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ABSTRACT

A new methodology is developed for the synthesis of linear,
time-invariant (LTT) conmollers for muldvariabie LTI systems. The
aim is 1o achieve swability and performance robusmess of the
feedback system in the presence of mulriple unsoucmred uncertainty
blocks; that is, to satisfy a frequency-domain inequaliry in terms of
the structured singular value.

The design technique is referred to as the Causality Recovery
Methodology (CRM). Starting with an inital (nominally) stabilizing
compensator, the CRM produces a closed-loop system whose
performance-robustmess is at least as good as, and hopefully
superior to, that of the original design. The robustness
improvement is obtained by solving an infinite-dimensional, convex
optimization program. A finite-dimensional implementation of the
CRM has been developed, and it has been applied to a multivariable
design example.

1. INTRODUCTION
§

Maintaining stability in the presence of uncertainty has long
been recognized as the crucial requirement for a closed-loop
feedback system [1, 2]. Classical designers developed the concepts
of gain and phase margin to quaniify stability-robustness measures.
In the modern contwol era, criteria for maintaining closed-loop
stability in the presence of a single, unstructured (i.e. norm-
bounded) modeling uncertainty have been formulated in terms of a
singular value frequency-domain inequality on the closed-loop
transfer function [3].

Recently, the issue of multiple modeling uncertainties appearing
at different locations in the feedback loop, and the related
requirement of performance-robustness, has been addressed [4].
Multiple unstructured uncernainty blocks, real parameter uncernainty,
and performance specifications give rise to so-called stmucrured
uncertainty. A new analysis framework, based on the structured
singular value W, has been proposed by Doyle to assess the stability
and performance robusmess of linear, time-invariant (LTI) feedback
systems in the presence of souctursd uncertainry [5].

While the analysis aspect of LTI feedback design is well-
established, the definitive robust synthesis methodology has vet to
be developed. The design of a feedback system that exhibits closed-
loop stability and performance in the face of modeling uncertainty is
the so-called "[-synthesis” problem [6-8]. The synthesis approach
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proposed by Doyle in [6] is an iteradve scheme, referred 10 as DK
iteration, that involves a sequence of scaled H_-based feedback
design problems. Unfortunately, convergence to the global solution
is not guaranteed due to the inherent nonconvexity of the probiem.
Since local solutions may result, it is worthwhile to explore other
fundamentally different approaches 1o i-synthesis that may resuit in
feedback systems with improved robusmess propertes. In additon,
when the CRM was developed the solution of H_, problems was
computationally very cumbersome; this situation has now changed.
The block diagram in Figure 1.1 has become the standard
framework for considering the robust feedback design problem [6-
8]. This diagram represents any linear interconnection of inputs,
ourputs, perturbations, and a compensator. P is the known model
that contains the plant to be controlled, and any weighting functons

that describe the frequency-domain characteristics of the modeling

uncertainty and performance specifications. A represents a

perturbation due to the modeling error; it is a member of the set 4,
where

A={ A A=diag(A, Ay b)), A € P (1.1)

P={ Al Asuble, lAll_<1}

K is the compensator to be designed. The synthesis objective is
to find a K to achieve nominal stability and performance of the
feedback loop, and to provide robustness with respect to the
modeling error. Simply stated, K should be chosen so that the
closed-loop transfer function mawix from the exogenous inputs d to
the error signals e is "small" for all
A & A In the sequel, a method is presented for compurting such a
compensator K.

Section 2 discusses the analysis of the system in Figure 1.1

Figure 1.1 General framework for the robust feedback design
probiem.




The structured singular value it is shown to be an essential tool for
dealing with the problem of robust performance. The CRM, a
synthesis method based on L, is presented in Secdon 3. Secdon 4
contains a numerical example of a CRM design.

