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Abstract. We study maximum entropy correlated equilibria in (multi-
player) games and provide two gradient-based algorithms that are guar-
anteed to converge to such equilibria. Although we do not provide con-
vergence rates for these algorithms, they do have strong connections to
other algorithms (such as iterative scaling) which are effective heuristics
for tasks such as statistical estimation.

1 Introduction

The computer science community has been vigorously attacking problems in
game theory and economics, especially as it relates to the computation of the
most important notions of equilibria. The general interest is threefold: to under-
stand the barriers on the related computational questions, to push the bound-
aries of what can be efficiently computed, and to understand how equilibria
result from learning dynamics. This paper presents work in this direction.

The problem of computing and learning equilibria is not only of interest
to game theory and economics. The artificial intelligence community wants to
analyze, understand, and more generally, reason about the possible behavior of
a large population of agents interacting in an environment. Before this can be
done, there must be study of the types of behaviors that can arise from such
interactions. Large population game theory provides a suitable mathematical
framework.

There is one caveat. Compact representations of multi-player games are
needed to adequately model a large number of agents. Artificial intelligence
has something to offer in this regard. Mostly based on the rich work in arti-
ficial intelligence on compact representations, new compact representations for
multi-player games have been recently introduced to game theory which exploit
the strategic structure of the players in the game [La Mura, 2000, Kearns et al.,
2001, Koller and Milch, 2003]. In this paper, we are primarily concerned with a
simple but powerful model called a graphical game [Kearns et al., 2001].

Here, we study the important equilibrium notion called correlated equilib-
rium [Aumann, 1974]. This deviates from Nash equilibrium, the classical and
until recently the dominating notion of equilibrium in game theory, in several
respects. While Nash equilibria assume that players play fully independently, cor-
related equilibria allow a limited amount of correlation between all the players’
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actions, while still keeping each player’s response “greedy” or game-theoretic.
This notion also turns out to be consistent with and optimal from a Bayesian
perspective [Aumann, 1987]. From a learning standpoint, it has been found that
when agents in an environment simultaneously learn to act using natural learn-
ing rules, convergence of their empirical play is guaranteed, not to Nash, but to
(the set of) correlated equilibria (see, for instance, Foster and Vohra [1999] and
Hart and Mas-Colell [2000]). Currently, there is little understanding of the (class
of) equilibria they converge to — a point we return to below.

By definition, a correlated equilibrium is a joint probability distribution over
the players’ actions and as such can in fact be arbitrarily complex. This is so,
even when the game has some strategic structure. Therefore, roughly speaking,
the representation size can be large as a function of the representation size of
the game.

From a representational standpoint, the interest is in “simpler” correlated
equilibria, especially the ones that can be compactly represented. Motivated by
the recent representational results of Kakade et al. [2003] on correlated equilib-
ria in graphical games, we initially considered the following question: Are there
natural learning rules directly leading to “compactly representable” and “rea-
sonably structured” correlated equilibria that exploit the strategic structure of
the graphical game? It turns out that this question is harder than it first ap-
pears. In fact, there has been considerable interest for a while now on trying to
characterize, in any way, the behavior of natural learning rules leading to cor-
related equilibria in games. However, here we present preliminary results that
might be helpful in trying to address this question.

A game can have many equilibria. This then leads to the obvious question:
Which equilibria are more natural or likely to naturally arise from the players’
dynamics? This “selection” question is not particular to game theory. In sta-
tistical estimation, for instance, one asks which probability distribution should
be choosen out of all distributions consistent with the data. The Mazimum En-
tropy Principle, due to Jaynes, has proved to be a natural and useful guiding
principle [Jaynes, 1957]. This principle has also found wide applicability be-
yond statistics. In many natural systems, maximum entropy has often helped to
characterize equilibria (particularly, in thermodynamics). Similarly, maximum
entropy may be useful when studying equilibria that are actually reached un-
der simple learning dynamics. From an information theoretic point of view, the
maximum entropy distribution is the “simplest” as a consequence of being the
most “uninformative.” Hence, it is not unreasonable to think that the maximum
entropy principle can also serve as a useful guiding principle to the question of
equilibrium selection in game theory. 4

