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Chapter 1

Introduction

In [4] the following class of "regular" algebras were introduced as putative noncommutative

analogues of commutative polynomial rings.

Definition 1.0.1 An Artin-Schelter regular algebra (AS-regular algebra) is a connected

graded algebra A over a field k such that the following conditions hold:

(i) A has finite global dimension d.

(ii) A is Gorenstein in the sense that there exists n such that Extn(k,A) = k, and

ExtJ(k,A) = 0 for j n.

(iii) A has finite GK-dimension, that is, the growth of the graded pieces of A is bounded

by a polynomial.

By the dimension of an AS-regular algebra, we will mean the integer d appearing above.

Additionally, although work has been done in the more general case, we will restrict atten-

tion to the situation where A is generated in degree 1, and has defining relations in degree

2. This implies, in particular, that the integers d and n in the above definition are equal.

Among the simplest non-trivial such algebras are k (x, y) 1(f) where f = xy-ayx (for a ~ 0)

or f = (xy - yx - x2), and these are actually all the possibilities of dimension 2. In [4],
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the components of the scheme parametrizing such algebras of dimension 3 were determined.

This was done by parametrizing those resolutions which were potentially resolutions of kA

for some A, and then identifying the components where the corresponding algebra A was,

generically regular.

However, even in the dimension three case, this left a number of questions unanswered. For

example, there was not even any way to determine whether or not any particular specified

algebra on one of the components was indeed AS-regular. Additionally, the arguments

failed to provide much information about the actual properties of these algebras which were

AS-regular.

This prompted more work, and eventually, in [2] and [3], it was realized that all such algebras

possessed a normal element Q E A3 in degree three. The quotient by this element turned

out, in the interesting case, to be the twisted coordinate ring of the degree 3 curve in p2

parametrizing point modules over the algebra. This was more easily understood, and useful

information could be lifted from it to the original algebra. For example, it was shown in

[3] that three dimensional regular algebras are in fact Auslander-regular, and that such an

algebra is a finite module over its center exactly if ur is of finite order.

As of yet, no such general arguments have been successfully extended to AS-regular alge-

bras of dimension 4. However, some partial results exist, and considerable effort has been

expended proving the AS-regularity of various diverse families of algebras. Examples of

this work can be found in [12], which generalizes the elliptic case of [2], [6], which considers

extensions of algebras of [2] by a central element, [15], giving 4 dimensional AS-regular

algebras mapping to the coordinate ring of a quadric surface in P3, [13], which presents

some 4 dimensional AS-regular algebras which are not finite modules over their centers,

and [8], which constructs new AS-regular algebras from algebras with a regular normalizing

sequence.

In this thesis we will construct a four dimensional AS-regular algebra with finite point

scheme, which possesses certain interesting properties beyond those of the algebras listed

above. This algebra is described in by the following theorem.

Theorem 1.0.2 There exists an AS-regular algebra A with the following properties:
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(i) A is not an Ore extension of a subalgebra.

(ii) A is has no non-trivial automorphisms.

(iii) A is not a finite module over its center, which is a polynomial ring generated by two

elements of degree two.

(iv) A has a finite dimensional point scheme consisting of 13 points.

A was discovered by computer, and the same method can be used to exhibit many examples

of algebras with similar properties.

Afterwards, we will partially extend one of the results of [4] to the global dimension four

case. In particular, we will find the set of possible associated matrices, Q, which may appear

for global dimension AS-regular algebras (up to a small number of cases which we cannot

distinguish).

We will start by recalling some of the relevant background in the next chapter.
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Chapter 2

Definitions and Background

As stated in the introduction, our main subject of interest will be AS-regular algebras, as

defined in 1.0.1. Additionally, in all that follows we will assume that A satisfies the further

conditions that it is of global dimension 4, is generated by four elements of degree 1, and is

defined by quadratic equations.

Now, to fix notation, for a graded algebra A, let VA be the vector space Al, TVA the graded

tensor algebra on A, and IA the ideal defining A. When, as usual, confusion will not result,

we will omit the subscripts. For an element x* E V* and f E TVn we will let x*F-f denote

the element of TVn-1 given by applying x* ® id 0 ... id to f, and similarly for f'x*.

It is easy to see that for an AS-regular algebra as we are concerned with, the minimal free

resolution resolution of Ak

P M3 M2 M1 Mo0 --+ P4 P3 __+ P2 +-, P1 - Po--Ak -0

is of the form

0 - A(-4) M3 A 4 (-3) M2 A 6 (-2) M A4(-1) M_ A - Ak 0 (2.0.2.1)

where the Mi are matrices with entries in V, acting by multiplication on the right on row

vectors.
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As is done in [4], with respect to the 3 dimensional regular algebras, certain useful invariants

of such a resolution may be gleaned from the Gorenstein property. In order to do this we

will consider products of successive matrices in such a resolution, considered as matrices

with coefficients in TV.

In order to compare these products at the beginning and end of the resolution, we will use

the following easy lemma.

Lemma 2.0.3 Let A be a regular algebra with resolution of k as in 2.0.2.1, Ui C V®i be

the span of the entries in Mil ... Mo (considered as elements of TVi), and Ui' C V®i the

span of the entries in M3 ... M3-i+1 . Then Ui = U' for all i.

Proof. Since 2.0.2.1 is a complex, for every i the elements of Mi+lMi go to zero in A 2 and

so are in I. Hence the entries of Ui lie in each of the subspaces I ® V®i- 2, V ® I ® V i-3,

... V®i-2 I, and hence in their intersection, which we denote by Si. We will now show the

opposite inclusion by induction. Clearly V = Uo = So. Now say that Un-1 = Sn-1, and let

f be an element of Sn. Let (Xl, ... ., 4) be a basis for V, then we may write f = Exifi where

each fi is an element of Sn-1 and hence of Un-,1 by hypothesis, let Pi be the degree n - 1

element of Pn_ 1 corresponding to fi. Define a map of left A-modules ~0: A(-n) - Pn-1

by sending 1 E Ao to ]ixipi. Then, if we consider b as a 1 by rank(Pn_1) matrix, then

OMn-2... Mo is just the matrix [f]l,l, and the image of q is in the kernel of Mn-2 since

f is in Sn. Thus 0 factors through the map Mn-1 (since A(-n) is projective and P. is a

resolution), and we see that f E Un.

Applying HomA(-, A) to the free resolution of Ak, (2.0.2.1), gives the the complex of right

modules

0 kA A(4) M3 A 4(3)M2 A6 (2)t -A4 (1) M A 0O

where the maps now represent left multiplication by the same matrices (the A i being thought

of now as column vectors). By the Gorenstein hypothesis on A, this complex gives a

resolution of kA.

Finally, note that the definition of S depends only on the ideal I. Thus, by the same argu-

ment, in the resolution of kA, the span of the entries of the successive products IIk=oM3_k
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g acts on: P3 P2 P1

Qi gTQ1 Q1 Qig
Q2 Q2 9gQ 29 Q2
Q3 Q39 Q3 gQ 3

Table 2.1: Effect of change of basis on Qi

are, respectively, equal to Sj thus proving the lemma. ·

In light of this lemma, we have that U2 = U = IA, and U3 = U3, which we shall denote

simply by U. We shall denote by WA the lone entry of M3 ... Mo.

It also follows from the lemma that for any given resolution P,, as in 2.0.2.1, there exist

unique invertible matrices Qj(P), Q2 (P), Q3(P) (or simply Qi when it is clear what

resolution is referred to) such that

MT = Q1Mo (2.0.3.1)

(M3M 2)T = Q2M1M (2.0.3.2)

(M3M 2M 1)T = Q3M2M1MO (2.0.3.3)

Now we note that changing the basis of Pi by the linear transformation g E GL

Mi Mi-1
--- >Pi+l i Pi -~ Pi - -: '

goM Milog

Pi

gives a new resolution with the maps Mi-1 and Mi replaced, respectively, by g-1Mi_l and

Mig. Clearly this also has the affect of changing the linear transformation Qi associated

with the resolution. This effect is summarized in table 2.

