)
COMMON U, ARR(145),UK,PMATO(15),
- PMAT(65,15),INT,K,MMAX,L,R
MMAX=N-1
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PO=Y (1)

DO 101 I=1,MMAX

101 P(I)=Y(I+1)
XP=X-.0001DO
IHR=INT(XP/INT)+1
Z=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
MMAXM=MMAX-1
IF(L .GT. 1)GO TO 400
IF(R .GT. 1)GO TO 99

GO TO 500

C THESE ARE THE EQUATIONS FOR M/E(R)/1
99 U=U*R

DPO = (-Z*PO) + U*P(1)
DP(1)=-(Z+U)*P(1)+U*P(2)
IF(R .LE. 2)GO TO 105

LM=R-1
DO 100 I=2,LM

100 DP(I)=-(Z+U)*P(I)+U*P(I+1)
105 NL=MMAX-R

LP=R+1
DP(R)=-(Z+U) *P(R)+Z*P0+U*P(R+1)

DO 110 I=LP,NL

110 DP(I)=-(Z+U) *P(I)+Z*P(I-R)+U*P(I+1)
IF(R .EQ. 1) GO TO 125

NLP=NL+1
DO 120 I=NLP,MMAXM

120 DP(I)=-U*P(I)+U:P(I+1)+Z*P(I-R)
125 DP(MMAX)=-U*P(MMA) +Z;,P(MMAX-R)

U=U/R
PO TO 300

C THESE ARE THE EQUATIONS FOR E(L)/M/1
400 Z=L*Z

DPO = (-Z*P0) + U*P(L)

DP(1)=-(Z+U)*P(:L)+Z*P0+U*P(L+l)
IF(L .EQ. 1) GO TO 205

DP(1)=DP(1)+U*P (1)

IF(L .EQ. 2) GO TO 205

LM=L-1
DO 200 I=2,LM

200 DP(I)=-Z*P(I)+ZP(I-1) +U*P (I+L)
205 NL=MMAX-L

ML=MAXO (L,2)
DO 221 I=ML,NL

221 DP(I)=-(Z+U) *P(I)+Z*P(I-1)+U*P(I+L)
IF(L .EQ. 1) GO TO 230

NLP=NL+1
DO 220 I=NLP,IMMAXM

220 DP(I)=-(Z+U)*P(I))+Z*P(I-1)
230 DP(MMAX)=-U*P(MMAY,)+Z*P(MMAXM)

Z=Z/L
GO TO 300
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C THESE ARE THE EQUATIONS FOR M/M/K

500 DPO = (-Z*P0) + U*P(1)
IF (K .GE. 2) GO TO 301

KK = 2
DP(1) = Z*PO - (Z+U)*P(1) + U*P(2)
GO TO 330

301 DP(1) = Z*P0 -(Z+U)*P(1) + 2*U*P(2)
DO 310 I = 2,K,1

310 DP(I) = Z*P(I-1) - (Z+I*U)*P(I) + (I+1)*U*P(I+l)
KK = K

330 DO 320 I = KK,MMAXM

320 DP(I) = Z*P(I-1) - (Z+UK)*P(I) + UK*P(I+1)

DP(MMAX)=Z*P (MwAYXM) -UK*P(MMAX)
300 YPRIME(1)=DPO

DO 20 I=1,MMAX

20 YPRIME(I+1)=DP(I)
RETURN
END
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C NUMERICAL SOLUTION OF FINITE-CAPACITY M/H(2)/1 SYSTEM
IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
INTEGER QM,QMS,STORE,CASES,L,R
DOUBLE PRECISION MU1,MU2,INC
EXTERNAL QUEUE
DIMENSION Y( 351),YPRIME( 351),W( 351,9),C(24)
- ,P(175),Q(175)
COMMON U1,U2,ARR(145),PMATO(15),PMAT(65,15),INT,MMAX,A
EQUIVALENCE (R,Y(1)),(P(1),Y(2)),(Y(177 ),Q(1)),(NM,MMAX)
OPEN(UNIT=21,ACCESS='SEQOUT',FILE='MH1.DAT')
OPEN(UNIT=22,ACCESS='SEQOUT',FILE='PLTMH5.DAT')

7701 FORMAT (////' SUM OF STATE PROBABILITIES')
7702 FORMAT ('OEXPECTED NO. A/C IN QUEUE')
C QM=NUMBER OF STATES
7705 FORMAT ('OELAPSED TIME IN MINUTES')
7706 FORMAT ('OMAXIMUM QUEUE LENGTH')
7707 FORMAT ('0ARRIVAL RATE OPS/MIN')
7708 FORMAT('OEXPECTED NUMBER OF REJECTED TRAFFIC')
8800 FORMAT ('1',F7.3,14F8.3)
8801 FORMAT (15F8.3)
8802 FORMAT (15F8.3)
8805 FORMAT(15F8.4)
3301 FORMAT(3I5,D10.3)
3302 FORMAT(12D10.2,/,12D10.2)

C NC=NUMBER OF CASES
READ (5,9900) NC,QM

9900 FORMAT(2I)
INT=20000
DO 1000 CASES=1,NC

C Ql=EQUILIBRIUM EXPECTED QUEUE LENGTH
READ (5,9907) Q1

9907 FORMAT(1F)
C MU1,MU2 IN CUSTOMERS/HOUR
C A=PROB TYPE 1 CUSTOMER
C STORE=TIME INTERVAL BETWEEN PRINTED OUTPUT
C MINS=TOTAL RUN LENGTH

READ (5,9903) MU1,MU2,A,STORE,MINS
9903 FORMAT(3F,2I)

QMS=20
ILAM=MAXO(2,MINS/INT+1)
READ (5,9901) (ARR(I), I=1,ILAM)

C ARR(I)=LAMBDA(I) IN CUSTOMERS/HOUR
9901 FORMAT(2F)
C NM=MAX NUMBER OF CUSTOMERS IN SYSTEM

READ (5,9910) NM

9910 FORMAT(1I)
DO 200 I=1,ILAM

200 ARR(I)=ARR(I)/60.
PER=STORE
Ul=MU1/60.
U2=MU2/60.
X=0.DO
TOL=1.D-6
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ICOL=0O

N=2*NM+1
DO 210 I=2,N

210 Y(I)=0.
Y(1)=0.

C INIT=INITIAL STATE(DETERMINISTIC)
READ(5,9911) INIT

Y(INIT)=1.
9911 FORMAT(1I)

IND=1

DO 2000 ITIM=1,MINS
XEND=DFLOAT(ITIM)
CALL DVERK(N,QQUEUE,X,Y,XEND,TOL, IND,C,QM,W,IER)
IF(IND .LT. 0 .OR. IER .GT. 0) GO TO 3000

IF (DFLOAT(ITIM) .LT. PER) GO TO 201

XP=ITIM-.0001
IHR=IDINT(XP/INT)+1
LAM=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
XP=ITIM-STORE/2.
IHR=IDINT (XP/INT) +1
LAV=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
ICOL=ICOL+1
PER=PER+STORE
PM65=0.
PM68=0.

