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ABSTRACT

The fracture toughness of fiber reinforced composites may be optimized without
unwarranted loss of transverse strength through control of the interface strength between
reinforcing material and matrix. These design considerations, including limits on the
permissible interface strengths, have been delineated by others. This present work
examines the effect of carbon interlayers on the tensile strength of flat interface couples
representing the interface between fiber and its coating. Polished single crystal sapphire
wafers, 1.0 inch in diameter and 0.5 mm thick, were substituted for the fiber; relatively
thick, 2gm, SiC coatings are substituted for the thin coatings used in composite materials;
and 2000A carbon interlayers, being the weakest material present, act as mechanical fuses
to control the overall strength of the entire system.

As the SiC coatings had to be relatively thick, homogenous, and nearly stress-free,
a study of the deposition of SiC by plasma enhanced chemical vapor deposition (PECVD)
was conducted. Coatings with a nearly zero residual stress were deposited at 2750 C, 50gm
pressure and 30 watts applied power with the lower electrode self-biased at +3 volts.
Uniform deposition was insured through the use of hydrogen as a dilution gas.

The carbon interlayers processed by PECVD at 4000 C deposited on sapphire were
found by high resolution TEM to be amorphous or microcystalline carbon depending on the
applied rf power. Carbon deposited on microcrystalline SiC by low pressure CVD
between 1100 and 15000C was determined by x-ray diffraction to be highly oriented in
structure with the degree of preferred orientation increasing from a Bacon Anisotropy
Factor of 4.5 for material deposited on SiC at 1 100°C to 6.8 for material deposited at
15000C.

Strength of the SiC/C/Sapphire couples was determined through a technique called
laser spallation whereby a laser is pulsed onto a thin absorbing layer on the reverse side of
the substrate; the laser impact creates a shock wave which propagates through the substrate,
gets reflected from the front surface where it is converted into a tension wave, and, if of
sufficient intensity, causes delamination of the film. This phenomena itself is investigated
using a high speed digitizer to examine shock wave propagation through piezo-electric
quartz and is also modeled with finite element techniques.

The tensile strength of the sapphire/SiC interface was found to be 14.7 MPa for
LPCVD SiC and 10.0 MPa for PECVD SiC. Couples with amorphous carbon interlayers
had a strength of 2.0 MPa. The strength of interface couples with highly oriented carbon
interlayers scaled with the carbon processing temperature.

Thesis Supervisor: Professor Ali S. Argon
rTitle: Quentin Berg Professor of Mechanical Engineering
rThesis Supervisor: Doctor James A. Cornie
rTitle: Principal Research Associate
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I. Introduction

Composite materials are composed of two phases, a reinforcing

material and a matrix. The materials that make up the two components

are chosen to suit a particular application such that the desirable

properties of each component may be maximized while minimizing their

particular weaknesses. For metal matrix composites with continuous

ceramic fiber reinforcement it is possible to bring together the high stiffness

of the fiber with the toughness of the metal to produce a material with an

extremely high strength to weight ratio.

Many problems associated with these materials stem from their

fracture behavior. If the matrix and reinforcing material are strongly

bonded, cracks originating in the matrix will easily propagate through both

the matrix and fiber, leading to sudden, catastrophic failure. As the

application most concerned with materials with high strength to weight

ratios centers around flight, mechanical failure needs to be graceful, i.e.,

gradual and not abrupt. If the matrix and reinforcing material are weakly

bonded, the material will not fail in a sudden manner; however, it will then

have low transverse strength. Indeed, composites have a high density of

interfaces and the bulk mechanical properties of the composite are largely

determined by the interface strength between the matrix and the

reinforcing material.

Therefore, attention has shifted from the properties of the individual

components to control of the interface between them. Coatings have been

applied to the fibers to keep them from reacting with the matrix to produce
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brittle products that lead to crack initiation. Argon [1] introduced the

concept of using these coatings to control the interface strength to act as a

mechanical fuse deflecting cracks in a controlled manner. Argon and

Gupta [2] have elucidated the theoretical design considerations in which

composite toughness may be maximized without undue sacrifice of

composite transverse strength. The purpose of this work was to process an

interface for the sapphire/SiC system with a specific tensile strength as

prescribed using the design criteria Argon and Gupta.

In the second chapter of this thesis the theoretical framework of

interface tailoring is discussed and the strategy behind the model couples is

presented. Theoretical discussion focuses on the works of Argon, Cornie,

and Gupta and will include the calculation of the desired interface strength

for crack bridging and frictional pullout for composites reinforced with SiC-

coated sapphire fibers. The model interface couples consist of SiC and

carbon films deposited on sapphire wafers and different aspects of the

processing and testing of these couples are examined in depth in

subsequent chapters.

Chapter 3 focuses on the processing of SiC coatings by plasma

enhanced chemical vapor deposition (PECVD). This chapter involves

questions of uniformity of deposition, homogeneity of structure, and

residual stresses in coatings. The literature pertaining to each of these

subjects is briefly reviewed and the method used to determine satisfactory

processing conditions is detailed. Finally, processing parameters required

to produce a homogenous, low stress, 2m thick SiC coating are presented.

Chapter 4 is dedicated to the processing and evaluation of carbon

films deposited by both plasma and thermal CVD. The chapter begins by

briefly outlining the literature relating the processing / structure
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relationship in the deposition of carbon. The particular process procedures

used in the work are detailed and the structure of carbon films by both

deposition processes are examined by x-ray diffraction, transmission

electron microscopy (TEM), and x-ray photo-electron spectroscopy (XPS).

Chapter 5 is devoted to the mechanical testing of the model interface

couples through the use of a laser spallation technique. In this experiment

a laser is pulsed onto a thin absorbing layer on the reverse side of the

substrate and an elastic shock wave is created which propagates through

the substrate eventually loading the substrate/film interface in tension. If

this shock wave is of sufficient amplitude, the interface will separate

causing delamination of the film. This phenomenon is experimentally

investigated using a high speed digitizer to examine the wave propagation

through piezo-electric quartz. These experimental results are then used as

a basis for a finite element model to transfer the results from quartz

substrates to sapphire substrates. Chapter 5 closes with the tensile

strength results of the model couples and the relationship between tensile

strength and couples processing is discussed.

Chapter 6 contains a discussion of the entire work, particularly with

respect to the design criteria outlined in the second chapter, Chapter 7

presents the conclusions and Chapter 8 contains suggestions for future

work.
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II. The Design of Interfaces

As the development of fibers for the continuous reinforcing of

composites has progressed, attention has shifted from the fibers and matrix

to the interface between them. It has become quite apparent that success in

controlling the strength and toughness of inorganic composites rests upon

control of the interfaces in these materials. The main concern of this work

is to contribute to the understanding of the relationship between the

processing of interfaces, and the resulting ability to control bulk composite

strengths and toughness. The purpose of this chapter is to briefly review

the theory regarding control of bulk mechanical composite properties,

primarily toughness and longitudinal and transverse strength, through

interface design, and then to present the general thinking that was the

impetus to this work.

The most desired result of interface control is to achieve composite

toughening through the deflection of cracks propagating through the

matrix. If these cracks can be deflected at the fiber/matrix or fiber/coating

interface, the fibers may still carry longitudinal loads, the crack energy

may be consumed through delamination and fiber pull-out, and complete

failure may be delayed. This has been called toughening through

"interface delamination, crack-bridging, and frictional pull-out [1, 3]" and

is shown schematically in Figure 2.1. This phenomenon has been

successfully demonstrated in ceramic composite systems [3-5].

Argon and coworkers [6] have mathematically delineated the

material requirements for crack deflection at a composite interface while

17



maintaining maximum transverse composite strength. The lower bound,

<*, for interface strength is given as:

a(lower bound) = k at (2.1)

where k is the maximum stress concentration factor due to presence of

reinforcing elements and at is the transverse strength of the composite.

The upper bound on interface strength is determined by calculating the

resistance to crack propagation in all directions at the bimaterial interface

and then determining the requirements necessary such that crack

propagation resistance is least along the fiber/coating interface.

The physics of the "resistance to cracking" is specified in terms of a

strength and an energy release criterion [6], both of which must be met.

The strength criteria are specified as two limits in the ratio of material

strengths to directional stresses:

ci <oo[ 0 =/2] (2.2)

,Cf tee[e =0]

rO <Cr[O = rd2] (2.3)

Cf Co[: = 0]

The first criterion signifies that the ratio of interface strength, ca, to fiber

strength, af, must be less than the ratio of the tensile stress tending to

separate the interface (aoo[0 =c/2]) to the tensile stress on the plane across

the fiber (aoe[ =0]). (See the schematic in Figure 2.2 showing the crack tip

at the bimaterial interface.) The second inequality specifies that the ratio of

interface shear strength, cro, to fiber strength must be less than the ratio of
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the actual shear stress (aro[0 =x/2]) upon the interface to the axial stress

across the fiber at the crack tip. The energy criterion for crack deflection at

an interface between two materials relates the work of separating the

materials to the rate of energy release upon separation:

Gcft G (2.4)

meaning that the ratio of the work of separation of the interface, Gci, to

work of fracture across the fiber, Gcft, must be less than energy release rate

for growth along the interface, Gd, to the energy release rate across the

fiber, Gp [7].

While it; is not possible to state generalized formulae delineating the

energy criterion, Gupta, et. al. [6] have specified the strength criterion in

the form of delamination charts based on the material properties of the

coating and fiber. These charts specify the ratio of stress across the

interface to stress along the fiber for both fiber failure and interface

delamination as a function of the Dunders parameter, a, and are shown in

Figure 2.3 for various Dunders parameters, A. The parameters aX and D are

bimaterial constants and are defined [6]:

ca= [ (SllS22)2/ (SllS22)1 - 1] (2.5)
U[(SllS22)2/Y(SllS22)1 + 1]

[SllS 22 + S1212 - [iSlS 22 + S1211] (2.6)
(H1 1 H2 2 )

Directions are as defined in Figure 2.2 and sill and S22 are the elastic

compliances for the fiber and coating, denoted 1 and 2, respectively, and H 11

and H22 are defined as:
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14H = [21/4 + (2n/4 )H11 = [2nX1 1sI s2 2 ]l + (2nX ySlS22) 2 (2.7)

H 11 = [2nk1/4 slls 2 2 1i + (2nX1/4Sls 2 2 )2 (2.8)

we (l+p) a - 2S12 + S66where = s22 n = /1 and p = 
8si' 2 'S 1 S22

The chart is used by first calculating the Dunders parameters for the

fiber-coating couple. Note that the Dunders parameter has less of an

effect on the results and may reasonably be assumed to be 1.0 without

introducing large error into the calculation. After ca is determined for the

material pair the value, D, read off the chart used to specify the maximum

permissible interface strength for interface delamination:

Gi, max = ( Df (2.9)

The maximum interface strength for SiC coatings on carbon pitch fibers

and on sapphire fibers have been calculated as described here and are

presented in Table 2.1. Processing of model interface strengths as

prescribed by the above theory and listed in Table 2.1 was one of the main

goals of this work; later workers could then process interfaces in actual

composite materials and mechanically test their composites to verify the

entire interface design method. Future workers would be able to use the

present results with model interface couples to direct their studies in the

actual systems.



Table 2.1 Maximum Allowable Interface Strengths for Interface
Delamination

Maximum
Fiber Fiber Coating Allowable

Fiber Modulus Strength Coating Modulus Strength
(GPa) (GPa) (GPa) (MPa)

Carbon Pitch-55* Ell, 380 2.12 SiC 448 95

E22 , 13

Sapphire** 400 2.5 SiC 448 825

*properties from Cornie [6]
**properties from Battelle [8]

The direction pursued in the present work was taken from the

success of the delamination/crack-bridging toughening effect witnessed in

several composite systems in which the presence of a carbon or a carbon

rich layer at the fiber surface was linked to the toughening [4, 5]. In these

cases the carbon rich layer was formed due to a reaction of the fiber with

some additive in the matrix during processing; however, this formation

process was not understood. Graphite crystals also have properties that

are highly dependent upon direction within the crystal and bulk materials

have been produced with varying degrees of preferred orientation of

crystallites [9]; therefore, it is theorectically possible that carbon films could

be produced with strengths varying over a wide range by controlling the

degree of preferred orientation among the crystallites; furthermore, the

weak bonding between adjacent layers in the carbon crystallite could
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provide a path deflecting a crack away from the fiber. The ideal interlayer

would contain just enough randomly oriented crystallites to maintain

transverse strength while also providing paths deflecting cracks away from

the fiber. This is shown schmetically in Figure 2.4. Therefore, it was

,decided that an attempt would be made to use carbon coatings as

interlayers in flat model test couples, shown schematically in Figure 2.5, in

order to achieve interface strengths for actual fiber / coating systems

predicated by the above design considerations.

The work would be undertaken through two separate, but related,

approaches. There would be a processing / property study linking the

processing of the model interface specimens to their mechanical properties

as determined. by laser spallation. In a parallel attack the processing /

structure relationship in the production of thin carbon films would be

studied. This two part method was necessary as a detailed structure study

of the thin carbon layers in the mechanical couples would be very difficult

and over extend the project. From the understanding of the processing /

structure relationship in the processing of carbon films, a possible

structure / property relationship may be contemplated; however, it must be

emphasized that this contemplation is speculative as the structure of the

carbon interlayers itself has not been studied in depth. This is a summary

of the thinking and direction behind the present research now completed.
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Figure 2.1 Schematic representation of the interface delamination/crack
bridging/frictional pull-out composite toughening mechanism,
from Cornie[3].
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Figure 2.3 Generalized interface delamination chart for some values of
the Dundar's constant, A, from Gupta [6].
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Figure 2.4 Schematic representation of the ideal carbon interlayer,
containg enough randomly oriented crystallites to maintain
transverse strength while deflecting cracks away from the
fiber.



Carbon, 2000 Angstroms

Ceramic Coating: SiC, 2 ,um

Sapphire Wafer, 500pLm

Figure 2.4 Schematic representation of the model interface test
specimens.
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III. Silicon Carbide by Plasma Enhanced Chemical Vapor Deposition

3.0 Introduction

This chapter discusses the processing by plasma enhanced chemical

vapor deposition (PECVD) of the silicon carbide (SiC) layer for the spallation

test couples. Enclosed is a brief general review of the literature regarding

PECVD of SiC. This is followed by a description of the equipment used in

this work and the general processing procedure. Three aspects of process

development are then treated in detail: deposition uniformity and

homogeneity and film stress. Each of these three subjects are examined in

some detail in a short literature review followed by experimental results

and a discussion of how these results affect the choice of processing

parameters for laser spallation couples. In conclusion, we will present

how we were able to process homogenous, uniform, low stress SiC coatings

of several micron thickness.

3.1 Literature Review Regarding PECVD of SiC

3.1.1 An Overview of Plasma Enhanced CVD

Plasma enhanced chemical vapor deposition is a glow discharge

process whereby the energy needed for chemical reaction is supplied

through high energy electrons rather than by thermal activation. A glow

discharge is created when applied high frequency power accelerates the

few free electrons found in any gas. When these electrons gain sufficient

energy, they may cause dissociation, ionization, or excitation of gas species
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upon collision. Ionization events create more free electrons which are in

turn accelerated and contribute to further breakdown of gas species. This

,collision cascade continues until the rate of electron and ion production

equals the rate at which free electrons and ions are lost to surfaces or in

recombination events. PECVD processing has been reviewed by a number

of authors [10-13].

