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1. INTRODUCTION

This paper addresses issues related to the computational complexity of solving discrete-time

stochastic control problems defined on a continuous state space. There has been a great deal

of research on the computational aspects of stochastic control when the state space is finite

([B1,PT,HTW]). However, much less has been accomplished for the case of continuous state spaces.

An explanation for this state of affairs could be that such problems are very demanding compu-

tationally, with most realistic problems lying beyond the capabilities of commercial computers.

However, with advances in computer hardware and with the availability of new powerful archi-

tectures, it is to be expected that the numerical solution of continuous-state stochastic control

problems will become much more common, hence the motivation for our work.

Let S be some subset of Rn which is the state space of a controlled stochastic process. A large

class of discrete-time stochastic control problems boils down to the computation of a fixed point

J* of the nonlinear operator T (acting on a space of functions on the set S) defined by

(TJ)(x) = inf (x, u) + c J(y)P(y I x, u) dy], Vx E S. (1.1)

Here, C c ?m is the control space, g(x, u) is the cost incurred if the current state is x and control

u is applied, a E (0, 1) is a discount factor, and P(y I x, u) is a stochastic kernel that specifies the

probability distribution of the next state y, when the current state is x and control u is applied.

Then, J* (x) is interpreted as the value of the expected discounted cost, starting from state x, and

provided that the control actions are chosen optimally (see Section 2).

A fixed point J* of the operator T cannot be determined analytically except for a limited class

of examples. On the other hand, an approximation to such a fixed point can be computed by

suitably discretizing the state and control spaces, and then solving a finite-dimensional version

of the problem. There has been some work on such discretization methods, with typical results

demonstrating that as the discretization becomes finer, the resulting approximation of J* becomes

more and more accurate [Wh,B2,CT]. Upper bounds on the approximation error are also available.

One of the consequences of the results to be derived in the present paper is that some of the earlier

upper bounds are tight within a constant factor.

Once the original problem is discretized, there is a choice of numerical methods for solving

the discrete problem [B1]. One particular choice is studied in a companion paper [CT], where it

is shown that the total computational effort is closely related to the amount of work needed in

discretizing the problem, when a suitable multigrid method is employed. Thus, the results in the

present paper demonstrate that the algorithm in [CT] is close to optimal (and sometimes optimal)

as far as its complexity is concerned.

In the special case where the control space U consists of a single element, the minimization in Eq.

(1.1) is redundant, and the fixed point equation J* = TJ* becomes a (linear) Fredholm equation of

the second kind. Thus, the results in the present paper, in conjunction with the algorithms in [CT],
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characterize the computational complexity of the approximate solution of Fredholm equations of

the second kind. There has been some prior research on this subject [W]. Our work is different in

a number of respects that are discussed in Section 4.

The paper is organized as follows. In Section 2, we introduce our assumptions, define the problem

to be solved, and state its relation to stochastic control. We also outline the model of computation

to be employed. Finally, we state some known upper bounds on the approximation error introduced

by the discretization of the problem, and translate them to complexity bounds. In Section 3, which

contains our main results, lower bounds are derived on the information-based complexity of our

problem. Finally, Section 4 contains our conclusions and some discussion of related issues.

2. PROBLEM DEFINITION

Let S = [0,1]" and U = [0, 1]m . Let ac be a scalar belonging to (0,1). Let g: S x U ~-+ R and

P: S x S x U - R be some functions. Let K be some positive constant.

Assumption 2.1:

a) 0 < P(y l, u), Vy, x E S,V u E U.

b) IP(ylx, u)-P(y'lx',u')l < Kll(y,x,u)- (y',x',8u')oo, Vy, y',x,x' E S, u, u' E U.
c) Ig(x, u) - g(x', u')l < KII(x, u) - (x', U')oo x, x,' E S, Vu, ' e U.
d) Ig(x,u)l < K, Vx E S, Vu E U.

Assumption 2.2: fs P(y I x, u) dy = 1, Vx E S, Vu E C.

According to Assumptions 2.1 and 2.2, for any fixed x E S and u E U, the function P(. I x, u) is

a probability density on the set S. Furthermore, P and g are Lipschitz continuous with Lipschitz

constant K.

Let C(S) be the set of all continuous real-valued functions on the set S. We define the operator

T: C(S) '- C(S) by letting

(TJ)(x) = min [(x, u) + J(y)P(y x, u) dy VJ E C(S), Vx E S. (2.1)

(The fact that T maps C(S) into itself is proved in [CT].) The space C(S) endowed with the norm

IIJIIo = max-es IJ(x)l is a Banach space. Furthermore, T has the contraction property

IITJ - TJ'IIoo < alJ - J'Ilo, VJ, J' E C(S). (2.2)

Since a E (0,1), T is a contraction operator, and therefore has a unique fixed point J* E C(S).

The equation TJ = J, of which J* is the unique solution, is known as Bellman's equation or as the

dynamic programming equation. We are interested in the computational aspects of the approximate

evaluation of J*.