DO 33 I=1,N

33 PM68=PM68+Y(I)

PM66=1./Ul*P(1) +l./U2*Q()1)

DO 314 I=2,MMAX

PM65=PM65+ (I-1) * (P (I) +Q (I))
314 PM66=PM66+(A/U].*(I-2)+AC/U2*(I-2))*(P(I)+Q(I))

- +l./Ul*P(I)+]-./U2*Q(I)
350 PMAT(QMS+1,ICOL) =PM68

PMAT(QMS+2,ICOL)=PM65
PMAT(QMS+3,ICOL)=PM66
PMAT(QMS+8,ICOL) =Q1-PMAT(QMS+2,ICOL)
PMAT(QMS+5, ICOL) =DFLOAT (ITIM)
PMAT(QMS+6,ICOL) =DFLOAT(MMAX)
PMAT(QMS+7,ICOL) =LAM
IF (ICOL .LT. L5 .AND. ITIM .NE. MINS) GO TO 201

2261 WRITE(21,7701)
WRITE(21,8801) (PMAT(QMS+1,J), J=1,ICOL)
WRITE(21,7702)
WRITE(21,8805) (PMAT(QMS+2,J), J=1,ICOL)
WRITE(22,8805) (PMAT(QMS+8,J), J=1,ICOL)
WRITE(21,7705)
WRITE(21,8802) (PMAT(QMS+5,J), J=1,ICOL)
WRITE(21,7706)
WRITE(21,8802) (PMAT(QMS+6,J), J=1,ICOL)
WRITE(21,7707)
WRITE(21,8801) (PMAT(QMS+7,J), J=1,ICOL)
ICOL=0

MMAXM=0
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201 CONTINUE
2000 CONTINUE
1000 CONTINUE

STOP
3000 WRITE(21,3301)I'ND,IER,MMAX,TOL

WRITE(21,3302) (C(I),I=1,24)
STOP
END
SUBROUTINE QUEUE(N,X,Y,YPRIME)
IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
DIMENSION Y(351 ),YPRIME(351),P(175),Q(175),DP(175),DQ(175)
COMMON U1,U2,ARR(145),PMATO(15),PMAT(65,15),INT,MMAX,A
R=Y(1)
DO 101 I=1,MMAX

P(I)=Y(I+1)
101 Q(I)=Y(MMAX+I+1)

XP=X- .0001
IHR=IDINT (XP/INT) +1
Z=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
MMAXM=MMAX-1

C

AC=1.-A
DR=-Z*R+Ul*P((1 )+U2*Q(1)

DP(1)=-(Ul+Z)*P(1)+A*Z*R+A*Ul*P(2)+A*U2*Q(2)
DO 300 I=2,MMAXM

300 DP(I)=-(Ul+Z)*P(I)+Z*P(I-1)+A*Ul*P(I+1)+A*U2*Q(I+l)
DP (MMAX)=-UP(MMAXMMAX)+Z*P (MMAXM)

DQ(1)=-(U2+Z)*Q(1)+AC*Z*R+AC*U2*Q(2)+AC*Ul*P(2)
DO 310 I=2,MMAYM

310 DQ(I)=-(U2+Z)*Q(I)+Z*Q(I-1)+AC*U2*Q(I+l)+AC*Ul*P(I+l)
DQ(MMAX) =-U2*Q(MMAX) +Z*Q(MMAXM)
YPRIME(1)=DR
DO 20 I=1,MMAX

YPRIME(I+1)=DP(I)
20 YPRIME(MMAY,+I+1)=DQ(I)

RETURN
END
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C NUMERICAL SOLUTION OF M/PH/1 SYSTEM--SERVICE TIME
C IS WEIGHTED SUM OF EXPONENTIAL AND THIRD-ORDER
C ERLANG RANDOM VARIABLES

IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
INTEGER QM, QMS,STORE,CASES
DOUBLE PRECISION INC
EXTERNAL QUEUE
DIMENSION Y(141),YPRIME(141),W(141,9),C(24),P(35),
* Q(35),S(35),V(35)

7701 FORMAT(////' SUM OF STATE PROBABILITIES')
7702 FORMAT('OEXPECTED QUEUE LENGTH')
7705 FORMAT('OELAPSED TIME')

7706 FORMAT ( 'OMAXIMUM QUEUE LENGTH')
7707 FORMAT('OARRIVAL RATE ')
7708 FORMAT('OEXPECTED NUMBER REJECTED')
8801 FORMAT(15F8.3)
8802 FORMAT(15F8.3)
8805 FORMAT(15F8.4)
9900 FORMAT(3I)
9901 FORMAT(2F)

9903 FORMAT(2I)
9907 FORMAT(4F)
9910 FORMAT(1I)
3301 FORMAT(3I5,D10.3)
3302 FORMAT(12D10.2,,/,12D10.2)

OPEN(UNIT=21,ACCESS='SEQOUT',FILE='MP1.DAT')
OPEN(UNIT=22,ACCESS='SEQOUT' ,FILE='PLTMP1.DAT')
EQUIVALENCE(Y(2),P(1)), (Y(37),Q(1)), (Y(72),S()),(Y(107),V(1))
COMMON ARR(145),PMAT0(15),PMAT(65,15),INT,NM,A,U1,U2

C NC=NUMBER OF CASES
C QM=NUMBER OF STATES

READ(5,9900)NC, QM
INT=20000
DO 1000 CASES=1,NC

C Q1=EQUILIBRIUM EXPECTED QUEUE LENGTH
C A=PROB EXPONENTIAL SERVICE TIME
C U1=MU OF EXPONENTIAL(CUST/HOUR)

C U2=MU OF THIRD-ORDER ERLANG(CUST/HOUR)
READ(5,9907)Q1,A, U1,U2
Ul=U1/60.DO
U2=U2/60.DO
READ(5,9903)STORE,MINS
QMS=20
ILAM=MAX0(2 ,MINS/INT+1)

C ARR(I)=LAMBDA(I) IN CUSTOMERS/HOUR

READ(5,9901)(ARR(I),I=l, ILAM)
C NM=MAXIMUM NUMBER OF CUSTOMERS IN SYSTEM

READ (5,9910) NM

DO 200 I=1,ILAM

200 ARR(I)=ARR(I)/60.
K=1

KPLUS=K+1
PER=STORE
X=O.DO
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TOL=1.D-6
ICOL=0O

MMAX=NM
MMAXM=0
N=4*NM+l
Y(1)=1.D0
DO 210 I=2,N

210 Y(I)=0.DO

IND=1

DO 2000 ITIM=1,MINS
XEND=DFLOAT(ITIM)
CALL DVERK(N,QUEUE,X,Y,XEND,TOL,IND,C,QM,W,IER)
IF(IND .LT. 0 .OR. IER .GT. 0)GO TO 3000

IF(DFLOAT(ITIM) .LT. PER)GO TO 201

XP=ITIM-. 0001D
IHR=IDINT(XP/INT)+1
LAM=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
XP=ITIM-STORE/2.DO
IHR=IDINT(XP/INT)+1
LAV=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
ICOL=ICOL+1
PER=PER+STORE
PM65=0.DO
PM68=Y(1)
DO 900 I=1,NM

PM68=P(I)+Q(I) +S(I) +V(I)+PM68
900 PM65=PM65+(I-1)*(P(I)+Q(I)+S(I)+V(I))

