Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2003-015 March 2,2005
MIT-LCS-TR-917a

The Theory of Timed I/O Automata

Dilsun K. Kaynor, Nancy Lynch, Roberto Segala,
and Frits Vaandrager

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

The Theory of Timed I/O Automata

Dilsun K. Kaynar and Nancy Lynch
MIT Computer Science and Artificial Intelligence Laboratory
{dilsun,lynch@csail.mit.edu}

Roberto Segala
Dipartimento di Informatica, Universita di Verona
roberto.segala@univr.it

Frits Vaandrager
Institute for Computing and Information Sciences,
Radboud University Nijmegen

F.Vaandrager@cs.ru.nl

March 2, 2005

Abstract

This monograph presents the Timed Input/Output Automaton (TIOA) modeling
framework, a basic mathematical framework to support description and analysis of
timed systems. An important feature of this model is its support for decomposing
timed system descriptions. In particular, the framework includes a notion of external
behavior for a timed I/O automaton, which captures its discrete interactions with its
environment. The framework also defines what it means for one TIOA to implement
another, based on an inclusion relationship between their external behavior sets, and
defines notions of simulations, which provide sufficient conditions for demonstrating
implementation relationships. The framework includes a composition operation for
TTOAs, which respects external behavior, and a notion of receptiveness, which implies
that a TIOA does not block the passage of time.

Contents

1 Introduction

1.1
1.2
1.3
14

Overview e e e e
Evolution of the TIOA framework
Related work e

Paper Organization Lo

2 Mathematical Preliminaries

2.1
2.2
2.3
2.4

Functions and Relations
SEqUeNCes i e
Partial Orders. e

A Basic Graph Lemma L Lo

3 Describing Timed System Behavior

3.1
3.2
3.3

3.4

4.1
4.2
4.3
4.4

Time o
Static and Dynamic Types.« ..
Trajectories e e e e
3.3.1 Basic Definitions oo
3.3.2 PrefixOrdering
3.3.3 Concatenation Lo
Hybrid Sequences L
3.4.1 Basic Definitionso
3.4.2 Prefix Ordering Lo
3.4.3 Concatenation Lo
3.4.4 Restriction L

Timed Automata

Definition of Timed Automata
Executions and Traces e
Special Kinds of Timed Automata

Implementation Relationships o0 oo

10
11
12

12
12
13
14
14
14
15
16
16
17
17
18

37

4.5 Simulation Relations o0
4.5.1 Forward Simulations oo o
4.5.2 Refinements
4.5.3 Backward Simulations Lo oo
4.5.4 History Relations o oo
4.5.5 Prophecy Relations oo oo

5 Operations on Timed Automata

5.1 Composition oL
5.1.1 Definitions and Basic Results
5.1.2 Substitutivity Results o 0o

5.2 Hiding

5.3 Extending Timed Automata with Bounds

6 Timed I/O Automata

6.1 Definition of Timed I/O Automata

6.2 Executions and Traces L e

6.3 Special Kinds of Timed I/O Automata
6.3.1 Feasible and I/O Feasible TIOAs
6.3.2 Progressive TIOAs
6.3.3 Receptive Timed I/O Automata

6.4 Implementation Relationships oL

6.5 Simulation Relations L L L

7 Operations on Timed I/O Automata
7.1 Composition L e
7.1.1 Definitions and Basic Results
7.1.2 Substitutivity Results 000000
7.1.3 Composition of Special Kinds of TIOAs
7.2 Hiding e e

8 Conclusions and Future Work

A Notational Conventions

51
51
51
56
60
61

68
68
69
69
69
70
71
73
73

73
73
73
75
84
85

85

91

1 Introduction

1.1 Overview

Timed computing systems are systems in which desirable correctness or performance prop-
erties of the system depend on the timing of events, not just on the order of their occur-
rence. A typical timed system consists of computer components, which operate in discrete
steps, and timing-related components such as physical or logical clocks, whose behavior in-
volve continuous transformation over time. Timed systems are employed in a wide range
of domains including communications, embedded systems, real-time operating systems,
and automated control. Many applications involving timed systems have strong safety,
reliability and predictability requirements, which makes it important to have methods for
systematic design of systems and rigorous analysis of timing-dependent behavior.

Modeling plays a key role in all stages in the design and analysis of systems. Models
represent system designs at a level of abstraction that is suitable for isolating and focusing
on their most crucial aspects. They can be modified and experimented with more easily
than real implementations. Moreover, if the modeling is performed using the concepts
provided by a formal framework, the modeling can be done more precisely, and analysis
and verification methods supported by that framework can be applied. Timed systems,
which combine discrete steps with continuous evolution of state over time, exhibit complex
behaviors that are typically hard to describe and analyze in the absence of a carefully-
developed modeling framework [11, 41, 42].

A modeling framework must support designing systems in structured ways, viewing
them at multiple levels of abstraction and as compositions of interacting components. If
a framework is to provide flexibility and generality, it must also support nondeterminism.
A system designer might wish to allow several potential behaviors at certain points in
the computation of a system, for example, to avoid making assumptions about how the
environment will behave, or to allow several correct implementations for the same design.
Such liberty in specification would not be possible to accommodate without nondeter-
minism. In addition to supporting all of these features, modeling frameworks for timed
systems must provide mechanisms for representing continuously evolving components such
as clocks and timers.

An interesting complication that arises in modeling timed systems is that time can
progress in ways that conflict with our intuition about physical time. For example, we may
force time to stop entirely to “urge” some discrete action to happen, or schedule infinitely
many discrete actions to happen in a finite amount of time. A framework needs to provide
concepts that identify the conditions under which a timed system behaves according to
our intuitions, that is, the conditions under which time diverges as the system continues
to run.

In this work, we introduce a basic mathematical framework — the Timed Input/Output
Automaton modeling framework to support description and analysis of timed systems.

In this framework, a system is represented as a Timed 1/O Automaton (TIOA), which is
a kind of nondeterministic, possibly infinite-state, state machine. The state of a TIOA is
described by a valuation of state variables that are internal to the automaton. The state of
a TIOA can change in two ways: instantaneously by the occurrence of a discrete transition,
which is labeled by a discrete action, or according a trajectory, which is a function that
describes the evolution of the state variables over intervals of time. Trajectories may be
continuous or discontinuous functions.

The TIOA framework supports decomposition of system description and analysis. A
key to this decomposition is the rigorously-defined notion of external behavior for timed
I/O automata. The external behavior of each TIOA is defined by a simple mathematical
object called a trace—essentially, a sequence of actions interspersed with time-passage steps.
Abstraction and parallel composition are other important notions for decomposition of
system description and analysis.

For abstraction, the framework includes notions of implementation and simulation,
which can be used to view timed systems at multiple levels of abstraction, starting from a
high-level version that describes required properties, and ending with a low-level version
that describes a detailed design or implementation. In particular, the TIOA framework
defines what it means for one TIOA, A, to implement another TIOA, B, namely, any
trace that can be exhibited by A is also allowed by B. In this case, A might be more
deterministic than B, in terms of either discrete transitions or trajectories. For instance,
B might be allowed to perform an output action at an arbitrary time before noon, whereas
A produces the same output sometime between 10 and 11AM. The notion of a simulation
relation from A to B provides a sufficient condition for demonstrating that A4 implements
B. A simulation relation is defined to satisfy three conditions, one relating start states,
one relating discrete transitions, and one relating trajectories of A and B.

For parallel composition, the framework provides a composition operation, by which
TTOAs modeling individual timed system components can be combined to produce a model
for a larger timed system. The model for the composed system can describe interactions
among the components, which involves joint participation in discrete transitions. Com-
position requires certain “compatibility” conditions, namely, that each output action be
controlled by at most one automaton, and that internal actions of one automaton cannot
be shared by any other automaton. The composition operation respects traces, for exam-
ple, if A; implements A5 then the composition of A; and B implements the composition
of Ay and B. Composition also satisfies projection and pasting results, which are funda-
mental for compositional design and verification of systems: a trace of a composition of
TTIOAs “projects” to give traces of the individual TIOAs, and traces of components are
“pastable” to give behaviors of the composition.

If a TIOA approaches a finite point in time without quite reaching it, or by scheduling
infinitely many discrete actions to happen in a finite amount of time, it is said to exhibit
Zeno behavior, in reference to Zeno’s paradox [24]. The TIOA framework includes a notion
of receptiveness, which is used to classify automata that do not contribute to producing

behavior, and which is preserved by composition. Receptiveness of a TIOA, A, in the
TIOA framework is defined in terms of the existence of a strategy, which is defined as a
subautomaton of A that chooses some of the evolutions from each state of A.

The TIOA framework presented in this work is purely mathematical. However, it
constitutes a natural basis for computer support tools, which are currently under devel-
opment [19].

1.2 Evolution of the TIOA framework

The TIOA modeling framework presented in this work has evolved from the Hybrid In-
put/Output Automaton (HIOA) modeling framework for hybrid systems [25] by Lynch,
Segala and Vaandrager. Our approach is based on the assumption that a timed system
can be viewed as a special kind of a hybrid system where the continuous transformation
is limited to internal system components that determine the timing of events. Therefore,
we define a TIOA as a restricted HIOA where the only essential difference between an
HIOA and a TIOA is that an HIOA may have external variables to model the continuous
information flowing into and out of the system, in addition to state variables. A major
consequence of this definition is that the communication between TIOAs is restricted to
shared-action communication only. The TIOA model does not impose any further restric-
tions on the expressive power of the HIOA model.

We have undertaken the project of developing this new modeling framework even
though there are several timed automaton models that extend the basic I/O automaton
model [32, 40, 30, 28], because we have observed that the new HIOA modeling framework
of Lynch, Segala and Vaandrager offered a way of improving and simplifying previous
work on timed I/O automaton models [40, 30, 28]. For example, the use of trajectories as
first-class objects to represent the external behavior of a timed automaton, the definition
of a strategy as an automaton rather than a two-player game, and the variable structure
on states are all new features that were motivated by what we learned in developing the
HIOA framework and that gave rise to more elegant definitions and simpler proofs for
timed automata.

We intend the TTOA model to serve as a general semantic framework in which previous
results for timed I/O automata [30, 32, 40, 28] and other related models [5, 31, 35, 9] can
be re-cast in a style that is upwardly compatible with the new HIOA model. Limiting
the communication to discrete interactions is an apt choice since the previous timed 1/0
automaton models also adopt this type of communication. On the other hand, by avoid-
ing any further restrictions on the general hybrid model, we obtain an expressive model
suitable for specifying complex timing behavior. For example, our model does not require
variables to be either discrete or to evolve at the same rate as real-time as in some other
models [5, 35]. Consequently, algorithms such as clock synchronization algorithms that
use local clocks evolving at different and varying rates can be formalized naturally in our
framework.

The fact that HIOAs subsume TIOAs as a special class does not eliminate the need
for having a separate modeling framework for timed systems. First, having no external
variables in the TIOA model gives rise to considerable simplifications in the theory. For
example, proving that the composition of two timed automata is a well-defined automaton
becomes simpler in the absence of external variables; no extra compatibility conditions as
in the general HIOA framework are needed to obtain the desirable composition theorems
for TIOAs.

Second, we believe that focusing on the TIOA model presented in this paper is com-
patible with our longer-term goal of developing a unified I/O automaton model that can
address timing-dependent, probabilistic and general hybrid behavior in a common frame-
work. We are planning to start out with a probabilistic model with discrete interactions
only, and then extend the model to handle timing-dependent behavior, and only at later
stages consider continuous interactions. It would be harder to integrate probabilistic mech-
anisms into the full hybrid model than it would be to integrate them into the TIOA model
presented here.

1.3 Related work

There are several formalisms and tools for timed systems that are based on automata and
state transition models. In this section, we briefly introduce those lines of work that we
think are most closely related to ours. Note that we do not focus on the toolsets and their
capabilities, but rather on the underlying formal models and languages.

One of the widely-used formal frameworks for timed systems is that of Alur-Dill timed
automata [5, 3]. An Alur-Dill automaton is a finite directed multigraph augmented with a
finite set of clock variables. The semantics of such a timed automaton are defined as a state
transition system in which each state consists of a location and a clock valuation. Clocks
are assumed to change with the same rate as real-time, that is with rate 1. Timed automata
accept timed languages consisting of sequences of events tagged with their occurrence
times. Decision problems such as universality and language inclusion are undecidable for
timed automata Recently, a version of timed automata called perturbed automata has
been presented [7]. The clocks in perturbed timed automata can change at a rate within
the interval [1 - €, 1 + €], where € is a given perturbation error. It has been shown that
the language inclusion problem is decidable for systems modeled as products of perturbed
automata each of which has a single clock.

The aim of facilitating automated verification seems to have motivated the restrictions
on the expressive power of the model. The timed automaton model presented in this
work is more expressive than the model of Alur-Dill automata. In our model, there are
no finiteness assumptions and no restrictions imposed on the dynamic types of variables.
Alur-Dill timed automata have been extensively studied with a formal language theoretic-
view [6]. Our focus, on the other hand, has been to develop a general formal framework

with a well-defined notion of external behavior, parallel composition and abstraction that
supports reasoning with simulation relations.

Uppaal [35, 23] is a widely-used modeling and verification tool for timed systems. It
supports the description of systems as a network of Alur-Dill timed automata and en-
hances that model with CCS-style communication [33] along with other notions such as
committed and urgent locations. Uppaal also supports communication via shared vari-
ables. Uppaal has a sophisticated model-checker that explores the whole state space of
the modeled system to verify timing properties. Therefore, finiteness assumptions are
built into the model to make such verification possible and the operations on clocks are
restricted. Uppaal can be used as a model-checker for restricted TIOAs. We have done
some preliminary work in this direction [39].

It would be interesting to work on formal semantics for Uppaal based on some variation
of our restricted hybrid I/O automaton model. There are several small mismatches due
to the style of communication and notions such as committed locations. It remains to be
seen to what extent we can use the communication mechanisms of our automata to model
these formally. We could, for example, allow a non-empty set of external variables with
restricted dynamic types and seek restrictions on the use of shared variables in Uppaal,
which would allow us to view these variables as external variables in the HIOA sense.

Kronos [46] is another verification tool for timed systems that uses Alur-Dill automata.
This tool requires systems to be represented as timed automata and the correctness con-
ditions to be expressed in the real-time temporal logic TCTL. Kronos, as Uppaal, can
perform model-checking using a symbolic representation of the infinite state space by sets
of linear constraints. It would be possible to use Kronos as a model-checker for restricted
TIOAs.

The IF notation, which is the intermediate representation used in the IF toolset [§],
is based on Alur-Dill automata extended with discrete data variables, communication
primitives, dynamic process creation and destruction. This notation has been designed
such that it can serve as a target for the translation of higher-level modeling languages,
such as real-time extensions of SDL and UML. The support for dynamic process creation
and destruction appears to be a distinguishing feature of the IF notation.

A slight generalization of Alur-Dill timed automata are the linear hybrid automata
of [4]. In this model, apart from clocks that progress with rate 1, one can also use
continuous variables whose derivatives are contained in some arbitrary interval. A well-
known model checking tool for linear hybrid automata is HyTech [16], which uses symbolic
manipulation techniques as in Uppaal and Kronos. The input language of HyTech can be
translated into our TIOA model, to apply TIOA verification methods. Likewise, TIOAs
whose continuous variables conform to the linearity conditions of HyTech could be verified
using model-checking capabilities of HyTech.

The timed I/O automaton modeling framework presented in this paper can be used
to express models that use lower and upper time bounds on tasks or actions [32, 31].

Our framework includes an operation for adding time bounds on a subset of the actions
of a timed automaton. As a result of this operation, lower bounds are transformed to
appropriate preconditions for transitions and upper bounds are transformed to stopping
conditions for trajectories.

An interesting timed automaton model called “Clock GTA ” has been introduced in [9].
The model was used for describing algorithms that behave in accordance with their timing
constraints in certain intervals but may exhibit timing failures for some other intervals.
The possibility of expressing such an ability turns out to be crucial for performance and
fault-tolerance analysis for practical algorithms [9, 29]. We are interested in finding a
systematic way of describing such behavior with our new timed I/O automaton model.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 contains mathematical preliminar-
ies. Section 3 defines notions that are useful for describing the behavior of timed systems,
most importantly, trajectories and timed sequences. Section 4 defines timed automata
(TAs), which contain all of the structure of TIOAs except for the classification of external
actions as inputs or outputs. It also defines external behavior for TAs and implementa-
tion and simulation relationships between TAs. Section 5 presents composition and hiding
operations for TAs, along with operations for adding bounds that relate TIOAs to other
timed automaton models. Section 6 defines timed I/0O automata (TIOAs) by adding an
input/output classification to TAs, and extends the theory of TAs to TIOAs. It also de-
fines special kinds of TIOAs such as progressive and receptive TIOAs. Section 7 presents
compositionality results for TIOAs in general, and for the special classes of progressive
and receptive TIOAs. Examples are included throughout.

2 Mathematical Preliminaries

In this section, we give basic mathematical definitions and notation that will be used
as a foundation for our definitions of timed automata and timed I/O automata. These
definitions involve functions, sequences, partial orders, and untimed automata.

2.1 Functions and Relations

If f is a function, then we denote the domain and range of f by dom(f) and range(f),
respectively. If also S is a set, then we write f [S for the restriction of f to S, that is, the
function g with dom(g) = dom(f) N S such that g(c) = f(c) for each ¢ € dom(g).

We say that two functions f and g are compatible if f|dom(g) = g[dom(f). If
f and ¢ are compatible functions then we write f U ¢ for the unique function h with

dom(h) = dom(f) U dom(g) satisfying the condition: for each ¢ € dom(h), if ¢ € dom(f)
then h(c) = f(c) and if ¢ € dom(g) then h(c) = g(c). More generally, if F' is a set of
pairwise compatible functions then we write | J F' for the unique function h with dom(h) =
U{dom(f) | f € F'} satistying the condition: for each f € F' and ¢ € dom(f), h(c) = f(c).

If f is a function whose range is a set of functions and §' is a set, then we write f | S
for the function g with dom(g) = dom(f) such that g(c) = f(c) [S for each ¢ € dom(g).
The restriction operation | is extended to sets of functions by pointwise extension. Also,
if f is a function whose range is a set of functions, all of which have a particular element d
in their domain, then we write f | d for the function g with dom(g) = dom(f) such that
g(c) = f(c)(d) for each ¢ € dom(g).

We say that two functions f and g whose ranges are sets of functions are pointwise
compatible if for each ¢ € dom(f) N dom(g), f(c) and g(c) are compatible. If f and g have
the same domain and are pointwise compatible, then we denote by fUg the function h
with dom(h) = dom(f) such that h(c) = f(c) U g(c) for each c.

A relation over sets X and Y is defined to be any subset of X x Y. If R is a relation,
then we denote the domain and range of R by dom(R) and range(R), respectively. A
relation over X and Y is total over X if dom(R) = X. We say that a relation R over X
and Y is image-finite if for each x € X, R(x) is finite.

2.2 Sequences

Let S be any set. A sequence over S is a function from a downward-closed subset of Z°
to S. Thus, the domain of a sequence is either the set of all positive integers, or is of the
form {1,...,k} for some k. In the first case we say that the sequence is infinite, and in
the second case finite. We use |o| to denote the cardinality of dom(o). The sets of finite
and infinite sequences over S are denoted by S* and S“, respectively. Concatenation of
a finite sequence p with a finite or infinite sequence o is denoted by p ~ o. The empty
sequence, that is, the sequence with the empty domain is denoted by A. The sequence
containing one element ¢ € S is abbreviated as c. We say that a sequence o is a prefiz of a
sequence p, denoted by o < p, if 0 = p [dom(c). Thus, o < p if either o = p, or o is finite
and p = o~ ¢’ for some sequence ¢’. If o is a nonempty sequence then head(o) denotes
the first element of o and tail(c) denotes o with its first element removed. Moreover,
if o is finite, then last(o) denotes the last element of ¢ and init(o) denotes o with its
last element removed. Let o and ¢’ be sequences over S. Then ¢’ is a subsequence of o
provided that there exists a monotone increasing function f : dom(o’) — dom(c) such
that o’(i) = o(f(¢)) for all i € dom(c’). If 1 < j1 < jo < |o]|, then we define o(j; ... j2) to
be the subsequence of o obtained by extracting the elements in positions ji, ..., j2; that is,
o’ is the subsequence obtained from function f of length jo — j1 + 1, where f(i) = i+j1 —1
for all i € dom(o’).

10

2.3 Partial Orders

We recall some basic definitions and results regarding partial orders, and in particular,
complete partial orders (cpos) from [14, 15]. A partial order is a set S together with a
binary relation C that is reflexive, antisymmetric, and transitive. In the sequel, we usually
denote posets by the set S without explicit mention to the binary relation C.

A subset P C S is bounded (above) if there is a ¢ € S such that d C ¢ for each d € P;
in this case, ¢ is an upper bound for P. A least upper bound (lub) for a subset P C S is an
upper bound ¢ for P such that ¢ < d for every upper bound d for P. If P has a lub, then
it is necessarily unique, and we denote it by | | P. A subset P C S is directed if every finite
subset @@ of P has an upper bound in P. A poset S is complete, and hence is a complete
partial order (cpo) if every directed subset P of S has a lub in S.

We say that P’ C S dominates P C S, denoted by P C P’, if for every ¢ € P there

is some ¢ € P’ such that ¢ C ¢/. We use the following two simple lemmas, adapted from
[15] [Lemmas 3.1.1 and 3.1.2].

Lemma 2.1 If P, P’ are directed subsets of a cpo S and P T P’ then | |P C | |P’.

Lemma 2.2 Let P = {¢;; | i € I,j € J} be a doubly indezed subset of a cpo S. Let P;
denote the set {c;; | j € J} for each i € 1. Suppose

1. P is directed,
2. each P; is directed with lub c;, and
3. the set {c; | i € I} is directed.

Then UP = W{¢; | i€ I}.

A finite or infinite sequence of elements, ¢y ¢y ca ..., of a partially ordered set (S,C)
is called a chain if ¢; C ¢;41 for each non-final index ¢. We define the limit of the chain,
lim;_,~ ¢;, to be the lub of the set {cg,c1,co,...} if S contains such a bound; otherwise,
the limit is undefined. Since a chain is a special case of a directed set, each chain of a cpo
has a limit.

A function f: S — S’ between posets S and S’ is monotone if f(c) C f(d) whenever
¢ C d. If f is monotone and P is a directed set, then the set f(P) = {f(c) | c € P} is
directed as well. If f is monotone and f(| |P) = || f(P) for every directed P, then f is
said to be continuous.

An element ¢ of a cpo S is compact if, for every directed set P such that ¢ C | | P,
there is some d € P such that ¢ C d. We define K(S) to be the set of compact elements
of S. A cpo S is algebraic if every ¢ € S is the lub of the set {d € K(S) | d C c}.
A simple example of an algebraic cpo is the set of finite or infinite sequences over some
given domain, equipped with the prefix ordering. Here the compact elements are the finite
sequences.

11

2.4 A Basic Graph Lemma
Lemma 2.3 Let G be an infinite directed graph that satisfies the following properties.

1. G has finitely many roots.
2. Fach node of G has finite outdegree.

3. FEach node of G is reachable from some root of G.

Then, there is an infinite path in G starting from some root.

