
April 1990 LIDS-P-1964

Semi-Granules and Schielding for Off-line
Scheduling

Bernard Le Goff
LIDS MIT, Cambridge, MA, USA

e-mail: legoff@lids.mit.edu

Paul Le Guernic
IRISA-INRIA, Universit6 de Rennes 1, France

Julian Araoz Durand
Universidad Sim6n Bolivar, Caracas, Venezuela

Abstract

In the framework of parallel programming, we use a type of directed graph,
which we call the pin-graph, as a model for various applications: the vertices
represent the elementary tasks; the arcs represent the internal dependences;
and the pins represent communication with the outside. The connectivity of
pin-graphs is studied in order to classify them into two classes. A pin-graph in
the first class is called a semi-granule. The elementary tasks of a semi-granule
can be ordered into a sequential scheduled such that no dead-lock due to this
sequential schedule can appear; a schedule that has this last property is called
a circuit-consistent schedule. A pin-graph that is not a semi-granule does not
have any so scheduled. A partition into semi-granules of a pin-graph in this class
is computed. The tasks of every so obtained semi-granule are well-ordered into
a circuit-consistent schedule; and the composition of these schedules builds up a
circuit-consistent schedule of the whole pin-graph, which thus cannot generate
any dead-lock, whatever the context. Algorithms partitioning pin-graphs into
semi-granules are surveyed.

R6sumA

Dans le domaine de la programmation parallele, nous utilisons comme module
une variante du graphe orients, nommre graphe a Apingle. Les tiches 6lmentaires,
dependences entre t&ches et communications avec l'extlrieur de l'application
considlrle sont respectivement reprlsenties par les sommets, arcs et 6pingles du
graphe. La connexite des graphes i epingle est etudiee dans le but de les classer
en deux categories. Un graphe a epingle appartenant a la premiere de ces classes
est appele semi-granule. Pour une semi-granule, il existe un ordonnancement
sequentiel de ses t&ches elementaires qui ne peut etre la cause d'aucune etreinte
fatale lors de l'execution; les ordonnancements ayant cette derniere propriete
sont qualifies d'ordonnancements acircogenes. Les graphes a. epingle qui ne sont
pas des semi-granules n'admettent nul tel ordonnancement. Une partition en
semi-granules des graphes a epingle de cette seconde classe est calculee. Les
taches de chaque semi-granule ainsi obtenue sont alors totalement ordonn~es en
un ordonnancement acircogene; et la composition de ces ordonnancements pro-
duit un ordonnancement acircogene du graphe tout entier, lequel ne peut ainsi
etre la cause d'aucune etreinte fatale, quelquesoit le contexte. Des algorithmes
de partitionnement d'un graphe a epingle en semi-granules sont introduits.

Contents

List of Figures 3

1 Introduction 4
1.1 Reducing the size when we cannot reduce the complexity 4
1.2 Off-line scheduling 5
1.3 Paper organization 5

2 Sequentialization and semi-granules 7
2.1 Dead-locks and reinforcement 7

2.1.1 Internal dependences 7
2.1.2 External dependences 8
2.1.3 Circuit consistency 11
2.1.4 Conclusion 14

2.2 Avoiding dead-lock by shielding 14
2.2.1 Shielding (first characterization of the semi-granule) . . . 14
2.2.2 Second characterization of the semi-granules 17

2.3 Conclusion 20

3 Partition and composition 22
3.1 Composition 22

3.1.1 Pin-graphs composition 22
3.1.2 Reinforcements composition 24

3.2 Scheduling by (re)composition 26
3.2.1 Scheduling into n-segments 26
3.2.2 A few technical aspects 28

3.3 Algorithms 30
3.3.1 Barbedwires 30
3.3.2 Granules 32

3.4 Conclusion 32

4 General conclusion 34

1

Acknowledgments 35

Bibliography 35

Index 37

2

List of Figures

2 Sequentialization and semi-granules 7
2.1 Adding an arc that does not result in a reinforcement 8
2.2 The reinforcement problem 8
2.3 The pin-graph GC 9
2.4 The pin-graph GT 10
2.5 GR1 : a sequential schedule of G. 11
2.6 GRq: a sequential schedule of G 1 1
2.7 A pathological case concerning circuit-consistency 12
2.8 Equivalent cases between circuit-consistency and strong circuit-

consistency 13
2.9 The shielded-graph of G. is circuit-free 15
2.10 The shielded-graph of G, includes a circuit 15
2.11 This situation may not be in a semi-granule 17
2.12 Illustration of Lemma 1's proof. 18
2.13 The profile of the semi-granule G. 19
2.14 The profile of the pin-graph G 19

3 Partition and composition 22
3.1 The pin-graph G,.Gr 23
3.2 Circuits terminal behavior 25
3.3 GR1 .GR 2 is a 2-schedule of G,.G 26
3.4 GRS: a 1-schedule of G 27
3.5 GR1 .GR3 is not a schedule of G4 .Gr. 27
3.6 A sub-pin-graph of G. 28
3.7 First singulary case of the (re)composition 29
3.8 Second singulary case of the (re)composition 29
3.9 GN, an example of barbedwire 31
3.10 The semi-granules classification 33

3

Chapter 1

Introduction

The study we present in this paper may be useful to those who model real
situations by directed graphs. In our case, the directed graphs formalize data
dependences between tasks: the arcs represent the dependences and the vertices
represent the tasks. From this model, many problems have been stated as NP-
complete problems: the timing or scheduling, and the assignment or mapping
of these tasks are very famous examples.

We have actually considered both in the context of the development of a
compiler of a language for real-time applications or dynamic systems: the syn-
chronous language SIGNAL [GLB87]. In short, this compiler generates a data de-
pendences graph of the elementary tasks described in the program SIGNAL[BLL88].
The point is to implement efficiently the so obtained graph onto multiproces-
sors. For this, the two above mentioned problems have to be solved; algorithms
that can map the graphs onto the chosen architectures, and that can compute
the timing of execution of all the tasks have to be implemented.

1.1 Reducing the size when we cannot reduce
the complexity

Our primary objective is to reduce the computational cost of both the scheduling
and the mapping problems. Not being able to reduce the complexity of these
problems, we could try to reduce their repective sizes, i. e., the sizes of the
graphs we have to treat. For mapping, this reduction can be obtained from a
partition of the graph such that each part can be mapped as a whole onto a
processor. Thus, only the graph of the parts has to be mapped. The problem is
to find the partitions that befit the assignment. For scheduling, the complexity
can be reduced if it is possible to decide an order locally. The problem here is
to find a local criterion that allows one to know whether a given order of several
tasks is compatible with all the dependences of the whole graph or not. Once

4

partitions have been formed and a local criterion has been found; we can then
do the mapping and the scheduling. For this, the standard algorithms may be
used.