PMAT(QMS+3,ICOL)=0.D0
PMAT(QMS+1,ICOL) =PM68
PMAT(QMS+2,ICOL) =PM65
PMAT(QMS+8,ICOL) =Q1-PMAT(QMS+2,ICOL)
PMAT(QMS+5,ICO)L)=DFLOAT (ITIM)
PMAT(QMS+6,ICOL) =DFLOAT(MMAX)
PMAT(QMS+7,ICOL) =LAM
IF(ICOL .LT. 15 .AND. ITIM .NE. MINS)GO TO 201

WRITE (21,7701)
WRITE(21,8801) (PMAT(QMS+1,J),J=1,ICOL)
WRITE(21,7702)
WRITE(21,8805)1 PMAT(QMS+2,J),J=1,ICOL)
WRITE(22,8805) (PMAT(QMS+8,J),J=1,ICOL)
WRITE(21,7705)
WRITE(21,8802)1 PMAT(QMS+5,J),J=1,ICOL)
WRITE (21,7706)
WRITE(21,8802)1 PMAT(QMS+6,J),J=1,ICOL)
WRITE(21,7707)
WRITE(21,8801)1 PMAT(QMS+7,J),J=1,ICOL)
PMAT(QMS+9,ICO)L)=P (NM)+Q(NM)+S(NM)+V(NM)
WRITE(21,8805) (PMAT(QMS+9,J),J=l,ICOL)
ICOL=O

201 CONTINUE
2000 CONTINUE
1000 CONTINUE

STOP
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3000 WRITE(21,3301)IND,IER,MMAX,TOL
WRITE(21,3302)(C(I),I=1,24)
STOP
END

SUBROUTINE QUEU:E(N,X,Y,YPRIME)
IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
DIMENSION Y(141),YPRIME(141),P(35),Q(35),S(35),V(35),
* DP(35),DQ(35),DS(35),DV(35)
COMMON ARR(145),PMAT0(15),PMAT(65,15),INT,NM,A,U1,U2
R=Y(1)
DO 5 I=1,NM

P(I)=Y(I+1)
Q(I)=Y (NM+I+1)

S(I)=Y (2*NM+I+1)
5 V(I)=Y(3*NM+I+I)

XP=X-.0001DO
IHR=IDINT(XP/INT)+1
Z=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT

C

C THESE ARE THE EQUATIONS FOR AN M/PH/1 SYSTEM
C

AB=1.DO-A
DR=-Z*R+U*P ()+U2*Q (1l)
DP(1)=-(Z+Ul)*P(1)+A*Z*R+A*Ul*P(2)+A*U2*Q(2)
DP (NM)=-Ul*P(NM) +Z*P (NM-l)

DQ(l)=-(Z+U2)*Q(1)+U2*S((1)

DQ(NM)=-U2*Q(NM) +Z*Q(NM-1)+U2*S(NM)
DS(1)=-(Z+U2)*S(1)+U2*V (1)

DS(NM)=-U2*S(NM)+Z*S(NM-1)+U2*V(NM)
DV(1)=-(Z+U2)*V(1)+AB*Z*R+AB*U2*Q(2)+AB*Ul*P(2)
DV (NM) =-U2*V (NM) +Z*V (NM-1)

NMM=NM-1
DO 10 I=2,NMM
DP(I)=-(Z+Ul) *P(I)+Z*P(I-l)+A*Ul*P(I+l)+A*U2*Q(I+l)
DQ(I)=-(Z+U2)*Q(I)+Z*Q(I-1)+U2*S(I)
DS(I)=-(Z+U2)*S(I)+Z*S(I-1)+U2*V(I)

10 DV(I)=-(Z+U2) *V( *V+Z*V(I-l)+AB*U2*Q(I+l)+AB*U*P(I+l)

YPRIME (1)=DR
DO 50 I=1,NM

YPRIME(NM+I+1)=DQ(I)
YPRIME(2*NM+I+1i) =DS(I)

YPRIME(3*NM+I+1i) =DV(I)

50 YPRIME(I+1)=DP(I)
RETURN
END
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C NUMERICAL SOLUTION OF FINITE-CAPACITY E(L)/E(R)/1 SYSTEM
IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
INTEGER QM,QMS,,STORE,CASES,L,R
DOUBLE PRECISION MU,INC
EXTERNAL QUEUE
DIMENSION Y(122),YPRIME(122),C(24),P(2,61),W(122,9)
EQUIVALENCE (Y() ,P(1,l))

COMMON MU, ARR(145),UK,
- PMAT(65,15),INT,K, L,R,NM
OPEN(UNIT=21,ACCESS='SEQOUT',FILE='EE1.DAT')
OPEN(UNIT=22,ACCESS='SEQOUT',FILE='PLTEE1.DAT')

7701 FORMAT (////' SUM OF STATE PROBABILITIES')
7702 FORMAT ('OEXPECTED NO. CUSTOMERS IN QUEUE')
7705 FORMAT ('ELAPSED TIME IN MINUTES')
7706 FORMAT ('MAXIMUM QUEUE LENGTH')
7707 FORMAT ('OARRIVAL RATE CUSTOMERS/MIN')
7708 FORMAT('OEXPECTED NUMBER OF REJECTED TRAFFIC')
7709 FORMAT('OPROBABILITY OF FULL SYSTEM')
7710 FORMAT('OPROBABILITY NM CUSTOMERS IN SYSTEM')
8800 FORMAT ('1',F7.3,14F8.3)
8801 FORMAT (15F8.3)
8802 FORMAT (15F8.3)

8805 FORMAT(15F8.4)
3301 FORMAT(3I5,D10.3)
3302 FORMAT(12D10.2,/,,12D10.2)

C NC=NUMBER OF CASES
C QM=NUMBER OF STATES

READ (5,*) NC,QM
INT=20000
DO 1000 CASES=1,NC

C Q=EQUILIBRIUM EXPECTED QUEUE LENGTH
READ(5,*) Q,L,R

C STORE=TIME INTERVAL BETWEEN PRINTED OUTPUT
C MINS=TOTAL RUN LENGTH

READ (5,*) K,MU,STORE ,MINS
QMS=20
ILAM=MAXO (2,MINS/INT+1 )

C ARR(I)=LAMBDA(I) IN CUSTOMERS/HOUR

READ (5,*) (ARR(I), I=1,ILAM)
C NM=MAXIMUM NUMBER OF CUSTOMERS IN SYSTEM

READ (5,*) NM

DO 200 I=1,ILAM

200 ARR(I)=ARR(I)/60.
KPLUS=K+1
PER=STORE
UK=MU/60.
MU=UK/K
X=O.DO
TOL=1.D-6
ICOL=O
N=(NM*R+1)*L
QM=N
Y(1)=l.
DO 210 I=2,N
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210 Y(I)=0.
IND=1
DO 2000 ITIM=1,MINS
XEND=DFLOAT(ITIM)
CALL DVERK(N,QUEUE,X,Y,XEND,TOL,IND,C,QM,W,IER)
IF(IND .LT. 0 .OR. IER .GT. 0) GO TO 3000

