
March 1990 LIDS-P--1949

AGGREGATION AND MULTI-LEVEL CONTROL IN DISCRETE EVENT
DYNAMIC SYSTEMS

Cuiineyt M. Ozveren and Alan S. Willsky
MIT, Cambridge, MA 02139.

Summary

In this paper we consider higher-level aggregate modelling and control of discrete-event
dynamic systems (DEDS). The higher-level models considered correspond to associating
specified sequences of events in the original system to single macroscopic events in the
higher-level model. We also consider the problem of designing a compensator that can
be used to restrict microscopic behavior so that the system will only produce strings of
these primitive sequences or tasks. With this lower level control in place we can construct
higher-level models which typically have many fewer states and events than the original
system. A complete treatment of the topics presented here can be found in [5].

1 Background and Preliminaries
The class of systems we consider are defined over G = (X, E, ~, r, E), where X is the
set of states, with n = IX[, E is the finite set of possible events, · C E is the set of
controllable events, r C E is the set of observable events, and E C E is the set of tracking
events. Also, U = 2D denotes the set of admissible inputs. The dynamics on G are:

x[k + 1] E f(x[k],o[k + 1]) (1.1)

o[k + 1] E (d(x[k]) Fn u[k]) U (d(x[k]) n 6) (1.2)

The set-valued function d specifies the set of possible events defined at each state, and
the state transition function f is also set-valued. We assume that D C r. Whenever an
event in r occurs, we observe it; otherwise, we see nothing. Thus, our output equation is

7[k + 1] = h(o'[k + 1]) (1.3)

where h is the projection map from E* to r*, obtained by deleting all events not in r.
The set E, denotes the tracking alphabet, and t : * -- *, denotes the projection of

strings over E into A*. Note that if there exists a cycle in A that consists solely of events
that are not in E, then the system may stay in this cycle indefinitely. We assume that
this is not possible. A = (G, f, d, h, t) represents our system.

We say that x E X is alive if Vy E R(A,x), d(y) 7 0. A set Q c X is alive if all
x E Q are alive, and A is alive if X is alive. We will assume this. The composition of
two automata which share some common events operates as it would with each system in
isolation except that when a shared event occurs, it must occur in both systems.

Let L be a regular language with minimal recognizer (AL, xo). Given a string s E L,

if s = pqr, then p is a prefix of s, r A s/pq is a suffix of s, and q is a substring of s.

Definition 1.1 Given L, s E L has an infinite extension in L if for all integers i > Isl,
there exists r E L, Irl = i such that s is a prefix of r. L is prefix closed if all the prefixes
of any s E L are also in L. L is a complete language if each string in L has an infinite
extension in L and L is prefix closed. For any L, we let Lc denote its prefix closure.

In our development we will construct automata in which certain events can be forced
to occur. It is straightforward to capture forced events in our present context.

Definition 1.2 A state x is E-pre-stable if every trajectory starting from x passes through
E. A state x is E-stable if A is alive and every state reachable from x is E-pre-stable.
The DEDS is E-stable if every x is E-stable.

A feedback map K: X -+ U yields a closed-loop system AK = (G, f, dK, h, t) with

dK(x) = (d(x) n K(x)) U (d(x) n A) (1.4)

Definition 1.3 A state x is E-pre-stabilizable (E-stabilizable) if there exists a K such
that x is E-pre-stable (E-stable) in AK. The DEDS is E-stablilizable if every x is.

Definition 1.4 A subset Q is f-invariant if f(Q, d) c Q where f(Q, d) = UxEQ f(x, d(x)).

The maximal stable set is the maximal f-invariant set in the maximal pre-stable set [4].

Definition 1.5 A subset Q of X is (f, u)-invariant if there exists a state feedback K such
that Q is f-invariant in AK. A subset Q of X is a sustainably (f, u)-invariant set if there
exists a state feedback K such that Q is alive and f-invariant in AK.

Given any set V c X, there is a maximal sustainably (f,u)-invariant subset W of V with
a corresponding unique minimally restrictive feedback K.

A system is observable if the current state is known perfectly at intermittent but not
necessarily fixed intervals of time. A necessary condition for observability is that it is not
possible for our DEDS to generate arbitrarily long sequences of unobservable events.

For any set Q c X we define the reach of Q in A as:

R(A, Q) = {y E XI3x E Q such that x -+* y} (1.5)

where x -+* y denotes that y is reachable from x. Let Y = Yo U Y1, where

Yo = {x E X I ty E X,a E E, such that x E f(Y,^)} (1.6)

Y1 = {x E Xi3y E X,? E F, such that x E f(y,')} (1.7)

Let L(A, x) denote the event string language generated by A from the state x E X. Also,
let L(A) = UxEX L(A, x).

