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Abstract

We provide a proof that a logarithmic redundancy factor is necessary for the reliable computation

of the parity function by means of a network with noisy gates. This is the same as the main result

in [1], except that the analysis therein seems to be not entirely correct.
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1. INTRODUCTION

Computation of Boolean functions by means of noisy gates is a topic that started attracting

the attention of researchers in the early '50s. The first related work was that of von Neumann

[4] in 1952. The problem defined there is as follows: Suppose that the gates available for the

computation of a Boolean function are not completely reliable; in particular, each one of them fails

with probability e < ½, independently of the other gates. Given the values of its input bits, a gate

is said to "fail" if it produces the complement of the output bit that it would have produced if it

were completely reliable and its inputs were the same. Is it possible under these assumptions to

build, for any given function f, a network that computes f(z) correctly with high probability for

every input vector x?

Von Neumann proved in [4] that computations may be done reliably for all sufficiently small

E > 0. In his construction, each intermediate result is computed several times and its value is

determined by majority voting. One then obtains a probability of error r7(e) for the final result,

where 17(E) < 2 for all sufficiently small e > 0. Unfortunately, this procedure for constructing

reliable networks results in an unacceptably large number of gates.

Almost 25 years after von Neumann introduced the problem, Dobrushin and Ortyukov [1] claimed

that there are cases where a considerable increase in complexity is necessary for reliable compu-

tation. Indeed, let L(f) be the number of gates of a minimal noise-free network that computes

some Boolean function /f; these authors stated the following result: there exists some function f*

(namely, the parity function) such that any network that computes f* with probability of error

p < 3 must contain Qf(L(f*) lnL(f*)) gates; i.e., the order of magnitude of the number of gates in
any such reliable network is at least L(f*)ln L(f*). Thus, reliable computation of f* requires at

least logarithmic redundancy. The proof of this claim in [1] contains two questionable arguments;

moreover, there does not seem to be any obvious modification that could result in a correct proof.

In this paper, we present a new proof of the result stated above. Our analysis follows steps similar

to those in [1]; however, our approach to the questionable points in [1] is completely different.

Moreover, our proof extends the validity of the claim in [1] to all p E (0, 3), which is the broadest

acceptable range for the probability of error.

It is worth noting that for all Boolean functions there exist reliable networks with logarithmic

redundacy; this result was proved by Dobrushin and Ortyukov in [2]. Moreover, as was proved by

Pippenger [5], a rather broad class of Boolean functions may be computed reliably by networks that

involve only constant redundancy. Thus, the logarithmic lower bound for the redundancy factor is

tight only in the the worst case.

The remainder of this paper is organized as follows: In §2, we present an outline of the analysis

in [1] and we state a result that implies the logarithmic lower bound on the redundancy factor. In

§3, we give our proof of this auxiliary result. Finally, in §4, we present some concluding remarks.
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2. AN OUTLINE OF THE ANALYSIS IN [1]

In this section, we use a notation similar to that of [1]. First, we give some of the definitions

therein.

We consider a finite and complete basis A; the maximum fan-in of the gates in · is denoted by

n(f). All networks considered in the analysis are assumed to consist only of gates belonging to this

basis C. In the presence of noise, the gates available are assumned to fail according to the model

presented in §1; the probability e of failure is taken to be fixed. Let f be a Boolean function and

M be a network over 4. Moreover, let (xz, e) be the output of M, where x is some assignment of

the values of the input bits of M; of course, ~(x, e) is a random variable. The network M is said

to compute the function f with probability of error p if the following holds:

Pr[(x, e) # f(x)] < p, for all a; (1)

p E (0, ½) is a given scalar. Let Lp,e(f, 4) be the minimum number of gates in a reliable network

that computes the function f in such a way that (1) is satisfied. Similarly, Lo,o(f, ') denotes the

number of gates in the minimal network that computes f in the absence of noise.

The redundancy factor Rp,,(N, f) for the basis · is defined as follows:

R~p, (N, ) = max
{f:Lo,o(f ,)=N} Lo,o(f, 4)'

i.e. it equals the maximum of the required redundancy factor over all functions f that are coll-

putable in the absence of noise with the same minimum complexity N. The main result in [1] is

given in Theorem 2.1 of that article; we repeat it below, in simplified notation.

Proposition 1: For any p E (0, ), the redundancy factor R,,(N, ) is Q(lnN); that is, there

exists some function h(N) such that Rp,,(N, ') > h(N) and limN-,, N) = h* > 0.InN

The expression for the function h(N) mentioned in Proposition 1 is of no particular importance;

what is important is that h(N) is asymptotically linear in InN. Henceforth, we mainly focus on

arguments involving orders of magnitude rather than giving detailed expressions.