The class of possible partitions has been formally defined. These are parti-
tions such that their parts are what we call granules. A granule is a sub-graph
which can be considered to be a black-box; it can therefore be assimilated into
a regular vertex during the mapping. This aspect is developed in Le Goff 89
[Le 89], Figueira & al. 88 [FGLL88], Le Goff & Le Guernic 88 [LL88].

1.2 Off-line scheduling

This paper is devoted to the scheduling aspect of the problem. We assume the
mapping is done and thus, for each processor, a schedule has to be computed.

Let us discuss the choice of scheduling off-line, so-called static scheduling.
One of the motivations for this choice is the limitation of overhead: providing
a static schedule precludes the use of a dynamic scheduler. However, a static
schedule is rigid, and, consequently, can generate delays that a dynamic sched-
uler could avoid. But the interest of static scheduling is not only at the level
of the quantitative aspects of the performances of the applications, but at the
level of the qualitative aspects of its performances, as well. Indeed, one of the
most important difficulties of the implementation of parallel programs is to be
able to obtain deterministic executions of them. This is the key point in par-
allel programming [BIM88]. However, if all the scheduling decisions are made
beforehand, the executions will be deterministic [GIB89]. In fact, this seems to
be the fundamental justification of the research of static scheduling algorithms.

Basically, a schedule of a set of tasks is an ordering of these tasks such that
they can be performed in this order. By scheduling the tasks in advance, the
ordering, which is so built, can be incompatible with the constraints imposed by
the context of the execution; a dead-lock will appear during the run. Insuring
that the ordering will not create dead-locks, and modifying the ordering each
time it does so is the complex part of the scheduling.

In order to reduce the computation of this part, our idea is to consider a
partition of the tasks such that the tasks of each part of the partition can be
scheduled in an ordering that is compatible with the rest of the constraints. And,
moreover, the schedule of each part can be computed without looking at any
other part. The computation of a local schedule is local: only the information
included in the considered part is used.

1.3 Paper organization

In chapter 2 the criterion that determines whether a graph, representing a set of
tasks and their dependences, can be sequentially scheduled or not is formalized.

5

We assume that the mapping has been done. Thus, the set of tasks mapped
onto a processor has to be scheduled into a well-ordering. The sub-class of the
graphs that verify the criterion is characterized; the graphs of this class are
called semi-granules.

This leads to the third chapter, in which a method of scheduling graphs
that are not semi-granules is developed. We know that it is impossible, in this
case, to schedule off-line all the vertices of the graph in a sequential ordering.
The reason is that we cannot order communications with the context without
risking the possibility of a dead-lock. So a partition of the graph into semi-
granules may be computed. The properties of the semi-granules allow one to
compute a schedule of the whole graph by computing sequential schedules of
each semi-granules.

6

Chapter 2

Sequentialization and
semi-granules

In the framework of the implementation onto multiprocessors, we consider, in
this chapter, the problem of static sequentializations, and therefore, of course,
the problem of the run-scheme for each of the processors.

2.1 Dead-locks and reinforcement

Let us consider the following basic problem: we have several tasks to perform,
and we have only one resource. What do we have to do? Of course, we have to
well-order the set of tasks. By doing so, the resource will be able to be assigned
sequentially to every task, and every task will be able to be performed.

2.1.1 Internal dependences

Tasks can have relations among themselves. For example a task z can provide
another, y, with information. If y needs this information to be performed, then
we must consider that y depends on z. These dependences constrain the choice
of the well-ordering of the set of tasks.

A directed graph is perfectly suitable to represent such a set of tasks and
their dependences. The tasks are represented by the vertices, and the depen-
dences by the arcs. We can consider only the directed graphs that do not
include circuits: in our framework a circuit would express a dead-lock, thus we
assume the circuits were detected before this stage. Consequently, r, the set of
dependences of a directed graph, G = (X, r), generates an ordering by reflexo-
transitive closure; we denote the so obtained new set of dependences r+, and
the associated ordering _G or _r.

7

Now we can introduce the basic operation we use to build the well-ordering
of the set of tasks: the reinforcement.

Definition 2.1 (reinforcement) Let G = (X, r) and G' = (X, r') be circuit-
free directed graphs, G' is a reinforcement of G iff

r* c r'*

Indeed, the well-ordering of the set of tasks that we build has to be com-
patible with the initial dependences between the tasks; in other words, the
well-ordering _<r, has to include the ordering _r (z <r y * z <r,- Y).

Moreover, no circuit can be closed by building the well-ordering ((z <r,-
y and y <r,- z) = z = y): the well-ordering is an ordering!

Finally, let us notice that adding an arc is not sufficient to reinforce a graph:
if we add an arc which is in the reflexo-transitive closure, this closure is not
changed ((r C r' and r' C r*) === r* = r*t).

Figure 2.1: Adding an arc that does not result in a reinforcement

Figure 2.1 shows we can effectively add the arc (z, z) to this graph without
changing the associated ordering: the addition of the dotted line arc does not
modify r*.

Corollary 2.1.1 Let G be a circuit-free directed graph, let GR be a reinforce-
ment of G, a reinforcement of GR is a reinforcement of G.

2.1.2 External dependences

The group of tasks and their dependences represented by a directed graph may
communicate with the outside. Some tasks may either need information from
the outside or provide the outside with information or even both.

8

a '' ' ' X ' '

I? ..Fg 2: T

Figure 2.2: The reinforcement problem

The reinforcement of graphs that communicate creates a big problem. In-
deed, the obtained new ordering can be incompatible with the context of the
graph (see Figure 2.2): let us suppose a task z needs information from e to be
performed, and the context needs information from c, which has to be provided
by a task y, in order to provide e with information; then it is forbidden to
add the arc (z, y) by reinforcing the graph representing the considered group of
tasks, otherwise a dead-lock shall happen.

Consequently, it is necessary to include the potential for communication with
the outside in our formal representation. In Lengauer 86 [Len86], such a case
is considered. Lengauer uses a special kind of directed graph: the pin-graph.
He simply added marks to the vertices that can communicate with the outside.
These marks are called pins; there are input-pins (respectively output-pins) to
mark vertices that can receive information from the context (respectively send
to the context); a vertex can both receive and send information.

Definition 2.2 (pin-graph) We call a pin-graph the quintuple G = (X, r, v, I, O)
where
(x, r) is a directed-graph,
V is a finite set,
I C V x X, called input-pins set of G,
0 C X x V, called output-pins set of G.

A vertex carrying an input-pin (respectively an output-pin) is called an input
(respectively an output). A vertex can be both input and output.

9

o.iVf

Figure 2.3: The pin-graph G.

Figures 2.3 and 2.4 show two pin-graphs. The following table gives their
description.