In [1], we present an observer in which each observer estimate is a subset of Y corre-
sponding to the set of possible states following the last observable event. The observer is
a DEDS with state space Z C 2Y and with r as its set of events:

x[k + 1] = w(4[k], y[k + 1]) - UXER(AIr,r[k]) f(x, [k + 1]) (1.8)

1y[k + 1] E v(x[k]) _ h(UxER(Alr,£[k]) d(x)) (1.9)

In some cases, we treat the observer as a controlled system. A system is observable iff
O is stable with respect to its singleton states [1]. Also a state is a recurrent if it can be
reached by an arbitrarily long event string. Zr denotes the set of recurrent states of 0.

In [3], we define a compensator C : X x E* -- U which specifies the set of controllable
events that are enabled. The closed loop system Ac is the same as A but with

a[k + 1] E dc(x[k], s[k]) - (d(x[k]) n C(x[k], s[k])) U (d(x) n A) (1.10)

where s[k] = a[O] -... [k] with u[O] = e. As shown in [3] we can restrict attention to
compensators which can be realized by finite state machines.

In [2] we define an output compensator as C : * -- U so that

a[k + 1] E dc(x[k],s[k]) - (d(x[k]) n C(h(s[k]))) U (d(x) n 9) (1.11)

The following guarantees that our compensators preserve liveness.

Definition 1.6 Given Q c X, F C A, F is Q-compatible if for all x E R(AFr,Q),
(d(x) n F) U (d(x) n a) 5/ 0. An observer feedback K : Z - U is A-compatible if for
all x E Z K(x:) is x-compatible. A compensator C : P -* U is A-compatible if for all
s E h(L(A)), C(s) is k(s)-compatible.

Definition 1.7 A is output stabilizable (output pre-stabilizable) with respect to E if
there exists an output compensator C such that Ac is E-stable (E-pre-stable). We term
such a compensator an output stabilizing (output pre-stabilizing) compensator.

This definition implies that there exists an integer ns such that the trajectories in Ac
go through E in at most ns observable transitions, with ns < q3 [2]. Also output pre-
stabilizability and liveness are necessary and sufficient for output stabilizability [2].

The following properties relate to a system's ability to generate particular strings [3].

Definition 1.8 Given x E X and a complete language L over E, x is L-restrictable if
there exists a compensator C: X x E* U such that the closed loop system Ac is alive
and t(L(Ac, x)) C L. Given Q c X, Q is L-restrictable if all x E Q are L-restrictable.
Finally, A is L-restrictable if X is L-restrictable.

Definition 1.9 Given x E X and a complete language L over E, x is eventually L-
restrictable if there exists an integer na and a compensator C : X x E* -4 U such that
the closed loop system Ac is alive and t(L(Ac,x)) C (B U {e})naL. Given Q C X,
Q is eventually L-restrictable if all x E Q are eventually L-restrictable. Finally, A is
eventually L-restrictable if X is eventually L-restrictable. Here (- U {e})na denotes the
set of strings over E that have length at most na.

Definition 1.10 Given a complete language L over ' we say that A is eventually L-
restrictable by output feedback if there exists an integer no and an output compensator
C: r* - U such that Ac is alive and for all x E X, t(L(Ac, x)) C (E U {e})n°L. Such a
C is called an L-restrictability compensator.

To test for this, let (AL, XL) be a minimal recognizer for L with state space ZL. AL is the
same as AL except that ZL = ZL U {b} where b is a state used to signify that the event
trajectory is no longer in L. Also, dL(x) = ' for all x E ZL, and

f (X,) fL(x, o) if x b and dL(x)(1.12)
I {b} otherwise

Let O be the observer for A, A(L) = A II AL, and O(L) = (G(L), wL, vL) the observer
for A(L); since we know that we will start AL in xLL, we take the state space of O(L) as
Z(L) = R(O(L), {{XL} xili E Z}). Let V, = i{ E Z(L)I for all (XL, XA) E Z, XL y b} Let
E(L) be the largest subset of Vo which is sustainably (f,u)-invariant in O(L) and for which
the associated unique minimally restrictive feedback KEL has the property that for any

E Z(L), KEL(:) is 5()-compatible where x(i) = {x E XI3XL E ZL such that (XL, x) E

4}. The construction of E(L) and KEL is a slight variation of the algorithm in [4] for the
construction of maximal sustainably (f,u)-invariant subsets. Consider next the set

Eo(L) = {x E ZlxL x x E E(L)} (1.13)

Proposition 1.11 A is eventually L-restrictable by output feedback iff there exists an A-
compatible feedback K: Z -+ U such that the closed loop system OK is Eo(L)-pre-stable.

