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ABSTRACT

This note presents a new algorithm for computing the product of two

elements in a finite field F by means of sums and products in a fixed

subfield F and F (ex. F = GF(2m ) and F = GF(2)). The algorithm is based on

a normal basis representation of fields and assumes that the dimension m of

F over F is a highly composite number. A very fast parallel implementation

and a considerable reduction in the number of computations is allowed, in

comparison with some methods discussed in the literature.
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I. INTRODUCTION

In recent years there has been a considerable interest in VLSI

architectures and algorithms for computing multiplications in finite fields

[17], [20], [21]. Finite field computations are widely used, e.g. in error

correcting codes [11], digital signal processing [10], pseudo-random numbers

generation [4], [6], [91 and cryptographic protocols [2], [3], [5], [161.

The purpose of this note is to present a new algorithm for evaluating

the product of two elements in a finite field F by means of sums and

products in a subfield F of F.

Multiplications in F are represented in terms of bilinear forms in F,

referring to a normal basis representation of fields. This technique, which

underlays the remarkable algorithm proposed by Massey and Omura [9], [17],

is naturally associated with a matrix theoretic treatment of all the matter.

The basic step of our algorithm exploits some properties of the

bilinear forms representing the product with respect to a noraml basis

representation. The computational savings introduced in the basic step are

then exploited and magnified if the dimension m of the field F over the

subfield F is a highly composite number.

The algorithm allows a very fast implementation with concurrent use of

many processing elements.

In the remaining part of this introduction basic algebraic facts are

recalled. An explicit bilinear representation of the multiplication problem

is given in Section II and in Section III the new algorithm is presented.

Section IV and VI deal with some computational aspects of the algorithm and
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associated properties. In Section V two examples illustrate computational

gainings and speed together with a detailed description of the method in a

specific case.

In the sequal F is a finite field, F a subfield of F, "'m the dimension

of F as a vector space over F, Bm = fvo,vl...,v=_1] a generic basis of F

over F in which vo,vl,...,vm_ l e F are the linearly independent vectors of

the basis. Once a basis Bm for F over F has been given, any B in F is

represented by a row vector with m elements in F:

J = (bobl,...b 1)

Assume that p and pt are the characteristic and the cardinality of F,

respectively (p a prime number). An F-automorphism of F is an automorphism

of F which leaves every element of F fixed [8], The set of the F-

automorphisms of F is a group (the "Galois group" of F over F) consisting of

m distinct elements Go, G1 ,...,OGm 1

ti

G : 'P : a -a P = aGi, a e F.

G i G1 , G = G = I

(I the identity automorphism).

A basis {(v,vl,...,vm_ }) is "normal" (for F over F) if vi = a Gi for

some a in F (a normal basis generated by a). Such a basis will be denoted



as

t t(m-1)
[a,a pap }

It can be shown that a normal basis always exists [8]. The following

theorem constitutes the keystone of the algorithm presented in the next

section [11], [81:

Theorem 1. Let F contain pn elements. Then F contains a subfield F of pt

elements iff t divides n.

Let Fl, F2,..·,Fs+ l be finite fields and assume that Fi+1 is a subfield

of F i, i = l,...,s, ms-i+l the dimension of F i over Fi+1 . Then F1,

F2,...,Fs+i (in the order) constitute a "descending chain of fields". We

summarize these facts by the following notation

F > F > ,. F > F (1)
1 ms 2 ms m2 s m s+l

As a corollary of the previous theorem we have that if n = msmsl...ml,

mi > 1, positive integers, then there exists a descending chain of fields

F = F,. >2 F F.s m 2 = mm s+l

The same is true if m = msms+1 ... m! is the dimension of F over F.



II. THE MASSEY-OMURA ALGORITHM

Let F be represented as a row vector space over F, each row consisting

on the coordinates of an element of F with respect to a given basis Bm of F

over F. Let

y = (Co,C1 ,...,cmrl) £ F

[3 = (bo,b 1 ...lbbl ) 8 F

n = y¥ = (do,d 1 *.. . ,d m l) 8 F

Therefore the problem of obtaining the product of y and P is transformed

into the problem of computing the components di of its representative vector

and reduces to the evaluation of m symmetrical bilinear forms over F. In

fact, let ah,)k F denote the projection of vh.vk on the vector vi (i.e. the

i-th component of the element vhvk represented on the basis Bm ) and

introduce the following matrices

(i) (i)
IA Ilah,kllh,k = O...m-l i

Then, for any P and y in F, we have

d. = y A(i)p ' i = 0,1,...m-1 (2)

In the case when Bm = Nm, a is a normal basis the symmetrical matrices

A(i) are connected each other in a very simple way.

