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Abstract

Among the various methods to combine classifiers, Boosting was originally
thought as an stratagem to cascade pairs of classifiers through their dis-
agreement. I recover the same idea from the work of Niyogi et al. to show
how to loosen the requirement of weak learnability, central to Boosting,
and introduce a new cascading stratagem. The paper concludes with an
empirical study of an implementation of the cascade that, under assump-
tions that mirror the conditions imposed by Viola and Jones in [VJ01]
has the property to preserve the generalization ability of boosting.



1 Introduction

Boosting, [Sch90], is a simple scheme to combine 3 clas-
sifiers (weak learners) by majority vote and possibly
outperform a single one. It has been related to Game
Theory and Margin classifiers [FS96, SFBLIT7], however
an explanation for the ability to generalize of boosting
methods has so far eluded all the research efforts and
increased the interest in cascades of classifiers. A no-
table example of this interest can be found in the work
of Niyogi et al [NPS00, NPSO01], which presents a similar
3 classifier scheme that replaces distribution reweighting
by explicit decorrelation. That work proves equivalence
with boosting and points out a connection to AdaBoost
(the first implementation of boosting [Fre95, Sch99]).

In this paper I review the work from Niyogi et al.
from the set theory perspective and for the case of linear
classifiers. In that context, set theory will help us gain
intuition on the cascade of classifiers, and will point to
an interesting conclusion: weak learnability is a stronger
assumption than required. This work concludes with a
(unorthodox) implementation of an algorithm that ef-
fectively cascades kernel machines.

2 Three Classifier schemes

Boosting [Sch90] proposes to build a three weak L clas-
sifier scheme according to the following procedure:

e Train a classifier h; on data drawn from a proba-
bility distribution D.

e Build a new Distribution Dy by drawing examples
from D, such that hi performs 50% correct over
Ds.

e Train a second classifier Ay on Ds.

e Build a third distribution D3 resampling from D
such that h; and hy disagree on their output on
Ds.

e Train a third classifier hs on Ds.

The final output of the three classifier scheme is the
majority vote of hy(x), ha(x) and h3(x) on a given input
x. Note that the third classifier can be replaced by a new
3 classifier scheme recursively, leading to the original
Boosting stratagem.

[NPSO01] suggest to decorrelate the errors of two clas-
sifiers hi, hs, and let a third one hz decide upon their
disagreement. The correlation of hy and hg is repre-
sented as the covariance of their errors (ep,):

C(h1,ha) = E((en, — E(en, ) E((en,) — Elen,))) (1)

1

a weak learner performs e-close to chance on the true distri-

bution. Its probability of error is % — ¢ for some € >0

and two uncorrelated classifiers result from solving the
constrained minimization:
min C(hl, hz)
hi,ho€H
subject to: (2)
pleny) < p
plen,) <p

where p < % for h1 and hy are weak learners. Hence,
decorrelation pursues direct minimization of the proba-
bility of both classifiers agreeing when wrong.

2.1 Decorrelating Classifiers

Let us depart slightly from its original formulation, and
introduce the “decorrelating classifiers” scheme from the
set theory perspective. We shall assume that the sets are
built sampling enough data points from the true distri-
bution, so that division by the cardinality of the universe
will yield true expectations. No assertion is made with
respect to the generalization ability of this scheme at
this time.

Figure 1 illustrates the minimization process as sug-
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Figure 1: Decorrelating Classifiers. The outmost set repre-
sents the universe of samples drawn from a probability distri-
bution D. The inner sets defined formally as €,,(x) = {x €
D | hi(x) # f(x)} represent the set of samples that were
incorrectly classified by h;. (a) Initial state upon choosing
two classifiers h1 and hs from the hypothesis space H. (b)
After decorrelating the classifiers h1 and hs according to the
minimization scheme from equation (2)