IF (DFLOAT(ITIM) .LT. PER) GO TO 201
XP=ITIM-.0001
IHR=IDINT (XP/INT) +1
LAM=ARR(IHR)+(ARR(IHR+1)-ARR(IHR) )*DMOD(XP,DFLOAT(INT) )/INT
XP=ITIM-STORE/2.
IHR=IDINT (XP/INT) +1
LAV=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
ICOL=ICOL+1
PER=PER+STORE
NRP=NM*R+1
PM68=0.
PM66=0.
PM65=0.
NT=2*R
DO 40 I=1,L
DO 50 J=NT,NRP
M=J/R-2
PM65=PM65+M*P(I,J)

50 PM66=PM66+P(I,J)*(J-1)
40 CONTINUE

DO 41 I=1,N
41 PM68=PM68+Y(I)
350 PMAT(QMS+1,ICOL)=PM68

PMAT(QMS+2,ICOL)=PM65
PMAT(QMS+8,ICOL)=Q-PMAT(QMS+2,ICOL)
PMAT(QMS+5, ICOL) =DFLOAT (ITIM)
PMAT(QMS+6,ICOL)=DFLOAT(NM)
PMAT(QMS+7,ICOL)=LAM
PMAT(QMS+9,ICOL)=P (1,NRP)

NMRP=(NM-1)*R+2
PMAT (QMS+10, ICOL) =0.
DO 60 J=NMRP,NR:P

60 PMAT(QMS+10,ICOL)=PMAT(QMS+10,ICOL)+P(1,J)

IF (ICOL .LT. 15 .AND. ITIM .NE. MINS) GO TO 201
2261 WRITE(21,7701)

WRITE(21,8801) (PMAT(QMS+1,J), J=1,ICOL)
WRITE(21,7702)
WRITE(21,8805) (PMAT(QMS+2,J), J=1,ICOL)
WRITE(22,8805) (PMAT(QMS+8,J), J=1,ICOL)
WRITE (21,7705)
WRITE(21,8802) (PMAT(QMS+5,J), J=1,ICOL)
WRITE (21,7706)
WRITE(21,8802) (PMAT(QMS+6,J), J=1,ICOL)
WRITE(21,7707)
WRITE(21,8801) (PMAT(QMS+7,J), J=1,ICOL)
WRITE(21,7709)
WRITE(21,8805)(PMAT(QMS+9,J),J=1,ICOL)
WRITE(21,7710)
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WRITE(21,8805)(PMAT(QMS+10,J),J=1,ICOL)
ICOL=0

201 CONTINUE
2000 CONTINUE
1000 CONTINUE

STOP
3000 WRITE(21,3301)IND,IER,MMAX,TOL

WRITE(21,3302) (C(I),I=1,24)
STOP
END
SUBROUTINE QUEU'E(N,X,Y,YPRIME)
IMPLICIT DOUBLE: PRECISION(A-H,L,O-Z)

INTEGER L,LM,LP,R
DIMENSION Y(122),YPRIME(122),P(2,61),DP(2,61)
COMMON U, ARR(145),UK,
- PMAT(65,15),INT,K, L,R,NM
NRP=NM*R+1
DO 500 I=1,L

DO 510 J=1,NRP

510 P(I,J)=Y((J-1)*L+I)
500 CONTINUE

XP=X-.0001
IHR=IDINT(XP/INT)+1
Z=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT

C THESE ARE THE EQUATIONS FOR E(L)/E(R)/1
ZL=L*Z
UR=R*U
DP (1,1)=-ZL*P (1,1) +URP (1,2)

IF (L .EQ. 1) GO TO 11

DO 10 I=2,L

10 DP(I,1)=-ZL*P(I,1))+ZL*P(I-1,1)+UR*P(I,2)
11 NR=NM*R

NMR=(NM-1)*R+l
DO 20 J=2,NMR

20 DP(1,J)=-(ZL+UR) *P(1,J)+UR*P(1,J+l)
NMRP=NMR+1
IF (R .EQ. 1) GO TO 41

DO 40 J=NMRP,NR

40 DP(1,J)=-UR*P(1,J)+UR*P(1,J+l)
41 DP(1,NR+1)=-URP (1,NR+1) +ZL*P(L,NMR)

NR=NR-1
DO 30 J=R,NR

30 DP(1,J+1)=DP(1,J+1)+ZL*P(L,J+1-R)
NRP=NR+2
IF (L .EQ. 1) GO TO 51

NMRM=NMR-1
DO 50 I=2,L
DO 60 J=2,NMRM

60 DP(I,J)=-(ZL+UR) *P(I,J)+ZL*P(I-l,J)+UR*P(I,J+l)
50 DP(I,NMR)=-(ZL+UR)*P(I,NMR)+ZL*P(I-1,NMR)

NRP=NM*R+1
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51 DO 100 I=1,L

DO 110 J=1,NRP

110 YPRIME((J-1)*L-I)=DP(I,J)
100 CONTINUE

RETURN
END
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C NUMERICAL SOLUTION OF FINITE-CAPACITY M/M/K,
C E(L)/M/1 AND M/E(R)/1 SYSTEMS

IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
INTEGER QM,QMS,STORE,CASES,L,R
DOUBLE PRECISION MU,INC
EXTERNAL QUEUE
DIMENSION Y(351),YPRIME(351),W(351,9),C(24)
- ,PM(350),DP(350)
EQUIVALENCE(PMo,Y(1)),(DP0,YPRIME((1))

- ,(PM(1),Y(2)),(DP((1)),YPRIME(2)),(MMAX,NM)
COMMON PMAT(65,15),ARR(145),PMAT0(15),MU,UK,INT,K,MMAX,L,R

7701 FORMAT (////' SUM OF STATE PROBABILITIES')
7702 FORMAT ('OEXPECTED NO. A/C IN QUEUE')
7703 FORMAT ('0AVERAGE DELAY PER A/C')

7705 FORMAT ('OELAPSED TIME IN MINUTES')
7706 FORMAT ('OMAXIMUM QUEUE LENGTH')
7707 FORMAT ('OARRIVAL RATE OPS/MIN')
7708 FORMAT('0EXPECTED NUMBER OF REJECTED TRAFFIC')
8800 FORMAT ('1',F7.3,14F8.3)
8801 FORMAT (15F8.3)

8802 FORMAT (15F8.2)

8805 FORMAT(15F8.4)
3301 FORMAT(3I5,F10.3)
3302 FORMAT(12F10.2,/,12F10.2)

OPEN (UNIT=21,ACCESS='SEQOUT',FILE='FIN.DAT')
OPEN(UNIT=22,ACCESS='SEQOUT',FILE='PLTFN3.DAT')

C NC=NUMBER OF CASES
C QM=NUMBER OF STATES

READ (5,9900) NC,QM
9900 FORMAT(2I)

INT=20000
DO 1000 CASES=.,NC

C Q1=EQUILIBRIUM EXPECTED QUEUE LENGTH
C D=EQUILIBRIUM EXPECTED DELAY

READ(5,9907)Q1,D,L,R

9907 FORMAT(2F,2I)
C MU IN CUSTOMERS/HOUR

C STORE=TIME INTERVAL BETWEEN PRINTED OUTPUT
C MINS=TOTAL RUN LENGTH

READ (5,9903) K,MU,STORE ,MINS
ILAM=MAX0(2,MINS/INT+1)