Dropping the superscript m-l both in A(m-1 ) and in a(mk l)h,k
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A = A( - I akIk= , 

we have

A = SiAS' M i +I hk=...m-

m-i- ((ki))(h+i))bk h (3)
h,k=O,...,m -lk

i = O,,...,m1

where

1 0 ...... O
0 1 0 ... O

S= 

[0i 1
o o

and ((j)) means j mod m.

Note that S induces a single step cyclic right shift into the

components of a row vector.

Equations (2) and (3) provide a compact representation of the Massey-

Omura multiplier. The structure of the A matrix, defining the

multiplication in F, must satisfy some restrictions. It can be shown [12]

[18] that the sum of the elements in a row (column) of the symmetrical

matrix A is zero, with the exception of the m-th row (column). In complete
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generality we assume that this sum is one (normal bases generated by an

element with unitary trace).

III. A NEW ALGORITHM

We are now in a position to introduce the basic step of the

multiplication algorithm.

Let ak be the k+l-th row of A. Then

amil = p S AS' i ' = b (as 4)
k=O,m-1 ( ( k - i ) ) - '' )

As a consequence of the rows structure of A, we have

a k+ a = (0,0,. ..,0,1) and
k=0,m-2

a a = (0,...,0), k = O,1,...,m-2

· ak -S ri lk (5)i=l,m-1 (1,1,...1) k = m-1

(O,...0,1)S'iy' = Cml

Therefore the m-i-1 component of the product can be expressed as

= (b ((k-i)) -b ((m-l-i)))akS + b((m1--i))c -i (6)

In order to compute akS'i' we resort again to the rows structure of A so
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(for k = 0,1,...,m-2)

X i' ak((j+i))cj k((j+i))( j-cm-l)j=0, j=,m-2

and, finally,

drn-i-i = ak,((j+i)) (cj m-1 M bM((k-i)) ((m-l-i))

+ b (m-l-i))Cm-l-i (7)

Note that the evaluation of dm_1 by means of formula (6) invovles the

computation of aky' k = 0,1,...,m-2. In this step no multiplications are

needed. In fact, using equations (5), we have

Y= 2 akS'y ' k = 0,1,...,m-2 (8)
i=l,m-l

Once the computation of akS'i' k = 0,1,...,m-2 has been performed,

only sums are involved in (8).

This implies that (m-I)(m-l) = (m-1)3 products in F are required for

computing the terms akS'iy' and m2 products are successively needed for

evaluating the coefficients di 1 i=0,,...,m-. Therefore P(m) =

=(m-1)3 + m2 products in F are sufficient to compute a generic product By

in F.

The previous procedure implies also that a number S(m) = (m-l)(m 2-1) of

sums in F is sufficient.
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The computational procedure above will be called the 'basic algorithm".

Suppose now m is not a prime interger and let m = m2ml, ml and m2

greater than 1, be a not trivial factorization of m. By theorem 1, there

exists a descending chain of fields F > F2 > F, F2 an intermediate field

between F and F, with m2 = dim F F, ml = dim F F2.

Since a normal basis of a finite field over any subfield always exists,

it is possible to split the computation of By in F in two steps. In the

first step, the basic algorithms between F and F2 is applied, in the second

step products in F2, previously obtained in step one, are computed applying

the basic algorithm between F2 and F.

This procedure is an alternative to the direct application of the basic

algorithm between F and F. It is easily seen it has a recurrent character.

In fact the first descent along the chain (from F to F2) splits a

single multiplication problem in F, whose solution depends on m-th order

bilinear forms over F, into several multiplication problems in F2, whose

solution depends on ml-th order bilinear forms over F.