A steady state plasma for a two electrode system is shown

schematically in Figure 3. la and the voltages for this situation are shown

in Figure 3. lb. Note that the potential of the plasma is more positive than

any surface in contact with it. (For our system the plasma voltage for

typical processing parameters is +15 volts while the upper electrode would

be at -500 volts. The floating potential at the lower electrode is +3 volts.)

This is because electrons are much more mobile than the relatively massive

ions and diffuse more easily out of the glow. This potential between the

plasma and electrodes accelerates ions into the electrode creating a

bombardment of the surface and a generation of Auger electrons which are

accelerated back into the plasma. These auger electrons have very large

amounts of energy and dramatically affect the electron energy distribution

of the plasma. The electron energy distribution plays a central role in the

plasma chemistry, while ion bombardment of the surface greatly effects

surface reactions and film properties and will be discussed in more detail

below.

Specification of a plasma state involves knowledge of electron

concentration and energy distribution, reactant concentrations, and

residence time. These parameters are extremely difficult to determine;

therefore, plasma processes are more often described in terms of

macroscopic properties which include rf power and frequency, gas types
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and flow rate, pump speed, reactor geometry, and electrode temperature,

material, and potential for the purpose of specifying the conditions for a

successful deposition process. These macroscopic parameters interrelate

to determine the above microscopic properties.

Power affects the electron concentration which in turn determines

the degree to which the gases are dissociated [14, 15]. Therefore,

increasing the power increases the plasma potential as well as the number

density and energy of the ions. Power and pressure together largely

determine the electron energy distribution. Increasing the pressure

lowers the electron energy, broadens the energy distribution, and decreases

ion flux to the substrate [16, 17]. These pressure effects result from

increased collisions at higher pressure. Generally, the best quality films

used in microelectronics applications have been deposited at low pressures

and low powers where there is low depletion of the process gases [13, 18].

While pressure and power are process variables that largely

influence gas phase processes, substrate temperature primarily affects

surface reactions. Higher substrate temperatures enhance surface

reactions and product desorption leading to lower hydrogen film content,

higher density and increased chemical stability [19]. Higher substrate

temperature has also been linked to low oxygen contamination in films [20].

While not a process parameter like pressure or power, ion

bombardment of the growing film is important and needs to be mentioned

in its own right. Ion bombardment influences nucleation, growth kinetics,

film composition, structure and stress [10]. Ion bombardment enhances

desorption and often provides the necessary activation energy for etching

processes [12]. It also increases surface adatom mobility, and if it is of

sufficient intensity, may induce an amorphous to crystalline transition in
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the growing film. In general, increased bombardment leads to higher film

density and stress and decreased hydrogen content in most materials.

The entire deposition process consists of several steps: delivery of gas

to the glow discharge, decomposition of the gases to form ions, excited

species and neutral radicals, diffusion of these reactive species to the

surface region, adsorption of the species to the surface, reaction at the

surface to form the growing film, desorption of reaction products, and flow

of these products away from the surface region; however, the process can

basically be divided into two main steps: reaction of species in the plasma

and reactions at the growing film surface. A successful model must have

values of all rate coefficients for plasma chemistry and surface reactions.

Because of the lack of information regarding these processes, complete

models do not; exist. The processes are instead described in terms of

dominant reaction mechanisms.

3.1.2 Silane and Methane Based Plasmas

Quadrupole mass spectroscopic studies have shown that silane and

methane tend to break down independently of each other, primarily

forming SiH2, SiH3, CH2 and CH3 [21]. Their ions do react with each other,

but as ions compose only one part in ten thousand of the gas species,

neutral free radicals are the most important supply of species for the

growing film [12, 22]. Therefore, silane and methane plasma reactions

may be considered independently. (Ions are important to the deposition

process in that they bombard the growing film, but their material

contribution to the growing film is small.)

Discussion of silane reactions in the glow discharge processing of

silicon films has resulted in some controversy. There are two theories
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regarding the dominant mechanism of deposition. Robertson and

Gallagher have proposed a model based on SiH3+ radicals [12, 23-26] and

Veprek has proposed a model based on the SiH2 radical [27-32]. Ross has

given an excellent summary of the dispute [33] and before the controversy

even started Haller [17] suggested that each mechanism may be dominant

in different power/pressure regimes.

At low pressure and power it is likely that the processes based on

SiH 2 production dominate. This deposition model is as follows: electron

impact dissociates silane into SiH2 and H2. The SiH2 immediately reacts

with another silane molecule to form disilane, Si2H6. Disilane may also

react with another SiH2 radical to form higher silanes. Disilane and

higher silanes decompose on the surface under the impact of ion

bombardment. These reactions are shown below:

SiH4 + e- ---> SiH2 + H2 + e- (1)

SiH2 + SiH4 ---> Si2 H 6 (2)

Si2 H 6 +SiH2 ---> Si3 H8 (3)

Si2H 6 ---> 2Si(a) + 3H2 (4)

Reaction 1 is controlled by the electron energy distribution, reaction 2 may

be considered instantaneous [31], and reaction 4 is controlled by ion

bombardment, so that if reaction 4 is not fast with respect to reaction 1,

powder is formed.

Methane dissociation in glow discharges has been studied by several

workers [15, 22, 34, 35]. Rudolph [22] identified five dissociation reactions,

with decomposition, primarily to CH3 and CH2 radicals, and Tachibana [34]

listed a remarkable 56 possible radical reactions! The dominant radical

reaction product depends on dilution gas and was found to be C2H2 with

argon and C2H4 with hydrogen with C2H5 and C2H6 also present in each

32



[22]. The majority of evidence indicates that neutral radicals are

responsible for the bulk of the deposition suggesting an ion bombardment

enhanced model as for silane.

When mixing silane and methane in a plasma, several factors

should be taken into account. Methane is more difficult to decompose in a

plasma than silane [15] and CHn radicals have lower sticking coefficients

than silane based radicals [35]; therefore, it is necessary to have more

methane than silane in the plasma to get an equal amount of silicon and

carbon in the film. The much stronger attachment of hydrogen to methane

is also the reason that the hydrogen content in the film is determined by the

methane content of the plasma. Generally, the development of silane and

methane based plasma processes in practice has been qualitatively guided

by the above discussion with the particulars worked out empirically.

3.1.3 Structure and Properties of Amorphous SiC

The structure of silicon carbide deposited by plasma enhanced

processes has been studied by transmission electron microscopy, infrared

analysis, magnetic resonance and x-ray photoelectron spectroscopy and

has been found to be an amorphous, hydrogenated, highly cross-linked

network with a large number of tetrahedral sp3-type bonds [22, 35-42]. This

structure has been shown to have voids from 10 to 60 angstroms in diameter

containing molecular hydrogen under extremely high pressure [36, 37, 43].

This pressure has been related to film stress and will be discussed further

below. Because of this variability in density, SiC films have been produced

with modulus values ranging from 5 to 95 percent of bulk SiC [44].

Amorphous SiC also has a high hardness and high chemical stability [40]
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and has optical, electrical and mechanical properties which vary smoothly

with carbon concentration [41-43].

3.2 The Plasma Enhanced CVD System

The original plasma enhanced CVD reactor system used for this

work was designed and constructed by Landis [44]. The equipment has

since been adapted and expanded to deal with new situations as they arose.

These alterations are discussed in this chapter as they become applicable.

The chamber is 12 inches high, 18 inches in diameter and shown

schematically in Figure 3.2. There are two rf electrodes 6 inches in

diameter separated at a distance of 2.5 inches. The system has two main

pumping systems. Initial pumping is accomplished with a LeyboldTM 450

liter/second turbo-pump backed by a LeyboldTM 0.5 liter/second (D9OAC)

mechanical pump. The system may also be pumped with a CTI eight inch

cryo-pump which is located directly behind the main chamber and valved-

off from the main system with a gate valve. Process gases are processed

solely through the turbo/mechanical pump combination as accumulation of

some process gases, particularly silane, at the cold head would be

extremely dangerous. The gate valve at the cryo-pump is interlocked with

the gas delivery system in such a way that the process gas shut-off valves

are closed as long as the cryo gate valve is open.

Process gases are introduced into the system through a MKSTM series

260 control system. For the deposition of SiC, silane, methane, hydrogen

and argon were used. Processing pressures were controlled with a MKSTM

type 220B BaratronT M interfaced with a solenoid controlled butterfly valve.

The plasma is produced using 13.56 MHz power which may be

supplied to either or both of the electrodes. The power supply for the upper
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'electrode is a RF Plasma ProductsTM HFS 501 component, while the supply

:for the lower electrode is a HFS 251. While the power supplies require an

impedance of 50 ohms, the impedance of the plasma changes with

processing conditions. Therefore, a matching network composed of

variable capacitors and inductors is placed in series between the power

supplies and the electrodes. These capacitors and inductors are

manipulated so that they, in conjunction with the plasma, "show" the

power supplies 50 ohms. This is important because once a level of supplied

power is set and the plasma is "matched", the rf and dc voltages at the

upper and lower electrodes are then fixed and are no longer variables. A

more extensive description of the rf power system may be found in the

thesis of Landis [44]. Voltages at both the upper and lower electrodes were

measured with a SEV-2DC feedback controller.

The system as constructed by Landis had a differentially pumped

quadrupole mass spectrometer mounted below the lower electrode with a

small aperture between the plasma and the quadrupole. As it was

desirable to obtain thicker coatings at higher temperatures, this

instrument was removed and a heating element was installed in its place.

The heated electrode assembly is shown schematically in Figure 3.3. Note

that the heating element is made of molybdenum and that the lower

electrode plate is composed of graphite. NiChrome heating elements had

extremely short lifetimes and the stainless steel electrode plates were poor

conductors of heat. The thermocouple shown in Figure 3.3 is the control

thermocouple. Reported processing temperatures are from this

thermocouple.

The lower electrode alteration included a change in the way in which

rf power is supplied to the lower electrode. A schematic of the methods of
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power supply before and after the alteration is shown in Figure 3.4. Before

the heater was in place, power could be supplied to an electrically isolated

fixed plate (marked in Figure 3.4b) to which the transfer (or electrode) plate

simply was mounted. This lower plate impeded heat flow from the heater

to the electrode plate and was, therefore, eliminated. Power is now

supplied by a spring-loaded finger that presses against the side of the

electrode plate. It was important to remove deposited coatings from the end

of this finger regularly as the deposits affect the supply of power to the lower

electrode surface.

3.3 General Processing Procedure

The general processing procedure was as follows: the system was

pumped down to less than 5.0x10- 6 torr and the lower electrode was heated

to the processing temperature while the graphite lower electrode plate sat

on the heater. Hydrogen and argon were introduced into the chamber and

a plasma was struck. This was to clean the electrode surfaces. The exact

processing parameters are shown in Table 3.1; these parameters were

determined through experiments described in subsequent sections. After a

15 minute clean up period for the electrode surfaces, the lower electrode

plate was withdrawn back into the load lock ready for the specimens.

Sapphire substrates were first dipped in tri-ethane, then acetone, and

then placed for 2 minutes in methanol. Silicon wafers were cleaned with

methanol, then dipped for 15 seconds in a 10 percent hydrofluoric acid in

ethanol solution, and blown dry with nitrogen, following Herbots and

coworkers [45]. The cleaned specimens were placed on the graphite lower

electrode plate in the load lock and the plate was transferred to the main

reactor chamber. The system was pumped down to 2.0x10-6 torr with both
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the cryo and turbo pumping systems. The gases required for deposition

'were then introduced into the chamber and deposition began with the

striking of the plasma. Typical deposition rates ranged from 10 to 30

nanometers per minute. The exact processing parameters for the SiC used

in the production of spallation specimens are also displayed in Table 3.1.

The methods by which these parameters were derived will be discussed

later in this chapter.

Table 3.1 Processing Parameters for the Deposition of SiC

Cleaning Deposition

Time 15 minutes 3 hours

Temperature 300°C 2750°C

Pressure 100 ~Im 50tm

Gas Flow
SiH 4 --- 1.8 sccm

CH 4 --- 2.9 sccm

Ar 20.0 sccm

H 2 20.0 sccm

Upper Electrode
Incident Power 100 watts 25 watts
DC Voltage -450 -350

RF Voltage -560 -240

Lower Electrode floating floating
Incident Power --- ---

DC Voltage +8 +3

RF Voltage -22 -12
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3.4 SiC Process Development

3.4.1 Uniformity of Deposition

As the system electrodes are 6 inches in diameter and most of the

substrates coated were 1 or 2 inches in diameter, it was possible to coat

several wafers at once. Questions arose regarding the uniformity of coating

thickness across the electrode surface. Uniform deposition for parallel

plate PECVD reactors is achieved by balancing several factors which

determine reaction rates including residence time, reactant concentration,

and electron density [12, 14]. Residence time and concentration both

decrease as the gas flows across the substrate while the electron density

increases as the center of the electrode is reached. Gradients are kept to a

minimum when input gases are depleted only slightly [46].

The spatial distributions of electrons and reactants are not easy to

measure; however, the process variables, pressure and power, which

dramatically affect the above parameters are easily controlled. If the power

input to the plasma is large, there will be large gradients in concentration.

Also if the pressure is too high, reactions will be much faster in the gas

phase than on the substrate surface. Decreasing the power and pressure,

however, decreases the deposition rate and thus increases deposition time.

Uniformity results are shown in Figures 3.5 and 3.6 where film

thickness is plotted with respect to the radial distance from the center of the

electrode. Three different input powers are shown in Figure 3.5 and three

different pressures are shown in Figure 3.6. From Figure 3.5 it may be

seen that the deposition is very uniform if the applied power is less than 30

watts. Interpretation of Figure 3.6, however, is less straight forward. It is

apparent that at 100gm pressure the thickness varies greatly over small

38



length scales, so much so that the effect over the longer distances is not

clearly visible. Sinha, et al. found that uniformity was poor at 100 m [47].

Local variation due to particle nucleation will be discussed in the next

section. The 50ptm curve shows a similar surface roughness, but the 30m

pressure deposition shows a smooth surface. It was unfortunate that 50

watts was chosen as the input power for all three deposition pressures as

the previous Figure 3.5 has shown that the deposition is nonuniform at 50

watts over the electrode distance. These curves show that for processes at

30 watts or less at 30km pressure, deposition will be very uniform over the

length of the electrode.

3.4.2 Suppression of Particle Formation During Processing

A serious problem that was solved in the course of this work involved

the formation of sub-micron sized particles in the plasma. These particles

would embed themselves in the growing film and act as stress

concentrators during laser spallation experiments so that the film failed

before the coating/substrate interface. Particles in a sample coating are

shown in the photomicrographs in Figure 3.7. In Figure 3.7b. the effect of

the particles upon spallation may be seen as fracture withing the coating

rather than at the coating / sustrate interface.

This phenomenon is called plasma particle generation or plasma

polymerization and has been reported in both silane and methane based

plasmas [15, 16, 22, 28, 48-51]. Particle contamination occurs when species

created in the plasma react much more rapidly with each other than at a

surface. Nuclei resulting from these reactions are usually charged and

thus remain held in the plasma until they grow to be very large [52].
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Unfortunately, while many workers will report this as a problem, solutions

are not usually stated or only referred to vaguely.

Suppression of particle generation requires either impeding plasma

reactions or enhancing surface sticking coefficients or both. Lowering the

:power will decrease the density and energy of electrons and thus produce

:fewer ions and radicals. Lowering the pressure decreases the number of

collisions a reactive specie would suffer before encountering a wall.

Increasing the flow rate reduces the residence time in the plasma.

Diluting the plasma reduces the number of reactive collisions and

changing the dilution gas alters the plasma electron energy distribution

[:15, 50].