9903 FORMAT(lI,1F,2:)
C ARR(I)=LAMBDA(I) IN CUSTOMERS/HOUR

READ (5,9901) (ARR(I), I=1,ILAM)
9901 FORMAT(2F)
C NM=MAXIMUM NUMBER OF CUSTOMERS IN SYSTEM

READ (5,9910) NM
9910 FORMAT(1I)

DO 200 I=1,ILAM
200 ARR(I)=ARR(I)/60.DO

KPLUS=K+1
PER=STORE
UK=MU/60. DO
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MU=UK/K
X=0.DO
TOL=1. D-6
ICOL=O

N=NM+1
MMAX=N-1
MMAXM=MMAX-1

PMO=1.DO
DO 210 I=1,MMAY,

210 PM(I)=0O.DO

IND=1
DO 2000 ITIM=1,MINS
XEND=DFLOAT(ITIM)
CALL DVERK(N,QUEUE,X,Y,XEND,TOL,IND,C,QM,W,IER)
IF(IND .LT. 0 .OR. IER .GT. 0) GO TO 3000

IF (DFLOAT(ITIM) .LT. PER) GO TO 201

XP=ITIM-.0001
IHR=IDINT(XP/INT)+1
LAM=ARR(IHR)+(ARR(IHR+1)-ARR(IHR))*DMOD(XP,DFLOAT(INT))/INT
XP=ITIM-STORE/2.
IHR=IDINT(XP/INT)+1
LAV=ARR(IHR)+(ARR(IHR+1)-ARR(IHR) )*DMOD(XP,DFLOAT(INT))/INT
ICOL=ICOL+1
PER=PER+STORE

202 PMATO(ICOL)=PMO
PM65=0.D0
PM68=PMO
PM66=0.DO
IF(K .GT. 1) GO TO 400

IF(R .GT. 1) GO TO 320

DO 314 I=1,L

PMAT(I,ICOL)=PM(I)
PM66=PM66+PM(L+I-1)

314 PM68=PM68+PM(I)
DO 310 I=1,L
KPLUS=L+I
DO 315 J=KPLUS,MMAX,L

PM68=PM68+PM(J)
INW=J/L-1
IF(J .LE. QMS) PMAT(J,ICOL)=PM(J)

PM66=PM66+PM(J)
315 PM65=PM65+DFLOAT (INW) *PM(J)
310 CONTINUE

PMAT(QMS+3,ICOL) = (PM66+PM65)/UK
GO TO 350

400 PM66=PM(K)
DO 209 I=1,K
PMAT(I,ICOL)=PM(I)

209 PM68=PM68+PM(I)
DO 250 J=KPLUS,MMAX
PVJ=PM(J)
PM65 =PM65+(J-K)*PVJ
PM66=PM66+PVJ
PM68=PM68+PVJ
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250 IF (J .LE. QMS) PMAT(J,ICOL)=PVJ

PMAT(QMS+3,ICOL) = (PM66+P M65)/UK
GO TO 350

320 DO 325 I=1,R

PMAT(I,ICOL)=PM(I)
PM66=PM66+I*PM (I)

325 PM68=PM68+PM(I)
DO 330 I=1,R
KPLUS=R+I
DO 340 J=KPLUS,MMAX,R

PM68=PM68+PM(J)
INW=(J-1)/R
IF(J .LE. QMS) PMAT(J,ICOL)=PM(J)

PM66=PM66+J*PM (J)

340 PM65=PM65+DFLOAT (INW) *PM (J)
330 CONTINUE

PMAT(QMS+3,ICO)L)= PM66/(UK*R)

350 PMAT(QMS+1,ICOL) =PM68
PMAT(QMS+2,ICOI,)=PM65
PMAT(QMS+8,ICOL) =Q1-PMAT(QMS+2,ICOL)
PMAT(QMS+4,ICOL)=D-PMAT(QMS+3,ICOL)
PMAT(QMS+5, ICOL) = DFLOAT(ITIM)
PMAT(QMS+6, ICOL) =DFLOAT(MMAX)
PMAT(QMS+7,ICOL)=LAM
MMAXM=MAXO (MMM ,MINO (MMAX,QMS))
IF (ICOL .LT. 5 .AND. ITIM .NE. MINS) GO

IF (MMAXM .EQ. 0) GO TO 2261

2261 WRITE(21,7701)
WRITE(21,8801) (PMAT(QMS+1,J), J=1,ICOL)
WRITE(21,7702)
WRITE(21,8805) (PMAT(QMS+2,J), J=1,ICOL)
WRITE(22,8805) (PMAT(QMS+8,J), J=1,ICOL)
WRITE(21,7703)
WRITE(21,8805) (PMAT(QMS+3,J), J=1,ICOL)
WRITE(21,8805) (PMAT(QMS+4,J) ,J=1,ICOL)
WRITE (21,7705)
WRITE (21,8802) (PMAT(QMS+5,J), J=1,ICOL)
WRITE (21,7706)
WRITE (21,8802) (PMAT(QMS+6,J), J=1,ICOL)
WRITE (21,7707)
WRITE (21,8801) (PMAT(QMS+7,J), J=1,ICOL)
ICOL=0
MMAXM=0O

201 CONTINUE
2000 CONTINUE
1000 CONTINUE

STOP
3000 WRITE(21,3301)IND,IER,MMAX,TOL

WRITE(21,3302)(C(I),I=1,24)
STOP
END

TO 201
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SUBROUTINE QUEUE(N,X,Y,YPRIME)
IMPLICIT DOUBLE PRECISION(A-H,L,O-Z)
INTEGER L,R

DIMENSION Y(351),YPRIME(351)
-, P(350),DP(350)
COMMON PMAT(65,15),ARR(145),PMAT0(15),U,UK,INT,K,MMAX,L,R
MMAXM=MMAX-1
PO=Y (1)

DO 101 I=1,MMAX

101 P(I)=Y(I+l)
XP=X-.0001DO
IHR=IDINT(XP/INT) +1

Z=ARR(IHR)+(ARR(IHR+1)-ARR(IHR) ) *DMOD(XP,DFLOAT(INT))/INT
IF(L .GT. 1)GO TO 400

IF(R .GT. 1)GO TO 500

C

C THESE ARE THE EQUATIONS FOR M/M/K
DPO = (-Z*PO) + U*P(1)
IF (K .GE. 2) GO TO 301

KK = 2

DP(1) = Z*P0 - (Z+U)*P(1) + U*P(2)
GO TO 330

301 DP(1) = Z*PO -(Z+U)*P(1) + 2*U*P(2)

DO 310 I = 2,K,1

310 DP(I) = Z*P(I-) - (Z+I*U)*P(I) + (I+i)*U*P(I+l)
KK = K

330 DO 320 I = KK,MMAXM

320 DP(I) = Z*P(I-1) - (Z+UK)*P(I) + UK*P(I+1)
DP (MMAX)=Z*P(MMAXM)-UK*P(MMAX)
GO TO 600

C THESE ARE THE EQUATIONS FOR E(L)/M/1
400 Z=L*Z

DP0 = (-Z*PO) U*P(L)