Proof: The proof is an extension of Konig’s Lemma [22]. [|

3 Describing Timed System Behavior

In this section, we give basic definitions that are useful for describing discrete and con-
tinuous changes to the system’s state. The key notions are static and dynamic types for
variables, trajectories, and hybrid sequences. Most of the material in this section comes
from the paper on the HIOA modeling framework [25]. The reader is referred to [25] for
the proofs that are not included here.

3.1 Time

Throughout this paper, we fix a time azis T, which is a subgroup of (R,+), the real
numbers with addition. We assume that every infinite, monotone, bounded sequence of
elements of T has a limit in T. The reader may find it convenient to think of T as the set
R of real numbers, but the set Z of integers and the singleton set {0} are also examples of

allowed time axes. We define T20 £ {t € T | t > 0}.

An interval J is a nonempty, convex subset of T. We denote intervals as usual: [t1,ts] =
{t e T | t1 <t < tg}, [tl,tg) = {t e T | t1 <t < tg} etc. An interval J is left—
closed (right-closed) if it has a minimum (resp., maximum) element, and left-open (right-
open) otherwise. It is closed if it is both left-closed and right-closed. We write min(.J)
and max(J) for the minimum and maximum elements, respectively, of an interval J (if
they exist), and inf(J) and sup(J) for the infimum and supremum, respectively, of J in
RU{—o00,00}. For K C Tand t € T, we define K +¢ = {t/ +t | ¢ € K}. Similarly,
for a function f with domain K, we define f + ¢ to be the function with domain K + ¢
satisfying, for each t' € K +t, (f +1t) (') = f(t' —1).

In some definitions and theorems in the paper where we use R as the time domain we
assume that the relation < on R extends to a relation on RU {oo} such that co < oo and
forall t € R, t < 0.

12

3.2 Static and Dynamic Types

We assume a universal set V of variables. A variable represents a location within the state
of a system. For each variable v, we assume both a (static) type, which gives the set of
values it may take on, and a dynamic type, which gives the set of trajectories it may follow.
Formally, for each variable v we assume the following;:

e type(v), the (static) type of v. This is a nonempty set of values.

e dtype(v), the dynamic type of v. This is a set of functions from left-closed intervals
of T to type(v) that satisfies the following properties:

1. (Closure under time shift)
For each f € dtype(v) and t € T, f+t € dtype(v).

2. (Closure under subinterval)
For each f € dtype(v) and each left-closed interval J C dom(f), f|J €
dtype(v).

3. (Closure under pasting)
Let fo f1 f2, ... be a sequence of functions in dtype(v) such that, for each index ¢
such that f; is not the final function in the sequence, dom(f;) is right-closed and
max(dom(f;)) = min(dom(f;41)). Then the function f defined by f(t) = f;(t).
where ¢ is the smallest index such that ¢t € dom(f;), is in dtype(v).

Example 3.1 (Discrete variables) Let v be any variable and let Constant be the set
of constant functions from a left-closed interval of T to type(v). Then Constant is closed
under time shift and subinterval. If the dynamic type of v is obtained by closing C'onstant
under the pasting operation, then v is called a discrete variable. This is essentially the
same as the definition of a discrete variable in [31].]

Example 3.2 (Analog variables) Assume that T = R. Let v be any variable whose
static type is an interval of R and Continuous be the set of continuous functions from
a left-closed interval of T to type(v). Then Continuous is closed under time shift and
subinterval. If the dynamic type of v is obtained by closing Continous under the pasting
operation, then v is called an analog variable. [|

Example 3.3 (Standard real-valued function classes) If we take T = R and type(v) =
R, then other examples of dynamic types can be obtained by taking the pasting closure of
standard function classes from real analysis, the set of differentiable functions, the set of
functions that are differentiable k times (for any k), the set of smooth functions, the set
of integrable functions, the set of LP functions (for any p), the set of measurable locally
essentially bounded functions [43], or the set of all functions. |

13

Standard function classes are closed under time shift and subinterval, but not under
pasting. A natural way of defining a dynamic type is as the pasting closure of a class of
functions that is closed under time shift and subinterval. In such a case, it follows that
the new class is closed under all three operations.

3.3 Trajectories

In this subsection, we define the notion of a trajectory, define operations on trajectories,
and prove simple properties of trajectories and their operations. A trajectory is used to
model the evolution of a collection of variables over an interval of time.

3.3.1 Basic Definitions

Let V be a set of variables, that is, a subset of V. A waluation v for V is a function that
associates with each variable v € V' a value in type(v). We write val(V) for the set of
valuations for V. Let .J be a left-closed interval of T with left endpoint equal to 0. Then a
J-trajectory for V is a function 7 : J — wal(V'), such that for each v € V', 7 | v € dtype(v).
A trajectory for V is a J-trajectory for V', for any J. We write trajs(V') for the set of all
trajectories for V.

A trajectory for V with domain [0,0] is called a point trajectory for V. If v is a
valuation for V' then p(v) denotes the point trajectory for V' that maps 0 to v. We say
that a J-trajectory is finite if J is a finite interval, closed if .J is a (finite) closed interval,
open if J is a right-open interval, and full if J = TZ0. If T is a set of trajectories, then
finite(T), closed(T), open(T), and full(T) denote the subsets of T' consisting of all the
finite, closed, open, and full trajectories in T, respectively.

If 7 is a trajectory then 7.ltime, the limit time of T, is the supremum of dom(7). We
define .fval, the first valuation of T, to be 7(0), and if 7 is closed, we define 7.lval, the
last valuation of T, to be 7(7.ltime). For T a trajectory and t € T=", we define

74t = 7]0,1],
rat 2 70,1,
>t 2 (r[[t,)) —t.

Note that, since dynamic types are closed under time shift and subintervals, the result of
applying the above operations is always a trajectory, except when the result is a function
with an empty domain. By convention, we also write 7 < co Zrand T <00 =T

3.3.2 Prefix Ordering

Trajectory 7 is a prefiz of trajectory v, denoted by 7 < v, if 7 can be obtained by restricting
v to a subset of its domain. Formally, if 7 and v are trajectories for V, then 7 < v iff

14

T = v [dom(r). Alternatively, 7 < v iff there exists a t € T2%U {00} such that 7 = v < ¢
or 7 =v <t If 7 <w then clearly dom(7r) C dom(v). If T is a set of trajectories for V',
then pref (T') denotes the prefiz closure of T, defined by:

pref(T) 2 {retrajs(V)|IveT: 7 <uv}

We say that T is prefiz closed if T = pref (T).

The following lemma gives a simple domain-theoretic characterization of the set of
trajectories over a given set V' of variables:

Lemma 3.4 Let V be a set of variables. The set trajs(V') of trajectories for V', together
with the prefix ordering <, is an algebraic cpo. Its compact elements are the closed trajec-
tories.

3.3.3 Concatenation

The concatenation of two trajectories is obtained by taking the union of the first trajectory
and the function obtained by shifting the domain of the second trajectory until the start
time agrees with the limit time of the first trajectory; the last valuation of the first
trajectory, which may not be the same as the first valuation of the second trajectory, is
the one that appears in the concatenation. Formally, suppose 7 and 7’ are trajectories for
V', with 7 closed. Then the concatenation T~ 7’ is the function given by

—~ _I

T T

Il

U (7' [(0,00) + T.ltime).

Because dynamic types are closed under time shift and pasting, it follows that 7~ 7’ is a
trajectory for V. Observe that 7~ 7/ is finite (resp., closed, full) if and only if 7/ is finite
(resp., closed, full). Observe also that concatenation is associative.

The following lemma, which is easy to prove, shows the close connection between
concatenation and the prefix ordering.

Lemma 3.5 Let 7 and v be trajectories for V. with T closed. Then

—~ _/

r<v & Iriv=7"1.

Note that if 7 < v, then the trajectory 7/ such that v = 7 7/ is unique except that it has
an arbitrary value for 7/.fval. Note also that the “<” implication in Lemma 3.5 would
not hold if the first valuation of the second argument, rather than the last valuation of
the first argument, were used in the concatenation.

15

We extend the definition of concatenation to any (finite or countably infinite) number
of arguments. Let 7971 72 ... be a (finite or infinite) sequence of trajectories such that 7;

is closed for each nonfinal index i. Define trajectories 7,71, 74, ... inductively by
/ A
To = 70,
L = 1Ty f final i
Tiy1 = 7, Tiy1 for nonfinal 7.

Lemma 3.5 implies that for each nonfinal i, 7{ < 7/,,. We define the concatenation
70 T T2--- to be the limit of the chain 7) 7] 74 ...; existence of this limit follows from
Lemma 3.4.

3.4 Hybrid Sequences

In this subsection, we introduce the notion of a hybrid sequence, which is used to model a
combination of changes that occur instantaneously and changes that occur over intervals
of time. Our definition is parameterized by a set A of actions, which are used to model
instantaneous changes and instantaneous synchronizations with the environment, and a
set V' of variables, which are used to model changes over intervals of time. We also define
some special kinds of hybrid sequences and some operations on hybrid sequences, and give
basic properties.

3.4.1 Basic Definitions

Fix a set A of actions and a set V' of variables. An (A, V)-sequence is a finite or infinite
alternating sequence o = 19 a1 T a2 T ..., where

1. each 7; is a trajectory in trajs(V),
each a; is an action in A,

if « is a finite sequence then it ends with a trajectory, and

Ll

if 7; is not the last trajectory in « then dom(7;) is closed.

A hybrid sequence is an (A, V')-sequence for some A and V.

Since the trajectories in a hybrid sequence can be point trajectories our notion of
hybrid sequence allows a sequence of discrete actions to occur at the same real time, with
corresponding changes of variable values. An alternative approach is described in [37],
where state changes at a single real time are modeled using a notion of “superdense time”.
Specifically, hybrid behavior is modeled in [37] using functions from an extended time
domain, which includes countably many elements for each real time, to states.

If « is a hybrid sequence, with notation as above, then we define the limit time of «,
a.ltime, to be Y, 7;.ltime. A hybrid sequence « is defined to be:

16

o t{ime-bounded if «.ltime is finite.
o admissible if a.ltime = oo.

e closed if « is a finite sequence and the domain of its final trajectory is a closed
interval.

e Zeno if a is neither closed nor admissible, that is, if « is time-bounded and is either
an infinite sequence, or else a finite sequence ending with a trajectory whose domain
is right-open.

e non-Zeno if « is not Zeno.

For any hybrid sequence «, we define the first valuation of «, a.fval, to be head(«).fval.
Also, if « is closed, we define the last valuation of c, a.lval, to be last(«).lval, that is, the
last valuation in the final trajectory of «.

If o is a closed (A,V)-sequence, where V = () and 3 € trajs(0), we call « ~ (3 a
time-extension of a.

3.4.2 Prefix Ordering

We say that (A, V)-sequence o = 1pay 71 ... is a prefiz of (A, V)-sequence = vobi vy ...,
denoted by a < 3, provided that (at least) one of the following holds:

1. a=p.

2. «is a finite sequence ending in some 73; 7; = v; and ;41 = b;y1 for every i, 0 < i < k;
and 7 < vg.

Like the set of trajectories over V, the set of (A, V')-sequences is an algebraic cpo:
Lemma 3.6 Let V' be a set of variables and A a set of actions. The set of (A, V)-

sequences, together with the prefiz ordering <, is an algebraic cpo. Its compact elements
are the closed (A, V')-sequences.

3.4.3 Concatenation

Suppose « and o are (A, V)-sequences with « closed. Then the concatenation o ™ o is
the (A, V)-sequence given by

a”d = mit(e) (last(e) ™ head(a!)) tail(e!).

(Here, init, last, head and tail are ordinary sequence operations.)

17

Lemma 3.7 Let o and (3 be (A, V)-sequences with « closed. Then

a<pB & I:p=a"d.

Note that if & < 3, then the (A, V)-sequence o’ such that f = o ~ « is unique except
that it has an arbitrary value in val(V') for . fval.

As we did for trajectories, we extend the concatenation definition for (A, V')-sequences
to any finite or infinite number of arguments. Let ag 1 ... be a finite or infinite sequence
of (A, V')-sequences such that «; is closed for each nonfinal index i. Define (A, V')-sequences
ap, o, ... inductively by

046 ap,

! A /
Qi1 = oy

Il

;41 for nonfinal i.

Lemma 3.7 implies that for each nonfinal i, o) < «aj, ;. We define the concatenation
ag ~ aq--- to be the limit of the chain af] ...; existence of this limit is ensured by
Lemma 3.6.

3.4.4 Restriction

Let A and A’ be sets of actions and let V' and V' be sets of variables. The (A, V')-
restriction of an (A, V)-sequence «, denoted by a [(A’, V'), is obtained by first projecting
all trajectories of o on the variables in V', then removing the actions not in A’, and finally
concatenating all adjacent trajectories. Formally, we define the (A’,V')-restriction first
for closed (A, V)-sequences and then extend the definition to arbitrary (A, V')-sequences
using a limit construction. The definition for closed (A, V')-sequences is by induction on
the length of those sequences:

T [(A, V) = 7| V'if 7 is a single trajectory,
P (a[(A V) a(r V') ifae A,
aar[(AV) = { (a[(A, V)~ (7 | V') otherwise.

It is easy to see that the restriction operator is monotone on the set of closed (A4, V)-
sequences. Hence, if we apply this operation to a directed set, the result is again a directed
set. Together with Lemma 3.6, this allows us to extend the definition of restriction to
arbitrary (A, V)-sequences by:

al(A V) = W{B[(A, V)| Bis a closed prefix of a}.
Lemma 3.8 (A',V')-restriction is a continuous operation.

18

Lemma 3.9 (ag " a1 ™) [(AV)=ag[(A4,V) a1 [(A,V) ...
Lemma 3.10 (a[(A, V) [(A,V)=a[(ANA,VNV).

Lemma 3.11 Let o be a hybrid sequence A a set of actions and V' a set of variables.

1. « is time-bounded if and only if o [(A, V') is time-bounded.
a is admissible if and only if a [(A,V) is admissible.

If « is closed then o [(A, V) is closed.

BN

If a is non-Zeno then a [(A, V') is non-Zeno.

Example 3.12 (A Zeno execution with a closed (A, V)-restriction) In order to
understand why we have an implication in only one direction in items 3 and 4, consider the
Zeno sequence « of the form p(v)ap(v)ap(v).... Let A be a set such that a ¢ A and let
V' consist of the variables in dom(v). Obviously, a [(A, V'), which is p(v), is closed, and
hence also non-Zeno. This shows that the fact that a [(A, V) is closed (resp., non-Zeno)
does not imply that « is closed (resp., non-Zeno). [|

4 Timed Automata

In this section, as a preliminary step toward defining timed I/O automata, we define a
slightly more general timed automaton model. In timed automata, actions are classified as
external or internal, but external actions are not further classified as input or output; the
input /output distinction is added in Section 6. We define how timed automata execute
and define implementation and simulation relations between timed automata.

4.1 Definition of Timed Automata

A timed automaton is a state machine whose states are divided into variables, and that
has a set of discrete actions, some of which may be internal and some external. The state
of a timed automaton may change in two ways: by discrete transitions, which change
the state atomically, and by trajectories, which describe the evolution of the state over
intervals of time. The discrete transitions are labeled with actions; this will allow us to
synchronize the transitions of different timed automata when we compose them in parallel.
The evolution described by a trajectory may be described by continuous or discontinuous
functions.

Formally, a timed automaton (TA) A= (X,Q,0,FE,H,D,T) consists of:

19

A set X of internal variables.

A set Q C val(X) of states.

A nonempty set © C Q of start states.

o A set F of external actions and a set H of internal actions, disjoint from each other.
We write A= EUH.

A set D C Q x AxQ of discrete transitions.

We use x 5 4 x" as shorthand for (x,a,x’) € D. Here and elsewhere, we sometimes
drop the subscript and write x — x’/, when we think A should be clear from the
context. We say that a is enabled in x if x = x’ for some x’. We say that a set C
of actions is enabled in a state x if some action in C' is enabled in x.

A set T of trajectories for X such that 7(t) € @ for every 7 € 7 and t € dom(7).
Given a trajectory 7 € 7 we denote T.fval by 7.fstate and, if 7 is closed, we denote
7.lval by T.lstate. When 7.fstate = x and 7.Istate = x’, we sometimes write x — 4 x'.
We require that the following axioms hold:

TO (Existence of point trajectories)
If x € Q then p(x) € 7.

T1 (Prefiz closure)
For every 7 € T and every 7/ < 71,7 € T.

T2 (Suffix closure)
For every 7 € T and every t € dom(7), T>t € T.

T3 (Concatenation closure)
Let 791 72 ... be a sequence of trajectories in 7 such that, for each nonfinal
index 4, 7; is closed and 7;.lstate = 7;41.fstate. Then 9 ™1 " 19--- € 7.

Thus, a timed automaton is essentially a hybrid automaton in the sense of [25] in
which T, the set of external variables, is empty. (The only difference is the addition of
the axiom TO, which does not affect any of the results of [25].) This definition differs from
previous definitions of timed automata [28, 40] in two major respects. First, the states are
structured using variables, which have dynamic types with specific closure properties. The
variable structure is convenient for writing specifications and the dynamic types are useful
in analyzing continuous evolution of the state. Second, the set of trajectories is defined
as an explicit component of an automaton. In the previous definitions, time-passage was
represented by special time-passage actions and trajectories were defined implicitly, as
auxiliary functions describing the effects of time-passage actions on states.

20

Notation: We often denote the components of a TA A by X4, Q4, ©4, E 4, etc., and
the components of a TA A; by X;, Q;, ©;, F;, etc. We sometimes omit these subscripts,
where no confusion seems likely. In examples we typically specify sets of trajectories using
differential and algebraic equations and inclusions. Below we explain a few notational
conventions that help us in doing this. Suppose the time domain T is R, 7 is a (fixed)
trajectory over some set of variables V', and v € V. With some abuse of notation, we use
the variable name v to denote the function 7 | v in dom(7) — type(v), which gives the
value of v at all times during trajectory 7. Similarly, we view any expression e containing
variables from V' as a function with domain dom(7). Suppose that v is a variable and e is
a real-valued expression containing variables from V. Using these conventions we can say,
for example, that 7 satisfies the algebraic equation

v = €

which means that, for every ¢ € dom(7), v(t) = e(t), that is, the constraint on the variables
expressed by the equation v = e holds for each state on trajectory 7. Now suppose also
that e, when viewed as a function, is integrable. Then we say that 7 satisfies

dlv) = e
if, for every t € dom(r), v + fo e(t")dt’. Equivalently, for every t1,ty € dom(7)
such that t; <9, v(t2) = v tl + f t")dt'. Note that this interpretation of the differential

equation makes sense even at pomts where v is not differentiable. A similar interpretation
of differential equations is used by Polderman and Willems [38], who call functions defined
in this way “weak solutions”.

We generalize this notation to handle inequalities as well as equalities. Suppose that v
is a variable and e is a real-valued expression containing variables from V. The inequality

e < w

means that, for every ¢ € dom(7), e(t) < v(t). That is, the constraint expressed by the
inequality e < v holds for each state of trajectory 7. Similarly, the inequality

v < e

means that, for every ¢t € dom(7), v(t) < e(t). Now suppose that e is integrable when
viewed as a function. Then we say that 7 satisfies

e < dw)
if, for every t1,t9 € dom(7) such that t; < o, v(t1) + f e(t)dt' < wv(t), and T satisfies
dlv) < e

if, for every t1,t9 € dom(7) such that t; < t9, v(t2) <wv(t1) + f e(t')dt'.

21

Conventions for automata specifications: In all the examples of this monograph
we assume the time axis T to be R and specify timed automata by using a variant of the
language presented in [34, 20].

An automaton specification consists of four main parts: a signature, which lists the
actions along with their kinds and parameter types, a state variables list, which declares the
names and types of state variables, a collection of transition definitions and a trajectories
definition.

Static types of variables are always declared explicitly in the state variables list. For
example, we write v:t for a variable v of static type t. Moreover, a variable can be initial-
ized to a specific value allowed by its type. For example, in order to initialize the variable v
above to the value val, we write v:t := val. If no initial value is specified it is assumed to
be arbitrary. The state variables list in an automaton specification can be followed by an
initially clause, which consists of a predicate that constrains the automaton parameters
and initial values of state variables. All of the static types used in the examples have
standard interpretations, except possibly for the type AugmentedReal, which denotes
RU {oc}.

The dynamic types of variables are specified implicitly. Variables of type Real are as-
sumed to be analog and variables of types other than Real are assumed to be discrete. The
definition of what it means for a variable to be discrete or analog is given in Examples 3.1
and 3.2. Note that according to these definitions, a variable of type Real is both analog
and discrete if its dynamic type consists of piecewise constant functions only. The keyword
discrete is used to qualify the type Real in the declaration of such variables. Although
timed automata may contain variables that are neither discrete nor analog, none of our
examples use such variables.

The transitions are specified in precondition-effect style. A pre clause specifies the
enabling condition for an action. An eff clause contains a list of statements that specify
the effect of performing that action on the state. All the statements in an effect clause are
assumed to be executed sequentially in a single indivisible step. The absence of a specified
precondition for an action means that the action is always enabled and the absence of a
specified effect means that performing the action does not change the state.

The trajectories are specified using a combination of invariants, algebraic and differen-
tial equations and inequalities, and stopping conditions. A trajectory belongs to the set of
legal trajectories of an automaton if it satisfies the predicate in the invariant clause, the
stopping condition expressed by the stop when clause, and the equations or inequalities
in the evolve clause. The stopping condition is satisfied by a trajectory if the only state in
which the condition holds is the last state of that trajetory. That is, time cannot advance
beyond the point where the stopping condition is true. The evolve clause specifies the
algebraic and differentail equations that must be satisfied by the trajectories. We write
d(v) = e for d(v) = e, d(v) < e for d(v) < e and e < d(v) for e < d(v). We assume that
the value of a discrete variable is constant throughout a trajectory. That is, time-passage

22

does not change the value of discrete variables. If the evolution of a variable follows a
continuous function throughout a trajectory then we write continuous(v). Note that our
interpretation of differential inequalities allows “jumps” in trajectories. Therefore, extra
caution is needed in the specification of Real variables that may evolve at a varying rate.
If a variable is assumed to be continuous troughout each trajectory this must be explicitly
stated in the trajectory definition.

Example 4.1 (Time-bounded channel) The automaton TimedChannel (b:Real, M:Type)

automaton TimedChannel(b: Real, M: Type)
signature
external send(m: M), receive(m: M)

states
queue: Queue[M] := {3},
now: Real := 0,

initially b > 0
transitions
external send(m)

eff
queue := append((m,now+b), queue)
external receive(m)
pre
Ju: Real (m,u) = head(queue)
eff
queue := tail(queue)

trajectories
stop when
J(m,u): (M,Real) (m,u) € queue A (now = u)
evolve
d(now) =1

Figure 1: Time-bounded channel

in Figure 1 is the specification of a reliable FIFO channel that delivers its messages within
a certain time bound, represented by the automaton parameter b of type Real which
is nonnegative. The other automaton parameter M is an arbitrary type parameter that
represents the type of messages communicated by the channel.

The variable queue is used to hold pairs consisting of a message that has been sent and
its delivery deadline. The variable now is used to describe real time.