Using these actions we can put P, in a special form in the following manner. First we may

change the basis of P1 so that Q1 = Id. Now, if we subsequently change the basis of P3 by

g, then in order to maintain the identity Q1 = Id we much change the basis of P1 by (gT)-l,
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and these two changes together have the effect of conjugating Q3 by g. This prompts the

following definition.

Definition 2.0.4 We say that a resolution P, corresponding to a regular algebra A is nor-

malized if Q1 = Id, and Q3 is in Jordan normal form. Furthermore, in this situation we

will let (xi)i be the basis of Al given by the entries of Mo, and for convenience write M,

N, x, P and Q for M2, M1 , Mo, Q2 and Q3, respectively.

Finally, we note a relationship between the matrices P and Q. If we let : V -, V be the

map taking the basis given by xT to the basis given by xTQ- 1, b : I -, I the map taking

the basis (Nx)T to the basis (Nx)TpTp -1 , and p: V®4 V®4 the map taking Xilxi2xi3si4

to Xi4XilXi2zi3. Also let i,n: Vo n - Vo n be the map acting by 0 in the ith factor and the

identity elsewhere, and similarly for 4'i, : V®i- 1 I ® V®n- i- l -- V i- ® I 0 V n- i- l

Then we see that since

w = xTMNx = xTQ-QMNx = xTQ-l(xTMN)T

that we have 01,4 p(w) = w. And since

xTMNx = (xTM) P-1(PNx) (2.0.4.1)

= (PNx)T p - 1 (xTM)T (2.0.4.2)

= (Nx)TpTp-l(xTM)T (2.0.4.3)

we have 0 1,4 p2 (W) = w. Thus l, 4p
2 (w) = (1,4 o p)2 (w) and, since p o 01,4 = 02,4 P,

this equals q!1,4 0o 2,4 p2 (W). Hence b1,2 0o 2,2 = '?1,2. This shows, if it was not clear

already, that the action of Q on Al extends to an automorphism of A, since it preserves I.

Moreover it gives a condition on P in terms of Q, for example if Q is diagonal, then the

action 01,2 o 2,2 on I will be diagonal as well, hence also pTp-1, and in particular if Q is

scalar then P will necessarily be symmetric.
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Chapter 3

A New AS-Regular Algebra

3.1 Known Examples of Algebras with Finite Point Scheme

One difference between the case of AS-regular algebras of dimension three and four is that

while in the former case the dimension of the associated scheme of (truncated) point modules

is always at least one dimensional, as can be seen from a simple count of the relations cutting

it out of p 2 X p 2 , in the latter case this calculation shows that the point scheme need only

be zero dimensional. While several of the interesting families of four dimensional regular

algebras still do have as least one dimensional point schemes, such as those which correspond

to families which already exist in the three dimensional case (see for example [6] and [12]),

this is presumably not the general situation. And indeed, a significant amount of effort has

been expended constructing examples of AS-regular algebras for which the dimension of the

point scheme achieves it's lower bound.

For example, in [14], and continuing in [10], families of Clifford algebras are constructed

which are shown to have a zero dimensional point scheme in general. Moreover, certain

deformations of such algebras are exhibited with both a zero dimensional point scheme (in

fact, consisting of only one point) and a 1-dimensional line schemes. All of these algebras

are shown to be AS-regular of dimension 4. Further, in [13], similiar families of regular

algebras are considered which can be shown to be infinite modules over their centers (giving

a counterexample to the naive generalization of a theorem that says when this should be the
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case for dimension 3 AS-regular algebras). Finally, in [8] a method is given for "dualizing" an

AS-regular algebras which possesses a regular normal sequence in degree 1. In the examples

considered, the construction turns out to yield an algebra with a finite point scheme.

A common feature of these constructions, however, is that the resulting algebras are Ore

extensions of lower dimensional regular algebras ([8] does not strictly conform to this mold,

though in that case the input algebra is similarly constrained, in that the source algebra

must be even more special than an Ore extension). Indeed, the fact that they possess this

property is not merely incidental, but an essential ingredient in proving their regularity, the

proof of which proceeds by first deriving Auslander regularity from general properties of

Ore extensions, and then using the results of [7] which derive Artin-Schelter from Auslander

regularity. In particular, as the proof just outlined shows, such algebras are automatically

Auslander regular.

In light of the fact that the equivalence of Auslander and AS-regularity is one of the impor-

tant results concerning three dimensional algebras, and that the corresponding question in

dimension four remains open, it seems a natural question to ask whether we can produce

slightly more general AS-regular algebras which are at least not a priori Auslander regular.

3.2 A Skew Polynomial Ring

In this section, we will consider the family of algebras A = TV/I where I is the four

parameter ideal generated by the following six quadratic relations:

f6 = X4X3 - X3X4 - axlx2

f5 = X4X2 - bx3x3 + x2x4

f4 = X4X1 - cx3x3 + X1X4

bd b2 d
f3 = X32 - X2X3 + -X 2 X4 - 2 X1X4

bd
f2 = X3 X1 - XlX3 + - X1X4 - dx2x4

C

fi = X2Xl + XlX2
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Though we will never make use of the fact, we remark that the above family was discovered

by computer, and a large number of similar algebras could easily be exhibited. In particular

a computer was used to solve the equations defining the space of skew polynomial rings,

restricted to a sufficently small subspace to be tractable. The solutions were then sifted to

find those representing regular algebras with properties of interest. We will describe the

approach more specifically once we have recalled the definition of a skew polynomial ring.

Note first of all that if we let g6 = -f6 - afil, g5 = f5, 94 = f4, g3 = -f3 f5 - f4

92 = -f2 + bf4 df5 , and gl = f then we have another set of generators for the same

ideal:

96 = X3X4 - X4X3 + ax2xl

95 = X2X4 + X4X2 - bx3x3

94 = X1X4 + X4X1 - CX3 X3
(3.2.0.1)

93 = X3 - X3X2 + C X4X2 -dX4X1

92 = X1X3 -X3X1 + X4 X1 - dX4 X2

91 = XlX2 + X2X1

So in particular the map A -- A°p given by xi -* xi for i = 1,..., 4 gives an isomorphism

of rings.

In proving that some properties hold generically, we sometimes will need to consider only

one algebra. In these cases we consider the specialization (a = b = c = d = 1) A' given by

the relations:
X4X3 - X3X4 - X1X2

X4X2 + X2X4 - X3X3

X4 X1 + X1X4 - X3X3 (3.2.0.2)

X3X2 - X2X3 + X2X4 - X1X4

X 3X 1 - X1X3 - X2X 4 + X1X4

X2 X1 + X1X2

where all of the parameters have been set equal to 1.

We will show that the algebra A is a four dimensional regular algebra, which is neither an

iterated Ore extension nor a twist of one. We will show in addition that the algebra is suit-

ably "generic", in the sense that certain associated schemes of modules are of appropriately
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low dimension.

In order to get some handle on the behaviour of this algebra, we will start by showing that

it is a skew polynomial ring, as defined in [4]. First let us recall some relevant definitions

from the literature.

Let >lex be the lexicographical order on monomials in xi. That is Xio ... Xid>lexXjo ... Xjd

iff there exits n such that in > j, and ik = jk for k < n. Also, let >Ple be the order defined

by >lex on opposite monomials, that is, a>lP b iff a°P>lexbOP.

Given such an order, we may think of an element of V®n as a rule for replacing the >Iex-

greatest monomial appearing in it by a sum of smaller monomials. In applying a set of

such reduction rules to a given polynomial, there can obviously be choices involved in which

replacement rules to apply, and it is not the case that the result is necessarily unambiguous.

This motivates the following:

Definition 3.2.1 Let {hi}d 0 be a set of generators of a homogeneous ideal in TV. Then

we will say that the hi are a complete set of replacements iff the result of fully reducing any

element of TV is unambiguous.

We note that this is a merely a noncommutative formulation of the notion of a Grobner basis

found in commutative algebra, and indeed, most of the basic arguments carry over easily.