All of the above process changes were successful to some degree;

.however, attempts at completely eliminating powder formation were

unsuccessful until hydrogen was used to replace argon as the carrier gas.

It was finally determined that use of hydrogen as the carrier gas with

silane concentration at no more than 10 percent would not yield particles at

50 microns pressure and 100 watts power, but this would still allow

deposition rates of nearly 60 nanometers per minute.

It should be noted that argon was unacceptable as a dilution gas.

Spears, et. al. [48] detected particles trapped in the glow discharge via laser

light scattering in gas plasmas as dilute as 0.1 % silane in argon with as

little as 3 watts power. Knights, et. al. [50] found that argon dilution led to

coatings with high void densities under all discharge parameters while

others [49] showed that the reactive sticking coefficient of silane radicals

was generally much larger in hydrogen than in argon based plasmas.

Similar results were also found in methane-argon and methane-hydrogen

:plasmas where Rudolph and Moore [22] determined through mass
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spectroscopy that while hydrogen dilution led to radical formation with

nearly saturated carbon bonds and very little polymerization, argon dilution

was shown to lead to unsaturated bonds permitting rapid polymerization.

Roca i Cabarrocas [16] and Tachibana, et. al. [15] give some explanations

for the favorable performance of hydrogen as a carrier gas. The former

showed a large increase in ion energy and ion flux in silane-hydrogen

plasmas which would increase the reactive sticking coefficient of neutral

radicals. The latter showed that argon and hydrogen plasmas had

significantly different electron energy distributions leading to much higher

degrees of dissociation in argon plasmas.

Even after hydrogen was used as a dilution gas, test specimens

continued to show particles in the films. These particles, however, were

not produced in the plasma. The wafers were being sectioned into quarters

by scoring them with a diamond-tipped pen. They would break nicely along

the scratch; however, this process would generate a fine silicon dust that

would stick to the pieces even after long ultra-sonic cleaning processes.

Once this phenomenon was discovered, wafers were not sectioned until

after all process steps were completed.

It was concluded that suppression of particle growth required the use

of hydrogen gas with the silane gas concentration not more than 10 percent.

In addition, the supplied power must be below 100 watts with the pressure

below 50m. Finally, there must also be no abrasion of the wafer in the

vicinity of the test surface.
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'3.4.3 Residual Stresses in Coatings

.3.4.3.1 Literature Review Regarding Stress in Films

Stresses in SiC [53-56], SiN [46, 47, 57-65], and SiO [59, 61, 62, 66] films

produced by PECVD have been extensively studied. Stress in these coatings

was found to vary over a great range from highly compressive to highly

tensile and to depend on such processing parameters as substrate

temperature, power supplied to the plasma, frequency of this power,

electrode spacing, gas pressure, flow rate, and composition, and length and

temperature of post-deposition anneals. The effects of these processing

parameters on film stress were explained in terms of their effect on ion-

bombardment, hydrogen incorporation and evolution, and bond relaxation

and rearrangement.

These studies point to three main sources of stress in coatings. The

first arises from the mismatch in thermal expansion between the substrate

and the coating; this stress is usually small compared to other stresses in

plasma processed coatings. The second source of stress in plasma

processed coatings originates from a "peening" effect in which bombarding

ions implant themselves below the surface of the growing film or strike

surface atoms and push them deeper into the film causing a compressive

stress in the coating [57, 67]. The third source of stress in coatings arises

from the incorporation of hydrogen in the growing film [54].

Substrate temperature during processing is one of the most

important parameters affecting stress in coatings. Film stress PECVD

coatings is usually reported as compressive at low temperatures becoming

linearly more tensile with increasing substrate temperature with a cross-

over temperature at which the stress in the coating changes from

compressive to tensile. This cross-over temperature has been reported as
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400°C for SiC by Windischmann [53] and 580°C for SiN by Classaan et al

[46]. However, it should be noted that Srinivasan, et al [59] reported the

opposite effect of substrate temperature for silicon nitride coatings.

Stresses were tensile at low deposition temperatures becoming more

compressive as the substrate temperature was increased with a crossover

temperature of 4500C at 130 watts.

While the substrate temperature does affect the stress due to thermal

mismatch between the substrate and coating, for plasma processed

coatings, the temperature mainly affects the stress due to the incorporation

of hydrogen into the growing film. The desorption rate of hydrogen from

the surface is influenced by the temperature and also by ion bombardment.

If the film grows relatively fast compared to the hydrogen desorption,

hydrogen is trapped in the film resulting in a compressive stress. On the

other hand, when the film grows slowly compared to hydrogen desorption,

the coating collapses behind the growth front and there is a tensile stress in

the film. Beyer et. al. [68] have shown by infrared analysis that

incorporated hydrogen is in both bonded and molecular states. Bonded

hydrogen terminates silicon and carbon bonds at interior surfaces.

Molecular hydrogen primarily resides in microvoids [36, 37, 69, 70] and

Budhani et. al. [71] have shown through infrared analysis that it is

molecular hydrogen, not bonded hydrogen, that is the main contributor to

residual stresses in the coating.

If the voids are assumed to be like bubbles of a spherical shape, the

stress field around an individual void is given by Timoshenko [72]. And if

bubble changes of shape due to the stress field generated by the neighboring

bubbles are neglected, and gas pressure is assumed to be the same in all

voids, the resulting stress field at each point in space could be found as an
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algebraic sum of all stress fields at this point. Residual stresses, generated

by the sums of all bubbles in the coating, would scale linearly with the

pressure of the trapped gas . The pressure of the trapped gas is linearly

proportional to the mass of trapped gas. Therefore, if the hydrogen

desorption is proportional to temperature, desorption effects alone would

account for the linear response of stress to surface temperature during

deposition.

Pressure, plasma power, electrode spacing and rf frequency are also

important parameters affecting the stress in the coatings and are usually

linked to their effect on the ion bombardment of the surface. Higher powers

and lower pressures yield greater ion bombardment intensities and thus

higher compressive stresses. Smaller electrode spacings also yield higher

ion bombardment intensities. Srinivasan, et. al. [59] reported stresses

ranging from 200 MPa at 100 watts to -2.9 GPa at 350 watts, and Aite, et. al.

[61] reported stresses ranging from -400 MPa at 1500 mtorr to -2.2 GPa at

100 mtorr. In another system Aite [62] found that stress decreased from 200

MPa at 1800 mtorr to -400 MPa at 700 mtorr with zero stress at 1300 mtorr.

Aite also showed that stresses decreased with electrode spacing from -1.05

GPa for a 15 mm gap to -550 MPa for a 22 mm gap. The plasma frequency

also effects ion bombardment. At lower frequencies both the electrons and

the ions in the plasma can respond to changes in the applied voltage, while

at higher frequencies, only the electrons can respond to voltage changes

since the ions are too massive. Therefore, stresses due to ion bombardment

decrease dramatically at higher plasma frequencies. Claassen and

coworkers [46:1 found that the stress in SiN changed rapidly from

compressive to tensile between frequencies of 4 and 6 MHz. Aite [62] has

also reported this type of response to plasma frequency.
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Coating stress has been shown to be a function of stoichiometry.

This effect is not as pronounced as the effect of temperature, power or

pressure. Aite found that film stresses increase linearly with nitrogen

incorporation from -920 MPa for 18 percent nitrogen in the plasma to -1.2

GPa for 72 percent nitrogen in the plasma.

The stress in films has also been manipulated through post-

deposition anneals. These anneals change the film stress by supplying

energy to release hydrogen from the film. Landis [44], Windischmann [54],

and Budhani 1:71] all showed that upon annealing, the stress in the coating

may change from highly compressive to highly tensile. This has been

attributed to a diffusion controlled volume change in the material. Landis

reported changes from -1.0 GPa to 3.0 GPa in SiC after annealing the

specimens at 600C under vacuum and Budhani reported stress changes

from -1.1 GPa to 500 MPa in SiN after similar annealing.

3.4.3.2 Stress Measurement Procedure

Stress states in coatings have been traditionally determined by

measuring the deflection of some substrate material due to the presence of

a deposited coating. Silicon wafers are typically used as the substrate and

the deflection has been measured using light interferometry [73] or a

profilometer [74].

Stress in a thin film on a substrate is calculated using Stoney's

equation [67]:

2

6 t Ra
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where Es is the substrate modulus (180 GPa for a 100 silicon wafer [75]), ts is

the substrate thickness, tc is the coating thickness, Ra is the radius of

curvature of the coated wafer, Rb is the radius of curvature of the bare

wafer as measured before deposition. The radius of curvature, R, is

determined from the deflection, h, and the diameter, d, of the wafer:
2

R- d
2h

See Figure 3.8a. Stress is defined as compressive if the coating is

attempting to expand against the stiffness of the substrate and tensile if it is

attempting to contract. This is shown in Figure 3.8b.

Two 2 inch wafers in the polished, as received condition are shown

in the photographs in Figure 3.9. These pictures were taken with a camera

mounted on a Graham Optical Systems Model 400LC Plano-Interferometer.

The interference fringes show elevation differences of half the wavelength

of the laser light used, 316.4 nanometers. These photographs show the

usual topography of prime silicon wafers. Two things should be noted.

First, it may be seen that the wafer shown in Figure 3.9a is "potato chip"

shaped and therefore not suited for use as a stress measuring substrate.

Second, it should be noted that while the wafer shown in Figure 3.9b is

appropriately concave or convex, it is not uniformly so; thus, a

measurement is dependent on the direction across which the curvature is

taken. Previous workers have used photographs such as these to measure

across the minor or major axis in photographs taken before and after

coating deposition [73]. Others made traces with a profilometer across the

wafer and averaged the measured deflections [44]. Neither of these

techniques alone was satisfactory for the present work; results using either

technique in isolation were greatly scattered and irreproducible; however, a
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combination of these techniques proved to be very reliable in measuring

wafer deflection.

Using a profilometer in conjunction with an interferometer was

found to be the optimum method in determining deflections of coated and

uncoated wafers. Wafers were first sorted with the interferometer; only

those of nearly uniform convex or concave shape were chosen for

profilometry. 'The surface of these wafers was then marked with a single,

focused (-300 mJ) laser pulse to produce an 0.5 mm diameter spot

approximately 1 cm from the wafer's edge. This mark was then used to

align the wafer held in a two-part jig fit to the stage of a Dektak II

profilometer as shown in Figure 3.10. The inner, circular piece held the

wafer at its outer periphery on a knife edge while the outer jig component fit

over the circular stage of the Dektak as shown in the side view of Figure

3.10. The inner jig piece was free to rotate within the outer and was scribed

with an "x" that was used to align the jig with the profilometer and with the

mark on the wafer surface. The scribed "x" and the mark on the wafer are

shown in the top view of 3.10.

The exact deflection measurement procedure is as follows: a glass

cover slide was placed on the stage of the Dektak and the needle of the

profilometer was lowered. The microscope of the profilometer was then

focused so that the needle was aligned with the cross-hair in the

microscope. The needle was retracted and one edge of the cover slide was

aligned with the center of the profilometer stage. The x-axis travel of the

stage was then adjusted until the cross-hair in the microscope was aligned

with the edge of the cover slide. At this point the travel of the profilometer

needle would cross the center of its stage and therefore the center of the jig

and wafer as the stage, jig and wafer are concentric. The x-axis travel of
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the Dektak was not moved again during the measurement procedure. The

wafer to be measured was placed onto the knife edge of the jig as shown in

the side view of Figure 3.10 and the Dektak needle lowered. Once again the

microscope focus was adjusted so that the needle appeared at the cross

hair. This is because the jig elevated the wafer and thus changed the

center of focus. The y-axis travel of the stage was used while rotating the

inner jig so that the cross hair crossed the scribe in the inner jig. This

scribe is labeled "alignment scribe" in the top view of Figure 3.10. The stage

was then moved in the y direction while the wafer was rotated so that the

laser mark could be seen under the cross hairs. At this point both the inner

jig scribe mark and the laser mark on the wafer were on a line passing

through the very center of the Dektak stage. The stage was then moved in

the y direction as far as it would go and a 16 mm scan was run across the

center of the wafer. The scan line is shown in the top view of Figure 3.10.

This technique allowed measurement of the same path across the wafer

even after the Dektak was used by other workers.

As a test of the repeatability of this procedure the entire set up was

dismantled and reassembled six times. Each time the stage and the jig

were randomly skewed. The average deflection measured was 8.064 m

with a standard deviation of 0.12 ptm which amounts to a 1.5 percent error.

The error due to the irregular concavity of the as-received wafer was much

greater. The stress as calculated in three directions on one wafer averaged

-375 MPa with a standard deviation of 26 MPa which comes to a 7.0 percent

error. Therefore, the effects of sequential processing on one wafer could be

very accurately determined, while the effect from wafer to wafer was less

accurate.

48



3.4.3.3 Stress as Measured in SiC

The results of the first stress measurements were confusing until it

was discovered that for coatings deposited with the heating element off, the

stress in the coating changed over time upon exposure to atmosphere. The

stress in a standard SiC film (gas ratios as described in Table 3.1) and a

carbon rich film (methane concentration 10 times that of silane) is shown

as a function of time in Figure 3.11. These same results are also plotted

with respect to the square root of time in Figure 3.12. Films deposited at

elevated temperatures were then investigated and it was found that for

deposition temperatures over 200°C the stress was unaffected by exposure to

atmosphere. An example of the stress versus time scale for coatings

deposited at elevated temperatures is shown in Figure 3.13.

Once the stability criterion for processing was established, the as-

deposited film stress for substrates was determined for different

temperatures and bias voltages. Stress versus temperature for a floating

(or self-biasing) lower electrode and for a grounded lower electrode is

shown in Figure 3.14. The stress is shown as a function of voltage at the

lower electrode in Figure 3.15 for a substrate temperature of 400°C.

The effect of annealing upon stress was also investigated. Wafers

were annealed under a vacuum of 5.0 x 10-6 torr or better for one hour at

560, 680, 790, and 900°C. Stress versus annealing temperature for various

deposition temperatures is shown for coatings deposited on a grounded

lower electrode in Figure 3.16 and for coatings deposited on a floating lower

electrode in Figure 3.17. It should be noted that films were deposited on one

wafer and then this single wafer was annealed successively at the

temperatures noted in the figures. It was determined that stress changes

49



upon annealing were complete after one hour at 6000C and higher

temperatures as is demonstrated in Figure 3.18 for the 6000C anneal.

Stress results for four different anneals of coatings processed in an

identical manner are shown in Table 3.2. The deposition for each wafer

was conducted at 4000C at the standard power and flow rates. The first

stress is that for the standard anneal under vacuum, the second value

corresponds to the stress for an anneal in an argon atmosphere, and in the

third and fourth cases, the coating was processed and thereafter left in the

chamber at 400°C under high vacuum after deposition.

Table 3.2 Stresses for Various Anneals for Standard SiC Deposited at 400°C

Anneal Process Stress

Anneal in vacuum, 1 hour, 635°C +944 MPa

Anneal in Argon, 1 hour, 6350C +929 MPa

Sat on lower electrode, 1.5 hours, 400°C +292 MPa

Sat on lower electrode, 1 hours, 400°C +216 MPa

Interpretation of stresses in PECVD coatings is based on an

understanding of the process/structure relationship. Phenomena to be

considered are ion bombardment of the growing film, hydrogen

incorporation and desorption from a growing film, hydrogen release from a

grown structure, and diffusion of atmospheric species into the porous

structures.