2.  ANALYsSIS

In this secdon, well-known results pertaining to the stability
and robustness analysis of the system in Figure 1.1 are briefly
summarized. The compensartor K in Figure 1.1 is known for the
purposes of analysis, and is incorporated with the piant P via a
lower linear fractonal transformation to vield the closed-loop
operator S (Figure 2.1).

S = Fy(P, K) = P;; + P;»K(I — PK) 'Pay (2.1)

Figure 2.1 Analysis block diagram.

Nominal Stability

For a permurbation A identically equal to zero, stability of S *
will be guaranteed by the Youla parameterization of all internally
stabilizing compensators [9, 10]. All such compensators are
described in terms of coprime factorizations of the plant P and a free

parameter Q € H,_,. This compensator strucrure results in an
internally stable closed-loop map S that is affine in the free
parameter Q, i.e.

S=T;+TpQTy (2.2)
where Tj; is a function of the plant P and is in H...
Stability and Performance Robusiness

The closed-loop transfer function from the inputs d to errors €
in Figure 2.1 is given by the upper linear fractonal wansformation
F. (S, A).

Fy(S, A) = Sas + S0, A = S1;47S, (2.3)

- Then, to satisfy the stability and performance robustness
requirement, F (S, A} must be stable and "small" for all possible A

€ A. The following theorem establishes the robusmess criterion.

Robust Perjormance Theorem {8}
Fy(S. A) is stabie and Il F(S. A)ll_.< 1 V A € 4 if and only
if
HulSGm]li_<1
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where 1 is the structured singular value computed with respect to the
appropriate biock strucrure.

From the properties of the structured singular value in [S] and
Egn. (2.2), the Robust Performance Theorem is satisfied if

I D(T}; + T12QT2)D < 1 (2.4)

for some diagonal scaling ransfer funcnon D andaQ € H,..
3. SYNTHESIS

The synthesis probiem will be discussed with respect 10 the
block diagram in Figure 3.1. The natre and smucture of the
perrurbanon A impose known conswmaints on the feedback system;

hence. A may be ignored for now.

Figure 3.1 Synthesis block diagram.

From the previous secton on analysis, we know that a
compensator K can be found to meet the design objectives if a
funcdon Q exists such that

Qe H. (3.1)

1 D(Ty; + TQTD I, < v (3.2)

At each frequency, D is a known, real, diagonal scaling matrix.

Note that 7y is just a scale factor to ensure the synthesis problem has

a solution. The CRM will find the minimum ¥y and a wansfer
functdon matrix Q that satsfies (3.1) and (3.2), for fixed scaling D.
The compensator K in Figure 3.1 is then computed as a function of
the Q parameter and the coprime factorization of P. '

The first step of the CRM is the design of a nominally
stabilizing compensator K, ., for the design plant model P. This
may be accomplished by any existing synthesis method; the
robusmess of this design is a lower bound on the robusmess of the
feedback loop to be designed by the CRM. The H,_, methodology
[11, 12, 13] provides a reasonable starting design for the CRM
since the largest singular value is an upper bound on the stuctured
singular value [5]. The nominal closed-loop map is simply S
FX(P’ Knom)-

The robustness properties of S ., are determined by

nom ~

computing an upper bound on W[S . (Gw)] [5]. This will resultin a
real, diagonal scaling mamix D at each frequency, and a measure

. .
of nominal robusmess ¥, __.

D, (@) = arginf of DS__ (D" ]

DeDl

(3.3)




where

D = { diag(d;Ldol, ... &D 14 € R, ) (3.4)

D_ 1y

Ymm = “ I?nam Sﬂom nom

(3.5)

The next step in the CRM is the parameterizaton of all
stabilizing compensators in terms of the free parameter Q € H,, [9,
10]. This parameterization is performed so that the nominal
compensator K, and the nominal closed-loop system S result
when Q is the zero funcdon [14].

Form the right and left coprime factorizadons of the plant
mansfer funcon mamix Paa.

P = NM! = 31IK (

(93]

It is shown in [14] that funcdons U and V-in RH_ may be computed
so that

NUu-MV =1 (3.7)

Kopom = UV (3.8)

The following two theorems are well-known.