The main contribution of this paper is the computational study of maximum
entropy correlated equilibria. First, we show that maximum entropy (approxi-
mate) correlated equilibria can be computed using natural and simple gradient-

4 We point out in passing that although product distributions are in general more
entropic, it is not always the case that the most entropic correlated equilibrium is a
Nash equilibrium, as can be shown using simple games as examples.



based algorithms. ® Each round of the algorithms can be performed efficiently for
graphical games with bounded tree-width (which include normal-form games). ¢
The convergence rates of the algorithms, however, remain an open problem.”
Regardless, the class of algorithms we present have been used quite effectively
for a variety of problems on many domains. In particular, these results highlight
an interesting connection between iterative scaling algorithms for statistical es-
timation in natural language processing (see Berger et al. [1996]) and our algo-
rithms for computing the game-theoretic notion of maximum entropy correlated
equilibria. Second, building on the work of Kakade et al. [2003] (which showed
that maximum entropy correlated equilibria can be compactly represented), we
give a specific (compact) expression of the maximum entropy equilibria in terms
of the game payoffs that elucidates its probabilistic properties. Third, we can
sample the equilibria efficiently for graphical games with bounded tree width;
for general graphical games, the equilibria representation naturally lends itself
to heuristics such as a Gibbs sampler. All of our results also easily extend to
the case of maximum relative entropy correlated equilibria (with respect to a
reference distribution).

We note in passing that most prior work on computing correlated equilibria
has concentrated in the computation of equilibria which optimize some linear
function of the probabilities defining the equilibria. There has not been much
work on computing equilibria with other specific properties, as we do here.

Finally, we provide a game theoretic (and, in some sense, a learning) interpre-
tation of our algorithm — as a way by which players, with the help of an external
arbiter, distributively compute the maximum entropy correlated equilibrium for
the game. It remains an open problem whether there exist more natural learning
rules (such as regret based ones) which converge to such equilibria.

2 Preliminaries

Let A be the finite set of m actions for each player. An n-player, m-action game

in strategic, normal or matrixz form G = {M; : ¢ = 1,...,n} is given by a set
of payoff functions (or multi-dimensional matrices) M, : A™ — R, one for each
player ¢ = 1,...,n. The payoff function M; for player ¢ maps each joint-action

a € A" for all players to a real value M;(a).

An equilibrium is generally considered the solution notion in games. Denote
by ali : a}] = (a1,...,ai—1,0},a;41,...,a,) the vector resulting from setting
the it" element of a to a) while keeping all its other elements the same. For
any € > 0, an e-correlated equilibrium (e-CE) for an n-player, m-action game in

5 Our results only apply to approzimate equilibria due to a technical condition. It is
open whether this could be made to apply to non-approximate equilibria.

6 For more general graphical games, we can heuristically perform stochastic gradient
ascent by using a Gibbs sampler to estimate the gradient at each round.

" We are currently exploring whether it is possible to extend the ideas used by Bartlett
et al. [2004] for their exponentiated gradient algorithm to this context.



normal form G = {M;} is a joint probability distribution P over the joint action
space A" such that for every player 4, and every action pair (j,k) € A%, j # k,

> P@Ma)> Y Pla)Mali:k])—e (1)

acA™:a;=j acA™:a;=j

A correlated equilibrium (CE) is a 0-CE. 8

A correlated equilibrium can be explained conceptually by introducing an
“arbiter” or agent external to the players. The arbiter “holds” the correlated
equilibrium and implements it; that is, having access to a randomization device,
the arbiter randomly samples joint actions from the correlated equilibrium and
uses them as individual suggestions to the agents of which action to take. Know-
ing only their own suggestion sent to them by the arbiter and the correlated
equilibrium, each agent has no incentive to unilaterally deviate from the sug-
gestion sent to them. For € = 0, condition 1 above can be interpreted as saying
that, for every player ¢, and for every possible action a; that ¢ can possibly be
told to play by the arbiter (i.e., P(a;) > 0), if ¢ is in fact told to play a;, then
the conditional expected payoff i can obtain by actually playing a; is not worst
than what it can obtain by ignoring the suggestion and playing any other action
a; # a; instead. Hence, the player has no incentive to unilaterally deviate from
playing the suggested action.