The time variant stress in the coatings shown in Figures 3.11 and

3.12 deposited at room temperature can be understood in terms of diffusion
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of some species into the porous, low density, amorphous structure. That

the stress becomes increasingly compressive, indicating that the coating is

attempting to expand against the substrate, argues that the diffusion is into

the structure. The fact that the stress changes linearly with the square root

of time indicates diffusion control. The diffusing species may be either

water vapor or oxygen. Since the stress does not change in coatings

processed at temperatures greater than 200°C, this implies that at these

higher temperatures the film produced is dense enough that the pores are

not interconnected sealing off the inner surfaces from adsorbing gas

species.

The dependence of stress on substrate temperature is shown in

Figure 3.14 and the dependence on electrode voltage or potential is seen in

both Figures 3.14 and 3.15. Figure 3.14 shows that the as-deposited stress

as a function of substrate temperature becomes more tensile for films

deposited on a floating electrode and becomes more compressive for films

deposited on a grounded electrode. The only difference between these two

processes is that the floating electrode self-biases to +2 volts, while the

grounded electrode is a 0 volts. This difference does not appear to be great,

but it must be sufficient to greatly reduce the effect of ion bombardment of

the growing film. Ion bombardment must be responsible because only ions

would be affected by the potential of the substrate. Most of the ions in the

glow are positively charged and would be deflected away from the biased

substrate. The temperature of the substrate must also be taken into

account. As the temperature of the surface increases, hydrogen desorption

is enhanced. For the floating electrode at +2 volts the hydrogen desorbs

more readily at higher temperature and the ion bombardment is retarded

enough that it escapes easily; as the hydrogen desorbs the dangling bonds
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exposed connect with each other, but are stretched in doing so, which

accounts for the increasing tensile stress with deposition temperature.

The grounded electrode phenomenon is more difficult to explain. For

the grounded electrode more hydrogen is also released from the near

surface regions at higher deposition temperatures, but ion bombardment

must interfere with the desorption or film growth in such a way as to keep

the hydrogen in the film. Ion bombardment should not retard hydrogen

adsorption as it is known to enhance desorption in other systems [12].

Increasing ion bombardment does increase the compressive stress as is

shown in Figure 3.15 where the stress becomes increasingly more

compressive with negative substrate bias.

The effect of annealing shown in Figures 3.16, 3.17 and 3.18 can be

explained in terms of hydrogen diffusion out of the film followed by

thermally activated rearrangement of the structure. In all cases the

stresses became highly tensile upon annealing at the lowest of the anneal

temperatures, 5600C. This temperature allowed complete diffusion of

hydrogen out of the submicron film in one hour. In subsequent anneals at

higher temperatures the coating relaxed. This is confirmed by the results

in Table 3.4. Specimens "annealed" on the lower electrode at the deposition

temperature showed an increase in tensile stress from +80 MPa to +294

MPa even at 400°C and this increased with time at 4000C. It was not tested,

but it is believed that given enough time at 400°C, stresses near +900 MPa

could be reached. At 400°C diffusion may be sufficiently slow that 1 hour is

not enough time for complete dehydrogenation. Figure 3.18 shows that at

600°C 1 hour is sufficient to release all hydrogen present, but there is not

sufficient temperature for relaxation of film structure. Thus, the

annealing process is composed of two steps: a diffusion controlled process
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whereby the film is stretched due to hydrogen escape followed by a

thermally activated relaxation of the structure.

The goal of this study of stress in SiC films was to determine the

processing procedure necessary for the production of low stress SiC films of

2 C.m thickness. Such films are obtained by processing the coatings at

275°C on a floating electrode. See Figure 3.14. It was not possible to

produce the relatively thick, low stress coatings through a

deposition/annealing process as the diffusion of hydrogen out of the

coatings before relaxation always produced sufficient tensile stress to cause

film delamination.

3.5 Summary

Laser spallation test couples require a relatively thick, homogenous,

uniform coating. Amorphous SiC processed by PECVD has been deposited

to a thickness of 2jtm with a stress less than 13 MPa at 2750C on a positively

biased electrode. Previous workers could not produce coatings of this

thickness that did not delaminate due to internal stress [44]. Particulate

formation in the plasma was suppressed by using hydrogen as a dilution

gas at 0.90 mass fraction at 50 jim pressure and 25 watts power. This low

gas pressure and power insured thickness uniformity better than 5.0

percent across the electrode surface.
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(b) Side View

Tigure 3.2 Top and Side views of the plasma enhanced chemical vapor
deposition reactor.
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(a) Lower Electrode Assembly with Heating Element

CVD Chamber

Quadrupole Chambei

(b) Lower Electrode Assembly with Quadrupole

ground shield
Key:

power line

electrode plate

_ _ insulator

Figure 3.4 Schematics showing the delivery of rf power to the lower
electrode assembly with the heater installed (a) and with the
quadrupole mass spectrometer mounted below the lower
electrode (b).
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Deposition
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Thickness Over the Radius of the Electrode
For Different Applied Powers
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Figure 3.5 Film thickness across the radial direction of the lower electrode
for three different supplied powers with 4.2 sccm silane, 6.7
sccm methane, and 20.0 sccm hydrogen at 50 lm total
pressure.
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Film Thickness Relative to Radial Distance
For Different Deposition Pressures
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Figure 3.6 Film thickness across the radial direction of the lower electrode
for three different processing pressures with 4.2 sccm silane,
6.7 sccm methane, and 20.0 sccm hydrogen. The power is 50
watts.
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(a)

(a)

Figure 3.7 Scanning electron photomicrographs showing particles imbedded in
a SiC coating. Part (b) shows the effect of
the particles on film fracture due to laser spallation.
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--h Deflection

Coating in Tension

Figure 3.8

Coating in Compression

Schematic showing compressive and tensile stresses in coatings
and relevant dimensions for stress calculations.
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(a)

(a)

Figure 3.9 Photomicrographs with interference fringes from laser light showing
the topography of concave (a) and "potato chip" (b) shaped silicon
wafers.
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Figure 3.10 Schematic showing the jig used to hold the wafer over the
Dektak stage when measuring deflection.
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Stress over Time for Coatings Deposited at Elevated Temperatures
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Figure 3.13 Stress as a function of time of exposure to atmosphere for
standard SiC and carbon rich SiC coatings deposited at
elevated temperatures.
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Stress as a Function of Voltage at the Lower Electrode

0
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Figure 3.15 As-Deposited stress as a function of voltage at the lower
electrode for standard SiC deposited at 400°C.
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Coating Stress as a Function of Anneal Times at 600°C

3

Anneal Time

Figure 3.18 Stress as a function of anneal time at 600C for a carbon rich
coating deposited on a floating lower electrode at 400°C.
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[V. Carbon Interlavers by Plasma Enhanced CVD and Low Pressure CVD

4.0 Introduction

The purpose of this chapter is to present and discuss the processing

of carbon interlayers for the model test couples. This chapter will focus on

processing-structure relationships. The mechanical property of the carbon

coating of particular interest to this work is the tensile strength of its

interface with the substrate. However, since the laser spallation

experiment, used to determine tensile strength of interfaces, is not

discussed until chapter 5, results regarding the effect of a carbon

interlayer on the strength of the interface of the model couple will be

discussed following the chapter on laser spallation.

The carbon films were deposited by both plasma enhanced CVD and

low pressure CVD (LPCVD). The structure of the PECVD carbon ranged

from amorphous to a microcrystalline, or turbostatic, layered structure and

was examined by transmission electron microscopy. The LPCVD carbon

was highly oriented and x-ray diffraction was used to differentiate its

structure. (The perfectly ordered and turbostatic structures are shown

schematically in Figure 4.4 a and b, respectively.) As the nature of the

carbon deposited by these two methods is very different, each type of carbon

will be discussed fully in turn. For each carbon type a background is first

established by briefly outlining what the literature contains about the

processing-structure-property relationships. For the first case this will be

very short as PECVD has been described in the previous chapter. For

carbon deposited by the low pressure CVD process, the literature review is
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somewhat longer, focusing on the characterization of material orientation

by x-ray diffraction. The background section for each carbon is followed by

a detailed process procedure, results and discussion of results, and a

summary.

4.1 Carbon by Plasma Enhanced CVD

4.1.1 Background

In this section we will focus on how power supplied to the plasma

and substrate temperature affect film structure. The PECVD process in

general and methane plasma chemistry in particular were reviewed in the

previous chapter.

With an increase in plasma power the film structure changes from

polymeric to amorphous, or glassy, diamond-like to graphitic [40, 76-80].

At very low power the deposit is a hydrogenated polymer with a hardness

below that of graphite [79]. At higher powers there is another transition in

structure from amorphous to graphitic. Berg found that films deposited at

50 watts from butane at 6 mtorr were hard and amorphous while coatings

deposited at 600 watts were graphitic, described as easy to remove from the

substrate having a resistivity of about 1 ohm-cm [77] while Holland cited a

similar transition at 200 watts and 100 mtorr for methane [76]. Minagawa,

et. al. [79] found this same amorphous to graphitic transition between 50

and 100 watts in pure methane; however, these experiments were

conducted at 8000C. Shimizu, et. al. [80] cite a similar transition except that

they correlate this phenomenon with relative plasma potential rather than

with power achieving the same transition at 100 watts with a 100 volt DC

bias applied to the substrate holder.
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It is important to note that, with respect to the supplied powers

quoted in the above paragraph, these numbers should be taken as

qualitative indicators of processing trends. Even if one were to divide the

quoted numbers by the electrode surface area, the electron energy and

density distributions in the actual process conditions would still be just as

elusive because the electron distributions also strongly depend on gas type

and pressure, and electrode material and spacing,

This last bit of evidence from Shimizu and coworkers reveals the

basis of this phenomenon. It is not power, but ion bombardment intensity

that determines this amorphous carbon to graphite transition. This also

explains the variation of reported threshold powers for the transition -- ion

bombardment is very sensitive to reactor geometry. At very low plasma

powers radicals are not extensively broken down in either the plasma or at

the surface. These molecules are incorporated into the coating whole

resulting in voids. At higher power, due to collisions in the plasma and ion

bombardment at the surface, radicals are broken down and hydrogen is

driven off. At these middling power levels hydrogen is driven off; however,

the level of ion bombardment is not sufficient to give adatoms the surface

mobility required for longer range ordering, and an amorphous structure

results. High ion bombardment of the surface enhances both hydrogen

desorption and surface mobility. This provides the energy required for

forming an ordered structure.

The amorphous to graphite transition has also been observed with an

increase in the substrate temperature [76, 79, 81]. Meyerson reports the

transition between 250 and 400°C [81], Minagawa et. al. were able to form

graphite by heating the substrate from 20 to 2000 C [79], and Holland

reported a 1200 C transition temperature [76]. As with the effect of ion
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bombardment, increased surface temperatures would enhance hydrogen

desorption and adatom mobility.

It should be noted that the definition of graphite for these studies

often simply meant "not diamond-like carbon" and that the graphite

structures they discuss still contain large amounts of hydrogen and do not

quite have the extensive order of carbon deposited by thermally activated

processes. A highly oriented carbon has been reported deposited by PECVD

from propylene (C3H8) at 350°C and this was confirmed by x-ray diffraction

[:82]. Regardless of how graphite is defined, generally, material deposited

at low power and low temperature is a porous polymer containing large

amounts of hydrogen while materials deposited at somewhat higher

powers are hard, amorphous, transparent to visible light, and of a high

electrical resistivity. At even higher temperatures and power films are

graphitic and can be described as soft, optically dark, with a low resistivity

and with a low adhesion to the substrate.

4.1.2 PECVD Carbon Processing Procedure

The selection of processing parameters for the interlayers of the

couples was based on the results of previous workers as described above.

Two sets of processing parameters were chosen such that amorphous and

graphitic carbon might be produced. The exact processing parameters are

listed in Table 4.1. Note that the material produced by each is denoted as

"grounded" and "powered" carbon and that the only difference between

them is in the power supplied to the plasma. For the first type the lower

electrode is grounded during deposition while for the second type the lower

electrode is powered creating an approximately -100 V bias. The objective in

choosing the above parameters was to create sufficient bombardment
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during deposition for the powered carbon so that it would be graphitized,

while the grounded carbon would be amorphous and diamond-like.

Table 4.1

PECVD Carbon Processing Parameters

Processing Parameters

Substrate Temperature

Pressure

Methane Flow Rate

Upper Electrode

Lower Electrode

Carbon Tpe

"Grounded" Carbon "Powered" Carbon

4000C 400°C

50 Ilm 50 Crn

5.0 sccm 5.0 sccm

30 watts 100 watts

grounded 30 watts

The specimens were cleaned and placed in the PECVD reactor as

described in the previous chapter. Couples for spallation measurements

were sequentially coated with 0.2 Ctm of carbon and then with 2.0 Atm of SiC.

Specimens were also made by depositing approximately 25 nm of each

carbon onto polished sodium chloride disks and (100) p-type silicon wafers.

Films deposited on salt crystals were subsequently floated off and

examined by TEM at 200 KV. Carbon coatings deposited on silicon were

examined by Perkin Elmer 548 x-ray photoelectron spectroscopy (XPS). A

gold dot was deposited on the edge of these XPS specimens by thermal

evaporation through a shadow mask. During XPS analysis the specimen

was flooded with electrons to a relative potential of-10eV. The gold peak

was located before and after the carbon peak was studied. All peak values

were then corrected to correspond to the known gold peak at -84 eV.
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4.1.3 PECVD Carbon Structure Results and Discussion

The PECVD carbon structure results can be summarized in three

figures. Figures 4.1 and 4.2 contain photomicrographs of the TEM real

space and diffraction patterns for the grounded and powered carbon,

respectively. Figure 4.3a shows the XPS carbon s peak intensity as a

function of electron energy for both the powered and grounded carbons.

XPS standard results were also obtained for pyrolytic carbon and for carbon

deposited from a thermal evaporator; these are shown in Figure 4.3b.

Neither the "powered" carbon nor the "grounded" carbon are seen by

TEM to be crystalline. The "grounded" carbon is microcrystalline at best;

some lattice fringes can be seen in the high resolution micrograph in

Figure 4.1. The real space micrograph of the "powered" carbon shows it to

be fully amorphous. The diffraction patterns of both show the distinctive

ring of amorphous material; however, the ring of the powered carbon is

much broader and more diffuse. The grounded carbon diffraction ring is

relatively sharp.

X-ray photoelectron spectroscopy analysis yields information about

the nature of the chemical bonds near the surface of a specimen. The

specimen surface is illuminated with x-rays which causes the emission of

electrons. Electrons emitted near the surface may have the energy

necessary to escape the material. XPS analysis determines the energy

required to separate these electrons from their bonds. The XPS results

show that the binding energies for both PECVD carbons are shifted about

-*0.4 eV from the graphite standards which both fall at -284.5 eV as shown in

Figure 4.3b. A smaller peak at -283.2 eV is also seen in the grounded

carbon. Interestingly, this binding energy corresponds to the SiC bond [83].
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At 4000C the substrate must react with the activated carbon radicals. This

second peak does not correspond to the carbon-hydrogen bond, as the

carbon-hydrogen bond is not discernible through XPS [84].

Regardless of the interesting XPS data, these results show that the

use of this analytical technique for examining interlayers for spallation

couples is of questionable value. TEM diffraction patterns of evaporated

carbon deposited on salt show the structure to be completely amorphous,

indistinguishable from the "powered" carbon diffraction pattern. The

pyrolytic carbon standard was shown by large area x-ray diffraction to be

highly oriented, yet both of them gave identical XPS carbon Is peak

positions; only the peak full-width half-max varied slightly. XPS could not

differentiate these two dramatically different structures because the

chemical bonds were the same regardless of their orientation. After these

results, XPS was dropped as an analytical tool for the study of the couple

interlayers.

