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1. INTRODUCTION
In this paper, we consider the Maximum a-Posteriori estimation of random

fields observed via nonlinear sensors in multidimensional white noise. Our goal is

to extend the one dimensional results obtained for diffusion processes in [11]. Due

to singularities which appear in the case of non-Gaussian random fields, we defer
the treatment of those to a companion paper ([2]).

The basic model we will deal with is that of random fields generated by the
solution of noise driven elliptic PDE's: loosely speaking, let D be a nice bounded
domain in Rd and let P be a strongly elliptic operator of order 2k, with Pa an

associated boundary operator, the field model we consider is

{Pu(x) = n(x) xeD

Pau(x)=O xeaD (1.1)

where n is white noise. For simplicitvy, we will concentrate on the Dirichlet
problem.

The observation model will be that of white noise corrupted nonlinear

observations, i.e.

y = h(u) + n (1.2)

(an exact definition of the model involved is given in section 2 below).
A typical example of the model is the following problem which we consider

as our prototype example. It motivates our study since it seems suitable for image
analysis applications.

(P) Au - c 2 u = n xeD = [0,1]2

ul =0
aD

x1 x2

y(xl,x 2) = J u(01 , 02)d01d02 + w(xl,x 2)
0 0

where W(xl,X2) is a Brownian sheet on D independent of n. Note that in (P), k=l
and d=2.
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Following the approach of [11], we define the "posterior probability" of the

process u given the observation o-field c{y} as

Jy ()) = li m P(llu-01 < elo{y}) (1.3)
e-0O P(llull < E)

where II II denotes the sup norm. We refer to Jy()) as the "conditional Onsager-

Machlup" functional. We will show in Section 3 that for suitable 4, J(O) is well

defined, at least for almost all y in the support of the measure generated by (1.2).

Note however that unlike in [11], the normalizing constant P(llull < £) depends on

the model (1.1) used, although not on 0. Actually, in the problem (P) described

above, had we tried to define Jy(o) using for example P(IIA-lnll < e) as the

normalizing constant, the limit in (1.3) would have in general failed to exist, even

for the case h(.) _ 0. This is the main new difficulty in the d>l case, and this fact

forces us to treat the non-Gaussian case separately, for in that case no 4-
independent normalizing constant can be found.

Once (1.3) is well defined, an obvious candidate for a "sample" MAP

estimator is

I= argmax Jy( (1.4)

From this point on, the treatment is similar to the 1-D case: the existence of

estimators is proved and a representation result derived. In the case of linear h(.), a

convexity argument yields also the uniqueness of the estimator. When specified to

our prototype problem (P), the results read:

AA24 = -h'($)h(0) + h'($) y in D

$=Oon aD (1.5)

0 =Oon aD
av

and the term h'(4$) is to be understood in the Ogawa sense, c.f. definition 3.1

below.
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Finally, we remark that we have not tried to treat the most general case

possible: thus we consider only bounded domains, we do not consider pseudo-
d+l.

differential operators (which for d such that 4 is not an integer are natural

candidates, since A(d+l)/4 creates in Rd the Levy motion) etc. The results

concerning existence of the limit J(O) and of solutions $ do however seem to carry

over.

The organization of the paper is as follows: in section 2 below we define

rigorously our model as well as the notations used. In section 3 we define the

conditional Onsager-Machlup functional and prove it's existence. Finally, in

section 4 the estimation problem is finally attacked: existence and representation

results are derived.
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2. Model Definition
Let D be a closed bounded domain in Rd, with a smooth boundary AD. Let

P be a strongly elliptic differential operator of order 2k with smooth coefficients,

and let Pa be the boundary operator (of order k-I). We denote by B the Dirichlet

form associated with (P,Pa) (c.f. [1]).
In the sequel, Wm, 2(D) will denote the usual Sobolev space of order (m,2)

based on D. The Sobolev norm in Wm, 2(D) is denoted by II 11m,2 and 11 112 denotes

the usual L2 (D) norm. W '0 2(D) will denote the closure of Co (D) w.r.t. the norm