A Nash equilibrium (NE) is a CE such that P is a product distribution; that
is P(a) = [[i-, P(a;). The classical result of Nash is that for any game there
exists a NE [Nash, 1951]. Since a NE is a CE, for any game there exists a CE.

Here we consider mazimum entropy e-correlated equilibrium (ME e-CE). This
is the e-CE P such that its entropy H(P) =), P(a)In(1/P(a)) is maximal.

The representation size of games in normal form is nm”™, exponential in the
number of players. Such sizes render the normal-form representation of games in-
adequate when modeling problems as games with many players. We now formally
define graphical games, which provide an alternative more succinct representa-
tion.

Let G = (V,E) be an undirected graph where the vertices or nodes V =
{1,2,...,n} correspond to the players in the game. The neighbors of a player i
in G are those players that are connected to 7 by a single edge in E. Given a
player ¢, we sometimes refer to the player ¢ and its neighbors as the neighborhood
N; C V of player i (note that N; includes ¢). The graph has a simple meaning:
a player’s payoff is only a function of the actions of players in its neighborhood.
For every player i, let k = |N;| be the size of its neighborhood with N; =
{i1,i2,...,i} C V and denote by a[N;] = (as,, ai,,- - .,a;,) the joint-action of
only players in the neighborhood of player i. Given a graph G, for each player 1,
its local payoff function M : AVil — R maps the the joint-actions a[N;] € ANl
of players in its neighborhood in G to a real number M/(a[N;]). For each player
i, the payoff function M; of player i is such that M;(a) = M/(a[N;]). A graphical

8 Note that the definition of approximate or e-correlated equilibria we give above is
the same as that used in the literature on learning in games; see, for instance, Hart
and Mas-Colell [2000].



game GG = (G, {M]}) is defined by a graph G and the set of local payoff functions
{M}.

If kK = max; |V;] is the largest neighborhood size in the graph of the graphical
game, the representation size of a graphical game is O(nm*); thus the represen-
tation size is exponential in the size of the largest neighborhood, not the number
of players. In fact, if k£ < n, we obtain exponential savings in representation size.
Note that we have not lost the generality of the normal-form game since we can
represent any game by using a fully connected graph; we just gained representa-
tionally for games with richer strategic structure. The equilibrium concepts for
normal-form games also naturally apply to graphical games.

3 Related Work

The representation result of Kakade et al. [2003] states that given any CE, one
can represent it by another with the same size as the representation size of the
graphical game, modulo expected payoff equivalence. The proof uses a maximum
entropy argument based on matching the neighborhood marginals of the original
CE. Here we concentrate explicitly on the maximum entropy CE and give an
explicit expression for that equilibrium in terms of the players’ payoff functions.

Of the quickly growing number of results for computing equilibria in games,
including some for graphical games, two of them particularly regarding the com-
putation of exact CE should be noted. First is the result of Kakade et al. [2003].
This states that one can compute a single CE in graphical games with bounded
tree width in time polynomial on the representation size of the game. The result
of Papadimitriou and Roughgarden [2004] also presents an alternative algorithm
for computing CE in bounded-tree-width graphical games and strengthens the
result by stating that, assuming P # NP, there is no polynomial time algo-
rithm for computing a correlated equilibrium of an (arbitrary) graphical game
that maximizes the expected sum of players payoff (i.e., the “social optimum”
CE). For bounded-tree-width graphical games, both algorithms can guarantee
a representation size for the resulting CE that is exponential in the tree-width
of the graph of the graphical game. The number of parameters for that repre-
sentation is therefore exponentially larger (as a function of the tree width) than
that for our maximum entropy e-CE. It is also important to note that the kind
of equilibrium that they compute corresponds, roughly speaking, to those that
maximize some linear function of the neighborhood marginals of the graphical
game. The maximum entropy CE is likely to have different properties in general.

Concurrently with this paper, Papadimitriou [2004] has shown that one can
compute a single correlated equilibrium in polynomial time for a large class of
“compact” games, including graphical games. This is a surprising result, espe-
cially given the previous negative complexity result on computing the socially
optimal CE. His goal is to find any correlated equilibria, while ours is to find
specifically the most entropic CE. Similar to ours, his algorithm is based on
duality, but it is used in a different way than ours. It is also interesting that
the CE found by his algorithm can be represented by a mixture of a polynomial



number of product distributions as components, which is a different representa-
tion than that for the most entropic CE. In fact, as we will see below, the most
entropic CE is a Gibbs distribution (or, equivalently, a Markov random field)
which allows us to make qualitative conditional independence statements about
the players’ play at equilibria, a property that is not evident in the CE obtained
by Papadimitriou’s algorithm.