Every send(m) transition adds to the queue a new pair whose first component is m and
whose second component is the deadline now + b. A receive(m) transition can occur only
when m is the first message in the queue and it results in the removal of the first message
from the queue.

23

The trajectory specification shows that the variable queue is kept constant by trajec-
tories and that the variable now increases with rate 1, that is, at the same rate as real
time. The stopping condition implies that, within a trajectory, time cannot pass beyond
the point where now becomes equal to the delivery deadline of some message in the queue.
|

Example 4.2 (Periodic sending process) The automaton PeriodicSend(u:Real, M:Type)

automaton PeriodicSend(u: Real, M: Type)
signature
external send(m: M)
states
clock: Real := 0
initially u > 0
transitions
external send(m)
pre
clock = u
eff
clock := 0
trajectories
stop when
clock = u
evolve
d(clock) =1

Figure 2: Periodic sending process

in Figure 2 is the specification of a process that sends messages periodically, every u time
units, where u is an automaton parameter of type Real which is nonnegative. The type
parameter M represents the type of the messages sent by the process.

The analog variable clock is a timer whose value records the amount of time that has
elapsed since it was last reset to 0. A send(m) transition can occur only when clock = u,
and it causes clock to be reset. The trajectory specification says that clock increases at
the same rate as real time and time cannot pass beyond the point where clock = u. [|

Example 4.3 (Periodic sending process with failures) The specification of the
PeriodicSend(u:Real, M:Type) process from Example 4.2 does not model failures. We
now consider a variant of PeriodicSend(u:Real, M:Type) where the process may fail and
stop doing any discrete actions. The specification of this new automaton is given in Fig-
ure 3.

24

automaton PeriodicSend2(u: Real,M: Type)
signature
external send(m: M), fail
states
failed: Bool := false,
clock: Real := 0
initially u > 0
transitions
external send(m)
pre
—failed A clock = u
eff
clock := 0
external fail
eff
failed:= true
trajectories
stop when
—~failed A clock = u
evolve
d(clock) =1

Figure 3: Periodic sending process with failures

The discrete variable failed in automaton PeriodicSend2(u:Real, M:Type) is a boolean
flag that records whether the process is failed. It is initialized to false and is set to true
when a fail action occurs. The trajectory specification of PeriodicSend2(u:Real, M:Type
) shows that time can advance without any bound when the process is failed. [|

Example 4.4 (Timeout process) The automaton Timeout(u:Real, M:Type) in Fig-
ure 4 is the specification of a process that awaits the receipt of a message from another
process. If u time units elapse without such a message arriving, Timeout (u:Real, M:Type)
performs a timeout action, thereby “suspecting” the other process. When a message arrives
it “unsuspects” the other process. Timeout(u:Real, M:Type) may suspect and unsuspect
repeatedly.

The discrete variable suspected is a flag that shows whether Timeout (u:Real, M:Type)
suspects that the other process is failed. The variable clock is a timer that records the
amount of time that has elapsed since the receipt of the last message.

A receive(m) transition can occur at any time; this causes the variable clock to be
reset and the flag suspected to be set to false. If clock reaches u before the arrival of a
message then the timeout action becomes enabled. The process sets suspected to true as

25

automaton Timeout(u:Real, M: Type)

signature

external receive(m: M), timeout
states

suspected: Bool := false,

clock Real := 0

initially u > 0
transitions
external receive(m)
eff
clock:=0;
suspected:= false
external timeout
pre
—suspected A clock = u
eff
suspected := true
trajectories
stop when
clock = u and —suspected
evolve
d(clock) =1

Figure 4: Timeout

a result of a timeout.

The discrete variable suspected remains constant throughout each trajectory. The
trajectory specification also shows that clock increases at the same rate as real time and,
if suspected = false, then time cannot go beyond the point where clock = u. Note that
if suspected = true, there is no restriction on the amount of time that can elapse. [|

Example 4.5 (Fischer’s mutual exclusion algorithm) The automaton
FischerME(u_set, 1l_check: Real) presented in Figures 5 and 6 is the specification of a
shared memory mutual exclusion algorithm which uses a single shared variable that can
be read and written by all the participants. We fix here the number of participants to
be four, by defining Index to be an enumeration consisting of five elements, one of which
represents a special value. Note, however, that this specification can be generalized to
any finite number of participants. The automaton parameters u_set and 1_check represent
upper and lower time bounds for the set (i) and check(i) actions respectively. We assume
that u_set < l_check.

The shared variable x can be assigned any value of type Index where nil is regarded
as a special value. If a process is in the critical region, then the variable x contains the

26

type Index = enumeration of nil, pil, p2, p3, p4

type PcValue = enumeration of rem, test, set, check,
leavetry, crit, leaveexit

automaton FischerME(u_set, l_check: Real)
signature
external try(i:Index), crit(i:Index), exit(i:Index), rem(i:Index)
internal test(i:Index), set(i:Index),
check(i:Index), reset(i:Index)

states
x: Index := nil,
pc: Array[Index,PcValue] := constant(rem),
lastset: Array[Index,discrete AugmentedReal] := constant(infty),
firstcheck: Array[Index,discrete AugmentedReal] := constant (0),

now: Real:=0
initially u_set > 0 A 1l_check > 0 A u_set < l_check

Figure 5: Fischer’s mutual exclusion algorithm: Signature and states

index of that process. If all users are in the remainder region, then the variable x contains
the value nil. The array variable pc records the program counters of all processes. The
array variable lastset keeps track of the deadlines by which the processes’ set actions
must occur. Similarly, the array variable firstcheck keeps track of the earliest time the
processes’ check actions may occur The analog variable now models real time.

The transition definitions for external actions try(i), test(i), crit(i), and exit(i)
are straightforward. When a process performs one of these actions, its program counter
is updated to record the region entered by the process. The most interesting transition
definitions are test (i), set (i), and check(i) since they are the ones that involve timing
constraints of the algorithm. When a process i performs a test action and observes x to
be nil, it sets lastset[i] to now + u_set. This sets the deadline for the performance of the
set (i) action. Note that this deadline is enforced through the stopping condition in the
trajectory specification. The transition set (i) sets firstcheck[i] to now + 1_check. The
value of firstcheck[i] determines the earliest time check(i) may occur. The check(i)
action is enabled only when the current time has at least this value.

The trajectory specification says that the values of discrete variables are kept constant
by trajectories. The stopping condition implies that if the value of now reaches the value
of lastset[i] for some process i at some point in time, then that point must be the limit
time of the trajectory.

27

transitions

external try (i) external crit(i)
pre pre
pcli] = rem pcli] = leavetry
eff eff
pcli]l:= test pcli]l := crit
internal test (i) external exit (i)
pre pre
pcli]l = test pcli]l = crit
eff eff
if x = p0 then pcli]l := reset
pcli] := set;
lastset[i] :=now+u_set
internal set (i) internal reset (i)
pre pre
pcl[i] = set pcli]l = reset
eff eff
X = i; X = 1i;
pcl[i] := check; pcli] := leaveexit
lastset[i] := infty;
firstcheck[i]l:= now + 1l_check
internal check (i) external rem(i)
pre pre
pcl[i]l = check A pcli]l = leaveexit
now > firstcheckl[il] eff
eff pcli]l := rem
if x = i then pcl[i] := leavetry
else pcl[i] := test

trajectories
stop when
4 i: Index now= lastset[il
evolve
d(now) =1

Figure 6: Fischer’s mutual exclusion algorithm: Transitions and trajectory definitions

28

automaton ClockSync(u,r: Real, i: Index)
signature
external send(m: Real, const i: Index),
receive(m: Real, j: Index, const i: Index) where j # i

states
nextsend: Real := 0,
maxother: Real := 0,
physclock: Real := 0

initially u > 0 A (0 < r < 1)

derived variables
logclock = max(maxother, physclock)

transitions
external send(m,i)
pre
m = physclock A physclock = nextsend
eff
nextsend := nextsend + u
external receive(m,j,1i)
eff
maxother := max(maxother,m)
trajectories
invariant
continuous(physclock)
stop when
physclock = nextsend
evolve
(1 - r) < d(physclock) < (1 + r)

Figure 7: Clock synchronization

Example 4.6 (Clock synchronization)

The automaton ClockSync(u,r:Real, i:Index) in Figure 7 is the specification of a
single process in a clock synchronization algorithm. Each process has a physical clock
and generates a logical clock. The goal of the algorithm is to achieve “agreement” and
“validity” among the logical clock values. Agreement means that the logical clocks are
close to one another. Validity means that the logical clocks are within the range of the
physical clocks.

The algorithm is based on the exchange of physical clock values between different
processes in the system. The parameter u determines the frequency of sending messages.
Processes in the system are indexed by the elements of the type Index which we assume
to be pre-defined. ClockSync(u,r:Real, i:Index) has a physical clock physclock, which

29

may drift from the real time with a drift rate bounded by r. It uses the variable maxother
to keep track of the largest physical clock value of the other processes in the system.
The variable nextsend records when it is supposed to send its physical clock to the other
processes. The logical clock, logclock, is defined to be the maximum of maxother and
physclock. Formally logclock is a derived wvariable, which is a function whose value is
defined in terms of the state variables.

A send(m,i) transition is enabled when m = physclock and nextsend = physclock. It
causes the value of nextsend to be updated so that the next send can occur when physclock
has advanced by u time units. The transition definition for receive(m,j,i) specifies the
effect of receiving a message from another process j in the system. Upon the receipt of a
message m from j, i sets maxother to the maximum of m and the current value of maxother,
thereby updating its knowledge of the largest physical clock value of other processes in
the system.

The trajectory specification is slightly different from that in the previous examples. In
this example, the analog variable physclock does not change at the same rate as real time
but it drifts with a rate that is bounded by r. The periodic sending of physical clocks to
other processes is enforced through the stopping condition in the trajectory specification.
Time is not allowed to pass beyond the point where physclock = nextsend.

4.2 Executions and Traces

We now define execution fragments, executions, trace fragments, and traces, which are
used to describe automaton behavior. An ezecution fragment of a timed automaton A is
an (A,V)-sequence oo = 79 aj 71 ag T2 ..., where (1) each 7; is a trajectory in 7, and (2)
if 7; is not the last trajectory in « then 7;.lstate A Tixr1-fstate. An execution fragment
records what happens during a particular run of a system, including all the instantaneous,
discrete state changes and all the changes to the state that occur while time advances. We
write frags 4 for the set of all execution fragments of A.

If « is an execution fragment, with notation as above, then we define the first state of
«, a.fstate, to be a.fval. An execution fragment of a timed automaton A from a state x
of A is an execution fragment of A whose first state is x. We write frags 4(x) for the set of
execution fragments of A from x. An execution fragment « is defined to be an execution if
«.fstate is a start state, that is, a.fstate € ©. We write execs 4 for the set of all executions
of A. If « is a closed (A, V)-sequence then we define the last state of «, «.lstate, to be
a.lval.

A state of A is reachable if it is the last state of some closed execution of A. A property
that is true for all reachable states of an automaton is called an invariant assertion, or
invariant, for short.

30

Lemma 4.7 Let agay ... be a finite or infinite sequence of execution fragments of A such
that, for each nonfinal index i, oy is closed and o.lstate = «;y1.fstate. Then ag ™ oy ™ - -
is an execution fragment of A.

Proof: Follows easily from the definitions, using axiom T3. [|

Lemma 4.8 Let o and 3 be execution fragments of A with « closed. Then

a<f & 3d€fragsy:B=a" d.

Proof: Implication “<” follows directly from the corresponding implication in Lemma 3.7.
Implication “=" follows from the definitions and T2. [|

The external behavior of a timed automaton is captured by the set of “traces” of
its execution fragments, which record external actions and the trajectories that describe
the intervening passage of time. A trace consists of alternating external actions and
trajectories over the empty set of variables, (); the only interesting information contained
in these trajectories is the amount of time that elapses.

Formally, if a is an execution fragment, then the trace of «, denoted by trace(a), is
the (E,)-restriction of a, «[(E,0). A trace fragment of a timed automaton A from a
state x of A is the trace of an execution fragment of A whose first state is x. We write
tracefrags 4(x) for the set of trace fragments of A from x. Also, we define a trace of A to
be a trace fragment from a start state, that is, the trace of an execution of A, and write
traces 4 for the set of traces of A.

In the earlier timed automaton models [28, 40], execution fragments were defined in a
similar style to the one presented here, that is, as an alternating sequence of trajectories
and actions. However, the traces were not derived from execution fragments by a simple
restriction to external actions and the empty set of variables. Rather, a trace was defined
as a sequence consisting of actions paired with their time of occurrence together with
a limit time. The new definition increases uniformity; the definitions, results and proof
techniques for hybrid sequences apply to both execution fragments and traces.

We now revisit some of the automata presented earlier in this section and give sample
executions and traces for these automata.

Example 4.9 (Periodic sending process) Consider the automaton PeriodicSend(u:Real,
M:Type) from Example 4.2 where u is instantiated to the real number 3 and the message
type parameter M is instantiated to the set {m1, m2, ... }. The following sequence is an
execution of the automaton:

a = 79 send(m1) 71 send(m2) 72 send(m3) 73 ...

31

where 7; : [0, 3] — val({clock}) are defined such that 7;(¢)(clock) = ¢ for all ¢ € [0, 3].

The functions 7; are defined for closed intervals of length 3, starting at time 0. They
describe the evolution of the variable clock, which is 0 at the start of each 7; and increases
with rate 1 for 3 time units. The discrete send events occur periodically, every 3 time
units and reset the clock variable to 0.

The trace of the above execution fragment, trace(«), is the sequence

a = 7(send(m1) 7| send(m2) 75 send(m3) 75 ...

where 77 : [0,3] — val(0).

Since the range of each function 7/ contains only the function with the empty domain,
trace(a) does not contain any information about what happens to the value of clock as
time progresses. Since the domains of each 7; and 7/ are identical, a and trace(o’) express
the same information about the amount of time that elapses between discrete steps. =

Example 4.10 (Timeout process) We now present an execution of the automaton
Timeout (u:Real, M:Type) from Example 4.4 where the the maximum waiting time u for a
message is 5 and the message alphabet M is the set {m1,m2}. The following finite sequence
is an execution of Timeout(u:Real, M:Type):

a = 7p receive(ml) 71 timeout 7o receive(m2) 73 timeout 74

where Val = val({suspected,clock}) and the functions 79, 71, 72, 73, 74 are defined as fol-
lows:

70 : [0,2] — Val where 79(t)(suspected) = false and 7o(t)(clock) = ¢ for all ¢ € [0, 2].

71 : [0,5] — Val where 71 (t)(suspected) = false and 71(¢)(clock) = ¢t for all ¢ € [0, 5].

T2 : [0,1] — Val where 72(t)(suspected) = true and 7(t)(clock) = 5+ ¢ for all ¢ € [0, 1].
73 : [0,5] — Val where 73(¢)

suspected) = false and 75(t)(clock) =t for all ¢ € [0, 5].

((
T4 : [0,00) — Val where 74(t)(suspected) = true and 74(¢)(clock) =5+t for all ¢ € [0,).

In this sample execution, the first awaited message arrives at time 2. Since no other
message arrives within the next 5 time units, the process performs a timeout. A new
message arrives 1 time unit after the timeout and the variable clock is reset to 0. Since
no new message arrives in the next 5 time units the process performs another timeout.
The time elapses forever after this timeout since no further message arrives.

This example illustrates that the automaton Timeout(u:Real, M:Type) can perform
multiple timeout transitions. Another point to note is that the sample execution consists
of a finite (A, V)-sequence ending with a trajectory, as opposed to an infinite sequence
as in Example 4.9 . The final trajectory here is a trajectory whose domain is right open

32

and the execution is admissible and non-Zeno. Replacing 74 with a function on a closed
interval would yield a non-Zeno execution that is not admissible.

The trace of the execution a can be obtained by letting the range of 7; be the set
consisting of the function with the empty domain, as we did in the previous example. That
is, by hiding the values of the internal variables clock and suspected during trajectories.
|

Example 4.11 (Time-bounded channel) Consider the time-bounded channel automa-
ton from Example 4.1. It is easy to observe that time cannot pass beyond any delivery
deadline recorded in the message queue and that each deadline in the queue is less than
or equal to the sum of the current time and the bound b. This property can be stated as
an invariant assertion as follows.

Invariant 1 : In any reachable state x of automaton TimedChannel(b:Real, M:Type),
for all (m,u) in x(queue), x(now) < u < x(now) + b.

Such an invariant can be proved by induction. Recall that reachable states are the
final states of closed executions. Axioms T1 and T2 allow us to view any closed execution
as a concatenation of closed execution fragments, ag — a3 7 ...qap, where every «; is
either a closed trajectory or a discrete action surrounded by point trajectories, and where
;. lstate = ayqq.fstate for 0 < i < k—1. The invariant can then be proved using induction
on the length k of the sequence of execution fragments «;. [|

Example 4.12 (Fischer’s mutual exclusion) The main safety property that needs to
be satisfied by the automaton FischerME(u_set,1 check:Real) from Example 4.5 is mutual
exclusion. This safety property can be expressed as an invariant assertion:

Invariant 1 : In any reachable state x of FischerME(u set, 1_check:Real), there do
not exist i:Index and j:Index such that x(pc)[i] = crit and x(pc)[j] = crit.

Even though the invariant does not refer to time, its proof depends on the timing
constraints of the automaton. For example, the following auxiliary invariant can be used
in proving Invariant 4.12:

Invariant 2 : In any reachable state x of FischerME (u-set, 1_check:Real), if x(pc)[i] =
check, x(x) = i, and x(pc)[j] = set, then x(firstcheck)[i]) > x(lastset)[j].

This invariant states that if the program counter of process i has the value check, the
program counter of process j has the value set, and the variable x has the value i, then
i will allow enough time for j to set x to j, before performing the check. If this timing
constraint were not satisfied, it would be possible for i to check that x = i before j sets
x to j. Both of the processes would then observe x to contain their own index and enter
the critical region. n

33

Lemma 4.13 If « is an execution of A then

1. « is time-bounded if and only if trace(«) is time-bounded.
2. « is admissible if and only if trace(«) is admissible.
3. If o is closed then trace(a) is closed.

4. If a is non-Zeno then trace(a) is non-Zeno.

Proof: Tt follows directly from the restriction of (A,V)-sequences.]

Lemma 4.14 If 8 is a trace of A then

1. If B is closed then there exists an execution o of A such that trace(a) = 3 and « is
closed.

2. If B is non-Zeno then there exists an execution o of A such that trace(a) = 3 and
o s non-Zeno.

Proof: For the first part of the theorem, let 3 = trace() be a closed trace of A. By
definition of a trace, we know that S.ltime = a.ltime. We also know that « is either closed
or has a suffix which is an infinite sequence of alternating point trajectories and internal
actions. Now, let o be the least closed prefix of « such that «'.ltime = fS.ltime. Clearly,
o/ is a closed execution of A.

For the second part of the theorem, observe that a non-Zeno trace is either closed or
admissible. Let 3 = trace(«). For the case where 3 is closed, we have already shown how
we can find a closed execution. For the case where = trace(a) is admissible, we know
that «a.ltime = oo. Hence, « is admissible, as needed. [|

Example 4.15 (Constructing a closed execution from a closed trace) Consider
the Zeno hybrid sequence oo = p(v) a p(v) a p(v) ... given in Example 3.12. Suppose that
« is an execution of A and that a is an internal action of A. Then, trace(a) = p(v') where
p(v') is a trajectory over the empty set of variables. However, the fact that trace(a) is
closed does not imply that « is closed. Thus, we see why we have a one way implication
in item 3 of Lemma 4.13. On the other hand, we can construct a closed execution of A
with trace p(v’) as explained in the proof of Lemma 4.14. The execution consisting of the
point trajectory o(v’) is a closed execution of A with trace o(v'). []

4.3 Special Kinds of Timed Automata

This section describes several restricted forms of timed automata and gives definitions
that are needed for theorems that are presented in later sections.

34

Timed Automata with Finite Internal Nondeterminism: We are sometimes inter-
ested in bounding the amount of internal nondeterminism in a timed automaton. Thus,
we say that a timed automaton A has finite internal nondeterminism (FIN) provided
that:

1. The set © of start states is finite, and

2. For every state x of A and every trace fragment (3 of A from x, the set {«.lstate |
a € frags 4(x) A trace(o) = [} is finite.

Example 4.16 (Automata with FIN) The automata TimedChannel(b:Real, M:Type),
PeriodicSend(u:Real, M:Type), PeriodicSend2(u:Real, M:Type), and Timeout (u:Real,

M:Type) given in Section 4.1 all have FIN. The first property of the definition of FIN
is satisfied since each of these automata has a unique start state. The second property
follows from the fact that in each automaton, for every state x and every trace fragment
B from x, there is a unique execution fragment « such that trace(a) = . [|

Example 4.17 (Automata without FIN) We show that FischerME(u_set,1 check:Real)
and ClockSync(a,r: Real, i:Index) do not have FIN. For each automaton, we specify a
trace, describe the set of all executions that have the specified trace, and argue that the
second property in the definition of FIN fails for the chosen trace.

Let x be the start state of FischerME(u_set,l check:Real) and 3 = 7o try(i) 71 be a
trace of the same automaton where the domains of the functions 7y and 7; are, respectively,
the single point interval [0,0] and the interval [0, u], and the range of both functions is the
set consisting of the function with the empty domain. For any execution «, trace(«) = 3, if
and only if a.ltime = u, try(i) occurs at time 0, and all the actions in « that occur after
try(i) are internal actions. There are infinitely many different times that the internal
actions may occur, and infinitely many values lastcheck and firstcheck could have, by
the time u. Therefore, the set {a.lstate | a € frags 4(x) A trace(a) = 79 try(i) 71} is not
finite and FischerME(u_set, 1l_check:Real) does not have FIN.

Now, let x be the start state of ClockSync(a,r:Real, i:Index) where x(physclock) =
x(nextsend) = x(maxother) = 0 and (3 = 7y send(0) 71 be a trace of ClockSync(a,r:Real,
i:Index) where the domains of functions 79 and 71 are, respectively, the interval [0, 0]
and the interval [0, u], and the range of both functions is the set consisting of the func-
tion with the empty domain. For any « in which send(0) occurs at time 0 and is fol-
lowed by a trajectory 7 such that 7.ltime = u, we have trace(o) = (. For any such
«, a.lstate(physclock) can be any value in the interval [u (1 -), uw (1 + r)]. There-
fore, the set {a.lstate | a € frags 4(x) A trace(a) = 79 send(0) 71} is not finite and
ClockSync(a,r:Real, i:Index) does not have FIN.

35

The following lemma states that if a timed automaton has FIN, then its set of traces
is limit-closed.

Lemma 4.18 Suppose that timed automaton A has FIN and x € Q. Suppose that
G182 ... is a chain of trace fragments of A from x. Then the hybrid sequence lim; 3;
is a trace fragment of A from x.

Proof: This is analogous to the proof of Lemma 4.3 of [28]. Suppose that A is a timed
automaton that has FIN, x is a state of A, and 31 (2 ... is a chain of trace fragments of
A from x. We define a relation after between trace fragments from x and states of A:
after = {(B,y) | Ja € frags 4(x). trace(a) = B A a.lstate = y}.