These results show that the processing parameters chosen did not

yield graphitized carbon. The "powered" carbon experienced sufficient ion

bombardment to randomize the structure, but not sufficient to graphitize it.

The "grounded" carbon was not randomized by bombardment so that the

order of the initial bonding was maintained. This "grounded" carbon was

microcrystalline in structure.

4.1.4 Summary of Processing of Carbon by PECVD

Amorphous and microcrystalline films were produced by PECVD to

be used as interlayers for interface test couples. While large changes in

processing parameters for PECVD carbon coatings produces large changes

in optical and electrical properties [81], preliminary results indicated that
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they would not yield the variability of structure desired for the interface

couples. At this point attention was turned to the possibilities of producing

carbon of widely varying structures by thermally activated chemical vapor

deposition. Furthermore, XPS was found to be unsatisfactory for purposes

of differentiating carbon structures.

4.2 Carbon by CVD

Carbon deposited by thermal decomposition of a hydrocarbon gas is

often called pyrolytic carbon and is usually more ordered than carbon

deposited by glow discharge processes. The properties of a single, highly

oriented carbon crystal are highly anisotropic and therefore the bulk

properties are determined by the average of the size and orientation of all

crystals with their c-axis aligned parallel in the material. For this work it

was hypothesized that the tensile strength of the carbon interlayers

perpendicular to the substrate could be manipulated by varying the degree

of order in that direction. The rest of this chapter concerns the processing

of carbon by thermal decomposition of propane to obtain pyrolytic carbon

layers of various degrees of orientation as determined by x-ray diffraction to

produce interface couples of varying strengths.

4.2.1 Background/Literature Review Regarding Pyrolytic Carbon

Pyrolytic carbons are composed of crystallites of relatively ordered

structure containing various fractions of amorphous material, misaligned

layers, and cross-linking between layers [9, 85]. These layers may be

thought of as giant aromatic molecules [86]. Carbon structures in which

adjacent layers are not regularly oriented with respect to each other are

often called "turbostatic." A more precise term would be "microcrystalline"
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as the structure is crystalline, but only over very short distances; the

material contains large amounts of defects. Both the perfectly ordered and

turbostatic structures are shown schematically in Figure 4.4a and b. In the

ideal graphite structure layers are stacked over one another in a hexagonal

sequence "ababab". The microcrystalline layers are parallel, but without

the ordered network structure.

The bulk material is called isotropic or anisotropic depending on the

degree to which the crystallites have a preferred orientation. If the

crystallites are completely random in their orientation, the material is

called "isotropic." The anisotropic and isotropic deposits are shown

schematically in Figures 4.5a and 4.5b, respectively. Generally, it may be

said of these deposits that the anisotropic material, often called "laminar,"

is deposited at low temperature, usually between 1000 and 1350°C, with

small crystallite sizes, and high density while the isotropic material is

deposited above 1350°C and has intermediate to large crystallite sizes with a

lower density [9, 87]. The processing transition temperature will vary

depending on the pressure, specimen surface area, and feed gas [9, 87].

The development of laminar and isotropic structures may be

understood in terms of the nucleation and growth processes involved . The

laminar carbon structures are produced when film nucleation at the

surface is slow compared to the growth due to radical attachment at the

surface. As the intensity of reaction increases, as may happen due to

increased temperature, concentration of reactants or active surface area,

the formation of nuclei at the surface dominates causing film growth to

proceed away from each nuclei in many directions, not just the

macroscopic growth direction, and the isotropic structures are formed.

80



The active species which are the source material for nucleation and

growth are produced when the source gas thermally decomposes at a hot

surfaces [88]. The products of this dissociation react in the gas phase and

also continue to break up upon contact with surfaces [89]. During these

reactions carbon is both deposited at surfaces and complex carbon rings are

formed in the gas phase. These aromatic molecules orient themselves with

respect to surfaces and are the primary source of material for the growing

crystallites [89]. The hexagonal rings tend to lay flat with respect to the

surface, but if there is not sufficient thermal energy present for surface

mobility, they may not line up with each other as they deposit, leading to the

turbostatic structure that is not precisely crystalline [90, 91].

The deposition process is determined by the nature of the feed gas,

temperature, residence time, and active surface area [87, 92]. Conditions

which favor isotropic carbon formation are long contact times, high

hydrocarbon partial pressures and small surface areas [87]. It should be

noted that all of the studies referenced in this section, even those which

reported producing highly oriented material, have all been conducted either

at relatively high pressures (greater than 1 Torr) or in fluidized beds.

The majority of studies of specific hydrocarbon reactions have been

conducted with methane [9, 87, 88, 91-97]; however, the decomposition and

reaction of propane [98], benzene [99, 100], acetylene [101], and propylene

[102, 103] have also been investigated. These studies have shown that a

wide variety of species may form in the gas phase. Diefendorf showed that

for methane decomposition at a surface between 1000 and 2500°C the

reaction products are H2, H, C2H, C3H, and CH4 [70, 91]. He also showed

that deposition does not occur from the parent molecule but from an active

intermediate. Lieberman found that for methane based reactions over a
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similar temperature range the dominant species formed are C2H2, C2H4 ,

C(2H6, C3H8, and C3H6 [95], i.e., acetylene, ethylene, ethane, propane and

proplyene, respectively. Powell found C2H6, C2H4 and C2H2 to be the

intermediates of methane decomposition and determined that the break up

of methane is slower than the other steps in the process [89, 97]. Peirson's

studies of deposition from methane on carbon fibers between 1200 and

1450°C showed that the transition between oriented and isotropic material

correlated with the ratio of acetylene, C2H2, and benzene, C6H6, produced

in the CVD chamber [92]. As the relative amount of acetylene increased,

the transition from anisotropic to isotropic deposition occurred at lower

temperatures.

Studies of the reactions in systems with other hydrocarbon source

gases have also shown that the parent hydrocarbons break up into radicals

at surfaces and recombine to form intermediates which then decompose at

surfaces leaving carbon and evolving hydrogen [9]. For example, Hoffman

showed that propylene decomposes to form ethylene and methane [102, 103].

The methane would then decompose as described above. Note also that

ethylene is a product of methane decomposition and the problem again

reduces to one of balancing the relative amounts of acetylenic and aromatic

species [96]. The idea that these hydrocarbons dissociate and deposit carbon

through similar reaction paths is reinforced as workers have been able to

produce identical carbon structures with different feed gases by varying the

temperature and pressure of the system [9].

The structure of the deposit is determined by the relative rates and

dominant reactions of the processes as described above and the properties of

the bulk material are a sensitive function of the size and degree of preferred

orientation of the crystallites [9]. This is because the crystals themselves
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have very direction sensitive properties. The carbon-carbon bond energy

within the layers is 477kJ/mole as compared with an energy of only about

17kJ/mole for the van der Waals interaction between the layers [9] This

same disparity between properties in plane and between the planes is seen

in the thermal conductivity, thermal expansion coefficient, and modulus of

elasticity. These values are listed in Table 4.2 and the modulus is shown as

a function of crystallographic orientation in Figure 4.5.

Table 4.2 The In-Plane and Between Plane Properties of Pyrolvtic Carbon
In Plane Between Planes

Bond Strength[9] (kJ/mol) 477 17

Thermal Conductivity[90] (J/m/s/°K) 2000 2.0

Thermal Expansion[90] (K-l) 6.7x10-6 5.5x10-7

Modulus[90] (GPa) 910 38

Average crystallite size and the degree of orientation have been the

primary parameters used to describe carbon deposits and are usually

determined through the use of x-ray diffraction. The crystallite size La is

determined by measuring the broadening of the diffraction peak as given by

Warren [104]:

La= 0.9 (4.1)
BhklCOSO

where k is the wavelength of the x-rays used and Bhkl is the extra

broadening of the x-ray peak, measured as the full peak width at half of the

maximum peak intensity. The broadening is not simply the difference

between the peak width and that of a standard, but is a difference of their

squares:

B2kl = BM - Bs (4.2)
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where BM is the measured breadth and BS is the breadth of a standard.

The degree of preferred orientation is quantified through a technique

developed by Bacon [105] which gives a value of 1.0 for perfectly isotropic

material with the "Bacon Anisotropy Factor" (BAF) increasing with the

degree of preferred orientation. The BAF is explained with the aid of

Figure 4.6.

Figure 4.6a is a schematic of a single crystallite showing the layers

in the material perpendicular to the c-axis and defines an angle, , as the

angle between the c-axis and the normal to the deposition plane. The

material property, a, of an individual crystal in the 0 direction would then

be:

ao = acsin 2 o +aacos 2 0 (4.3)

where ac and aa are the material properties in the a and c directions in a

perfect carbon crystal. If the z direction is defined as perpendicular to the

substrate, then the average of material property, a-z, in the z direction due to

the sum of the crystallites would be given by [9]:

%2

-I a( ) I(Q) sin do

az (4.4)

j I(o) sin do

where I(Q) is shown in Figure 4.6b as the relative diffracted x-ray intensity

from the specimen tilted from 0 to 90 degrees signifying the density of layer-

plane normals per unit of solid angle [9]. (It should be noted that it is

necessary to measure integrated intensity, not simply peak intensity.)

84



Combining equations 4.2 and 4.3 it may be shown that the average material

property, az, in the z direction may then be given by:

az = aaRz + ac(l - Rz) (4.5)

where Rz is defined as:

,'2

I(¢) sin3) d)

Rz = °2 (4.6)

i2 I(Q) sin0 do

Similarly, a weighted average for material properties in the plane of

deposition may be defined as:

axy = aXaRxy + ac(1 - Rxy) (4.7)

where Rxy is:

Rxy = 2 - (4.8)
2

The Bacon Anisotropy Factor is then defined as:

BAF = 2 -2 (4.9)
Rz

Note that Rz ranges from zero to 2/3. Therefore, when the material is

perfectly random in orientation, Rz is 2/3 and the BAF is 1.0. As the degree

of orientation increases, Rz approaches zero and the BAF becomes infinite

for the perfectly oriented material.

The effect of processing parameters on the preferred orientation of

the deposit has been extensively investigated. A typical relationship

between BAF and processing parameters for a fluidized bed at one

atmosphere pressure is shown in Figure 4.7 from Bokros [87]. Here BAF is
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plotted versus bed temperature and methane concentration. At lower bed

temperatures near 1000°C the deposits are highly oriented with BAF's

around 5.5. As the processing temperature is increased, the deposits

become isotropic by 1500°C for most methane concentrations. At a given

temperature preferred orientation was found to increase with methane

concentration and decrease with an increase in bed surface area. Pierson

[92] studied the deposition of pure methane on carbon fibers from 1200 to

1450°C between 20 and 630 Torr and reported a similar trend in anisotropy;

however, he found the transition from laminar to isotropic carbon to be

complete by 1350°C. He was also able to induce this transition at 12750 C at

630 Torr by changing the carbon to hydrogen ratio from 1:4 to 1:14 in the

feed gas. Akins and Bokros [98] found that the transition temperature

could be extended down to 1100°C using propane as a source gas at

atmospheric pressure and Kobayashi, et. al. reported producing

anisotropies between 1.0 and 1.8 at 1000°C using acetylene [101].

The average crystallite size in the deposit is usually reported with the

Bacon Anisotropy Factor and has been found to have an inverse

relationship with orientation [105] and deposition temperature [98]. Tesner

1:88] showed that the log of crystallite size is linear with respect to the

inverse of temperature indicating that the crystallite growth is the result of

a process controlled by thermal activation. However, Bokros [87] reports

an increase of crystallite size with deposition temperature from 3.5 nm at

1300°C to 10 nm at 1900°C at 5 percent methane in argon and a decrease

from 3.5 to 2.5 nm at 40 percent methane in argon. He also reports a

general decrease in crystallite size with an increase in methane

concentration between 1300 and 1900°C. Kaae [93] showed by cross-sectional
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'TEM that the crystallite size for an isotropic material deposited from

methane at 1300°C is 3.0 nm.

In summary, crystallite size is determined by the balance of the

nucleation and growth rates. If a change in processing conditions causes

the nucleation rate to increase with respect to the general growth rate,

crystallite size will decrease.

The density of carbon deposits has also been determined as a function

of processing variables. The usual method of determining density is by a

sink-float method whereby a piece of coating is dropped into a cylinder of

liquid that has a density gradient due to a temperature gradient induced in

the column. The position at which the material ceases to sink is used to

calculate density. Another, less precise, technique is to titrate one low

density fluid into a high density fluid until a piece of deposit at the surface

just begins to hang suspended below the surface. The density of the fluid is

then measured. The density of the deposit is generally increases with an

increase in preferred orientation [9]. Kaae [93] and Ubbelohde [86] attribute

this type of relationship to the large volume fraction of clefts and

micropores incorporated with the isotropic crystallites during film growth.

Akins and Bokros [98] report little dependence of density on gas composition

at a constant deposition temperature. Kobayashi, et. al. [101], however,

found that coating density decreased with an increase in acetylene

concentration, but they also attributed low densities to poor crystalline

alignment and incorporation of soot-like crystallites during rapid growth.

The ideal theoretical density of perfectly oriented carbon is 2.26 gm/cm3 [86].

In summary, carbon deposited by CVD may be processed to have a

wide spectrum of structures and properties. It should also be possible to

produce carbon layers with tensile strengths over a wide range depending
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on such structural characteristics as degree of preferred orientation and

cross-linking between layers, crystallite size, and density.

4.2.2 Low Pressure CVD (LPCVD) Carbon Processing Procedure

The LPCVD apparatus was designed and constructed to attach to the

PECVD reactor in such a way as to share gas flow controllers and pumping

system. This is shown schematically in Figure 4.8. The CVD chamber

itself consisted of an alumina tube with a 3.2 cm internal diameter running

through a Lindbergh 3-zone SiC glowbar furnace. The hot zone was 46 cm

long. Temperature was measured at the outside diameter of the alumina

tube with a Type S thermocouple. Specimens were fixed to a polished

graphite boat with molybdenum screws to insure good thermal contact and

the boat always located in the center of the hot zone.

The substrate used for the x-ray diffraction tests was

microcrystalline SiC produced by Morton International through a CVD

process. Thick carbon coatings could be deposited on the SiC substrates as

the difference in thermal expansion between SiC and carbon is very small.

Coatings thicker than a few hundred nanometers spalled from the

sapphire substrates used to produce the spallation test couples. The SiC

was received in a ground condition and polished with 600 grit SiC paper.

Figures 4.9 and 4.10 contain x-ray diffraction results pertaining to

the SiC substrate. Figure 4.9 is an intensity versus two-theta scan of the

substrate and. Figure 4.10 contains a pole figure of the substrate at a two-

theta angle of 26.0 degrees. From these figures it may be seen that the

substrate is microcrystalline with little preferred orientation. The pole

figure shows that diffraction from the SiC substrate does not interfere with

measurements of the carbon peak at 26.0 degrees until the specimen is
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tilted to an angle of = 30 degrees. (All carbon two-theta scans were

measured between ¢ = 90 and 35 degrees.)