Stochastic Control Interpretation
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Let II be the set of all Borel measurable functions : S $-* U. Let II°° be the set of all sequences
of elements of II. An element 7r = (po, i1,...) of IIH, called a policy (also known as feedback law

or control law), is to be viewed as a prescription for choosing an action /t (xt) E U at time t, as a
function of the current state xt of a controlled stochastic process. More precisely, given a policy
ir = (o0, l,...), we define a (generally, nonstationary) Markov process {r It = 0,1,.. .} on the

state space S by letting P(. Ixt z , (xz)) be the probability density function of zx", conditionedt+l 

on xt. The cost J, (z) associated to such a policy is defined (as a function of the initial state x) by

J(rx) = E [ag(t t()) |X = xj (2.3)

[Notice that the infinite sum is absolutely convergent and bounded by K/(1 - a) because ai E (0, 1)
and the function g is bounded by K.] For any x E S, we define J(x) by letting

J(x) = inf J, (x), (2.4)

and this defines a function J S R-+ R. This function, known as the cost-to-go or value function,
represents the least possible cost as a function of the initial state of the controlled process. A
policy ?r E Il° is called optimal if J,,(x) = J(x) for all x E S. The central result of dynamic
programming' states that J coincides with the fixed point J* of the operator T. Furthermore,
once J* is available, it is straightforward to determine an optimal policy. [This is done as follows:
Consider Eq. (2.1) with J replaced by J*. For each x E S, choose some u that attains the minimum
in Eq. (2.1), and let pt () = u for each t.] This justifies our interest in the function J*.

The case where the discount factor a approaches 1 from below is of substantial theoretical
and practical interest. For example, as a t 1, one obtains, in the limit, the solution to a certain

"average cost problem" [B1]. Also, if one deals with a discounted continuous-time stochastic control
problem and the time step is discretized, one obtains a discrete-time discounted problem in which
the discount factor approaches 1 as the time discretization step is made smaller.

In practical stochastic control problems, the state and control spaces could be arbitrary subsets
of R' and R"', respectively, and there could be state-dependent constraints on the allowed values

of u. Such problems can only be harder than the special case studied here. Thus, the lower bounds
to be derived in Section 3 apply more generally. A similar comment applies to the smoothness
conditions on g and P that have been imposed in Assumption 2.1.

Further Assumptions

In the case of stochastic control problems defined on a finite state space it is known that the
convergence of certain algorithms for computing J* is much faster when the controlled process

1. This result requires certain technical assumptions. Assumption 2.1 turns out to be sufficient

[BS], [CT].
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satisfies certain mixing conditions [B1] and the same is true in our case as well [CT]. Our next

assumption introduces a condition of this type.

Assumption 2.3: There exists a constant p > 0 such that

J SminEU P(y I x, u) dy > p. (2.5)

Intuitively, Assumption 2.3 states that no matter what the current state is and what control

is applied, there are certain states in S (of positive Lebesgue measure) for which the probability

density of being visited at the next time step is positive. This ensures that the effects of initial

conditions are quickly washed out.

In an alternative class of stochastic control problems, at any given time there is a certain proba-

bility, depending on the current state and the control being applied, that the process is terminated

and costs stop accruing. Such a formulation is captured by allowing P( Ix, tu) to be a subprobability

measure, as in the following assumption:

Assumption 2.4: fs P(y I z, u) dy < 1, Vx E S, Vu E U.

Model of Computation

Our computational task is completely determined by the functions P and g, the discount factor

a, and the desired accuracy e. Accordingly, a tuple (P,g,a,c) will be called an instance. We

then define a problem as a class of instances. In our context, different problems will correspond to

different choices of assumptions.

In order to talk meaningfully about the approximate computation of J*, we need a suitable model

of computation. We use a real-number model of computation [TWW,YN] in which a processor:

a) Performs comparisons of real numbers or infinite precision arithmetic operations in unit time.

b) Submits queries (y, x, u) E S x S x U to an "oracle" and receives as answers the values of g(x, u)

and P(y I x, u). [We then say that the processor samples (y, x, u).] Queries can be submitted

at any time in the course of the computation and this allows the values of (y, x, u) in a query

to depend on earlier computations or on the answers to earlier queries. (We will therefore be

dealing with "adaptive" algorithms, in the sense of in [TWW].)

An algorithm in the above model of computation can be loosely defined as a program that

determines the computations to be performed and the queries to be submitted. An algorithm is

said to be correct (for a given problem) if for every instance (P,g, a, c) of the problem, it outputs

a piecewise constant function J such that IIJ* - JIlj < , in some prespecified format. A natural

format for the representation of the output is as follows. The processor outputs a parameter h that

signifies that the state space S has been partitioned into cubes of volume hn, and then outputs the

value of J on each one of these cubes, with the understanding that J is constant on each one of

these cubes.
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The complexity of an algorithm of above described type is defined as the sum of:

a) The number of oracle queries;

b) The number of arithmetic operations performed by the algorithm.

A very fruitful method for establishing lower bounds on the complexity of any algorithm consists
of lower bounding the number of queries that have to be submitted for the desired accuracy to be
attainable. The typical argument here is that if the number of queries is small then the available
information on the problem being solved is insufficient. Accordingly, the least number of queries
necessary is often called the information-based complexity of the problem.

