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Network Coding Made Practical

ABSTRACT

We propose a new architecture for wireless mesh net-
works. In addition to forwarding packets, routers mix (i.e.,
code) packets from different sources to increase the infor-
mation content of each transmission. We show that intel-
ligently mixing packets increases network throughput. Our
design is rooted in the theory of network coding. In contrast
to prior work on network coding, which is mainly theoret-
ical and focuses on multicast traffic, ours is practical and
solves the common case of unicast traffic. We present the
first implementation of network coding in a wireless net-
work. Our system introduces a coding layer between the IP
and MAC layers. It works with UDP and TCP traffic, and
hence seamlessly integrates with existing applications. We
evaluate our design on a 34-node wireless testbed and show
that it delivers a 3-4x increase in the throughput of wireless
mesh networks.

1 INTRODUCTION

It is clear that wireless will be the dominant medium of
communication in the future. Current wireless implementa-
tions, however, struggle with an intrinsic limitation: band-
width. For a dense large-scale wireless network to work
properly, we need more efficient bandwidth usage.

This paper uses network coding [2] to address the
bandwidth limitation of wireless networks. In contrast to
the more traditional source coding, network coding allows
routers to mix (i.e., code) information in packets from dif-
ferent sources. Coding at the router compresses the infor-
mation whenever possible, and reduces the number of trans-
missions required to drain packets from a router’s queue. A
fewer number of transmissions translates directly to reduced
bandwidth consumption and higher throughput. Indeed, it
has been proven that, for multicast traffic, network coding
maximizes the achievable throughput [2].

Our work shows how to transform network coding from
an elegant theory to a practical system that provides several-
fold improvement in the throughput of wireless mesh net-
works. Prior work on network coding is mostly theoreti-
cal and focuses on analytical tractability; it usually assumes
multicast traffic, senders and receivers are known a priori,
and traffic rates are known and smooth [21, 17, 19, 14, 15,
23, 10, 22]. Given these assumptions, it runs an optimiza-
tion to determine how the routers should code the packets
so as to minimize bandwidth consumption [24, 34]. In con-
trast, our approach works for the common case of multiple
unicast flows. It is distributed, and makes no assumptions
about senders, receivers, or traffic characteristics.
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Figure 1—A simple example of how COPE reduces bandwidth
consumption. It allows Alice and Bob to exchange a pair of
packets using 3 transmissions instead of 4 (numbers on arrow
refer to the order of transmission).

We present COPE, a new forwarding architecture. COPE
inserts a coding shim between the IP and MAC layers, which
identifies coding opportunities and benefits from them by
forwarding multiple packets in a single transmission.

To give the reader a feel for how COPE works, we start
with a fairly simple example. Consider the scenario in Fig. 1,
where Alice and Bob want to exchange a pair of packets via
arouter. In current approaches, Alice sends her packet to the
router, which forwards it to Bob, and Bob sends his packet to
the router, which forwards it to Alice. This process requires
4 transmissions. Now consider a network coding approach.
Alice and Bob send their respective packets to the router,
which XORs the two packets and broadcasts the XOR-ed
version. Alice and Bob can obtain each other’s packet by
XOR-ing again with their own packet. This process takes
only 3 transmissions, reducing the required bandwidth, and
producing a throughput gain of % = 1.33.

In fact, COPE leads to much larger bandwidth savings
than are apparent from this example. COPE exploits the
shared nature of the wireless medium which, for free, broad-
casts each packet in a small neighborhood around its path.
Each node stores the packets it overhears for a limited pe-
riod. It also tells its neighbors which packets it has heard
by annotating the packets it sends. This creates an environ-
ment conducive to coding because nodes in each area have
a large and partially overlapping reservoir of packets they
can use to decode. When a node transmits a packet, it uses
its knowledge of what its neighbors have heard to perform
opportunistic coding; the node XORs multiple packets and
sends them in a single transmission if each intended nex-



thop has enough information to decode the encoded packet.
This extends COPE beyond two flows that traverse the same
nodes in reverse order (as in the illustrative example), and
allows COPE to XOR more than a pair of packets.

In this paper, we make the following key contributions:

(1) We build the first system architecture for network
coding, and plug it into the current network stack. Prior
work on network coding has a strong theoretical flavor [2,
21, 19]. Some recent papers present simulation results [32,
10, 7]. The only prior implementation we know of is a sim-
ple prototype by our team, where a single node was made
to XOR pairs of packets and broadcast them. In contrast,
this paper presents a full-fledged implementation that is in-
tegrated into the Linux network stack, works with both TCP
and UDP flows, and runs real applications.

(2) We report the results of the first field experiments of
network coding in a wireless network. We run our imple-
mentation on a 34-node wireless mesh network. Our exper-
iments reveal the following findings:

e COPE increases the throughput by 3-4x for an actual
wireless network with a state-of-the-art routing protocol
and realistic traffic patterns.

e For UDP traffic, the benefits of COPE stem from two
factors. First, coding allows the routers to deliver more
packets per transmission, which reduces bandwidth con-
sumption and improves throughput. Second, coding re-
duces the router queue size, preventing a downstream
router from dropping packets that have already con-
sumed network resources. This second factor contributes
as much to the performance of COPE as the reduction in
the number of transmissions (§7.1).

e The interaction of TCP with coding is different from
UDP’s. TCP congestion control prevents a sender from
sending too many packets that will be dropped at some
downstream bottleneck. Thus, the throughput improve-
ment observed with TCP is purely due to the reduction
in the number of transmissions (§7.2).

e Overhearing (§3-a) and optimistically coding packets
based on guessing (§4.1) almost doubles the throughput
gain of COPE. Furthermore, COPE is effective in recov-
ering from guessing errors.

For network coding, we believe that this paper is where
the rubber meets the road. It demonstrates through actual
implementation and field experiments that network coding
provides important practical benefits.