The principal difference in this case is that the noncommutative version of Buchberger's

algorithm is not guaranteed to terminate (as a noncommutative polynomial ring in more

than one variable is not noetherian), so a complete set of replacements can a priori be

infinitely large.

Using this notion of a complete set of replacements, we make the following definition:

Definition 3.2.2 An algebra B = TV/I as above will be called a skew polynomial ring if

the ideal I is generated by a complete set of replacements of the form {hij)}ni>j>o, where

the leading monomial of hij is xixj. We shall also sometimes refer to such a ring as left

skew polynomial when we are interested in comparing this with the opposite property, which

we shall refer to as right skew polynomial.
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And we note that it is not difficult to see that the following definition would be equivalent.

Definition 3.2.3 Let V be the vector space with basis {xi} 1. We will say that an algebra

B = TV/I, defined by a homogeneous ideal I, is a skew polynomial ring if the monomials

of the form xjlXj 2 ... Xjk, with jl < j2 '... < jk, give a basis for the algebra as a vector

space, and none of these monomials is in the span of >lex-smaller monomials.

To avoid confusion, we should note here that the term "skew polynomial ring" is well

travelled in the literature, and has been used to refer to, among other things, iterated Ore

extensions. The definition we have given above is, however, strictly more general. This is

easy to see, and we will in any case be providing an example.

Moreover, while being somewhat more general, algebras satisfying the skew polynomial

condition continue to possess properties good for our purposes. For example, it is easy to

see that a skew polynomial ring on n generators has the same Hilbert series as a commutative

polynomial ring on the same generators (not least because a commutative polynomial ring

is a skew polynomial ring). Also, when dealing with skew polynomial rings, the results of [1]

will provide us with a free resolution from which we may extract homological information.

Definition 3.2.4 Let M be a set of monomials in variables yj, such that no monomial in

M divides any other (that is, there do not exist m and m' in M such that m = am'b). Then

by a k-chain of M we will mean a monomial yj, ... yin for which there exist integers aj and

bj for j = 1,..., k satisfying the following conditions:

* al < a2 < bl <a3 < b2 a4 < .. < bk-2 ak < bkl-1 < bk, or, in other words, aj

and bj are strictly increasing sequences with aj < bj-l aj+l.

* YaiYjai+l .. yJbi is an element of M for every 1 i < k.

* No proper factor of Yi ... yj, is a k-chain.

To give a simple example, to illustrate the concept, if M consists of the monomials yly2,y2y3

and Y2Y4, then the 2-chains would be YlY2Y3 and YlY2Y4. Numerous other examples are
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provided in the above mentioned paper, [1], wherein it is also shown that given a k-chain,

the integers aj, and bj are uniquely determined.

In the cases we will consider, the set of monomials appearing in the above definition will

consist of of the leading terms of a complete set of replacements for an algebra In general, one

might need to discard redundant replacements in order that the set of leading monomials

satisfy the condition of the definition, but this will not be an issue in the case of skew

polynomial rings.

The main theorem of [1] defines a free resolution of the simple module kB in terms of the

chains associated to the algebra.

Theorem 3.2.5 Let B = TV/I be a k-algebra, with a minimal complete set of replacements

corresponding to the relations hi, let mi be the >1ex-greatest monomial of hi, M = mi),

and let W(k) be the vector space with basis the k-chains of M (and for convenience set

W(° ) = V). Then kB has a free resolution of the form

0( kB, B-W ( ) B '-W(1) ® B- 62 W (2) ® B+- ... (3.2.5.1)

where each free summand of each term in the resolution is in the degree of its corresponding

chain.

Moreover, we may compare elements not necessarily in the same free module of the reso-

lutions by mapping them all into TV, via the maps sending the element b of the summand

corresponding to the chain c to c ® b E TV. Comparing elements in this way, the maps 6j

have the additional property that for b E W(k) ® B, we have b>lex6k (b).

Proof. The resolution guaranteed by the theorem is produced by simultaneously constructing

the maps of the resolution, and splittings (as vector spaces) of their kernels, using the the

Artinian property of the monomial order. We will briefly sketch this process in the highly

simplified case of a skew polynomial ring.

Let use denote by [f] the generator of the free summand corresponding to the j-chain

f = xdl ... X zdj+l

20



Now we will say how to construct the 6j and ij.

Suppose, first, that the map j has been constructed, and say that g is the minimal element

of the kernel of 6j-1 on which ij has not yet been defined. Let m = [xdl ... xdj] dj+l ... Xds,

with Xdj+l ... Xds reduced, be the maximum monomial appearing in g. Then since g is

in the kernel, j-l must reduce the size of the maximum monomial, but this is possible

only if xdjxdj+l is reducible, i.e., if xd ... Xd+l is a j-chain. But in this case g' = g -

j( [xdl ... zdj+l] xdj+2 . . . Xds has all monomials smaller than m, and so we may define j by

ij(9) = [d l ... Xdj+l] Xdj+2 ... Xd8 + ij(g' ).

On the other hand, say the maps 6j and splittings ij have been constructed for for j < k.

Then we may define 6j by, for f = Xd .. . dj+l and fL = Xd ... Xdj:

6j([f]) = [fL] Xdj+l - ij-lj-l1([fL] Xdj+l)

With 6, and i, defined this way we note that 6j certainly maps into the kernel, since ij-1

is a splitting, and the complex we get must be exact, as we have a splitting of each kernel.

For a more detailed and general account see [1]. ·

We remark that in the preceding argument no particular properties of the monomial order

were used, such as would distinguish >lex from >P. Thus we see that a similar process can

also be used to construct a free resolution of Ak by left modules.

Since we know that all of the k-chains for a skew polynomial ring are of degree k + 1 (they

are simply the products of k + 1 decreasing variables), we can see that for such an algebra,

all the maps in the above resolution are of degree 1, so the resolution is minimal. We also

see that the terms in the resolution have the correct ranks for a skew polynomial ring.

We now turn to applying these results to A.

Proposition 3.2.6 The algebra A is a skew polynomial ring with respect to the order X4 >

X3 > x2 > x1 on the variables, and the given relations.

Proof. In order to verify that the given relations constitute a complete set of replacements,
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it is enough, as in the commutative case, to verify that all degree three monomials have

unambiguous reductions (see [5]). This is easily done by computer, but to illustrate, we

check one of the easy cases here.

The monomial X3x 2 x 1 can be reduced by the given relations in two ways. Using relation f4

we can substitute for the initial factor of X3x2 to yield -(bd2x4l -x 2 X3 X1 - bdxx4x), or we

may use the relation f6 to substitute for the terminal factor of x2X1 to give us -X3Xlx2. We

must reduce these two expressions further, in order to see that they may both be reduced

to the same thing.

For the first expression we have:

bdx2x4xl b2dx 1x4x1
c + X2X3X1 + c2

b bdx 4 x 1
=(-x - 2) C + X2 X3X1C C

=(-x - 2)(bdx3x3- ClX)+ + 2 X3X1 (f)
¢ C

b2 d b2 d bd
=-XlX3X3 - 2 XlXlX4 - bdx2x3x3 - -xlx 2x4 + x2x3X1 (f6)

C C C

At this point only the last term remains unreduced. Restricting attention to it we have:

X2X3X1

bd
=dx 2x 2 x4 - --x2x1x4 + x2x1X3 (f5)

bd
=dx2x2 x4 + X1X2X4 - 1x 2 x 3 (f6)

And so we see that the first expression reduces to:

b2d b2 d- X1X3X3 --2-xll4 -bdx2x3x3+ dx2x2x4-XlX2X3
c c
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For the second expression we have:

- X3 X1 X2

bdbdX4X2 -- d 2x4x 2 - 3 2 (f5)
c
bd

=(-X - dx2)x 4x2 - l1x3x2C
bd

=( x - d 2)(bx 3X3 - 2x4) - 1x3x2 (f2)
C

b2 d bd
-- XX3X3 - -X 1X2X4 - bdx2x3x 3 + dx2x 2x 4 - XlX3 X2C C

Again we have an expression where only the last term remains unreduced. Considering this

term, we have:

- Xl1X3X2

bd b2 d
-X 1X2Z4 - X1X2X3 - 2XlXlX4 (f4)

C C

Thus the second expression reduces to:

b2d b2 d
- X 1X3X 3 - bdx2x3x 3 + dx 2x 2x 4 - XlX2X3 - 2-XlXlX4

C C

And as these two reductions are equal, we see that the reduction for the monomial x3x2x1

is unambiguous. 