Let the dimensions n, m of the state and control spaces be fixed and let us view the constants
K and p of Assumptions 2.1-2.3 as absolute constants. We consider three different problems:

a) Problem Pprob that consists of all instances that satisfy Assumptions 2.1 and 2.2. [In particular,

P(. I , u) is a probability measure for all (x, u).]

b) Problem Pmiz that consists of all instances that satisfy Assumptions 2.1-2.3. (That is, a mixing

condition is also in effect.)

c) Problem P.ub that consists of all instances that satisfy Assumptions 2.1, 2.3-2.4. [That is, the
mixing condition is still in effect, but P(. I x, u) is only a subprobability measure.]

Let us fix some c and a. We define Cprob(a, c) as the minimum (over all correct algorithms for

the problem Pprob) of the number of queries, in the worst case over all instances (P, g, a, E) of Pprob.

The quantities Cmi(ac, E) and Cub(a, E) are defined similarly, by replacing problem Pprob by Pmis

and Pub, respectively.

The following upper bounds, together with discretization procedures that stay within these
bounds, can be found in [Wh] and [CT]:

Cprob(,oE) ((1- C) ) (2.6)

Cmix(ae)0 ((1- ae)2+m (2.7)

Cm b(C, E) = 0 ((- 1)2+n+m) (2.8)

We have used the 0(.) notation which should be interpreted as follows. Let f and h be functions
from (0, 1) x (0, oo) into [0, oo). We write f(a, E) = O (h(a, E)) if there exist constants c > 0, co > 0,
and ao E (0, 1) such that f(a,E) < ch(a, ) for all E E (0, o) and all ca E (a0, 1). (These constants
are allowed to depend on the absolute constants n, m, K, and p.) Later, we will also use the

notation f(a,E) = Q2(h(a,E)) which is equivalent to h(a,E) = Q(f(a, )).

3. LOWER BOUNDS

6



In this section, we prove that the upper bounds of Eqs. (2.6)-(2.8) are tight, by establishing the

corresponding lower bounds. Our results rest on an "adversary" argument that is very common

in the study of information-based complexity [TWW]. The outline of the argument is as follows.

Suppose that a certain algorithm makes at most A queries. We consider a particular instance

(P, g, a, c) and we let X be the set of triples (y,x, u) sampled by the algorithm when presented

with that instance. We then construct an alternative instance (P,,ca, c) such that P(y I x, u) =

P(y I x, u) and g(z, u) = §(x, u) for all (y, z, u) E X. The algorithm has no means of distinguishing

between the two instances and must produce the same output J in both cases. Let J* and J*

be the optimal cost functions for the two problems. If we can manage so that IIJ* - J* I1o > 2e,

then at least one of the inequalities IIJ - J*llo > E and IIJ - J*Ioo > e must hold. It follows

that the algorithm cannot succeed for all problem instances, and therefore the information-based

complexity of the problem is larger than the cardinality of A.

Theorem 3.1: (Lower bound under Assumptions 2.1-2.3) For any K > 0, p E (0,1), m, and n,

we have

Cm~= ( ((1( C))= )n

Proof: We only prove the result for the case K = 1 and p = 1/2. The proof for the general

case is identical except for a minor modification discussed at the end of the proof. Let us also fix

the dimensions m, n of the problem. Throughout the proof, an absolute constant will stand for a

constant that can only depend on m, n, but not on any other parameters.

We fix some e > 0 and some a E (1/2,1). Let us consider some algorithm that is correct for the

problem P,mi and suppose that the number of queries is at most A for every instance with those

particular values of a and E. We will derive a lower bound on A.

We choose a positive scalar 6 so that 1/6 is an integer multiple of 16 and such that

1 1 1
1 < 1 < 1 +16, (3.1)

a0 - 6 - a,

where 8o satisfies

A = 46on+ . (3.2)

We partition the set S x S x U into cubic cells of volume 52n+m. (In particular, there will be

1/62n+m cells.) This is done by first specifying the "centers" of the cells. Let S be the set of all

x = (xl1 ,... ,xn) E S such that each component xi is of the form x, = (t + (1/2))6, where t is a

nonnegative integer smaller than 1/6. Similarly, we let U be the set of all u = (uj, ... , uM) E U

such that each ui is of the form ui = (t + (1/2))6, where again t is a nonnegative integer smaller

than 1/6. For any (g, , ,i) E S x S x U, we define the cell Cy#,j, by letting

C = {(y,X,U) E S X S X U II(y,Z, ) - (, ,)lloo < 



Clearly, the cardinality of S and U is 1/6" and 1/6 m, respectively. It follows that there is a total
of 1/62n+m cells. Notice that distinct cells are disjoint.

For any (y~, , u ) E S x S x U, we define a function E,, : S x x x U A- R, by letting

Eg,j,a (y I x,u ) = O, if (y,z, u) V Cg, ,a,

E,, (y I xT, u)= -, u) ll ,I if (y,x,u) E Cg, ,a. (3.3)

Thus, Eg,1,a is just a "pyramid" of height 6/2 whose base is the cell Cjf. The triangle inequality
applied to the norm 11 ' II, shows that

|E,,i(ylIx, u)- E,,(- Y I x',u')I < II(y,,u 2 U)-(y',z',u')II|, V(y, X, ), (y, z', U') E C,,

Thus, Eg,&,4 satisfies the Lipschitz continuity Assumption 2.1, with Lipschitz constant K = 1, on
the set Cg,&,f,. The function Eg,j,f is continuous at the boundary of Cgj,a and is zero outside
Cy,4 . Thus, Eg,j,f is obtained by piecing together in a continuous manner a Lipschitz continuous
function and a constant function. It follows that Eg,j,g is Lipschitz continuous on the set S x S x U,
with Lipschitz constant 1.