2 RELATED WORK

A rich body of systems research has tackled the prob-
lem of improving the throughput of wireless networks. The
proposed solutions range from designing better routing met-
rics [9, 5, 11] to tweaking the TCP protocol [29], and include
improved routing and MAC protocols [6, 18, 12]. Similar to
this line of research, we focus on practical system design.

| Term | Defi nition |

Native Packet A non-encoded packet

Encoded or XOR- | A packet that is the XOR of multiple na-

ed Packet tive packets

Nexthops of an En- | The set of nexthops for the native pack-

coded Packet ets XOR-ed together to generate the en-
coded packet

Packet Id A 32-bit hash of the packet’s IP source
address and IP sequence number

Output Queue A FIFO queue at each node, where it
keeps the packets it needs to forward

Packet Pool A buffer where a node stores all packets
heard in the past 7 seconds

Throughput Gain | The ratio of the network throughput with
CORPE to the throughput without COPE

Table 1—Defi nitions of terms used in the paper.

However, our work addresses the throughput issue from a
fundamentally different perspective. By adopting network
coding and integrating it into the current network stack, we
propose an architectural extension to the current designs of
wireless mesh networks. In particular, we demonstrate an
approach that reshapes the theories of network coding to
deliver a practical and high-throughput implementation of
wireless mesh networks. Furthermore, our approach is com-
plementary to all of the protocol enhancements above.

Recent years have seen a substantial advancement in the
theory of network coding. Ahlswede et al. started the field
with their pioneering paper [2], which shows that having in-
termediate nodes in the network mix information from dif-
ferent flows increases the throughput and allows the com-
munication to achieve broadcast capacity. This was soon fol-
lowed by the work of Li et al., who showed that, for the mul-
ticast case, linear codes are sufficient to achieve the maxi-
mum flow bounds [21]. Koetter and Médard [19] presented
polynomial time algorithms for encoding and decoding, and
Ho et al. extended these results to random codes [14]. Some
recent work has studied network coding in the wireless envi-
ronment [10, 27]. In particular, Lun et al. have studied net-
work coding in the presence of omni-directional antennae
and shown that the problem of minimizing the communica-
tion cost can be formulated as a linear program and solved
in a distributed manner [24]. All of this work, however,
is mainly theoretical, and assumes multicast traffic, known
sender and receivers, as well as smooth traffic. In contrast,
this paper focuses on a practical implementation and mea-
sured throughput improvements.

Additionally, our approach addresses network coding of
multiple unicast flows. There is little prior work on net-
work coding for the important problem of unicast commu-
nication, and most theoretical results are negative [35]. It
is known that for a single unicast session, coding does not
provide a gain over pure forwarding. The case for multi-
ple unicast sessions is largely unknown territory. A few pa-
pers focus on specific scenarios showing that, for the stud-
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Figure 2—Example of Opportunistic Coding; Node B has 4 packets in its queue, whose nexthops are listed in (b). Each neighbor of
B has stored some packets as depicted in (a). Node B can make a number of coding decisions (as shown in (c)), but should select
the last one because it maximizes the number of packets delivered in a single transmission.

ied scenario, network coding results in better throughput
than pure forwarding [36, 13, 33]. In contrast, our work pro-
vides a working protocol that supports multiple unicast ses-
sions. We show through an actual implementation that our
approach increases the throughput of a wireless network and
outperforms current designs. These practical gains generate
optimism about finding theoretical bounds.

3 COPE OVERVIEW

COPE is a new forwarding architecture. It inserts a cod-
ing shim between the IP and MAC layers, which detects
coding opportunities and exploits them to forward multiple
packets in a single transmission. Before delving into the de-
tails, we refer the reader to Table 1, which defines the terms
used in the rest of the paper.

COPE’s current design targets stationary multi-hop
wireless networks, such as Roofnet and community wire-
less networks [1, 28, 4]. Nodes in such networks are nor-
mally not resource-constrained. Therefore, in this paper we
assume that the wireless nodes are not limited by memory or
processing power. Nevertheless, this assumption is not strin-
gent, and our requirements are easily satisfied by today’s
mobile devices.

COPE uses three main techniques to achieve its perfor-
mance improvements:

(a) Overhearing: Wireless is a broadcast medium, creat-
ing many opportunities for nodes to overhear packets, when
equipped with omni-directional antennae. COPE sets the
nodes in promiscuous mode, makes them snoop on all com-
munications over the wireless medium, and stores the over-
heard packets for a limited interval, 7. The value of T should
be larger than the maximum packet latency (the default is
T = 0.5s). In addition, each node broadcasts reception re-
ports to tell its neighbors which packets it has stored. Re-
ception reports are sent by annotating the data packets the
node transmits. A node that has no data packets to transmit
periodically sends the reception reports in special control
packets.

(b) Opportunistic Coding: The key question, however, is
what packets to code together to maximize throughput. A
node may have multiple coding options, but its final deci-
sion should strive to maximize the number of native packets
delivered in a single transmission, while ensuring that each
of the intended nexthops has enough information to decode
its native packet.

The above is best illustrated with an example. In Fig. 2-a,
node B has 4 packets in its output queue p1, p», p3, and py. Its
neighbors have overheard some of these packets. The table
in Fig 2-b shows the nexthop of each packet in B’s queue.
When the MAC permits B to transmit, B takes packet p;
from the head of the queue. Assuming that B knows which
packets each neighbor has, it has a few coding options as
shown in Fig. 2-c. It could send p; @ p». Since node C has
p1 in store, it could XOR p; with p; @ p, to obtain the na-
tive packet sent to it, i.e., p». However, node A does not have
P2, and so cannot decode the XOR-ed packet. Thus, send-
ing p1 & p> would be a bad coding decision for B, because
only one neighbor can benefit from this transmission. The
second option in Fig. 2-c shows a better coding decision for
B. Sending p; & p3 would allow both neighbors C and A
to decode and obtain their intended packets from a single
transmission. Yet the best coding decision for B would be to
send p; @ p3 @ p4, which would allow all three neighbors to
receive their respective packets all at once.

The above example demonstrates a simple rule for mak-
ing coding decisions.

To transmit n packets, py, ..., pn, to n nexthops,
Iy, ..., Iy, @ node can XOR the n packets together
only if each nexthop r; has all n — 1 packets p;

forj # i.

This rule ensures that each nexthop can decode the XOR-
ed version to extract its native packet. Whenever a node has
a chance to transmit a packet, it chooses the largest n that
satisfies the above rule to maximize the benefit of coding.