The forgoing proof should also make clear the process by which the algebra A was discovered,

but in any case we shall now outline our method. Starting with the most general set of
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replacements

X4X3 = ax3x4 + a2x3x3 + a3x2x4 + a4x 2x 3 + a5x2x 2 + a6xlx4 + a7x 1x3 + a8Slx2 + a9xlXl

X4X2 = blx 3x4 + b2x3x 3 + b3x2x4 + b4x2x3 + b5x2x2 + b6x lx 4 + b7xlx 3 + b8X1x 2 + b9xlxl

X4 X1 = C1X3X4 + C2X3 X3 + C3 X2X4 + C4X2 X3 + C5 X2 X2 + C6 X1X4 + C7X1X3 + C8X1X2 + C9X1X1

X3X2 = d1x2x 4 + d2x2x 3 + d3x2x 2 + d4xlx 4 + d5xlx 3 + d6x lx 2 + d7X1X 1

X3X1 = elx2x4 + e2x2x3 + e3x2x2 + e4XlX4 + e5slx3 + e6XlX2 + e7X1X1

X2X1 = flXlX4 + f2XlX3 + f 3x1x2 + f4xlxl

we may reduce each of the four 2-chains (x4x 3x 2, x4x3x1, X4x2x 1, x3x2x1) in two possible

ways, starting on the left side or on the right side. In order that the replacements be the

replacements of a skew polynomial ring, it is necessary and sufficient that in each case the

two reductions are equal. Equating coefficients, this gives a number of polynomial conditions

on the variables ai,bi,ci, di,ei, and fi. In the most general situation, the resulting system is

quite complicated, and cannot easily be solved. However, by restricting to a subspace, for

example by setting some of the variables to zero, it is possible to shrink the system enough

to solve.

In practice this procedure allows one to produce a large number of families of skew poly-

nomial rings. Using, for example, the algorithm of 3.2.5 one may filter out the regular

algebras, and impose other conditions as desired.

3.3 Some Algebraic Properties of A

We will now prove some of the further properties of A.

Proposition 3.3.1 For generic choices of the parameters, the algebra A is not an iterated

ore extension. In particular, A' is not an iterated Ore extension.
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Proof. An iterated Ore extension contains, by the very nature of being an iterated extension,

subalgebras with the Hilbert series of polynomial rings on fewer variables. We will show that

the algebra A' does not contain a subalgebra on three degree 1 generators with sufficiently

small growth for this to be the case. Since the rank of a continuously varying set of vectors

is lower semicontinuous, it will follow that A is generically not an Ore extension.

To see that there is not a sufficiently slow growing subalgebra of A', it will suffice to show

that there does not exist a three dimensional subspace U C V such that U 0 U - A 2 spans

less than 7 dimensions. We verify this on each of a set of affine subschemes covering the

Grassmanian of 3 dimensional subspaces of V, making use of the skew polynomial property

of A to reduce every element we consider to a canonical form.

The four affine charts which we will examine are U1 =< x1 + ax4, x2 + bx4, X3 + CX4 >,

U2 =< X1 + ax3, x2 + bx3, X4 >, U3 < xl + ax2, X3, X4 > and U4 =< x 2, x 3, x4 >, where a, b

and c are the affine coordinates.

Let us consider the subalgebra of B C A generated by the elements of U1. Taking all possible

degree 2 monomials in the given basis of U1, and reducing them each to a unique sum of

irreducible monomials (via the skew-polynomial relations), we find that B2 is spanned by

the following elements:

V1 = a2 x4x4 + aX3X3 + XlXl

V2 = abx4x4 + ax3x3 - ax 2x4 + bxlx4 + X1X2

V3 = acx4x4 + ax3x4 + CX1X4 + XlX3 + axlx2

V4 = abx4x4 + bx3x3 + ax2x4 - bxlx 4 - x1x2

V5 = b2 x4 x4 + bx3x3 + X2X2

V6 = bcx4x4 + bx3x4 + cx2x4 + x2x3 + bxlx2

V7 = acx4x4 + ax3x4 + CX3X3 + X2X4 - (1 + C)Xl X4 + X1X3

v8 = bcx4x4 + bx3x4 + CX3X3 - (1 + c)x 2x4 + X2X3 + X1X4

V9 = C2X4X4 + 2cx3x4 + x3x3 + CX1X2
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We wish to see that for no choice of the coordinates can these elements span less than a

seven dimensional space. With respect to the obvious basis, we can represent these elements

as rows in the following matrix, which we must now show always has rank at least seven:

0 O O O O O O O 0 a 0

0 O O 1 0 0 0 0 0 a O

000 a O O 0 1 0 0 0

0 0 0 0 -1 0 0 0 0 0 b 0

0 0 0 a"

b -a 0 ba

c 0

-b

a ca

a 0 ba

0 O O 0 0 1 0 0 0 0 b O 0 0 0 b2

0 O O 0 b O O O 0 1 0 0 c b cb

0 0 0 0 0 0 0 0 1 0 c 0 -1-c 1 a ca

(3.3.1.1)

0 0 0 0 0 0 0 0 0 1

0 O O 0 c 0 O O O 0

c 0 1 -1 -c b cb

1 0 0 0 2 c c2
- /

Restricting attention to seven of the rows, and ignoring the zero columns, we have:

0000a 0

1 0 0 0 a b

0 1 0 0 b 0

a 0 1 0 0 c

0001c 1

c0001 0

0 0 1 0 c -l-c

0 0 az

-a 0 ba

0 0 b2

0 a ca

-1 -c b cb

0 2c c 2

1 a ca
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By a few row operations we are reduced to the following matrix:

10000
01000

a

a

00100 b

0 0 0 1 0 -a 2

00001 C

0 0 0 0 0 1-ca

0 0 0 0 c+a 2

0

b

0

c-ba

1

-cb

-1-2c+ba

0 0 a 2

-a 0 ba

0 0 b2

a2 a ca- a2b

-1 -c b cb

ca 2c c2 -cba

1 - a2 0 a2 b

Now it is clear that the first 5 rows are linearly independent, and that their span will not

intersect the span of the last two rows. Thus it will be enough to check that the following

matrix has maximal rank:

-ca -cb ca 2c c2 - cba )

c + a2 -1-2c+ba 1-a 2 0 a2b
(3.3.1.4)

Say that this matrix were not maximal rank. Then the last two columns tell us that abc = 0,

and so one of a, b or c is zero. We see by inspection that in each of these cases the matrix

must have rank 2.

On the second chart we have (ignoring zero columns, and permuting rows) the matrix:

/
1 0 0 2b 0 a2

0 1 0 b a ab

0 0 1 0 2b b2

0 O O O O 0

0 O O O O 0

0 O O O O 0

0 -1 0 b a ab

0 a 0 0 0 1

0 b 0 0 0 1

-a a

a -a

-b

1 0

0 1

0 0

-b b

-1 0

0 -1

0 0
0 0
0 0
a O

b O

0 1

0 0
a O

b O
/

(3.3.1.5)
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We can see that the the first six rows span a six dimensional space. If either a or b is

zero then the eighth or ninth row (respectively) has a leading 1 in the 6th column and the

matrix has rank at least 7. Otherwise, the sum of the second and seventh rows has a leading

non-zero entry in the 6th column, and the matrix again has rank > 7.

On the third chart we can pick seven of the rows to give us:

I - X
I U a U U U U U U I

0 1 0 0 0 0 0 0 1 0

00 0 1 a 0 0 0 0 0

0 0 0 0 0 1 0 0 00

0 0 0 0 0 1 a 0 0

0 O O O O O O 0 1 0

n n n n n n n n n 1

(3.3.1.6)

which is clearly full rank. The final chart consists of a single point, at which we can see by

inspection that the matrix is rank 8. ·

Proposition 3.3.2 The algebra A' is an AS-regular algebra of dimension 4.

