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1. INTRODUCTION

In this paper we extend our previous work [2] on Maximum a-Posteriori

(MAP) estimation of random fields, beyond the Gaussian case.

For one dimensional diffusions, the change from Gaussian to non-Gaussian

processes involved only adding a finite correction term in the "prior density for

path" [4]. However, in the non-Gaussian multidimensional case, the technique

which yielded the prior density in the Gaussian case fails to converge. To remedy

this situation, we have to impose smoothness conditions on the solution of the PDE

which are beyond the minimal ones required for the existence of continuous

solutions, c.f. below. In what follows we use the same notations as in [2].

We will deal here with random fields generated by the solution of semi-linear

elliptic PDE's, over (nice) bounded domains in Rd, d22. Let P be a strongly

elliptic linear operator of order 2k with smooth coefficients, Pa an associated linear

boundary operator (of order k- 1), and F a non-linear operator of order m such that
d 2 m

2k > 2 + m. Foor some smooth

f:Rm+l ---> R. The field model we consider is:

(Pu(x) + Fu(x) = n(x) xE D

(F) (1.1)

Pa u(x) = O x aD

where n is white noise (a somewhat more general form of (F) is used in Section

II). For simplicity, we will concentrate on the Dirichlet problem, and denote by B

the Dirichlet form associated with (P,Pa) (c.f. [1]). We use the observation model

as in [2] (where we assumed F-=), i.e., that of white noise corrupted nonlinear

observations:

X1 Xd

y(x) = .. h(u(.))dO + w(~) (1.2)
0 0

where w(x) is a Brownian sheet independent of n, and h(-): R--R is a C2k+ l

function with all derivatives up to order 2k+l bounded.

Our prototype example is:
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Al+8u + F(u) = n, xeD = [0,1]x[O,1] R2 >0

(p) ulD=O0
X1 X2

y(x 1, x2 ) = I u(0 02) d0 1 d 2 + w(xl,x2 )
0 0

here F(-) is a smooth nonlinear function.

Under certain smoothness conditions on P, F and D, equation (1.1) admits a

unique solution in Wm,2 (D), (c.f. Theorem 2.1). For ¢(x) smooth, with Pao(x) =

0 on AD, we apply a general theorem of Ramer [7] to evaluate the Radon-

Nykodim derivative between the measure P1i defined by solutions of:

Pu(x) + PO(x) + F(u(x) + ¢(x)) = n(x) xe D

(P 1) Pau(x)= xED

y(x) = h(u())d0 + w(A) xeD (1.3)

and the reference measure Po for which -0, hEO (consider theorem 2.2). Let this

functional be denoted by Ao(u(x)), then a plausible definition of the "posterior

probability" of the path ( given the observation 6(-field 6(y) is:

PF(llu-OIlm'2<El£(Y))J () =lim m, =lim E(A(u(x))ull < (1.4)
0-- PF(IIUllm,2<E1G(y) £ 0m

provided that Jy(O) is well defined. Here 11-11m,2 is the Sobolev norm of Wm,2(D)

and PF denotes the probability measure generated by (1.1, 1.2). We note that in

[2,9] we have used the L°°(D) norm to define the e-neighborhoods. We can use this

norm here for m=O, but when m>0 we need some control on the derivatives of u

as well (i.e., IIullm,2 < K(D)e). While for F-O, Jy(O) is well defined for almost all y

in the support of (F) for an appropriate class of O(x) whenever 2k>2 (i.e., (1.1)
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(1.2) make sense), for non-zero, non-linear F(.) this is not the case. While for

2k>d+m we obtain the same result as in the linear case (compare Theorem 3.1 in

both papers), when d22k-m>, Jy(4) in general diverges. The "likelihood ratio"

(involving the change of h(.) to zero, i.e., making u and y independent) converges

exactly as in the linear case (consider lemma 2.2), but the problematic term is:

F(O A E0[exp{ J(F(0) - F(u+o))on + Tr(DoF(P+DOF)- ) " } HI IUlm,2 <e] (1.5)
D

which arises from Ramer's theorem, where EO denotes expectations w.r.t. the
reference measure (PO), and DeF denotes a Frechet derivative at (. In the linear

case this term is part of the term Eo[exp-4(P)nl Ilull<£] that converges to 1 as e--0

(see equation (3.4) in [2]). This is exactly the term that contributed a (finite)

correction to the Onsager-Machlup functional for diffusions in [4].
To understand intuitively the behavior of Te(O) for e->O, let us replace F(u+o)-

F(O) by the linearized operator DeF (P+DoF)-ln (since lIullm,2 < e, this should not

change much the results), expand n and u w.r.t. Vi, the eigenfunctions of the

operator (P+DoF)-1 and ignore the cross terms. So our "approximation" of lf(O)

will be:

2

: £( )_E[exp fi/i(a_ -1) , 2< e2] (1.6)
i=l i=l 1

where fi ~ -D (DeFfi)xfi, and ai are i.i.d. N(0,1) random variables. For e-)O,

for those i with Xie << 1, ai is very small due to the conditioning, while when )i£

>> 1 the conditioning has little effect on ai. So, again "approximately", the value

of Tke4) behaves like exp ,[fi/il].
Xi<l/£

From [1] we have the estimate ,i " i2k/d and moreover the fi are bounded by

00

im/I under the smoothness assumptions we will impose on DF. Therefore I fi/Xi
i=l

converges in general only when 2k-m>d. When d>2k-m>d/2 the most "likely"



paths 0 are those with minimal A fi/Xi. Thus, had we had a convenient
i_<1/£

characterization of those 0, we could have constrained our estimation problem to
this subspace, and normalize A(u(z)) accordingly. Since we were unable to find a
convenient substitute for I fi/7i, we pursue here only the case of smooth P,

xi<1/E
F, i.e., 2k-m>d. In particular, our prototype example (P) with 6 = 0 is excluded!

In the next section, we collect all the results that hold true for 2k-m>d/2,
namely, existence of solutions of (1.1) (Theorem 2.1), as well as the expression of
the Radon-Nykodim derivative AO(u~()) (Theorem 2.2), and the convergence of the
"likelihood ratio" for any 0e W2 k,2(D), (Lemma 2.3).

The third section concentrate on the results in which we need 2k-m>d, namely,
(,2

the existence of Jy(O) for Oe W0 ' (D), I >2k+d/2+m, (Theorem 3.1), and that of a
A

solution $ = argmaxkJ,() (Theorem 3.2). Finally, in Theorem 3.3 we represent

(EW )

$ by means of a weak solution of an appropriate stochastic PDE, and check that

indeed $ W6' (D), C < 4k - d/2.

We note that the existence of Jy(O) for 0 E W 0 ' (D) requires conditioning on

Ilullm+4k-[,2 < E, instead of Ilullm,2 < E as in the Gaussian case. We elaborate more
in this issue in Section III.
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II. PRIOR MODEL, AND EOUIVALENCE OF MEASURES
In the sequel 11 l,2 will denote the Sobolev norm in W 4 2(D), and 11 112 the usual

L2 (D) norm. W 0 ' (D) will denote the closure of C0o(D) w.r.t. the norm

W C,2(D), and W 0 2(D) will denote the space of distributions which is the dual of

W 0 2 (D). We denote by n the random distribution valued white noise in D, i.e.,

for each Qe CU (D), n(O) is a Normal random variable of zero mean and variance

11i112. Note that n is W ;~ (D) valued V[>d/2 [8], and that for OE C0o(D) and any

basis ei of L2(D), n( 00ai(,ei) in .m.), whe

basis ei of L2 (D), n(4) = Xai(K,ei) (in q.m.), where ai = n(ei) are i.i.d. N(0,1)
i=l

random variables.