We construct a directed graph G whose nodes are pairs (f;,y) € after where [3; is
an element of the given chain. In G, there is an edge from (8;,y) to (Bi+1,y’) exactly if
Bi+1 = Bi — 7 such that v = trace(«) for some « € frags 4(y), and a.lstate = y’. By the
definition of property FIN, there are finitely many roots of G. By the definition of FIN
and the construction of GG, each node of G has finite outdegree.

We claim that each node (f3;,y) of G is reachable from some root (f;,z) for some z.
By definition of the node set, there exists o € frags 4(x) such that trace(o) = (; and
a.lstate =y. Choose o € frags 4(x) to be a prefix of « such that trace(a’) = 1 and let
z = o .Istate. By definition of the edge set of G, (8;,y) is reachable from ((31,2).

Hence, G satisfies the hypotheses of Lemma 2.3, which implies that there is an infinite
execution fragment starting from x whose trace is lim; §;. Lemma 2.3 is an extension of
Konig’s lemma. [|

There are two references to automata with FIN later in the paper. The first one is in
Theorem 4.19, which lists some sufficient conditions for establishing an implementation
relationship between two automata. The second reference appears in the discussion about
the kinds of automata that satisfy the assumptions of Theorem 7.7.

Feasible Timed Automata: A timed automaton A is feasible provided that, for every
state x of A, there exists an admissible execution fragment of A from x.

Feasibility is a basic requirement that any “reasonable” timed automaton should sat-
isfy. Theorems 4.19, and 6.2 establish some results about feasible automata.

Timing-Independent Timed Automata: A timed automaton A is said to be timing-
independent provided that all its state variables are discrete variables, and its set of tra-
jectories is exactly the set of constant-valued functions over left-closed time intervals with
left endpoint 0.

We refer to timing-independent automata later in Examples 5.12 and 7.9, and in our
discussion about Corollary 7.8.

36

4.4 Implementation Relationships

Timed automata A; and Ao are comparable if they have the same external interface,
that is, if 1 = E,. If A; and Ay are comparable then we say that A; implements Asg,
denoted by A; < A, if the traces of A; are included among those of Ao, that is, if
traces 4, C traces.,.!

Other preorders between timed automata could also be used as implementation rela-
tionships, for example, if A; and Ay are comparable timed automata, we could consider:

e Every closed trace of A; is a trace of As.
e Every admissible trace of A; is a trace of As.

e Every non-Zeno trace of A; is a trace of As.

Theorem 4.19 Let Ay and Ag be comparable TAs.

1. If every closed trace of A; is a trace of A2 and As has FIN, then A1 < As.

2. If every admissible trace of Ay is a trace of Ay and A;j is feasible, then every closed
trace of A1 is a trace of As.

3. If every admissible trace of Ay is a trace of A, Ay is feasible, and As has FIN, then
A < As.

Proof: Part 1 follows from Lemma 4.18.

For Part 2, consider a closed trace 3 of A;. By feasibility of A;, we may extend [
to an admissible trace 3’ of A;. Then by assumption, 3’ is also a trace of As. By prefix
closure of the set of traces, 3 is a trace of As.

Part 3 follows from Parts 1 and 2. []

4.5 Simulation Relations

In this section, we define simulation relations between timed automata. Simulation rela-
tions may be used to show that one TA implements another, in the sense of inclusion of sets
of traces. We define two types of simulation relations: forward and backward simulations.

'In [28, 13, 26, 27], definitions of the set of traces of an automaton and of one automaton implementing
another are based on closed and admissible executions only. The results we obtain in this paper using
the newer, more inclusive definition imply corresponding results for the earlier definition. For example,
we have the following property: If A; < A2 then the set of traces that arise from closed or admissible
executions of A; is a subset of the set of traces that arise from closed or admissible executions of As. This
follows from Lemmas 4.13 and 4.14.

37

Forward simulations are more commonly used than backward simulations because they
are easier to think about and are general enough to cover most interesting situations that
arise in practice. Backward simulations are sometimes necessary, in particular, when non-
deterministic choices are resolved earlier in the specification than in the implementation.
In proving implementation relations, we prefer to use forward simulation relations when-
ever they exist, since backward simulations are harder to think about.

4.5.1 Forward Simulations

Let A and B be comparable TAs. A forward simulation from A to B is a relation R
C Q4 x Qp satisfying the following conditions, for all states x4 and xp of A and B,
respectively:

1. If x4 € © 4 then there exists a state xz € O3 such that x4 R x3.

2. If x4 R xp and « is an execution fragment of A consisting of one action surrounded
by two point trajectories, with «.fstate = x 4, then B has a closed execution fragment
B with (.fstate = xp, trace() = trace(a), and a.lstate R [3.lstate.

3. If x4 R xp and « is an execution fragment of A consisting of a single closed
trajectory, with «.fstate = x4, then B has a closed execution fragment 3 with
B.fstate = xg, trace() = trace(a), and a.lstate R (.lstate.

Forward simulation relations induce a preorder between timed automata.

Theorem 4.20 Let A, B and C be comparable TAs. If Ry is a forward simulation from
A to B and Ry is a forward simulation from B to C, then Ra o Ry is a forward simulation
from A to C.

The definition of a forward simulation from A to B yields a correspondence for open
trajectories of A:

Lemma 4.21 Let A and B be comparable TAs and let R be a forward simulation from A
to B. Let x4 and xpg be states of A and B, respectively, such that x4 R xg. Let o be an
execution fragment of A from state x4 consisting of a single open trajectory. Then B has
an execution fragment 3 with [.fstate = xp and trace() = trace(a).

Proof: Let 7 be the single open trajectory in o. Using axioms T1 and T2, we construct
an infinite sequence 7o 71 ... of closed trajectories of A such that 7 =79~ 7 — ---. Then,
working recursively, we construct a sequence Gy 1 ... of closed execution fragments of
B such that (y.fstate = xp and, for each i, 7;.lstate R f;.lstate, B;.lstate = [(;41.fstate,
and trace(r;) = trace(f3;). This construction uses induction on #, using Property 3 of the

38

definition of a forward simulation in the induction step. Now let 8 = Gy — f1 — ---. By
Lemma 4.7, # is an execution fragment of B. Clearly, (.fstate = xg. By Lemma 3.9
applied to both a and 3, trace(3) = trace(«). Thus [has the required properties. [

Theorem 4.22 Let A and B be comparable TAs and let R be a forward simulation from
A to B. Let x4 and xg be states of A and B, respectively, such that x4 R xp. Then
tracefrags 4(x.4) C tracefragsg(xp).

Proof: Suppose that § is the trace of an execution fragment of A that starts from
x 4; we prove that J is also a trace of an execution fragment of B that starts from xp.
Let & = 19 a1 71 ag T2... be an execution fragment of A such that «.fstate = x4 and
d = trace(a)). We consider cases:

1. « is an infinite sequence.

Using axioms T1 and T2, we can write « as an infinite concatenation cg”™ a1 " - - -,
in which the execution fragments «; with ¢ even consist of a trajectory only, and the
execution fragments «; with ¢ odd consist of a single discrete step surrounded by
two point trajectories.

We define inductively a sequence 3y (31 ... of closed execution fragments of B, such
that Gy.fstate = xp and, for all ¢, (;.lstate = B;11.fstate, «;.lstate R (;.lstate, and
trace(B3;) = trace(cy;). We use Property 3 of the definition of a simulation for the
construction of the (3;’s with i even, and Property 2 for the construction of the (3;’s
with ¢ odd. Let 8 = By ~ 81~ B2---. By Lemma 4.7, § is an execution fragment
of B. Clearly, (.fstate = xg. By Lemma 3.9, trace(3) = trace(a). Thus (has the
required properties.

2. « is a finite sequence ending with a closed trajectory.

Similar to the first case.

3. « is a finite sequence ending with an open trajectory.

Similar to the first case, using Lemma 4.21. [

Corollary 4.23 Let A and B be comparable TAs and let R be a forward simulation from
A to B. Then traces g C tracesg.

Proof: Suppose (8 € traces 4. Then [€ tracefrags 4(x4) for some start state x4 of A.
Property 1 of the definition of simulation implies the existence of a start state xg of B
such that x4 R xg. Then Theorem 4.22 implies that (3 € tracefragsg(xg). Since xp is a
start state of B, this implies that 8 € tracesg, as needed. [|

39

Example 4.24 (Time-bounded channels) Consider two instances of the specification
in Figure 1, TimedChannel(bl, M) and TimedChannel (b2, M) where bl < b2. We define
a forward simulation R from TimedChannel(bl, M) to TimedChannel (b2, M) below. If x
is a state of TimedChannel(bl, M) and y is a state of TimedChannel(b2, M), then x R y
provided that the following conditions are satisfied:

1. x(now) = y(now).

2. |x(queue)| = |y(queue)|.

3. Vi. 1 <i < |x(queue)|, if x(queue)(i) = (m,ul) then y(queue)(i) = (m,u2) and ul <
u2.

We can prove that R is a forward simulation from the automaton TimedChannel (b1, M) to
the automaton TimedChannel (b2, M) by showing that R satisfies each of the three proper-
ties in the definition of a forward simulation relation. In each automaton there is a unique
initial state that maps the variable now to 0 and queue to the empty sequence. It is obvious
that the initial states, which are identical, are related by R and so the first property is
satisfied.

For the rest of the proof, we let x and y be, respectively, states of TimedChannel (b1,
M) and TimedChannel (b2, M) such that x R y. In order to show that the second property is
satisfied, we need to consider two cases, one for each discrete action that may be performed
by TimedChannel (b1, M).

If TimedChannel(b1l, M) performs a send(m) action, and the state changes from x to
x’ then we need to find an execution fragment (3 of TimedChannel (b2,M) from y ending in
y’, such that x’ Ry’ and trace((3) is the same as the trace of p(x) send(m) E(y). The
execution fragment 3 = p(y) send(m) p(y’) satisfies the required conditions. This follows
from the hypothesis that x Ry and the definition of R, using the fact that the effect of a
send(m) action of TimedChannel (b1, M), TimedChannel (b2, M) are, respectively, adding the
entry (m,now + bl) to x(queue), and (m,now + b2) to y(queue) where b1 < b2.

If TimedChannel(bl, M) performs a receive(m) action, and the state changes from x
to x’ then we need to show that receive(m) is also enabled in y and that there is an
execution fragment with the required properties that ends in a state y’ such that x’ Ry’.
In order to show that receive(m) is enabled in y, we use the hypothesis that x R vy,
which implies that the first element of y(queue) is of the form (m,u) for some u. The
execution fragment p(y) receive(m) ©(y’) of TimedChannel (b1, M) can be shown to satisfy
the required conditions.

For the third property, we consider a closed trajectory 7 of TimedChannel (b1, M) with
T.fstate = x and show that there exists a closed execution fragment (3 of the automaton
TimedChannel (b2, M) with [.fstate =y, trace() = trace(r), and T.lstate = B.lstate . Tt
is easy to check that the trajectory 7/ of TimedChannel(b2, M) with 7’.fstate = y and
7'.ltime = T.ltime satisfies the required conditions. [|

40

Example 4.25 (Time-bounded channel that keeps all messages) In this example
we define a variant of TimedChannel(b, M) from Example 4.1 called TimedChannel2(b,
M). The main difference between TimedChannel (b, M) and TimedChannel2(b, M) is that the
message queue in TimedChannel2(b, M) is implemented using a finite sequence of (message,
delivery deadline) pairs queue and a pointer ptr that points to the next element that is to
be delivered. Hence, the internal variables of TimedChannel2(b, M) consist of queue, now
and ptr. The variable ptr initially has value 1, which indicates that it is pointing to the
first element in the sequence. A send(m) action causes messages and deadlines to be added
to the sequence as in TimedChannel(b, M). A receive(m) causes ptr to be incremented to
make it point to the next element in the sequence instead of removing the first element.
The automaton TimedChannel(b, M) can be viewed as an optimized implementation of
TimedChannel2(b, M).

We define below a forward simulation R from TimedChannel (b, M) to TimedChannel2 (b,
M). If x is a state of TimedChannel(b, M) and y is a state of TimedChannel2(b, M), then
x Ry provided that the following conditions are satisfied:

1. x(now) = y(now).

2. x(queue) = y(queue)(y(ptr) ... |y(queue)l).

Example 4.26 (Clock synchronization)

In this example, we define a forward simulation from ClockSync(u,r:Real, i:Index) of
Figure 7 to an automaton that sends multiples of u. The specification of this automaton,
which is called SendVal(u,r:Real, i:Index) is given in Figure 8. We assume that the
definitions of type Index in both automata are identical.

The variable counter keeps track of which multiple of u is to be sent next, and variable
now contains the current time. The automaton parameter r is used in the precondition of
the send and the stopping condition of the trajectory definition, to enforce bounds on the
times of occurrence of send.

We now define a forward simulation R from the automaton ClockSync(u, r, i) to the
automaton SendVal(u, r, i) where u, r and and i r are actual parameters. If x is a state
of the automaton ClockSync(u, r, i) and y is a state of SendVal(u, r, i), then x Ry
provided that the following conditions are satisfied:

1. y(now)(1 — r) < x(physclock) < y(now)(l + r).

2. y(counter) = X(nextsend) /u.

41

automaton SendVal(u,r : Real, i: Index)
signature
external send(m: Real),
receive(m:Real, j: Index, const i) where j # i

states
counter: discrete Real := 0,
now: Real := 0,

initially u > 0 A (0 < r < 1)
transitions
external send(m,i)

pre

m = counter * u A counter * u / (1 + r) < now
eff

counter := counter + 1

external receive(m, j,1)
trajectories
stop when

now = counter * u / (1 - r)
evolve
d(now) =1

Figure 8: Clock synchronization

4.5.2 Refinements

Let A and B be comparable TAs. A refinement from A to B is a function FF C Q4 x Qp,
satisfying the following conditions, for all states x4 and x5 of A and B, respectively:

1. If x4 € ©4 then F(xy4) € Op.

2. If v is an execution fragment of A consisting of one action surrounded by two point
trajectories, with a.fstate = x4, then B has a closed execution fragment § with
B.fstate = F(x.4), trace() = trace(a), and B.lstate = F(a.lstate).

3. If « is an execution fragment of A consisting of a single closed trajectory, with
a.fstate = x4, then B has a closed execution fragment [with f§.fstate = F(x4),
trace(B) = trace(a), and f[.Istate = F(a.lstate).

Theorem 4.27 Let A and B be two TAs and suppose R C Q4 X Qp. Then R is a
refinement from A to B if and only if R is a forward simulation from A to B and R is a

function.

Theorem 4.28 Let A, B and C be comparable TAs. If Ry is a refinement from A to B
and Ro is a refinement from B to C, then Ry o Ry is a refinement from A to C.

42

An isomorphism from A to B is a refinement F from A to B such that F~! is a
refinement from B to A. We say that two automata A and B are isomorphic, if there
exists an isomorphism from 4 to B (or, equivalently from B to A).

4.5.3 Backward Simulations

Let A and B be comparable TAs. A backward simulation from A to B is a total relation
RC Q4 x Qp satistying the following conditions, for all states x4 and xg of A and B,
respectively:

1. If x4 € ©4 and x4 R xp then x5 € Op.

2. If x4 R x5 and « is an execution fragment of A with «a.lstate = x 4, consisting of one
discrete action surrounded by two point trajectories, then B has a closed execution
fragment [with (.lstate = xp, trace() = trace(a), and a.fstate R [3.fstate.

3. If x4 R xg and « is an execution fragment of A with «.lstate = x4, consisting
of one trajectory, then B has a closed execution fragment § with S.lstate = xp,
trace(f) = trace(a), and «.fstate R (.fstate.

Backward simulations induce a preorder between timed automata.

Theorem 4.29 Let A, B and C be comparable TAs. If Ry is a backward simulation from
A to B and Ry is a backward simulation B to C, then Ry o Ry is a backward simulation
from A to C.

Theorem 4.30 Let A and B be comparable TAs and let R be a backward simulation from
A to B. Let x4 and xp be states of A and B, respectively, such that x4 R xg. Let [
be the trace of a closed execution fragment of A from y 4 with last state x4. Then there
exists yp such that 3 is also the trace of a closed execution fragment of B from yp with
last state xp and y4 R ys.

Proof: Fix some R, x4, xp and [satisfying the conditions in the statement of the
theorem. Let o € frags 4(y.a) for some state y 4 of A with trace(a) = . By using the
axioms T1 and T2, we can write a as the concatenation of a sequence of closed execution
fragments, @ = ag ~ a1 7 ...an,, where each «; is either a closed trajectory or an action
surrounded by two point trajectories, and «;.lstate = a;11.fstate for 0 <1 < n.

By using the definition of a backward simulation, working backwards from «,,, we can
construct an execution fragment o' = of, ~ o} ... al, from a state yg of B such that (a)
o' Istate = xp, (b) for all i, 0 < i < n, a;.fstate R o.fstate and trace(cl)) = trace(oy), (c)
for all i, 0 <i < n—1, aj.lstate = o ,.fstate. Using Lemma 4.7, we can see that o/ is an
execution fragment of B. By Lemma 3.9, trace(a) = trace(o/) as needed.

43

Corollary 4.31 Let A and B be comparable TAs and let R be a backward simulation from
A to B. Then every closed trace of A is a trace of B.

Proof: Suppose R is a backward simulation from A4 to B and [is a closed trace of A.
Then 3 = trace(«) for some closed execution « of A. Let x4 and y4 be the first and
last states of a respectively. By the totality of relation R, there exists some state yp of
B such that y4 R yg. By Theorem 4.30, there exists xz of B such that (is the trace of
a closed execution fragment of B from xp with last state yp and x4 R xp. Property 1 of
the definition of a backward simulation relation implies that xp is a start state of B. It
follows that § € tracesp, as needed.

Theorem 4.32 Let A and B be comparable TAs and let R be an image-finite backward
simulation from A to B. Then tracesq C tracesg.

Proof: Let 3 € traces 4. If 3 is closed then Corollary 4.31 implies that § is a trace of B.
From now on we assume [is not closed.

Let o € execs 4 with trace(a) = 3. Note that any such « is either an infinite sequence
Tp a1 T1 ... or a finite sequence 1y a1 71 ... T, where the final trajectory 7, is right open. In
either case, using the axioms T1 and T2, we can construct an infinite sequence aga;y ...
of closed execution fragments such that o« = a9 — @1 7 ... where g is a point trajectory,
each «; is either a closed trajectory or an action surrounded by two point trajectories, and
oy.lstate = ayy1.fstate for each i, 0 < i.

We construct a directed graph G whose nodes are pairs (x,7) consisting of a state of
B and an index such that (a;.lstate,x) €R. In G, there is an edge from (x,7) to (x/,j)
exactly if j = i + 1 and there is an o € fragsg(x) with trace(a’) = trace(a;41) such
that o.lstate = x’. Since R is image-finite there are finitely many roots of G'. By image-
finiteness of R and the definition of the edge set, each node has finite outdegree. By using
the definition of a backward simulation and the edge set of G, we can show that each node
(x,14) is reachable from some root node (z,0) for some start state z of B.

The directed graph G satisfies the hypotheses of Lemma 2.3, which implies that there
is an infinite path in G starting from a root. An edge from a node (x,7) to (x',i + 1)
along this infinite path corresponds to a closed execution fragment ~; 1 of B for ¢, 0 < ¢
such that v;41.fstate = x, vit1.lstate = x" and trace(y;41) = trace(ai+1). By Lemma 4.7,
v ="1"72""...is an execution of B and by Lemma 3.9, trace(vy) = trace(y1)” trace(ys2)
Since trace(;+1) = trace(a;41) for all 4, 0 < ¢, and «y is a point trajectory, by Lemma 3.9,
we get trace(y) = trace(a) = .

44

Example 4.33 (A backward simulation relation) This example illustrates the
difference between forward and backward simulations. We consider two automata A and
B and show that a forward simulation from A to B does not exist while we exhibit a
backward simulation from A to B.

Let A and B be two comparable automata specified below. The trajectories consist of
a set of point trajectories. This implies that the automaton does not allow time to pass
— everything happens at time 0.

o V4 = {stateA} and Vg = {stateB} where:
stateA is a discrete variable with type(stateA) = {xA,y4,qua,54}, and
stateB is a discrete variable with type(stateB) = {xp,yB, Yz, 48, SB}-

e Q4 =wval(Vy) and Qp = val(Vp). We write x4 for the valuation that maps stateA
to x4, y4 for the valuation that maps stateA to x4, etc. Similarly, we write xg for
the valuation that maps stateB to xp, yg for the valuation that maps stateB to xp,
etc.

o O4={x4} and Op = {x5}.
e Ey=Eg={a,b,c} and Hy = Hg = .

b D.A = {(XAaaay.A)a (yAabaq.A)a (y.Aaca SA)}) and
Dp = {(x8,a,yB). (x8.a,y3), (y5.b,98). (yg. ¢,s8) }-

o Tx={p(v) | veQua}, and Ts = {p(v) | v € Q5}

The following are representations of automata A and B as directed multigraphs. The
nodes in the graph represent states and the edges represent discrete transitions where a
label on an edge stands for the action involved in the transition.

An obvious candidate for a forward simulation from A to B is the relation
R = {(x4.%8),(y4,¥8), (yA.¥g) (a4,98), (s4,sB)}. However, observe that even though
y4 and yp are related by R, the execution fragment ©(y4) ¢ @(s4) of A cannot be
matched by any execution fragment of B starting with state yg. Similarly, even though
vy and yj are related by R, the execution fragment p(y4) b o(qa) of A cannot be
matched by any execution fragment of B starting with yj. Therefore, R is not a forward
simulation. In fact, there is no forward simulation relation from A to B: there are finitely

45

many possibilities for forward simulations from A to B and we see that none of them is
a forward simulation by examining all the possibilities. The main reason for this is that
while 4 makes the nondeterministic choice between performing b or ¢ after performing a,
B makes its choice earlier at the same time it performs a.

There is, however, a backward simulation from A to B: the relation R defined above
is a backward simulation. [

4.5.4 History Relations

A relation R C Q4 X Qp is a history relation from A to B if R is a forward simulation
from A to B and R™! is a refinement from B to .A. History relations induce a preorder
between timed automata.

An automaton B is obtained from an automaton A by adding history variables if there
exists a set of variables V' such that

1. Vg =V,4UV and VNV =0,
2. Qp C val(Vg) such that Qg [Va4 C Q.4, and

3. The relation {(x,y) | y € @ and y [V4 = x} is a history relation from A to B.

The method of adding history variables is typically used to make it possible to establish
an implementation relationship using a refinement. If a refinement does not exist from a
low-level automaton to a higher-level one, it can often be made to exist by adding history
variables to the low-level automaton.

Example 4.34 (Adding history variables to obtain a refinement) We cannot show
that TimedChannel (b, M) is an implementation of TimedChannel2(b, M) from Example 4.25
by using a refinement. This is because we have no way of specifying what the subsequence
before the pointer should be in TimedChannel2(b, M) when relating the states of the two
automata. This example shows how we can add history variables to TimedChannel (b,
M) (actually, we add just one variable) to obtain a new automaton that is related to
TimedChannel2(b, M) by a refinement.

Let log be a discrete variable whose static type is the same as the static type of queue
in TimedChannel (()b, M) and let the initial value of log be the empty sequence. We define
a new automaton TimedChannelH(b, M) whose set of variables consists of the variables of
TimedChannel (b, M) and the variable log. The rest of the definition of TimedChannelH(b:
Real, M: Type) is the same as TimedChannel(b, M) except for the transition definition
for receive(m). A receive(m) event in TimedChannelH(b, M) not only removes the first
message from the message queue but also appends this message to the sequence contained
in log.