The procedure above extends in a natural way to any descending chain of

fields between F and F and is called a "factorization of the algorithm

(along the chain)".

If m is highly composite, the factorization of the algorithm allows a

considerable saving in the number of products and sums in F needed for

computing the product ry. This will be shown in the next section.
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4. COMPUTATIONAL ASPECTS

1. Consider the factorization of the algorithm along the descending

chain F > F2 > F.
m2 ml

The basic algorithm between F and F2, F > F2, requres P(m) products

in F2. In turn, applying the basic algorithm between F2 and F, F2 > F, each

product in F2 requires P(m ) multiplications in F. Therefore, in order to

compute the product Ay.

P 3 2 3 2
(m2m) P (m2)P(ml -((m2-1)- + m2)((ml-1)3 + m)

multiplications in F are sufficient. Simple calculations show that

P /D m = m(P2 m1m, i>1
(m ,ml) i(m)' m 2 mlm > 1

proving that the factorization of the algorithm reduces the maximum number

of multiplications in F.

In ml,m2 aren't prime integers, it is possible to resort to a finer

factorization of the algorithm. Let

m = msms_ ,..,mlm o , mi>l i=l,...,s m =1 (9)

be a factorization of the integer m and



F F F 2 ... > F = F (10)1 m s 2 ms-1 s mI s+1

a descending chain of fields associated with it. Using the basic algorithm

between F i and Fi+l, i = 1,2,...,s in the order (factorization of the

algorithm), the number of F-multiplications needed for computing G'y in F is

given by

p 3 2
(m sms ... *m 1 ) = TT ((m.-1) + mi.) (11)

i=1, s

2. (10) is an upper bound on the number of F-multiplications, when

using the factorization of the algorithm along the descending chain (10).

There exist cases in which the upper bound (11) is reached (see example 1 in

the next section).

3. Suppose now the algorithm is factorized along the chain (10) and

let Si = S(m ,mil,,...,m ) be the number of sums in F that are sufficient

for applying the factorized algorithm along the descending chain

Fs-i+ > F > ... > F >) F = F (12)
m s-i+2 m s m1 s+1

Then

S. = KiSi u. i = s,s-l,...,l (13)
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where

i= hS k= P hi = mi-l ... ml mo

m =1 , S =0O
0 0

In fact, in order to apply the basic algorithm between Fs-i+l and Fs_i+2,

Fs-i+l > Fs-i+2, S(m. ) sums in Fs_i+2 are sufficient and these sums are
i I

computed in F with hiS(m ) sums (hi is the dimension of Fs-i+2 over F).

Moreover the basic algorithm between Fs-i+l and Fs-i+2 induces the

computation of P(m ) product in Fsi+2. Such computation in turn requires

no more than Si_- sums in F, we have to take into account in the evaluation

of S i .

4. Let cj be any permutation of the numbers 1,2,...,s. For every such

permutation, there exists a descending chain of fields

F 1 > F > ... F > F
1 m 2 m(s- 1). 

m(s)a . J 

Then there are at most sl descending chains of fields, that are different

from one another in the ordering of the factors mlm 2 ,...,ms. The

factorization of the algorithm along these chains does not change the upper

bound (11) of the number of F-multiplications. On the contrary, changing

these chains affects the number of sums in F



13

Si(=S (). For instance, in the case s = 2,

(s) 'm(s-1) j .· ,m(S )

S(t,q) < S(q,t) if and only if t<q [12]. In general a factorization of the

algorithm along the descending (10) chain is optimal (i.e. it minimizes the

maximum number Ss of sums in F) if the factors of the chain (10) satisfy the

condition ms<mS-l-...ml.

5. The factorization of the algorithm makes it possible to reduce the

number of coefficients in F necessary to assign the A matrices of the

bilinear forms, defining the multiplication algorithm at each step (see

example 1). In fact, the application of the algorithm (factored or not)

requires an a priori knowledge of the coefficients of the bilinear forms

(2), (3). They are the elements of the symmetrical matrices A, used in each

step of the algorithm (one mixmi matrix for every application of the basic

algorithm between Fs-i+l and Fs-i+2). In the single step case, the A matrix

is completely defined by (m+l)m/2 - 2 coefficients in F. This depends on

the symmetry of A and on the constraints on the first row and the last

column of A.