By a solution to (1.1) we mean a Wm,2 (D) valued random variable u such that

u has a continuous version and B[4,u] + (F(u),O) = n(o) for all Oe CC0 (D). Note
0

that the boundary conditions need not be classically defined. We assume

throughout that F is a continuous operator from Wm,2(D) to L2 (D), whose

wm,2(D)-

derivative DuF:WO' 2(D) -- L2(D) exists, the mapping u --4 DuF

is continuous , and uniformly bounded, i.e., sup IIDUFII A IIDFII < oo. We further
ue Wm' 2(D)

assume F(0) = 0 (if this is not the case one can always accomodate F(0) into P).

For example, f E C 1(R) with bounded derivative, is such an operator for m=0.

Now we can prove using Picard iterations the following basic existence theorem:

Theorem 2.1: Let 2k > 2 + m, IB[0,0] >2 cpll 1lIk2, and cp > IIDFII, then (1.1) has a

unique solution in W 0 '2(D), which is in Cm+a(D) for some c>0.

Proof: Consider the linear PDE:

Pu = n on D (2.1)

P u = 0 on aD
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This PDE admits a unique solution in W0 ' (D) since 2k- > m (the proof is an

easy extension of the proof in [8,2]), which is in Cm+a(D) for some (a>O. Thus,

w.l.o.g., we can consider the solutions of:

Pu =-F(u + u) on D (2.2)

P)u = 0 on D

where Pa denotes Dirichlet conditions, and let the solution of (1.1) be u = ui + u.

We shall prove by Picard iterations that (2.2) admits a unique solution u in

2k,2
W 0 '(D).

m 2
Forv, u E W ' (D) and0 < x < 1,

let g(x) = IIF(u+xv) - F(u)112-xllvllm,211DFII. Note that

g(x+£) - g(x) = IIF(u+(x+£)v) - F(u)112 - IIF(u+xv) - F(u)112- £IVllm,211DFII

< IIF(u+xv + cv) - F(u+xv)ll2 - C£IVllm,211DFII

< IIF(u+xv + £v) - F(u+xv)112 -cIIDu+xv F(v)112
< IIF(u+xv+cv) - F(u+xv) - £Du+xVF(v)112

and therefore, lim sup -(g(x+£) - g(x)) < 0. Since g(0) = 0, one concludes that
e-)0 c

g(l) < 0, i.e. IIF(u+v) - F(u)ll2 < IIDFII I vllm,2. In particular, substituting u=O one

has IIF(v)ll2 < IIDFII IlIm,2, Vv E W ' 2(D).

Existence: We construct a sequence of functions (t) e Wk ' (D) by: u(O) = 0, and

u() is the solution of the linear PDE:

PU (0= -.F(u ) "+ U) on D

P u (0 =+O on aD (2.3)
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Since -F(u( 1-l) + u) E L2 (D), there exists a unique solution u)(0 of (2.3) in

W0 ' (D) by the classical theory of elliptic PDE's (c.f. [1]).

Now, let 6(0( j(t)- u(-l1), then 8(0 are the unique solutions of:

P8 0 = F(u (2)+ u) - F(u + 8(1) + U) on D

lP ( 0 = O on aD (2.4)

in W2k'2(D). Now, 3e>0, s.t.

( 2 I - (-2) (c-2) (- 1)
IIP il2 = IIF(u + u) - F(u +u +6 )) 2 < cp(l-£)ll(-l)12k,2

However, IB[,0]I > cpllIIk 2 Vq E C (D) implies that IIP6112 > cpll 6ll2k,2

V6E WO ' (D). In particular, we obtain:

11(0112k,2 < (1-£)11(b1 112k,2 (2.5)

So that, Vt > ':

Il u -_ u 12k,2 < 11()12k,2 lu (12k,2 (2.6)

2k 2
Thus, u (0 - ui* in W0k' (D), and since F is continuous we have:

0=Pfi()+F(u ((-)+u) -- Pu*+F(u*+iu) (2.7)

Note that:

Ilullm,2 = Ilu* + ullm,2 < lullm,2 + Ilu* - u 112k 2 + IlU i+ 2k,2= _ -_~~~~~~~~~~~~~
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~ 1 K
< llUllm,2 + I F(u)II2 < KllU1lm,2 (2.8)

ECP

and therefore Ilullm,2 is bounded by Ilullm,2, where u is the Gaussian field
corresponding to FO.