46

Let V1, Va be the set of variables and @1, Q2 be the set of states of TimedChannel (b, M)
and TimedChannelH(b, M) respectively. It is easy to verify that the relation {(x,y) | y €
@2 and y | V4 = x} is a history relation from TimedChannel(b, M) to TimedChannelH (b, M).
This means that TimedChannelH(b, M) is obtained from TimedChannel(b, M) by adding a
history variable.

We now define a refinement /' from TimedChannelH(b, M) to TimedChannel2(b, M) as
follows. In our definition we assume the following conventions. Concatenation on the
left corresponds to putting an element on the front of a queue. Recall also that we use
juxtaposition for concatenation of sequences. If x is a state of TimedChannelH(b, M) and
y is a state of TimedChannel2(b, M), then F(x) =y where:

1. y(now) = x(now).
2. y(queue) = x(log) ~ x(queue) such that |x(log)| = y(ptr) — 1.
|

Whenever an automaton B is obtained from A by adding history variables, then there
exists a history relation from A to B by definition. Theorem 4.35 states that the converse
also holds, if isomorphic automata are considered.

Theorem 4.35 Let A and B be two comparable TAs such that V4 and Vg are disjoint.
Suppose that there is a history relation from A to B. Then, there exists an automaton C
that is isomorphic to B and is obtained from A by adding history variables.

Proof: Let R be a history relation from A to B. Define automaton C as follows:
o Vo =V,4UVg.
e Qc={xecwal(Ve) | (x[Va,x[VB) € R}.

Oc ={x€Qc | x[Vs € Op}.

Ee = Ep and He = Hp.

X ¢y if and only if x[Vg i>By[V3.

e x Leyifand only if x[Vs 255y [Vs where 71 = 7 | V5.

Let F' : Q¢ — Qp be defined such that F(x) = x [Vg for all x € Q¢. The function F
is an isomorphism from C to B: It is easy to check that F' is a refinement from C to B.
We can also easily verify that F~! is a refinement from B to C, by definition of C and the
fact that R~! is a function from the states of B to the states of A.

Now. we verify that C is obtained from A by adding history variables. Let Vg be the
variable set V required in the definition of a history variable and let R'= {(x,y) | y €
Qc Ny [V4 =x}. We need to show that R’ is a history relation from A to C.

47

1. R’ is a forward simulation from A to C.
By definitions of the relations F, R’ and the automaton C, R’ = F~ 1o R. Since F~!
is a refinement from B to C, by Theorem 4.27, we know that it is a forward simulation
from B to C. Since R is a forward simulation from A to B, by Theorem 4.20 we have
R’ is a forward simulation from A to C, as needed.

2. R'!is a refinement from C to A.
By definitions of the relations F', R’ and the automaton C, R’ 1= R 1o0F. Since F
is a refinement from C to B and R~! is a refinement from B to A, by Theorem 4.28,
we have R'~! is a refinement from C to A, as needed.

The following theorem shows that forward simulations are essentially the same as
history relations combined with refinements.

Theorem 4.36 Let A and B be two comparable TAs such that V4 and Vg are disjoint.
There is a forward simulation from A to B if and only if there exists a TA C such that
there is a history relation from A to C and a refinement from C to B.

Proof: To prove the implication =, suppose R is a forward simulation from A to B. Let
C be an automaton defined as follows:

o Vo =V,4UV3.
o Qc={x€wal(Ve) | (x[Va,x[V5)€R}.

@c:{XGQc | X(VAGGA/\X(VBGGB}.

Ee=FE4 and He = Hy.

x ¢y if and only if both of the following conditions hold:

1. X[VAgAy(VA.

2. There exists an execution fragment (3 of B such that (.fstate = x [Vg, (B.lstate =
y [Vg, and trace((3) = trace(p(x) a p(y)).

x —¢ y if and only if both of the following conditions hold:

Lr=7|VieTgand x[Vy 4y [Va.
2. m=r1|VgeTgand x[Vg S5y [Vs

48

Let m4 and wp be the functions that restrict states of C to, respectively, V4 and Vg.
It follows from the definitions that 7r;11 is a history relation from A to C and 7p is a
refinement from C to B.

For the implication <, suppose that there is a history relation from A to C and that
there is a refinement from C to B. Then, by definition of a history relation, we know that
there is a forward simulation from A to C. We also know that there is a forward simulation
from C to B by Theorem 4.27. It follows that there is a forward simulation from A to B,
as needed.

Example 4.37 (Theorem 4.36 applied to time-bounded channels) In Exam-
ple 4.25, we demonstrated a forward simulation from the automaton TimedChannel (b,
M) to the automaton TimedChannel2(()b, M) . Theorem 4.36 implies that there exists an
automaton A such that there is a history relation from TimedChannel(b, M) to A and a
refinement from A4 to TimedChannelPointerb, M. The automaton TimedChannelH(b, M)
from Example 4.34 is a witness for A.

4.5.5 Prophecy Relations

A relation R C Q4 x Qg is a prophecy relation from A to B if R is a backward simulation
from A to B and R~! is a refinement from B to A. Prophecy relations induce a preorder
between timed automata.

An automaton B is obtained from an automaton A by adding prophecy variables if
there exists a set of variables V' such that

1. Vg=V,UVand V4NV =0,
2. QB C val(Vg) such that Qg [V4 C Q4, and

3. The relation {(x,y) | y € @ and y [V4 = x} is a prophecy relation from A to B.

Example 4.38 (Adding prophecy variables to obtain a refinement) In this example
we consider adding a prophecy variable to the automaton A from Example 4.33. Let C be
an automaton defined as follows:

o Vo =V, 4U{v} where v is a discrete variable with type(v) = {b, c}.

49

o Qc = {x¢,x;,ye.y¥(,dcssc} such that

xc [Va=x4 and x¢ [{v} =0
xp [Vg =x4 and x; [{v} =¢
ye [Va=yaand yc[{v} =0
ye [Va=yaand yp [{v} =c
ac [Va=qu and qc [{v} =
sc[Va=s4and sc[{v}=c

Oc = {x¢.x,}.

EC = {a’a bv C}-

DC - {(Xc7a7yc)v (X/07G7ylc)v (y07b7 qC)a (y/c:C, SC)}-
Te = {p(v) | v e Qc}-

b
a /
Y4
c SA x& ———>y, ——————*>5¢
A

a4 Xc = Yc ™ qc

XA

The relation R= {(x4,%¢), (x4,X0), (4. ¥e), (Y4, ¥¢): (@4, qc), (s4.8¢)} is a back-
ward simulation from A to C and R~ is a refinement. Therefore, C is obtained by adding
a prophecy variable to A. Note that there is no refinement from A to B defined in Exam-
ple 4.33. However, the relation F' = {(x¢,x5), (xz.XB), (¥yc.¥B). (¥¢.¥5): (dc.9B). (Sc.sB) }
is a refinement from C to B. |

Theorem 4.39 Let A and B be two comparable TAs such that V4 and Vg are disjoint.
Suppose that there is a prophecy relation from A to B. Then, there exists an automaton
C that is isomorphic to B and is obtained from A by adding prophecy variables.

Proof: The proof is analogous to the proof of Theorem 4.35. We assume a backward
simulation relation R instead of a forward simulation relation. We construct the automaton
C as in Theorem 4.35 and verify that it is obtained from A by adding a prophecy variable.
|

50

Theorem 4.40 Let A and B be two comparable TAs such that V4 and Vg are disjoint.
There is a backward simulation from A to B if and only if there exists a TA C such that
there is a prophecy relation from A to C and a refinement from C to B.

Proof: The proof is analogous to the proof of Theorem 4.36. We assume a backward
simulation relation R instead of a forward simulation. The construction of the automaton
C and the reasoning that follows are similar. [|

Example 4.41 (Theorem 4.40 applied to Examples 4.33 and 4.38) In Exam-
ple 4.33, we demonstrated a backward simulation from A to B. Theorem 4.40 implies that
there exists an automaton C such that there is a prophecy relation from A to C and a
refinement from C to B. The automaton C defined in Example 4.38 constitutes a witness
for C. [|

5 Operations on Timed Automata

In this section, we introduce four kinds of operations on timed automata: parallel compo-
sition, hiding, adding lower and upper bounds for tasks, and untiming.

5.1 Composition
5.1.1 Definitions and Basic Results

The composition operation for timed automata allows an automaton representing a com-
plex system to be constructed by composing automata representing individual system
components. Our composition operation identifies external actions with the same name
in different component automata. When any component automaton performs a discrete
step involving an action a, so do all component automata that have a as an external ac-
tion. The composition operator for timed automata is simpler than it is for general hybrid
automata since all the variables in a timed automaton are internal.?

Formally, we say that timed automata A; and Ay are compatible if HHNAy = HoNA =
) and X1 N X = (. If A; and Az are compatible then their composition A;||.Az is defined
to be the structure A = (X,Q, 0, E, H, D, T) where

e X = X1 UXo.
o Q={xecwva(X)|x[X; €Qs i€{1,2}}

2The composition operation for general hybrid automata requires external variables to be identified as
well as external actions. When any component automaton follows a particular trajectory for an external
variable v, then so do all component automata of which v is an external variable.

51

O={xecQ|x[X;€0;iec{l,2}}]
E=F,UFEy and H = H;U Hs.

For each x,x’' € Q and each a € A, x =54 x' iff for i € {1,2}, either (1) a € A; and
x[X; 2% [Xs,or (2) ad Ay and x[X; =% [X

T Citrags(X) isgivenbyre€ 7 < 7| X; € T;, i € {1,2}.
Theorem 5.1 If A; and Ag are timed automata then A;|Az is a timed automaton.

Lemma 5.2 Let A = A1l Az and let a be an execution fragment of A. Then « [(A1, X1)
and « [(As, Xo) are execution fragments of A1 and As, respectively. Furthermore,

1. « is time-bounded iff both o [(A1, X1) and o [(Aa, X2) are time-bounded.
2. « is admissible iff both a [(A1,X1) and a [(Ag, X2) are admissible.

3. « is closed iff both o [(A1, X1) and a [(Ag, X3) are closed.

4. « is non-Zeno iff both o [(A1,X1) and a [(Az, X2) are non-Zeno.

.

a is an execution iff both o [(A1, X1) and « [(Ag, X3) are executions.

Lemma 5.3 Let A = A1|| Az, and let « be an execution fragment of A. Then, fori=1,2,
trace(a) [(E;, 0) = trace(a [(A, X5)).

The following theorem is a fundamental theorem that relates the set of traces of a com-
posed automaton to the sets of traces of its components. Set inclusion in one direction
expresses the idea that a trace of a composition “projects” to yield traces of the compo-
nents. Set inclusion in the other direction expresses the idea that traces of components
can be “pasted” to yield a trace of the composition.

Theorem 5.4 Let A= Ay|[As. Then traces 4 is exactly the set of (E,D)-sequences whose
restrictions to A1 and As are traces of A1 and As, respectively.
That is, traces o = {0 | B is an (E,()-sequence and [[(E;, () € traces 4,,i € {1,2}}.

Notation: The compatibility conditions for composition require the set of internal vari-
ables of each automaton to be disjoint from the set of internal variables of all the other
automata in the composition. We use a general scheme to disambiguate the internal
variables of components in order to avoid possible name clashes that can violate the com-
patibility conditions. If A is the name of an automaton and v is an internal variable of A,
then we refer to this variable as A.v in the composite automaton.

Example 5.5 (Periodic sending process with timeouts) Let C be the composition
of three automata from Examples 4.1, 4.2 and 4.4:

52

C = PeriodicSend(ul, M) || TimedChannel(b, M) || Timeout (u2, M)
where M = {m1,..., mn} and b + ul < u2. The following sequence is a trace of C.
a = 7p send(ml1) 71 receive(ml) 79 send(m2) 73 receive(m2) 74 ...

where e is the set consisting of the function with the empty domain and

70:[0,ul] —e 7:[0,b] —e T:[0,ul -b]—e 73:[0,b] >e 74:[0,ul - bl —e
The following invariant states that C never performs a timeout action.

Invariant 1 : In any reachable state x of C, x(Timeout.suspected) = false.

In order to prove this invariant we can use an auxiliary invariant such as the one below,
which establishes the fact that every message is delivered before the variable now, which
keeps track of real-time, reaches the point at which a timeout action occurs.

Invariant 2 :

1. if x(TimedChannel.queue) is not empty then
X(TimedChannel.queue)[l] < x(TimedChannel.now + u2) — x(Timeout.clock).

2. if x(TimedChannel.queue) is empty then
ul — x(PeriodicSend.clock) + b < u2 — x(Timeout.clock).

Example 5.6 (Periodic sending process with failures and timeouts) In this
example, we consider a composite automaton defined exactly like the one in Example 5.5
except that the automaton PeriodicSend(ul, M) is replaced with PeriodicSend2(ul, M).
Let C = PeriodicSend2(ul, M) | TimedChannel(b, M) || Timeout(u2, M). The following
sequence is a trace of C.

70 send(ml) 7 receive(ml) 7o fail 73 timeout 74

where e is the set consisting of the function with the empty domain and

70:[0,ul] e 7 :[0,0] e To:[0,b] e T3:[0,u2-b] —e T4:[0,00) —e

53

According to this sample trace, the first message sent by the periodic sending process
is received exactly b time units after it is sent. The periodic sending process fails 2 x b
time units after sending its first message. The timeout process performs a timeout since no
second message arrives within the next u2 time units after the receipt of the first message.

The following invariant states that a timeout performed by C can be used to conclude
that the sender process has failed.

Invariant 1 : Let C = PeriodicSend2(ul, M)|TimedChannel(b, M) |Timeout(u2, M)
and assume that b + ul < u2. In any reachable state x of C, if x(Timeout.suspected) =
true then x(PeriodicSend2.failed) = true.

The automaton C is guaranteed to perform a timeout to signal the failure of a process,
within a specified amount of time after the occurrence of a fail event. The following is a
formal statement of this property.

Let a be an execution of C and let t be the point in time at which a fail event occurs
in @. Then « includes a timeout event that occurs in the interval (t + b, t + b + u2]. ®

Example 5.7 (Clock synchronization) In this example we consider the composition
of three clock synchronization automata with six time-bounded channel automata. A
graphical representation of the composite automaton is given below. The abbreviation
C'S; represents the automaton ClockSync(u, r, i). The abbreviation T'C;; represents
the timed channel with maximum delay b that communicates real-valued messages from
ClockSync(u, r, i) to ClockSync(u, r, j). We assume that the time-bounded channel
automata used in this composition are defined as in Example 4.1 where receive and send
actions in each instance are renamed such that they can be shared with clock synchroniza-
tion automata. Let C = C'S; || 'Sy H CS3 H TCLQ || Tngl H T0173 || T0371 || T0273 H TC3’2.

receive(m),

send(m) 3 send(m) 3

54

A physical clock diverges from real time at the largest rate when it evolves with rate
(1 + r)or (1 - r). For example, if a physical clock evolves with rate 1 + r, then at time
t, its value is t X (1 + r). Hence, the largest possible difference between a physical clock
and the real time is (t x r). This property is stated by the invariant below.

Invariant 1 : In any reachable state x of C, at any time t € T, for any i € {1, 2,3},
|x(ClockSync(u, r, i).physclock) —t| < (t X r).

Two physical clocks in C diverge at the largest rate when one evolves with rate (1 +
r) and the other with (1 - r). It follows from Invariant 1 that, at any time t the largest
possible difference between the physical clock values for two processes is (2 X t x r). This
property is formalized by the following invariant.

Invariant 2 : In any reachable state x of C, at any time st € T, for any i, j € {1,2,3},
|x(ClockSync(u, r, i).physclock)—x(ClockSync(u, r, j).physclock)| < (2Xxtxr) where
i,j€{1,2,3}.

The following invariant states that in any reachable state there exists a process j such
that the logical clock of each other process in the system is smaller than or equal to the
physical clock of j. This follows from the definition of a logical clock and the fact that
physical clocks always increase.

Invariant 3 : In any reachable state x of C, there exists j € {1, 2,3} such that for all
i€ {1,2,3}, x(ClockSync(u, r, i).logclock) < x(ClockSync(u, r, j).physclock).

The following invariant states that in any reachable state there exists a process j such
that the logical clock of each other process in the system is larger than or equal to the
physical clock of j. This follows from the definition of a logical clock.

Invariant 4 : In any reachable state x of C, there exists j € {1,2,3} such that for all
i € {1,2,3}, x(ClockSync(u, r, i).logclock) > x(ClockSync(u, r, j).physclock).

Invariants 3 and 4 together are called validity properties. They express the condition
that all the logical clocks remain in an envelope bounded by the maximum and minimum
physical clock values in the system.

The following invariant formalizes the property that all the logical clocks at a given
time lie within the envelope formed by the largest and the smallest physical clock values
in the system. It follows from Invariants 1, 3 and 4 that any point in this envelope can
diverge from real time t by at most (t X r) time units.

Invariant 5 : In any reachable state x of C, at any time t € T, for any i € {1,2,3}
|x(ClockSync(u, r, i).logclock) —t| < (t X r).

Finally, we state a property about the agreement of logical clocks in C.

55

Invariant 6 : In any reachable state x of C, for i,j € {1,2,3},
|x(ClockSync(u, r, i).logclock) - x(ClockSync(u, r, j).logclock)| <u-+ (b X (1 + r)).

To see why Invariant 6 holds, fix j to be a process with the largest physical clock
in x, and fix i to be any other process. Let vj, vi be the logical clock values of j and i
respectively in state x. Note that vj is also the physical clock value of j in x. By Invariant
3, we know that vi < vj. To show Invariant 6, it suffices to show that vj - vi < u + (b
times (1 + r)).

Let « be a finite execution that leads to state x. There are two cases to consider.

1. Some message sent by j arrives at i in a.
Consider the last such message and let vi be the value that it contains. Let v2 be
the newly adjusted logical clock value of i immediately after the message arrives.
We know that vi > v2 > vi.

If j sends a later message to i in «, then it sends the next later message when its
physical clock has value vi + u. By assumption, this message does not arrive at i.
Therefore, the real time that elapses after sending it must be at most b. It follows
that the physical clock increase of j since sending this message is at most b x (1 +
r) and so vi <vli+u+b X (1 + r). On the other hand, if j does not send a later
message to i in «, then vj < vi + u. In either case, we have vj < vi+u+b x (1
+ r). Since vi > v1, we have vj - vi < u + b X (1 + 1), as needed for Invariant 6.

2. No message sent by j arrives at i in a.
Since the first send occurs at time 0 and sb is the largest possible communication
delay, the fact that i has not received the first message sent by j at time 0 implies
that t < b. Since both clocks start at 0, we have vj < b x (1 + r) and vi > 0.
Therefore, vj - vi <u+ b X (1 + r), which suffices for Invariant 6.

5.1.2 Substitutivity Results

Theorem 5.4, which relates the set of traces of a composed automaton to the set of traces
of component automata, is fundamental for compositional reasoning. We now introduce
another important class of results, substitutivity results, that are useful for decomposing
verification of composite automata. These results are best understood by viewing one of
the components of a composition as the system and the other as the environment with
which the system interacts.

The following result states that if a TA A; can be shown to implement another one
As, with no assumptions about their environments, then A; can be shown to implement
As in a given environment B.

56

Theorem 5.8 Suppose A1, As and B are TAs, Ay and Ag have the same external actions,
and each of A1 and As is compatible with B. If A1 < Ay then Aq|B < As|B.

Corollary 5.9 Suppose Ay, As, Bi, and By are TAs, Ay and As have the same external
actions, By and By have the same external actions, and each of A1 and As is compatible
with each of By and Ba. If Ay < As and By < By then A1]|B1 < As||Bs.

We can strengthen Corollary 5.9 slightly by the following corollary: if A; implements
As in an environment Bs, then A; composed with an environment that is more restrictive
than Bs (whose set of external behaviors is smaller than that of Bs), implements As
composed with Bs.

Corollary 5.10 Suppose A1, Az, Bi, and By are TAs, A1 and As have the same external
actions, By and Ba have the same external actions, and each of A1 and As is compatible
with each of By and Bs. If A1||Ba < A2||By and By < By then A1||B1 < Asl||Bs.

Proof: Let 3 € traces 4,5,- By Theorem 5.4, 3 [(E4,,0) € traces4, and B [(Ep,,) €
tracesp,. Since By < Ba, B [(Eg,,0) € tracesp,. Since By and Bz have the same exter-
nal actions, it follows that §[(Eg,,0) € tracesp,. We have [[(E4,,0) € traces4, and
B[(Epy, W) € tracesp,. By Theorem 5.4, 3 € traces 4 |8,- Since A;[[Bz < Ag[|B2 by
assumption, [€ traces 4,|5,, as needed.

For other preorders, we also get substitutivity results, for example:

Theorem 5.11 Suppose A1, As and B are TAs, A1 and As have the same external
actions, and each of Ay and Ao is compatible with B.

1. If every closed trace of Ay is a trace of Ay then every closed trace of A1||B is a trace

of As||B.

2. If every admissible trace of A; is a trace of Ay then every admissible trace of A1||B
is a trace of Az B.

3. If every non-Zeno trace of Ay is a trace of Ag then every non-Zeno trace of A1||B
is a trace of Az B.

Example 5.12 (A counterexample for a desirable substitutivity theorem)

Suppose A; and As have the same external actions, B; and Bs have the same external
actions, and that each of A; and Ay is compatible with each of By and Bs. If we view

57

automaton CatchUpA
signature
external a, b
states

counta: Nat := 0, countb: Nat := 0,
now: Real := 0, next: Real := 0
transitions
external a external b
pre eff
(counta < countb) countb := countb + 1;
A (now = next) next := now + 1
eff
counta := counta + 1;
next := now + 1
trajectories
stop when
now = next
evolve
d(now) =1
automaton CatchUpB
signature
external a, b
states
counta: Nat := 0, countb: Nat := 0,
now: Real := 0, next: Real := 0
transitions
external a external b
eff pre
counta := counta + 1 (countb + 1) < counta
A now = next
eff
countb := countb + 1;
next := now + 1

trajectories
stop when

now = next
evolve
d(now) = 1

Figure 9: CatchUpA and CatchUpB

58

automaton BoundedAlternatel
signature
external a, b
states
myturn: Bool := true,
maxout: Nat
transitions

external a external b
pre eff
myturn A (maxout > 0) myturn := true
eff
myturn := false;
maxout := maxout - 1

automaton BoundedAlternateB
signature
external a, b
states
myturn: Bool := false,
maxout: Nat
transitions

external a external b
eff pre
myturn := true myturn A (maxout > 0)
eff
myturn := false;
maxout := maxout - 1

Figure 10: BoundedAlternateA and BoundedAlternateB

Ay and B as specifications and want to prove that A;||B; < As||Ba, it would be useful to
have a theorem that says if A;||By < Ag||By and Az||B1 < As||Bs then A;||B; < Asz|Bs.
That is, if A; implements A in the context of By and B; implements By in the context
of Ay, we would like to conclude that Aj;||B; implements As||/B;. We show by means of
a counterexample that it is impossible to prove such a theorem. The problem arises with
the infinite behaviors of A;||Bs.