4 Results

We now present the main results of the paper and leave their proof for subsequent
sections.

Theorem 1. (ME e-CFE Representation) Given € > 0 and an n-player, m-action
game G, the maximum entropy e-CE has the form

P(a) = Hexp Z Aisa,at (Mi(a) — Mi(ali : aj])) /Z()\)

a;Fai

where Z(\) = X (T2 €50 (Lase duara, Moy (Mi(a) = Mi(ali: al]))) ), for

some values for the parameters {X; 4, o > 0:1=1,...,n,(a;,a}) € A% a; # al},

The parameters A have a natural interpretation. For example, the parameter
Aia;,a; roughly measures the tendency that player ¢ has to prefer a) over a;.
For instance, if player ¢ strictly prefers a; over a}, then Aijas,a; = 05 otherwise
)‘i,ai,ai > 0.

A local Markov Network is a probabilistic graphical model particularly suited
for representing correlated equilibria in graphical games. It borrows the same
ideas from other traditional probabilistic graphical models and exploits proba-
bilistic structure to compactly represent joint probability distributions. We refer
the reader to Kakade et al. [2003] for a formal definition.

Corollary 1. (MFE e-CE Probabilistic Structure) Given ¢ > 0 and an n-player,
m-action graphical game GG with graph G, the mazimum entropy e-CE of GG is
a local MN with respect to G.

This corollary follows trivially from the proof of the Representation Theorem
of Kakade et al. [2003]. It also follows trivially from Theorem 1 above and the
strategic structure of the graphical game. This corollary is significant because
it makes explicit the probabilistic structure of the equilibrium. It lets us ex-
ploit what is known from the literature on probabilistic graphical models. For
instance, we can make qualitative statements about the structure of the equilib-
rium such as which players play independently conditioned on fixing the actions
of a separate set of players.

Another consequence of the form of the most entropic e-CE given above is
that it permits efficient sampling for bounded-tree width graphical games and
lends itself to natural sampling heuristics (e.g., Gibbs sampling) for more general
graphs.



Theorem 2. (ME ¢-CE Computation) Given € > 0 and an n-player, m-action
game G, there exist gradient-based algorithms with guaranteed convergence to the
mazximum entropy e-CE of G.

We also note that each iteration of the algorithms constitutes a natural step and
can be computed in time polynomial in the representation size for normal-form
games and, more generally, graphical games whose neighborhood graphs have
bounded tree-width.

5 Computing Maximum Entropy Correlated Equilibria

5.1 Optimization Setup

The problem of computing the most entropic e-CE can be formally stated as
follows:

arg min za: P(a)log P(a)

such that the e-CE constraints (1) on P hold and P is a proper probability
distribution: for all a,
P(a) >0

> Pla)=1.

To simplify notation, we recast the problem above. First, fix a pair of positive
integers ¢ and r. Let the vector p € R® and denote its jth element as p;. Let the
matrix A € R™¢ and denote its ith-row,jth-column entry as a;;. For p € RS,
let H(p) = 2521 p;jlog(1/p;) be the entropy of p. Given € > 0, we want to find °

arg min —H (p) ®
subject to .
ij:ij:l,...,c,ijO, (3)
j=1
and c
Vi:L...,T,ijaijSE' 4)
j=1

In the context of our original problem, it is natural to refer to a p satisfying the
constraints in (3) above as a probability distribution (PD)and a PD p additionally
satisfying the constraints in (4) as an e-CE.

In what follows, to simplify notation, assume that the index i has range
1,...,r, and the index j has range 1,...,c.

In our problem we can assume the following about the matrix A.

9 Note that the optimization is well defined since p € RS in the constraint space, and
therefore H(p) is well defined there.



Assumption 1 (Linear Transformation Invariance) . |a;;| <1 for all j.

Assumption 2 (CE Existence) There exists a PD p such that _; pja;; < 0 for
all 1.