Theorem 3.1

The set of all proper controllers achieving internal stability for the
feedback system in Figure 3.1 is parameterized by the formula

K = (U+MQ)XV+NQ)™, Qe H. 3.9)

Tke above theorem parameterizes all stabilizing conwoliers for the
plant P in terms of a free parameter Q. The affine paramererizaton
of the stable closed-loop mansfer function marrices from exogenous
inputs d to errors e follows.

Theorem 32
The set of all closed-loop mansfer function matrices S fromdto e
achievable by an internally stabilizing proper conmoller is

S={S}|S=T;; +T;aQT42;, Qe H,,I+ Dsx QG
invertble at @ = oo} (3.10)
where

Ty =Py +PpUMPy

= Snom
T2 =P2M
Toy = MPy

Theorem 3.2 parameterizes all stable closed-loop maps from d
10 e in terms of a stable, causal funcdon Q. The most elementary
funcdon in H,, is the zero funcdon, and by consTucton the resuitng
closed-loop is S . However, S and the robustness bound
Ynom TMAY Ot Tepresent adequate siability and performance
robustness of the feedback system (i.e. v, > 1). Thus, the aim of
the CRM is w improve the robustmess of the ciosed-ioop system

(i.c. decrease the robustness bound ) by exploiring the extra degree
of freedom available in the free parameter Q. The CRM may be
thought of as an aigorithm to "fine-tune” the nominal design S,
by adjusting the frequency response of the transfer function matrix

- Q. In the remainder of this section, a procedure is developed to

find a Q € H_, such that

v
‘nom

<

D, (T + T12QTa)D, . Il (3.11)
The implicaton is clear. Start with a "good” nominal design

T1;1 = Spom. and the CRM will produce another closed-loop system

whose robusmess is at least as good as that of the original design.

Remark
The scaling D is computed as a funedon of S, (Egn. 3.3). and
does not change throughout the CRM process. As we shall see. this
greatly simplifies the design problem and leads 10 a convex program
in Q. However, we are now no longer wying to optimize the
structured singular value p; the infinity norm of the scaled closed-
loop system, D (T + T1,QT>y)D
the fixed scaling D ).

Once a compensator has been computed by the CRM, S,
may be redefined to incorporate this new design. The scaling Do

om -+ Will be minimized (for

is recomputed, and the causality recovery process repeated. This
represents a different approach to the DK iteration described in [6-
8]. As such, the procedure is nonconvex and convergence to the
globally optimal compensator and scaling is not guaranteed.

Optimal Noncausal Design

The Causality Recovery Methodology twreats the constraints in
(3.1) and (3.2) independently. This allows the designer to
temporarily ignore the causality resmriction on Q and examine the
synthesis problem at each frequency. The radonale behind this
approach can be simply described in a single-input, single-output
context. .

A function in H_, (i.e. a stable, causal function) is analytc in
the right half plane. Cauchy's Integral Theorem applied along the
familiar Nyquist contour imposes constraints on the frequency
response of such a functon (i.e. Bode's gain and phase integral
relationships [1]). The phase (gain) of a stable, causal transfer
function is completely deiermined by the gain (phase) over all
frequencies. When the stability/causality restriction is lifted, there is
no relationship berween the gain and phase of a system from one
frequency point to the next. Therefore, we can eat each frequency
point as independent from every other frequency.

This philosophy allows one to maximize the "robusmess” of
the feedback system at each frequency using only complex martrix
arithmetic. The result is a closed-loop funcdon with "optimal”
performance-robusmess. In this case, the price paid for such
optimality is that the closed-loop system will not be causal in
general. That is, the functon will be a member of L, not H_..
However, such a system will provide a lower bound on the
TODUSIMESS Measure .