-m,2 m 2
11 im,2. W 0 ' (D) is the space of distributions which is the dual of W 0 ' (D). We

denote by n the random distribution valued white noise in D, i.e. the random

distribution n such that for each smooth Qe C°o(D), n(o) is a Normal random

variable of mean zero and variance 1kll12. Note that n is W-m, 2 (D) valued for

m>d/2 [9] and that, for OE Co(D) and any basis ei of L2(D),

n(o) = ai(o,e i) (in q.m.) (2.1)
t=l

where the ai in the R.H.S. in (2.1) are i.i.d. N(0,1) random variables, with ai =

n(ei).

By a solution to the equation

1Pu = n inD

(2.2)
(Po u=O on aD

we mean a distribution valued random variable u such that u has a continuous

version and B[o,u] = n(o) for all 4 E Co°(D), where B is the associated Dirichlet

form [9]. Note that u is not a classical solution and moreover even the boundary

conditions need not be classically satisfied. Only if u e W0 ' (D) will one have a

classical generalized Dirichlet problem in the sense of [1, ch.8].

We can show the following basic theorem:
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Theorem 2,1: Assume that 2k > d. Further assume that IB[T,h]n 2 Clq1llk,2. Then

(2.2) has a unique L2 (D) solution which is Holder continuous with some exponent

> 0. Moreover, any two such solutions are equal in the sense of distributions in
-k,2(D)

W 0 (D).

Proof. The theorem follows by an easy application of the machinery developed in

[1], [9]. We therefore give below only it's sketch.

Uniqueness. Let 4 E W0 and let P*ir = a, P*a N = 0 on aD. By the usual theory

PDE's, W2k'2 (D). Let U 1, U2 be solutions of (2.2). Then

o = n(V) - n(V) = Ui(P*V) - U 2(P*lf) = U1l() - U 2(0)

Since ) is arbitrary in W 0 ' (D), one deduces that U1 = U2 in W0k' (D).

Existence. We show the existence only for the case of formally self adjoint

operators, the general case requiring a different but similar construction. We first

quote the following lemma, which is a combination of theorems (16.5) and (15.1)

in [1].

Lemma 2.1. Let {ei, ji} denote the generalized eigenfunctions and the

eigenvectors associated with B, respectively, i.e.

(P - XI) ek = 0, is J, k = 1,2,...,k(i) (2.3)

Then

(a) J is countable and k(i) is finite for all i.

(b) Let N(X) be the number of eigenvalues (counting multiplicty), such

that Re(Xi) < X. Then

N(X) = C ,d/2k + O(d/2k) (2.4)

(Note that (b) implies that when arranged by increasing size, Xi ~ i2k/d).

(c) ei, ie Z+ , k=1,2,...,k(i) span L2(D).
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Note that the assumptions of the theorem also guarantee that lkil 2 c. Let

now aik be the i.i.d N(O,1) r.v. given by ai,k = n(ei). Let Ai be the k(i)

dimensional matrix.

A i= 1·* 1 '(>K0
and bik the k-th element of the vector

(Ai)-j

ila i,k(i)

We claim that

ieZ+ k=l

Note thatE(lullI)= E(b k)<C ( 14k-d) <°, and therefore usL2(D). It

i,k i

is easy to check that u does indeed satisfy (2.2), and the existence of a continuous

version follows from Kolmogorov's criteria. We ommit the details.