(¢) Learning Neighbor’s State: But how does a node know
what packets its neighbors have? As explained earlier, each



node announces to its neighbors the packets it stores in re-
ception reports. However, this may be insufficient. At times
of severe congestion, reception reports may get lost in col-
lisions, while at times of light traffic, they may arrive too
late, after the node has already made a suboptimal coding
decision. Therefore, a node cannot rely solely on reception
reports and may need to guess whether a neighbor has a par-
ticular packet.

To guess intelligently, we leverage the routing computa-
tion. State-of-the-art wireless routing protocols compute the
delivery probability between any pair of nodes and use it to
identify good paths. For example, the ETX metric [9] peri-
odically computes the fraction of packets delivered between
any two nodes in the network. It assigns each link a weight
equal to 1/(delivery probability). These weights are broad-
cast to all nodes in the network and used by a link-state rout-
ing protocol to compute shortest paths. We leverage these
probabilities for guessing. In the absence of deterministic
information, COPE estimates the probability that a particu-
lar neighbor has a packet as the delivery probability of the
link between the packet’s previous hop and the neighbor.

Allowing these informed guesses enables a node to make
smart encoding decisions to maximize the benefit of coding.
The occasional incorrect guess, however, would cause the
coded packet to be undecodable at some nexthop. In this
case, the relevant native packet will have to be retransmitted,
potentially encoded with a new set of native packets.

4 MAKING IT WORK

In order to integrate COPE effectively within the current
network stack, we need to address some important system
issues.

4.1 Packet Coding Algorithm

To build the coding scheme, we have to make a few de-
sign decisions. First, we design our coding scheme around
the principle of not adding extra delay to packets. When the
wireless channel is available, the node takes the packet at the
head of its output queue, checks which other packets in the
queue may be encoded with this packet, XORs those packets
together, and broadcasts the XOR-ed version. If the MAC
is ready and there are no encoding opportunities, our node
does not wait for the arrival of a matching codable packet.
Compared with the current approach, therefore, COPE lets
the node opportunistically overload each transmission with
additional information when possible, but does not wait for
additional codable packets to arrive.

Second, COPE gives preference to XOR-ing packets of
similar lengths, because XOR-ing small packets with larger
ones reduces bandwidth savings. Empirical studies of the
packet size distribution in the Internet show that the distribu-
tion is bimodal with peaks at 40 bytes and 1500 bytes [25].
We can therefore limit the overhead of searching for pack-
ets with the right sizes by distinguishing between small and
large packets. We might still have to XOR packets of differ-

ent sizes. In this case, the shorter packets are padded with
zeroes. The receiving node can easily remove the padding
by checking the packet size field in the IP header of each
native packet.

Third, notice that COPE will never code together pack-
ets headed to the same nexthop, since the nexthop will not
be able to decode these packets. Hence, when searching for
codable packets, we only need to consider packets headed
to different nexthops. COPE therefore maintains two virtual
queues per neighbor; one for packets smaller than 100 bytes
(usually TCP ACKs), and another for packets larger than
100 bytes. When a new packet is added to the output queue,
an entry is added to the appropriate virtual queue based on
the packet’s nexthop and size.

Searching for appropriate packets to code is efficient due
to the maintenance of virtual queues. When making coding
decisions, COPE first dequeues the packet at the head of the
FIFO output queue, and determines if it is a small or a large
packet. Depending on the size, it looks at the appropriate set
of virtual queues. For example, if there is a small packet at
the head of the queue, COPE first looks at the virtual queues
for small packets. COPE looks only at the heads of the vir-
tual queues corresponding to the different neighbors to limit
packet reordering. After exhausting the virtual queues of a
particular size, the algorithm then looks at the heads of vir-
tual queues for packets of the other size. Thus for finding
appropriate packets to code COPE has to look at 2M pack-
ets in the worst case, where M is the number of neighbors of
a node.

Another concern is packet reordering. We would like to
limit reordering packets from the same flow because TCP
mistakes excessive reordering as a congestion signal. Thus,
we always consider packets according to their order in the
output queue. Still, reordering may occur because we prefer
to code packets of the same size. Note, however, that re-
ordering is quite limited because most TCP flows send data
in one direction and acks in the opposite, with data pack-
ets usually being larger than 100 bytes. Thus, our two vir-
tual queues for each neighbor end up mainly separating ack
streams from data streams. It is also possible to restrict re-
ordering even further. Since the number of flows in a wire-
less network is relatively small, we could hash a TCP flow
to a particular queue and pin this map for the duration of
the flow. We will see in §4.4, however, that reordering might
arise from reasons other than queuing, particularly the need
to retransmit a packet that has been lost due to a mistake
in guessing what a neighbor can decode. Thus, we choose
to deal with any reordering that might happen inside the
network at the receiver. COPE has a module that puts TCP
packets in order before delivering them to the transport layer
as explained in §4.5.

Finally, we want to ensure that each neighbor to whom
a packet is headed has a high probability of being able to
decode its native packet. Thus, for each packet in its output
queue, our relay node estimates the probability that each of



its neighbors has already heard the packet. Sometimes the
node can be certain about the answer, for example, when
the neighbor is the previous hop of the packet, or when the
reception reports from the neighbor state so. When neither
of the above is true, the node leverages the delivery prob-
abilities computed by the routing protocol; it estimates the
probability the neighbor has the packet as the delivery prob-
ability between the packet’s previous hop and that neighbor.
The node uses this estimate to ensure that encoded packets
are decodable by all of their nexthops with high probability.

In particular, suppose the node encodes n packets to-
gether. Let the probability that a nexthop has heard packet i
be P;. Then, the probability, Pp, that it can decode its native
packet is equal to the probability that it has heard all of the
n — 1 native packets XOR-ed with its own, i.e.,

PD:P1 XPQX...XPn_l.

Consider an intermediate step while searching for coding
candidates. We have already decided to XOR n — 1 packets
together, and are considering XOR-ing the n”* packet with
them. The coding algorithm now checks that, for each of the
n nexthops, the decoding probability Pp, after XOR-ing the
n'" packet with the rest stays greater than a threshold G (the
default value G = 0.8). Checking that the above conditions
are met for every nexthop ensures that each nexthop can de-
code its packet with at least probability G. Finally, we note
that for fairness we iterate over the set of neighbors accord-
ing to a random permutation.