Deposition procedure was as follows: Substrates were cleaned with

tri-ethane, acetone and then methanol, blown dry with nitrogen, and fixed

to the boat. The boat was placed in the alumina tube so as to be at the center

of the hot zone, the reactor was pumped down with both the cryo and the

turbo pumping systems, and the furnace was turned on. After the furnace

had reached the set temperature and the pressure was less than 5x10-6

Torr, the cryo pump and the CVD chamber were isolated from the main

system and each other. Gas flow was initiated and the turbo pumping

system was used to pull the gases through the reactor. Gas flow for all

depositions was 5.0 sccm propane and 50.0 sccm Argon for a pressure of

200m in the reactor tube. After the gas flow had stabilized, the valve at the

bottom of the PECVD reactor was closed and the valves at both ends of the

CVD reactor were opened. The deposition was timed and at the end of the

run the gas was shut off and the cryopump was immediately opened to

quickly remove the process gases present. In this way deposition could be

suddenly ended and 0.2 m thick films deposited consistently. The

specimen was cooled under vacuum inside the furnace to at least 5000 C.

After removal from the CVD system, the sapphire substrates were exposed

to air, and then SiC was deposited as described in the previous chapter.

Substrates of SiC were found to be best suited for use while

examining carbon coatings by x-ray diffraction. Because of the great

mismatch in thermal expansion between sapphire and carbon, coatings of

carbon on sapphire thicker than 1.0 m spalled from the substrate upon

cooling. It was desirable to have a carbon coating of several microns

thickness to increase the diffracted x-ray signal. Tantalum, molybdenum,
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tungsten, platinum, boron nitride and silicon carbide were all tested for

compatibility with carbon processing by CVD. The first three metals

formed carbides and the platinum interdiffused with the carbon. The

carbon neither reacted with the BN or delaminated from it; however, BN

does have a large x-ray peak at a two-theta value of 27.3 degrees. The

carbon (002) peak is at 26.0 degrees. It was not possible to differentiate the

two peaks. None of the above difficulties were experienced while using SiC

substrates.

The carbon coatings deposited on SiC were studied by x-ray

diffraction using copper radiation on a RigakuTM ' RU 200 difractometer with

the voltage set at 60 KV and the current at 180 mA. The diverging,

receiving, and scatter slits were 1.0, 1.0 and 0.6 degrees, respectively.

Scans were conducted over the two-theta range from 20 to 30 degrees at a 1.0

degree per minute scan rate to examine the (100) carbon peak at 26.0

degrees. Specimens were mounted in a pole-figure goniometer which was

concentric with the diffractometer. During the first scan the specimen

was oriented in the usual mode for x-ray diffraction. After this scan, the

specimen was tilted forward 5.0 degrees and the same two-theta range was

scanned again. The specimen was tilted forward 5.0 more degrees and this

procedure was repeated until the total tilt measured 55.0 degrees. At this

point a peak from the substrate began to interfere with the carbon peak. A

RigakuT M software package was used to determine the peak area for each

tilt angle. These area intensities were then normalized with respect to the

largest peak and plotted versus tilt angle as shown in Figure 4.11.

MatlabTM software on Athena'M was used to fit this data to the hyperbolic

secant function and MapleTM software, also on AthenaT , was then used to
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numerically solve the integrals in equation 4.6 for Rz. The Bacon

Anisotropy Factor was then calculated using equation 4.9.

The crystallite size was determined from the broadening of the

carbon (001) peak with respect to the silicon (001) from a National Bureau of

Standards single crystal specimen. Crystallite size was calculated using

equations 4.1 and 4.2 above.

The density of the coatings was measured by a sink-float technique

whereby the material to be tested floated on bromoform, BCH3, and ethanol

was titrated into the bromoform until the coating hung suspended in the

solution. Bromoform and ethanol are completely miscible. A volume of the

solution was then weighed and the density of the coating determined from

the density of the liquid solution. As a check to this procedure beakers

containing bromoform/ethanol solution with densities of 1.6, 1.7, 1.8, 1.9,

and 2.0 gm/cm3 were mixed. Pieces of coating were floated in each one

until it sank. The results of the two procedures matched.

4.2.3 LPCVD Carbon Results and Discussion

Results of the processing of carbon are displayed in Table 4.3 and

plotted in Figure 4.12. Table 4.3 lists Bacon Anisotropy Factor, crystallite

size, peak position and density for carbon deposited at 1100, 1200, 1300, and

1400C. Bacon Anisotropy Factor is plotted versus deposition temperature

in Figure 4.12a; crystallite size is plotted versus temperature in Figure

4.12b; and density is plotted versus temperature in Figure 4.12c.
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Table 4.3 Structure and Property Results for Pyrolytic Carbon

Deposition Anisotropy Crystallite Lattice Density
Temperature Factor Size Parameter*

(°C) (nm) (A) (gm/cm 3

1100 4.5 4.6 3.514 1.70

1200 5.5 4.8 3.514 1.68

1300 6.2 5.3 3.520 1.85

1400 6.6 7.9 3.514 1.90

*between layers.

From these results it may be seen that the degree of preferred

orientation, average crystallite size, and density all increase with

increasing deposition temperature while the lattice parameter remains

constant. At 11000C the deposit is already very oriented with an anisotropy

factor of 4.5. At 1400°C this factor has increased to 6.6. Over this same

temperature range the average crystallite size roughly doubles from 4.6 to

7.9 nm and the density increases by 12 percent from 1.7 to 1.9 gm/cm3. The

increased deposition temperature produces a more oriented, denser

deposit.

These trends are opposite to that which is reported in the literature

as discussed previously in this chapter. In the temperature range from

1000 to 1500°C deposits are reported to decrease in degree of orientation,

average crystallite size and density with an increase in deposition

temperature. This is graphically shown in Figure 4.13 where the present

results are plotted on the same axis with Bokros' [9] results.

The difference between the results of the present work and that of

previous workers may be explained by a difference in rates of nucleation at

the surface. At the lower temperatures deposition in past work has been
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controlled by the kinetics of radical attachment at the film surface while at

the higher temperatures radical attachment to existing nuclei is

overwhelmed by the creation of new crystallites. The structure is

determined through the fastest process at the surface, addition of radicals

to existing nuclei or heterogeneous nucleation of new crystallites.

As the nucleation rate increases with temperature the average crystallite

size decreases and the decrease in density is associated with the increase in

porosity; crystallites are nucleated so rapidly that the free radical reactions

cannot fill the inter-crystallite voids with carbon. In the present work the

reduced processing pressure suppresses nucleation events favoring radical

attachment to existing crystallites. As the process temperature is

increased radicals have even more surface mobility allowing formation of

larger and more dense crystallites.

While it was not possible to determine the actual surface nucleation

rates in the past and present works, some relevant processing parameters

may be calculated. Table 4.4 contains a list of processing variables for the

pertinent experiments and the processing characteristics for the same

experiments are listed in Table 4.5. Gas diffusivity was calculated using

equation (11-1.1) from Reid [106]:

Dl = 0.001858 TM1+M21 1LM1M2 j Pad2QD

where T is the absolute temperature in Kelvin, M1 and M2 are the atomic

masses of the gases, P is the pressure in atmospheres, Uc12 is the Lennard-

Jones force constant for the mixture, and OD is the collision integral for the

two gases. The force constant and collision integrals were determined from

93



tables provided by Reid. The mean free path for each system was

determined using equation (1.4-3) in Bird [107]:

k= 1
/-2Krd2n

where d is the atomic diameter, here taken from the tables in the appendix

in Reid, and r is the density. The collision frequency is calculated as the

average gas velocity divided by the mean free path. The average molecular

gas velocity was calculated as:

C= (8kT)1/2

where m is the atomic mass and k is Boltzmann's constant. The residence

time was calculated as pressure times volume over gas flow rate. These

last two equations were taken from chapter 1 of Chapman [108].

Comparing processing characteristics it is clear that the rate of nucleation

must be substantially less in this present work than earlier works.

Table 4.4 Processing Parameters of Present and Previous Workers

Author Temperature Gas 1 Gas 2 Pressure
(°C) (Torr)

Bokros[9], 1969 1300- 1700 CH 4 He 760

Akins[98], 1974 1100- 1300 C3H8 Ar 760

Kobayashi[101], 1974 1100 C2H 2 Ar 760

Lahaye[100], 1974 1000 - 1100 C6H 6 N2 70D
Pierson[92], 1975 1200- 1300 CH 4 H 2 20-630

Kaae[93], 1985 1200- 1500 C3H 6 He 760
Hoffinan[102], 1988 1100- 1200 CH 4 H 2 150-400

Present Work 1000- 1673 C3H8 Ar 0.2
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Table 4.5 Processing Characteristics of Present and Previous Workers

Author Diffusivity

(cm2 /s)

Bokros[9], 1965,69

Akins[98], 1974

Kobayashi[101], 1974

Lahaye[100], 1974

Pierson[92], 1975

Kaae[93], 1985

Hoffman[102], 1988

Present Work

15 -22
1.5 - 2.0

2.2

0.33 - 0.37

12- 500
10- 12

16-47
5600 - 7600

Residence
Time

(seconds)

1.2

0.4

1.4

0.5

0.06 - 0.23

0.61

103 - 104

0.0044

Mean Free

Path
(cm x 10-6)

8.4

4.4

5.8

4.0

9.3 - 300

6.2

15-39

20,000

Collision
Frequencv
(seconds-1)

(x 1010)

1.1

2.1

1.5

2.1

0.33- 1.0

1.6

0.23 - 0.59

.00046

It should be noted that even in the present system the deposition

process is not completely surface reaction controlled. This is demonstrated

in Figure 4.14 where the log of the growth rate is plotted versus the inverse

of temperature. Two processing regimes may be seen in the figure. Below

1200°C the system is kinetically controlled by surface reactions. Above this

temperature the growth rate is limited by gas diffusion through a boundary

layer above the film surface. These two control regimes are defined

independent of nucleation [109, 110]. The presence of kinetic control at the

surface at low temperature gives support to the above explanation of the

deposition process: it is at 1100°C where the system is completely

kinetically controlled at the surface that the present orientation data,

derived from material deposited at low pressure, matches the materials of

previous workers, deposited at high pressure [9, 87]. At this relatively low
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temperature the nucleation rate must be less than the surface reaction

rate, even at atmospheric pressure.

4.2.4 Summary Regarding Deposition of Carbon by LPCVD

Pyrolytic carbon films were produced by low pressure CVD to be used

as interlayers for interface test couples. Coatings were processed between

1100 and 1400°C at 200 mtorr pressure. It was determined that the degree of

preferred orientation in the coating, average crystallite size, and coating

density all increased with increasing deposition temperature. These trends

were explained by the increased surface mobility during deposition with an

increase in temperature and decrease in nucleation rates through the use

of low processing pressure.
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(a)

(a)

Figure 4.1 TEM real space photomicrograph and diffraction pattern for
"powered" carbon deposit on salt. (See Section 4.1.2)
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(a)

(b)

Figure 4.2 TEM real space photomicrograph and diffraction pattern for
"grounded" carbon deposit on salt.
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Carbon XPS s Peaks
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Figure 4.3 Carbon XPS s peaks for powered and grounded carbon as well
as for highly oriented pyrolytic carbon and carbon deposited by
thermal evaporation. The peaks in the upper figure are shifted
for ease of comparison.
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Figure 4.5 The elastic modulus of a graphite crystal as a function of
direction within the crystal. is the angle between the
normal of the deposition plane and the c axis of the
crystallite. See Figure 4.7.
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Figure 4.7 Bacon Anisotropy Factor of carbon deposited in fluidized beds

from 1300 to 19000C and 3.8 to 40 percent methane at

atmospheric pressure, from Bokros [9].
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Relative Intensity for Round and Rectangular Aperatures
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Figure 4.11 Relative diffracted x-ray intensity versus o for carbon deposited
at 14000C on a SiC substrate using both round and rectangular
diverging slits on the diffractometer.
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Figure 4.12 Bacon Anisotropy Factor, average crystallite size, and coating
density versus deposition temperature.
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density versus deposition temperature from the present work
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Figure 4.13 The log of the deposition rate versus the inverse of processing
temperature for the LPCVD system at 200 mtorr, 5.0 sccm
propane, and 50.0 sccm argon.
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V. Mechanical Evaluation of Couples by Laser Spallation

5.0 Introduction

This chapter will focus on the determimation of the tensile strength

of the bimaterial interface between the coating and the substrate of the

model couples by a technique called laser spallation. With this technique a

short laser pulse induces an elastic shock wave in a substrate which

propagates as a relatively short stress pulse. If this stress pulse is of

sufficient intensity, a solid film may be spalled from the opposite surface of

the substrate when the compression wave turns into a tension wave upon

reflection from the free surface. Knowledge of the threshold stress pulse

intensity at which coating delamination occurs allows determination of the

bimaterial interface strength. This type of interface test is particularly

valuable as shock wave loading provides stresses propagating with the

speed of sound in the substrate material and can theoretically produce

fracture by the collective separation of atomic bonds rather than through

crack initiation and propagation as during fracture caused by any other,

relatively slow, loading.

The chapter includes two main parts. The first part of the chapter

concerns development of the spallation experiment, while the second part

presents some experimental results obtained using the developed

methodology and a discussion of these results. Please note that before the

development of the experiment is begun in this chapter, a general overview

of the practical experiment is given.
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The development of the laser spallation experiment is also broken

into two parts. The first step in the development requires measurement of

the induced shock wave peak intensity as a function of laser fluence used to

generate the shock wave. The typical spatial and temporal profiles of the

generated stress pulse are also determined in this part of the development.

The second part of experimental development concerns the mathematical

calculation of the propagation and reflection of the experimentally

determined shock wave. The functional dependence of the stresses probing

the bimaterial interface upon the laser fluence has been calculated.

Therefore, results from the first part of the development, coupled with

;performed calculations, have led to a relation between the threshold laser

fluence for delamination and the stresses which were developed at the

bimaterial interface for substrates composed of x-cut quartz.

For our use of laser spallation as a measurement tool with substrates

other than quartz, the laser-induced pressure shock wave is generated in

the substrate of our model interface couples (here single crystal silicon or

sapphire) as described above. The generated compressive pressure pulse in

the model couple substrate is assumed to be identical to the pulse in the

piezoelectric material used previously. Under this assumption the main

parameters of the generated compressive pressure pulse are completely

determined by the level of laser fluence and are known from the first stage

of the experimental development.

5.1 General Outline of Experiment

The set-up is shown schematically in Figure 5.la and an

enlargement of the test specimen in its holder is shown in Figure 5. lb. The

test specimen consists of a substrate coated with a test material on one side
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and a laser absorbing film on its side facing the laser. In this work the

absorbing film is 1.0 ~tm thick tin deposited by rf sputtering, the substrate

was either sapphire or quartz, and the coating was SiC deposited as

discussed previously. The coated substrate is pressed against a polished,

fused quartz disk that is transparent to laser light. (This quartz disk is

used to confine the expansion of the laser absorbing film and should be

distinguished from the x-cut piezo electric quartz crystal used to determine

the shape of the laser induced shock waves.) A pulse of laser light is

emitted from the laser and is focused onto the absorbing film on the reverse

of the substrate. The film is rapidly heated upon absorbing the flux of laser

energy, melts, and even evaporates, causing a compressive, elastic wave to

propagate "forward" into the substrate bearing the coating and also

"backwards" into the confining fused quartz disk. See Figure 5. lb. The

fused quartz disk confines the expansion of the melting and evaporating

layer leading to a sharper stress pulse. The compressive pulse travels

through the substrate, bimaterial substrate-coating interface, and then the

coating. This compressive pressure pulse reflects from the coating free

surface, becomes a tensile pressure pulse, and then loads the bimaterial

interface in tension. It is necessary that both materials of the substrate and

the coating are non-dissipative, and brittle, with their strength in tension

being much lower then their strength in compression. The same must also

be true of their interface. It is assumed that the interface is of lower

strength then either individual material. The interface strength is

determined by relating the threshold laser fluence that causes film

delamination to the shock wave intensity at the interface. Figure 5.2

contains two photomicrographs of the delamination of 2.0 tm thick SiC
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coatings from a polished sapphire substrate; note the secondary

delamination in Figure 5.2b due to residual stress in the coating.