We define an instance (P, g, ct, c) by letting

g(, u) = x1, V(x,u) E S x U, (3.4)

and

P(y I x, u) = 1, V(y,x,u) E S x S x U. (3.5)

It is easily seen that this instance satisfies Assumptions 2.1-2.3 with K = 1 and p = 1/2.

Bellman's equation reads

J(x) = x +a J(y) dy. (3.6)

A simple calculation shows that the function J* defined by

J*(x) = xl + 2(1 - ) (3.7)

is a solution of (3.6) and according to the discussion of Section 2, it is the unique fixed point of T.

Let X be the set of points (y, x, u) sampled by the particular algorithm we are considering, when
it is faced with the instance (P, g, a, e). In particular, the cardinality of X is at most A. Using the
definition of 6 [cf. Eqs. (3.1)-(3.2)], the cardinality of X is at most 1/(462n+m).

We say that a cell Cg,&,a is sampled if the intersection of X and Cg,&,f is nonempty. Otherwise,
we say that Cgjf is unsampled. We say that some (i, ii) E S x U is well-sampled if there exist at
least 1/(26") elements y of S for which the cell Cg,&,a is sampled. Otherwise, we say that (x, i) is
badly sampled. Since the total number of samples is bounded by 1/(462n" + ), there exist at most
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1/(26n+m) well-sampled elements (, ~i) E S x U. Therefore, there are at least 1/(26n+m) badly
sampled (x, fi). For each x E S there are at most 1/6m possible choices of ii such that (x, i) is
badly sampled. This shows that there exists a set SBAD C S of cardinality 1/(2 "n) such that for
each x E SBAD there exists some A(x) E U for which (i,i(i)) is badly sampled.

We will now construct a second instance. The cost function g is left unchanged [cf. Eq. (3.4)],
but we modify the probability density on some of the unsampled cells. This is done as follows.

Let us fix some x E SBAD. By the definition of SBAD and i(i), if we keep x fixed and vary j, we

find at least 1/(26n) unsampled cells of the form C,A,(&). We sort these unsampled cells in order
of increasing y1 and we let c be the median value of Y1. We refer to those cells for which Y1 < c

(respectively, y1 > c) as low (respectively, high) cells. Let c = c - (1/16) and c = c + (1/16). We

discard all unsampled cells C9,i,A(i) for which c < Y1 < c. Thus, the number of discarded cells
is bounded by 1/(86n). Since we started with at least 1/(48n) low unsampled cells, we are left
with at least 1/(86n) such cells. By discarding some more low unsampled cells (if needed), we can
assume that we are left with exactly 1/( 86 n) unsampled low cells. By a similar argument, we can
also assume that we are left with exactly 1/(86") unsampled high cells. Let QL (j) [respectively,
QH (i)] be the set of all y E S such that C9,&,A(i) is a low (respectively, high) unsampled cell that
has not been discarded. This procedure is carried out for each x E SBAD.

We define

P(y I, u) = P(y I , u) + E(y I , u) = 1 + E(y I x,u), (3.8)

where

E(yIX,) = Ei,A(2) (Y, 1 2, U)- i Ei, Ai(i)(Y I X,U). (3.9)
!ESBAD, 9EQL'(f) iESBAD, 9EQ (i)

In words, we add a pyramid at each low unsampled cell and we subtract a pyramid at each high

unsampled cell. This has the effect of shifting the transition probability distribution closer to the
origin, with a consequent decrease in the cost incurred after a transition.

We verify that our perturbed instance (P, g, c, e) satisfies the required assumptions. Since each
pyramid is Lipschitz continuous with Lipschitz constant 1, and since distinct pyramids are sup-

ported on distinct cells, it follows that Assumption 2.1(b) is satisfied with K = 1. Furthermore, for

each (x, u), the number of added pyramids is equal to the number of subtracted pyramids. For this

reason, fs E(y I x, u) dy = 0 and P satisfies Assumption 2.2. Finally, the height of each pyramid

is 6/2. Since 6 < 1, we have P(y I x, u) > 1 - (6/2) > 1/2. This shows that Assumption 2.2 and
Assumption 2.3 (with p = 1/2) are satisfied.

Our next task is to estimate the optimal cost function J* corresponding to the perturbed instance

(P,g,a, ). Let

B = {x E S I 3X E SBAD such that lix- x1 0o0 < j}

9



For any x E B, we let u(x) = A(i) where x is the element of SBAD for which Izx- - < 6/4. For
any x 4 B, we let 1L(x) = 0. We now consider the quantity

e(x) = g (y)E(y x, i(z)) dy (3.10)

that can be interpreted as the effect of the perturbation on the expected cost after the first transi-

tion, when the control is chosen according to the function j.

