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ABSTRACT

This paper is concerned with obtaining necessary and
sufficient conditions for robustly stabilizing a class of plants
characterized by a known linear shift invariant plant with additive
perturbations of the form of possibly nonlinear, time varying f--
stable operators. We will show that, in some sense, the small gain
theorem is necessary and sufficient even when the perturbations
are restricted to a class of linear operators.
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Notation
R real numbers
CP(1<p<oo) one-sided sequence of real numbers u = (uo,

ui, u2,...) with the norm Ilullp = (EluilP) 1/P < oo.
Coo one-sided sequence of real numbers u = (uo,

ui, u2, ... ) with the norm Ilullo = supluil <oo.
C°° e extension space of [- .

A algebra of BIBO linear, shift-invariant,
causal operators on Io-
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Hoo bounded analytic functions on the unit disc
with the norm IIfII. = ess sup jf(eiO)l < o.

gp(1 <p_<o) gain of an operator A: P --> f P.
IIA(f)IIp

gp(d) = sup
fl p\{o}) Iflp

PN truncation operator
PN: (UO, ul, u2,...) -- (UO, Ul,...,UN-1, 0,0,...).

An operator F:t -e --> f e is called proper (causal) if PNF = PNFPN and

strictly proper if PNF = PNFPN-1. Note that the set of strictly proper
operators is an ideal of the ring of proper operators. Note also
that if F is a strictly proper operator then (1+F) is invertible as
an operator I le --> f e.

1. Introduction
The basic motivation of this work is to incorporate robustness

in the I 1-based design methodology [1], and highlight its
conservatism.

Define the class of plants

Q= {P = Po + WA}

where Po is LSI (linear shift invariant), W is a stable LSI filter and
A is an arbitrary I--stable, strictly proper operator (i.e. possibly
nonlinear time varying) with gain

11A(f)11
g (A) = sup l < 1

It was shown in [2] that a LSI compensator C that stabilizes Po, will
stablize all plants PeQ if

IIC(1+CPo)-lWIIA < 1 (C1)



where IIHIIA= lhlil 1 and h is the pulse response of H and Adenotes the
algebra of BIBO linear, shift-invariant, causal operators on Coo (see
[1], [2]). We note that the conservatism of (C1) was not discussed.

The main result of this paper is to show that C1 is also
necessary. By this we mean that if C1 is not satisfied, then there
exists an admissible A such that the closed loop system is not BIBO
stable.

At this point it is interesting to note that results parallel to
the above have been derived for the H,-problem [4]. There it was
shown that

IIC(1+CPo)l WII < 1 (C2)

is necessary and sufficient for robustly stabilizing the class

)' = {P = Po + WA, g 2(A) < 1}.

Also, it was shown that if C2 is not satisfied then there exists a
LSI A, IIalloo < 1 such that the closed loop system is not ( 2-stable.

2. Main Result
The main result of this paper is the following Theorem

concerning the small gain Theorem:

Theorem: Let QeAand suppose A is an oo - stable, strictly proper
operator with go,(A)<l, then the operator (1+QA) has an o- - stable
inverse with bounded gain for all A if and only if IIQIIA = Ilqlli < 1.

From this theorem, we obtain the result on robust stability:
Corollary: Condition C1 is both necessary and sufficient.
Proof of Corollary: Immediate from [2] and the above theorem.
Proof of main theorem:

The sufficiency is immediate from the small gain theorem [3].
For necessity, we assume that Iq19I > 1 and construct a A such that
(1+QA)- 1 is not /--stable. The proof will consist of two major
steps:
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Step I: In the following lemma, we show that if IIq111>6>1, then
there exists an input ee C(oe such that

IIPN-1(Qe)ll > 1 V N > N

IIPNello
and

lim IIPNell = Ol
N--oo

Step II: Use the above e to construct an admissible linear shift
varying A such that if u = Qe, then

(1+QA)u e £ (

Noting that ue f ooe \C ' this proves that (1+QA)-1 is not C o-stable.