We conclude this section by defining the observation model: let h(.):R -- R

be a C2k+ l function with all derivatives up to order 2k+1 bounded. Let n be a d-

dimensional white noise, independent of n. Note that

X1 Xd

W(Xl"'"Xd) = J | n(Ol,'...,Od)dO 1 ... dOd (2.5)
0 o

is a Brownian sheet. We define the observation model y(x), xe D as
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X1 Xd

y(x) =j... h(u(01. 0d))d+ w) (2.6)
0 0

Note that as in [10], the measures generated by y(x) and by w(x), x- D are

equivalent with Radon-Nikodym derivative:

dP = exp( h(u(O))dw(O) - h (u(O))de) (2.7)
dP 2

W D D

where the first integral in (2.4) is a stochastic integral which is well defined since

u(x) is independent of a{;(O), 0 E D }. We refer below to (2.7) as the "likelihood ratio".
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3. Prior Density - The Onsager-Machlull Functional For Gaussian Random Fields
We recall that in [3], [8], the following definition was introduced for the

prior density of a diffusion process satisfying dxt = f(xt)dt + dwt with f a given Cb

function:

Aim P(llx - 11 < e)
I=P) lim (3.1)

E -o 0 P(llwll<£)

where II II denotes the sup norm (here, in [0,1], say). Note that the denominator is

a "standard reference" and does not depend on f.
For 4 E C l+ a , a>0, one can show ([13]) that in the 1-D case,

1 1

log I() = t( - f(4))dt- dt (3.2)
0 0

For linear f, the second term in the RHS of (3.2) is a constant. It's origin can be

traced to the fact that in the Radon-Nikodym derivatives between the two measures

in the RHS of (3.1), a term of the form f () wdw = If () appears; under

the conditioning of w small, the dw2 term drops and one recovers (3.2).

A natural approach to the multidimensional case would try to compute
(3.1). However, here instead of f f ()wdw, one would have a term of the form

ff' (O)P-l(n)n. Proceeding formally, it is easy to check that this term is infinite,

even under the conditioning of Ilwll small. We postpone the treatment of the case of

nonlinear drifts to [2]. For Gaussian fields u generated by P, however, one has:

Theorem 3,1:

Let j(<) _A P(u-<1ke) Then
P(llull<e)

41;2
a) J(E) = lim JE(0) exists for p E W ([3 which satisfy the boundary conditions

= 0

P0=0.
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b) J() = exp- (PO>)2
D

Proof. Let A denote the Radon-Nikodym derivative between the measure induced

by u and that induced by u-q. One then has [7]:

A = exp (i-(P)n -1 (P)2)
D

Note now that

JE() = E0(AlIIull < £)

where E0 denotes expectations w.r.t. the measure defined by 0 = 0. Therefore, to

prove the theorem we have to show that for q E w4k,2(D),

E0(exp i- (P)nlllull<e E- 1 (3.4)
D

Note that since Pq E W2k,2 (D) L2(D), and is deterministic (and in general,

independent of ua(n)) the stochastic integral in (3.4) is well defined. Moreover,

P4n = PoPu
D D

= I P*(PO)U (3.5)
D

However, v - p*P0 E L2(D) is independent of u. One has therefore Il(P*P)u I

< kllullll112 from which (3.4) follows.

As was the case in [11], theorem (3.1) will not be quite enough, for the

optimal estimate will turn out not to be in W 4k, 2(D). In order to define the class of

functions in which the estimator exists, we need to introduce some new machinery,

which is reminiscent the "Ogawa integration" in 1-D (c.f. [4], [6]):

Definition 3.1. Let 4q E L2 (D) be random and generated by the white noise

n. Let ei be an arbitrary orthonormal base in L2(D) which satisfies the boundary

conditions of (2.2). Recall that n can be represented as n= Zaiei in the sense of
1



distributions in W-d, 2(D) where ai are i.i.d. N(0,1) r.v., and ai = iein is well

defined since ei is deterministic.

If the sum

I=f(~ i a eii (3.6)
i=1D

converges in L2 (f2) and its value does not depend on the choice of the basis ei, we

say that ( is Ogawa integrable and denote its integral I = Jmon.