Lemma 3.1: For each x E S, we have e(x) < 0. Furthermore, there exists a positive absolute

constant k such that e(x) < -k5, for all x E B.
Proof: Using Eqs. (3.9) and (3.10) and the definition of g, we have

e(x) = Y1 Eye,j(A) (y I x, pL(x)) dy- jY E,,,() (y xq(x)) dy.I
iESBAD, #EQL (i) iESBAD, YEQH()

(3.11)
For any x 4 B, we have (zx) = 0 which implies that E(y I xz,L(z)) = 0 and e(x) = 0. Let us now
fix some x E B and let x be the corresponding element of SBAD. Then, Eq. (3.11) becomes

e(x) = , /s Y12 E,,A,(,) (y I x, i(x)) dy - E |Y1 Ey , A ()(y I x, It (x)) dy. (3.12)
9EQL (2) YEQ- (2)

Let us consider the summand corresponding to a particular i E QL (i). We only need to carry out

the integration on the set Y(.) = {y E S I Ily - illoo < 6/2} (instead of the entire set S) because

Eg1,&(2) (y I x, u) vanishes when y 0 Y(j). For y E Y(j), we have Y' < gV + 6/2 < c+ 6/2 We now
use the definition of the function E#,,a(j) (y I x, ,(x)) [cf. Eq. (3.3)], together with the property
z(x) = Ai(i), to conclude that

| Y1 EmsM (y|x,u(x)) dy< (c+)I(x),

where

I(x) -= j -max{llx- ., Iy- jll}) dy. (3.13)

It is clear that the value of I(x) is independent of the choice of y, which justifies our notation. By
a symmetrical argument, each one of the summands corresponding to y E QH (x) is bounded below
by (c - 6/2)I(x). Since each one of the sets QH (i), QL (i) has cardinality 1/86S, it follows from

Eq. (3.11) that
1 1e(x) < -(c - c-6)I(xz) - < -I(z) 'Vx E B, (3.14)_ n - 646 ,

where the last inequality follows because c-c = 1/4 (by construction) and 6 < 1/16 (by definition).
We now bound I(x) for x E B. We have lix - llio < 6/4, the integrand is always nonnegative, and
is at least 6/4 for every y belonging to the set {y C S I Ily - ylloo < /4}. Therefore, for x E B,
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I(x) is bounded below by 6/4 times the volume of the set (y E S I Ily - iloo < 6/4}. This set is an

n-dimensional cube, whose edges have length 6/2. Thus, we obtain

6 6"
I(x) > 4 2n Vzx E B.

Combining with Eq. (3.14), we obtain

e(X) < - Vx E B,
e(x)<4 464 2n EB,

which proves the desired result. q.e.d.

Lemmna 3.2: There exists a positive absolute constant h such that

P(ylx,u)dy> h, V E S, V E U.

Proof: The function P is bounded below by 1/2, as shown earlier. Thus, it suffices to show that

the volume of B is bounded below by some absolute constant. Notice that B consists of 1/(2n")

cubes of volume (6 / 2 )n, and the result follows. q.e.d.

Let T be the operator defined by Eq. (2.1) but with P replaced by P. We have

PJ* (x) = g(x) + a min J*(y)P(y lx,u)dy

< g(x) + aj J*()P( y I x), (x)) dy

= J(+ j +J*(P/ (y)dE(yIjJ(y)E(x))dyx )y (3.15)

= J*(x)+aj(s J*(Y)E(y|x zl(x))dy

= J*(x) + a y E(y x, L()) dy+ 2(1 - a jE(y I x,(x))dy

= J* (x) + ae(x),

where we have used the fact that J* satisfies Eqs. (3.6) and (3.7), the definition of e(x) [cf. Eq.

(3.10)], and the fact that fs E(y I x,,u(x)) dy = 0. It follows that

iJ* (x) < J* (x), Vx E S, (3.16)

TJ*(x) < J*(x) - ak6, Vx e B, (3.17)

where k is the constant of Lemma 3.1. Let Tt be the composition of t copies of T and let B = {x E
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S Iz x B} be the complement of B. We have

iJ* (x) = g(x) + a min TJ* (y)P(y x,u) dy

< g(x) + a j TJ* (y)P(y f z, ,(x)) dy

= g(x) + ao TJ* (y)P(y I x,'p(x)) dy + a fTJ* (y)P(y I x, (x)) dy (3.18)

< g(x) + a (J* (y) - ak8)P(y I x, p(x)) dy + a f JP (y)P(y I $, i(x)) dy

= J* () + ae(x) - t2 k8 P(y I x, u(x)) dy

< J*(x) - aa2 kSh, Vx E S.

[We have used here the equality between the second and the last line of Eq. (3.15), as well as

Lemma 3.2.] It is well known [B1] (and easy to verify) that for any real constant d, we have

T(J + d) = ad + TJ. (Here the notation J + d should be interpreted as the function which is equal

to the sum of J with a function on S that is identically equal to d.) Using this property and Eq.

(3.18), we obtain

t3 J* (x) < 2 J*(x) - a3 kSh < J*(z) -_ 2 k 6h - a3 kSh, Vx E S.