Formally, each node in the network maintains the fol-
lowing data structures.

e Each node has a FIFO queue of packets to be forwarded,
which we call the output queue.

e For each neighbor, the node maintains two per-neighbor
virtual queues, one for packets smaller than 100 bytes,
and the other for larger packets. The virtual queues for a
neighbor A contains pointers to the packets in the output
queue whose nexthop is neighbor A.

e Additionally, the node keeps a hash table, packet info,
that is keyed on packet-id. For each packet in the output
queue, the table indicates the probability of each neigh-
bor having that packet.

Whenever the MAC signals a sending opportunity, the node
executes the procedure illustrated in Alg. 1.

4.2 Packet Decoding Algorithm

Packet decoding is simple. Each node maintains a Packet
Pool, in which it keeps a copy of each native packet it has
received or sent out. The packets are stored in a hash table
keyed on packet id, and the table is garbage collected every
few seconds. When a node receives an encoded packet con-
sisting of n native packets, the node goes through the ids of
the native packets one by one, and retrieves the correspond-
ing packet from its packet pool if possible. Ultimately, it
XORs the n — 1 packets with the received encoded packet to
retrieve the native packet meant for it.

1 Coding Procedure

Pick packet p at the head of the output queue.
Natives = {p}
NextHops = {nexthop(p)}
if size(p) > 100 bytes then
which_queue = 1
else
which_queue =0
end if
for Neighbori = 1 to M do
Pick packet p;, the head of virtual queue Q(i, which_queue)
if Vn € Nexthop U{i}, Pr[can decode p & p;] > G then
pP=pOpi
Natives = Natives U{p; }
NextHops = NextHops U{i}
end if
end for
which_queue = !'which_queue
for Neighbor i = 1 to M do
Pick packet p;, the head of virtual queue Q(i, which_queue)
if Vn € Nexthop U{i}, Pr[can decode p & p;] > G then
P=pOpi
Natives = Natives U{p; }
NextHops = NextHops U{i}
end if
end for
return p

4.3 Pseudo-broadcast

Since COPE broadcasts encoded packets to their next
hops, the natural approach to build COPE would be to use
802.11 broadcast. Unfortunately, this does not work. In par-
ticular, the 802.11 MAC has two modes: unicast and broad-
cast. 802.11 unicast packets are immediately ack-ed by their
intended nexthops. The MAC interprets the lack of an ack as
a collision signal, to which it reacts by backing off exponen-
tially, thereby allowing multiple nodes to share the medium.
In contrast, an 802.11 broadcast packet has many intended
receivers, and it is unclear who should ack. Thus, 802.11
broadcast packets are not ack-ed. This means that a broad-
cast source cannot detect collisions, and thus does not back
off. If multiple backlogged nodes share the broadcast chan-
nel, and each of them continues sending at the highest rate,
ignoring the others, the resulting throughput would be very
poor, due to high collision rates. Ideally one would design
a backoff scheme suitable for broadcast channels (e.g., Idle
Sense [12]), but we are interested in an implementation of
COPE that can be deployed in the near future using off-the-
shelf 802.11 products.

Moreover, 802.11 broadcast is not reliable. 802.11 uni-
cast ensures reliability by retransmitting the packet at the
MAC layer for a fixed number of times until a synchronous
ack is received. In the absence of these synchronous acks,
the broadcast mode offers no retransmissions and conse-
quently very low reliability.

Our solution is pseudo-broadcast, which piggybacks on



802.11 unicast and benefits from its reliability and back-
off mechanism. Pseudo-broadcast unicasts packets that are
meant for broadcast. The link layer destination field is set
to the MAC address of one of the intended recipients. An
XOR-header is added after the link-layer header, listing all
nexthops of the packet, Since all nodes are set in the promis-
cuous mode, they can overhear packets not addressed to
them. When a node receives a packet with a MAC address
different from its own, it checks the XOR-header to learn
whether it is a nexthop. If so, it processes the packet further,
else it stores the packet in a buffer as an opportunistically re-
ceived packet. As all packets are sent using 802.11 unicast,
the MAC can detect collisions and backoff properly.

Pseudo-broadcast is also more reliable than simple
broadcast. The packet is retransmitted multiple times until
its designated MAC receiver receives the packet and acks
it synchronously, or the number of retries is exceeded. A
desirable side effect of these retransmissions is that nodes
which are promiscuously listening to this packet have more
opportunities to hear it.

4.4 Hop-by-hop ACKs and Retransmissions

(a) Why hop-by-hop acks? Encoded packets require all
nexthops to acknowledge the receipt of the associated na-
tive packet for two reasons. First, COPE may optimistically
guess that a nexthop has enough information to decode an
XOR-ed packet, when it actually does not. To recover from
such errors, the sender expects the nexthops of an XOR-
ed packet to decode the XOR-ed packet, obtain their native
packet, and ack it. Second, encoded packets are headed to
multiple nexthops, but the sender gets synchronous MAC
layer acks only from the nexthop that is set as the link layer
destination of the packet. There is a higher probability of
loss to the other nexthops from whom it does not get syn-
chronous acks. The standard solution to this problem is to
mask these error-induced drops by recovering lost packets
locally through acknowledgments and retransmissions [3,
16].

If any of the native packets is not ack-ed within a cer-
tain interval, the packet is retransmitted, potentially encoded
with another set of native packets.

(b) Asynchronous Acks and Retransmissions: How
should we implement these hop-by-hop acks? For non-
coded packets, we do not need to do anything; we leverage
the 802.11 synchronous acks.

Unfortunately, extending this synchronous ack approach
to coded packets is highly inefficient, as the overhead in-
curred from sending each ack in its own packet with the
necessary IP and WiFi headers would be excessive. Thus,
in COPE encoded packets are ack-ed asynchronously.

Every node maintains the following data structures:

e Ack Queue: A queue of pending acknowledgments.
o Control Packet Timer: when the node has no data pack-
ets to send, this timer fires periodically to trigger the

transmission of a small control packet that carries pend-
ing reception reports and acks.

e Retransmission Event List: an ordered list of pending re-
transmissions. Each entry contains a pointer to a packet
in the Packet Pool as well as the due time of the next
retransmission and the number of attempted retransmis-
sions.

e Retransmission Timer: a timer scheduled to fire at the
next retransmission event. When it fires, the native
packet due for retransmission is inserted at the head of
the output. The number of attempted retransmissions
is incremented. If it exceeds a threshold (default is 2
times), the retransmission event is deleted from the Re-
transmission Event List. Otherwise the retransmission
event is inserted back in the Event List according to its
new due time. Finally the timer is rescheduled to fire at
the next retransmission event.