Proof. We must verify the three conditions of AS-regularity: that the algebra has correct

GK-dimension, that k has a projective resolution of the appropriate length, and that the

algebra is Gorenstein. We will address these conditions in turn.

As remarked above, the condition that A is a skew polynomial ring on four generators

automatically implies that it has the same Hilbert series as a a commutative polynomial

ring on four generators, hence the GK-dimension condition is satisfied.

As we have already noted, in the case of a skew polynomial ring, Theorem 1.4 of [1],

provides us with a minimal free resolution of kA, thus showing that A has the correct global

dimension. Moreover, for any specific algebra we could use this explicitly given resolution

to verify that the Ext groups take the correct values for the algebra to be AS-regular. The

calculation is, however, omitted, as it is subsumed by the following lemma. ·
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Lemma 3.3.3 Let B be an algebra on the generators {xi}4 1l, which is both a left skew

polynomial ring, and a right skew polynomial ring. Suppose in addition that the replacement

for X2 Xl has the form x2xl = axlx 2 + bxlxl for some scalars a and b (a necessarily being

non-zero). Then B is AS-regular.

As noted above, the conditions on projective and GK dimension follow immediately from

the skewness of B. Thus we need only prove the Gorenstein condition. We will prove this

by considering the resolutions provided by 3.2.5.

Since B is a left and right skew polynomial ring, we get immediately two resolutions:

L* : O kBB M W ( ) ® B W() B 1 W)B M2 W (2 3) BM 3 W(3) -B 0 (3.3.3.1)

(the Mj being the matrices corresponding to the 6j in 3.2.5) and

R* 0- W (3) B W (2) B Nz W(1) ® B W ( ) B B B k-- O

If we could provide an isomorphism of complexes between one of these and the dual of the

other, then we would clearly be done. If we knew a priori that B was regular, then we

could produce such an isomorphism from Lemma 2.0.3, since in that case we would know

that the entries of Mi ... M3 and N3-i .· · ·. No, for i = 0, .. ., 3, were bases of the same space,

and the change of basis matrix could give the required map. Thus we shall prove that the

conclusion of the lemma holds in this case.

Note that by the way the resolution is constructed in 3.2.5, the entry of MoM1M2 corre-

sponding to the 2-chain xixjxk, with i > j > k, has greatest monomial xixjxk. Thus in

particular, we see that the entries of this matrix are all linearly independent. We will let U

be their span, and uijk the element of with greatest monomial the 2-chain xixjxk, and let

Utjk be the dual basis of U*.

We will first show that the span of the entries of Mo equals the span of the entries of M3.

By construction, the span of the entries of Mo is all of V, so we must show that the span of

the entries of M3 contains a basis for V. Also, since then entries of MoM 1M2 span U, the

span of the entries of M3 must equal U*Hw(B).
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Now consider the map given by M3. By the construction of the resolution, and our hypoth-

esis on the replacement for x2xl, we have

63 ([X4X3 X2Z1]) = [4X3X2] X1 - i2 ([X 4X3] aXl X2 + [X4X3] bxl1x + g)

where g consists of monomials smaller than x4x3xlxl. In particular, g cannot contain

monomials of the form x4x 3 x2* or x4x3Xl*. Thus two of the entries of M3 are xl and

ax2 + bxl.

Next, we may assume that the replacement for X4X3 involves 3x4. If not, then in any

case, since B is a left and right skew polynomial ring, X 3X4 must appear in one of the

replacements. Due to the constraints imposed by the monomial order, it must appear in

either the replacement for X4X1 or x 4x2. But then, by a change of variables of the form

x3 -4 3 + ax2 + pX 1 (which preserves skewness), we may modify the replacements such

that the replacement for X4x3 does involve the monomial x3x4.

Now, having made this assumption, we will consider the resolution of Bk mentioned in the

remark after 3.2.5. This resolution has the form

0 - B W (3) B ®s W (2) B W( 1) - B W(°) - B B k (3.3.3.2)

and the leftmost map is defined by

[X4X3X2X1] I'H X4[X3X2Xl] - i2(X3X4[X2X1] + g)

where g consists of monomials smaller than x3x4x2xl. Thus we have that w(B)Hu3 21 is

non-zero scalar times a element of V of the form X4 + C3X3 + C2X2 + ClXl and w(B)-iu4 21 is

a scalar times an element of the form 3 + d2x 2 + d1xl.

Since this result is true for an arbitrary skew polynomial ring, the corresponding result must

be true for B considered as a right skew polynomial ring. And so, in particular, U*Hw(B)

contains elements of the form X4 + C3X3 + C2X2 + ClXl and x3 + d2x2 + dlxl. Thus the entries

of M3 span V, as desired. From this is immediately follows that V*Hw(B) = U.
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Finally we must show that the entries of M2 M3 span I. To do this it will suffice, from what

we already know of U, to show that the elements of V*f-U span I.

In order to see this we will consider the maps defined in Anick's resolution applied to various

2-chains. Looking at the images of [x4x3x1], [x4x2x1], and [x3 x2x1] by the map 62 in 3.3.3.1

we get, respectively:

62 ([4x3xl1]) = [4x3]Xl + 9431

62 ([X4X2Xl]) = [X4 X2]Xl + 9421

62 ([X3X2Xl]) = [X3X2]Xl + 9321

where gijk consists of monomials smaller than xixjxk. Hence U-x* contains elements with

maximum monomials X4X3, X4X 2 and x3x2. Considering the images of [4x3X 1], [x4x2 x1]

by the map 62 in 3.3.3.2, we have:

62([X4X3Xl]) = X4[X3X1] - il (X3 X4 [Xl] + 9341)

62 ([X4X2Xl]) = X4[X2X1] + 9421

Thus x-T U contains the relations with greatest monomials x3 Xl and X2X1, and x3-U con-

tains an element with greather monomial X4X1. Finally, since both V*-U and U-V* are

equal to the span of the entries of M1 M2, we have V*I-U = U-IV* = I.

Thus B is Gorenstein, and so AS-regular, as claimed. ·

3.4 Geometry of A

We now turn to the question of calculating some of the associated schemes of modules for

this algebra. This information about A is interesting in its own right, but will also be useful

when we calculate the automorphism group of A'.

Proposition 3.4.1 The algebra A has finite scheme of truncated points of length 2, for

general choices of the parameters. In particular, the point scheme of A' consists of the
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points

(1,0,0,0) (0,1,0,0) (0,0,0,1)
-8A 3 --4\ 2

(A, 1, (A+I)3 (iA-1)' (A+I)(A-) 2 )

where A is a root of the polynomial x10 - 5x8 + 74x6 + 54x4 + 5x2 - 1 and the associated

automorphism of the point scheme acts by the identity on the first three points, and by

taking the point associated to the root A to the point associated to the root -A on the other

10 points.

Proof.

Since the dimension of the point scheme can only jump on a closed subspace, it will be

sufficient to prove the claim for the particular algebra A'.

As mentioned before, the scheme of truncated, right point modules is the scheme, r, cut out

of P(V*) x P(V*) = P3 X P3 by the above relations, considered as elements of Opxp(1, 1).

If we write the relations as Mx, where:

/
0 -X1

0 X4

X4 0

0 X3

X3 0

X2 X1

X4

-X 3

-X3

-X2

-X 1

0

-X3

X2

Xl

X2 - X1

X1-- X2

n
/

(3.4.1.1)

then the first projection of the above set will

rank. So we start by calculating this locus.

be the locus where M has less than maximal

We see by inspection that the the matrix is singular at the points (1, 0, 0, 0), (0, 1, 0, 0), and

(0, 0, 0, 1). Moreover, it is easy to see by checking the cases that if any one of xl, x2, X3 or

X4 is zero, then the matrix can be singular only if three of them are. For example, in the
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case that x1 -= 0, the matrix is:

u u x

0 X4 -

x4 0 -:

0 x3 -'

x3 0-- N (
\ if and only if

which if, say, 2 7 O is singular iff and only if

/ 0

0

0

0

0

X2

X4X3

X2X4 - X32

x 3
2

X3

0

0TO
TO

is. And this last matrix can

are similar.

clearly only be singular if X3 = X4 = 0. The other eleven cases

Thus we see that the point scheme can consist of only the points listed above, as well as

points for which all of the coordinates are non-zero. We end by enumerating these points.