Uniqueness: Assume l, U2 are two solutions of (2.2) in W0 '2 (D) and let

v = ui - u2, then v is the solution of:

Pv = F(u + u 2) - F(u u + u (2.9)

Now:

Cp11Vllm,2 < IPVII 2 = IIF(u + u 2) - F(u + u 2 +v)ll2 < cpIlVllm,2 (2.10)

a contradiction unless IIvlIIm,2 = 0.

We next turn to the computation of A(u(x)). We first show the following

preliminary lemma:

Lemma 2.1:

Let 0 e Wk (D). Define Ku A [Po + F(4+u) - F(u)] and define

KIv K((P+F)- v)

where (P+F)-l:L 2 (D) -- W2k'2(D) exists due to our conditions on P,F.

Throughout, let Pu +F(u) = v, VE L2 (D). Then:

a) (D ) = (D F- DF)(P+DF (2.11)

in the sense that both sides of (2.11) exist.

b) Dvk is a Hilbert-Shmidt operator.

c) If 2k > d+m, DvRI is a trace class operator.
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Proof: a) Let u = u+ui be the decomposition as in theorem (2.1), i.e. u is the weak
solution of:

Pu = v on D

Pau=O on D

and ui is the unique solution in Wk ' (D) of:

Pu + F(u+u) = 0 (2.12)

2k 2Let now h e L2 (D) and u, u be the unique solutions in W k,2(D) of:

Pu + F(u + u) = h (2.13)

Pu +D _F() )=h (2.14)
u+u

Now, let

A(h) IIK(v+h) - Kv - (D U F - DF)(P+DuF)- h12 < JIF(0+u + u) - F(O+u+u) - D Full2

+ IIF(u + u) - F(u +u) - D Fu 12 (2.15)

But:

IIF(u + u)- F(u + u)- D Fu II2 < IIF(u + u )- F(u + u)- D F(u- u)ll2 +

+ IID~ F(u - u - )112 < o(!!u - ui2k2) + IIDFII Ilu - u - u 12k,2

and similarly for the other term in the RHS of (2.15).

Therefore, to complete the proof we only have to show that:



Ilu - u112k,2 < C Ilhll2 (2.16a)

Ilu - u - u 112k,2 = o(llhll2 ) (2.16b)

However, let 6 = u - ui, then

(P+DuF)8 = h -[F(u+6) - F(u) - (DUF)]

Since inf[ki(P)] > cp > IIDFII > IIDuFII, (P+DuF)-1 is a bounded linear operator from

L2 (D) to 2k,2 (D), and therefore: 11(112k,2 <I[(P+DuF)-lI{IIhII 2 + IIF(u+8)-F(u) -

DUF6112). For lhll2 small, IIF(u+6) - F(u) - DuF[II2 = o(lI 8 112k,2) = o (lhll2), and

(2.16a) is established. Now let g = - , then,

(P+DUF)6 = -(F(u+8) - F(u) - DUF6) (2.17)

And thus, 11112k,2 < II(P+DUF)-111{ IIF(u+8) - F(u) - DuF8l12} = o (llhll 2) due to

(2.16a).

b) We need to show that Tr(DvK*DvK) < oo. Let ei be the complete orthonormal

basis of L2(D) composed of the generalized eigenvectors of P+DuF. One has

Tr(DvK*D K) = I I(D F - DuF)(P+DUF)'leil2 < 41IDFI1 (2.18)
i=1 '+ U =1 X2

Note that the behavior at infinity of Xi is the same as that of Xi(P), whereas Xi >2 

> 0 for some E since IIDuFII < inf Xi(P). Therefore, the RHS of (2.18) is bounded
00

by c Y i-4k/d < o.
i=l

c) We need to show that Tr(DvR) < o. Repeating the argument as above, one

obtains that

Tr(D K) < c 1 <c 2 i-2k< oo (2.19)
i=1 1i i=1
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whenever 2k>d.
Before we may state the theorem concerning the structure of A~(u(x)), we

introduce some notations.