As examples for Ay, Bi, Ao, and Bs, consider, respectively, the automata CatchUpA,
CatchUpB, BoundedAlternateA, BoundedAlternateB in Figures 9 and 10. All automata have
the same set of actions, consisting of the external actions a and b. CatchUpA can perform
an arbitrary number of b actions, and can perform an a provided that counta < countb
and one time unit has elapsed since the occurence of the last action. CatchUpA allows

59

counta to increase to one more than countb. CatchUpB can perform an arbitrary number
of a actions, and can perform a b provided that counta is at least one more than countb.
CatchUpB allows countb to reach counta.

BoundedAlternateA has an infinite number of start states, each giving a different finite
bound on the number of a actions it can perform. Similarly, BoundedAlternateB has an
infinite number of start states, each giving a different finite bound on the number of b
actions it can perform. Note that the absence of trajectory definitions in the specifications
of these automata imply that they are timing-independent. That is, there is no constraint
on the timing of actions.

The automata CatchUpA and CatchUpB strictly alternate their inputs and outputs un-
til a maximum count is reached for outputs, when put in the context of, respectively,
BoundedAlternateA and BoundedAlternateB. Hence, (CatchUpA|| BoundedAlternateB) <
(BoundedAlternateA|| BoundedAlternateB), and (BoundedAlternateA| CatchUpB) <
(BoundedAlternateA|| BoundedAlternateB). On the other hand, (CatchUpA|| CatchUpB) can
perform an infinite sequence of alternating a and b actions, which is not allowed allowed
by (BoundedAlternateA| BoundedAlternateB). Hence, (CatchUpA| CatchUpB) does not im-
plement (BoundedAlternateA| BoundedAlternateB). u

In Section 7, we revisit the substitutivity issue and prove Theorem 7.8, a variant of

the desirable theorem considered in the above example, by assuming certain conditions on
the environments Ay and Bs.

5.2 Hiding

We define one hiding operation for timed automata, which hides external actions: if
E C E 4, then ActHide(E, A) is the TA B that is equal to A except that Eg = E4 — E
and Hg = H4 U E.

Lemma 5.13 If E C E4 then ActHide(E, A) is a TA.

Lemma 5.14 If Ais a TA and E C E4 then tracespcivige(r,4) = {8 [(Ea — E,0) | B €
traces4}.

The following theorem states that the hiding operation respects the implementation
relation.

Theorem 5.15 Suppose A and B are TAs with A < B, and suppose E C E4. Then
ActHide(E, A) < ActHide(E, B).

60

5.3 Extending Timed Automata with Bounds

In this section, we define a new class of automata, “TA with bounds” where the basic
definition of a timed automaton is extended with the notion of a task and a pair of bounds
(a lower and an upper bound) for each task. We then define an operation that transforms
a given TA with bounds to another TA. This operation supports specifying a system by
thinking in terms of tasks and bounds as in the timed automata of Merritt, Modugno, and
Tuttle [32] and the phase transition systems of Maler, Manna and Pnueli [31].

In defining the operation for extending timed automata with bounds, we restrict atten-
tion to a class of automata where the enabling and disabling of actions during trajectories
follow certain rules. Specifically, our operation is defined on automata in which each action
is enabled or disabled throughout an entire trajectory, or becomes enabled once during a
trajectory and remains so until the end of that trajectory. The given restrictions ensure
that the result of applying the operation to a TA is another TA and that the resulting TA
satisfies the restrictions.

Let A be a TA, C a set of actions of A, and 7 the set of trajectories of .A. We say that
T is well-formed with respect to C' if each 7 € 7 satisfies one of the following conditions:

1. For all t € dom(7), C' is enabled in 7(t).

2. For all t € dom(7), C is disabled in 7(¢).

3. There exists t € dom (1) such that for all ¢’ € [0,t), C is disabled in 7(¢') and for all
t' € dom(r) —[0,t), C is enabled in 7(t').

A TA with bounds, A = (B,C,l,u) consists of:

e A timed automaton B = (X,Q,0,E, H,D,T).

e A set C C EU H of actions called a task; we assume that 7 is well-formed with
respect to C.

e A lower time bound [and an upper time bound u for C. We require that the
following axioms are satisfied for [and wu:
B1 I € RZY and u € R=Y U {o0}.
B2 [<u.

Lower and upper bounds are used to specify how much time is allowed to pass between
the enabling and the performance of an action. If [is the lower bound for a task C, then
an action in C' must remain enabled at least for [time units before being performed. If u
is the upper bound for a task (', then an action in C' can remain enabled at most u time

61

units without being performed: it must either be performed or become disabled within «
time units.

We now define an operation Extend, which transforms a TA A with bounds to another
TA A’ that incorporates the new bounds, in addition to the timing constraints already
present in A. Let A= (B,C,l,u) be a TA with bounds where B = (X,Q,0,E,H,D.T).
Then Extend(A) is the TA A" = (X',Q",©', E', H', D', T") such that the components of A’
consist of:

o X' = X U{now, first, last} where:

1. now, first, and last are new variables that do not appear in X.
2. now is an analog variable such that type(now) = R.
3. first and last are discrete variables where type(first) = R and type(last) =
RU {oo}.
o Q' ={xcwd(X') | x[X €Q}.
e O’ consists of all the states x € ' that satisfy the following conditions:

1. x[X e0.

2. x(now) = 0.
_ [U if Cis enabled in x [X,
3. x(first) = { 0 otherwise.
(last):{ u if C is enabled in x| X,

oo otherwise.

o /! = F and H = H. We write A’ 2 E'U H'.

e If a € (EU H) then (x,a,x") € D" exactly if all of the following conditions hold:

LX) S (%[X).

2. x'(now) = x(now).

3. (a) If a € C, then x(first) < x(now).
(

b) If C is enabled both in x [X and x' [X and a ¢ C, then x(first) = x'(first)
and x(last) = x(last).

(¢) If C is enabled in x' [X and either C' is not enabled in x[X or a € C,
then x'(first) = x(now) 4+ 1 and x'(last) = x(now) + u.
(d) If C'is not enabled in x’' [X, then x'(first) = 0 and x'(last) = o

e 7' is a set that consists of all 7 € trajs(X') that satisfy the following conditions:

1. (r]X)eT.

62

2. d(now) = 1.
3. (a) If for all ¢t € dom(7), C is enabled in 7 | X(¢) then first and last are
constant throughout 7.
(b) If for all t € dom(7), C is disabled in 7 | X(¢) then first and last are
constant throughout 7.
(c) If for all ¢ € [0,t), C is disabled in 7(¢') and for all ' € dom(r) — [0,t), C
is enabled in 7(') then
i. first and last are constant in [0,t).
il. 7(t)(first) = 7(t)(now) + 1 and 7(t)(last) = 7(t)(now) + u.
iii. first and last are constant in dom(7) — [0,1).
(d) now < last.

The transformation is based on the idea of augmenting the state of the original au-
tomaton with a variable to represent current time (now) and the earliest time (first) and
the latest time (last) a task can be performed. All these variables represent time in ab-
solute terms. Item 3(a) in the definition of D" expresses the new lower bound constraint
and Ttem 3(d) in the definition of 7’ the new upper bound constraint.

Let A be a TA with bounds (B,C,l,u). In a start state x of Extend(A), the variables
first and last are initialized to [and u respectively, if C' is enabled in x. If C'is not enabled
in x, then first is set to 0 and last is set to oo. Items 3(c) in the definition of D’ and 3(c) in
the definition of 7’ show how the variables first and last are updated. When C' becomes
newly enabled by a discrete transition or when a C action leads to a state in which C' is
enabled, first is set to now + 1 and last is set to now + u. The variables first and last are
updated similarly when C' becomes newly enabled in the course of a trajectory.

Theorem 5.16 Suppose that A= (B,C,l,u) is a TA with bounds. Then Extend(A) is a
TA with a set of trajectories that is well-formed with respect to C.

Proof: The proof follows from the definitions of TA and the operation Extend. Step
3(a) in the definition of D' adds a new lower bound constraint, which makes enabling
start at some particular time. Step 3(b) in the definition of 77, adds a new upper bound
constraint, which stops trajectories at a particular time and which does not add any
enabling or disabling to trajectories. [|

In the rest of this section, we sometimes speak of variables, states and traces of a TA

with bounds. If A = (B,C,l,u) is a TA with bounds, variables, states and traces of A
refer to, respectively, the states and the traces of the underlying automaton B.

Theorem 5.17 Suppose A = (B,C,l,u) is a TA with bounds. Then tracesggend(A) <
traces 4.

63

Proof: Let F : Q@ — @ be defined as follows: F(x) = x[X where X is the set of
internal variables of A. Tt is easy to check that F' is a refinement from Extend(A) to A.
By Theorem 4.27 and Corollary 4.23, we conclude that fracesgaend(a) C traces 4. [|

Lemma 5.18 Suppose that A is a TA with bounds. For any reachable state x of Extend(.A),
if C is enabled in x[X in A, then x(last) < x(now) + u.

Proof: Consider a closed execution « of Extend(A). Using the axioms T1 and T2 for
trajectories, we can write « as a concatenation of closed execution fragments g™ 1. . . g
where ag is a point trajectory, and each «; for i > 1 is either a trajectory or a discrete action
surrounded by two point trajectories such that for all 0 <i < k—1, oy.lstate = a;41.fstate.
We prove the invariant by induction on the length k of the sequence of execution fragments.

For the base case, suppose that C is enabled in «y.fstate | X. Since « is an execu-
tion, we know that «g.fstate is a start state of Extend(.A). By definition of Extend(A),
ap.fstate(last) = wu. Since ag.fstate(now) = 0, «ag.fstate(last) < «p.fstate(now) + u, as
required.

For the inductive step, we assume that the property is true for the sequence ag ™ g ™
... oy and show that it is true in the sequence ax41 in ag ~ a1 ...~ agy1. There are
two cases to consider depending on whether a1 is a discrete action surrounded by two
point trajectories or a trajectory.

1. ag41 is an action a surrounded by two point trajectories. Suppose that C' is enabled
in agyq.lstate. There are two subcases to consider:

(a) C is enabled in ay.lstate [X and a ¢ C.
Then, ay41.fstate(last) = ay.fstate(last) and agy1.fstate(now) = ay.fstate(now).
By inductive hypothesis, ay.lstate(last) < ay.lstate(now) 4+ u. Therefore,
a1.lstate(last) < agyq.lstate(now) + u, as needed.

(b) C is disabled in «ay.lstate [X or a € C.
Then, by definition of Extend(A), agiq.lstate(last) = agqq.lstate(now) + u,
which suffices.

2. ag41 is a trajectory.
Suppose that C' is enabled in ajy1.lstate [X in A. There are two subcases to con-
sider:

(a) C is enabled in agyq.fstate [X in A.
By inductive hypothesis oy 41.fstate(last) < ay41.fstate(now) + u. By the well-
formedness assumption, we know that C' must be enabled throughout a1 and
by definition of Extend(A) last is constant throughout ay1. Since the value of
now increases, it is easy to see that ay.yi.lstate(last) < ayyq.lstate(now) + u.

64

(b) C is disabled in aj41.fstate [X in A.
Then, since it is enabled in g 1.lstate | X by the well-formedness assumption,
it becomes enabled at some point ¢ in the domain of aj41 and remains en-
abled thereafter. Therefore, agy1(t)(last) = agy1(t)(now) + u, by definition
of Extend(.A). Since last remains constant after it is set and the value of now
increases, ay1.lstate(last) < ay1.lstate(now) + u holds.

The theorem below shows that the executions of an automaton obtained by applying
the transformation Extend to a TA with bounds respect the time bounds specified by the
lower bound [and the upper bound u.

Theorem 5.19 Let A= (B,C,l,u) be a TA with bounds. Then,

1. There does not exist a closed execution fragment o of Extend(A) from a reachable
state, where a.ltime > wu, C is enabled in A in all the states of a[(A, X) and no
action in C occurs in a.

2. There does not exist a closed execution fragment o of Extend(A) from a reachable
state, where a.ltime < I, such that C' is not enabled in A in the first state of a [(A, X)
and an action in C occurs in .

Proof:

1. Suppose, for the sake of contradiction, that there exists a closed execution fragment
o =Ty aiT] az... T, of Extend(A) from a reachable state, where a.ltime > u, C' is
enabled in A in all the states of a [(A4, X') and none of the a; in a is in C. By definition
of trajectories for Extend(.A) it must be the case that a.lstate(now) < a.lstate(last).

Since C' is enabled in A in all states in «, by Lemma 5.18 we have a.fstate(last) <
a.fstate(now) + u. By definition of Extend(A), last remains constant throughout «;
therefore, a.lstate(last) = a.fstate(last). Since a.fstate(last) < «.fstate(now) + u,
it follows that «.lstate(last) < a.fstate(now) + u. By definition of «, we have
a.lstate(now) = av.fstate(now) + a.ltime. It follows that «.fstate(now) + a.ltime <
a.fstate(now) 4+ u. This implies a.ltime < u. But this gives us the needed contra-
diction since a.ltime > u.

2. We assume that « is a closed execution fragment of Extend(.A) from a reachable state
where a.ltime < [, such that C is not enabled in A in the first state of o and an
action in C occurs in . Let (x,a,x’) be the first discrete transition of Extend(A) in
a such that a € C. We show that the condition x(first) < x(now), which has to hold
for the discrete transition to occur, cannot be true, hence arrive at a contradiction.

65

By Theorem 5.16, the set of trajectories of Extend(A) is well-formed with respect
to C. Therefore, C' can become enabled by either a discrete transition or during a
trajectory, and remains enabled until the occurrence of (x,a,x’).

(a) C becomes enabled by a discrete transition and remains enabled in A until the
occurrence of (x,a,x’).
Let (y,b,y’) be the discrete transition of A that enables C. By item 3(c) in
the definition of D’ we know that first is set to y(now) + [when C becomes
enabled. By item 3(b) in the definition of D’ and 3(a) in the definition of 77, we
know that it remains constant so that x(first) = y(now) + [. Since (x,a,x’) is
a discrete transition of Extend(A), it must be the case that x(first) < x(now).
Since x(now) < y(now) + a.ltime and x(first) = y(now) + [it follows that
y(now) +1 < y(now) + a.ltime. But we know by assumption that o.ltime <
which gives the needed contradiction.

(b) C becomes enabled at some point in the course of a trajectory 7 and remains
enabled in A until the occurrence of (x,a,x’).
Let y be a state in the range of 7 where C' becomes enabled. By item 3(c) in
the definition of 7/ we know that first is set to y(now) + [when C' becomes
enabled and it remains constant in 7 so that x(first) = y(now) + [. By item
3(b) in the definition of D' and 3(a) in the definition of 7', we know that
first remains constant until the occurence of (x,a,x’). Since (x,a,x') is a
discrete transition of Extend(A), it must be the case that x(first) < x(now).
Since x(now) < y(now) + a.ltime and x(first) = y(now) + 1 it follows that
y(now) +1 < y(now) + a.ltime. But we know by assumption that a.ltime <
which gives the needed contradiction.

Example 5.20 (Fischer’s mutual exclusion algorithm specified using tasks and
bounds) In Example 4.5 we presented the specification of Fischer’s mutual exclusion
algorithm as a TA. This example illustrates an alternative way of specifying the same
algorithm by using a TA with bounds.

Recall that, formally, we define a TA with bounds as a TA augmented with a single task
along with lower and upper bounds for that task. The automaton in Figure 11 is, however,
augmented with a set of tasks and bounds (we omit from the figure those transition
definitions that are the same as in Example 4.5). This is for notational convenience
and the automaton in Figure 11 should be viewed as the automaton representing the
cumulative result of adding in successive steps two tasks for each index. We assume that
Extend is applied once for each task. That is, we start with the timing-independent version
of FischerME(uset, 1 _check:Real), apply Extend to the automaton augmented with the
task {set(i)} to add the lower bound 0 and the upper bound u.set, then apply Extend

66

type PcValue = enumeration of rem, test, set, check,
leavetry, crit, leaveexit
type Index = enumeration of nil, pl, p2, p3, p4

automaton FischerME(u_set, l_check: Real)
signature
external try(i:Index), crit(i:Index), exit(i:Index), rem(i:Index)
internal test(i:Index), set(i:Index), check(i:Index), reset(i:Index)

states
x: Index := nil,
pc: Array[Index,PcValue] := constant (rem),
initially u_set > 0 A 1l_check >0 A u_set < 1l_check

transitions
internal test (i)

pre

pcli]l = test
eff

if x = p0 then

pcli]l := set;
lastset[i] :=now+u_set
internal set (i)

pre
pcli]l = set

eff
X = 1i;
pcl[i]l := check;
lastset[i] := infty;

firstcheck([i] :=now + 1_check
internal check (i)
pre
pcl[i]l = check A
now > firstcheck[il]

eff
if x = i then pcli]l := leavetry
else pcl[i] := test
tasks
set = {set(i)} for i: Index; check = {check(i)} for i: Index
bounds

set = [0,u_set]; check = [l_check, infty]

Figure 11: Fischer’s mutual exclusion algorithm with bounds

to the resulting automaton augmented with {check(i)} to add the lower bound 1_check
and the upper bound co. Such two successive applications are allowed since the result of

67

the first application of Extend satisfies the the well-formedness conditions for the set of
trajectories.

The result of these successive applications yields an automaton similar to the one in
Example 4.5. The only difference is that the mechanical application of the transformation
would reset the value of firstcheck[i] to 0 as an effect of check(i) while we do not reset
firstcheck[i] explicitly in 4.5, when it becomes disabled. This is because we make use of
the facts that the value of firstcheck[i] is used only in determining whether check (i) is
enabled and that check(i) becomes enabled only in the poststate of set (i) which also sets
the value of firstcheck[i]. Note that this discrepency does not give rise to any difference
in the behaviors of the two automata. [|

6 Timed I/O Automata

In this section we refine the timed automaton model of Section 4 by distinguishing between
input and output actions. Typically, an interaction between a system and its environment
is modeled by using output and input actions to represent, respectively, the external events
under the control of the system and the environment. We extend the results on simulation
relations and composition from Sections 4 and 5 to this new setting. We also introduce
special kinds of timed I/O automata: 1/O feasible, progressive, and receptive TIOAs.

6.1 Definition of Timed I/O Automata
A timed 1/0 automaton (TIOA) A is a tuple (B, I,O) where

e B=(X,Q,0,FE,H,D,T) is a timed automaton.

e [and O partition £ into input and output actions, respectively. Actions in L 2
H U O are called locally controlled; as before we write A 2FEUH.

e The following additional axioms are satisfied:

E1 (Input action enabling)
For every x € Q and every a € I, there exists x' € Q such that x — x’.

E2 (Time-passage enabling)
For every x € @, there exists 7 € 7T such that 7.fstate = x and either

1. 7.ltime = oo, or

2. 7 is closed and some [€ L is enabled in 7.lstate.

Input action enabling is the input enabling condition of ordinary I/O automata; it says
that a TIOA is able to perform an input action at any time. The time-passage enabling

68

condition says that a TIOA either allows time to advance forever, or it allows time to
advance for a while, up to a point where it is prepared to react with some locally controlled
action. Because TIOAs have no external variables, E1 and E2 are slightly simpler than
the corresponding axioms for HIOAs.

Notation: As we did for TAs, we often denote the components of a TIOA A by

Ba, 14,04, X4,Q4,04, etc., and those of a TIOA A; by H;, 1;,0;, ..., X;, Q;,0;, etc.
We sometimes omit these subscripts, where no confusion is likely. We abuse notation
slightly by referring to a TIOA A as a TA when we intend to refer to 4.

Example 6.1 (TAs viewed as TIOAs) The automaton TimedChannel(b,M) described
in Example 4.1 can be turned into a TIOA by classifying the send actions as inputs, and
the receive actions as outputs. Since there is no precondition for send actions, they are
enabled in each state, so clearly the input enabling condition E1 holds. It is also easy to
see that axiom E2 holds: in each state either queue is nonempty, in which case a receive
output action is enabled after a point trajectory, or queue is empty, in which case time
can advance forever.

The automaton ClockSync(u,r,i) of Example 4.6 can be turned into a TIOA by clas-
sifying the send actions as outputs, and the receive actions as inputs. Axiom E1 then
holds trivially. Axiom E2 holds since from each state either time can advance forever,
or we have an outgoing trajectory (possibly of length 0) to a state in which physclock =
nextsend, and from there a send output action is enabled. [|

6.2 Executions and Traces

An ezecution fragment, execution, trace fragment, or trace of a TIOA A is defined to
be an execution fragment, execution, trace fragment, or trace of the underlying TA B4,
respectively.

We say that an execution fragment of a TIOA is locally-Zeno if it is Zeno and contains
infinitely many locally controlled actions, or equivalently, if it has finite limit time and
contains infinitely many locally controlled actions.

6.3 Special Kinds of Timed I/O Automata

6.3.1 Feasible and I/O Feasible TIOAs

A TIOA A = (B, 1,0) is defined to be feasible provided that its underlying TA B is feasible
according to the definition given in Section 4.3. As noted in Section 4.3, feasibility is a

basic requirement that any TA (or TIOA) should satisfy. 1/O feasibility is a strengthened
version of feasibility that take inputs into account. It says that the automaton is capable of

69

providing some response from any state, for any sequence of input actions and any amount
of intervening time-passage. In particular, it should allow time to pass to infinity if the
environment does not submit any input actions. Formally, we define a TIOA to be 1/0
feasible provided that, for each state x and each (I,))-sequence 3, there is some execution
fragment « from x such that « [(I,0) = . That is, an I/O feasible TIOA accommodates
arbitrary input actions occurring at arbitrary times. The given (7,))-sequence 3 describes
the inputs and the amounts of intervening times.

6.3.2 Progressive TIOAs

A progressive TIOA never generates infinitely many locally controlled actions in finite
time. Formally, a TIOA A is progressive if it has no locally-Zeno execution fragments.

The following lemma says that any progressive TIOA is capable of advancing time
forever.

Lemma 6.2 Fvery progressive TIOA is feasible.

Proof: Let A be a progressive TIOA and let x be a state of A. Since A is a TTOA it
satisfies axiom E2. We construct an admissible execution fragment o = a9 ~ a1 ~ ag - --
from x as follows.

1. ap = p(x).
2. For each 7 > 0,

(a) If there exists a trajectory 7 from «;_1.lstate such that 7.ltime = oo then «; is
the final execution fragment in the sequence and «; = 7.
(b) Otherwise, let 7; be a closed execution fragment from «; 1.lstate such that I € L

is enabled in 7;.lstate. Define o; = 7;17;41 where 7,41 = p(y) and 7;.lstate LR y.

The above construction either ends after finitely many stages such that the last tra-
jectory of « is admissible, or goes through infinitely many stages such that « contains
infinitely many local actions. In the former case, we know that « is admissible since it
ends with an admissible tracjectory. In the latter case, since A is progressive, the fact
that « has infinitely many local actions implies that « is admissible, as needed. [|

The following lemma says that a progressive TIOA is capable of allowing any amount
of time to pass from any state.

Lemma 6.3 Let A be a progressive TIOA, let x be a state of A, and let 7 € trajs(().
Then there erxists an execution fragment « of A such that a.fstate = x and o [(I, () = .