II G G,
X II {[z,y, z, t, u}) v, w, p, q, r
r .(Z.), (, z), (y, t) (z t) (t ii)} (q,p),(q,r),(v,w), (w, r))
v la, b, c, d, e, f) {c,e, f,g,h,k}
I . {(a, z), (b, y),(dz)(, (,)) (, v), (f,), (k, q))

k 2

Figure 2.4: The pin-graph Gr

In order to simplify the theory, we state as an assumption every vertex
belongs to a path that goes from an input to an output of the considered
pin-graph. All pin-graph describing a reality can be reduced to one of these
so defined sub-classes of pin-graphs without losing any real modeling ability.
Indeed, such reductions can be done by removing some vertices: those that

10

represent tasks that may never be performed, for these tasks do not have any
input, and those that represent tasks whose the results may never be used, since
they do not have any output.

2.1.3 Circuit consistency

The notion of reinforcement of a directed graph is generalized to a notion of
reinforcement of a pin-graph. Let us consider the pin-graph G.. It is clear that
any reinforcement of Go including the arc (z, y) creates the previously examined
situation: such a reinforcement may be incompatible with the context and may
provide a dead-lock (see Figure 2.2). There is, in fact, only one way to reinforce
G, in order to obtain a "for all context compatible" well-ordering of its vertices:
we add the arc (y, z). The following figure (Fig. 2.5) shows the result of this
reinforcement.

aV

a-/ * - --I B*o_____ C

... '''···..S~ 'Q ''···.'°..

Figure 2.5: GR,: a sequential schedule of G.

The case of the pin-graph G, is more complex. Actually, three additional
arcs can induce dead-locks in bad contexts: (q, w), (r, p) and (v, p). Therefore,
we have to avoid reinforcing G, by adding one of these arcs. In reality, the
problem is more difficult than this, because avoiding these arcs is not sufficient.
They must not be represented by a path in the reinforcement. The following
figure (Fig. 2.6) shows such a case.

Figure 2.6: a sequential schedule of G

Figure 2.6: GR2: a sequential schedule of G,

In the reinforcement shown in this figure, only the arc (p, v) has been added.
This arc is not in the list of arcs to be avoided ((q, w), (r,p) and (v,p)), but,
one of them, the arc (q, w), is represented by the path (q, p, v, w). The schedule
so represented requires reading the information from k before providing g with
information. Of course, a context (a bad one) that would need information from
g in order to provide k with information would create a dead-lock.

Let us consider a pin-graph G, and GR, one of its reinforcements. And
let there be a context that closes a circuit C through GR. This circuit may
be due to the initial constraints represented in G. For example, if a context
of G, needs information from h in order to provide f with information, then
a circuit is closed, and no reinforcement is responsible for that; that simply
means the described application is impossible. But the circuit may be due to
the aditional arcs of GR; in this case the reinforcement is responsible for the
dead-lock. Actually, the reinforcements can be classified into two types. Those
of the first type cannot be responsible for a circuit's being closed by a context
(think of GR1 for example); we call them circuit-consistent reinforcements: if
there is a circuit, then it is not due to the additional arcs. Those of the second
type can be responsible for a circuit's being closed by a context (think of GR2

for example).

Definition 2.3 (circuit-consistency) A reinforcement GR of a circuit-free
pin-graph G is circuit-consistent iff

V(y xb) E I <-GR Y 3a (2.'1) E I))
V(y, b) E o · v 3(y', b)E o -

This formalizes the following idea: if the reinforcement requires reading
information from a before providing b with information, then this constraint
existed in the initial graph.

The following figure shows why the condition (2.1) of Definition 2.3 is so
complex.

12

F 2 A o a

Figure 2.7: A pathological case concerning circuit-consistency

Indeed, the same information can be read at several vertices of the pin-graph.
For example, Figure 2.7 shows a pin-graph in which information from a is read
at both the vertices z and z'. Let us suppose this graph has been reinforced by
adding the arc (z, z'). A context that would need information from b in order
to provide a with information would close a circuit through (z, z', ... , y), but
this context would have closed another circuit through (z', -.. , y), which is a
path of the initial graph. Therefore, though a circuit due to the reinforcement
appears, this reinforcement is circuit consistent, for, simultaneously, another
circuit, which is not due to the reinforcement but only to the initial graph itself,
appears, too.

We propose to simplify these technical aspects by considering a stronger
property.

Corollary 2.3.1 (strong circuit-consistency) A reinforcement GR of a circuit-
free pin-graph G such that for all input z of G and for all ouput y of G:

Z <GR Y = Z <G Y (2.2)

is circuit-consistent. Such a reinforcement is called strongly circuit consis-
tent.

The sub-class of strongly circuit-consistent reinforcements is sufficient. In-
deed, without losing the power of representation of the pin-graphs, we can map
any pin-graph onto another for which a circuit-consistent reinforcement is nec-
essarily a strongly circuit-consistent reinforcement. The following figure shows
such a mapping.

13

V a a a

Figure 2.8: Equivalent cases between circuit-consistency and strong
circuit-consistency

In the pin-graph shown in this figure, u can represent a fictitious task; in
this sense we can consider the power of representation of the two (the pin-graph
on the left and the one on the right) to be exactly the same.

2.1.4 Conclusion

So, in this section, reinforcement, which is what we do by scheduling, and its
main problem, i. e., the increase of the risk of dead-lock, are formalized. The
reinforcements that do not increase the risk of dead-lock are characterized as
reinforcements that do not modify the dependences between the inputs and the
outputs: the circuit-consistent reinforcements. Thus the problem is reduced to
the level of the input-output pairs: the reinforcements must not modify the
input-output connectivity.

2.2 Avoiding dead-lock by shielding

The problem having been formally stated, the question now is how to solve it.
The first task is to state a constructive characterization of the circuit-consistent
reinforcement.

2.2.1 Shielding (first characterization of the semi-granule)

As we have just shown the problem is at the level of the input-output pairs. Let
us consider an input-output pair (z, y) of a circuit-free pin-graph G; there are
three cases to consider:

1. Z <G Y; in this case the context can close a circuit through (z, y), but it
will be due to G itself, and thus we shall not worry about it;

2. y <G z; in this case no circuit can be closed through (z, y) by a context;

14

3. z 2 G Y and y .G z; in this case also, no circuit can be closed by a
context, if we consider G by itself; but some reinforcement GR can change
the situation.

This third case is the one we have to regard with caution. And special care
must be taken about the reinforcements that include z <GR y, because, then,
a (bad) context may close a circuit for which the considered reinforcement is
responsible.

Definition 2.4 (communication and shielding) Let G be a pin-graph, z be
an input and y be an output of G.

* (2, y) is a communication pair iff z -G y.
* (y, z) is a shielding-arc iff z G y and y •G z.