When a node sends an encoded packet, it schedules a
retransmission event for each of the native packets in the
encoded packet. If any of these packets is not ack-ed within
T, seconds, the packet is inserted at the head of the output
queue and retransmitted at the next sending opportunity. (7,
is initialized to be slightly larger than the round trip time
of a single link, and is adapted using an exponentially de-
caying average, similarly to TCP’s RTT estimate.) Similarly
to fresh data, retransmitted packets may get encoded with
other packets according to the scheme in §4.1. A nexthop
that receives an encoded packet decodes it to obtain its na-
tive packet, and immediately pushes an ack event into the
Ack Queue. COPE sends acks as annotations on data pack-
ets. Thus, before sending a packet, the node checks its Ack
Queue and incorporates the pending acks in the ack infor-
mation in the COPE header. If the node has no data packets
to transmit, it sends the acks in periodic control packets—
the same control packets used to send reception reports.

4.5 Preventing TCP Packet Reordering

The reader might have noticed that asynchronous acks
can cause packet reordering, which may be confused by
TCP as a sign of congestion. To deal with this issue, COPE
has an ordering agent, which ensures that TCP packets are
delivered to the transport protocol in order. The agent ig-
nores all packets whose final IP destinations differ from the
current node, as well as non-TCP packets. These packets are
immediately passed to the next processing stage. For each
TCP flow ending at the host, the agent maintains a packet
buffer and records the last TCP sequence number passed on
to the network stack. Incoming packets that do not produce
a hole in the TCP sequence stream are immediately dis-
patched to the transport layer, after updating the sequence
number state. Otherwise, they are withheld in the buffer till
the gap in the sequence numbers is filled, or until a timer
expires.
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5 IMPLEMENTATION DETAILS

COPE adds special packet headers and alters the con-
trol flow of the router to encode and decode packets. We
describe both these parts in the following sections.

5.1 Packet Format

COPE inserts a variable-length coding header in each
packet, as shown in Fig. 3. If the routing protocol has its
own header (e.g., Srcr [5]), COPE’s header sits between the
routing and the MAC headers. Otherwise, it sits between the
MAC and IP headers. Only the shaded fields in Fig. 3 are re-

quired in every COPE header. The coding header contains 3
blocks. The first block records meta-data to enable packet
decoding. It starts with ENCODED_NUM, the number of na-
tive packets XOR-ed together. For each native packet, the
header lists its ID, which is a 32-bit hash of the packet’s
source IP address and IP sequence number. This is fol-
lowed by the MAC address of the native packet’s NextHop.
When a node hears an XOR-ed packet, it checks the list of
NextHops to determine whether it is an intended recipient
for any of the native packets XOR-ed together, in which case
it decodes the packet, and processes it further according to
the IP header.

(a) Reception reports: Each node broadcasts reception re-
ports to tell its neighbors which packets it has stored. Re-
ception reports constitute the second block in the XOR
header, as shown in Fig. 3. The block starts with the num-
ber of the reports in the packet, REPORT_NUM. Each re-
port specifies the IP source of the reported packets SRC
IP. This is followed by the IP sequence number of the
last packet heard from that source Last PKT, and a bit-
map of recently heard packets. For example, a report of the
form {128.0.1.9, 50, 10000001} means that the
last packet this node has heard from source 128.0.1.9
is packet 50, and the node has also heard packets 42 and 49
from that source but none of the packets in between. The
above representation for reception reports has two advan-
tages: compactness and effectiveness. In particular, the bit-
map allows the nodes to report each packet multiple times
with minimal overhead. This guards against reception re-
ports being dropped at high congestion.



(b) Expressing asynchronous acks compactly and ro-
bustly: One option is to list the ids of the ack-ed packets in a
special section in the XOR Header attached to each packet,
but this will require a 32-bit field for every ack-ed packet.
More importantly, since congestion increases the probabil-
ity of an ack being lost along with its carrier data packet,
acks have to be repeated on multiple data packets. To en-
sure robust ack delivery with minimum overhead, we use
cumulative acks. Each node maintains a per-neighbor 16-
bit counter, called Neighbor_Seqgno_Counter. When-
ever the node sends a packet to that neighbor, the counter is
incremented and its value is assigned to the packet as a local
sequence number, Local PKT_SEQ_NUM. The two neigh-
bors use this sequence number to identify the packet. Now, a
node can use cumulative acks on a per-neighbor basis. Each
coded packet contains an ack block in its header as shown in
Fig. 3. The ack block starts with the number of ack entries,
followed by the packet local sequence number. Each ack en-
try starts with a neighbor MAC address. This is followed by
a pointer to tell the neighbor where the cumulative acks stop,
and a bit-map indicating previously received and missing
packets. For example, an entry of {A, 50, 01111111}
acks packet 50, as well as the sequence 43-49, from neigh-
bor A. It also shows that packet 42 is still missing. Note that
though we use cumulative acks, we do not ensure reliabil-
ity at link layer. In particular, each node retransmits a lost
packet a few times (default is 2), and then gives up.

5.2 Control Flow

Fig. 4 abstracts the architecture of COPE. On the send-
ing side (Fig. 4-a), whenever the MAC signals an oppor-
tunity to send, the node takes the packet at the head of its
output queue and hands it to the coding module (§4.1). As
described earlier, choosing the set of packets to code and the
actual XOR-ing of packets is very efficient. If the node can
encode multiple native packets in a single XOR-ed version,
it has to schedule asynchronous retransmissions. Either way,
before the packet can leave the node, pending reception re-
ports and acks are added.

On the receiving side (Fig. 4-b), when a packet arrives,
the node extracts any acks sent by this neighbor to the node.
It also extracts all reception reports and updates its view of
what packets its neighbor stores. Further processing depends
on whether the packet is intended for the node or it is just
an overheard packet. If the node is not a next hop for the
packet, the packet is stored in the Packet Pool. If the node is
anext hop, it then checks if the packet is encoded. If it is, the
node tries to decode by XOR-ing the encoded packet with
the native packets it stores in its Packet Pool. After decod-
ing it acks this reception to the previous hop and stores the
decoded packet in the Packet Pool. The node now checks if
it is the ultimate destination of the packet, if so it hands the
packet off to the higher layers of the network stack. If the
node is an intermediate hop, it pushes the packet to the out-
put queue. If the received packet is not encoded, the packet

is simply stored in the Packet Pool and processed in the same
fashion as a decoded packet.