gested in [NPSO01]. ep, represents the set of errors per-
formed by a classifier h; € H when trained on the set
D. Decorrelating two classifiers hy and hy is equiva-
lent to minimize the cardinality of the intersection be-
tween their respective error sets (Figure 1 feels intu-
itively clearer than this wording). Note that, as illus-
trated in Figure 1(b), decorrelation is likely to have the
side effect of increasing the cardinality of the error sets.
A seemingly undesired property. We overcome this intu-
ition by convincing ourselves that the yet to be discov-
ered third classifier will handle the extra work without
a blink. And defer a more formal discussion of why this
property is irrelevant for later in the text. Then we can



express the agreement set of hq and hs using set notation
as:

A= (en, Uen,) U (en, Neny), (3)

which can be worded as the union of the set in which
both classifiers are correct and the set in which both are
wrong?. The agreement set, like in the original boosting,
will be directly classified, unlike the disagreement set:

A= (en, Uen,) — (en, Neny), (4)

which will be left for the third classifier to decide. Note
that equations (3) and (4) imply that we should look
forward to minimizing (e, Nep,), in order to increase
performance of the combination of classifiers. This is
indeed a first hint on why the increase in the size of the
error sets will become irrelevant.
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Figure 2: Training the third classifier on the disagreement
set. (a) the outmost set represents the training set of the
third classifier, that is, the disagreement set from figure 1(b),
the inner circle represents the set of errors of classifier hs.
(b) Three classifier Scheme representation. The set of errors
of the three classifier scheme appears shaded. The overall
scheme will fail in €, N ep,, and when hz produces an error
over the disagreement set between h; and hz. Note that hs
could still perform errors in the agreement set of h1 and he,
although it will never be invoked if h1 and ha already agreed.

Upon training the third classifier, (see Figure 2) the
error of the three classifier scheme will be fully deter-
mined by the cardinality of the set satisfying hi(x) =
ha(x) # f(x) (with f being the unknown true function)
and the errors of h3 on the disagreement of h; and hs.
Formally we write the probability of error as:

1
Pe:ﬁ(|5hlm€h2|+|5h3|)
; o)
:m |Ehlm‘€h2u‘€h3 |a

and note that it depends on the relative sizes of the error
sets. The worst case scenario corresponds to €5, being a

2When both are wrong, {x | h1(x) € (ep, Nep,)}, we will call
the points unrecoverable errors

subset of €5, , and the third classifier making mistakes on
the remaining portion of e, (see figure 3(a)), formally:

€hy C€n, and ep, =€Epy — Ehy,

which implies a maximum probability of error, from
equation (5):

Pe = | eny |- (6)

1

| D |
We conclude that under these conditions, the final com-
bination scheme would not be able to outperform the
worst classifier in the combination (h1). (Symmetric rea-
soning applies in case e, C €p,)

Conversely, should the first two classifiers never agree
on a mistake (i.e no unrecoverable errors), we would be
looking at the best case scenario (see figure 3(b)), which
we formalize as

Ehy MER, = 07

and yields a minimum probability of error, from equation
(5):
| €ns | - (7)

That is, in the best case scenario the final performance
will depend exclusively on the ability of hs to classify
the error sets of h; and hs; in fact, this argument for-
malizes the intuitive idea expressed earlier about leaving
the work to the third classifier.

Finally note that hz can be replaced by a new three

(a) (b)

Figure 3: (a) Worst and (b) best case scenario analysis.
See the text for a detailed explanation

classifier scheme using hi,h} (compare figures 2(a) and
1(a)) and do so iteratively for every h} until further iter-
ating is impossible given the size of the disagreement set.
Niyogi et al [NPSO01] further elaborate this point to find
a connection between AdaBoost and the decorrelating
classifiers scheme.