The, frequency by irequency approach to maximizing
robustess suggests the following optimizaton probiem for finding
the optimal. noncausal functon Q°.
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Figure 4.1 (f_onvcmiona} feedback structure.
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Given the problem structure in Figure 4.1, the plant P in Figure 1.1
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G is the plant to be conwolled

W, is the uncertainty weighting functon (i.e. the bound on the
input multiplicative modeling error)

W, is the performance weighting function (i.e. the bound on
the output sensitivity function)

is
0
P = -WeG
i -G
where
The nominal plant is

a

G(s) = é [O

0
1/a

|

4.2)

For a = 5, the singular values of G(jw) are shown in Figure 4.2.
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Figure 4.2 The frequency response of the singular values of the
nominal plant G.

The multiplicative unceriainty at the plant input results in a
perturbed plant

G=0GI+L] (4.3)
The bound on the muldplicative error L is
oo
1000 |°
W (s} = 0.5(s+1) ———
(5 R 1! 4.4

The singular values of W, (jw) are shown in Figure 4.3.

After examining Eqns. (4.2) and (4.4), one may conclude that
the system is decoupled and can be treated as two SISO problems.
This is not the case, however. The diagonal uncertainty weight
merely provides a bound on the singular values of the multiplicative
perturbation; a legal perturbation may be a full ransfer function
marmix. In such a case, the perturbed plant G would be coupled.
Thus, this problem is rruly multivariable in nature and may not be
treated as rwo SISO designs. In the sequel, we will evaluate the
performance of the CRM design with one of these coupled plants.

The performance weightdng function was chosen to provide a
"cross-over gap" with respect to the uncertainty weight in Eqn.
(4.4).

w00 |1 01

05(s+1)
s+ 10000 1_!

W (s) = (4.5)

The singular values of W _(jw) are shown in Figure 4.3.
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Figure 4.3 The singular values of the uncertainty and performance
weighting functions.

A (four-block) H,, design was performed for the plant model P
in Egn. (4.1). A recent advance by Doyle and Glover [18] allows
one 1o efficiently solve H,, feedback problems through the solution
of two Riccati equadons. This procedure was used to compute the
diagonal H. compensator K = shown in Figure 4.4. The
characteristics of the closed-loop transfer function Spom = Fi(P,
K .om) are plotted in Figure 4.5. The robusmess bound of the H_

designis vy, =1.91. )
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Figure 4.4 The singular values of the H_, compensator K.




Q) = srgmin_o { D, G T;, Go) + T,,00) QTG0 ID,__ o™ }
Qe C

1t is easy to prove the following result. 3.12)

Theorem 3.3
The optimization in (3.12) is a convex program in Q.

Remark .

The optimization in Eqn. (3.12) is carried out independently at every
frequency. The parameters are the real and imaginary parts of the
elements of Q. This results in having.to calculate 2mp real. scalar
parameters at each frequency.

The robusmess bound on the opdmal noncausal system is
'Y- =1 Dmm(Tu + THQT:])Dnom’} ”w (313)

The measure ¥ is a lower bound on the performance-robustmess
measure that may be achieved by aQ € H...

Causality Recovery

The optimal noncausal function Q* € L.., and is in general not
in H,.. Thus, the restriction imposed by the Youla parameterization
is not satisfied and nominal stability of the closed-loop is not
achieved by the function Q°. In this secton, we propose an
algorithm to find a Q € H.. such that the closed-loop performance-
robustness is no worse than, and hopefully superior to, that of the
nominal design, i.e.

I Dnom(Tll + TIZQTZX)Dncm-1 “-» < Yom (3.14)

This process, referred 1o as causality recovery, may be thought
of as an adjusmment of the frequency response of QT in such a way
as to reduce its noncausality, or distance from H_, subject to a
robustess constmraint on the closed-loop function. An aliernative
view is that causality recovery is a search for an H,, function over a
tube in complex matrix space versus frequency. The robust
performance specification dictates the geomerry of the mbe.