2 Characterizing Higher-Level Models
We now consider higher-level modelling based on a given set of primitives, each of which
consists of a finite set of tracking event strings. Given alphabets E' and E, a primitive
map He : -' 2 * , is such that for all a E E' He,(a) is a collection of finite length strings.
Here oa E Y' is the macroscopic event corresponding to the set of tracking strings He(a)
in the original model. Given He we extend it to act on strings over E'.

Definition 2.1 A primitive map He is termed minimal if for all, not necessarily distinct,
cl, or2 E E' and for all s E He(aol), no proper suffix of s is in He(a02).

Proposition 2.2 If He is minimal then for all distinct rl, r2 such that rl, r2 y$ e, [rl <

Ir2, and r1 is not a suffix of r 2, E*He(rl) nl E*He(r 2) = 0.

Given A and A', we wish to specify when A' is an He-model of A, where He: ' --+ E is a
minimal primitive map. Two important properties that we require are:

Restrictability: If we can restrict the behavior of the macroscopic model to some com-
plete language L C E'*, then we can also restrict the original system to He(L)c.

Detectability: For any lower-level string s in L(A) such that t(s) is in He(p) for some
string p in the macroscopic system, then (a) we can reconstruct p, after some delay, using

the lower-level observation h(s) of s; and (b) for any string r so that s is a suffix of r,
the reconstruction acting on h(r) results in a string that ends with the reconstruction of
h(s). Thanks to minimality, Hej(t(s)) is single valued. Thus, in order to satisfy the first
condition of detectability, we need to be able to reconstruct Hel'(t(s)) from h(s). What
(b) requires is that the reconstruction can recognize and "reject" finite length start-up
strings that do not correspond to any primitive.

Proposition 2.3 If A' is an He-model of A then for any compensator C': r'* -7 U' for
A', there exists C : r* -, U for A such that Ac, is an He-model of Ac with the same Ho.

3 Aggregation
Suppose that our system is capable of performing a set of primitive tasks. What we would
like to do is to design a compensator that accepts as inputs requests to perform particular
tasks and then controls A so that the appropriate task is performed. Assuming that the
completion of this task is detected, we can construct a higher level and extremely simple
model for our controlled system: tasks are requested and completed.

Let T be the index set of a collection of tasks, i.e., for any i E T there is a finite set
Li of strings over E that represents task i. We let LT = UiETLi.

Definition 3.1 Given T, we say that T is an independent task set if for all s E LT, no
substring of s, except for itself, is in LT.

Then when we look at a tracking sequence there is no ambiguity concerning which sub-
string corresponds to which task. Note that if T is independent, then the minimal recog-
nizer for all of LT has a single final state as does the minimal recognizer for each Li.

Definition 3.2 A task i E T is reachable (by output feedback) if A is eventually Lc-
restrictable (by output feedback). T is reachable (by output feedback) if each i E T is.

Given a task i E T reachable by output feedback, let Ci : r* -- U be an Lc-
restrictability compensator. Note that states in Eo(LC) are guaranteed to generate a
sublanguage of Lc in the closed loop system. However, for any other state x E Z, it
may still be possible for such a string to occur. Furthermore, in general, a string in Lj,
for some other j, may be generated before the trajectory in 0 reaches Eo(LC). If this
happens, then task j will have been completed while the compensator was trying to set-up
the system for task i. The following requires that this cannot happen:

Definition 3.3 An LC-restrictability compensator Ci for a reachable i E T is consistent
with T if for all x E Zr n Eo(L*c), for all x fE , and for all s E L(Ac,,x), t(s) f LT.

Consider testing the existence of and constructing consistent restrictability compensators.
Note that we only need to worry about forcing the trajectory in 0 into Eo(L* c) without
completing any task along the way. Once that is done, restricting the behavior can be
achieved by the compensator defined in Proposition 1.11. First, we need a mechanism to
recognize that a task is completed. Thus, let (AT, x 0) be a minimal recognizer for LT with
the final state xf and state space XT. We add a new state, g, to the state space of AT,

and for each event that is not previously defined at states in XT we define a transition
to state g. To keep the automaton alive, we define self-loops for all events in E at states
g and Xf. Let A'T be this new automaton. Given a string s over E, if s takes x0o to g in
A' then no prefix of s can be in LT. If, on the other hand, the string takes x0 to xf then
some prefix of this string must be in LT. Now, let O' = (G', w', v') be the observer for
A 11 AT with state space Z'. The initial states of O' are Zo = {~ x x{xo}l C Zr} so that
Z' = R(O', Zo). Let p: Z' -, Zr be the projection of Z' into Z,, i.e., p(,) = U(x,,xz)e2){x1}.