2.2 Decorrelating weak learners

In the previous section we have omitted an important
assumption made in both [Sch90, NPS01]. Let us assume
that our classifiers are weak learners:

1
p(en,;) = 3¢ for some € > 0. (8)



This imposes an additional constraint on the size of our
sets, and modifies the worst case scenario to:

€nhy —En
€n, Cep, and EhSZ%—l

leading to the following bounds in the performance of
the three classifier scheme:

len, Uep, |
%_ )
* ( )

P, < ﬁ |Eh1ﬁ€h2|+w1>

Pe> 1

Translating the set-theoretic bounds to probabilities un-
der the assumption of a large enough universe of sam-
ples will take these bounds (9) to their appearance in
[Sch90, NPS01]. This should be no surprise for the
only novelty introduced up to this point was the set-
theoretic perspective for an otherwise well known set-
ting. Nonetheless the introduction of the set-theoretic
perspective accounts for more than simple visualization
aid. It has allowed us to follow a different order in the
presentation with weak learnability, a central argument
n [Sch90], appearing only at the end. And invites us
to review if weak learnability is indeed the weakest pos-
sible assumption allowing us to cascade classifiers in a
(original)-boosting-like manner. In the remainder of this
article, unless otherwise stated in the text, we will pur-
portedly omit assuming weak learnability.

2.3 Weak learnability is not a require-
ment for h; and hs

In section 2.2 we have first introduced the requirement
from [NPSO01] of both classifiers being weak learners. I
believe that within the Decorrelating Classifiers scheme,
it was mostly introduced to point out the equivalence
with boosting as it does not arise from the scheme itself.
Formally, (using set notation) weak learnability requires,
h1 and hs satisfy:

|€h1 ‘: % — mi and
(10)
| ehy |= % — myg, for some 0 < my,me < D

Assume that given two arbitrarily weak learners, it is
still possible to achieve full decorrelation®. Then the
agreement set will contain € < mj + mg correctly classi-
fied points. The overall performance of the three classi-
fier scheme (see equation (7)) will depend on the perfor-
mance of h3 (regardless of it being a single classifier or
a cascade of them) on the remaining | D | —e samples.

3The hypothesis space is an obvious constraint imposed to our
classifiers, but so is weak learnability as it constraints the ability
of the minimization scheme to achieve maximum decorrelation

However, if full decorrelation is not achieved then from
equation (5) the total number of errors will be:

€:| €hy MNEny |+|€h3" (11)

The minimization from (2) implies that in that case, we
hit the constraints before fully decorrelating hy and ho,
and the combination is forced to “give up” on the inter-
section between them as unrecoverable errors.

From the analysis in section 2.1, our goal is twofold:
maximize the agreement set (3) and minimize the num-
ber of Ounrecoverable errors. According to that goal we
redefine the optimization problem as:

max |Eh1 U EhQ‘

hi,ho€H
subject to:
Ehy UEpy| — |Eh1 ﬂEh2’ < |D|
€hy NEny < m for some m >0

(12)
which does not require weak learnability. And impose a
non-zero m constrain on the maximum number of “un-
recoverable errors” to avoid the trivial solution (h1(x) =
—ha(x)).

As we iterate, the final performance of the cascade
will depend on the number of “unrecoverable errors”,
and the performance of the last classifier on the remain-
ing samples. The iteration can continue until only 2 sam-
ple points remain, it is linearly separable, and the perfor-
mance of the combination depends only on the number
of “unrecoverable errors” (which is upper bounded by
the number of iterations times m).

In words, we have just replaced the weak learnability
requirement imposed on the two initial classifiers by the
somehow weaker requirement of forcing them to be coop-
eratively strong. This apparently innocent replacement
will be very useful to device a way to combine kernel
machines, which are more often strong classifiers than
they are weak.

Finally, we shall not prove rigorously the equivalence
to the Decorrelating Classifiers nor to Boosting as pre-
sented in [Sch90, NPS01], because I believe that it is at
least intuitively clear that the only difference with this
approach is the assumption of weak learnability.