Definitions:

1. Let A be a Hilbert-Schmidt operator. The Carlemen-Fredholm determinant

of A is defined as

A(A)a H (l+i) exp(-Xi) (2.20)
i=l

and the product in (2.20) converges absolutely (see [3, XI.9.22]).

2. Let A be a trace-class operator. The determinant of A is defined by

I(I+A)I = det(I+A) 7 (l+i) (2.21)
i =1

and the product (2.21) converges absolutely (see [3, XI, 9.22]). We quote from

[3, XI.9.18,19,22,23] the following lemma:

Lemma 2.2:

a) Let A,B be trace class operators. Then

d det(I+A+zB) = det(I+A) tr(I+A)-B (2.22)
dz z=0

and det(I+A+zB) is analytic in z.

b) In det(AB) = In det(A) + In det (B)

c) A(A) = exp(-tr (A))det(I+A)

Finally, we introduce the following stochastic integral which was first defined

by Ramer (c.f. [7, lemma 4.2]):

Definition: Let A be an L2 differentiable nonlinear operator whose derivative, Ax,
is Hilbert-Schmidt. Let n, a white noise, be represented by n = . aiei, where ai -

N(0,1) are independent and ei is a complete, orthonormal basis in L2 (D). Then

n n n

I - (A E aei ,) - (Axei ei) (2.23)
i=l i=l i=l

converges in L2 (g) (where g = Gaussian measure which makes {ai} i.i.d. N(0,1))

to a random variable I which is independent of the basis ej. We use the notation
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I= Anon- tr DA (2.24)

Note that when Ax is trace class, both terms in the RHS of (2.24) exist, the first as
an Ogawa integral (c.f. [6,5 and 2]), and their difference indeed equals I. We have
completed the preliminaries required to compute AN(u(x)):
Theorem 2.2. Let h(-) E CI(R) with a bounded derivative. Assume the conditions
of theorem 2.1, let u E Wm,2 (D) denote the solution of (1.1), and let

E Wk ' (D) be independent of n. Then

(u(x)) = exp (Jh(u(Q))dw() Ih2(u(Q))d)

D D

exp[- I (Po + F(u+o) - F(u))2

D

- J (P) + F(u+o) - F(u))on + tr((D F-DuF)(P+DuF)')]
D

A*((D pF - D F)(P+D F)-) (2.25)

Proof: Define Pw as the measure P1 with h-O, i.e. y independent of u. Exactly as

in the linear case, one has

dP 1 2 ex=dP e xphh(u())dw( 2) - (u(0))dO (2.26)
w D 0

where the stochastic integral, taken under Pw, is well defined since u(x) E L2 (D) is

independent of o(,(08), 0 E D). This part of A¢(u(x)) is denoted as the likelhood

ratio. In the sequel, therefore, we can assume h-0. Let now u E W '2(D) be the

unique solution of (1.1), and associate it with v = Pu + F(u) (v is the "white
noise"). Under Po, v=n whereas under Pw, v + Rv = n. By lemma (2.1) and
Ramer [7], we have
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dP
w = A(DVK) expL- 2 (Kv) - (Kv)on +tr(D K)] (2.27

where again, when Dvt is Hibert-Schmidt then the sum of the two RHS terms in
the argument of the exponent is well defined and further when DvR is trace class
each is defined individually. Note that kt:W-d/ 2- 2 (D) -- L2 (D) where

6 < 2k - - m and therefore kv E L2 (D). Combining now (2.26) and (2.27), the

proof is completed.