We denote COM(G) the set of pairs of communication of G, and SHI(G) the
set of shielding-arcs of G.

The idea of avoiding the dead-locks due to reinforcements is to reinforce,
in a good way, and in advance, the pin-graphs that include communication
pairs. In order to do so, we add all the shielding-arcs; this gives a new pin-
graph GT = (X, r U SHI(G), V, I, 0), called the shielded-graph of G, which is
a reinforcement of G = (X, r, v I, 0).

* ?
a

e V....9 Tf-

Figure 2.9: The shielded-graph of G, is circuit-free

Figure 2.9 and 2.10 show the shielded-graphs of G, and G, respectively.

15

kfi. YG

Figure 2.10: The shielded-graph of G, includes a circuit

Figure 2.10 shows that the shielded-graph of G. includes the circuit (v, w, q, p, v);
therefore, it is not a reinforcement of Gr. The existence of a circuit in the
shielded-graphs is a key to the solution of our problem.

Proposition 2.1 Any reinforcement of a shielded-graph of a pin-graph G is a
strongly circuit-consistent reinforcement of G.

Proof
Obviously, if the shielded-graph of G includes a circuit, then no reinforcement

exists, and the proposition is true. This is the case if G is not circuit-free.
Let us consider the other cases. Let G be a circuit-free pin-graph and GT be its

shielded-graph, which is assumed circuit-free, too. Let GTR be a reinforcement of GT.

Let z be an input of G and y be an ouput of G, such that z <GTR Y.
A reinforcement is circuit-free; therefore GTR is so, too, and z aGT y. This means

(y, z) is not a shielding-arc of G, and (z,y) is not a communication pair; therefore
z <G Y.

This proves that, for any given input-output-pair (z,y) of G, z <GTR Y ==* z <

y, which is the definition of the strong circuit-consistency of GTR.

Proposition 2.2 (semi-granule) Let G be a pin-graph, and GT be its shielded-
graph. The two following properties are equivalent:

1. GT is circuit-free;
2. there is a strongly circuit-consistent reinforcement of G that well-orders

the vertices of G.

A pin-graph G for which 1 and 2 are true is called a semi-granule.

16

A reinforcement of a pin-graph well-ordering its vertices is called a sequential
schedule (may be denoted 1-schedule).

Proof

(1) == (2) ((1) ==- GT is a reinforcement of G) is a corollary of the definitions of a
reinforcement and a shielded-graph.
(GT is a reinforcement of G =. (2)) is a corollary of the proposition 2.1, by
taking a reinforcement of GT that well-orders the vertices of G (a 1-schedule of
G).

(2) ==: (1) Let Gs be a strongly circuit-consistent 1-schedule of G. We are going to
prove that Fr C rF, which implies that, since Gs is circuit-free, GT is also
circuit-free.
Let (y, :) be a shielding-arc of G ((y, z) E FT C rF). Then z ~G y and z o s Y,
because of the strong circuit-consistency of Gs. Finaly, since Gs is a 1-schedule,
all the pairs of vertices are ordered; therefore y <os z ((Y, z) E F.).

So, the pin-graph G, is a semi-granule, for its shielded-graph (see Fig. 2.9)
is circuit-free, while the pin-graph G, is not so, since its shielded-graph includes
the circuit (v, t, q, p, v) (see Fig. 2.10).

2.2.2 Second characterization of the semi-granules

The former definition of the semi-granule is derived from the property of sequen-
tialization. It does not give a test to detect whether a pin-graph is a semi-granule
or not. Moreover, from this definition, how to build a reasonable complexity
test is not clear. There exists another characterization of the semi-granule which
provides immediately a test of polynomial complexity. The following lemma is
the first step towards this new definition of the semi-granules. It is illustrated
by Figure 2.11, which follows.

·-·

· * ...'

Figure 2.11: This situation may not be in a semi-granule

Lemma 2.1 Let G = (X, r, V, I, O) be a circuit-free pin-graph. The following
properties are equivalent:

1. G is a semi-granule;

2. V(a, x,) E I V(b, b) E I V(y, c) E O V(yd, d) E O
(Z <-G Yc) and (ib <G d) => (Zb <G Ye or Z, <GI Yd).

17

Proof

(1) ==F (2) G is a semi-granule; therefore GT, its shielded-graph, is circuit-free (by
definition). Moreover, for all input-output pair (z, y) of G, z <GT Y or y aGT z;
therefore necessarily, z <Ga Yd or Xb <G Yc, otherwise we would have, in GT,
Yad <aT ze and ye <aT Zb, which would close the circuit (z.,yc, zY,,iY, z.) in
GT.

(2) === (1) (by contradiction) That is illustrated by the next figure. Now, let us
suppose that GT has a circuit C. We assume that C is elementary (it does not
include any smaller circuit). G itself is circuit-free; therefore, C includes at least
a shielding-arc. Let (y, z) be this arc. (y,z) is a shielding-arc; therefore, (z,y)
is a communication pair and there is no path from z to y in G. This implies
that C includes another shielding-arc, let (y', z') be the first shielding-arc that
we can find along the circuit C from z to y (z <o y').
Either the z' through y part of C is completely included in G (z' <a y) and z,
z', y and y' build a counter-example to (2), or there exists another shielding-arc
between z' and y. Then (:', y) is a communication pair and (y, z') is a shielding-
arc; therefore, (y, z') is a shortcut which closes a circuit in GT, and which is
included in C. But, since C is elementary, this is impossible.

Fig ',fe

Figure 2.12: Illustration of Lemma 1's proof

Actually, Lemma 2.1 defines precisely how the circuits are created during
the shielding. The reader can look at Figure 2.10, showing the shielded-graph
of G1, in order to confirm that there are two couples of input-output pairs that
contradict the second property of the Lemma:

1. (v, w) with (q, r);

2. (v, w) with (q,p).

So, detecting the eventual apparence of circuits during the shielding is equiv-
alent to finding these couples of input-output pairs. This can be done from a
summary of the internal communications between the inputs and the outputs.
This summary is called a profile.

18

Definition 2.5 (profile) The profile of a pin-graph G is the pair ({Ii / 1 <
i < n},{0 / 1 < i < n}).
{Is / 1 < i < n} is the partition of the inputs of G defined by the following

equivalence relation: two inputs zl and X2 are equivalent iff for all ouput
Y, Z1 _G Y 4 ' 2 <G y.

(Oi / 1 < i < n) is the spanning of the outputs of G defined such as: an output
y of G is in a part Oi of the spanning iff for all input z in Ii, z <G Y.

{Oi / 1 < i < n} is actually a spanning because any vertex of the considered
pin-graphs belongs to a path from an input to an output. Moreover, it is clear
that ((Oi / 1 < i < n), C) is an ordering, which may be partial.