Under the assumption that

matrix, and we arrive at:

all of the variables are non-zero we are free to row reduce the

-X3

-X3

X42 _ X3X1

X32 - X2 X4

X32 _X1X4

X2 X3 + X3 X1

X1

X2

X3 X4 + X2Xl

X2 X4 - X1 X4 - X2X3

X1X4 - X 2X4 -- X3X1

-2X2X1
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X3

X3

X2

X3

X2

0

X2

-X 2

0 /

0

0

0

-X2

0

0TO
TO

0

0

0

0

X2

0 /

/
X4 0

0 X4

0 0
0 0
0 0
0 0 /

r

\

F

1



Now since we know that X4 - 0, it will suffice to find the points where the submatrix

X42 _ X3Xl

X32 _ X2X4

X32 _ XlX4

X2X3 + X3 X

X3X4 + X2X1

X2X4 - X 1X4 - X2X3

X1X4 - X2X4 - X 3 X1

-2x 2x1

does not have full rank. We can simplify the matrix slightly by further row operations to:

2x4
2 - XlX3 + x2x 3

2x3
2 - x4x2 - XlX4

-XlX4 + x4x2

XlX3 + x2x3

-2x 3x4

-X2X3 - X1X3

2X1X4 - 2X4X2 - X1X3 + X2X 3

-2xlX2 /

(3.4.1.2)

The minors of this matrix are (ignoring non-zero factors):

4X2X42 + 4X1X42 -- X1
2 X3 + X22 X3 - 4X32X4

(Xi - X2)(2X2X3X4 - X2X32 + 4X43 - 4X3X42 - 21X 3X4 + X1X3
2)

2x1
2x2x 3 - 4x1X2X42 - 2X1X22 X3 + 2xlx 3

2x4 + 2x2x32x4

2(X2 - Xl)(X 2 X44 - 2X32 X4 + X33 + X1X42 )

2X1x22x4 - 2x2x 32 + 2x12x2X4 + X22X32 + X12X32

(x2 - x1)(2X2x 3 X4 - 2XlX2X4 - X2X32 + 2x1x 3 x4 - X1X32 )

(3.4.1.3)

We can eliminate x3 and X4 from these equations to be left with

-8X 1
3 X23

(4 1 + X2)3 (X2 - X1)2

-4X12X22

X3 -
(x 1 + X2)(X2 -x) 2

Xl10 _ 5X1822+74X16 24 + 54X14X26 + 51228 - 210

from which we see that the first projection is zero dimensional, and that the point scheme

consists of the claimed points.
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Since we know that A is isomorphic to A °", it is immediately clear that the second projection

of the scheme of truncated point modules is also zero-dimensional, and is in fact the same.

Now, as the two projections of r are zero dimensional, r must be as well, and so it follows

from the proof of [9, theorem 1.4] that r is actually the graph of an automorphism.

To see that the automorphism of this scheme is as described we can, for the first three points,

easily verify by inspection that 3.4.1.1 has the correct kernel at the three specializations.

For the remaining points, we note that if the automorphism acted as the identity, then by

[11, theorem 4.1], we would have A2V C I, since the point scheme would be contained in

the diagonal, and this is obviously not the case.

Finally,since the galois group associated to x5 - 5x4 + 74x3 + 54X2 + 5x - 1 is all of S5, we see

that the only remaining possibility is the one described, since no non-trivial permutation of

the roots can be equivariant for the action of the Galois group. ·

Corollary 3.4.2 The point scheme of A is zero dimensional.

Proof. This follows from the previous result and the fact that since r is the graph of an

isomorphism, every truncated point module can be extended to a point module. ·

Using our knowledge of the point variety, we can determine the automorphism group of A'.

Proposition 3.4.3 The automorphism group of A' is trivial.

Proof. Let a : A' -- A' be an automorphism of A'. Then the dual action of a* on

P(V*) x P(V*) must preserve r, and in particular permute the points (1, 0, 0, 0) x (1, 0, 0, 0),

(0, 1, 0, O) x (0, 1, 0, 0) and (0, 0, 0, 1) x (, 0, 0, 1). Thus the action of a on V must be a per-

mutation, p, of the three variables xl, 2, and X4 times a nonsingular matrix of the form:

al 0 0 0

0 a2 0 0

bl b2 a3 b4

0 O 0 a4
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First say bi # 0 for some i, and let j E {1, 2, 4} be a number other than p-l(i). Then either

xp-l(i)Xj + xjxp-l(i) or xp-l(i)xj + XjXp-l(i) - X3 X3 is one of the relations. In either case,

applying oa gives a polynomial for which the coefficients of the monomials X3Xj and Xjx 3

are both equal to the non-zero value ajbi. Since for every element of I the coefficients of

Xj X3 is the negative of the coefficient of X3Xj, a cannot preserve I in this case. Thus for a

to be an automorphism of A' we must have bi = 0 for all i.

Now, since a takes x1x2 + x2xl to an element not involving X3, it must go to a multiple

of itself, thus p is either the identity or swaps xl and x2. Consider the first case. Since a

preserves the span of each monomial, it must also preserve the span of each of the relations

ffi}6i=l in our complete set of replacements, that is, they must each be eigenvectors for .

Applying a to these eigenvectors yields that the following monomials in the ai are all equal:

ala3, a2a4, ala4, a2a3 and a3a3. Since the ai are all non-zero, they must all be equal. In

the case where p exchanges xl and x2, a similar argument again shows that all the the ai

must be equal, however this does not provide an automorphism of the algebra, since the

relation X4X3 - X3X4 - X1X2 is mapped to an element not in I.

Thus the automorphisms of A' are scalars. 

We note that the foregoing result actually holds generically in the family of algebras A.

We see from the preceding proposition, and 3.3.1, that A' is in fact not even a twist by an

automorphism of an iterated Ore extension, as we desired. Moreover, the fact that A' has

no non-trivial automorphism also implies that the only normal elements of A' are in fact

central. The next result calculates the central subring of A'.

Proposition 3.4.4 The center of A' is isomorphic to a commutative polynomial ring in

two variables, with generators in degree two.

Proof. We will consider the following two elements of A':

f7 = X2X2 + XlXl1

fA = X4X4 - X2X4 + X2X3 + X1 X4 - XX3 + XlX1
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It is easy to see that these two elements are central in A', merely by verifying that each

commutes with the generators xi. Additionally, by verifying the consistent reduction of the

new overlaps, we see that combining these two elements with the relations of A' gives us a

new set S = {fi}= 1 which is again a complete set of replacements.

Let B = A/(f 7 , f8) be the quotient of A by these two new elements. Since the fi are a

complete set of replacements, we know that a basis for B as a k-algebra is given by the

irreducible monomials, that is, those monomials of the form xjl ... xjd where the ji are

increasing, with at most one equal to 2 and at most one equal to 4. Counting, we find that

1 if i=O
dimkBi =

4i otherwise.

And, in particular dimkBi = (i+3) - 2(i+1) + (i1), which tells us that the elements f7 and

f8 were regular.

Let C be the subalgebra generated by f7 and f8. To see that C is in fact the entire center

of A', we will show that B has no central elements and use the following lemma (which is

presumably well known).

Lemma 3.4.5 Let R be a graded k-algebra, and S a finitely generated central subalgebra

generated by a regular sequence of elements of positive degree. Then, if there exists a central

element not in S, the quotient R/(S>o) contains a non-zero central element.