6 TESTBED

(a) Characteristics: We have a 34-node wireless testbed
that spans two floors in our building connected via an open
lounge. Paths between nodes are between 1 and 6 hops in
length, and the loss rates of links on these paths ranges be-
tween 0 and 30%. The experiments described in this paper
run on 802.11a with a bit-rate of 6Mb/s, because it provides
more controllable environments than 802.11b. Running the
whole testbed on 802.11b suffers from a high level of inter-
ference from the local wireless networks. We have, however,
run the experiments in §7.1, §7.2, and §7.3 over 802.11b
with various static and dynamic bit-rates. The results are
qualitatively similar.

(b) Software: Nodes in the testbed run Linux, a routing pro-
tocol and COPE implemented using the Click toolkit [20].
Our implementation runs as a user space daemon on Linux,
which sends and receives raw 802.11 frames from the wire-
less device using a libpcap-like interface. The implemen-
tation exports a network interface to the user that can be
treated like any other network device (e.g., et h0). Applica-
tions interact with the daemon as they would with a standard
network device provided by the Linux kernel. No modifica-
tions to the applications are therefore necessary. The imple-
mentation is agnostic to upper and lower layer protocols,
and can be used by various protocols including UDP and
TCP.

(c) Routing: Our testbed nodes run the Srcr implementa-
tion [5], a state-of-the-art routing protocol for wireless mesh
networks. The protocol uses Djikstra’s shortest path algo-
rithm on a database of link weights. The weights are as-
signed based on the ETT metric [5], which is an estimate
of the average time taken to successfully transmit a 1500-
byte packet on that link, including the expected number of
MAC level retransmissions. The protocol also source-routes
the packets to avoid routing loops when link metrics change.
(d) Hardware: Each node in the testbed is a PC equipped
with an 802.11 wireless card attached to an omni-directional
antenna. The cards are based on the NETGEAR 24 & 5
GHz 802.11a/g chipset. They transmit at a power level of 15
dBm, and operate in the 802.11 ad hoc mode, with RTS/CTS
disabled.

(e) Traffic Model: For the UDP experiments, we generate
traffic in accordance with empirical studies of Internet traf-
fic [26, 8]. In particular, our flows have Poisson arrivals, and
a Pareto file size with the shape parameter set to 1.17. They
are generated using a utility program called UDPgen [31].
As for TCP, we use ttcp [30] to generate long lasting
flows, to study the interaction of TCP’s congestion control
with COPE.
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7 EXPERIMENTAL RESULTS

In this section, we compare the performance of COPE
with that of current approaches. We define three metrics
used throughout the evaluation.

o Network Throughput: the total end-to-end throughput,
i.e., the sum of the throughput of all flows in the network
as seen by their corresponding applications.

e Throughput gain: the ratio of the network throughput
with COPE to the network throughput without it. We
compute the throughput gain from two consecutive ex-
periments, with coding turned on, then off.

e Coding gain: the number of transmissions required by
the current approach to deliver a packet from each flow
to its destination divided by the number of transmissions
used by COPE to deliver the same set of packets. For
example, in the Alice-and-Bob scenario presented in §1,
coding reduces the number of transmissions from 4 to 3,
thus producing a coding gain of % = 1.33.

7.1 When and Why COPE Wins

We would like to identify the parameters that affect
COPE’s performance. Therefore, we start by looking at a
few toy topologies. We revisit the Alice-and-Bob scenario
presented in §1, and reproduced in Fig. 5-a. Two nodes n;
and n3 communicate via a router. In current approaches, ex-
changing two packets between the two nodes requires four
transmissions. In COPE, however, the same two packets can
be delivered using three transmissions: 7, and n3 transmit to
n,, which XORs the two packets and broadcasts the XOR-ed
version. Thus, the coding gain of this scenario is % = 1.33.

In practice, how close is the throughput gain to the
coding gain? For UDP, surprisingly, the answer is that the

throughput gain is much higher than the coding gain. Fig. 5-
b shows the CDF of the throughput gain for 40 experiments
taken over different 2-hop paths in our testbed. The figure
shows that the throughput gain is around 1.7, which is sig-
nificantly higher than the coding gain.

This high UDP gain is due to the interaction between
COPE and the bandwidth allocation policy of the 802.11
MAC. The MAC tries to divide the bandwidth equally be-
tween the nodes. Without coding, however, the relay, n,,
needs to forward twice as many packets as the edge nodes.
COPE allows the bottleneck, n,, to XOR pairs of packets
and drain them twice as fast, doubling the throughput of the
network. In practice, it is unlikely that the relay will have
coding opportunities for every packet. Further, the WiFi, the
Srcr, and the IP headers are not coded. As a result, the ob-
served throughput gain is about 1.7, as shown in Fig. 5-b.

To summarize, for UDP traffic, the benefits of COPE
stem from two factors. First, coding allows the routers
to deliver more packets per transmission, which reduces
bandwidth consumption and improves throughput. Second,
COPE alleviates the mismatch between the congestion level
at a node and the rate at which the MAC allows it to send. In
fact, the larger the number of flows traversing the bottleneck,
the more opportunities it has to combine packets together
in a single transmission. This second factor contributes as
much to the performance of COPE as the reduction in the
number of transmissions.

7.2 What About TCP?

Now, let us repeat the same experiments with TCP. One
main difference between TCP and UDP is congestion con-
trol; we are interested in how this congestion control proto-
col interacts with coding. When we run UDP with COPE,
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Figure 7—TCP sequence numbers and queue sizes at the bottleneck router for a typical run of the Alice-and-Bob topology.

the coding helps in matching the bottleneck’s drain rate
to its input rate. This prevents the bottleneck from drop-
ping packets that have already consumed network resources,
and consequently increases the throughput. But with TCP,
when multiple flows get bottlenecked at the same router, as
in Figs. 5, the senders back off and prevent excessive drops
due to queue overflow. With or without coding, the conges-
tion control protocol naturally matches the input rate at the
bottleneck to its capacity, and prevents the excessive drops
that we saw with UDP. Thus, with TCP, the throughput gain
is primarily from the reduction in the number of transmis-
sions in the network, i.e., the coding gain.