The following theorem characterizes the class of pin-graphs that include bad
couples of input-output pairs.

Theorem 1 Let G be a circuit-free pin-graph. The following properties are
equivalent:

1. G is a semi-granule;

2. ({Oi / 1 < i < n}, C) is a well-ordering.

Figure 2.13: The profile of the semi-granule G,

Figure 2.13 shows the profile of the pin-graph G., which is a semi-granule,
and effectively its output spanning is well-ordered. On the other hand, this is
not the case for GT, which is shown in Figure 2.14; indeed, GT is not a semi-
granule.

19

Figure 2.14: The profile of the pin-graph G,

Theorem's proof
We use Lemma 2.1.

(1) == (2) (by contradiction)

The proof's assumption is then: ({Oi / 1 < i < n}, C) is not a well-ordering.
Therefore, there exist i and j such that Oi ¢ Oj and Oj ¢ Oi. Let us consider
(yi,bi) E Oi \ Oj and (yi,bj) E Oi \ Oi. There exists (ai,zi) E Ii such that
zi ICo yj, and there exists (aj,zj) E Ij such that zj •SG yi. The couple (zi,yi),
(zj,yj) of input-oupt pairs is a bad one; it contradicts Statement 2 of Lemma
2.1; therefore; it contradicts 1.

(2) = (1) Let us consider (a,z,), (b,:b), (Yc,c) and (yd, d), input or ouput pins of
G such that Xz, G yc and zb <G yd. We are going to prove that they are
necessarily good (good for Statement 2 of Lemma 2.1).

Let us suppose that the Oi are numbered in increasing order. There exists i
such that z, E Is and there exists j such that Zb E Ij. If i - j the proof is
finished. Now, let us assume that i < j. Then, Za E Ii ==' y E Oi and
zb E Ii := yd E Oj; moreover, i < j =_ Oi C Oi and, therefore, zb <a Yc.

2.3 Conclusion

This study provides a formalization of all the communicating composite pro-
cesses: the pin-graph [Len86]. The pin-graph allows one to detect if it is possible
to compute a static sequentialization that works in any context. A pin-graph as-
sociated with the considered process models both the internal dependences and
the external communications of the process, forgetting the effective semantics
of the process; i. e., what the process actually does.

If the pin-graph is a semi-granule then at least one good sequentialization
exists. A profile can be associated with any pin-graph; there is an equivalence
between an immediate property of the profile of a pin-graph and the property

20

of being a semi-granule. The profile computation is equivalent to the reflexo-
transitive closure computation [Lep88].

Unfortunately, the set of semi-granules is strictly included in the set of the
pin-graphs. The purpose of the following chapter is to introduce what we can
do for a pin-graph that is not a semi-granule.

21

Chapter 3

Partition and composition

As it is well-known, it is unfortunately not always possible to sequentialize stat-
ically a set of tasks. In this case, we propose a decomposition of the considered
process into several Communicating Sequential Processes. At this stage, how-
ever, we still consider that we have only one processor.

The idea is to cut up the pin-graph, which is assumed not to be a semi-
granule, into several semi-granules. Then, every sub-pin-graph, which is as-
sumed now to be a semi-granule, is sequentialized. All of the so obtained se-
quential schedules can then be connected together in order to build a schedule
of the whole process into several Communicating Sequential (sub)Processes.

3.1 Composition

Let us suppose the considered pin-graph is already cut up. Consequently, we
have several semi-granules. The problem is to reinforce each of them, in order
to obtain a 1-schedule for each such that the composition of all gives a schedule
of the whole pin-graph. But, if we do not build good local 1-schedules, then
circuits may appear in the composition! Before looking at this more precisely,
we define formally the pin-graphs composition.

3.1.1 Pin-graphs composition

In order to give an as elegant as possible formal definition of pin-graphs com-
position we use these notations: let G = (X, r, V, I, O) be a pin-graph; Vz E X
IG(z) = {a E V / (a, z) E I} and OG(z) = {a E V / (z, a) E 0}.

22

Definition 3.1 (pin-graphs composition) Let G1 = (X 1, ri,, VI, 01) and
G2 = (X2, r2, V2, I2, 02) be two pin-graphs such that X1 n X 2 = 0. The com-
posed pin-graph G = G1.G2 is the pin-graph (X, r, V, I, O):

X =X 1UX 2 ;
r = r1

u r2
U {(Z1, Z2) E Xi X X2 / IG,(Z2) n OG,(z) 0};
U {(Z2, z1) E X2 X Xi / IG 1 (Z1)n OG 2(z2) °;

V =V1UV 2 ;
I = 1 U 2 ;
0 =0 1 U0 2.

This defines the composition of two distinct pin-graphs (i. e., the intersection
of their vertices set is empty). We can define the composition of two pin-graphs
that share vertices as the composition of isomorphic and distinct copies of these
pin-graphs; in other words, the labels of vertices are considered as to be local.

The composed pin-graph is made up by adding a new arc from any ouput
y of one of the pin-graphs to any input z of the other such that z and y carry
complementary pins: the input z carries, for example, the input-pin (a, z) and
the ouput y carries the output-pin (y,a), thus, {a} E IG,(z)n OGJ(Y) $ 0.
Moreover, the pins a, in this example, "survives" the composition, and in fact,
all the pins "survives" the composition.

The composition masks neither input, nor ouput.

The following figure shows G,.G,, the composed pin-graph of G. and G,:
the additional arcs (y, v), (u, r) and (p,z) (in boldface) are provided by the
composition itself.

.Yg

a,,.-'
'-..OOoo ... ~ ' '~EC "

e.-*-

Figure 3.1: The pin-graph G,.G,

23

Corollary 3.1.1 The pin-graphs composition is a commutative and associative
internal operation. The empty pin-graph is the neutral element.

3.1.2 Reinforcements composition

Let us consider the composition of pin-graphs. For each pin-graph, the remain-
ing pin-graphs play the role of the context, where we consider context as in
the previous section. Consequently, in the context of the composition of rein-
forcements, we require that local 1-schedules of pin-graphs be obtained from a
circuit-consistent reinforcement. Thus, the following formal results come as a
matter of course.

The first of them expresses it is possible to base the construction, by com-
position, of a schedule on the circuit-consistency property.

Proposition 3.1 Let G be a circuit-free pin-graph and GR be one of its rein-
forcements. The following properties are equivalent:

1. GR is circuit-consistent;

2. for all circuit-free pin-graph G', if G.G' is circuit-free, then GR.G' is a
reinforcement of G.G'.