Proposition 1 may be established by proving that some specific function f* satisfies

Lp,e(f*, 4) = (Lo,o(f*, ') hln(Lo,o(f', 4'))) . (2)

In particular, the authors of [1] considered the parity function f*(x) = xz * * ( xt,, i.e. the sum

modulo 2 of xl,..., x,. (Note that ( is the symbol for the XOR operation.) The choice of this

fimction makes intuitive sense, because, when the value of one of the zi's is reversed, the value of

f*(z) changes; in some sense, f* (z) is a "sensitive" function.

For this sensitivity of the function f* to be exploited, a new model for noise is introduced in

[1]. Under the new model, each of the wires fails with probability 6, independently of all other
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wires and gates; failure of a wire results in transmission of the complement of the input bit-signal.

Consider now some gate that receives j binary input bits 1r,..., rj and computes the function

(rT). Due to failures of the input wires, the vector r = (r1,...,rj) may be different than the

vector t = (tt,... , tj) of the bits that the gate should have received. Moreover, given the distorted

input vector r, the gate may not produce +(r); this is assumed to occur with probability P(r, 6),

independently of all other gates. However, since the output of the gate in the absence of noise would

have been +(t), the gate is considered to fail if it does not produce +(t). It is established in Lemma

3.1 of [1] that, given some 6 E [0, elj], there exists a unique vector of malfuction probabilities

(P(r,6 ))rE{O,I}j such that the overall probability that the gate does not produce +(t) is equal to e

(for all t), as was the case in the original model. Though technically complicated, the underlying

idea is clear: failures of gates may be visualized as not caused only by noisy computation, but also

by noisy reception of the inputs. The parameters of this new model for noise can be selected in such

a way that each gate still fails with probability e. In this case, the state-vector of the network has

the same statistical properties as originally, which is intuitively clear. This is established in Lemma

3.2 of [1], by using induction on the depth of the network; this result holds for all 6 E [0, (i].

Thus, as far as reliabilty is concerned, the two types of networks are equivalent. On the other

hand, under the new model for failures, wires also are unreliable, which suggests that the number

of wires plays a key role in reliabilty; this was not that clear under the original model for noise.

Since the function f* is the most sensitive in the noisy transmission of inputs, it is expected that

the redundancy involved in its reliable computation is of the worst possible order of magnitude.

So far, we have discussed the preliminary part of the analysis in [1], where the original problem

was tranformed in an equivalent one. Henceforth, we are only dealing with the newly introduced

problem.

It is well-known that, in the absence of noise, f* may be calculated by using a tree of XOR gates.

Thus, if the basis 4 includes the gate for X1 ) zz, then we have Lo,o(f*, 4) < n - 1; if not, then

we have Lo,o(f*, 4) < C(4)(n - 1), where C(4) is the complexity of the noise-free network over 4

that computes x1 e X2. (Notice that C(4) is finite, because 4 is a finite and complete basis.) On

the other hand, it is straightforward that Lo,o(f*, 4) > i~--. Therefore, proving (2) is equivalent

to proving that Lp,c(f*, 4) is f(n . lnn). (Recall that n is the number of input bits.)

We consider a reliable minimal complexity noisy network KA for the function f*. We denote by

mi the number of wires of KA over which the input bit xi is transmitted, for i = 1,.. ., n. Thus, Af

has at least in mi wires, which implies that

Lp, (f*, A) >
n(f)

It follows from the above discussion that in order to prove (2) (which implies Proposition 1), it

suffices to prove the following result:

Proposition 2: The total number Sin-l mi of input wires in any reliable network that computes
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f* with probability of error p is Qf(n * In n) for all p E (0, 1). [

In [1], this result is dealt with in Theorem 3.1 and in its auxiliary Lemma 3.3. This part of the

anaysis in [1] seems not to be correct; we comment on this in the Appendix. In the next section,

we present our proof of Proposition 2.

It is worth noting that Theorem 3.1 of [1] would hold for several Boolean functions that are

"sensitive" under some particular assignment of the input bits [e.g., the AND function, which is

"sensitive" for x = (1,..., 1)]. On the contrary, Proposition 2 holds only for the parity function.