Fig. 5-c shows the CDF of the throughput gain for the
Alice-and-Bob topology in Fig. 5, but with TCP. Clearly,
this value is lower than the corresponding gain with UDP,
but close to the theoretical coding gain of 1.33 derived ear-
lier. We examine this case in greater detail by looking at the
time plots of a typical TCP run, illustrated in Fig. 7. The fig-
ure shows the sequence number plots of the two TCP flows,
as well as the queue sizes at the router, n,. The throughput
gains provided by coding are shared fairly across both flows.
Further, both flows ramp up steadily, demonstrating the ef-
fectiveness of our asynchronous retransmission scheme in
masking any residual wireless losses. Additionally, coding
allows the router, n, to drain packets at the same rate as they
arrive from the edge nodes, thereby limiting queue buildup
at the middle node. While the queue size without coding is
almost as high as the buffer size, the queue under COPE
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Figure 8 —CDF of the percentage of undecodable packets, with and
without retransmissions. The fi gure shows that the combination of acks
and retransmissions allows COPE to recover effectively from bad cod-
ing guesses.

remains fairly small.

7.3 Overhearing & Guessing

COPE’s ability to exploit the broadcast nature of the
wireless medium through overhearing and guessing is one
of its signature features. This sets it apart from all prior work
on network coding. To quantify the benefits of this approach,
we experiment with the “x”-topology in Fig. 6-a. This is the
analogy of the Alice-and-Bob topology but the two flows
travel along link-disjoint paths. Fig. 6-b shows the CDF of
the UDP throughput gain, taken over 40 measurements at
different locations in our testbed. The gain is only slightly
lower than the throughput gain when the two flows are on
the reverse path of each other (Fig. 5-b). The correspond-



1
0.8
0.6

0.4

0.2

Cumulative Fraction

1
0.8
0.6
0.4

0.2

Cumulative Fraction

v 0

@ 1 2

3 4
Throughput Gain

(a) Cross Topology

(b) CDF of throughput gain with UDP

0

5 6 1.2 1.3 1.4 1.5

Throughput Gain
(c) CDF of throughput gain with TCP

1.6

Figure 9—Throughput gains obtained with COPE, for the cross topology. The arrows show the direction of the four flows. The fi gure shows that
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ing CDF for TCP is shown in Fig. 6-c. We see again that
the throughput gain is comparable to that for the Alice-and-
Bob experiment with TCP. This result is important, because
in a real wireless network, there might be very few flows
traversing the reverse path of each other, but one would ex-
pect many flows to intersect at a relay, and thus can be coded
together using overhearing and guessing.

What if COPE guesses wrongly? Fortunately, COPE re-
covers from such mistakes. The combination of acks and
reception reports allows a node to quickly detect what pack-
ets its neighbors failed to decode, and hence need to be re-
transmitted. Fig. 8 shows the CDF of the percentage of un-
decodable packets, with and without local retransmissions.
Each CDF is taken over 40 measurements over the topol-
ogy in Fig. 6. The experiments with retransmission turned
on use a retransmission timeout of 40ms and a maximum of
2 retransmits. The figure shows that due to imperfect over-
hearing, guessing alone might result in undecodable pack-
ets. But guessing with acks and retransmissions produces
high throughput while reducing the number of undecodable
packets to negligible values.

7.4 Higher Throughput Gains

But what is the maximum achievable throughput gain,
i.e, what is the theoretical capacity of a wireless network
that employs COPE? While, the capacity of network cod-
ing for unicast traffic is still an open question [35, 13], we
know that certain constructs increase the throughput gain.
For example, consider the cross topology in Fig. 9-a. There
are four UDP flows: n; — n3, n3 — ny, ng4 — ns, and
ns — n4. Without coding, the router, n,, is a bottleneck;
for every four packets n, receives, the MAC gives it, on
average, one chance to send, resulting in many drops and
wasted bandwidth. With COPE, and assuming perfect over-
hearing, the bottleneck node, n;, can code all four pack-
ets that it receives from its neighbors in one transmission,
achieving 4-fold throughput increase. Fig. 9-b shows the
CDF of the throughput gain for 40 experiments taken over
different cross topologies in our testbed. Interestingly, this
distribution has a small knee when COPE codes only 2 pack-
ets (emulating either the Alice-and-Bob or “x” topologies),
while the most prevalent mode of operation codes packets
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from all 4 flows. In practice, the gain is slightly lower than
4x because of header overhead and imperfect overhearing.

TCP also exhibits higher throughput gains in the cross
topology of Fig. 9-a. TCP’s gains are primarily due to cod-
ing gains, as explained above. Assuming perfect overhear-
ing, the middle node can XOR 4 packets in each transmis-
sion, thus reducing the number of transmissions from 8 to 5.
The resulting coding gain is % = 1.6. The throughput mea-
surements shown in Fig. 9-c are slightly lower than the cor-
responding coding gains again because of the header over-
head and imperfect overhearing.

Conceptually, it is possible to keep increasing the num-
ber of flows intersecting at a single bottleneck to increase
the throughput gain. In practice, however, it is unlikely that
the routing protocol will take such routes. In §7.6, we show
that on our testbed with a random choice of flows, COPE
XORs up to 5 packets together.

7.5 What Limits COPE’s Performance?

It is important to know when COPE cannot help.
COPE’s throughput increase relies on the availability of
coding opportunities, which depend on the diversity of the
packets in the queue of the bottleneck node. In the Alice-
and-Bob topology, if only 10% of the packets in the bottle-
neck queue are from Alice and 90% from Bob, then coding
can at best sneak Alice’s packets out on Bob’s packets. Un-
less 50% of the packets are from Alice and 50% from Bob,
we do not obtain the theoretical coding gain of 1.33. Indeed,
coding favors fairness!

Fairness depends on the comparative quality of the chan-
nels from the sources to the bottleneck. For example, if the
channel between Alice and the router is worse than that be-
tween Bob and the router, Alice might be unable to push the
same amount of traffic as Bob. This unfairness is usually ex-
acerbated by the capture effect. Although the 802.11 MAC
should make all backlogged senders back off equally, the
sender with the better channel (here Bob) usually captures
the medium for long intervals, preventing other nodes (i.e.,
Alice) from obtaining a fair share of the bandwidth.