We conclude this section with the first step towards computing the Onsager -
Machlup functional:
Lemma 2.3: Under the conditions of Theorem 2.1, for h(-) E C 2k+l(R) with all
derivatives up to order (2k+1) bounded, and ¢() E W2k,2(D):

dP1 1 - LD
E (y), IIu-41m,2 •< --~ exp h(0(Q))dy(-Q) 2- - h(O(_))d-

- W -D D

where the stochastic integral in the RHS is well defined for all O E W 2k, 2(D) and w
in the support set of the measure defining y by the pairing between W-d/ 2-8,2(D) and
W 2k,2(D) (2k>d/2+6). So, 4 may be stochastic and depend on y.

Proof: This is lemma 4.1 in [2] and it admits exactly the same proof, as
Ilu-112 < Ilu-0llm,2. We note here that for this proof we assumed that

Ew[exp £ Ilul 2 ] <oo for £>0 small enough. This, however, follows from (2.8) since

for e>0 small enough, the Gaussian field i obtained in (1.3) for F=0 admits

Ew[exp £ HlluIm 2 ] <
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IL THE ONSAGER-MACHLUP FUNCTIONAL AND THE MAP ESTIMATOR
Let

jP( ) gllu-m+d/2+< elo y))
J ((0 m+d/2+S <cY (3.1)

P(Iull < E)
m+d/2+8

= Eo(A (u (x ) )l l lu ll m + d /2+8 < , afy)

where 0<6<2k-m-d A 60 and 2 8>6 0. As mentioned earlier, we assume throughout

60>0, and consider Jy() = lim JE (). We postpone the discussion on the specific
-->0 Y

neighborhoods appearing in (3.1) and on the reason for 28 > 80 > 6 to the remarks
immediately following the proof of theorem 3.1 below. Note that 60 > 0 implies
that Tr(DuFP-1) < IIDFII Tr(P-1 ) < oo and therefore DuF p-1 is a trace class operator.

Moreover,

i(DUFP1) _< DFI <

Define:

J y(j) h(0(())dy(Q) -- h( ()) 2 -d - (Pq + F(o))2 (3.2)
D D D

+ lnI + (DFPW1) -In I+ (DOFP1

where the stochastic integral on the RHS (and hence the whole RHS) is defined for

any ( E W k'2(D), and iw in the support set of the measure defining y by the

pairing between W 2k,2(D) and w-d/ 2-60, 2 (D).

Theorem 3.1: Assume that IIDvF-DuFII < Kllv-ullm,2 for some K<oo. Then, for any

(E W4k-d/2-6,2(D),
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lim [J (4))] = exp J y()) a.s. in n (3.3)

Proof: In view of Theorem (2.2) and Lemma (2.3), we can without loss of
generality assume h -0, and then assume 0 deterministic.

Note that

Tr((D F - DuF)(P+D F)-l) < 211DFII Tr(P -1(I+DuFP')l ) (3.4)

211DFllcp -1

< cp-IIDFII Tr(P ) < oo.

On the other hand, note that for every 6'>0 u, u+0 E WIm+d/2+8'(D) and

therefore the stochastic integral w.r.t. n in (2.25) is defined without the need of the
trace term correction. Combining the above facts, and using lemma (2.2c), we
rewrite (2.25) (again, with h=0!) as

A (u(x)) = det(I+(D F-D F)(P+DuF) (3.5)

exp(-1 (P4 + F(u+)) - F(u))2- - [P + (F(u+o) - F(u))] on)
2 D

Note now that

(I + (D F - DuF)(P+DF)' l) = (I+D FP )(I+DuFP'l)-l (3.6)

and since both operators on the RHS of (3.6) are trace class, we use lemma (2.2b)
and (3.6) to rewrite (3.5) as:

A ,(u(x)) = exp(l y(4)) Al A 2 A2 A4 A5 A6 (3.7)

where

In Al in det(I+DoFP' l) - In det (I+DUFP '1) (3.8a)
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In A 2 a In det(I+D- FP-1) - In det(I+D FP-1) (3.8b)

n A3 - JPon + P F(u) (3.8c)
D D

In A4 - _ (F(u+) - F(u))on + J (F(u+) - Fu))F(u) (3.8d)
D D

In A 5 A - (F(u+O) -F(O)) Pq + 2 (3.8e)
D

InA6 A+J 2 F2(u) (3.8f)
D

Consider first In A1. Using lemma (2.2b,c), one has

In det (I+DoFP 1) - In det(I+DuFP- 1) = In det (I+DoFP-1)(I+DuFP-1) -1

= In det(I+(DoF-DUF)(P+DUF)1')

= ,-1tr{ (DF - DoF) (P+DUF)-1} n

n=i

Therefore,

Iln Al _< 1_ II(I+DuFp-1)-111nII D F-D FI lnP- II n- Tr(P-1)
n=l

< c Tr(P.1) 2 1 CP. ii DoF-DuFIn <•C 1 IlDoF-DuFIl

cp-IIIDFIIprovided IIDoF-DuFII <cp 2DF1.
Cp

Therefore, for Ilullm,2 small enough (under Po!),
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Iln All < 1 llUllm+d/2S,2 (3.9a)

and repeating the argument,

Iln A 21 < c2IUllm+d/2+6,2 (3.9b)

where cl, c2 are deterministic.

Since E 4k 2 (D), one has
0

Iln A 31 = I(P*P4,u)l < Ilull d+8IIP*PoII _ c3(m)d/U+,d (3.9c)
m+ +6,2 -(m+d/2+6,2) <+-+d,22 2

with c3(O) < oo. Turning to (3.8d), note that

lln A4 1= I(P*(F(4+u) - F(u)),u)l < IlUllm+d/2+8,2 (II(P*F(u)I (d +(39d)
-( + m + §),2

+ IIP*F(u)ll d
-(- + m + 8),2

< 211ull d IIP*ll IIDFII Ilull d + ,U+ 4 d + C4()lulm 2+82
m+- +8,2 m+- +8,2 - + m+8,22 2 2

where IIP*Il is the operator norm of P*: Wd/2+8,2 -> W-(d/2+m+6),2 which is

clearly bounded.

Next, note that

lln As I < c 5 (O)llF(u+O) - F()II2 < c 5()IIDFII Hull lm,2

S< c i(milllard/ly,2 (3.9e)

Similarly,
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Iln A< Ic iIDFII huh2 < c Ild (3.9f)in A61 < 6 IIDF Um,2 - 6 lm+d/24,2 (39f)

Combining (3.9) and (3.7) yields the theorem.

Remarks. We explain below why we used the Wm+d/2+8,2(D) neighborhoods in
the conditioning in (3.1) and why 28>80.

Recall (c.f. the introduction immediately below (1.5)) that the requirement
80>0 (i.e., 2k>m+d) was necessary in order to be able to have a nice (i.e., without

additional constraints) characterization of the limit ty(4). Obviously, had we
allowed in the conditioning distributional neighborhoods, this problem could have
been avoided. However, we choose not to do so because then interpretation of the
results in terms of MAP estimation is not clear. Note that in the 1-D case the
problem is avoided since no singularities occur (i.e., all correction terms are finite).

Next, note that in order to have (3.9c) with <-s having only the degree of
smoothness guaranteed for the solution of the estimation problem, we had to take
Wm+d/2+6,2 neighborhoods, any 0<6<60, or alternatively, impose structural

conditions (which are satisfied by the optimizer) as in the linear case [2, theorem
3.2] or 1-D case [9]. However, here structural conditions would not help due to
the term A4 : the integrand being dependent on u, one cannot apply an integration
by parts as in [2, theorem 3.2]. In the 1-D case, the problem is avoided basically
using the Ito calculus. Here, since we don't have such a powerful tool, we have to
require the right degree of smoothness to be able to write (3.9d). This leads to
26>6 0.