Assumption 3 (No Dominated Actions) For every i, there exist a column j+
and a column j~ such that a;;+ > 0 and a;;- <0.

The first assumption results because a CE is unaffected by linear transfor-
mations of each player’s payoffs. The second assumption corresponds to the CE
conditions and a CE always exists for any game. The third assumption follows
because otherwise there are dominated strategies for a player which can easily
be removed from consideration (i.e., the action and related constraints can be
ignored without changing the result).

The above is the same problem as that recently studied by Dudik et al. [2004],
except for the small technicality that for some %, j, a;; < 0. The approach used
follows closely that in Collins et al. [2002].

We can solve the optimization problem given in (2), (4) and (3) above by
using duality. In what follows, we naturally refer to this problem as the pri-
mal problem and the variables p as the primal variables. Before continuing,
we note in passing that for this problem there is no optimal duality gap.'!
Following a standard argument (see Appendix 7.1 for the details), we obtain
that the Lagrange dual function reduces to g(A\) = —InZ(\) —e>, \;, where
Z(A) = X2 exp(—2_; Miaij). The dual problem reduces to finding supy>q g(A).
The relatlonshlp between the dual variables A and the primal variables p is as

follows: for all j,
p;i(A) eXP( ZA%)/ ().

We now present two gradient-based algorithms for computing supy~q g(A).

We call the first algorithm the logarithmic gradient algorithm. First, we ini-
tialize A\ arbitrarily to some vector with nonnegative components (for instance,
A? = 0 for all 7). Then, at every round ¢ > 0, we set

5.2 Algorithms

X;ﬁH — max (07 A4 (52()&)) (5)
where
2 _
5 = \/4W Tt +e2—e
2W,; (t) ’

10 Note also that if for some 4, a;; = 0 for all j, then the i*® constraint can be ignored
and removed from the system of inequality constraints since it will always hold.

! For this problem, the (weaker) Slater’s condition holds if there is a e-CE with full
support p > 0. If p satisfies Assumption 1 above and p is a properly constructed
mixture of p and the uniform distribution, then p satisfies the needed condition.



j:a;;<0
W =Wre) = > phlayl
j:ai; >0
and p! is such that
L =p,;(AD)
p; = p;(

for all j.

The second algorithm is a dynamic-step-size gradient-ascent algorithm. We
first initialize A\° arbitrarily to some vector with nonnegative components (as
done above for the first algorithm), and then, at every round, we set

ACFL A 4 max (81(A), —1, — A (6)

where

5\ = (1/2)mvi9(/\t)

and
Vig()\t) = Wi+(t) Wi (t)—e= Zp;aij —€
J

is the 7" component of the gradient of g evaluated at A’.

5.3 Convergence

We first show that, for both algorithms presented above, {g(A!)} converges mono-
tonically to the optimal value of the reduced dual problem sup, s, g(A). For this,
we use an auxiliary function approach similar to Dudik et al. [2004] and Collins
et al. [2002]. This leads to the following theorem. We refer the reader to Ap-
pendix 7.2 for the proof.

Theorem 3. Let {\'} be the sequence of parameters generated by the gradient-
based algorithms. Then the sequence {g(A!)} converges monotonically to supy>q 9(A)-

We then show that the corresponding sequence of primal values in fact con-
verges to the optimal value. Note that this does not follow immediately from the
last theorem. Note also that the primal optimal is unique. > We now present
the main theorem.

Theorem 4. Let {\'} be the sequence of parameters generated by the gradient-
based algorithms. Then the sequence {p(\*)} converges to the primal optimal.

The proof is in Appendix 7.3.
Theorem 1 follows from the expression for the primal optimal. Theorem 2
follows immediately from the last theorem.

12To see this, let CE be the set of all CE. Suppose there exists p,q €
arg max,ece H(p),p # q. Since CE is a convex set, for a € (0,1), p’ = ap+(1—a)q €
CE. Since H is strictly concave, H(p') > H(p) = H(q), a contradiction.
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6 A Distributed Game-Theoretic Interpretation

We can view the gradient-based algorithms presented above by which we can
compute the most-entropic e-CE as a type of distributed message-passing pro-
cess. We introduce an additional “external player” or “arbiter” which, at each
round ¢, takes suggestions for the probability distribution of play P} over the
joint actions space A" from each player i. The arbiter then processes those
suggestions by forming a single joint probability distribution P! over the joint
actions space A", which it then sends to each player.