If m=mlm2, ml,m2>1, and the algorithm is factorized along the chain

F ml F 2 m2 F, m2 (ml(ml+1)/2-2) + m2(m2+1)/2- 2 coefficients in F are

sufficient, less than in the single step. The same conclusion holds in the

general case.
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V. EXAMPLES

Example 1: We compare two algorithms, referring to the maximum number

of sums and products needed for computing m bilinear forms over F.

The reference algorithm, A 1, is the factorized algorithm described in

this note. The maximum number of sums and products for A 1 is given by (13)

and (11).

The second algorithm, A 2, computes the bilinear form PAy' by evaluating

first the vector 0' = Ay' (m2 products and m(m-l) sums are sufficient) and

then p0' (m products and m-1 sums). Since the number of forms to be

computed is m, this algorithm needs

m3 + m2 products in F

m(m2-1) sums in F

Assume m=2S and suppose that the factors of the descending chain (10)

are mi = 2, i = 1,2,...,s. We have P(2) = 5'....P(2 ,2,...,2) = 5 S = 22.32 s

The number of F-multiplications is reduced from an order m3 (in A 2) to

an order m2 '32 (in A1 ), which is a remarkable reduction if m is large.

Notice that in this situation the factorized algorithm is in its most

efficient form (in particular, since mi = 2, there are no residual

symmetries to exploit in the 2x2 A matrices and only one coefficient is used

in a single step of the factorized algorithm). If 2 = dimF +lFi in general

it is impossible to compute a product in Fi with less than five

multiplications in Fi+i (notice that the fundamental results of [19] cannot

be straightforwardly applied to this problem).

The A 1 columns of the table list the number of sums and products needed

by the factorized algorithm while the A2 /A 1 columns provide the ratios
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between the maximum number of sums and products in A2 and A1 respectively.

The remarkable computational advantage of the factorization may be

immediately appreciated.

Al A1 A/A
s m products sums products sums

2 4 25 35 3.2 1.7

3 8 125 195 4.6 2.6

4 16 625 1.015 7 4

5 32 3.125 5.155 10.8 6.4

6 64 15.625 25.935 17 10

8 256 390.625 650.615 43 26

10 1024 9.765.625 16.274.335 110 66

12 4096 224.140.625 406.894.215 281 169

16 65536 -- -- 1829 1107

Notice that the number of coefficients in F necessary to define the

algorithm is m(m+1)/2 in A2 and 1+2+...+2 s-1 = 2s-1 = m-l in A.

Example 2: We give here a detailed description of the factorized

algorithm presented in section III. In addition some properties of the

representation (2), (3) are pointed out. Let F = GF(26) F2 = GF(2 3)

F = GF(2), and consider the factorization of the algorithm along the chain
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GF(26) > GF(2 3) > GF(2). A root o of the polynomial g(x) = x3 + x2 + 1

generates a normal basis N3. = £{,a2 ,a4] for GF(23) over GF(2) and a root a

of p(x) = x2+x+1 generates a normal basis N2, a = {a,a 2) for GF(22) over

GF(2) and also for GF(26 ) over GF(2 3) (this is a particular case of a more

general one, [12], [13]).

To apply the algorithm the matrix A of the bilinear representation (3)

has to be found. Let A3 (A2 ) be that matrix when the product is between

elements of GF(23) (of GF(26 )) represented over GF(2) (over GF(2 3 )) on the

normal basis N3,, (N2,a).

Simple computations give the representations of the elements a2, (a2 )2,

(,4)2 , aa2, aa4 in the normal basis N3 , a:

a2 = a2 (a 2 ) 2 = o4 (F 4 ) 2 = 

Oa2 = a+F4 aa4 = a2+a4 02a4 = a+a2

The symmetric matrix A3 is therefore the following:

1 1
A3 1= 

0 0

11
Similarly it is found that A2 = i

Denote with y = (co0 c1) B = (bo0 bl) p = (do , d1) elements of GF(26)

represented over GF(23) in the basis N2, and Y' = (cO¢ C, c2) A' = (bo;

bl, b2) p = (do' d{, d2) elements of GF(23) represented over GF(2) in the

basis N3,,. If p = yf the application of steps (6), (7) between GF(26) and

GF(23) gives
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d O = (b 0 b 1 ) * (c o $ c 1 ) b * 