In practice, capture always happens to some degree, and
the routing protocol tries to discount the capture effect by al-
ways selecting the stronger links. Yet, to study the effect of
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capture on fairness and thus coding opportunities, we inten-
tionally stress the links in our topology. We take the Alice-
and-Bob topology, set it such that both Alice and Bob are
equidistant from the router, and compute the total network
throughput (i.e., the sum of Alice’s and Bob’s throughput).
We then gradually move Alice’s node away from the router,
and repeat the experiment and the measurements.

Fig. 10 shows the network throughput as a function of
the ratio of Alice’s and Bob’s distance to the router. It also
shows the percentage of coded packets and the fairness in-
dex computed as the ratio of Alice’s throughput to Bob’s.
As Alice moves further away, Bob increasingly captures
the channel, reducing fairness, coding opportunities, and the
aggregate network throughput. Interestingly, without cod-
ing, fairness and efficiency are conflicting goals; through-
put increases if the node with the better channel captures
the medium and sends at full blast. Coding, however, aligns
the two objectives; increasing fairness increases the overall
throughput of the network, as apparent from Fig. 10.

7.6 In aLarger Network

We have advocated a simple approach to network cod-
ing in wireless environments, where each node relies on its
local information to detect coding opportunities, and when
possible XORs the appropriate packets. However, it is un-
clear how often such opportunities arise in realistic settings.

We run large-scale experiments on our 34 node testbed
to gauge the increase in throughput provided by COPE. The
flows arrive according to a Poisson process, pick sender and
receiver randomly, and transfer files whose sizes follow the
distribution measured on the Internet [8]. We focus on UDP
flows, as TCP’s behavior in a congested multi-hop wireless
network is not yet well-characterized. We vary the arrival
rates of the Poisson process to control the offered load. For
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each arrival rate, we run 10 trials, with coding on and then
off (for a total of 500 experiments), and compute the net-
work throughput in each case.

Fig. 11 shows that COPE dramatically improves the
throughput of congested wireless networks, by a factor of
3-4x on average. The figure plots the aggregate end-to-end
throughput as a function of the demands, both with COPE
and without. At low demands (below 2Mb/s), coding op-
portunities are scarce, and COPE performs similarly to no
coding. As the demands increase, both the extent of network
congestion and the number of coding opportunities increase.
In such dense networks, the performance without coding de-
teriorates because of the high level of contention and conse-
quent packet loss due to collisions. In contrast, coding re-
duces the number of transmissions for the same amount of
data, alleviates congestion, and consequently yields higher
throughput.

It is interesting to examine how much of the coding is
due to guessing, as opposed to reception reports. Fig. 13
plots the percentage of packets that have been coded because
of guessing for the experiments in Fig.11. The percentage is
calculated as follows: If n packets are coded together, and at
most k packets could be coded using reception reports alone,
then n — k packets are considered to be coded due to guess-
ing. The figure shows that the benefit of guessing varies with
demands. At low demands, the bottleneck nodes have small
queues, leading to a short packet wait time. This increases
dependence on guessing because reception reports could ar-
rive too late, after the packets have been forwarded. As the
demands increase, the queues at the bottlenecks increase,
resulting in longer wait times, and consequently allowing
more time for reception reports to arrive. Hence, the impor-
tance of guessing decreases. However, as the demands surge
even higher, the network becomes significantly congested,
leading to high loss rates for reception reports. Therefore,
a higher percentage of the coding decisions is again made
based on guessing.

Let us now examine in greater detail the peak point in
Fig. 11, which occurs when demands reach 5.6 Mb/s. Fig. 14
shows the PDF of the number of native packets XOR-ed
at the bottleneck nodes (i.e., the nodes that drop packets).
The figure shows that, on average, nearly 3 packets are get-
ting coded together. Due to the high coding gain, packets
are drained much faster from the queues of the bottleneck
nodes, avoiding drops. The result is an average throughput
gain of 3-4x. In fact, as illustrated in Fig. 12, COPE provides
consistent throughput gains, even as congestion increases.

8 CONCLUSION

To date, network coding has remained an elegant theo-
retical idea. It has focused mainly on analytical tractability,
usually assuming multicast traffic, known senders and re-
ceivers, and smooth traffic rates. Our work adapts this the-
ory to the design of the first practical system that plugs net-
work coding into the current network stack, in a manner



6 1 1 1 1 1 1 L | ) . .
With COPE ——
Without COPE -
5 i -
0
o]
=
c 4 _
5
Q.
c
c
l_
X~
S 2 A I
2
(0]
zZ
1 i -
0 T T T T T T T T : . ,

8

10

12 14 16 18 20 22 24

Offered load in Mb/s

Figure 11—COPE provides a several-fold increase in the throughput of wireless mesh networks. Results are for flows with randomly picked
source-destination pairs, Poisson arrivals, and heavy-tail size distribution.

Throughput Gain

4 6 8 10 12 14

Offered load in Mb/s

16 18 20 22 24

Figure 12—COPE’s throughput gain as a function of offered load, for
the set of experiments in Fig. 11.

100 : : :
Packets coded due to Guessing m—
80
(o]
& 60
c
8
o 40
o
20
0 4

0 4 8 12 24

Offered Load (Mb/s)

16 20

Figure 13—Percentage of packets coded in the testbed due to guessing,
as a function of offered load, for the set of experiments in Fig. 11.

that can be seamlessly leveraged by existing applications.
Our results show that, in practice, network coding provides
several-fold improvements in the throughput of wireless net-
works.

By incorporating network coding into the router archi-
tecture and introducing it to the systems community, our
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Figure 14—Distribution of number of packets coded together in the
test bed at the peak point of Fig. 11.

work opens up many venues for future research. In addi-
tion to bandwidth, wireless networks struggle with power
consumption in constrained applications such as sensor net-
works and mobility. Network coding provides a unified
framework to address these limitations. Coding reduces the
number of transmissions needed to deliver the information,
which translates directly to a reduction in communication
power and bandwidth consumption. Thus, a network cod-
ing layer may be the first step towards a new generation
of low-power wireless networks that could achieve signif-
icantly better throughput than current approaches.
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