We continue inductively, to obtain

t J* (x) <J* (x) (1 + - + 2 + .+ ... +at-)a2 k6h, t = 2,3,..., IVxES. (3.19)

Taking the limit as t -+ oo, TtJ* converges to the optimal cost function J* of the perturbed

instance, and Eq. (3.19) implies that

J*(x) < J*(x) - Skh, Vx E S. (3.20)
1-a

Notice that the perturbed instance coincides with the original one at all points sampled by the

algorithm. For this reason, the algorithm will perform the same arithmetic operations and will

return the same answer for both instances. That answer must be an e-approximation of both J*

and J*. It follows that IIJ* - J*oo ,< 2e. Therefore,

a2
a Skh < 2e.

1-c

Since a_ > 1/2, we obtain

6 < d(1- c)E, (3.21)

where d is some absolute constant.
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Fi(M) F2X2(Z) G(x)

a a-

0 2 1 1 x 0 7 1 X 0 1 2 1 
93 39 3 3-

Figure 1. The functions F1 , F2, and G. The maximum value a of F1 and F2 is chosen so that

fol F 1(z) d = fo' F2(x)dx = 1. In particular, 3 < a < 9/2.

For e < 1/(32d), we obtain 6 < 1/32 or 1/(26) > 16. Thus, using Eq. (3.1), we have 1/6o >

(1/6)- 16 > (1/6)- (1/26) = 1/(26), and Eq. (3.2) yields

A= > 1 > 1>

4802n+m - 4(26)2n+m - 4(2d(l 1- C)e) 2 + m ((1 ))2+m

When the theorem is proved for general values of K and p, it is sufficient to multiply the

pyramidal functions of Eq. (3.3) by a factor of min{K, 1 - p}. It is then easily seen that the

perturbed problem satisfies Assumptions 2.1 and 2.3 for the given values of K and p and the proof

goes through verbatim, except that certain absolute constants are modified. Q.E.D.

In our next result, the mixing condition (Assumption 2.3) is removed. It will be seen that this

allows us to obtain a larger lower bound.

Theorem 3.2: (Lower bound under Assumptions 2.1-2.2) For every m, n, there exists some K

such that

-Cpo(· = ( (((1 - c)2)2n+m 

Proof: The structure of the proof is similar to the preceding one. We fix n, m, and some K that

will depend on n in a way to be determined later. An absolute constant is again a constant that

depends only on m and n.

We fix some e > 0 and some a E (1/2,1). We consider an algorithm that is correct for the

problem Pprob (for the given values of m, n, K) and suppose that the number of queries is at most

A for every instance with those particular values of a and E.

We choose a positive scalar 6 so that 1/6 is an integer multiple of 9 and such that

1 < - < + 9, (3.22)
80 - 6 -

where 60 satisfies

A = - ( _2n I (3.23)

We partition S x S x U into cubic cells of volume 1/62n+m exactly as in the proof of Theorem 3.1

and we use the same notations S, U, CU, ,, and E#,&,a.
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We define the first instance to be considered. Let F1, F2, G: [0,11] A-+ R be the functions shown

in Fig. 1. We define a function H: [0, 1] x [0, 1] i-+ R by letting

H(y I x) = Fz(y)G(z) + F2(y)(1 - G(x)), VZ, y E [0, 1].

We finally let
n

P( I , ) = H(yi I xi), V(y, , u) E S X S x U, (3.24)
i=l

where xi and yi is the ith component of z and y, respectively. As for the cost function g, we only

assume that g(x,u) = 1 for all x E [0, 1/3]n and u E U, and that g(x, u) = 0 for all x E [2/3, 1]'

and u E U.

We verify that Assumptions 2.1-2.2 are satisfied. The function P is certainly nonnegative.

Furthermore, F1 and F2 integrate to 1. Consequently, fo. 1] H(y I x) dy = 1, for all x E [0,1].

Thus, for any x, u, P(. I x, u) is a product of probability measures [cf. Eq. (3.24)] and is itself a

probability measure. Notice that F1, F2 and G are Lipschitz continuous. It follows that P is also

Lipschitz continuous with Lipschitz constant K, provided that the absolute constant K is taken

large enough. Concerning the function g, we have not specified it in detail, but it is easily seen

that there exist Lipschitz continuous functions satisfying the requirements we have imposed on g.

Notice that the Markov chain corresponding to P has the property that if the current state is

in the set [0, 1/3]n then the state stays forever in that set. The same property holds for the set

[2/3, 1]n.

We now estimate J* (x) when x E [0, 1/3]n. While we could argue directly in terms of Bellman's

equation, the argument is much more transparent if we use the interpretation of J* (x) as the optimal

cost expressed as a function of the initial state. Starting with some initial state in [0, 1/3]n, the

state never exits that set. Furthermore, g(x) = 1 for every x E [0, 1/3]n. This implies that

00

J* (x)== Eat 1 V E [0, 1/3] . (3.25)
t=l

Lemma 3.3: There exists a set SBAD C [0, 2/9]n nS of cardinality (2/9)n /(25n) with the following

property: for every x E SBAD there exists some A(x) E U and two sets QL () c [0,2/9]n n S,

QH (j) C [7/9, 1]"n S , of cardinality (2/9)n/(26n), such that the cell C#,,rF(j) is unsampled for

every y E QL (x) U QH ().