Proof

(1) == (2) Let us consider a circuit-free pin-graph G' such that GR.G' includes a
circuit, then it goes through GR and G' alternatively (these pin-graphs are both
circuit-free). Let us consider in this circuit a maximal path of GR; let z be its
first vertex and y be its last one, i. e., the vertex that precedes z is in G' and
the one that follows y, too. So, z <GR Y and there exist (a, z), an input-pin of
G, and (y, b), an output-pin of G. GR is circuit-consistent; therefore, there exist
(a, z'), an input-pin of G, and (y',b), an output-pin of G, such that z' <G y'.
In this way, we have substituted a path fully included in G for a portion of the
circuit that belongs to GR. By applying iteratively this method to every portion
of the circuit that belongs to GR, we construct a circuit of G.G'.

(2) =•= (1) Let (a,z) be an input-pin, and (y,b) be an output-pin of G, such that
z <GR Y. Let us consider the graph (see Fig. 3.2)

24

Go = ({u}, {}, {a, b}, {(b, u)}, {(u, a)})

a.a ***R

Figure 3.2: Circuits terminal behavior

The composition GR.Go includes a circuit through z, y and u , in this order.
Our proof assumption provides us with that property: there exists a circuit
included in G.Go, too. This circuit has to go through u. Therefore, there exist
(a, z'), an input-pin of G, and (y',b), an output-pin of G, such that z' <a y'.
That is the definition of the circuit-consistency (see (2.1) of Definition 2.3).

0
That second result expresses it is possible to construct, by composition,

circuit-consistent reinforcements, too.

Corollary 3.1.1 The composition of circuit-consistent reinforcements of two

pin-graphs is a circuit-consistent reinforcement of the composition of these pin-

graphs.

Proof
Let G1 and G2 be two pin-graphs, and GR1 and GR2 be two respective circuit-

consistent reinforcements. Two things are to be proved: the composition GR, .GR 2 is
a reinforcement, and it is circuit-consistent.

The proposition 3.1 allows one to conclude with no more development that GR .GR2

is a reinforcement of G1.G2.
About the circuit-consistency: let G' be a circuit-free pin-graph; (GR1 .GR2).G'

includes a circuit then (by associativity) GR .(GR2 .G'), too; GR1 is circuit-consistent;
therefore, G1 .(GR 2.G') includes a circuit. By using the same argument and the com-
mutativity it is easy to conclude that GR2.(G1 .G'), G2.(G1.G') and (Gi.G2).G' include
circuits.

The last of them expresses that we can freely choose any reinforcement of a
pin-graph, provided that it was circuit-consistent.

25

Corollary 3.1.2 Let GR be a circuit-consistent reinforcement of G, a circuit-
free pin-graph, and G' be a reinforcement of G', a circuit-free pin-graph. The
following properties are equivalent:

1. GR.G' is not a reinforcement of G.G';

2. the composition of G' and a reinforcement of G cannot be a reinforcement
of G.G'.

Proof
(2) ==: (1) is immediate. So, let us prove (1) =, (2). GR.GR is not a rein-

forcement; therefore, it includes a circuit. GR is circuit-consistent; therefore, G.GR

includes also a circuit. Consequently, the composition of any reinforcement of G and

G' includes a circuit. 0

3.2 Scheduling by (re)composition

The situation we are considering is the one in which a pin-graph is not a semi-
granule. This pin-graph must therefore be cut up into several semi-granules.
The aim is to reinforce every semi-granule in order to obtain, by (re)composition,
a global and sequential by pieces schedule of the whole pin-graph.

The previous section shows the circuit-consistency exactly befits the con-
struction by (re)composition of schedules. This section is devoted to more tech-
nical and algorithmic aspects of the (re)composition. In first, let us look at
what is a sequential by pieces schedules.

3.2.1 Scheduling into n-segments

Definition 3.2 (n-schedule) Let G be a pin-graph, a n-schedule of G is a
pair (GR, II) where:

GR is a reinforcement of G;
II is a partition of GR into n elementary paths, called segments.

Figures 2.5 and 2.6 show the 1-schedules (GR1, {X,}) and (GR2 , {X}) of
G, and G. respectively. In GR,, the arc (y, z) has been added, thus the missing
arcs (z, z) and (y,t) of G. are represented in GR, by the paths (z, y, z) and
(y, z, t) respectively; in GR,, the arc (p, v) has been added, thus the missing arc
(q, r) of G, is represented by the path (q, p, v, w , r) in GR 2.

Let us suppose that the pin-graphs G. and Gr have been obtained by cutting
up the pin-graph G,.Gr, shown by the following figure. Is GR,.GR 2 a n-schedule
of G,.Gr?

26

a.b ~~ d<

Y..1111 * , .. o . *o.

Figure 3.3: GR, .GR, is a 2-schedule of G,.Gr

This figure allows one to answer positively to the question; indeed, no circuit
can be observed in GR,.GR2 . GR, is a circuit-consistent reinforcement of G,:
(z, y), the only G,'s pair of communication, is therein shielded. That does
not imply we could have chosen whichever other 1-schedule of GT in order
to construct a 2-schedule of G,.Gr. The fact that GR, is a circuit-consistent
reinforcement provides us with only two things:

1. if there exists a circuit-consistent reinforcement of G,, the composition of
this reinforcement and GR, constructs a circuit-consistent reinforcement
of G,.G, (corollary 3.1.1);

2. if there exists GR,, a reinforcement of G7, such that GR, .GRs includes a
circuit, the responsible is GRS and not, in any case, GR, (corollary 3.1.2).

yc· *y--. *--.

g e

Figure 3.4: GR,: a 1-schedule of G,

Indeed, a reinforcement GR, exists (see Fig. 3.4). The composition of GR3

and GR, includes effectively a circuit: (z, t, u, r, p, z).

27

g

Figure 3.5: GR1 .GRs is not a schedule of G,.G,

3.2.2 A few technical aspects

Globally, the method we propose can be summarized by the following steps, in
order:

1. compute a partition into semi-granules of the being treated pin-graph;

2. compute a circuit-consistent 1-schedule of each so obtained semi-granule;

3. compute the composition of the so-obtained 1-schedules, what provides
with a n-schedule of the whole pin-graph (n being the cardinal of the
partition).

Thus, the semi-granules are defined by a partition and have to be extracted
from the initial pin-graph. We then need a notion of sub-pin-graph.

Definition 3.3 (sub-pin-graph) Let G = (X, r, V, I, O) be a pin-graph. G' =
(x', r', Vr , I', O') is called sub-pin-graph of G if (X', r') is a directed sub-
graph of (X, r) and

V' = U2 EX, Ob(Z)U IGz (),
I = UEx, ({(a, z) / aE IG(z)} U {((y, z), z) / (Y, Z) E r et Y E X \ X'}),
o' = UzEx,({(z, a) / a E OG(z)} U {(Z, (,y)) / (z,y) E r et y E X \ X'}).