The laser used was a Spectra-Physics DCR-3 operating in the pulse

mode with a rise time of 2.5 nanoseconds in the infrared at 1.06Rm

wavelength. For all experiments cited in this chapter the nominal beam

diameter of 12 mm was focused to an average diameter of 1.6 mm at the

laser-absorbing surface. The spot size was set using the micrometer on the

translation stage upon which the jig containing the test specimen was

mounted. The spot size was initially determined by measuring the impact

on photographic paper. This spot size determination set the position of the

stage holding the test couples. Subsequent variations in spot size would

only come from the slight variation due to laser intensity. There was some

spot size dependence on total laser fluence. Spot size used in the stress

calculations was determined for each impact by measuring the diameter of

the melted tin layer.

The experimental method was as follows: The laser was set to a

pulse mode at 10 Hz and the energy was measured on the full beam

diameter with a ScientechTM 365 power meter with a ScientechTM 3800101

silicon head calibrated at 1.06~tm wavelength. These instruments

measured the average energy over 10 shots, or over a one second time

interval. The energy was recorded and the laser control was switched to

the individual pulse mode. The power head was removed from the beam

path and a pulse of energy was released into the specimen. The specimen

was examined to see if spallation had occurred. The process was repeated

until the lowest energy at which delamination occurred was determined.

This concluded the test of the interface strength.
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Determination of the shock wave intensity and peak shape in x-cut

quartz was slightly different from the above procedure and is describe

below.

5.2 Experiments with X-cut Piezo-electric Quartz Crvystals

The shape and the intensity the shock waves generated by thin film

melting and evaporation were measured using piezo-electric quartz.

Graham and coworkers [111] have shown that the instantaneous time

variant stresses in x-cut quartz electrodes which are in a short-circuit

mode produce an instantaneous current that is proportional to stress

intensity:

oA 1 i (5.1)
fAUs

where 1 is the thickness of the crystal, A is the area of impact, Us is the

wave propagation velocity, and f is the piezo-electric polarization coefficient.

Us and f are 5720 m/s and 2.15 x 10-12 C/m2/Pa, respectively for x-cut quartz

[111].

The top and side views of the x-cut electrode fixture is shown in

Figure 5.3. The x-cut crystal has a 1.0~m tin coating on its front surface

and a 0.1 jim gold coating on its reverse surface. The tin coating was

deposited by rf sputtering and the gold coating was deposited by electron

beam evaporation. During the gold deposition the crystal was masked so

that only the center 2.0 cm of the disk surface was coated. This gold coating

was used solely as a pick-up electrode and was not a laser absorbing

material. Note that a wire is glued to the gold coating with a silver-

containing epoxy (TraconTM Tra-duct 2922). Earlier connections to the gold

electrode were made by mechanical contact and found to be a source of
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electrical noise in the measurements. The electrical connection between

the laser absorbing film and the grounded case of the fixture was enhanced

using a silver containing paint to produce a line between the edge of the x-

cut quartz crystal and the fixture case across the optical quartz. The access

port through which this was done is shown in the top view of Figure 5.3. A

Lecroy 1.2 GHz digitizer with a 50 ohm internal impedance was connected

to the BNC outlet of the electrode assembly to measure the transient voltage

induced by the shock wave.

The shock wave measurement procedure was as follows: The laser

'beam was focused to a nominal diameter of 1.6 mm at the tin surface. The

beam intensity was measured on the unfocused beam with the laser in a 10

Hz continuous pulse mode. The laser was switched to the single shot mode

and the power meter was removed from the beam path. A single laser

pulse was fired into the tin coating; the digitizer was simultaneously

trigged by the laser. The digitizer recorded the transient voltage signal.

This information was stored, the digitizer's memory was reset, and the

procedure was repeated.

An example of the pulse shape as recorded by the digitizer is shown

in Figure 5.4. Results showed this same peak shape regardless of the

maximum peak intensity. The voltage peak intensity was used to calculate

the peak stress using equation 5.1. The peak stress versus laser fluence is

shown in Figure 5.5. The data was found to fit a second order polynomial

expression:

CPeak = -238 + .00778 - 4.61x10-9 D2 (5.2)

where D is the laser fluence in J/m2 and the stress is measured in MPa.

This relationship will be used later in the chapter to determine the
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threshold stress intensity for the sapphire/SiC couples. It is assumed that

the peak shape and intensity of the pressure pulse generated at the surface

of the substrate is the same for quartz substrates, in which the pulse can

measured, as for sapphire substrates, which cannot be measured .

5.3 Laser Energy Absorption and the Absorbing Material

The laser spallation experiment utilizes a pulse of laser energy to

deliver extremely high levels of power to small volumes of material in very

short time intervals. The delivered energy is partially absorbed and

partially reflected. Absorbed energy of the laser pulse generates a number

of processes in the energy absorbing material, including melting,

vaporizing and ionization [112]. The fraction of the total energy of a laser

pulse absorbed in the energy absorbing material depends on absorption

characteristics of the surface, which are changing rapidly during all the

processes mentioned above. A brief description of the history of processes of

absorption is given below.

The laser energy pulse passes through a confining fused quartz disk

and reaches the surface of the metallic energy absorption layer. The

intense light of a laser beam excites free electrons in the metallic film and

these free electrons nearly instantaneously transfer the energy to the lattice

[112]). (The time constant of this process is of order of 10-14 seconds.) This

absorption of energy produces a rapid rise in the "temperature" of a surface

layer of nanometer thickness with the exact thickness depending on the

specific absorption characteristics of the coating. For example, for 99%

pure aluminum, energy absorption is confined to a layer 0.8 nm thick [112].

Because of the small actual thickness of the energy absorbing layer in
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metals, the absorbed energy density becomes well in excess of what is

needed for melting and evaporation of the impacted area, even taking into

account the high initial reflectivity of metallic surface. Therefore,

evaporation and subsequent ionization of metal, with the formation of a thin

trapped layer of plasma above the metallic surface, rapidly occurs [112].

(The ionization time is estimated to be of the order of 10-13s) The reflectivity

of this plasma cloud is much smaller then the cold metallic surface. The

absorbtivity is also markedly enhanced due to the development of roughness

resulting from the melting and evaporation. As the laser pulse duration

(2.5 ns) is very long compared to the ionization time, it may be assumed,

that most of the energy is absorbed by the plasma cloud above the

illuminated metallic surface. Up to 108 watts of laser energy are absorbed

in a volume of material of approximately 10-12 m3 generating a highly

pressurized plasma that issues out radially in the narrow gap. In this

process a pressure pulse of substantial amplitude is generated.

Tin was found to be best suited for use as a laser absorbing material

for the present experiments. Gold had initially been used as the laser

absorbing material; however, it was determined that with gold it was

difficult to produce a pressure pulse of uniformly increasing amplitude

with an increase in laser fluence. The gold film reflected much of the

initial incident energy until it was heated to its melting point and then it

would "explode" in the manner described above. Tin melts quickly and

then the liquid metal expands almost linearly with temperature. The

volumetric expansion of tin and gold are shown in Figure 5.6. Clearly, the

beneficial volumetric misfit occurs with Sn much earlier in time than with

Au. The approximate pressure pulse intensity versus laser fluence for a

1.0 tm gold film is overlaid on the tin response curve in Figure 5.7. It is
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clear that tin films produce a much more controllable shock wave,

especially at the lower fluences used with the test couples containing

pyrolytic carbon interlayers.

5.4 Calculation of the Transmission and Reflection of the Shock Wave

The voltage-time profile corresponding to the shock wave in x-cut

quartz is shown in Figure 5.4. This profile was normalized and fit to two

exponential functions using MatlabTM on AthenaTM as is shown in Figure

5.8. The pressure pulse, p(t), normalized by dividing by the peak

maximum, is thus described:

p(t) = 0 for 0 t < 10 ns

p(t) = 1.0 - 0.448 exp (-.080 t) for 10 < t 35 ns

p(t) = 0.648exp (-.050 (t-34)) + 0.248 for 35 < t 300 ns

where t is the time in nanoseconds.

It is seen from Figure 5.8 that the rise time of the shock wave is 25 ns.

This implies that the rising part of the shock wave has a spatial length of

250 tm; therefore, the stress at the substrate/coating interface as a function

of time will be determined by the superposition of the oncoming shock wave

with the wave reflected at the free surface of the coating in an intricate way.

Part of the oncoming shock wave is also reflected at the

coating/substrate interface, while further interactions at this interface also

occur from the coating side with the reflected wave. Achenbach [113] gives

the coefficients of shock wave transmission, Ct, and reflection, Cr, at an

internal interface as:

Ct= 2 pccc/pscs (5.3)
pccc/pscs + 1
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Cr- PcCc/psCs 1 (54)
PCCc/pscs + 1

where Pc, Ps, C and cs are the densities and speeds of sound in the coating

and substrate, respectively.

For the situation in which the substrate and coating had identical

density and modulus, the transmission coefficient would be unity and the

reflection coefficient zero, and the net tensile stress at the interface would

then be simply:

a(t) = p(t)- p(t -) (5.5)

where 6 is the coating thickness and c is the speed of sound in the coating.

For the case where the coating modulus and density do not match,

the stress at the interface is determined as the sum of reflected components

of the original. wave:

o(t) = Ct [p(t)- p(t ) + Cr p(t-) Cr p(t )+ C2 (t 46) ..

... C n-1 p(t- 2n6 ) + Cn p(t- 2n6)_ (5.6)

This collection of terms is due to the superposition of the shock wave

multiple interactiosn of the oncoming and reflected waves with the

interface. The wave reflections within the coating are shown schematically

in Figure 5.9. Note that for the present situation with sapphire and SiC, Cr

is 0.021, so that negligible error is introduced in ignoring second order and

larger terms.

Equation (5.6) was evaluated ignoring second order terms using

MathematicaT M with 6 equal to 2.0 Cim and material properties as shown in
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Table 5.1 for sapphire and SiC [8]. The results are shown in Figure 5.10

where the stress at the interface as a function of time is graphed. It is seen

that the interface is first loaded in compression, this load gradually

decreases and then the interface is suddenly loaded in tension. The peak

tensile stress is shown to be 0.0122 of the peak intensity of the pressure

pulse input at the tin absorbing film.

Table 5.1 Selected Properties of Sapphire and SiC

Sapphire SiC

Modulus (GPa) 400 460

Density (Kg/m 3) 4000 3200

Speed of Sound (m/s) 10,000 12,000

The peak tensile stress at the interface is such a low fraction of the

initial pressure pulses because the thickness of the coating is very small

compared to the spatial length of the pressure pulse. As the thickness, 6, is

increased, or as the depth from the free surface is increased, the maximum

tensile stress of the stress history increases also. This is shown in Figure

5.11 where the maximum tensile stress is plotted versus depth from the free

surface. It is seen that the maximum tensile stress increases with depth to

0.6 of the pressure pulse input at 300Ctm from the surface.

5.5 Results with Sapphire/Carbon/SiC Couples

The test; couple is shown schematically in Figure 2.4 and the spalled

SiC coating is shown in Figure 5.2. The SiC was processed as described in

Chapter 3 and the carbon interlayers, if present, were processed as

described in Chapter 4. The results are presented in Table 5.1 and also in
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Figures 5.12 and 5.13 Figure 5.12 is a bar graph showing all of the interface

strengths listed in Table 5.1. Figure 5.13 shows the couple strengths for

those containing CVD carbon interlayers with strength plotted versus

Bacon Anisotropy Factor, average crystallite size, and density of the carbon

layer.

Table 5.2 Tensile Strength Results for Various Depositions on Sapphire

Couple Run Fluence Interface Strength

(kJ/m2 ) (MPa)

SiC/sapphire 682 118.8 10.0

SiC by LPCVD*/sapphire 624 181.0 14.7

SiC/powered carbon/sapphire 680 53.9 2.1

SiC/grounded carbon/sapphire 672 39.6 1.25

SiC/grounded carbon/sapphire 674 42.0 1.21

SiC/1100°C carbon/sapphire 648 47.5 1.00

SiC/1200°C carbon/sapphire 650 40.9 0.81

SiC/1200°C carbon/sapphire 651 42.1 0.81

SiC/1200°C carbon/sapphire 623 41.6 0.73

SiC/1300°C carbon/sapphire 653 35.7 0.62

SiC/1400°C carbon sapphire 676 33.8 0.56

*all SiC coatings except this

chapter 3.

one were produced by PECVD as describe in
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5.6 Discussion of Results Regarding Sapphire/Carbon/SiC Couples

The tensile strength data of the test couples may be understood by

examining the relationship between strength and the test couple interface,

or interphase, structure. From Figure 5.12 it is quite clear that carbon

interlayers reduce the strength of the interface couple by an order of

:magnitude from roughly 10 to 15 MPa to 0.5 to 2.0 MPa. It should also be

noted that the SiC deposited by low pressure CVD had an interface strength

50 percent greater than the SiC deposited by plasma enhanced CVD. The

material deposited at low pressure by thermal decomposition would not

contain hydrogen and, therefore, would make more covalent bonds with the

surface.

Of the couples with carbon interlayers those containing "powered" or

amorphous carbon were the strongest at 2.0 MPa and those containing

pyrolytic carbon interlayers were the weakest approaching 0.5 MPa. The

couples containing "grounded", or microcystalline, carbon interlayers had

a strength of 1.25 MPa and were weaker than those containing amorphous

carbon, yet stronger than all of those containing pyrolytic carbon. This

makes sense as turbostatic carbon is a transition between the amorphous

and pyrolytic structure.

The tensile strength of the model couples is plotted versus the

deposition temperature for the carbon deposition in Figure 5.13. The curve

is a straight line and shows that the variation in processing temperature

does cause a change in tensile strength. This would indicate that the

structural change due to the processing variation is either at the interface

between the sapphire substrate and the carbon coating or within the coating

itself.
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If the interface between the sapphire wafer and carbon film has been

changed due to the processing, the large decrease in the tensile strength

observed would come from either the production of extremely weak bonds or

the creation of extremely large flaws. The probable reaction product

between sapphire and propane would be aluminun carbide. Aluminum

carbide would certainly not be as weakly bonded with either aluminum

oxide or carbon to the extent measured. If the weakening of the interface

was due to the creation of a flaw, possibly a distribution of carbides or pores,

these would be visible as they would have to be of micron or even millimeter

size. It is therefore probable that the change in structure responsible for

the reduction of couple strength lay within the carbon interlayer.

From the knowledge of the processing / structure relationships

determined in the work of chapter 4, a possible explanation for the strength

results may be speculated upon. Figure 5.14 shows the strength of the

couples versus the structure data obtained at the same processing

temperature, but with SiC substrates instead of sapphire substrates; the

couple strengths are plotted versus Bacon Anisotropy Factor, crystallite

size, and density. The couple tensile strength would then decrease with

increasing anisotropy factor, crystallite size, and density; however, only the

relationship between strength and orientation seems to be proportional. It

is interesting that strength might increase with density. This implies that

the decrease in strength is not due to an increase in porosity, that less

porous films lead to weaker couples. That couple strength would decrease

with an increase in average crystallite size implies that strength decreases

with a decrease in grain boundary area. It is therefore suggested that the

separation between the planes inside each crystallite consumes a very

small amount of the fracture energy and that most of the energy is
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consumed between crystallites during the rupture of the nearly amorphous

grain boundaries and in changing crack direction between one crystallite

and the next. Therefore, if the deposition of carbon on sapphire and SiC are

similar, it seems that the strength of the couples most reasonably scales

with orientation over a broad, intermediate range of Bacon Anisotropy

Factors.