It is easy to see that if e W0' 2 (D), 0 is Ogawa integrable; actually, we

can have more:

Lemma 3.1. Let u E L2(D) be a deterministic bounded function. Let K E

W 0 ' (D) be a random function generated by if , with 2k > d/2. Then

I (uKon) = P*(K)P-l(u n) (3.7)
D D

where P-l(uff) denotes the unique L2(Dxf2) solution to the S.P.D.E.

PV = u n (3.8)

Pv = 0

which exists, and the equality (3.7) is in the sense that each side exists.
Proof. Assume first that a unique solution to (3.8) exists in L2 (DxQ). By our

assumptions, the R.H.S. of (3.7) exists as a r.v. in L 2(92).

Let now ei denote an L2 (D) basis which satisfies the boundary conditions

associated with P. One has that:

i= (uKei eion = (P*(K) P 1 (uei))(ei o
i=l i = 1 D
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= P*(K) [P 1 (Uei) eon) (3.9)

D =1D

By our assumption on the existence of a unique L2 (DxL) solution to (3.8), one

checks easily that the sum in the R.H.S. of (3.9) converges in L2 (Dxi2) to such a

solution, and (3.7) is proved.

It remains therefore to show that a unique L2(QxD) solution to (3.8) exists.

Note that if a solution which satisfies the boundary conditions exists then it is

unique, since if vl and v2 are two such solutions P(vl-v2) = 0 and vl-v2 = 0 by the

classical PDE theory. We therefore proceed to construct a solution:
Let (Xi, Nfi) be the eigenvalues and the generalized eigenfunctions associated

with P. For simplicity, we assume that the eigenvalues have all single geometric

multiplicity - the general case follows easily since by [1] the eigenvalues have

always finite multiplicity. Note that since u is bounded, uxrk E L2 (D) and one has

ufk(x) = E bk r (x)

where b = ufkkVf. Let ak Vkon. Define

Co= (X bk ak

Note that

E: Cc = _E t b1)2

However, b: = [u(kNfkr, and therefore

E (bk ) = A V2
ki~~_: 166/I(
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Therefore, El C2 < c < oo for 2k > d/2. Define now
( 3X2

v=CCrWt(x)

Clearly, v E L2 (D). It is easy to check that v such defined is a solution to (3.8).

The proof is completed.

We are ready now to state the extension of Theorem (3.1) which we will

need in the sequel.

Theorem 3.2.

Let q E W2k,2(D) be random and generated by some white noise n

independent of n. Assume that q satisfies the boundary conditions associated with

P. Let v = Pq E L2 (D) and assume that

P*V = A(O,f) + K(4)on a.s. (3.10)

2k
where A(O,y) E L 2(D) and K(-) E Cb (R - R), where by a solution we mean

that for any g E C°°(D), rPg= 4gK()oii + i A(,)g. Then the conclusion

of theorem (3.1) still holds a.s. in n.

Proof. We have only to show that

EO(exp J o onlllull < £,n) - 1 a.s. n
D

Note that by lemma (3.1) (with u=l, K = (P*)-IA(O,xq)), the A(O,f) term in (3.10)

does not cause any difficulty. Therefore, we actually need to show that

= E(exp J nronlllull<e,n)4-l1 a.s. n
D

where
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Par = K(O)on

Indeed,j = V - (P*)-lA(0,v). Note that

ge > exp Eo(4dF onllull < e,f) = 1 (3.11)

due to the symmetry in n on the conditioning set Ilull < £. On the other hand, let ei

be the eigenfunction expansion of P, which spans L2 (D), and assume for simplicity

that all eigenvalues are simple (the general case does not pose any difficulty). Then

J v on = (, ei)(ei,n) = (P*, P 'ei)(P*ei, Pl1n)
DD i=l i=l

= (p*, ei)(ei,u) = C (P*v, (ei,u)ei)= ,uK(q)on
i=l i=l D

(3.12)

where we have used the fact that ei E Cb(D) and u is bounded. Applying lemma

3.1, we have therefore that

J Won= P*(K()) P (un)
D D

Therefore,

IJ onl < C [IP-'(un)ll2 (3.13)