Let each player use the update rule above. At round ¢t = 0, each player i sends
to the arbiter the probability distribution P? based on its initial parameter values
AY = {\? >0: (a;,a;) € A%, a; # al}. The arbiter computes P! as

; ’
1,ai,a)

n

P'(a) = (1/2") ][] P{(a)

i=1

where

Zt = ZHPf(a)

a =1

is the normalizing constant and >, Pf(a) = 1 for all i. Then, the arbiter sends
Pt to each player. Now each player, knowing the current value of its own pa-
rameters A!, its own payoff matrices and P!, updates the parameters values to
obtain Af“, using one of the update rules presented above. Each player then
computes the new suggestion Pf“, which is such that for all a,

P a)=exp | D AT [Mi(a) — Mi(ali : af])] /ZfH

a;F#a;

where Z!™! is the new (local) normalizing constant.

Note that in this message-passing process, for each player i, only player ¢
knows its own payoff and parameter values, or in other words, any other player
different than ¢ nor the arbiter know player i’s payoff or its parameter values.
The only “communication” between the players is through the arbiter, or more
specifically, through the global probability distribution P!. The players do not
see each other’s suggestions to the arbiter.

Acknowledgments. We would like to thank Michael Collins for pointers to the liter-
ature on maximum entropy models as well as many useful suggestions.
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7 Appendix

7.1 Lagrange Dual Function

We now present the standard argument leading to a reduced Lagrange dual
function in our case. The Lagrangian for this problem is

L(P7)\7a,ﬁ)=—H(p)+Z>\i ijaij—ﬁ —Zajpj-f—ﬁ ij—l
i J J J

We can obtain the Lagrange dual function as follows. We first take derivatives
with respect to p; for all 7,

OL/0Op; =logp; +1+ Z)xiaij —o;+ 5.

(2

Setting the derivatives to 0 we get that, abusing notation,!3

p* =p"(\ @, B) = arginf L(p, \, a, 3)
p

13 In what follows, we often abuse the notation to simplify the presentation.
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is such that
p; = exp (‘5 —1l+4+a;- Z)\iaij> .

for all j. From this we get that the Lagrange dual function is

g\ a,B) = 1nfL(p,)\ a,fB) = ij — EZ)\Z'.

We now optimize the Lagrange dual function. We first do so in terms of 5. The
derivative with respect to 3 is

0g/0p = Zexp (—ﬁ —1+a;— Z/\iai]) -1
j i
Setting the derivative to 0 we get that
BT =57\ ) =arg sup g\ a, B)

is such that

exp(B* +1) Zexp (oz] Z/\ a”> =Z(\ ).

We then have

gNa) =g\ a,f)=—-InZ(\ «a) — 62)\,‘.

Now in maximizing over a we note that since Z(\, ) increases with «; for all
j, we have that

a* = a*(A) = argsup g(\, @)
a>0

is such that

for all j. Therefore, we have

and
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7.2 Proof of Theorem 3

Here we prove the theorem for the case of the logarithmic gradient algorithm;
the case for the dynamic-step-size gradient-ascent algorithm is almost identical
(details omitted). The proof is given as an itemized list of individual statements
followed, when needed, by the main arguments involved in their proof. Some of
the statements are actually used later in the proof of Theorem 4.

— Let s;; = 1if a;; > 0, and —1 otherwise. To simplify notation, let p; = p;(A),
Wt = W;H(p) and W,” = W, (p). For A >0, § > =),

g(A) —g(A+9) anp] exp <— Z 5iaij> +€ Z 0;
= lnzpj exp <— Z(Si|aij|3ij> + 626i
j i i

<In 1+ZpJZ|alj|exp( 0i8ij) — JreZ(S
<ZpJZ|a” exp(—0;8:5) — —&-625

:Z e % — D)W+ (% — D)W, +€b; = AN, D).
— Let 6* = §*(\) = arginfs>_» A(A, d). Using simple calculus, we find that §*

is such that
87 = max (—\;,0;)

\/4Wi+W[ +e2 —¢
8, =0;(\) =In

2w

K2

where

Note also that the auziliary function A(N\) = A(\,6*) < A(M\,0) = 0 and
continuous.