Define the feasible set of frequency responses that satisfy the

robustess specification ¥, for ¥ €V < Ynom-
©={Qe L.l 1D (T} + T1QTo) Dt . < 7 ) (3.15)

At a specific frequency, the feasible set € may be interpreted as a
set of complex marmices Q satisfving

G {Drom(@)[T13G0) + T12(0)QT21 ()] Dpom(@) '} < ¥ (3.16)

The feasible set & contains all L, functons that satisfy the
robust performance specification for a given y. We wish to

etermine if any of the L functons in & are also in H_. The
fundamental component of the Causality Recovery Methodology is
an optimization probiem to establish the existence of a Q € © N
H,. Nehari's Theorem [11, 12, 15] states that an L_ function Q is

-5-

in H_ if and only if the norm of the Hankel operator with symbol Q,
fir Q I, is identically zero. This suggests the following optimization
problem.

min |l TQ Il ) (3.17)
Qe

This probiem is at the heart of the CRM, and it is easy to prove thar:

Theorem 3.4
The optimization in (3.17) is a convex program in Q. .

If an H_ functon lies within & (for a given ¥), then the
minimum in (3.17) is zero and the argument Q resuits in a nominally
stabie closed-loop that achieves the robust performance objecve. If
7 is 100 small (i.e. the performance specificatons are 100 stringent
for the given amount of modeling error), a stable, causal function
may not lie in the feasible set and the minimum Hankel norm will be
some positive number. A binary search over the interval [¥", Voom]
can be used to find the minimum 7 that admits an H_, functon into
the feasible set. The search procedure is analogous to the y-iteration
that is performed as part of the standard H,, design process [11, 12,
131.

] The optmization in (3.17) is an infinite-dimensional, convex
program due to the definition of € as a set of L funcdons. For
implementation purposes, a finite-dimensional (i.e. computable)
algorithm that approximates the optimization program in (3.17) and
the CRM ty-iteration has been developed [14]. Unforwnately,
convexity is lost in the finite-dimensional case.

Although the Hankel norm optimization is no longer a convex
program in Q, the algorithm in [14] guarantees the finding of a
finite-dimensional, rational twransfer function matrix Q with the
following propertes.

(M) Ty li<e

-1
(2) Il Dnom(Tll + T12QT21)Dnum ”- = Yoom - ke

for any € > 0, and some k > 0.

A Qy in H,, (i.e. with Hankel norm identically equal 1o zero) is
then computed as the best H,, approximation of the Q produced by
the CRM algorithm, using the procedure in [16]. The closed-loop
robusmess associated with Q is within a multiple of € of the

robusmess measure associated with Q [14]. The CRM compensator
K is constructed according to Eqn. (3.9).

4. ANUMERICALEXAMPLE

This section presents a design example to illustrate feedback
system synthesis via the Causality Recovery Methodology. More
specifically, we show how the CRM improves the performance-
robusmess of a feedback system. The problem 1o be considered is a
mulnvariable system created by Stein [17]. The fzedback soucture
is given by the convendonal block diagram in Figize 4.1. Thereisa
muldplicanve uncerminty block at the plant input and a performance
specification at the plant output. Note that this is a special case of
the morz general framework in Figure 1.1,
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Figure 4.5 Characteristics of the closed-loop transfer function S
for the H_ design.

The CRM procedure was carried out as described in Secton 3,
and the singular values of the resulting diagonal compensator are
shown in Figure 4.6. The frequency response of the CRM scaled
closed-loop transfer function matrix, Dpom(Ty1 + T12QT21)Daom s
is shown in Figure 4.7. The robusmess bound in this case has been
reduced to 1.61 (compare with the H_, design v, = 1.91). Thus,
the CRM has improved the performance-robustness of the closed-
loop system.
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Figure 4.6 The frequency response of the singular values of the
CRM compensator.
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Figure 4.7 The response of the largest singular value of the CRM
closed-loop matrix.
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The implications of reducing the robustness bound are best
understood in the context of the conventional feedback loop in
Figure 4.1. A performance comparison between the H_, and CRM
compensators will be made for a given reference command.