3 Decorrelating linear classifiers

Having introduced the new cascade of classifiers, let us
see how to use it with Kernel Machines. Kernel machines
are minimizers of functionals of the form:

l
=23 v

)+ 1k ll% (13)
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where V(-,-) is a cost functional and || h ||% is the norm
of function A in a Reproducing Kernel Hilbert Space
defined by Kernel K.

We choose to study the case of a dot product Ker-
nel (linear classifier), not only because of its simplicity
and the usual arguments concerning hypothesis and fea-
ture space [Vap95], but also because it would otherwise
be difficult to assert anything about possible overfitting
without a rigorous analysis of the type of data targeted.

We further restrict the space of possible classifiers
to that of parallel linear classifiers, the reason for such
a dramatic reduction of freedom will hopefully become
clear immediately, simplicity. Figure 4(a) shows the
agreement(A) and disagreement(D) sets given two par-
allel linear classifiers. For the sake of this analysis I

D
A, A
hl h2 hl h2

(a) (b)

Figure 4: Agreement (A) and disagreement (D) sets of two
parallel linear classifiers h1 and hs, (a) at an arbitrary loca-
tion, and (b) when h; is placed at +oo

wish to introduce a last (quite unorthodox) restriction:
set the classifier A1 at infinity 4, that is:

hl(X) = {1_1

and then Figure 4(b) applies. As in section 2.1 we are
now concerned by the number of errors in the agreement
set, which we control in the choice of hy. We consider a
cost function for hs

V(y, ha(x)) = (1 - yha(x))+,

if hy at —
Ao (14)
1fh1atoo.

and introduce the agreement and disagreement sets cconsid-

ering h; in the cost function as follows:

Va(y, ha(x), ha(x)) = 0(ha(x)ha(x) — 1) (1 — yha(x

Vb (y, h1(x), ha(x)) = 9(1 — hl(x)hg(x)) (1 — yha(x

40ne might argue that a classifier at infinity is nothing but a
mere mathematical construct, and will probably be right. We
choose to see the classifier at infinity as a calibration tool for
“chance”, and as such, however unrthodox in machine learning,
we note the similarity with setting boundary conditions in physi-
cal problems such as electrostatics and gravitational potentials.

with 6 defined as:

O(z) = {(1)

Equation (14) allows us to redefine hi(x) = 6 V x.
Which for the case § =1, turns (15) and (16) into:

if z > 0,

otherwise.

Va(y. ha(x)) = {(1 +ha(x)) iy <OAhy>-1

0 otherwise.
(17)
1—ho(x)) ify>0Aha<1
Vb (y, ha(x)) = {é ) otherwise 18)

The restrictions imposed, however unorthodox, have led
us to relate decorrelation to the asymmetry in the cost
of each class. Given the choices of kernel and cost func-
tional, we may use a linear Support Vector Machine with
different regularization term for each class [Osu98]. And
choose for each possible choice of § € {0, 1}, among the
minimizers of (13) for the one with minimum cost.

3.1 ...and cascading them

At the risk of abusing of the patience of the reader, 1
should like to emphasize that with the above construc-
tion, the cascade is now fully dependent on the disagree-
ment set only (recall figure 4(b)), which can thereon be
treated as a completely new problem. This means that
given a pair of classifiers hy and hs, we shall consider
their agreement set for classification purposes and train
a new classifier or cascade of them on their disagreement
set.

4 Empirical analysis

Section 3 led us to the conclusion that we can choose
to cascade linear classifiers if we adequately control the
asymmetry in the regularization term for each class. The
problem arises when attempting to set the regularization
parameters, for then information on the geomtery of the
problem, namely, the sampling as well as the distribu-
tion of the data is required beforehand for every new
iteration.

We can overcome this problem by making some as-
sumptions on the data and its geometry. I choose to
assume that regardless of where the hyperplane lies at
every iteration, noise exists only in the direction per-
pendicular to the hyperplane and it is symmetrically
distributed with respect to it. This assumption is close
enough to nonsense, for it can only be true in the highly
uninteresting case of all the hyperplanes in successive
iterations being parallel. Yet, this assumption makes
modifying the regularization parameters equivalent to



controlling the threshold, thus similar to the work by
[VJO1].