D

Note that 0 = P-l(un) is conditioned on u a Gaussian process with

E(11011 21u) < Cllu112 converging to zero as lull -> O (see lemma 3.1). Therefore,

for any c>0



Eo( glllull < e)

< EO(exp cJ Cg onlllull < £)
D

< EO(exp cl ll 0 2l1 llu l l < e)

< EO(Eo(ex p c 1110 112u )l l lu ll < e)

< EO(exp c211ull2lllull < e)

< exp c 2 £ -- 1 (3.14)

Combining (3.14) with (3.11) one obtains the theorem.
In the sequel, we say that 0 E L if 0 satisfies the conditions of theorem

(3.2).
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4. MAP Estimator
We start by finally defining our MAP estimator: Let u denote the solution of

(2.2) and let y denote the observation defined by (2.6). Define

e P(llU-¢11<El{ly})
Y P(llull<E)

We make the following definition:

Definition (4.1):

Let Jy(o) = bliJy(0), and assume a (not necessarily unique) solution exists

to the following stochastic optimization problem

-arg max J y() (4.1)

A L

Then 0 is called the MAP estimator of u given o{y}.

Remark. As we will see below, a version of Jy(o) can be defined for all y in the

support of the law of y defined by (2.6). Therefore, the optimization problem of

definition (4.1) is well posed. It will also hold true that the optimization of the

expression we have for Jy(4) over a space larger than L (specifically, over W 0 (D))

still yields a solution in L. It therefore justifies the fact that we look for a solution

in L to start with.

In order to compute Jy(q), we start with the following lemma, whose proof

we defer to the appendix:

Lemma (4.1)

Let dPy be as in (2.7). Then
dPv
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E dP y, Ilu-(11 < e exp( h(O(0))dy(O) - J(0())dO (4.2)

where the stochastic integral in the RHS of (4.2) is well defined for all ¢ E

w 2k,2(D) and W in the support set of the measure defining y by the pairing between

W-d/2-8,2 (D), (8<2k-d/2), and W 2 k,2(D) (i.e., it is well defined even for 4
stochastic which depends on y).

Combining now lemma (4.1) and theorem (3.2), one has the following easy

corollary.

Corollary 4.1.
VO E L,

A A 1 I h(po())d i 
y () =log Jy()= h(((O))dy(O) - h2(())de - ( )d]

D D D

(4.3)

Having defined the cost functional ty(), we can turn to the existence issue.

We claim:

Theorem 4.2.
Assume that the conditions of theorem 2.1 hold together with h E C 2 k+l(R)

and h' C2k (R).

Then a solution to the problem

= arg max J y()

exists. Moreover, in the case h(x) is linear, this solution turs out to be uniqe.

Proof. The proof follows closely the lines of [12]. We proceed in two steps:

a) We show that for each ye C(D),

lim 1y()=- - , y(O)•. oo
1IPII 2K2



-18-

b) We show that ly(o) is lower semi continuous w.r.t. the weak

topology in W2 k,2(D).

Note that a) and b) imply the first part of the theorem, for by a) there exists

for each yE C(D) a number R(y)<oo such that the supremum of iy(o) is achieved

inside a ball of radius R(y) in W2k,2(D). This ball being weakly compact, b) then

implies that the supremum is actually achieved. Note that due to the strict convexity

in q of iy(o) when h(-) is linear, the second part of the theorem follows once the

first part is proved.

We turn now to the proof of a): Note first that Jy(O) = jh(O)dy -

h2(0)Vol(D) > -oo. Due to the ellipticity of P and our assumptions on P, there

exists a cl > 0 such that

(P(0))2do > (c i lkI2 - c211ll2 ) V%,ll2
D

On the other hand,

fh()dyl < Ilyl 8,2 Ilh()ll d/2+8,2 <c4 (y)(11011 2 + lAkll 2)
D

with c4(y) < oo, where 6 < (2k-d/2). Let IIAkIll2 = x, 110112 = z. Note that 11112k,2 <

C(x+z); one has then

X+Z -4

Yy()) < -((Cl x2 - C2 Z )VC3 Z2) + C4 (X+Z) --

and the proof of a) is completed.