Step I
Lemma:

Suppose qeC 1 be a convolution operator with Ilql1i > 6 > 1. Then
there exists an input eef e \f V and an integer No such that for N>No

IIPN_l (q*e )ll oo
8>> 1

IIPNell

Proof: The proof is by construction. Since Ilqlli > 6, there exists an
eo c r oo, eo(O) = 0, Ileollo = 1, such that Ilq*eO1100 > 8. Because q is
causal, given M with Ilq*e01oo > M > 6, there is an No such that

IIPNO (q*PNOe)ll >_ M.

Given m>O, there is an N 1 such that
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. Iq(k)l < m
k=Nl+l

such a N 1 can be found since qe( 1.
We define e e C e as follows:

(x(k)eo(i) 0S-i<N°

e(k(No+N1 ) +i) = (k)
O No+l<i<No+N 1

(k=O, 1,2,...)

where
a(k+l) = 6-16(k)

3(k+1) = Ma(k+l) - y(k)
y(k+1) = ma(k+l) + y(k)
a(0) = 1, 1(0) = M, 7(0) = m.

Notice that a,x,y have the following interpretations.
x(k): the magnitude of the k-th chunk of input
13(k): a lower bound of the magnitude of the output during the

k-th excitation.
y(k): an upper bound of the accumulation of the fringe effect

of the j-th (j=O,...,k) input.
Now we claim that for m small enough and 8 close enough to 1,

we have e e °°e\C and

IIPN_l(q*e))11o
I>PNell 6 > 1, N>N .

Henceforth we assume that m is small enough and 5 is close enough
to 1.

(i) We will show that, eCf -e\f °:
Let 4(k) = [D(k), y(k)]T. Then we have the following

difference equation:
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4(k+l) = At(k), 5(0) = [M,m]T

a(k+l) = [6 ,O](k), a(O) = 1

Ma-1 1
A= 1 1

For 6=1, m=0, A has eigenvalues, {1,M}. Furthermore the unstable
eigenvalue M is controllable with the input vector [M,O]T and
observable with the output vector [1,0]. Hence by the continuity
argument we see that A is unstable and the unstable eigenvalue is
controllable with the input vector [M,m]T and observable with the
output vector [1,0]. Hence it follows that (z(k) -- o as k -- oo. This
proves efoohe\fo-

lip (q*e)ii
(ii) Now we show that PN-1 > 8 > 1, N>N 0, which can be

IIP elloo
proven as follows:

(ii-i) First recall that the input PN eO has the following property:

IIPNo(q*PNe0 )ll M

I(l-PNo +Nl)(q*PNoe)llo < m

(ii-2) {a(k)}, {1(k)}, {(y(k)} are monotone increasing
sequences. To see that, consider (3,y) -plane and let K be the cone
generated by {[1,0]T, [1, M6-1]T}. Notice that At > 4 > 0 if and only if
4eK. Since the initial state 4(0) = [M,m]T e K, then it is clear {13(k))
and {y(k)} are increasing if Ak4(0) e K for any k. Hence, it suffices to
show that there is an A-invariant cone in K which contains 4(0). Let
,e > 0 be an eigenvector of the largest eigenvalue of A. Then a
straightforward calculation shows that the cone generated by
{[1,0]T, te} is a desired one.
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(ii -3) 11 PN ell. < a(k) k(NO+Nl) < N < (k+l) (NO+N 1)

IIPN41(q*e)ll 2 f3(k) No + k(No + N 1) < N < (k+l)(NO + N1)

This is a consequence of (ii-2) and the definition of a, 1, y.

(ii-4) I1(q*e)ll 6 (N>N
IIPNell 0 >N )

Indeed, 6 = 3(k)/a(k+1) and 3(O)/ca(O) = M>8. Hence if k(No+N1) < N <
(k+1)(No+N1), k > 1, then

IIPN 1(q*e)ll (k-l)

IIPN ell. ac(k)

If No<N<No+N1, then

11,l(q*e)lII > ! >8

IIPNeii a(O)

Q.E.D.
Step I: Construction of the A (linear shift varying):

By Lemma there is an ee C£oe\£ such that

I 1 ll(oo) 2i , N> N (1)

Using e, we define A in the following way: let AN be a bounded linear
functional defined on PN-1 o = {uE£ °°[uk = 0 V k2N}, i.e.,