We turn now to the existence issue and claim:
Theorem 3.2: There exists a solution to the problem:

= argmax I y() (3.10)
¢Ew2ke2 (D)

Proof: We follow the same steps as in [2, 10]; we therefore give the details below
only of those parts of the argument which are new:

(a) For ye C(D), () = h(O)dy(0) =- I h(0)2Vol(D) > -oo.
D

(b) We have bounded Iln(I+DFP-11)I by a uniform bound (independent of ).
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Further, IIF(I)112 < IIDFII 110112k,2, IIP+F())112 > IPf-IIDF114112 while (P-IIDFIII)

is bounded away from zero, so we can follow the proof of [2] to show that

lim )= -oo.

Ilqll2k,2 

(c) To show that t(o) is lower semi continuous w.r.t. the weak topology in

W 2k,2(D), we note that the additional terms (w.r.t. [2]) in the non-linear

case do not cause any problem, since:

(1) F:W2 k,2(D) -> W2k-m,2(D) is a continuous mapping, and since (2k-m) > d,

4)n- 4) implies F(On) --- F(0) pointwise, and also in Wd/2,2(D), so the

cross term Po · F(0) will be continuous as well as the F(0)2-term.

(2) Note that

Iln det(I+D FP1) - In det(I+D FP- )I <

• c1 Il"n - )llm,2

due to the argument preceding (3.9a). However, o)n --> , implies, because
Wa,2 (D)

2k > m + d/2, that IIln - 011m,2 -> 0. Combining all the above, we

conclude that t(o) is lower semicontinous w.r.t. the weak topology in

W 2 k,2(D) which, combined with (a), (b) and [2], yields the theorem.

We conclude this section by the following representation result for the

estimator 4:
Theorem 3.3: Let k,m be integers. Any maximizer of (3.10) is a weak solution

of:
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(P+D F)*(P$ + F(4)) = - h'($)h($) + h'($)oy + G($) on D

Pad =0 on aD

(P+DF) (P + F()) = (3.11)

where (P+DF$) denotes the boundary operator defined by (P+D$ F)* i.e., for

01, 02 E C°°(D),

(P+D F)* 1. 02) - (P+DF ) 2)

2k-1 - - - air
2ki [(P+D F); q l i2

j _

with n being the exterior normal to D, (P+D F)a above defined by Green's

formula, and

(P+DF)aq~ = F(P+D F ); F)1

-1- 1 2 - 2k 2

Here G(~) - A Tr(I+D FP ) [D2 F <ei, P* >]ei, with ei any orthogonal basis of Wk'2 (D)
i=l * $

2k 2
Note that we assumed the existence of the W6 ' (D)-derivative of DeF, w.r.t. 4,

i.e., lim {(ID F(v)-D F(v) - D 2F <uv>l12/llvlm,2 . Ilul2k,2 = 0, for every EO k' (D ),
IHul'2 (u+u)0 r

m 2 2
ve W ' (D), and further assumed that IlD F<u,v>112 < KIIlIIm,2 IlulI2k,2-

Proof: The proof is an easy application of the necessary conditions of the calculus

of variations and is therefore omitted. The only interesting part is
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In I(I+D + FPP1 1- lnlI+D FPll = Tr{(I+D FP')-1D2F < 6,P-1. >) = (3.12)

=(~ | Tr(I+D FP') - 1D2F <ei, P 1 >ei)&= JG(O=
o i=l D

where our assumptions guarantee that:

Tr(I+D FP-1 )1 [DF < ,P-1 >]I: = a1 (I+D FP-1)-1D2F <&8, ,Ni>4 lj <
71i=1 11

l/[l-llDFII/cp1] t. 11&"ll12 k,2ll1Nillm211Wil12 < °o
i=1 xi

Here fi are the generalized eigenfunctions of P in WO' 2(D) and Xi the

corresponding eigenvalues. Note that using lemma 3.1 in [2] we can understand
(3.11) as a pathwise equation for each ye C(D), and also the solution

w 4 k-d/2-8(D), V6>O, i.e., 4$ e W 2k+d/ 2+ 6 1(D) V81 < 80 as well, and so

satisfies the conditions of theorem 3.1.
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