The output (y) responses to a reference command r = [1 1] are
shown in Figures 4.8 and 4.9. The y, response of the H_, design
exhibits 18% overshoot and no undershoort (Figure 4.8). The y;
response of the CRM design has the same overshoot, and a linde
undershoot (Figure 4.9). However. the settling times of the two
designs are approximately the same (6 seconds). The y, CRM
response has much less overshoot and a significantly faster settling
time when compared to the H,, design.

The true benefits of a robust design methodology, such as the
CRM, are brought to light when the plant in the feedback loop is
other than the nominal plant G. From Egn. (4.3), a perrurbed plant

Gisa procuct of the nominal plant G and some mulriplicatve input
uncertainty. The following wansfer function marrix is a /egal plant,
as defined by the set of admissible perturbations A and the
uncertainty weight W,(s).

a ka
S s+5
G= (4.6)
i
s+5 S

where a =5 and k = 1.75. The response of the system in Figure 4.1
is examined for the case when the perturbed plant G is in the

feedback loop.
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Figure 4.8 The closed-loop output response to an input command r
=[1 1] with plant G
and the H_, compensator.
..A'-I /
4
1A P
i ;
i /
i ’
esif / ;
= ’ ' ,’/
H T i ,"; .
R ;
sed i
Yy !
f |
“; !
-1-’1 i
“ITC < < B T = 14 5 8 D

===e 3=
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=1 17" with plant G and the CRM compensator.




The H.. compensator and the perturbed plant produce a poor y;
stcp response, shown in Figure 4.10. However, the y, response is
virtually unaffected by the perturbation. The response of the CRM
design, with G in the loop, is shown in Figure 4.11. The y;
response exhibits more than twice the overshoot, when compared to
the response with G in the loop, but this is significantly better than
the H_, design. Note that the y, response is largely unaffected by
the perturbation because of the factor of a'! (0.2) in the 621 transfer
funcdon (Eqgn. 4.6). :

The CRM design objective of increasing the performance-
robusmess of the feedback loop was achieved. This resulted in
better closed-loop performance, particularly when a plant other than
the nominal was in the feedback loop. That is, the degradaton in
feedback performance resuitng from plant perturbadons was much
less severe for the CRM design than for the H_ compensator. This
suggests that the four-block H_, design is not pardcularly well-suited
for handling significant amounts of plant modeling error, at least in
__this simple example. . _ .

The most significant drawback of the CRM is the computational
inefficiency of the causality recovery algorithm, as a consequence of
the huge number of optimization problems being solved. Several
days of computation were required on a Micro-VAX workstation.
Clearly, the severe computational burden is sufficient to make the
CRM impractcal at this time if implemented on a serial machine.
However, the optimization programs should be parallelizable for
super-computer implementation. Nonetheless, in view of the recent
breakthrough in efficiently solving H,, feedback problems [18],
Doyle's DK iteration method [6-8] requires more modest resources

to converge to a (local) minimum.
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Figure 4.10 The closed-loop output fesponsc to an input command
r=[1 1] with perturbed plant G and the H_, compensator.
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5. CONCLUSIONS

A new design technique, the Causality Recovery Methodology,
has been developed for the synthesis of finite-dimensional, linear,
time-invariant feedback systems. Stability and performance in the
presence of multiple, unstuctured modeling uncertainties is
guaranteed. The CRM will produce a closed-loop system whose
performance-robustness, expressed in terms of the structured
singular value, is better than or equal to that of a given (nominal)
feedback system. Thus, the CRM may be used as a stepping stone
for a new DX iteration for robust synthesis.

The numerical example demonstrates that the CRM is a viable
design concept. While these preliminary results are encouraging,
the wemendous compurztonal cost associated with the robustness
enhancement makes the method impractcal for implementation on
serial machines at this ume.
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