3. PROOF OF PROPOSITION 2

We fix some p G (0, ½). Moreover, we fix some 6 E (0, n(·)]; note that such a 6 satisfies 6 < E < 2

Henceforth, we assume that the input bits Xi,..., Xn are independent random variables and that

Pr[Xi = 0] = 2 for i = 1, .. , n. We use the notation (Xl, ... , x) to denote some particular value

of the random vector (X1,..., XY,). Under this assumption, we shall prove that the average (over

all possible inputs) probability of an erroneous output for the noisy network for f* must be greater

than p, unless En=l mi is 9f(n . In n). This implies that if Ei _l mi is not fl(n - In n), then there

exists at least one input assignment for which the probability of an erroneous output exceeds p;

this statement is equivalent to Proposition 2.

After introducing the assumption of equally likely input assignments, any noisy network for f*

may be visualized as a device for estimating the binary parameter f*(X) dfX E *... ED X,. The

decision is to be based on the values of the signals communicated by the input wires. Notice that

such a decision-making device employs randomization due to the presence of noise. We denote by

Ir the random vector (y(1),..., y(n)), where Y(i) = (Yl(1),..., Y?) is the vector of binary random

variables corresponding to the output signals of the input wires for Xi (see Figure 1). The value

y(i) = (y(i),..., y()) of Y(i) is a vector of distorted copies of the ith input bit Xi, for i = 1,...,n.

Thus, the data on which estimation is based is contained in the vector 1 = (y('),...,y(n)).

Clearly, we have Pr[f*(X) = 0] = Pr[f*(X) = 1] = i. Therefore, the decision-making device that

has the minimum average probability of error is the one based on the Maximum Likelihood (ML)

test. Hence, in order to prove Proposition 2, it suffices to prove the following result:

Proposition 3: If the average probability of error for the device based on the Maximum Likelihood

rule does not exceed p, then Ei1l mi is SI(n In n). [

Proof: We fix some index i E {1,..., n}. We denote by wi the number of entries of the observed

vector y(i) that equal 0. Recalling that wires fail with probability 6 and independently of each

other, it follows that the ML rule for estimating Xi is equivalent to the majority-voting test:

Xj:=0
> mi

i < 2

If wi = 2i then the tie may be broken arbitrarily.2'
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We denote by Zi the Boolean random variable indicating whether the ML estimate of Xi is

correct or not; that is, we have Zi = 1 if and only if ]. 5 Xi. If all copies of the input bit Xi are

comnmunicated erroneously, then we have Zi = 1; this implies that

Pr[Zi = 1] > i '. (3)

Because of the fact that wires fail independently of each other and because different input bits

are independent, the random vectors y(1),..., y(n) are independent conditioned on any given X.

The parameter to be estimated is the parity among the input bits; thus, it is intuitively clear that

the ML estimate of f*(X) should be equal to X1 ... * $ Xn, where .i is the ML estimate of Xi.

This is proved formally in Lemma 5; first, we state the following auxiliary result (also see [3]),

whose proof we include for completeness:

Lemma 4: There holds

1 - 2 Pr[Z 3 * ... E Zn = 1] = H(1-2 Pr[z, = 1]). 
i=1

Proof: We denote by O&i(.) the moment generating function of the Boolean random variable Zi

for i = i,...,n. We have qSi(t) = E[etz' ] = 1 - Pr[Zi = 1] + tPr[Zi = 1]. Since Z1,..., Zn are

independent, the moment generating function (p(.) of the random variable t= Zi can be expressed

in the following product form:

(P(t) = I i(t). (4)

Clearly, we have

po(1)-o(-1) = E Pr[Zi = k] =Pr[Z ... Zn =1].

odd k i=1

This together with (4) and the fact that p(1) = 1 establishes the lemma. Q.E.D.

Next, we prove the result on the ML estimate of f*(X).

Lemma 5: The ML estimate of X1 $ *... Xn is X 1 ' ... * X , where Xi is the ML estimate of

Xi4. 

Proof: Let V be some Boolean random variable, with Pr[V = 0] = Pr[V = 1] = 2. Assume that

V is to be estimated based on the observation of some data vector U. Then, the Boolean random

variable V is the ML estimate of V given 0 if and only if the following is true:

1
Pr[V7 V =i V ] <, V . (5)

Thus, in order to prove the lemnna, it suffices to show that

Pr[±, $..., * i n : X1 ,. $** Xn . I = Y d] < 2 vY * (6)
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(Recall that X 1 ED ... D X, takes the values 0 and 1 with probability 1.)