5.7 On the Dissipation of the Shock Wave

Questions have arisen regarding the dissipation of the shock wave as

it propagates through the substrate. If the dissipation is negligible, then

the reflection problem may be considered one-dimensional in nature and

may be solved as above. Lev [114] has numerically calculated the analytical

solution of Eason [115] for the problem of the propagation of a shock wave

produced by a sudden pressure pulse at the surface of a semi-infinite solid.

In his solution the pressure is uniformly applied over a circular area of

radius, a, as shown in Figure 5.15a. The temporal profile of the pulse is

shown in Figure 5.15b. The results of the numerical calculations

regarding the propagation of the shock wave are shown Figure 5.16. The

radius and depth are marked in units of 0.05a, where a is the initial impact

diameter, and the time is normalized in units of (a/c) where c is the speed of

sound in the substrate. Time increments of 0.2, 0.6, 1.2, 1.6, 2.0, and 2.6 are

shown in sections a through f.

These figures show that the pressure pulse essentially maintains a

uniform shape through time equal 1.2(a/c) to a depth of 1.5 times the initial

radius of impact. At a depth of 1.5a and at time 1.2(a/c) three-dimensional

dispersal effects and reflections from the surface break up the shock wave's

initial shape. For this work, the spot radius used was 0.8 mm with a
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substrate 0.5 mm thick. This corresponds to a depth of 0.625 the initial

radius of impact. In summary we may say that for the test couples

conducted in this work, the propagation and reflection of the pressure pulse

may be considered as one dimensional.

5.8 Summary

A method to test the strength of an interface between a coating and a

substrate by way of laser induced shock waves has been developed. This

technique has been applied to evaluated model couples for inorganic matrix

composite applications. It has been determined that insertion of carbon

interlayers into sapphire/SiC couples reduces the strength of the couple by

roughly an order of magnitude from 15 MPa to less than 2.0 MPa.

Furthermore, the strength of couples with carbon interlayers has been

correlated with the structure of the carbon in the interlayer with the

strength of the couple inversely proportional to the degree of orientation in

the carbon. It has been demonstrated that interfaces with strengths

ranging over an order of magnitude may be synthesized through thin film

processing techniques; however, all of the test couples produced had tensile

strengths significantly less than those proscribed by theory to maximize

composite transverse strength while maintaining composite toughening

through controlled interface delamination.
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(a)

(b)

Figure 5.2 Photomicrographs of SiC spalled from polished sapphire without
and with substantial residual stress in the SiC coating.
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Piezoelectric Displacement Voltage for a Laser-Induced Shock Wave

SO

40

) 00 200 300

Time (ns)

Figure 5.4 A typical voltage peak from the piezo-electric quartz electrode
showing the pressure pulse generated upon laser impact.
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Peak Stress in X-Cut Quartz versus Laser Fluence

0 200000 400000 600000

Fluence (J/m
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2

Figure 5.5 Peak stress generated in the piezo-electric electrode as a
function of laser fluence.
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Volume Expansion of Tin and Gold Versus Temperature

10

C(

Sn melts Au melts

Temperature (°C)

Figure 5.6 Volumetric expansion of tin and gold as a function of
temperature.
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Comparison of the Response of Gold and Tin to Laser Illumination
;3000

)O00

I000

) '20000 40000 60000 80000

Fluence (J/m -)

Figure 5.7 A comparison of peak stresses in the shock waves produced by
laser impact into both tin and gold absorbing films. The curve
representing the response of gold films is an approximation
based upon results with sapphire, not x-cut quartz, substrates.
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A Normalized Pressure Pulse Produced with a Tin Coating

0 30 60 90 120 150

Time (ns)

pit) = 0

pit) = 1.0 - 0.448 exp -.080 t)

p(t) = 0.648exp -.050 (t-34)) + 0.248

Figure 5.8

tor ) < t 10 ns

for 10 < t < 5 ns

for 35 < t < 300 ns

A normalized pressure pulse and exponential curve fit.
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Figure 5.9 Schematic showing internal reflections within the coating
and the equations describing them.
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Stress at the Interface Versus Time
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Figure 5.10 The stress history at the interface due to reflection of the shock
wave.
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Maximum Stress Versus Depth From Free Surface

0 100 200 300 400 500

Depth From Free Surface

Figure 5.11 Maximum stress experienced in the substrate or coating
versus depth from the free surface.
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Tensile Strengths for Various Couples

20

LPCVD SiC/Sapphire

/C
PECVD SiC/Sapphire
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SiC/Microcrystalline Carbon/Sapphire

SiC/Highly Orient(

- - -ed Carbon/Sapphire

-

1 2 3 4 5 6 7 8 9 10

Couple Types

Figure 5.12 Tensile strengths for the various couples with and without
carbon interlayers.
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Couple Tensile Strength Versus Carbon Processing Temperature
15

1100 200 1300 1400
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1500
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Figure 5.13 Tensile strength of the model couples versus deposition
temperature during processing of the carbon interlayer
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Couple Tensile Strength Versus Characteristic of Carbon Interlayer
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-ure 5.14 Couple tensile strength versus orientation BAF), average
crystallite size, and density of the LPCVD carbon material
deposited on SiC.
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Pressure Pulse
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Time

(b)

Figure 5.15 Schematic showing the pressure pui.p shape and temporal
history used in the calculations of Lev.
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Normalized Stresses as a Function of Time, Radius, and Depth

Time = 0.2(a/c)
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Figure 5.16

-3

Radius, R
[in units, .05a)]

Normalized stresses as a function of radius and depth at
times, T=0.2, 0.6, and 1.2 (a/c) due to a uniform pressure pulse
applied to the substrate surface.
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Normalized Stresses as a Function of Time, Radius, and Depth
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Normalized stresses as a function of radius and depth at
times, T=1.6, 2.0, and 2.6 (a/c) due to a uniform pressure pulse
applied to the substrate surface.
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Discussion

The original intent of this project was to process flat specimens that

would be representative of the interfaces in composite materials. The target

properties were provided by mechanistic considerations which prescribed

the material properties for composite optimization, i. e. maximizing

transverse strength while maintaining axial fracture toughness. The

processing developments encompassed the production of a stable overlayer,

representing the chemically inert layers often used in composites, and the

manipulation of an interlayer between the inert layer and the fiber which

would act as the mechanical fuse required for composite toughening.

The above directions actually necessitated carrying out three

separate projects simultaneously, followed by bringing them together at the

end. The developments of the first project were presented and covered the

production of SiC coatings by PECVD which would represent the inert layer

in composite materials (Chapter 3). The second project consisted of an

investigation of the processing / structure relationships in the deposition of

carbon by low pressure CVD which would represent the interlayer acting

as a mechanical fuse (Chapter 4). And the third project encompassed the

development and use of laser spallation as an experimental technique for

measurement of interface strengths (Chapter 5). Only after these projects

were completed could complete model interface systems be synthesized.

Each of these three projects were deemed successful by themselves;

however, the combination of all three projects toward the overall goal was

not fully conclusive because of the additional unknowns introduced with the
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necessity to use two types of substrate materials. Moreover, the final levels

of interface tensile strength that were achieved were not completely

satisfying viewed in light of the design criteria.

The strength of the strongest model interface couple was measured to

be almost two orders of magnitude less than the desired strengths

determined in Chapter 2 for composite optimization. Interface design

considerations delineated by Argon and Gupta [6] specified desired

interface strengths of 95 MPa and 825 MPa for SiC coatings deposited onto

carbon pitch-55 and sapphire fibers, respectively. These interface strengths

would maximize composite transverse strength while still allowing for

composite toughening by permitting the operation of the interface

delamination/crack bridging mechanism. The highest coating/substrate

strength measured was 14.7 MPa for the LPCVD SiC on sapphire. While

interfaces with these strengths would surely protect the fibers from cracks

in the matrix, composite transverse strength would be unduly

compromised. It should also be noted that these results indicate that a

composite with fibers coated only with SiC, without a carbon interlayer,

would actually perform better as a fuse than a composite utilizing any of the

carbon intermediate coatings.

Furthermore, it is not clear that carbon deposited by any CVD

technique will meet all of the desired specifications. The ideal interface for

composite toughening as envisioned at the beginning of this research is

shown schematically in Figure 6.la. The carbon crystallites were to be

sufficiently random that the transverse strength met the design

requirements and the weak planes in the crystallites would act as paths

deflecting cracks along the fiber. In this way both the strength and energy

requirements for crack deflection would be met. However, from the plot in
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Figure 4.5 of elastic modulus versus the angle between crystallographic

direction and the c-axis of the crystallites, and from the tensile strength

results achieved in this research, it is clear that in order to attain the

strengths required for composite optimization most of the crystallites would

have to be oriented with their c-axes parallel to the fiber as shown in Figure

6.lb.

This latter orientation would present two problems. If the bulk of the

crystallites were oriented with their layers perpendicular to the fiber as

shown in Figure 6.lb to optimize transverse strength, the weak planes

would direct the crack into the fiber. The path directly to the fiber would

offer the least resistance to cracking. Also, it is not clear that carbon has

ever been deposited by thermal decomposition with the strongest layers

consistently perpendicular to the substrate. The hexagonal rings of

hydrogenated carbon molecules that form in the CVD process tend to lie flat

with respect to the deposition surface and the known spectrum of

orientations ranges from all crystallites laying parallel to the surface to a

random distribution of orientations of crystallites.

The connection between the processing / structure part of this work

and the structure / property part could be made conclusive by closely

examining the carbon interlayers in the test couples themselves. This

could not be done in the first place because only a very thin film of carbon

could be desposited on sapphire before the film peels from the substrate. As

a result, the thin carbon layer could not be analyzed by a technique which

requires a relatively large volume of material such as x-ray diffraction.

However, the film could be closely examined in cross-section by

transmission electron microscopy. This should yield far more information

about the carbon processing / structure relationship than traditional x-ray
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diffraction methods, but could not be done in this investigation because of

the difficulty in sample preparation.

Another investigation that could provide more information upon the

structure of the interlayers would be to perform a concentration depth

profile through the carbon film to the substrate using Auger Spectroscopy.

In this way reaction products may be identified. If the process gases

preferentially etched either the aluminum or the oxygen in the sapphire

substrate, a layer rich in one of the two elements should be present. This

would also identify a layer of reaction product such as aluminum carbide.

If the Auger technique was found to be unworkable due to electron

charging during analysis, secondary ion mass spectroscopy could also yield

this type of information.

In light of this present research it is suggested that two directions

may be fruitful to the attainment of optimized interfaces desired for

composite materials. First, other materials with strengths greater than

those of microcrystalline carbon should be considered and studied as

interlayers for composites. Boron nitride is a possibility, as it is has been

shown to vary in degree of preferred orientation depending on processing.

Another approach to optimized interfaces would be to deposit small

elemental layers of an embrittling substance which would then alter

interface fracture toughness rather than tensile strength. Precipitates

grown by overaging in aluminum matrix composites have been shown to

enhance fracture toughness in this way [116, 117] and in the last chapter

containing suggestions for future work, a method is outlined in which

model test specimens with an exact array of fracture initiators could be

produced using microelectronic processing techniques.

147



In summary, what has been achieved is that, in principle, a method

has been introduced by which development of composite interfaces may be

pursued through the synthesis and characterization of model interface test

specimens. This method brings together the processing of interfaces with a

mechanical testing method in a way to specifically address composite

development. This work has been a first step in an iterative evolution

whereby an optimum design may still be reached.
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(a)

Carbon
Interlayer

I I

(b)

Figure 6.1 Schematic representation of the ideal carbon interlayer (a) and
the carbon layer that would likely be necessary to insure
sufficient transverse strength to meet design criteria for
composite optimization (b).
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VII. Conclusions

1. The processing technique necessary to produce low residual stress,

homogeneous SiC coatings by plasma enhanced CVD has been

determined.

2. The processing of highly oriented carbon by low pressure CVD has been

investigated and the processing-structure relationships as a function of

deposition temperature have been studied by x-ray diffraction.

3. The experiment whereby the tensile strength of interfaces is determined

by laser-induced shock waves has been experimentally and numerically

described and used to evaluate the tensile strength of interface couples.

4. Model interface couples with tensile strengths ranging over two orders

of magnitude have been processed; however, all couple tensile strengths

were radically less than those specified for composite optimization.
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VIII. Suggestions for Future Work

There are at least two extensions of this present work which would be

of interest. The first would be to examine the effect upon couple tensile

strength of carbon interlayers with less preferred orientation than those of

this work. The second would be to produce laser test couples with a

uniform distribution of "flaws" or "notches" so as to determine the fracture

toughness of an interface.

The carbon processed by low pressure CVD in this work was

extremely highly oriented with Bacon Anisotropy Factors ranging between

4.5 and 8.0. While it was determined that the strength of model couples

varied linearly with the degree of preferred orientation over this range, it

'would be interesting to find out if this correlation extends to less oriented

carbons extending from a BAF of 4.0 down to completely isotropic carbon

with a BAF of 1.0. Carbon of this nature could be deposited at higher

pressures in a conventional CVD apparatus. This would be the most

immediate and fruitful extension of this work.

Previous work with coatings containing the ubiquitous particles

showed the possibility of determining the fracture toughness of an interface

through the use of laser spallation. Particles in the coating act as flaws

and if of known size and distribution would allow the determination of

toughness through the spallation experiments. Rather than attempting to

regulate the size and distribution of nucleated particles in the plasma, it is

here recommended that microelectronic production technology be employed

to produce wafers coated with an array of disks or dots on the order of
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1.O0m in diameter and 0.1 ~m thick. The spacing of these dots could be

anywhere from .10 to 1 mm. The cross section of these test couples is

shown in Figure 8.1. This approach centers around the introduction of a

strength impairing agent, such as perhaps antimony which is well know

for producing temper embrittlement in the intergranular fracture of steels.

The processing procedure would be to first deposit the antimony

through a shadow mask in the present reactor set-up as shown in Figure

8.2 onto a clean wafer in the evaporator. The shadow mask would be

removed while the wafer is still under high vacuum and the wafer would be

transferred immediately to the plasma CVD reactor without exposure to

atmosphere. A 2.0 Am thick coating of SiC could then be deposited.

Production of the shadow mask is the only new experimental work and

could be made from a thin silicon wafer in one of the microelectronic

facilities on campus. The sequence of processing steps to produce the

shadow mask is shown in Figure 8.3. For details on the wet etching steps

see Clark [118] and Petersen [75].
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Antimony Disks, 1.0 gLm in diameter, 1000A thick

Sapphire Wafer, 500tm

Figure 8.1 Schematic of a test couple used to determine fracture
toughness of an interface.
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a) Grow silicon oxide
on each side of wafer

b) Cover both sides with
resist; expose and
remove resist on
backside; strip oxide

c) Remove resist;
Dope reverse side
with boron

d) Strip oxide; deposit
silicon nitride on
both sides

Figure 8.3 Processing steps used in
using VLSI techniques.

the production of a shadow mask
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e) Mask top side with
resist

f) Etch top side silicon
nitride

g) Remove resist; etch
silicon with KOH

h) Etch nitride on reverse
side; etch silicon with
hydrofluoric, nitric,
and acetic acid

Figure 8.3 Processing steps used in
using VLSI techniques.

the production of a shadow mask
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