Also, let E' = f{ e Z'Ip() E Eo(LTC)}. Our goal is to reach E' from the initial states
Z& while avoiding the completion of any task. So, we remove all transitions from states
in E' and instead create self loops in order to preserve liveness. Let O" = (G',w", v")
represent the modified automaton. Consider the set of states in which we need to keep
the trajectory, i.e. those that cannot correspond to a completion of any task:

E":= {: E Z'IV(Xl, X2) E Z,x 2 f Xf} (3.1)

Let V' be the maximal (f,u)-invariant subset of E', and let KV' be the corresponding
A-compatible minimally restrictive feedback. In order for a consistent compensator to
exist, Z0 must be a subset of V'. In this case, we need to steer the trajectories to E'
while keeping them in V'. Thus, we need to find K": Z' -- U so that Z' is E'-pre-stable
in Ov,, and so that the combined feedback K(Z) = KV'(Z) n K"(Z) for all z E Z' is
A-compatible. The construction of such a K, if it exists, proceeds much as in Section 2.
Since KV' is unique, if we cannot find such a feedback, then a consistent restrictability
compensator cannot exist. Let us assume that a consistent compensator exists.

Let us outline how we construct a compensator Ci for task i: Given an observation
sequence s, let x be the current state of O. There are three possibilities:

1. Suppose that x ~ Zr and the trajectory has not entered Eo(LC). Then, we use O and
an E,(L*C)-pre-stabilizing feedback to construct Ci(s) as in Proposition 1.11.

2. Suppose that x E Zr and the trajectory has not entered Eo(Lc). Let x' be the state
in O into which the trajectory moves when it enters Z, for the first time, and let s' be
that prefix of s which takes {Y} to x' in O. Then, we start O" at state x' x xo. Suppose
that sis' takes x' x x0 to , in O". Then, with K as defined above

C(s) = (v'() n K(Z))U (V"() n a) (3.2)

3. On entering Eo(L*c), we switch to using O(LC) and the (f,u)-invariance feedback KLC.
Given a set of p tasks T, reachable by output feedback, let Ci : P* -+ U denote

the compensator corresponding to task i. The overall compensator C that we construct
admits events corresponding to requests for tasks as inputs and switches between Ci. In
order to model this, we use an automaton illustrated in Figure 3.1, which has p states,
where state i corresponds to using the compensator Ci to control A. For each i, TrF is a
forced event, corresponding to switching to Ci. Let IT = {Tr,..., TF} and UT = 2'T.

The input to C is a subset of DT, representing the set of requested tasks. Suppose that C
is set-up to perform task i. There are three possibilities: (1) If the input is the empty set,
then C disables all events in A; (2) if the input contains irF, then C continues performing

FIIF p2

ep

Figure 3.1: An Automaton to Construct C

task i; (3) Finally, if the input is not empty but it does not contain TF, then C will force
one of the events in this set, initializing the corresponding task compensator.

We define a notion of observability for tasks after an initial start-up transient.

Definition 3.4 A task i E T is observable if there exists a function 27: Zr X L(O, Zr)
{e, i F } so that for all x E Zr and for all x E x, 2 satisfies

1. 27(5, h(s)) = Or F for all s E L(A, x) such that s = P1P2P3 with t(p2) E Li, and

2. I(x, h(s)) = e for all other s E L(A, x).

We construct a test for the observability of task i assuming that it is reachable and that
we are given an Lc-restrictability compensator Ci which is consistent with T. Further-
more, thanks to consistency, we only need to construct I for x E E E(LC) and for strings

s such that t(s) E LrC. First, let Ai, = (GLi, fLi, dL) be the same as the recognizer ALi

but with a self-loop at the final state xfi for each a E ?. Now, let Q = (GQ, fQ, dQ), with
state space XQ, denote the live part of A'L II A. Finally, let OQ = (FQ, WQ, VQ) be the
observer for Q with state space ZQ that is the reach of

ZQO = U ({Li} X) n XQ (3.3)
iEEo(Lc)

in OQ. Note that if i is observable, then the last event of each string in Li must be an
observable event. In this case, let

EQ = {: E ZQI3(x,y) E : such that x = x'i} (3.4)

Given the observations on Aci, at some point in time O enters some state x C Eo(Lc),
and we know that the system starts tracking task i. At this point, let us start tracing
the future observations in OQ starting from the state ({xLi } x x) n XQ. This trajectory

O ACD
'p

| pTaskp 1

CompeaTask Detector U O-

Figure 3.2: The Task-Level Closed-Loop System

enters some EQ at which point we know that task i may have been completed. For
task observability, we need to be certain that task i is completed. Thus, for an observable
task, it must be true that for all i E EQ and for all (x, y) E i, x = xf'. In this case we
take I to be e until the trajectory in OQ enters EQ and OF from that point on.