Proof: Let SGOOD be the set of all x E [0, 2/9]" n S that do not have the desired property. Since

the cardinality of [0, 2/9]n n S is (2/9)n/6" it is sufficient to show that SGOOD has cardinality less

than or equal to (2/9)n/(28n). We suppose the contrary, and we will obtain a contradiction.

Fix some x E SGOOD. Then, for every i E U we can find at least (2/9)n/(26n) values of y E S

such that the cell C#,j,a is sampled. This shows that the total number of sampled cells is at least

14



(2/9)2n/(462n+m). Using Eqs. (3.22) and (3.23), this implies that the number of sampled cells is

more than A, a contradiction. q.e.d.

We now construct a perturbed instance. The cost function g is left unchanged. We define

P(y I x, u) = P(y I x,u) + E(y I x, u),

where

E(y I x,u) = E#,i,() (Y I X, ) - Eg, i A(z) (y I z, u). (3.26)
ES3BAD, fEEQ,(,) (ESBAD, yEQ L()

In effect, we are giving positive probability to certain transitions from the set [0, 2/9]" to the set

[7/9, 1]". On the other hand, the property that the state can never exit from the set [7/9,1]n

is retained. The Lipschitz continuity of E and P implies that P is Lipschitz continuous. Also

P(. I x, u) is nonnegative and integrates to 1, for reasons similar to those in the proof of Theorem

3.1. Thus, Assumptions 2.1 and 2.2 are satisfied.

Let

B {= x E [0, 1/3]" I 3 E SBAD such that Ix - lo -< • -

Lemma 3.4: For every x E [0,1/3]n, we have

J P(y I x,u) dy > h,

where h is a positive absolute constant.

Proof: Fix some x E [0,1/3]". Notice that P(y I x, u) = fin=- Fl(yi) > 3" > 3 for all y E [0, 2/9]".

Since IE(y I x,u) < 6/2 < 1, we conclude that P(y I , u) > 2, for all y E [0,2/9]". The set B

consists of (2/96)"/2 cubes of volume (8/2)n. Thus, the volume of B is bounded below by some

absolute positive constant, and the result follows. q.e.d.

Let us now define /(x) = A(i) for all x E B, where x is chosen so that lix - lloo < 6/4, and we

let p(x) = 0 for x 0 B.

Lemma 3.5: For every x E B, we have

P(y I x,u(x)) dy > k6,

where k is an absolute positive constant.

Proof: For every j E S, let Y(9) = {y E S I ly - l1 < 6/4}. Fix some x E B and let i be an

element of SBAD such that lZx -xll - < 6/4. We have

|(y I x, p(x)) dy> E | Eg,i(,) (y I x,,u(x)) dy

-> J (- max{l[x- -[oo, X i- Yiioo })dy
.s~Q (:) J,(-v)Y(i)(

> E - 1dy.
y9EQH() 4 ()
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The set Y(j) is a cube of volume (6/2)", the cardinality of the set QH (j) is (2/96)"/2, and the

result follows. q.e.d.

We now estimate the cost J,,(x) which is incurred if policy 7r = (i,,...) is used, for the

case where x E [0,1/3]n. The corresponding Markov process xt evolves as follows. Whenever

zx E [0, 1/3]n, there is at least probability h that the next state belongs to the set B and there is

a further probability of at least k6 that the state after one more transition is in the set [2/3, 1]".

Once the latter set is entered, the state stays forever in that set. We therefore have

Pr(xt E [0, 1/31n) < (1- kh8) t - l , Vt > 1.

Since the cost is 1 on the set [0, 1/3]" and 0 on the set [2/3, 1]", we have

00

J,(x) = attPr(x"(t) E [0,1/3]n)
t=o

=0

< 1 + E at (1- kh) t - (3.27)

a(l-kh6)
1 - a(1 - khS)

i + akho 1/3]5

The optimal cost function J* of the perturbed instance satisfies J* < j, and, using Eq. (3.25),

we obtain

1 1 + akhU a2 kh8

1-(x) a 1 - a(1 - kh) = (1- a)(1 - a(1 - h[01/3] (328)

Notice that the class Pprob contains the class Pi,. For this reason, the particular algorithm

being considered here is also a correct algorithm for the problem Pmi. In particular, all of the

intermediate results in the proof of Theorem 3.1 apply to the algorithm we are considering. We

can therefore use Eq. (3.21) and conclude that 6 < d(1 - a)e, where d is an absolute constant.

(Actually, the definition of 6 is somewhat different in the two proofs, but this only affects the

absolute constant d.) This implies that for e < 1/(khd), we have 6 < (1 - a)/(kh) or 1 - kh6 > a.

Using this inequality in Eq. (3.28), together with the property a > 1/2, we obtain

a2 kh6 > (kh6)/4 1 kh6
J*(x)-J*(x)> (1 a)(1 - a2) > 2(1- a) 2 8 (1 - a)2 .