The easiness for identifying errors as support vectors
makes Support Vector Machines [Vap95] a good candi-
date to train the classifier that will be at a finite location
with the one at infinity being parallel to it. The follow-
ing simple algorithm examines the error support vectors
and determines the threshold (bp, )of the classifier as well
as its direction (i.e., which side will be considered the
disagreement):

> Find x, = argmax f(x) .
false positives
2 if 4 Xp
3 mfp — o0
4 else
5 mfn — f(xp)
6 if mfp # max f(x)
7 mfp «— mfp +e€
> Find x,, = argmin f(x) .
false negatives
9 if A x,
10 mfn «— —oo
11 else
12 mfn — f(xn)
13 if mfn # xglér%/f(x)
14 mfn «— mfn —e
> Assign values to by, and by,
16 if abs(mfn ) < abs(mfp )
17 by, — mfn
18 bh2 — o0
19 else
20 bp, «— —0
21 b, < mfp

Figure 5 shows the results of training and testing
the cascade on a clearly non linearly separable synthetic
problem, and its reconstruction ability for the test data.
Figure 6 shows the results of training and testing the cas-
cade on a similar synthetic problem. Figure 6(b) shows
how the cascade of linear classifiers does not overfit the
data.

Finally, when ran on a real, high dimensional prob-
lem such as face classification with the data from [HPP00],
the cascade still outperforms a single linear classifier (see
figure 7), and proves to not overfit the training data.
However, the cascade is not able to outperform the re-
sults reported in [HPPOO] for a second degree polynomial
kernel. In this case, the different origins of the train and
the test data appear as the most plausible cause for the
slightly worse performance of the cascade; in close con-
nection to its higher dependence on the geometry of the
data.

Train Data (1000 data Points)

Test Data (1500 data Points)
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Figure 5: (a) Synthetic train and test data. The problem is
clearly non linearly separable. (b) Reconstruction of the test
data with the simplified algorithm. Note that the algorithm

is able to approximate non-linear decision surfaces using only
linear classifiers.

5 Conclusions

We have seen how a new perspective on majority voting
allows us to loosen the requirement of weak learnability
in Boosting-like architectures of classifiers. Extending
the work of Niyogi et al. to consider cooperatively strong
learners, we have presented a novel algorithm to com-
bine, better say cascade, kernel machines under some-
how unorthodox conditions. Such combination of kernel
machines first introduces the possibility of harnessing
the power of kernel machines in the form of a cascade
that simplifies the choice of the kernel. The results of
the brief empirical study following the analysis encour-
age further developing this line of methods, which could
soon become an alternative to the always difficult choice
of a kernel.

Further research would strongly benefit from a study
of the relationship between the asymmetry in the regu-
larization parameter of each class and the geometry of
the data. To the best of my knowledge, studies of such
relationship are scarce if at all existing in the current
literature. The difficulty of the analysis of the regular-
ization parameter is often appointed as the main cause
for disregarding that avenue of research.

A careful study of the significance of the classifier
at infinity as a calibration for chance, in connection to
boundary value problems appears as a convenient alter-
native to the analysis of the regularization parameter.
And is the current focus for extensions of the work pre-
sented here.



(b)

Figure 6: (a) Synthetic train and test data. The problem
is clearly non linearly separable. (b) Test Performance of
the cascade. Each point in the curve represents a newly
generated random instance of the original problem, thus the
noisy appearance.

Face No Histo, L, Norm, G=1000

ccuracy %

Overal | o vaining: 0.69 (76 errors downio 48)
Overal Improvement on taining: 0.44 (728 errors dowrto 623)

Figure 7: Results on the face dataset(361-dimensions). A
single 2"%-degree polynomial SVM missclassified 520 samples
on the same test set.
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