The following figure shows a sub-pin-graph of G.. A pin obtained from an
arc break is, as it is described in the definition, labelled by the pair made up of
the broken arc extremity labels.

28

e.- .,

7(y,t)

'~(xZ, '``'··nV .- x~z) :3 y~~t,u)

Figure 3.6: A sub-pin-graph of G,

An important property that the (de)composition-(re)composition process
must have is to preserve the pin-graph, if nothing is performed but the (de)composition-
(re)composition itself, of course. Unfortunately, as the following figures show
so, some modifications may appear if no restriction is added to the definition of
the pin-graphs.

Figure 3.7: First singulary .case of the (re)composition

Figure 3.7: First singulary case of the (re)composition

Let us consider a partition of the pin-graph, shown in the previous figure,
which has two parts such that u is in one and v is in the other. By (re)composing,
we would create the new arc (u, r). The following condition must be added to
the definition of the pin-gaphs in order to avoid this.

(u, f) E et (fr)EI E : (u,r) E r

29

(y,z)

Figure 3.8: Second singulary case of the (re)composition

Let us now consider the case of this second figure. Let a partition be such
that z and y are in a part and z in an other. The (de)composition would
break the arc (y, z), consequently, the previous case would be created. So, the
following condition must be added to the definition of pin-gaphs in order to
avoid this.

((,y), z) E I == y= z and (,(y, z))EO == y = z

3.3 Algorithms

This section is an overview of the algorithms we are developing. Basically, two
aspects are to be considered:

* how to compute the partition into semi-granules;
* how to compute the circuit-consistent schedules of the semi-granules.

An algorithm that splits the initial pin-graph, then splits the so obtained
sub-pin-graphs, continuing iteratively, has been studied. The challenge is to
compute a minimal partition. The principle is to compute sequences of pin-
graphs that decreasingly converge to semi-granules. This algorithm is based
on the second characterization of the semi-granules (see the 2 of Theorem 1).
It uses the transitive closure; the complexity of the computation of the first
semi-granules, i. e., without minimizing the partition, is polynomial, degree 4
[Lep88].

Let us now look at two others algorithms.

3.3.1 Barbedwires

The most sensitive aspect of the computation of circuit-consistent schedule is
the shielding. Indeed, in order to schedule a pin-graph that has communication
pairs care must be taken about the ordering of the elements of these pairs.
In other words, the set of the circuit-consistent reinforcements of such a pin-
graph is only strictely included in the set of reinforcements. In contrast, the
set of circuit-consistent reinforcements of a pin-graph that does not include any
communication pair is equal to the set of its reinforcements. This property
makes possible a huge simplification of the computation of schedules of such
pin-graphs, which are called barbedwires.

30

Definition 3.4 (barbedwire) Let G be a circuit-free pin-graph, G is called a
barbedwire iff it is equal to its own shielding graph.

The following figure shows a barbedwire.

a e

S ~ d h

Figure 3.9: GM, an example of barbedwire

Corollary 3.4.1 A barbedwire is a semi-granule.

Having to add new arcs for scheduling statically states an important ques-
tion. The reinforcement of constraints can generate execution delays that could
be avoided by a dynamic scheduler. Let us consider the system modelled by
the pin-graph G, (see Fig. 2.3). The sole circuit-consistent 1-schedule of G,
is (z, y, z,t, u), which is shown by Figure 2.5. We know this schedule always
works. But with a context that can provide d and e with their values before
providing b with its, the static schedule above proposed will generate a delay,
for waiting the value of b. On the other hand, a dynamic scheduler might have
ordered the execution of the elementary task z; the time of the execution of z
is maybe the time the context needs to provide b with its value.

Thus, the ideal partition we can consider seems to be a partition into barbed-
wires that are well-ordered: no reinforcement is done, the well-ordering is pro-
vided by the initial constraints of the pin-graph. In this case, if dead-locks and
delays appear they are due to the incompatibility between the modelled appli-
cation itself and the context, and nothing else. Of course, the following property
is true.

Corollary 3.4.2 An elementary path is a barbedwire.

So, Berge's algorithm [Ber70] based on alternated strings, which is usually
applied to compute the maximal matching of a bipartite graph, allows one
to compute a partition into elementary paths. This algorithm is linear with
respect to the number of arcs; Kuhn's theorem [Kuh55] states this partition is
minimal with respect to the number of communications among the so obtained
elementary paths.

31

3.3.2 Granules

An other class of the semi-granules is really interesting: the granules [LL88].

Definition 3.5 (granule) Let G be a circuit-free pin-graph, G is called a gran-
ule iff COM(G) = 0.

Corollary 3.5.1 A granule is a barbedwire

Corollary 3.5.2 Let G be a pin-graph and ({Ii / 1 < i < n}, (Oi / 1 < i < n))
be its profile, then the following properties are equivalent:

1. G is a granule;

2. n = 1.

This definition says there is a path from any input to every output of a
granule. This means if we consider a sub-pin-graph that is a granule then we
can forget what is inside; knowing the inputs and the outputs is sufficient:
the sub-pin-graph-granule can be considered like a regular vertex; a granule
is a black-box. The granule is a useful tool for mapping onto multiprocessors
[FGLL88].

The granule allows one to reduce a pin-graph without
losing its connectivity.

A method of granulation, i. e., partition into granules, by condensation has
been developed [Le 89]. It is a greedy algorithm which constructs a granule
by absorbing the neighborhoud of the granule which is being constructed. The
absorption is stopped, and a new granule is begun as soon as it is impossible
to absorbe new neighbors without losing the property of being a granule. This
algorithm is linear with respect to the number of arcs in the pin-graph.

3.4 Conclusion

Firstly, the semi-granules are presented, and it is shown that they constitute
the class of the pin-graphs that admit a circuit-consistent 1-schedule; in other
words, the semi-granules are the only ones that can be scheduled sequentially
off-line without adding any constraint that could induce a dead-lock. Secondly,
we describe a strategy of scheduling off-line, as much as possible, pin-graphs
that are not semi-granules.

The formal definition of the composition of pin-graphs provides a way of
stating precisely how semi-granules can be used for scheduling. It is proved
that the circuit-consistency property is preserved by composition, and that a
circuit-consistent scheduling is definitively safe, i. e., if a problem exists, then
it comes from elsewhere. These properties make possible the computation of

32

schedules by (re)composing local 1-schedules, which were previously computed
by local investigations; these investigations are performed on the semi-granules
associated with a partition of the whole pin-graph.

The point is then to compute these partitions. In a short overview, several
algorithms were presented. Basically, the common thread is the research of
sub-classes of the semi-granules such that a low complexity algorithm of parti-
tionning into sub-pin-graphs of pin-graphs of the considered sub-class exists.

banules

semi-granules

graphes a epingle

Figure 3.10: The semi-granules classification

Two sub-classes are really interesting (see Fig. 3.10): the barbedwire and
the granule. Partitions into barbedwires answer to the question of delays during
the execution due to the rigidity of static schedules. And the granule, which is
truly a black-box, is the natural object for mapping onto multiprocessors.