This inequality is similar to inequality (3.20) in the proof of Theorem 3.1, except that 1 - a has

been replaced by (1- a)2 . The rest of the argument is the same, except for certain constant factors,

and that 1 - a is replaced throughout by (1 - a) 2. Q.E.D.
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Theorem 3.3: (Lower bound under Assumptions 2.1, 2.3, 2.4) For every m, n, there is a choice

of K and p such that

Caub(r a) n( ((l- a)2))2n+m

Proof: The proof is almost identical to the proof of Theorem 3.2, and for this reason, we argue

informally. For convenience, let the state space S be the set [0,1/3]', instead of [0,1]n , and let

P(y I x, u) be defined on that set as in proof of Theorem 3.2. Then, P is a probability measure on

the set [0, 1/3]n and the corresponding function J* is identically equal to 1/(1 - a). Notice that P

satisfies Assumption 2.3. Let P be as in the proof of Theorem 3.2, except that it is defined only for

x, y E [0, 1/3]-. For this reason, P is now a subprobability measure. The function J* for the current

problem is equal to the optimal expected discounted cost until the termination of the stochastic

process. However, the process considered here terminates exactly when the process considered in

the proof of Theorem 3.2 makes a transition from [0, 1/3]" to the zero-cost set [2/3, 1]'. For this

reason, the function J* is the same as the function J* in the proof of Theorem 3.2, and the result

follows with the same reasoning. Q.E.D.

Remarks:

1. Suppose that we replace the correctness requirement [J - J*[OO < e by the requirement IIJ -
J* IIP < E, where 1 < p < oo and II IIp is the usual Lp norm. Then, Theorems 3.1-3.3 remain
true, with exactly the same proofs. The reason, is that in all of our proofs we have constructed

our perturbed instances so that J*(x) - J*(x) is "large" on a set whose measure is bounded

below by an absolute constant [cf. Eq. (3.20) or Eq. (3.28)]. But this implies that J* - J* is also

large when measured by the Lp-norm and the proofs remain valid, except that certain constants

have to be changed.

2. The lower bounds of Theorem 3.3 can also be proved for all values of the constants K and p.

The proof is similar except that we should let P(y Ix, u) = 3" for all (y, x, u) E S x S x U, so that

P satisfies the Lipschitz continuity assumption for any value of K. Furthermore, the perturbing

pyramids should be multiplied by a factor that ensures that their Lipschitz constant is less than

K and that Assumption 2.3 is not violated.

3. We are not able to establish the lower bound of Theorem 3.2 for an arbitrary choice of K. There

is a simple reason for that: if K is taken very small, then Assumption 2.3 is automatically

satisfied and the best provable lower bound is the one in Theorem 3.1.

4. Given some E > 0, we say that a function p : S - U is e-optimal if J*(x) < J, (x) < J*(x) + E,

for all x E S, where :r = (u, A, ... ). If an E-optimal function p is available, then the function

J* is automatically determined within an error of c, the error being measured according to the

norm 11' I,. Thus, the number of oracle queries needed for computing an c-optimal function

p is at least as large as the number of queries needed to determine J* within c. It follows that

the lower bounds of Theorems 3.1-3.3 also apply (under their respective assumptions) to the
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computation of E-optimal functions /u.

4. DISCUSSION

The lower bounds of Section 3 agree with the upper bounds of Section 2. Thus, we have

completely characterized the information-based complexity of the approximate computation of J*.

This leaves the further question of evaluating the total complexity of approximating J*, when

arithmetic computations are taken into account. This issue is addressed in [CT]. In particular,

[CT] introduces a multigrid version of the iterative algorithm J := TJ and shows that the total

number of arithmetic operations and comparisons is

0 ((1- a)E)m (4.1)

for the problem Pmiz,X and

1 1 (4.2)

((1 aC)2E)2n+m Iloga ) 0 ((1c)2n+m 1a ) (4.2)

for the problems Pprob and Pub. Thus, for problem Pmi,, we have an optimal algorithm. For the

problems Pprob and Pub, we are within a factor of 0(1/(1 - a)) from the optimum. One might

wish to close this gap but the prospects are not particularly bright because a) there are no effective

methods for proving lower bounds tighter than those provided by the information-based approach

and, b) it can be shown [C] that no algorithm in a certain family of multigrid methods can have

complexity better than the one provided by Eq. (4.2).

We expect that our results can be extended to the case where bounds are imposed on second

derivatives (more generally, derivatives of order r) of the functions P and g. Of course, the bounds

should change, with the exponent 2n + m being replaced by a lower exponent, depending on r.

As mentioned in the introduction, the case where the functions g and P do not depend on u

(equivalently, the case where U is a singleton) makes the equation J = TJ a linear Fredholm

equation of the second kind. Our proofs and our results remain true, provided that the exponent

m in our bounds is replaced by 0. In particular, if we let n = 1, our results agree with the results

of [W].2 Our results are different from those of [W] in a number of respects:

a) We are not limited to the one-dimensional case.

b) We quantify the dependence of the complexity on the parameter a, which is a measure of the

2. In [W] the Lipschitz continuity assumption is replaced by a continuous differentiability as-

sumption. Since the latter is a more restrictive assumption, our lower bounds do not apply to

that case. However, the arguments in our proofs can be modified, by "smoothing" the corners

and the edges of our "pyramids" and therefore the same lower bounds hold for the continuously

differentiable case.
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ill-conditioning of the problem.

c) On the other hand, unlike [W], we do not study the dependence of the complexity on the

smoothness properties (e.g. bounds on higher derivatives) of the functions P and g.
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