DP(1)=-(Z+U) *P0+U*P (L+l)
IF(L .EQ. 1) GC) TO 305

DP(1)=DP(1)+U*P (1)

IF(L .EQ. 2) GC) TO 305
LM=L-1
DO 200 I=2,LM

200 DP(I)=-Z*P(I)+Z*P(I-1)+U*P(I+L)
305 NL=MMAX-L

ML=MAXO(L,2)
DO 220 I=ML,NL

220 DP(I)=-(Z+U) *P4I)+Z*P(I-1)+U*P(I+L)
IF(L .EQ. 1) GO TO 230
NLP=NL+1
DO 221 I=NLP,MMAXM

221 DP(I)=-(Z+U)*P('I)+Z*P(I-1)
230 DP(MMAX)=-U*P MMAX)+Z*P(MMAXM)

Z=Z/L
GO TO 600
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C THESE ARE THE EQUATIONS FOR M/E(R)/1
500 U=U*R

DP0 = (-Z*P0) + U*P(1)
DP(1)=- (Z+U) *P(1)+U*P(2)
IF(R .LE. 2)GO TO 105

LM=R-1
DO 100 I=2,LM

100 DP(I)=-(Z+U)*P(I)+U*P(I+1)
105 NL=MMAX-R

LP=R+1
DP(R)=-(Z+U) *P(R)+Z*P0+U*P(R+1)
DO 110 I=LP,NL

110 DP(I)=-(Z+U)*P(I+Z*P+*P(I-R)+U*P(I+1)

IF(R .EQ. 1) GO TO 125
NLP=NL-1
DO 120 I=NLP,MMAXM

120 DP(I)=-U*P(I)+U*P(I+1)+Z*P(I-R)
125 DP(MMAX)=-U*P(MMAX)+Z*P(MMAX-R)

U=U/R
600 YPRIME(1)=DPO

DO 20 I=1,MMAX
20 YPRIME(I+1)=DP(I)

RETURN
END
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C NUMERICAL SOLUTION OF M/D/K SYSTEM
IMPLICIT DOUBLE PRECISION (A-G,L,O-Z)
INTEGER CASES,STORE,QM,QMD,QMM,TPRINT
DOUBLE PRECISION MU,MUH
DIMENSION ARR(145),PMAT(16,10),PVEC(360),MUH(40)
COMMON /Al/INT,INTER,INTMU,K,STORE/A2/W,Q1,MUH,ARR
COMMON /A3/WTC,ST,IP20/A4/PMAT/A5/MPLUS/A6/KCT/A7/MMAX
COMMON TPRINT
OPEN(UNIT=21,ACCESS='SEQOUT',FILE='MDK.DAT')
OPEN(UNIT=22,ACCESS='SEQOUT',FILE='PLTMDK.DAT')

9900 FORMAT(4I,2F)
9901 FORMAT(I4,X,213,X,3I1,X,I4)
9903 FORMAT(2F)
7701 FORMAT('OTIME')
7704 FORMAT('O0EXPECTED DELAY')
7705 FORMAT('0ARRIVAL RATE')
7706 FORMAT('0EXPECTED QUEUE LENGTH')
8800 FORMAT ('l',6X,20A4,I3,' RWAYS, CAP = ',F5.1,' OPS/HR')
8801 FORMAT(15F8.2)
8804 FORMAT(15F8.4)
8805 FORMAT(15F8.4)

C NC=NUMBER OF CASES
READ(5,9910)NC

9910 FORMAT(1I)
TPRINT=0O

INT=1400
QMD=350
INTMU=4444
IWTC=1
KO=1
INTER=i
QMM=350
WTC=1.DO
DO 3 CASES=1,NC

C STORE=TIME INTERVAL BETWEEN PRINTED OUTPUT
C MINS=TOTAL RUN LENGTH
C Q1=EQUILIBRIUM EXPECTED QUEUE LENGTH
C W=EQUILIBRIUM EXPECTED DELAY

READ(5,23)K,STORE,MINS,Q1,W
23 FORMAT(3I,2F)

IQS=O
ILAM=2+MINS/INT
IMU=2+MINS/INTMU

C MUH(I) IN CUSTOMERS/HOUR

READ (5,9903) (MUH(I),I=1,IMU)
IF(STORE .LT. 60./MUH(1))GO TO 2222

C ARR(I)=LAMBDA r() IN CUSTOMERS/HOUR
READ(5,9903) (ARR(I),I=1,ILAM)
DO 1 I=1,ILAM

1 ARR(I)=ARR(I)/150.DO
KPLUS=K+1
XSTRT=0.DO
IQ=O
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DO 233 I=1,360
233 PVEC(I)=0.DO

C INIT=INITIAL STATE(DETERMINISTIC)
READ(5,999)INIT

999 FORMAT(1I)
PVEC(INIT)=1.D0
PRINT=MIN0(MINS,15*STORE)
XFIN=XSTRT+PRIN1'

100 XFIN=DMIN1(XFIN,.DFLOAT(MINS))
2 CALL MDK(XSTRT,XFIN,PVE C,QMD,WTMD)
WRITE(21,7701)
WRITE(21,8801) (PMAT(I,2),I=1,KCT)
WRITE (21,7704)
WRITE(21,8804) I(PMAT(I,1),I=l,KCT)
WRITE(21,8804) K,(PMAT(I,8),I=1,KCT)
WRITE(21,7705)
WRITE(21,8805) (PMAT(I,4),I=1,KCT)
WRITE(21,7706)
WRITE(21,8856) (PMAT(I,5),I=1,KCT)
WRITE(22,8857) (PMAT(I,7),I=1,KCT)

8857 FORMAT(15F8.4)
8856 FORMAT(15F8.4)

XFIN=DMIN1 (XFIN-+PRINT,DFLOAT(MINS))
IF(XSTRT .LT. MINS-STORE) GO TO 2

3 CONTINUE

STOP
2222 WRITE(21,8888)
8888 FORMAT(/,'STORE MUST BE MULTIPLE OF EXP SERVICE TIME')

STOP
END
SUBROUTINE MDK(XSTRT,XFIN,PVEC,QM,WTMD)
IMPLICIT DOUBLE PRECISION(A-G,O-Z)
INTEGER LMAX,TPRINT
INTEGER QM,STORE
DOUBLE PRECISION LAM,L,MUH,LAMSUM,LM
DIMENSION PM(350),PVEC(360),L(100),AMAT(16),DMAT(16),QMAT(16),
- GMAT(:16) ,MUH(40),ARR(145),PMAT(16,10),
- BMAT (115) ,CMAT(16)
COMMON /A1/INT, INTER,INTMU,K,STORE/A2/W,Q1,MUH,ARR
COMMON /A3/WTC,ST,IP20/A4/PMAT/A5/MPLUS/A6/KCT/A7/MMAX
COMMON TPRINT
EQUIVALENCE (PMAT(1,1),DMAT(1)),(PMAT(1,3),GMAT(l))
EQUIVALENCE (PMAT(1,4),AMAT(1)),(PMAT(1,5),BMAT(1))
EQUIVALENCE (PMAT(1,7),CMAT(l)),(PMAT(1,8),QMAT(1))
TPRINT=INT (XSTR'T)