— A(X) =0 if and only if 6*(N\) = 0.
Pf. For all 4, let f;(x) = (exp(—z) — 1)W;" + (exp(z) — 1)W;” + ex. Note
that 5: e arginf(;iz_)\i fz(tsl) and fz(éj‘) < fZ(O) = 0. If A()\) 0 then
> fi(6) = 0 which implies that for all 7, f;(6;) = 0. Since f; is a strlctly
convex function, f;(0}) = 0 if and only if 67 = 0, or in other words, if 67 # 0
then f3(5%) < £:(0) = 0.

= 6%(X\) =0 if and only if p(A) and X\ are primal and dual optimal.
Pf. We just need to check that the Karush-Kuhn-Tucker (KKT) conditions
are satisfied. Note that 67 = 0 implies that either (a) 6} = §7 = 0, or (b)
—X; =07 = 0> 6. If (a), then, using some algebra,

OL(p,N)/ON; =Y pjai; —e=W;" =W, —e=0.
J
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Similarly, if (b), then \; = 0 and

OL(p,\)/ON;, = ijaij —e=W"-W  —e<0.

%
J

Let g' = g(A\!). The sequence {g'} is nondecreasing.
The reduced Lagrange dual function g(\) is non-positive and continuous.
Pf. Let H(p;q) = Zj ¢; In(1/p;). For p a CE and for all g,

g(A) =—H(p;q) — Z Ai | e— Z%’az’j (7)

< - E Ai | e— E Djaij
5 j
<0.

The sequence {g'} converges. Let g* be its limit point.
The sequence of Lagrange multipliers {\'} lies in a compact set.
Pf. Note that

ZAE €— Z%‘aij < —g(X) < —g(\%)
i J

and for ¢ =p a CE, € — >_, pja;; > € > 0. Thus, 0 < A< —g(A\0) /e for all i
and t.
Note that the need for the A\t to lie in a compact set is the only reason why
we consider e-CE instead of just a CE.
The sequence of Lagrange multipliers {\*} has a converging subsequence.
Let {A\""} be such subsequence and A its limit point.
The subsequence {g'} converges to g* = lim; g(A*) = g(\).
AN =0 = 6*(\) =0 = p(\), \ are primal and dual optimal.
Pf.

g(A") = g(A"+1) < g(A") — g(A" ) < A1) <0

lim g(A") — g(A"+) = g(A) = g(}) = 0 < lim A(\") = A(N) <0.

— ¢g* =sup, g(A).

7.3 Proof of Theorem 4

Here we use some notation and intermediate results from the proof for Theo-
rem 3.

We now show that lim; p’ exists and is equal to p = p(j\)
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Since p and \ are primal and dual optimal, by the KKT conditions, we have
that

Vig(A) =Y pja; —€e<0
i

for all 4, and

From the alternative expression for g given in 7 above and the KKT conditions
just stated, we have that 14

g(\) = —H(p) + Z AiVig(A) = —H (p)

and
g\ = —H®';p) + Z AVig(A) < —H(p";p).

Hence, .
g(\) = g(N) < —H(p"sp) + H(p) = —KL(p || p")
where KL(p || ¢) is the Kullback-Liebler (KL) divergence between distributions
pand g (ie, KL(p || ¢) = >, p;jIn(p;/q;)). Rearranging terms,
0 <KL(p || p') < g(A) — g(\").

Thus,
lim KL (7 | ') = 0. ®)

For any two probability distributions p and g, a well known inequality
KL(p [ ¢) > (1/2)(Il p = q |1)? (9)
establishes the relationship between the KL divergence and the L; norm (ie, for
any vectors 7,y € R", || 2 —y 1= 374y [z — yil).

From equation 8 above, we have that for any ¢ > 0, there exists a T > 0,
such that for all t > T, KL(p || p*) < ¢. From this we get that, for all j,

By — P <D 1y — ol =l p—p" 1< V2
j/

where the last inequality (first from the right) holds as a result of inequality 9
above. This completes the proof that lim; p® = p.

4 Another reason why g(S\) = —H(p) is that there is no duality gap.