Since Zi takes the value 1 if and only if Xi Xi, we have X1 D· "- (E X, 5 X 1 D .-. ED X, if

and only if Z1 ED ... ED Z, = 1, that is if and only if an odd number of the input bits are estimated

erroneously. Therefore, we have

Pr[, a ... * x1 $ * * * x( . . = .] = Pr[Zi D *... Zn = 1 Y = yi]. (7)

Reasoning similarly as in proving Lemma 4, we obtain

1-2 Pr[Z ED... (D Z = 1 = = ( 1-2 Pr[Z = 1 Y = y]). (8)
i=1

Since _Y is the ML estimate of Xi given ~, it follows from (5) that

Pr[Zi = 1 | = ye] = Pr[,i 7 X, |1 = y] < 1 VY-.
2.

Combining this with (8), we obtain

Pr[Zi (D * * * Z, = 1 Y-1 = Ye] < 2Vy .

This together with (7) proves (6). Q.E.D.

We now complete the proof of Proposition 3.

We have already argued that the event Z1t D ... Zn = 1 coincides with the event that the ML

estimate of f* (X) is erroneous. Thus, we have

Pr[Z ED ... ED Z, = 1] < p,

by assumption. This together with (3) and Lemma 4 implies that

1 - 2p < 1(1 - 26m').
i=1

Using the inequality between arithmetic and geometric means, we obtain

- 2p < -E (1- 2mi)) = (1 _ 2 iE )
Again using the inequality between arithmetic and geometric means, followed by the i=

Again using the inequality between arithmetic and geometric means, followed by the inequality
1- a < exp(-a), we obtain

1- 2p < (1- 2 6 .Zilm ' )n < exp (-2n Z61 i-lm'),
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which implies that
n ln(2n)-In ln( 1)

Mi > n 1-2p

The above result holds for all 6 E (0, A]; taking 6 = we obtain

n ln(2n) -In ln(l 12p )
E mi > n ln(*(- -))

clearly, this proves that -n mi is f(n. Inn). Q.E.D.

4. CONCLUDING REMARKS

In this paper we have proved a lower bound for the redundancy involved in constructing reliable

networks by means of noisy gates. In particular, we have established that a redundancy factor

logarithmic in n is necessary for reliable compution of the parity (i.e., the sum modulo 2) of n bits.

This result was first stated by Dobrushin and Ortyukov in [1]. As we have argued in the Appendix,

we believe that the proof given in [1] is not entirely correct. We have established the result by

following the same steps as Dobrushin and Ortyukov and by replacing the questionable part of

their analysis with entirely new argumnents. Nevertheless, formulating the lower bound problem

and introducing a suitable problem transformation has proved to be a valuable contribution of [1].
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APPENDIX

In this appendix we discuss the proofs of Theorem 3.1 and of Lemnma 3.3 in [1]. First we consider

the latter, which we present below.

Lemma 3.3 of [1]: Let p E (0, 1) and 6 E (0, 2). Moreover, let (Hl)lEQ be independent events

satifying the following:

Pr[HI] > 6m', Vl E Q

and

p> (l-p)Pr[UOHI],
IEQ

where 0 HI is the event that exactly one of the events (Hl)iEQ has occured. Then,
IEQ

E ml > l1Q In (Ql(' 1- 3p))
lEQ

This lenuna seems to be incorrect. Indeed, consider the simple case where Pr[Hi] = 6m for all

I E Q. We fix some m > 0 and some p E (0, ½). Notice that

Pr [i H,] = IQ16m (1 - 6m) iQl -1.
1EQ

Thus, according to the lemma, the inequality

P > (1 - p)jQj6 m(l - 6 n)lQI-1 (A.1)

implies that
m > l In Q((1- - 3p) ) (A.2)

However, this is seen to be false, because (A.1) holds for all sufficiently large IQI whereas (A.2)

fails to hold for all sufficiently large IQI. (Notice that the right-hand quantity in (A.1) tends to 0,

as IQI -+ oo, whereas the right-hand quantity in (A.2) tends to oo, as IQI -° co.)

Lemma 3.3 is crucial for the proof of Theorem 3.1 of [1]. Thus, it does not seem that the proof

of Theorem 3.1 can be fixed. Also note that at some point of that proof (namely, Eq. (3.30) of [1]),

the authors seem to use the property that the inequalities Pr[ r I Al] > 1 - p and Pr[ r I A 2] > 1 - p

imply

Pr[r U ,l]> 1 -p.
1=1,2

However, this property is not generally valid. Indeed, taking r = A1 n A 2, we have

Pr[rl Al]= 0.
1=1,2

These observations lead us to doubt that the analysis in [1] can be corrected by local modifica-

tions.
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