MMAX=0O

KPLUS=K+1
TIME=XSTRT
TABLE=IDINT(0.5DO+TIME/STORE)*STORE+STORE
KCT=0O

2 IHM=IDINT(TIME/INTMU)+1

U=MUH(IHM)+(MUH(IHM+1)-MUH(IHM))*DMOD(TIME,DFLOAT(INTMU))/INTMU
ST=K*60. DO/(U*WTC)
IP20=(20.DO*U*WTC/60.DO)+K-. 5DO



- 177 -

TIME=TIME+ST
IHR=IDINT (TIME/INT) +1
LAM=ARR(IHR)+

(ARR (IHR+1)-ARR(IHR))*INTER*DMOD(TIME,DFLOAT(INT))/INT
LAM=LAM*ST*WTC
LMAX=1
EXPLM=DEXP (-LAM)
L(1)=LAM

10 LMAX=LMAX+1

L(LMAX)=LAM/DFLOA'r (LMAX) *L(LMAX-1)

IF (L(LMAX) .GE. 1.D-6) GO TO 10

PMO=PVEC(K)*EXPLM
M=0

PMM=PM0
PM66=0.DO

20 M=M+1
PMI=0O.DO

JJ=MAXO(K, M-LMAX+K)
J=MINO (M, LMAX)

21 PMI=PMI+PVEC(JJ)*L(J)

JJ=JJ+1l

J=J-1
IF(J .GE. 1) GO TO 21

PMI=(PMI+PVEC(JJ)) *EXPLM
PMM=PMM+PMI
PM66=PM66+M*PMI
PM(M)=PMI
IF (PMI .GT. 1.D-7 AND. M .LT. QM) GO TO 20
IF (PMM .LT. .1 .OR. M .LE. K) GO TO 20

MMAX=MAX0(MMAX,M)
PVEC(K)=PMO
DO 30 I=1,K

PM66=PM66-I*PM(I)
PVEC (K)=PVEC (K) +PM (I)/PMM

30 CONTINUE

PM66=PM66+K*PM (K) + (1- (PVEC(K)-PM(K))) (0.5D0-K)
DO 40 J=KPLUS,M

40 PVEC(J)=PM(J)/PMM
PP20=0.DO
DO 11 I=K,M

11 PP20=PP20+(I-K)*PVEC(I)
IF (TIME .LT. TABLE-ST/2.) GO TO 1
TABLE=TABLE+STORE
KCT=KCT+1
DMAT(KCT)=PM66*ST/K
AMAT(KCT)=LAM/ST
BMAT(KCT)=PP20
CMAT(KCT) =Q1-BMAT (KCT)
QMAT(KCT)=W-DMAT(KCT)
PMAT(KCT,2)=TPRINT+KCT*STORE
GMAT(KCT)=TIME

1 IF (TIME .LT. XFIN .AND. KCT .LT. 16) GO TO 2
XSTRT=TIME+.01DO
RETURN
ENID
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APPENDIX 3

A PRELIMINARY IVESTIGATION OF TRANSIENT BEhAVIOR uE k-SERVER
AND FINITE-CAPACITY QUEUEING SYSTEMS

Chapters 3 and 4 constitute a thorough investigation of the

transient behavior of the expected queue length, Q(t), for two particular

classes of infinite-capacity, single-queue, single-server queueing systems.

The dominating feature of the empirical results is that, in every case,

for large t the transient decay is approximately exponential with a time

constant that depends on p, , and the coefficients of variation of the

interarrival and service time distributions.

In this appendix, we present a preliminary investigation of the

effects of two system characteristics on this behavior. Specifically,

for Markovian systems and for partially deterministic systems in which the

embedded chain is a first-order Markov process, we examine the manner in

which the functional form of the transient decay and the time required

for the transient response to become negligible depend on the number of

servers and on system capacity. Our intent here is only to provide ground-

work for further research of these systems by describing some of the

results that we have obtained to date.

A3.1 The Decay of Transients in M/M/k Queueing Systems

In this section, we examine the transient behavior of a collection

of infinite-capacity M/M/k queueing systems to determine the dependence

of the transient response on the number of servers in the system. We

first consider systems that begin at rest. Then we vary the initial con-

ditions to determine their effect on the transient decay.

Figure A3.1 illustrates loglQ(-) - Q(t)I for M/M/k systems with

p=.75, k=l, and k=2,5, and 9. All systems are initially idle. These
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cases were selected so that, independent of k, when all servers are busy

customers enter the system according to a Poisson process with rate A=.75

and are served according to a Poisson process with combined rate kp=l.

Thus, with respect to expected value measures, as long as the service

facility is fully utilized the systems are equivalent. Due to differences

when one or more servers are idle, however, if and kp remain fixed, Q (X)

is a decreasing function of k. This accounts for the differences in

loglQ(o) - Q(0) I at time t=0.

Several features of the curves in Figure A3.1 merit comment. As in

the single-server case, all curves become linear for large t. Thus, except

for an initial period, transients decay in an approximately exponential

manner. For large t, the slope of loglQ(-) - Q(t)I versus t appears to be

independent of the number of servers in the system. This suggests that the

time constant is a function of kp but not of k alone.

Finally, note that for small t, loglQ(-) - Q(t)I remains constant

for an amount of time that increases with k. This can be explained in-

tuitively as follows. The expected queue length is clearly equal to zero

as long as one or more servers are idle. Therefore, as the systems illus-

trated in Figure A3.1 begin in the empty state, loglQ() - Q(t)I will

remain constant (equal to log Q(-))until a customer arrives to find all

servers busy. As customers arrive at the same rate for all k and the

service facility cannot possibly be saturated before the kth customer

arrives, as k increases the service facility will require a proportionately

longer time to fill. Thus, as illustrated in the figure, loglQ(o) - Q(t) I

will remain constant for an initial time period of a length which is an

increasing function of k.
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This behavior for small t complicates estimation of the time to

equilibrium. To avoid this problem, we use instead L(t), the number of

customers in the system (in queue and in service) at time t as our repre-

sentative measure of system behavior. Figure A3.2 illustrates log[L(o)-L(t) 

versus t for the same three M/M/k systems with p = .75, P = 1, and k=2,5, and

9. As before, the systems begin at rest. (Note that L(X) is an increasing

function of k when A and k remain fixed [21].) In each case, for large

t, L(t) approaches L(X) in an approximately exponential manner. The

convexity of the early portion of the curve implies that initial transient

decay occurs at a rate faster than this exponential function. Thus, it

appears that for systems which begin at rest, L(t) can be approximated by

L(t) L(X) + Ae , t > t, (A3.1)

for some parameters A < 0 and t, and is bounded below by

L(t) = L(X) [1 - e t/], t > 0, (A3.2)

for some parameter T.