33

Chapter 4

General conclusion

In the general framework of the implementation of real-time applications and dy-
namic systems, we propose methods for restructuring their specification [Le 89].
The purpose of these rewritings is to exhibit the information that is useful for
implementation: the organization of the timing, of external communications
and of internal dependences.

This could be done by emphazising the interesting information and/or by
encapsulating the uninteresting information. The granule, which is briefly pre-
sented in this paper, is a good example of encapsulation; the interested reader is
referred to Le Goff 89 [Le 89], Figueira 88 & al. [FGLL88] and Le Goff 88 & Le
Guernic [LL88]. It is a natural base for a mapping method. The semi-granule,
and its profile, which summerizes the dependences among communications, are,
such as it is developed in this paper, a good example of synthesis of informa-
tion. In this case, this information is used in order to compute schedules that
are compatible with whichever context of execution.

The directed graph is a good model for a set of tasks that are related by
dependences. Scheduling is expressed naturally in a directed graph. The exter-
nal communications are represented by special marks which were introduced by
Lengauer [Len86]. The so completed directed graph provides a way of defining
formally the problem of dead-locks due to schedules. The semi-granules are the
class of graphs that admit a sequential schedule compatible with whichever con-
text of execution. The formalization of properties of the semi-granule represents
an opportunity for interesting developments in graph theory.

The motivation of scheduling off-line is based on two things: the reduction
of overhead, and the computation of deterministic run-schemes from parallel
specifications [GIB89]. Semi-granulation, i. e., the computation of partitions
into semi-granules, addresses the second aspect. If the considered application
is already a semi-granule then a deterministic run-scheme exists. Otherwise,
a semi-granulation reveals the fragile spots of the run-scheme. On the other
hand, although a static schedule can reduce the overhead, because it precludes

34

the use of a dynamic scheduler, its rigidity may generate numerous delays due to
communication during the execution. These delays occur because we add artifi-
cial constraints to well-order the tasks. However, let us suppose that the static
schedule does not include anything but the initial constraints of the application.
In this case, any delay that occurs would be due entirely to the application itself.
The partitions into barbedwires, which are formally defined, provide a way of
getting such static schedules.

Acknowledgments
The authors would like thank Professor Jean-Claude Bermond and Doctor Ken
Chou.

35

Bibliography

[Ber70] Claude Berge. Graphes et hypergraphes, volume 37 of Mono-
graphie universitaire de mathematique. DUNOD, 92, rue Bona-
parte, Paris 6, France, 1970.

[BIM88] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can't be traced:
Preliminary report. In POPL'88, Symposium on Principles of
Programming Languages, pages 229-239, San Diego, California,
January 1988. ACM.

[BLL88] Albert Benveniste, Bernard Le Goff, and Paul Le Guernic. Hybrid
dynamical systems theory and the language SIGNAL. Research Re-
port 838, INRIA, Rocquencourt, April 1988.

[FGLL88] Carlos Figueira, Thierry Gautier, Bernard Le Goff, and Paul Le
Guernic. Towards multiprocessor implementation of real-time data-
flow programs. In W. W. Wadge, editor, ISLIP'88: International
Symposium on LUCID and Intensional Programming, pages
127-138, Sidney, Canada, April 1988. University of Victoria.

[GIB89] E. W. Giering III and T. P. Baker. Toward the deterministic schedul-
ing of ADA tasks. In Real-Time Systems Symposium, IEEE,
pages 31-40. IEEE Computer Society Press, December 1989.

[GLB87] Thierry Gautier, Paul Le Guernic, and Loic Besnard. SIGNAL: a
declarative language for synchronous programming of real-time sys-
tems. In Gilles Kahn, editor, Functional programming lan-
guages and computer architecture, pages 257-277. Lecture
Notes in Computer Science, 274, Springer-Verlag, 1987.

[Kuh55] H. W. Kuhn. The hungarian method for the assignement problem.
Technical Report 2, Naval Research Logistics Quartely, 1955. 83.

[Le 89] Bernard Le Goff. Inf6rence de contr6le hierarchique: applica-
tion au temps-reel. PhD thesis, Universiti de Rennes 1, 1989.

36

[LL88] Bernard Le Goff and Paul Le Guernic. The granules, glutton: An
idea, an algorithm to implement on multiprocessor. In R. Cori M.
Wirsing, editor, STACS 88, Lectures Notes in Computer Sci-
ence, Bordeaux France, February 1988. AFCET, Springer-Verlag.
Volume 294.

[Len86] T. Lengauer. Efficient algorithms for finding minimum spanning
forests of hierarchically defined graph. In STACS 86, Lectures
Notes in Computer Science, pages 153-170, USA, 1986. Springer-
Verlag. Volume 210.

[Lep88] Hugue Lepoittevin. Reduction d'un graphe d'ordonnancement par
partitionnement en granules, pour une implantation repartie. Rap-
port de stage DEA informatique encadri par B. Le Goff, IRISA,
Rennes, 1988.

37

Index

<r, dependence,
definition, 7 definition, 7
dependence, 7

<G, granule,
definition, 7 barbedwire, 32
dependence, 7 black-box, 32

r, COM(G), 32
definition, 7 definition, 32
directed graph, 7

r*, GT,
definition, 7 definition, 15
dependence, 7 shielded-graph, 15

reinforcement, 8

barbedwire, pin-graph,
definition, 31 communication, 9
granule, 32 composition,

definition, 23
circuit-consistency, 12 definition, 9

strong, GT, 15
definition, 13 IG,

definition, 22
COM(G), input,

definition, 15 definition, 9

mask, 23
communication pair, mask, 23

COM(G), 15 definition, 22
definition, 15 output,

composition,
composition, definition, 9
pin-g,, 29 mask, 23
pin-graph,

definition, 23 pin, 9segment, 26
reinforcement, 24 sub-pin-graph,

circuit-consistency, 25 definition, 28
non-circuit consistent, 26 profile,

profile,

38

profile (continued):
definition, 19
semi-granule, 19

reinforcement,
circuit-consistency,

shielded-graph, 16
circuit-consistent,

composition, 25
composition, 24, 26
deadlock, 9
definition, 8
r*, 8
shielded-graph, 16

schedule,
1-schedule, 17
n-schedule,

definition, 26
sequential, 17

schielding-arc,
definition, 15

segment,
definition, 26

semi-granule,
definition, 16
profile, 19
shielded-graph, 16

shielded-graph,
definition, 15
GT, 15

shielding-arc,
SHI(G), 15

SHI(G),
definition, 15

39