AN · PN-1 f- R

for all N, then A is defined as
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[A(w)](N) = AN (PN-1 w). (2)

where [A(co)](N) is the Nth entry of the sequence A(co).
Now, we set AN = 0 for any N < No. For N > No, consider the
linear functional fN defined on the 1-dimensional subspace
{PN-1(Qe)} as

fN: {PNl_(Qe)) -} R

fN (PN-1 (Qe)) = - e(N)

Let AN be a Hahn-Banach extension [5] of fN for all N>N0 .
Then it can be shown that A is admissible, i.e., C -- stable,

strictly proper and of the gain less than 1, and that (1+QA)-l is not
oo -stable. Indeed (1) implies that

1A JBl ' Ie(N) < -1 <1. (3)
Nil~= iiPN l(Qe)I_

Hence we have

"All = sup IIA(w)llo
Ilwll =1

= sup sup I[A(w)](N)I
Ilwll =1 N

< 8-1 < 1. (4)

Moreover (2) implies A is strictly proper.
Finally to show that (1+QA)-i is not C -- stable, it suffices to

show that (1+QA)(u) e f c where u=Qe, since from (1), u e fI -e\f .
Note that (1) and (2) imply
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A(u) = PNO e-e. (5)

Hence we have

(1+QA)(u) = u+Q[PNoe-e]

= Q(PNoe) £ [ 

as desired because PN e £ C . Q.E.D.

Remark: One possible A satisfying (2) consists of time-varying gain
and delay. To see this, let M(N), N>No, be an integer such that
IQe(M(N))I = IIPN-1(Qe)ll. It is easy to see that

e(N)
A N (PN- w) = ' Qe(M(N)) )

satisfies (2).

3. Discussion of the Results:
The theorem shows that A can always be constructed as a

linear time (shift) varying operator. It should be noted that it is
generally not possible to construct a linear shift invariant operator.
It is well known that "A" is a subalgebra of Ho, i.e. A Ho. Also, if
HeA then H -1 eA iff

inf IH(z)l > 0
Izl<1

which is precisely the condition for invertibility of an element in Ho.
Hence, the operator

(1+QA)
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is invertible in A for all LSI A, iff IIQIIoo. JJAIJJ< 1. Suppose IIQIIA > 1 but
IIQIIo < 1, then the destabilizing LSI A has to satisfy IlAlloo > 1/IIQIIoo > 1
and hence IIAIIA> 1. Thus, we cannot destabilize the system with an
admissible LSI A.

Also, note that a nonlinear shift invariant A can be
constructed to make (1+QA)-l unstable. Let e, u ecf e be as in the
proof of main theorem. A possible A is

PN(w) (PNo e-e) if N(w) 

A(w) = SK(w) w A(S K(W)W) if (N(w) O0

0 otherwise

where N(w) is the smallest integer N such that w(N) • u(N), k(w) is
the smallest integer K such that w(k) • 0, S is the shift operator;
i.e. [Sw](N) = w(N-1), [Sw](0) = 0. It is straightforward to verify
that ge(A) < 1 and hence A is admissible. This construction was used
in [6] in a different context.

CONCLUSIONS:
The main objective of this paper is to demonstrate that (C1) is

both necessary and sufficient for robustly stabilizing all PeCK. This
is equivalent to showing that (I+QA) has a stable inverse for all A
with gain less than unity if an only if IIQllA < 1. Hence, if IIQII > 1, we
are able to constract either a linear shift varying A, or a nonlinear
shift invariant A such that (I+QA)-l is unstable.

Considering only linear perturbations, the result have an
interesting interpretation. Given a linear A, (I+QA) has a stable
inverse if and only if -1 is not in the spectrum of QA, whose spectral
radius p(QA) is always bounded by IIQII JIAal. The result of this paper
shows that

sup p(QA)=IIQII 
IIAII 1



where A is linear, but possibly shift varying. Also, we have shown
that in general

sup p(QA) < IIQII *IlAl

if A is linear shift invariant. This interpretation highlights the
conservation of (C1) as a robustness measure.
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