We finally show b). Note first that since 2k>d/2, weak convergence in

W2k, 2 (D) implies strong convergence in L2(D) and therefore the second integral in

the R.H.S. of (4.3) is weakly continuous. Considering the first integral, note that

it is defined by the pairing <W-2k,2, w2k,2> and since dy E W-d/ 2 -6/2(D)

W-2k,2 (D), the weak continuity follows immediately. Finally, considering the third

integral, let On -- > in W 2k,2(D), then clearly B[On, ei] -- B[0,ei] where ei is any
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member of the orthonormal basis associated with P and B in the associated Dirichlet

form. But

lim inf IIPtnI[2 =lim inf (Pfn, ei)2

n-oo n-oo i= 1

= lim inf (B[n, ei] )2
n-4oo i=l1

> J lim inf(B[n, e i ])2
i=l nf-*

- Y, (B[o,ei]) = 112 (4.3)
- ~ r~,~l,2()=IPq~ll2 (4.3)

where we used Fatous' inequality. This completes the proof of the theorem.

We conclude this section by the following representation result for the

estimator $:

Theorem 4.3:

Let k be an integer, k>d/2. Any maximizer of (4.1) is a weak solution of

P*PO = -h'(~)h($) + h'(~)oy on D

%P =O onaD (4.4)

P3P~ = O on aD

where P denotes the boundary operator defined by P* i.e., for 41, q2 E C°°(D)
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2k-1 *

(P*)1' 2) - 1' P2) ( ) a 
j=1 anj

with n being the exterior normal to D, Pa above defined by Green's formula and

(Pa 41) = [(Pal1)k, (PPal1)k+1,...,((PaO1)2k-1].

The proof of theorem 4.3 follows by an easy application of the necessary

conditions of the calculus of variations and is therefore ommitted. Note that by

lemma 3.1 we can understand (4.4) as a pathwise equation defined for each

yV C(D)! Note also that by (4.4), $e L.

Remark: Note that by [5], the Ogawa integral in (4.4) may be replaced by a

Stratonovich integral, by using a Haar basis. This basis also yields an

approximation to (4.4) by means of difference equations.

Appendix

Proof of lemma 4.1:

Clearly, all we have to show is that

E~ (exp I(h(D .)) - h(u-))) oy(0))Ill4-uII < , y) -1 (A.1)
w D

Let u6(0) A u(0)*j8 (0), 8(0o) 'A 0(0)*j6(0) where j6(0) is a 5(e) molifier
(say, a Poisson kernel). We will choose 6(e) - 0 below. Note that (A-1) will be

proved if we can show that

A .(E)--0
P1 exp(c (h() - h(086))oy) - 1 (A.2a)

D

2 A 5(exp&J"h)-0 A
: E _ (exp(ch(0 ) - h(ua))oy)III-uII < E,y) - 1, VteR (A.2b)

w D

6(£)--0
3 EE (exp( J(h(u0 )- h(u))oy)I - ull <e,y) - 1, IVeR (A.2c)

D
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Consider first (A-2a): Note that since Oe W2k,2(D),

IIh(O) - h(08)112k,2 < c8 -*0 which implies (A-2a). Consider next (A-2b): Note

that IIllh(0 8) - h(u8 )112k,2 < c 116 - u 8 112k2 < c -. By choosing 8-2k = o(£-1),

one obtains (A-2b).

We finally consider (A.2c): Since under P. , y is white noise and u is
w

independent of y, one has:

(<2 c'82h) ---l
c, Il > 1 E ( 3 )C < E [exp c'h(u) - h(u)l 2 exp(c '2) 1

w w

which concludes the proof of the lemma.
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