Proof. We will prove this by induction on the number of generators of S. Let sl,...,sn

be the generators of S, and let c be a homogeneous central element of R outside of S,

of minimal possible degree. If we show that R/(sl) contains a central element outside of

S/(sl), then the result will follow. The only way such an element can fail to exist is if c

goes to S/(sl) in the quotient, that is, if c can be written c = dsl + f for some elements

d E R and f E S. But for every x E R we have xdsl = dslx = dxsj, and as sl is regular

dx = xd. Since d is lower degree than c it must be zero, and so c E S contradicting the

assumption that c is not in this subalgebra. Thus c cannot map to the image of S, and the

central element we required exist. ·
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Continuing with the proof of the proposition, we will now show that B has no central

elements. First let us calculate which elements commute with xl.

For every monomial m of degree d we will calculate the leading monomial in the reduction

of mxl. Since left multiplying by xl will never make a reduced monomial unreduced, it is

enough to consider monomials of the form X3 ... X3 X4, X3 ... x 3, X2X 3 .· ·.. X3 X4 and X2X 3 .· ·.. X3.

We consider the four cases in turn.

(i) In the case x3nx 4x 1 , the leading monomial in the reduction must clearly be 3n+2 ,

since this is the greatest monomial remaining after one reduction step, and it is already

reduced.

(ii) In the reduction of x2x3n'x4x the leading term in the reduction will be x2x3n +2 , by

the same reasoning as in the first case.

(iii) In the case x3n-ll we first note that every reduced monomial appearing in the

reduction must be less than or equal to x2x3n-2x4. To see this note that it follows

by induction on the power of X3 that the leading variable must be less than X3, and

the specified monomial is the greatest irreducible one with this property. To see that

the coefficient on x2x3n-2x 4 in the reduction is actually non-zero, we will show by

induction that the reduction of X3 n- 1X has the form nx2x3n-24 - nxlx3n- 2x 4 +

x lx 3
n- 1 + x12(... ). The result is clearly true for n = 0, now assume it holds for n - 1.

Then we have x3nxl = (n-1)x 3x2 x3n-2 4-(n-1)X3X l X3n-2 4+X 3XlX 3 - +xl2 (... ).

Since X4 X3n reduces to x3nx4 + x2(. · · ) + Xl(... ), we see that the sum of the first two

terms above reduces to (n- l)z23n- x4 - (n - 1)XlX3n-x 4 + XlXl(... ), and for the

remaining term we have

X3X1X3n - 2 = XlX3n - 1 + X2X4X3 - XlX4X3n - 2

= X1X3n
-- 1 + X2X3n-24 - XlX3n- 2x 4 + X12(...).

Adding these together, we find that the reduction of x3n-2x 1 has the required form.

(iv) The leading term in the reduction of x 2 x3n-2x1 is X 1 X2 X3X3n-3X4. We can prove this

in a manner similar to the previous case.
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Leading Term in Reduction
X3n-2X4X 1

X n-l3

X2X3 n-3X4X 1

X2 X3n--2X1

X3 n

X2X3n--2X4

X2X3 n --1

XlX 2 X3 n- 3X4

Table 3.1: Leading terms of reductions

The results are summarized in table 3.1.

Note that, for a distinct monomials, m and m', appearing in the table we have distinct

maximum monomials appearing appearing in the reductions of mxl and m'xl. And also

that the largest monomial appearing in the reduction of mxl is strictly larger than xlm.

We will denote the maximal monomial appearing in the reduction of mxl by ml m.

Now suppose we have an element c = aoimi in the center of B, where the ai are in k, and

the mi are monomials. We may assume that ml is the monomial with maximum lml m

out of all the monomials appearing in the sum. If ml is a monomial from the table, or

a monomial from the table multiplied on the left by xl m, then by what we have just said

mlxl - xlml, and hence cxl - x1c, will involve a non-zero multiple of some irreducible

monomial greater than xlc. This contradicts the assumption that c is central. Thus it must

be the case that all of the monomials in c involve only the variables xl and x2. In particular,

they are each either of the from xi ... xlx 2 or xi... xl. We can verify by inspection that

the first of these does not commute with xl, and that the second one commutes with x2

only when it is of even degree.

To rule out the possibility that any of the remaining monomials, xl n , are central, we will

show that none of them commute with 3. In particular, we will show that for n > 3 we

have

X3Xln-
1 = xln-3(al(n)x 2x 3

2 + a2(n)xlx 3
2 + a3(n)xlx 2x 4 + a4(n)xl 2x4 + a5(n)x 1

2 x 3)

(3.4.5.1)
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where

al(n) = -a2 = n - 1]

a3(n) = n- 1

a 4 (n) = -1 if n is even (3.4.5.2)

0 otherwise

a5(n) = 1

By inspection this equation holds for n = 3 and we have the following reductions

X2X32X1 = 2lX2X3X4 - X1X2X3 2 + X13X2 - x14

X1X3X3X1 = 2xlx2x 3x4 - 2x 1
2 X3 X4 + X12X33 + X13X2 - X14

X1X2X4X1 = X1X2X3 2 + X12X2X4

X12X4X1 = X12X32 - X13X4

X12X3X1 = X12X2X4 - 13X4 + X13X3.

Thus if 3.4.5.1 holds in degree n - 1, then the monomials xln-3 x2x3x4, Xln-2X3X 4 , Xln-lx 2

and xl n cancel out and do not appear in degree n. For the other monomials we have the

recursive formulae

al(n) = a3(n- 1)- al(n- 1)

a2(n) = a4(n- 1) + a2(n- 1)

a3(n) = a(n - 1) + a3(n- 1)

a4(n) = -a 5(n- 1)- a4(n- 1)

as(n) = as(n - 1)

and substituting the previous values, we see that ai(n) take the values claimed. Thus, in

particular, since a4(n) is always positive, we see that it is never the case that x3 x1
n- 1 =

x1n-lx 3, and so Xln -
1 cannot be central. 

It is interesting to note that, though it goes unremarked, the algebra presented in [13] also

possesses two regular central elements (in the presentation of the algebra given in the paper,

they are ax2x2 + cxzzl and x3x3 - cX2 x2). A similar argument can be used in that case to

establish that the algebra is not finite over its center. This approach has the added benefit
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of revealing what the center actually is.

Proposition 3.4.6 The algebra A has a one dimensional truncated line scheme, for general

choices of the parameters.

Proof. For this calculation we will consider a slightly different specialization of the param-

eters. In particular, we will take a = b = c = 1 and d = 0, giving us the relations:

X4X3 - X3X4 - X1X2

X4 X2 + X2X4 - X3X3

X4X1 + X1X4 - X3X 3

X3X2 - X 2 X3

X3 X1 - X1X3

X2X1 + X1X2

Note in particular that this specialization is the ore extension by (, 6) of the AS-regular

subalgebra generated by (x1,x2, X3), where o and 6 are defined by (Xl) = -l, a(x2) =

-x 2, (x3) = 3, 6(x1) = x 3x 3, 6(X2) = x 3x3 and 6(x3) = X1X2. Hence by well known

results, it is in fact an Auslander-regular domain.

By the main theorem of [11], for such an algebra, the scheme of line modules is isomorphic

to the locus where the relations, considered as elements of V ® V intersect the subspace of

tensors of rank < 2. Writing an arbitrary element of I as YE6tifi (where, we recall, the fi

are generators of I), this translates into finding where the matrix

0 t6 - tl -t 5 t3

t6 0 -t 4 t2 (3.4.6.1)

t5 t4 -t 3 - t2 -tl

t 3 t2 tl 0

has rank < 2.
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We first note that one of the 3 x 3 minors of the matrix 3.4.6.1 is t2t3(tl - 2t6). We can

see by inspection that in each of the three cases t2 = 0, t 3 = 0, and t = 2t6, that the other

minors imply that either four of the ti are zero, or t = t6 = 0, t2 = -t3 and t4 = -t 5s.