Suppose that O enters the state y when OQ enters EQ. Note that E Eo(L?). At
this point we detect the first occurrence of task i. In order to detect the next occurrence

we immediately re-start OQ at state xL x X f nXQ. The procedure continues in this

fashion. The observer O runs continuously throughout the evolution of the system. Let

D · : F* -{, Vb)F} denote the complete task detector system consisting of the observer
0, the system OQ which is re-started when a task is detected, and a one-state automaton

with self-transition event OF , which occurs whenever a task is detected and which is

the only observable event for D". Finally, we define a task detector D from the set of

individual D*. Specifically, if C is set at Ci initially, D is set at Di. Using the output 4(T

of C, D switches between Di. The output of D takes values in FT = {.6F,... ,F}.

Figure 3.2 depicts the overall system ACD = (GCD, fCD, dcD, tCD, hcD) with

GCD = (XCD, E U " U r, F U T, r U UT U rT, u U T) (3.5)

Note that IT and rT are observable and 4 T is controllable. We include (T in the tracking
events to mark the fact that the system has switched compensators. Also, we impose the
restriction (which can be realized since tasks are observable) that events in (T can only
be forced right after task completion. Then, ACD can only generate strings s such that

t(s) E (U L* (LU ... U Lp)(He(T)L* U ... U He(rp)Lp)* (3.6)

where nt is the maximum number of tracking transitions needed until O enters the set of

recurrent states in Eo(LC) for each i E T.

'2 4

222

*3

Figure 3.3: Task Standard Form: All events are controllable and observable.

The higher-level operation of this system consists of the task initiation commands, 4T

and the task completion acknowledgements, FT. The input UT indicating what subset of
tasks can be enabled is an external command. The task-level behavior of ACD can be
modelled by ATSF = (GTSF, fTSF, dTSF) of Figure 3.3 where all the events are controllable
and observable. We term ATSF the task standard form.

We first define H,(E) = e and H,(Obi) = Li. Thanks to the independence of T, for
any pair of not necessarily distinct tasks i and j, no suffix of string in He(,bi) can be in
He(lij). Defining He(ri) we must consider two issues:

1. The closed loop system does not generate strings in Li immediately after C switches
to Ci. In particular, if we assume that 0 is in a recurrent state when C switches to Ci
and if we let ne denote the maximum number of tracking transitions that can occur in A
for any trajectory in O that starts from a recurrent state of O up to and including the
transition that takes the trajectory to a state in Eo(LTC), then H,(ri) C T[F(- U {e})ne.

2. We also need to ensure the minimality of He. Specifically, no suffix of a string in He,(bi)
can be in He(ri) since all strings in He(Ti) start with rrF. Also, no suffix of a string in
H,(ri) can be in He(rj) even if i = j. However, a suffix of a string in rF(E U {(})ne may
be in He(/bj) for some j. Thus, we let He(ri) = (- U {e})ne n (n U {e})neLT.

Proposition 3.5 ATSF is an He-model of ACD.

The formalism we have described can be applied to obtain a hierarchy of aggregate
models in which words (i.e., tasks) at one level are translated into letters at the next level.
In addition, in [5] we develop system-wide task-level models from local task models and
consider higher-level coordinated control of the entire system.

A CKNO WLEDGEMENT
The research reported in this paper was supported in part by AFOSR under Grant

AFOSR-88-0032 and by the Army Research Office under Grant DAAL03-86-K0171.

10

References
[1] C. M. Ozveren and A. S. Willsky, "Observability of discrete event dynamic systems,"

IEEE Transactions on Automatic Control, to appear.

[2] C. M. Ozveren and A. S. Willsky, "Output stabilizability of discrete event dynamic
systems," submitted to IEEE Transactions on Automatic Control.

[3] C. M. Ozveren and A. S. Willsky, "Tracking and restrictability in discrete event dy-
namic systems," submitted to SIAM J. on Control and Opt.

[4] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis, "Stability and stabilizability of
discrete event dynamic systems" Journal of the ACM, to appear.

[5] C. M. Ozveren, "Analysis and Control of Discrete Event Dynamic Systems: A State
Space Approach," Ph.D. Thesis, M.I.T., Aug. 1989.