70

Proof: The result follows from the construction used in the proof of Lemma 6.2. Let
«a be an admissible execution fragment from x constructed as in the proof of Lemma 6.2.
Let o/ be a prefix of a such that o' [((),)) = 7. Since our construction uses no actions
from I, we have o/ [(I,0) = o/ [(0,0) = 7, as needed. |

The following theorem says that a progressive TIOA is capable not just of allowing
arbitrary amounts of time to pass, but of allowing arbitrary input actions at arbitrary
times.

Theorem 6.4 FEvery progressive TIOA is 1/0 feasible.

Proof: Let A be a progressive TIOA, let x be a state of A, and let § =719a1 11 a9 2. ..
be an (I,()-sequence. We construct a finite or infinite sequence aga; ... of execution
fragments such that:

1. ap.fstate = x.

2. For each nonfinal index i, o;.lstate = a;41.fstate.

—

3. For each 4, (g "1 ~ -+ " oy) [(I,0) =001 71 ... 730

The construction is carried out recursively. To define ag, we start with x and use
Lemma, 6.3 to span 9. For i > 0, we define «; by starting with «;_1.lstate, using axiom
E1 to perform the input action ¢; and move to a new state and then using Lemma 6.3 to
span T;.

Let a =ap ™ a1 — ---. By Lemma 3.8, a is an execution fragment of A from x such
that o [(1,0) = 3, as needed.

6.3.3 Receptive Timed I/O Automata

In this section, we define the notion of receptiveness for TIOAs. A TIOA will be defined
to be receptive provided that it admits a strategy for resolving its nondeterministic choices
that never generates infinitely many locally controlled actions in finite time. This notion
has an important consequence: A receptive TIOA provides some response from any state,
for any sequence of discrete input actions at any times. This implies that the automa-
ton has a nontrivial set of execution fragments, in fact, it has execution fragments that
accommodate any inputs from the environment. The automaton cannot simply stop at
some point and refuse to allow time to elapse; it must allow time to pass to infinity if the
environment does so. Previous studies of receptiveness properties include [10, 1, 40, 27].

71

The notion of receptiveness for TIOAs as discussed here is a special case of the same notion

for HIOAs [25].

We build our definition of receptiveness on our earlier definition of progressive TIOAs.
Namely, we define a strategy for resolving nondeterministic choices, and define receptive-
ness in terms of the existence of a progressive strategy.

We define a strategy for a TIOA A to be a TIOA A’ that differs from A only in that
D' C D and T' C T. That is, we require:

e D' CD.
e 7' CT.
e X=X, Q=Q,0=0 E=FE,H=H',I=1 and O=0".

Our strategies are nondeterministic and memoryless. They provide a way of choosing some
of the evolutions that are possible from each state x of A. The fact that the state set Q'
of A’ is the same as the state set @ of A implies that A’ chooses evolutions from every
state of A.

Notions of strategy have been used also in previous studies of receptiveness [10, 1,
40, 27]. However, in these earlier works, strategies have been formalized using two-player
games rather than automata. Defining strategies using automata allows us to avoid intro-
ducing extra mathematical machinery.

Lemma 6.5 If A’ is a strateqy for A, then every execution fragment of A’ is also an
execution fragment of A.

We define a TIOA to be receptive if it has a progressive strategy. The following theorem
says that any receptive TIOA can respond to any inputs from the environment.

Theorem 6.6 Every receptive TIOA is I/0 feasible.

Proof: The proof is similar to that of the corresponding theorem for HIOAs [25]. |

Example 6.7 (Progressive and receptive TIOAs) The time-bounded channel au-
tomaton described in Example 4.1 is not progressive since it allows for an infinite execution
in which send and receive actions alternate without any passage of time in between. The
time-bounded channel automaton is receptive, however, as we may construct a progressive
strategy for it by adding a condition u = now to the precondition of the receive action.
In this way we enforce that the channel operates maximally slow and messages are only
delivered at their delivery deadline. The clock synchronization automaton of Example 4.6
is progressive (and therefore receptive) since it can only generate a locally controlled ac-
tion each time its physical clock advances by u time units and the real time that elapses
between two locally produced actions is at least u X (1-r) time units. [|

72

6.4 Implementation Relationships

Two TIOAs A; and As are comparable if their inputs and outputs coincide, that is, if
I, = Ir and O; = O,. If A; and Ay are comparable, then A4; < As is defined to mean
that the traces of A; are included among those of As: A; < As 2 traces A, C traces 4,.

Lemma 6.8 Let Ay, Ay be two comparable TIOAs and let By, By be, respectively, the
underlying TAs for Ay and As. Then Bi and Bs are comparable and A1 < As iff By < Bs.

Proof: Immediate from the definitions. []

6.5 Simulation Relations

The definition of forward simulation for TIOAs is the same as for TAs. Formally, if
A1 = (B1,11,01) and Ay = (Bs, I3,05) are two comparable TIOAs, then a forward
simulation from A; to Ay is a forward simulation from By to Ba.

Theorem 6.9 If A; and Ay are comparable TIOAs and there is a forward simulation
from Ay to As, then A1 < As.

The definitions and results about backward simulations, history and prophecy relations
for timed automata from Section 4 carry over to timed automata with input and output
distinction in a similar fashion.

7 Operations on Timed I/O Automata

7.1 Composition

In this section, we define the operations of composition and hiding and present projec-
tion, pasting and substitutivity results for TIOAs. We revisit the special kinds of TIOAs
introduced in Section 6 and show that the classes of progressive and receptive timed 1/0O
automata are closed under composition, while this is not true for the class of I/O feasible
automata.

7.1.1 Definitions and Basic Results

The definition of composition for TIOAs is based on the corresponding definition for TAs,
but also takes the input/output structure into account. We say that TIOAs A; and Az
are compatible if, for i # j, X; N X; =H;NA; =0, N O; = 0.

73

Lemma 7.1 If Ay = (B1,11,01) and Az = (Ba, I2,03) are compatible TIOAs, then By
and By are compatible TAs.

If A; and Ay are compatible TIOAs then their composition A;l|| Az is defined to be the
tuple A = (B, I,0) where

[] B:Blnt,
° IZ(IlLJIQ)—(OlUOQ)
e O=01UO0Os.

Thus, an external action of the composition is classified as an output if it is an output of
one of the component automata, and otherwise it is classified as an input. The composition
of two TIOAs is guaranteed to be a TIOA:

Theorem 7.2 If Ay and Az are TIOAs then A1||As is a TIOA.

Proof: The proof is straightforward except for showing that Axiom E2 is satisfied by the
composition. Let x be a state of Aj|[.A2. We need to show the existence of a trajectory
from x that satisfies E2.

By definition of A;||Ag, x [X7 is a state of A; and x [X5 is a state of A;. We know
that both A4; and Ay satisfy E2. Let 71 be a trajectory of A; with 7y.fstate = x [X7 that
satisfies E2, let 79 be a trajectory of As with 7o.fstate = x [X5 that satisfies E2, and
consider the following cases:

1. m1.ltime = oo and 7y.ltime = oo.
Then, define 7 such that 7 | X7 =7 and 7 | Xo = 7.

2. m1.ltime = oo and 7y is closed where some [€ Ly is enabled in 7y.lstate.
Then, define 7 such that 7 | X1 = 71 [dom(m2) and 7 | X9 = 7o.

3. 71 is closed where some | € L; is enabled in 71.lstate and m.ltitme = oo.
Then, define 7 such that 7 | X1 =7 and 7 | Xo = 75 [dom (7).

4. 71 is closed where some [€ L7 is enabled in 7y.lstate and 7 is closed where some
[€ Ly is enabled in 7y.lstate.
If dom(m) € dom(r2), then define 7 such that 7 | X1 = 7 and 7 | Xy =
7o [dom(71). Otherwise, define 7 such that 7 | X; =71 [dom(72) and 7 | Xy = 75.

In all the cases, by definition of trajectories for a TIOA, 7 is a trajectory of A;|[.As from
x, which satisfies E2 by construction.

74

Note that this theorem is stronger than the corresponding theorem (Theorem 6.12
in [25]) for general HIOAs. Two HIOAs A; and A are required to be “strongly compati-
ble” for their composition to be a hybrid I/O automaton. This extra condition is needed
to rule out dependencies among external variables that may prevent the component au-
tomata from evolving together. The absence of external variables in TIOA eliminates this
kind of problematic behavior. Thus, for the timed case, we do not require the notion of
strong compatibility that was needed for the hybrid case.

Composition of TIOAs satisfies the following projection and pasting result, which
follows from Theorem 5.4.

Theorem 7.3 Let Ay and Ay be comparable TIOAs, and let A = A1||Az. Then traces 4
is exactly the set of (E,(D)-sequences whose restrictions to Ay and Ay are traces of A;
and As, respectively. That is, tracesq4 = {3 | B is an (E,0)-sequence and B [(E;,0) €
traces 4,1 = {1,2}}.

7.1.2 Substitutivity Results

The following theorem is analogous to Theorem 5.8 for TAs without input/output distine-
tion. It shows that the introduction of the input/output distinction does not cause any
changes to the substitutivity results we obtained for general TAs.

Theorem 7.4 Suppose A1 and As are comparable TIOAs with Ay < As. Suppose that B
is a TIOA that is compatible with each of Ay and As. Then A;||B < Aq||B.

The corollaries below follow from the Corollaries 5.9 and 5.10 of Theorem 5.8.

Corollary 7.5 Suppose A1, As, Bi, and By are TIOAs, Ay and As are comparable, By
and By are comparable, and each of A1 and As is compatible with each of By and By. If
Al S AQ and Bl S BQ then .,41H81 S AQHBQ

Corollary 7.6 Suppose A1, As, Bi, and By are TAs, A1 and As are comparable, By
and By are comparable, and each of A1 and As is compatible with each of By and By. If
A1HBQ < .AQHBQ and B < By then A1||81 < AQHBQ.

The basic substitutivity theorem, Theorem 7.4, is desirable for any formalism for in-
teracting processes. For design purposes, it enables one to refine individual components
without violating the correctness of the system as a whole. For verification purposes, it
enables one to prove that a composite system satisfies its specification by proving that

75

each component satisfies its specification, thereby breaking down the verification task into
more manageable pieces. However, it might not always be possible or easy to show that
each component 4; (resp. Bi) satisfies its specification Ay (resp. Bg) without using any
assumptions about the environment of the component. Assume-guarantee style results
such as those presented in [18, 36, 44, 1, 2, 17, 45] are special kinds of substitutivity re-
sults that state what guarantees are expected from each component in an environment
constrained by certain assumptions. Since the environment of each component consists of
the other components in the system, assume-guarantee style results need to break the cir-
cular dependencies between the assumptions and guarantees for components. We present
below two assume-guarantee style theorems Theorem 7.7 and Corollary 7.8, which can be
used for proving that a system specified as a composite automaton A;||B; implements a
specification represented by a composite automaton As|Bs .

The main idea behind Theorem 7.7 is to assume that A; implements As in a context
represented by By, and symmetrically that B; implements By in a context represented
by As where Ay and By are automata whose trace sets are closed under limits. The
requirement about limit-closure implies that As and Bs specify trace safety properties.
Moreover, we assume that the trace sets of As and Bs are closed under time-extension.
That is, the automata allow arbitrary time-passage. This is the most general assumption
one could make to ensure that As|| B2 does not impose stronger constraints on time-passage
than A;||B;. Note that the definitions of limit and time extension of a hybrid sequence
can be found in Section 3.4.1.

Theorem 7.7 Suppose A1, As, B1, By are TIOAs such that Ay and As are comparable,
Bi and By are comparable, and A; is compatible with B; for i € {1,2}. Suppose further
that:

1. The sets traces 4, and tracesp, are closed under limits.
2. The sets traces 5, and tracesp, are closed under time-extension.
3. A1||Ba < As||By and Az||By < Asz||Bs.

Then A1||By < Asl|Bs.

Proof: We first prove by induction on the length of traces of A;||B; that every closed
trace of A;||B; is a trace of Asg||Ba.

For the base case, let 3 be a trace of A;||B; such that 3 € trajs(() (a single trajectory
over the empty set of variables). By Axiom TO in the definition of a TA, we know that
As and By have traces a; and ao such that aq.ltime = ag.ltime = 0. By Assumption 2 we
have ay 3 € traces 4, and aa ™ 3 € tracesp,. Since, a1 = and e T 8 = f3, it follows
that 3 € tracesa, and 3 € tracesp,. By pasting using Theorem 7.3, 8 € traces 4,5,, as
needed.

For the inductive step we consider the following cases:

76

. 3= p"ar, where a is an output action of A; and 7 is a point trajectory.

Then 3 [(FA,,0) € traces 4, by projection using Theorem 7.3. By inductive hypoth-
esis, 3" € traces 4,8, S0 B' [(Ep,,0) € tracesp,, by projection using Theorem 7.3.
Let « be an execution of By such that trace(a) = (' [(Eg,.0). Since A; and By
are compatible TIOAs, B; and B are comparable, and « is an output action of
A1, we know that either @ is an input action of By or the action set of By does
not contain a. In the former case, by the input-enabling axiom (E1) we know that
there exists x’ such that («.lstate,a,x’) is a discrete transition of By. It follows
that 3 [(Eg,.0) € tracesg,. In the latter case, since 3 [(Eg,,0) = 3’ [(Ep,,0) and
B [(Ep,,0) € tracesp, we get 3 [(Eg,,) € tracesp,. By pasting using Theorem 7.3,
B € traces 4,5,- Then by Assumption 3, 3 € traces 4, ,-

. 8= p"bT, where b is an output action of By and 7 is a point trajectory.

This case is symmetric with the previous one.

. = ' cT, where c is an input action of both A; and B; and 7 is a point trajectory.

By inductive hypothesis, 3’ € traces As|By- By projection using Theorem 7.3 we
get ' [(E4,,0) € traces 4, and ' [(Eg,,) € tracesp,. Let a be an execution of Ay
such that trace(a) = ' [(E.,,0). Since A; and Ajg are comparable and «a is an input
action of A4; we know that a is an input action of As. By the input-enabling axiom
(E1) we know that there exists x’ such that (¢/.lstate,a,x’) is a discrete transition
of Ay. Tt follows that 3 [(E4,,0) € traces 4,. Similarly, let &/ be an execution of B
such that trace(a’) = ' [(Eg,, (). Since By and By are comparable and « is an input
action of B; we know that a is an input action of By. By the input-enabling axiom
(E1) we know that there exists y’ such that (o/.lstate,a,y’) is a discrete transition
of By. It follows that (3 [(Ep,,0) € tracesp,. By pasting using Theorem 7.3, we get
B € traces 4,8, -

. 8= p"dr, where d is an input action of A; but not an action of B; and 7 is a point
trajectory.

By inductive hypothesis, 3’ € traces As||Bo- By projection using Theorem 7.3, we
have ' [(Fa,,0) € tracesy, and (' [(Ep,,0) € tracesp,. Let a be an execution
of Ag such that trace(a) = ' [(E4,,0). Since A; and As are comparable TIOAs
and a is an input action of A;, ¢ must be an input action of As. By the input-
enabling axiom (E1) we know that there exists x’ such that (a.lstate,a,x’) is a
discrete transition of Ag. It follows that ([(E4,,0) € tracesa,. Since B; and
By are comparable and a is not an action of B;, a cannot be an external action
of By. Therefore, 3 [(Eg,,0) = ' [(Eg,,0). Since ' [(Ep,,0) € tracesg, we get
B [(Ep,,0) € tracesp,. By pasting using Theorem 7.3, we get 3 € traces 4,,-

. 8= f'dr, where d is an input action of By but not an action of A; and 7 is a point
trajectory.

This case is symmetric with the previous one.

7

6. =" 3", where 3" is a hybrid sequence consisting of a single trajectory .

By inductive hypothesis, 3’ € traces As||Bo- By projection using Theorem 7.3, we
get ' [(Ea,,0) € traces 4, and ' [(Eg,,0) € tracesp,. By Assumption 2, we have
g REAQa@) - [(EA27®) € traces 4, and g KEBQ-/@) - REBQa@) € tracesp,.
Then by pasting using Theorem 7.3, 3 € traces 4, 5,, as needed.

We have thus shown that every closed trace of A;|| B is a trace of Az||B2. Now consider
any non-closed trace (3 of Aj|[Bi. This 8 can be written as the limit of a sequence
[1 B2 -+ of closed traces of A1||Bi. By the first part of the proof we know that each
Bi € traces 4,,, and by projection using Theorem 7.3 each [3; [(Ea,,0) is a closed trace
of Ag, and f; [(Ep,, () is a closed trace of By. We know that [[(E.4,,0) is the limit of
the G; [(Fa,,0) and similarly 3 [(Ep,,0) is the limit of the 3; [(Eg,,{). Since the sets
traces 4, and tracesp, are limit-closed by Assumption 1, we get 3 [(E4,,0) € traces4, and
B [(Eg,,0) € tracesp,. Finally, by pasting using Theorem 7.3, we get [€ traces 4, B, ™

Note that automata with FIN and timing-independence (see Section 4.3 for definitions)
constitute examples for context automata Ay and By that satisfy Assumptions 1 and 2.
The property FIN implies Assumption 1 (Lemma 4.18) and timing-independence implies
Assumption 2.

Theorem 7.7 has a corollary, Corollary 7.8 below, which can be used in the decom-
position of proofs even when A, and Bs neither admit arbitrary time-passage nor have
limit-closed trace sets. The main idea behind this corollary is to assume that A4; imple-
ments Ao in a context Bs that is a variant of Ba, and symmetrically that B; implements
Bs in a context that is a variant of As. That is, the correctness of implementation rela-
tionship between A; and A5 does not depend on all the environment constraints, just on
those expressed by Bs (symmetrically for B1,B5, and A3). In order to use this corollary
to prove A;1||By < Asz||B2 one needs to be able to find appropriate variants of Ay and Bs
that meet the required closure properties. This corollary prompts one to pin down what is
essential about the behavior of the environment in proving the intended implementation
relationship, and also allows one to avoid the unnecessary details of the environment in
proofs.

Corollary 7.8 Suppose A1, Az, As, B1, Bs, By are TIOAs such that Ay, Az, and A3 are
comparable, By, By, and Bs are comparable, and A; is compatible with B; fori € {1,2,3}.
Suppose further that:

1. The sets traces g4, and tracesp, are closed under limits.

2. The sets traces g, and tracesp, are closed under time-extension.
3. As||Bs < As||Bs and As||Ba < A3||Bs.

4. A1||B3 < Ag||Bs and A3||By < Asl|Ba.

78

Then A1||B1 < As||Bo.

Proof: Since Ay < A3z by Assumption 3 and A;|[Bs < As|Bs by Assumption 4, we
get Aq||Bs < As||Bs < Ajs|Bs, by Theorem 7.4. Similarly, we have A3z||B; < Ajs||Bs <
As||Bs. Since A;||Bs < As||Bs and As||B; < As||Bs, by using Assumptions 1 and 2, and
Theorem 7.7 we have A;||B; < As||Bs.

Let 8 be a trace of A;||B;. By projection using Theorem 7.3, B [(E4,,0) € traces 4,
and B [(Ep,,0) € tracesp,. Since A;[|B1 < A3||Bs, we know that 3 € traces 4, p,- By
projection using Theorem 7.3, ([(E4s,0) € tracesa, and (3 [(Ep,,0) € tracesp,. By
pasting using Theorem 7.3, we have 8 € traces 4,5, and (3 € traces 4, 5,- By Assumption
4, we get 8 € traces 4,5, and (3 € traces 4,|5,- Then, by projection using Theorem 7.3,
B(E4,,0) € traces 4, and [[(Eg,,0) € tracesg,. Finally, by pasting using Theorem 7.3
we have (3 € traces 4,|5,, as needed. [|

Example 7.9 (Using environment assumptions to prove safety) This example
illustrates that, in cases where specifications As and Bs satisfy certain closure properties,
it is possible to decompose the proof of A;[[B; < Az||B2 by using Theorem 7.7, even if it
is not the case that A4; < Ay or By < Bs.

The automata AlternateA and AlternateB in Figure 12 are timing-independent au-
tomata in which no consecutive outputs occur without inputs happening in between.
AlternateA and AlternateB perform a handshake, outputting an alternating sequence of a
and b actions when they are composed. The automata CatchUpA and CatchUpB in Figure 9
are timing-dependent automata that do not necessarily alternate inputs and outputs as
AlternateA and AlternateB. CatchUpA can perform an arbitrary number of b actions, and
can perform an a provided that counta < countb. It allows counta to increase to one more
than countb. CatchUpB can perform an arbitrary number of a actions, and can perform
a b provided that counta > countb + 1. It allows countb to reach counta. Timing con-
straints require each output to occur exactly one time unit after the last action. CatchUpA
and CatchUpB perform an alternating sequence of a actions and b actions when they are
composed.

Suppose that we want to prove that CatchUpA || CatchUpB < AlternateA || AlternateB.
We cannot apply the basic substituvity theorem Theorem 7.7, in particular Corollary 7.5,
since the assertions CatchUpA < AlternateA and CatchUpB < AlternateB are not true.
Consider the trace 79 b 71 a 79 a 73 of CatchUpA where 79, 71, 79 and 73 are trajectories
with limit time 1. After having performed one b and one a, CatchUpA can perform another
a. But, this is impossible for AlternateA which needs an input to enable the second
a. AlternateA and CatchUpA behave similarly only when put in a context that imposes
alternation.

It is easy to check that AlternateA and AlternateB satisfy the closure properties re-
quired by Assumptions 1 and 2 of Theorem 7.7 and, hence can be substituted for Ao

79

automaton AlternateAl
signature
output a, input b
states
myturn: Bool := true
transitions
output a input b
pre eff
myturn myturn := true
eff
myturn := false

automaton AlternateB
signature
input a, output b

states
myturn: Bool := false
transitions
input a output b
eff pre
myturn := true myturn
eff
myturn := false

Figure 12: AlternateA and AlternateB

and By respectively. Similarly, we can easily check that Assumption 3 is satisfied if we
substitute CatchUpA for .4; and CatchUpB for Bj.

Example 7.10 (Extracting essential environment assumptions with auxiliary
automata) This example illustrates that it may be possible to decompose verification,
using Corollary 7.8, in cases where Theorem 7.7 is not applicable. If the aim is to show
Aq||B1 < Az||By where Ay and By do not satisfy the assumptions of Theorem 7.7, then
we find appropriate context automata As and Bs that abstract from those details of As
and Bs that are not essential in proving A;||B1 < As||Bo.