Thus we see that the locus consists of the four components V(tl, t2, t3 , t4 ), V(tl, t2, t3 , t5 ),

V(tl, t2, t3, t6), and V(tl, t6, t2 + t3, t4 + t5 ), and so in any case is one dimensional. v
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Chapter 4

Classification of Q appearing in

Regular Algebras

In this section we will undertake to carry

regular algebras in the manner of [4].

We start by recalling the general ideas.

normalized resolution Q is diagonal.

Q=

al
0

0

0

out a partial classification of four dimensional

Consider a regular algebra A such that for a

a2 0 0

0 as 0

0 0 a4

Writing r = k1,4 o p, we have that -r(w(A)) = w(A). If we express w(A) with respect

to the basis (xi, C xi2 ® xi3 ® xi4)ili2,i3 i4 then it is easy to see that the coefficient of

xi, 0 xi2 0 xi3 ® xi4 is equal to ai4 times the coefficient of xi4 ® xi 0 xi2 0 xi3, and iterating

this four times, that HI4=l1i = 1. Hence w(A) is in the span of all elements of V®4 of the

form ili2,i3,i4 := k=Ork(xilZxi2xi3xi4) where (il, i2, i3, i4 ) is a tuple such that the product

I4k=laik = 1. Let us denote this span by WQ.
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Thus if w(A) is to be non-zero, as it must be for an AS-regular algebra, then at least one

degree four product in the ai equal to 1. However we can do better than this, for example

we have

Lemma 4.0.7 An algebra is not AS-regular in either of the following two cases:

(i) There exists integers i, j and k, j 4 k, such that none of the monomials xi xj, xj xi,

XiXk and Xkxi appear in any of the relations.

(ii) The algebra has a relation of the form xixi.

Proof.

(i) In this case all of the monomial xlalxla2xl ... xl, where each ai either xk or xj, are

irreducible, and so the algebra A must grow exponentially.

(ii) In this case xixixixi is in I ® V V n I X V n v ® V ® I, so this space would be

at least two dimensional were A AS-regular, which is a contradiction.E

Moreover, if we assume also that A is noetherian, which we shall for the remainder of this

section, then, by the result of [3] that such an A is a domain, it follows that A does not

even have a relation of the form xixj.

This result easily translates into a statement about the potential existence of AS-regular

algebras corresponding to a diagonal matrix Q.

Corollary 4.0.8 Let Q be a diagonal matrix. Then:

(i) There are no AS-regular algebras with associated matrix Q if there exists integers i,j

and k, j k, such that no element of WQ involves either both of xi and xj or xi and

Xk

(ii) If there exists integers i and j such that the monomial xixj appears in exactly one

basis element of WQ, then there does not exists an AS-regular algebrea A with w(A)

involving all of the basis elements of WQ.
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Proof. These follow since the statements about the elements of WQ immediately imply the

corresponding statements about I in the conditions of the previous lemma. ·

We may apply the preceding result to find a, possibly too large, list of of the matrices Q for

which there is a regular algebra. We may do this by considering the set of subgroups of the

free group on the aj, thinking of a subgroup as a collection of monomials in the ai which

evaluate to 1. Traversing this set we may find the minimal such subgroups for which the

associated basis fails to satisfy the above corollary 4.0.8. Having done this we can easily

find the set of Q which are consistent with each subgroup.

Having done the above calculation, we arrive at the following finite list of possible cases for

Q (up to permuting the dialgonal, and picking the root of unity):

r(1, 1,3, ( 1s,4,¢2,), (16 , ( 63,3 ,65), (6, 6, 3, 63), (2,2, 2 3, 3),

(C8C2, 83, 87) (C10, (150 70, (C190), (12, 12, (192 (92) , (12 c 152, 12 ) (12, 32, 132, 172)

((16, 56 16,15) (20 50 C0, c107), (24, (294,7 2143, C2241) (24, 13, (147, (2241), (d, (3d, 2d, i),

(d, -(d id, -d, , ,-,d, ), and (b, c, d, (bcd)-)

where b, c and d are arbitrary. Now we must determine for which of these values of Q there

actually are corresponding AS-regular algebras (a priori, we might need to consider further

cases for Q if one of the last five families turned out not to have corresponding regular

algebras, but it will turn out that this is not case).

We first consider the five non-constant families. In this we will be aided by the following

observation.

Lemma 4.0.9 Suppose that there is a three dimensional AS-regular algebra with diagonal

Q having eigenvalues (a, b, c). Then for all scalars d # O, there is a four dimensional regular

algebra with diagonal Q having eigenvalues (ad, bd, cd, d-3 ).

Proof. Let the resolution of kB be:

0 - B x B3 -f B3 B -- kB

Then, by definition of Q we have that (xTfi)T = QfiX.
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Now let B' be the algebra given adjoining a variable t to B subject to the relation atx+xt =

0 for every x E B 1. It is not hard to see that B' has a free resolution of the form

0 -p- B' -- B'3 -f- B'3 -ffi B' - > kg

f2 fi fo fo0 -- B' -· B'3 -- B'3 B' B kB

Taking the product of the maps in this resolution, we find that w(B') is of the form:

a3tf 2flfo + a2f 2tflfo + af2fitfo + f2fifot

And consequenetly, we see that the eigenvectors of Q(B') are as claimed by the lemma. ·

Now, since there are AS-regular algebras of dimension 3 with Q equal to (9,(9 4, ),

(1,-1, i),(, 1,-1),(a,b,(ab)-) and (a,-a,a-2) see [4, Table 3.11], we have that all five

non-constant families correspond to AS-regular algebras. For example, taking a global di-

mension 3 algebra with Q (cd1 /3, -cd1 /3 , C-2d-2 /3 ) applying the lemma with a = d- 1/ 3, we

get a four dimensional AS-regular algebra with the diagonal entries of Q being (c, -c, c , d).

Finally, we can rule out a number of the remaining discrete Q by specific calculations.

For example, consider the case where the entries of Q are (214, (243, 2241) and suppose

we have a regular algebra A corresponding to this Q. Then examining Q, we see that w(A)

is in the span of the vectors

X3X3XlX4+ ...

X 3 X3X4Xl+...

XlX3X4X3+ ...

XlXlXlX4+...

X3X3X3X2+...

X4X4X4X2+ .

and contracting with V* ® V* we have that I is spanned by elements
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Axlxl + Ex 3x 3

Bxlxl + I422x3X3

Dxlx 3 + CC44x3x1

GxlX 3 + F(1433x1

Hx2x 2 + Jx 4x4

Hx2x4 + H414 x2

Cxlxl + I(294x3x3

Axlxl + G(2242x3x 3

BxlX 3 + DC(243x3x

FxlX 3 + E(2143x3x

Hx 2x2 + J24x 4x4

Jx 2x 4 + JC224X4x2

Dxlx 2 + Bx2x1 + Gx3x4 + Fx4x3

Cx1x2 + D(294x2x1 + FC2243x3x 4 + E(2243x4x3

Axlx 4 + CC2243x2x 3 + BC2243x32 + A42243x4X

Ex1x 4 + IC284x2x 3 + I2241 x3x 2 + G224X4 xl

for some variables A,B,... ,J. Now, from the last four relations, we see that either H or

J must be zero. But if either is zero, then the other must be as well, or else there would

be a relation of the form zix i. But if H = J = 0 then none of the relations involve the

monomials 2,x2 x4 or X4X2, and so, as we pointed out in 4.0.7, the algebra will grow too

quickly to be regular. Thus there are no regular algebras with this Q.

Similar, but more involved, arguments can be used to rule out the existance of regular

algebras in the cases (24,42143 (2147 (2241, , (8 

Thus we have the following.

Proposition 4.0.10 If A is a AS-regular algebra of dimension four, then Q(A) is one of:

(1,1,(3, (3), (1, 45, 24), (1, 1, 42, (), (6, 463, 46 ), (6,46, 6, 6 (62, 42 43463)

(0o,150, 10, 90) (12, 12, (192, (192), (2, 132, 12 (, (d, 0 d, (32d, ), 

(d,-d, id, -) (d, d, -d, ), (c,-c, d, ), and (b, c, d, (bcd)-l ).F) -d), (~ , d, ) . V
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