Closer examination of the slope of the log|L(-) - L(t)| versus t

curves for large t suggests that our T R formula (3.24) with p replaced by

kp (we refer to this modified TR expression as T*) provides a good approxi-

mation to this time constant. In Table A3.1 we show the experimental time

constant Tex , T*, and the ratio Texp/T for several representative M/M/k

systems. In most cases, T* is within 10% of T . These results suggestR exp

that a good upper bound on the time to equilibrium is given by pure ex-

ponential decay, i.e., expression A3.2, with parameter Tr.R'

An implication of these results is that for an M/M/k system which

begins at rest, the time required for the transient effects to become
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Table A3.1: A Comparison of Estimated and Observed Time Constants
for Two M/M/k Systems Which Begin at Rest

k pR -T exp R

2 .5 1 8.3 8.6 1.0

3 8.2 8.6 1.0

5 8.1 8.6 .9

7 8.6 8.6 1.0

9 9.9 8.6 1.2

2 .75 1 41 41 1.0

3 40 41 1.0

5 39 41 1.0

7 39 41 1.0

9 39 41 1.0
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negligible is a function of X and k but is not otherwise a function of

the number of servers. Intuitively, we might expect this behavior to hold

for other initial conditions, as well. The results that follow suggest

that this is, in fact, the case.

Figures A3.3 - A3.4 illustrate logL(-) - L(t)I versus time for an

M/M/9 system with p=.75, =1/9, and initial conditions of i=2,6,7,8,11,20,

and 25 customers in the system. In all cases, for large t transients

decay in an approximately exponential manner.

By examining graphs of L(t) versus t for these seven cases, we confirm

that, for this system, the initial behavior of L(t) falls into the four

groups indicated in Chapter 4. Figure A3.5 illustrates L(t) for small t

when there are initially 2, 6,7, or 8 customers in the system. When i is

less than 7, L(t) is a monotonic increasing function of time. When i

equals 7 or 8, L(t) decreases for small t, and then increases monotonically

to L(). When i-8, this initial decrease in L(t) overshoots the equilibrium

value, L(c).

These cases illustrate behavior in the first two categories indi-

cated in Chapter 4. Intuitive justification of this behavior is similar

to that in the single-server case. If, at time t=O, the first arrival is

likely to occur before the first service completion, L(t) will increase

in a monotonic manner. For an M/M/k system with i customers at time t=0,

if i < k,

p first customer arrival occurs = (A )

\before first service completion/ i+X (

Therefore, L(t) will increase in a monotonic manner if

> .5 , (A3.4)
iT+x -
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or, equivalently, if

i< . (A3.5)

For the system illustrated in Figure A3.5, =.75 and =1/9. Thus, we

expect L(t) to increase in a monotonic manner for all t only if i < 6.75.

This is, in fact, the behavior indicated in Figure A3.5.

In Figure A3.6, we illustrate initial behavior of L(t) when there

are 11,20, or 25 customers in the system at time t=0. In all cases, L(t)

decreases monotonically to L(X), but when i=20 or 25, L(t) is initially a

linear function of t. This is the behavior observed in Chapter 4 for

systems with initial conditions in groups (iii) and (iv). The intuitive

justification presented at that point carries over directly to k-server

systems.

In Table A3.2, we compare T to T* for each of these cases. As
exp R

before, T appears to provide a good approximation for the actual time

constant T.

These results suggest that, as in the single-server case we can

categorize transient behavior into four classes with respect to initial

conditions. Let i be equal to the number of customers in the system at

time t=O. Then:

(i) If i < , L(t) approaches L(o) monotonically from below. In

addition, L(t) is bounded from below by (A4.1) with a nega-

tive value of A and t=0.

(ii) If - < i < L1 , for some L1 > L(X), L(t) will not be a mono-

tonic function of t, but will initially decrease before in-

creasing to L(X) in a monotonic manner. If L(X) < i < 1,

this initial decrease will cause L(t) to overshoot L() exactly

once. The time to equilibrium will be bounded above by that

of a system that begins at rest.
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Table A3.2: A Comparison of Estimated and Observed Time Constants for
an M/M/9 System Which Does Not Begin at Rest

Initial
k P kp Conditions exp TR exp 

exp R exp/ R

9 .75 i P2(0) = 1 37 41 .9

P6(0) = 1 41 41 1.0

P7(0) = 1 41 41 1.0

P8 (0) = 1 41 41 1.0

P20(0) = 1 41 41 1.0

P25(0) = 1 45 41 1.1
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I < % 'L ',
(iii) If L 1 < L(0) < L2, for some L2 > L 1 > L(O), L(t) will decrease

monotonically to L(o), bounded above by expression (A4.1) with

a positive value of A.

(iv) If L2 < L(0), initially L(t) will decrease linearly, then L(t)

will behave as in category (iii).

A3.2 The Effect of System Capacity on the Decay of Transients

To this point, we have examined only infinite-capacity queueing

systems. Intuitively, since there are fewer states in the system, we

might expect that when capacity is finite, equilibrium will be reached

more quickly than in the corresponding infinite-capacity system. The

following empirical results support this conjecture and indicate that, as

with systems considered earlier, for large t transient decay is approx-

imately exponential. The discussion here will be restricted to systems

which begin at rest.

We consider first an M/M/1 system with p=.75, =l, and a maximum of

N customers allowed in the system at any time. Figures A3.7 and A3.8 illus-

trate logIQ(-) - Q(t) I versus t for ten values of N in the range from 2 to

20. In each case, after an initial period decay is approximately exponential.

The time constant (equivalently, the magnitude of the reciprocal of the

slope) of log[Q(o) - Q(t) I can be seen to increase with N confirming our

intuitive feeling that: the time to equilibrium should, in fact, be an

increasing function of system capacity. In Table A3.3, we list the experi-

mental time constants for these and other representative M/M/1 systems with

varying system capacity.

I:t should be noted that ithas been proven that, at least asymptoti-

cally, transients in these systems decay in an exponential manner. This

is due to the theoretical result of Morse (see expression (3.2)) which
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Table A3.3; The Experimental Time Constant for an M/M/1 System With p=.75,
=1l, and a Finite Capacity of N Customers

N p=.5 0-.75 P=.85

2 1.3 1.1 1.1

4 2.8 2.8 2.8

6 4.3 5.3 5.3

8 5.8 8.0 8.5

10 7.2 10.8 12

12 15 17

14 18 22

16 21 26

18 24 32

20 25 37

8.6 41 122
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indicates that for a finite-capacity M/M/1 queueing system, Q(t) can be

expressed as a weighted sum of decaying exponential terms. We do not, how-

ever, have prior knowledge on the amount of time necessary for one of these

exponential terms to dominate. Our empirical results suggest that the

length of the initial nonexponential period is an increasing function of N.

In Figures A3.9 and A3.10, we show that these results also hold for

two Erlangian queueing systems, specifically M/E4/1 and E4/M/1 systems with

p=.75 and p=1. In Table A3.4 the experimental time constants for these sys-

tems are listed.

These preliminary results indicate that the time to equilibrium of

a finite-capacity queueing system is bounded above by that of the corres-

ponding infinite-capacity system. To verify that this is, in fact, true,

a more exhaustive study of systems with various interarrival and service

time distributions under a range of initial conditions is needed. We sus-

pect that with further work, a modified R formula could be determined to

account for system capacity.
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Table A3.4: The Experimental Time Constant for M/E 4/1 and E 4/M/1 Systems

With p=.75, =1, and a Finite Capacity of N Customers

M/E4/1 E4 /M/1

N T N T
exp exp

2 .7 2 .8

4 2.6 4 3.2

6 5.5 6 6.0

8 8 9.9

10 11.9 10 13.4

26 c2 26oo
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