Consider the automata Use0ldInputA and UseOldInputB in Figure 13. Use0ldInputA
keeps track of whether or not it is Use0ldInputA’s turn, and when it is Use0ldInputA’s
turn, it keeps track of the next time it is supposed to perform an output. The number
of outputs that Use0l1dInputA can perform is bounded by a natural number. In the case

80

signature
output a, input b

states
myturn: Bool := true, maxout:
now: Real := 0, next: AugmentedReal := 0

transitions

output a input b
pre eff
myturn A (maxout >0) myturn := true;
A (now = next) if next = infty
eff then next := now + 1
myturn := false;
maxout := maxout - 1;
next := infty
trajectories
stop when
now = next
evolve
d(now) =1
signature
input a, output b
states
myturn: Bool := true, maxout:
now: Real := 0, next: AugmentedReal := 0
transitions
input a output b
eff pre
myturn := true; myturn A (maxout >0)
if next = infty A (now = next)
then next := now + 1 eff
myturn := false;
maxout := maxout - 1;
next := infty

trajectories
stop when

now = next
evolve
d(now) = 1

Figure 13: Use0ldInputA and Use0ldInputB

signature
output a, input b

states
myturn: Bool := true, maxout:
now: Real := 0, next: AugmentedReal := 0

transitions

output a input b
pre eff
myturn A (maxout >0) myturn := true;
A (now = next) next := now + 1
eff
myturn := false;
maxout := maxout - 1;
next := infty
trajectories
stop when
now = next
evolve
d(now) =1
signature
input a, output b
states
myturn: Bool := true, maxout:
now: Real := 0, next: AugmentedReal := 0
transitions
input a output b
eff pre
myturn := true; myturn A (maxout >0)
next := now + 1 A (now = next)
eff
myturn := false;
maxout := maxout - 1;
next := infty

trajectories
stop when

now = next
evolve
d(now) = 1

Figure 14: UseNewInputA and UseNewInputB

of repeated b inputs, it is the oldest input that determines when the next output will
occur. The automaton Use0ldInputB is the same as UseOldInputA (inputs and outputs
reversed) except that the turn variable of Use01dInputB is set to false initially. Note that
Use0ldInputA and Use0ldInputA are not timing-independent and their trace sets are not
limit-closed. For each automaton, there are infinitely many start states, one for each
natural number. We can build an infinite chain of traces, where each element in the
chain corresponds to an execution starting from a distinct start state. The limit of such
a chain, which contains infinitely many outputs, cannot be a trace of Use0ldInputA or
UseOldInputA since the number of outputs they can perform is bounded by a natural
number. The automaton UseNewInputA in Figure 14 behaves similarly to Use0ldInputA
except for the handling of inputs. In the case of repeated b inputs, it is the most recent
input that determines when the next output will occur. The automaton UseNewInputB in
Figure 14 is the same as UseNewInputA (inputs and outputs reversed) except that the turn
variable of UseNewInputB is set to false initially.

Suppose that we want to prove that: UseNewInputA || UseNewInputB < UseOldInputA ||
Use0ldInputB.

Theorem 7.7 is not applicable here because the high-level automata Use01dInputA and
Use0ldInputB do not satisfy the required closure properties. However, we can use Corol-
lary 7.8 to decompose verification. It requires us to find auxiliary automata that are less
restrictive than Use0ldInputA and Use0ldInputB but that are restrictive enough to express
the constaints that should be satisfied by the environment, for UseNewInputA to implement
Use0ldInputA and for UseNewInputB to implement Use0ldInputB.

The automata AlternateA and AlternateB in Figure 12 can be used as auxiliary au-
tomata in this example. They satisfy the closure properties required by Corollary 7.8
and impose alternation, which is the only additional condition to ensure the needed trace
inclusion.

We can define a forward simulation relation from UseNewInputA | UseNewInputB to
Use0ldInputA || Use0ldInputB, which is based on the equality of the turn variables of the
implementation and the specification automata. The fact that this simulation relation only
uses the equality of turn variables reinforces the idea that the auxiliary contexts, which
only keep track of their turn, capture exactly what is needed for the proof of UseNewInputA
|| UseNewInputB < Use0ldInputA || Use0OldInputB. We can observe that a direct proof of
this assertion would require one to deal with state variables such as maxout and next of
both Use0ldInputA and Use0ldInputB which do not play any essential role in the proof.
On the other hand, by decomposing the proof along the lines of Corollary 7.8 some of the
unnecessary details can be avoided. Even though, this is a toy example with an easy proof
it should not be hard to observe how this simplification would scale to large proofs.

83

7.1.3 Composition of Special Kinds of TIOAs

The following example illustrates that the set of I/O feasible TIOAs is not closed under
composition:

Example 7.11 (Two I/O feasible TIOAs whose composition is not I/O feasible)

Consider two I/O feasible TIOAs A and B, where O4 = Ig = {a} and Op = I 4 = {b}.
Suppose that A performs its output ¢ at time 0 and then waits, allowing time to pass,
until it receives input b. If and when it receives b, it responds with output a without
allowing any time to pass (and ignoring any inputs that occur before it has a chance to
perform its output). On the other hand, B starts out waiting, allowing time to pass, until
it receives input a. If and when it receives a, it responds with output b without allowing
time to pass.

It is not difficult to see that A and B are individually I/O feasible. We claim that the
composition A||B is not I/O feasible. To see this, consider the start state of A||B and the
unique input sequence 3 with §.ltime = oo; 3 simply allows time to pass to infinity. The
composition A4||B has no way of accommodating this input, since it will never allow time
to pass beyond 0. [|

On the other hand, the following theorems say that the classes of progressive and
receptive TIOAs are closed under composition:

Theorem 7.12 If Ay and As are compatible progressive TIOAs, then their composition
18 also progressive.

Proof: The proof is similar to the proof of Theorem 7.4 in [25]. The main idea behind the
proof is that a Zeno execution of A;||.A2 with infinitely many locally controlled contains
infinitely many locally controlled actions of either A4; or As. Suppose without loss of
generality that the automaton that contributes infinitely many locally controlled actions
is A1. Then the projection onto A; violates progressiveness for Aj;. [|

Theorem 7.13 Let Ay and Ay be two compatible TIOAs with strategies A} and Ab,
respectively. Then Aj||A5 is a strategy for A;||Asz.

Proof: The proof is similar to the proof of Theorem 7.7 in [25]. |

Now, we can state the main result of this section, which follows easily from the previous
two theorems. It shows that the class of receptive TIOAsS is closed under composition.

Theorem 7.14 Let A1 and Ag be two compatible receptive TIOAs with progressive strate-
gies Ay and A),, respectively. Then A;|As is a receptive TIOA with progressive strateqy
Al || Aj.

84

Example 7.15 (Composition of receptive TIOAs) Theorem 7.14 implies that the
composition of clock synchronization automata with channel automata described in Ex-
ample 5.7 (viewed as TIOAs as explained in Example 6.1) is receptive. By Theorem 6.6
we also have that it is I/O feasible. |

In fact, the fact that the set of I/O feasible TIOAs is not closed under composition
motivated the definition of the more restrictive class of receptive TIOAs. That is, recep-
tiveness is a reasonable sufficient condition that implies 1/O feasibility, and that also is
preserved by composition.

The special case of the HIOA model, represented by the TIOA model, has simpler and
stronger composition theorems than the general HIOA model. In particular, the main
compositionality result for receptive HIOAs (Theorem 7.12 in [25]) has a more intricate
proof than ours. It makes an assumption about the existence of strongly compatible
strategies (discussed briefly at the end of Section 7.1.1) and needs an additional lemma
that shows that if two HIOAs A; and Ay which may not be strongly compatible have
strongly compatible strategies A} and A}, then A; and Ajg are also strongly compatible.

7.2 Hiding

We extend the definition of action hiding to any TIOA A. For TIOAs, we consider
hiding outputs only (but not inputs), by converting them to internal actions. Namely, if
O C O4, then ActHide(O, A) is the TIOA B that is equal to A except that O = O4 — O
and Hg = H, U O.

Lemma 7.16 If A is a TIOA and O C O 4 then ActHide(O, A) is a TIOA.

Lemma 7.17 If A is a TIOA and O C O4 then tracesactvide(0,4) = 168 [(0Oa — O, VL4) |
B € tracess}.

Theorem 7.18 Suppose A and B are TIOAs with A < B, and suppose O C O4. Then
ActHide(O, A) < ActHide(O, B).

8 Conclusions and Future Work

In this monograph, we have presented a new framework for describing and analyzing the
behavior of timed systems. This framework is a mathematical framework that uses timed
I/O automata for the representation of systems. The TIOA framework is a special case
of the hybrid I/O automaton modeling framework [25]. We used what we have learned in
developing the HIOA framework to revise the earlier work on timed I/O automaton models.
Our main motivation was to have a timed I/O automaton model that is compatible with

85

the new HIOA model. We sought to benefit from the new style used in describing hybrid
behavior in simplifying the prior definitions and results on timed I/O automata.

Designers of real-time systems or timing-based algorithms can use the TIOA framework
to describe complex systems and to decompose them into manageable pieces. In partic-
ular, they can use the TIOA framework to describe their systems at multiple levels of
abstraction, to establish implementation relationships between these levels and to decom-
pose their systems into more primitive, interacting components. Although the framework
as presented in this monograph provides only conceptual tools for modeling, and manual
proof methods, it also is a natural basis for building computerized modeling and analysis.

We are currently working on the development of a toolset based on this mathematical
framework that will consist of: (a) a formal modeling language called TIOA, (b) the front-
end processor for TIOA, incorporating syntax and static semantic checking, and providing
interfaces to computer-aided design tools, (c¢) a simulation tool allowing simulation of
specifications and paired simulations of a specification and an abstract implementation,
and (d) a theorem-proving link through an interface to the theorem-prover PVS [.> The
described project builds upon our prior work on the IOA language [12].

On the theoretical side, we have done preliminary research toward extending the TIOA
framework with support for reasoning about safety and liveness properties of timed sys-
tems. We have defined notions of fairness and proved results that state under which
conditions the “fair” traces of a TIOA can be shown to be included in the fair traces of
another. We have started investigating the consequences of composition on automata with
liveness properties and the use of receptiveness and strategies in this context[21]. The re-
sults of these lines of preliminary work are not included in this version of the monograph
because the adequacy of our definitions and methods are yet to be assessed on a larger
class of non-trivial examples.

We will also continue our work on establishing formal relationships with other models
that are comparable to ours, showing that the TIOA framework is general enough to
express previous results from other frameworks, such as [32, 31, 5, 30, 28, 40].

Acknowledgments: Dilsun Kaynar and Nancy Lynch were supported by DARPA /AFOSR
MURI Contract F49620-02-1-0325, DARPA SEC contract F33615-01-C-1850, NSF ITR
contract CCR-0121277, and Air Force Aerospace Research-OSR. Contract F49620-00-1-
0097. Frits Vaandrager was supported by EU IST project IST-2001-3530 Advanced Meth-
ods for Timed Systems (AMETIST) and PROGRESS project TES4999: Verification of
Hard and Softly Timed Systems (HaaST).

3Parts of the TIOA software are available upon request for experimental use. The project web site
(http://tioa.csail.mit.edu) contains all the material that are available for general public use.

86

References

1]

2]

[7]

[10]

[11]

M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems, 1(15):73-132, 1993.

M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507-534, 1995.

R. Alur. Timed automata. In Proc. of 11th International Conference on Computer-
Aided Verification (CAV), volume 1633 of LNCS, pages 8-22. Springer-Verlag, 1999.
An earlier and longer version appears in NATO-ASI Summer School on Verification
of Digital and Hybrid Systems.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicolin,
A. Olivero, J. Sifakis, and Yovine S. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.
4th Intl. School on Formal Methods for Computer, Communication, and Software
Systems: Real Time, 2004. Bertinoro, Italy.

R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata,. In Proceedings
of the Eighth International Workshop on Hybrid Systems: Computation and Control
(HSCC), 2004.

M. Bozga, S. Graf, Tul. Ober I1. Ober, and J. Sifakis. The IF toolset. In Proceedings of
Formal Methods for the Design of Real-Time Systems, volume 3185 of LNCS, pages
237-267, September 2004.

Roberto DePrisco, Butler Lampson, and Nancy Lynch. Revisiting the Paxos algo-
rithm. In Marios Mavronicolas and Philippas Tsigas, editors, Distributed Algorithms
11th International Workshop, WDAG’97, Saarbriicken, Germany, September 1997
Proceedings, volume 1320 of Lecture Notes in Computer Science, pages 111-125,
Berlin-Heidelberg, 1997. Springer-Verlag.

D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. ACM Distinguished Dissertations. MIT Press, 1988.

S. Garland and N. Lynch. Using I/O automata for developing distributed systems.
In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based
Systems, chapter 13, pages 285—-312. Cambridge University Press, New York, 2000.

87

[12]

[13]

[17]

S. Garland, N. Lynch, and M. Vaziri. [OA: A Language for Specifying, Program-
ming, and Validating Distributed Systems. MIT Laboratory for Computer Science,
Cambridge, MA, 2001. URL http://theory.lcs.mit.edu/tds/ioa.html.

R. Gawlick, R. Segala, J.F. Sggaard-Andersen, and N.A. Lynch. Liveness in timed and
untimed systems. In S. Abiteboul and E. Shamir, editors, Proceedings 21" ICALP,
Jerusalem, volume 820 of Lecture Notes in Computer Science. Springer-Verlag, 1994.
A full version appears as MIT Technical Report number MIT /L.CS/TR-587.

C.A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT
Press, Cambridge, Massachusetts, 1992.

M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Massachusetts,
1988.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A Model Checker for Hybrid
Systems. In O. Grumberg, editor, Proceedings of the 9th International Conference
on Computer Aided Verification, volume 1254 of Lecture Notes in Computer Science,
pages 460-463. Springer-Verlag, 1997.

T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decomposing refinement proofs
using assume-guarantee reasoning. In Proceedings of the International Conference
on Computer-Aided Design (ICCAD), pages 245-252. IEEE Computer Society Press,
2000.

C. B. Jones. Specification and design of parallel prorgrams. In R. E. A. Mason, editor,
Information Processing 83: Proceedings of the IFIP 9th World Congress, pages 321—
332. North-Holland, 1983.

D. Kaynar, Nancy Lynch, and Sayan Mitra. Specifying and proving timing properties
with tioa tools. In Proceeding sof the 5th IEEE International Real-Time Systems
Symposium, Work in Progress Session (RTSS WIP), pages 96-99, Lisbon, Portugal,
December 2004.

Dilsun Kaynar, Nancy Lynch, Sayan Mitra, and Stephen Garland. The TIOA lan-
guage. Manuscript, 2004.

Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory
of timed I/O automata. Technical Report MIT-LCS-TR-917a, MIT Laboratory for
Computer Science, 2004. Available online at http://theory.csail.mit.edu/tds/
reflist.html.

D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Program-
ming. Addision-Wesley, Reading, Massachusetts, second edition, 1973.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Journal of
Software Tools for Technology Transfer, 1 2:134 152, 1997.

88

[24]

[25]

[26]

N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Fran-
sisco, California, 1996.

N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O automata. Information
and Computation, 185(1):105-157, 2003. Also Technical Report MIT-LCS-TR-827d,
MIT Laboratory for Computer Science.

N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O automata.
In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems III, volume
1066 of Lecture Notes in Computer Science, pages 496-510. Springer-Verlag, 1996.

N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O automata.
Report CSI-R9907, Computing Science Institute, University of Nijmegen, April 1999.

N.A. Lynch and F.W. Vaandrager. Action transducers and timed automata. Formal
Aspects of Computing, 8(5):499-538, 1996.

Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic memory ser-
vice for dynamic networks. In D. Malkhi, editor, Distributed Computing (Proceedings
of the 16th International Symposium on DIStributed Computing (DISC), Toulouse,
France, October 2002), volume 2508 of Lecture Notes in Computer Science, pages
173-190. Springer-Verlag, 2002. Also, Technical Report MIT-LCS-TR-856.

Nancy Lynch and Frits Vaandrager. Forward and backward simulations — Part II:
Timing-based systems. Information and Computation, 128(1):1-25, July 1996.

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de Bakker,
C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proceedings REX Workshop
on Real-Time: Theory in Practice, Mook, The Netherlands, June 1991, volume 600
of Lecture Notes in Computer Science, pages 447-484. Springer-Verlag, 1992.

M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In J.C.M.
Baeten and J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, volume 527
of Lecture Notes in Computer Science, pages 408-423. Springer-Verlag, 1991.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

S. Mitra, Y. Wang, N. Lynch, and E. Feron. Safety verification of pitch controller
for model helicopter. In O. Maler and A. Pnueli, editors, Proc. of Hybrid Systems:
Computation and Control, volume 2623 of Lecture Notes in Computer Science, pages
343-358, Prague, the Czech Republic April 3-5, 2003.

Paul Petterson. Modelling and Verification of Real-Time Systems Using Timed Au-
tomata: Theory and Practice. PhD thesis, Department of Computer Systems, Uppsala
University, 1999. Technical Report DoCs 99/101.

89

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Pnueli. In transition from global to modular temporal reasoning about programs.
In K. R. Apt, editor, Logis and Models of Concurret Systems, NATO ASI, pages
123-144. Springer-Verlag, 1984.

A. Pnueli. Development of hybrid systems. In H. Langmaack, W.-P. de Roever, and
J. Vytopil, editors, Proceedings of the Third International School and Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFEFT’94), Liibeck,
Germany, September 1994, volume 863 of Lecture Notes in Computer Science, pages
77-85. Springer-Verlag, 1994.

J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems Theory: A
Behavioural Approach, volume 26 of Texts in Applied Mathematics. Springer-Verlag,
1998.

C. Robson. TIOA and UPPAAL. Master’s thesis, MIT Department of Electrical
Engineering and Computer Science, 2004.

R. Segala, R. Gawlick, J.F. Sggaard-Andersen, and N.A. Lynch. Liveness in timed
and untimed systems. Information and Computation, 141(2):119-171, March 1998.

J. Sifakis. Modeling real-time systems — challenges and work directions. In Proceedings
of Embedded Software, First International Workshop (EMSOFT ’01), volume 2211
of LNCS, pages 373 389, Tahoe City, CA, USA, October 2001.

J. Sifakis. Modeling real-time systems. In Proceedings of the 25th IEEE Real-Time
Systems Symposium (RTSS ’04), pages 5-6. IEEE Computer Society, 2004. Invited
Talk.

E.D. Sontag. Mathematical Control Theory — Deterministic Finite Dimensional
Systems, volume 6 of Texts in Applied Mathematics. Springer-Verlag, 1990.

E. W. Stark. A proof technique for relt/guarantee properties. In S. N. Mahesh-
wari, editor, Foundations of Software Technology and Theoretical Computer Science,
volume 206 of LNCS, pages 369-391. Springer-Verlag, 1985.

S. Tasiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstractions of

timed systems. In Proceedings of the Seventh Conference on Concurrency Theory
(CONCUR) 1996, volume 1119 of LNCS.

S. Yovine. Kronos: A verification tool for real-time systems. International Journal
of Software Tools for Technology Transfer, 1(1/2):123-133, October 1997.

90

A Notational Conventions

a,b
f,9,h
(2%

8

PENADTZNYRE X M SN0 UONNY S~ Qe s = =
AN
aQ

Q3 >
c ®
S}

O

action

function

index

locally controlled action
time point

variable

set of actions

task

set of external actions
set of functions

set of internal (hidden) actions
set of input actions
interval

set of time points

set of locally controlled actions
set of output actions
set of elements in cpo
set of automaton states
(simulation) relation
set

set of trajectories

set of variables

set of internal variables
state

valuation

timed (I/O) automaton
set of discrete transitions
set of trajectories

the natural numbers
the real numbers

the time axis

the integers

the universe of variables
(A, V)-sequence
sequence

the empty sequence
projection function
sequence

trajectory

set of start states

91

Index

(A, V)-restriction, 18
(A, V)-sequence, 16

abstraction, 5

admissible, 17, 19

algebraic cpo, 11

AlternateA, 79

AlternateB, 79

Alur-Dill timed automaton, 7
analog variable, 13, 22
assume-guarentee, 76

backward simulation, see simulation rela-
tion, 45

BoundedAlternateA, 57

BoundedAlternateB, 57

CatchUpA, 57, 79
CatchUpB, 57, 79
chain, 11
clock synchronization, 29, 41
ClockSync(u,r:Real, i:Index), 29, 54, 69
compact element of a cpo, 11
comparable, 73
TA, 37
compatible, 73
TA, 51
complete partial order (cpo), 11
algebraic cpo, 11
compact element, 11
composition, 5, 51, 74
continuous, 11
cpo, see complete partial order

discrete action, 19
discrete transition, 19
discrete variable, 13, 22
dynamic type, 13

effect, 22
enabled, 20

92

execution, 30, 69
PeriodicSend(u:Real, M:Type), 31
Timeout (b:Real, M:Type), 32

execution fragment, 30, 31, 69

feasible, 26, 69

FIN, see finite internal nondeterminism, 78

finite internal nondeterminism (FIN), 35

Fischer’s mutual exclusion, 26, 33, 66

FischerVME(uset,l check:Real), 26

FischerME(u_set,l check:Real), 66

forward simulation, see simulation relation
clock synchronization, 41
time-bounded channels, 40

hiding, 60
HIOA, 6, 75
history relation, 46, 47, 73
time-bounded channels, 49
history variable, 46, 47
time-bounded channels, 46
hybrid automaton, 20, 51
Hybrid I/O Automaton modeling framework,
6, 85
hybrid sequence, 16, 16
admissible, 17
closed, 17
concatenation, 17
limit time, 16
prefix, 17
time-bounded, 17
Zeno, 17
HyTech, 8

1/0 feasibility, 85

I/O feasible, 70, 84

implementation, 5, 37

invariant, 30
clock agreement, 56
clock validity, 55
ClockSync(u,r:Real, i:Index), 55, 56

failure and timeout, 54 TA with bounds, 61

FischerME(u_set,l_check:Real), 33 task, 61
TimedChannel (b:Real, M:Type), 33 lower bound, 61
timeout, 53 upper bound, 61
isomorphism, 43 time axis, 12
time interval, 12
Kronos, 8 closed, 12

left-closed, 12

right-closed, 12
time-bounded channel, 23, 33, 40, 46, 49
timed automaton (TA), 19

limit of a chain, 11
linear hybrid automaton, 8
locally Zeno, 69

monotone, 11 timed automaton model, 19
Timed I/O automaton (TIOA), 5, 68
non-Zeno, 17, 19 Timed Input/Output Automaton modeling

framework, 4

paralllel composition, see composition TimedChannel (b:Real, M:Type), 23, 52, 53,
partial order, 11 69

complete partial order, 11
periodic sending process, 24, 31
periodic sending process with failures, 24
Per::Lod%cSend(u:Real, M:Type), 24, 52 timing-independent, 96, 78
Pel‘“lodlcsendQ(u:Real, M:Type), 24, 53 TIOA, see Timed 1/0 automaton
point trz.adj.ectory, see trajectory trace, 5, 31, 69
precondition, 22
prefix, 10
progressive, 70, 72
prophecy relation, 49, 73
prophecy variable, 49

Timeout (u:Real, M:Type), 53
Timeout (u:Real, M:Type), 25, 52
timeout process, 25, 32

PeriodicSend(u:Real, M:Type), 32
Timeout (u:Real, M:Type), 33
trace fragment, 31, 69
trajectory, 14, 19

closed, 1/
reachable, 30 concatenation, 15, 16
receptive, 72, 85 full, 74
receptiveness, 5, 71, 85 limit time, 14
refinement, 42 open, 14

point trajectory, 14, 16
sequence, 10 prefix, 14
simulation relation, 5, 37

backward simulation, 38, 43, 73 Uppaal, 8

forward simulation, 38, 73 UseNewInputA, 80

refinement, 42 UseNewInputB, 80
static type, 13 UseOldInputA, 80
strategy, 71, 72 Use01dInputB, 80

substitutivity, 56, 57, 75 variables, 13, 14, 19

TA, see timed automaton analog, 13

93

discrete, 13
dynamic types, 13
static type, 13

Zeno, 5, 17, 34

94