(14)

d1 =(b bl) c (cO $ C 1) b * C1

(* and @ denote multiplication and addition in GF(2 3 )). If p' = r'f'

applying steps (6), (7) between GF(2 3 ) and GF(2) the following is obtained

d'= (b'+bi)(c'+c') + (b'+b9)(c'+c) + bc'

d' = (bj+b')(c'+c') + (b'+bP)(c'+c') + b'c' (15)1 2 c1 0 1 0 1+0 2 1

d= (b+b')(c'+c i ) + (b'+b2)(c+b i ) + b'c'

where the operation are in the binary field GF(2). The algorithm compute

do0 dl by evaluating every product * in (14) by using (15) after the

computation of the sums b0 $ b 1 and co $ c 1 . If d i = (diO, di,, di2)

Ci = (ciO, Cil, ci 2 ), b i = (bi 0 , bil, bi 2 ) are the components of d i , c i , b i

in the basis N3 , the explicit expression of d0 0 is

d00 = ((b01+bll) + (b00+b10) ((c +c) + (c02+c2) + (0212

+ ((b02+b12) + (b 0 0 +b1 0 ))((c +0cll) + (c 0 2 +c 1 2 )) + b0 0 +b 10 )(c 0 0 +c 1 0 ) +

+(b 01+b 00)(c00+c02) + (b02+b00)(c01+c02) + b00c00

The 'nested' basis (see also remark 4 of section VI) associated to the
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algorithm is

2 4 2 22 42
aa, a a, a a, aa , a , a a (16)

which is still a normal basis N6,aa for GF(26) over GF(2), after a

permutation of the basis vectors. In the basis N6,oa the matrix A of the

Massey-Omura multiplier has 15 non zero elements, so the Massey-Omura

algorithm compute a product in GF(26) represented in N6ga with 90

multiplications and 84 additions in GF(2). According to section III the

factorized algorithm computes (14) and (15) with 36 multiplications and 90

additions. Other simmetries of (14) and (15) can be exploited: the first

terms of the sums in (14) and also the first of do and the second of d{, the

first of di and the second of d6, the first of di and the second of dI are

pairwise equal, therefore only 18 multiplications and 48 additions in GF(2)

are needed. Without taking into account the time for input/output

operations a completely parallel realization of the Massey-Omura multiplier

(with elementary processors capable of the binary GF(2) operations between

two operators) multiplies in five clock pulses, the factorized algorithm in

six (but with a greater communication complexity).

VI. SOME REMARKS

1. An important part of the algorithmic principle presented in section

II is the factorization along the chain of fields (10). This principle can

be applied to algorithms different from the one considered in Section III.

For example the algorithm presented in [20] is intrinsically sequential and
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factoring it along the chain (10) gives a much more parallel procedure.

2. Consider the basic algorithm between Fs-i+l and Fsi+ 2 in (12).

The coefficients ak, ((j+i)) in (7) are fixed element of Fsi+2 so they

induce a linear transformation into Fsi+ 2 which can be computed in no more

than (mil...ml)2 operations in F. With this modification in the case m=2 S

(example 1) the factorized algorithm requires no more than m2 (1+s/4)

multiplications in F.

3. Algorithms based on the bilinear representation of section II allow

a highly parallel implementation which computes a product in a finite field

GF(2n) in time log 2 n. This is true also for the factorized algorithm of

section III with the modification of remark 2. It is worthwhile to notice

that multiplication algorithms derived from efficient multiplication and

division algorithms for polynomials (as the FFT and the Schonhage-Strassen

algorithms [11, [10], [14], [15]) do not allow a parallel implementation

running in time linear in log 2 n.

4. The basis of F over F resulting from the algorithm factorization

exhib its a 'nested structure" as in [16]. In fact, let Nm -

(voi,vl i,...,Vm -1,i) be the normal basis for Fs-i+l over Fs-i+2 i = s,s-

1,...,1. The basis for Fs-i+l over F, associated with the factorization of

the algorithm, consists of n i = mimil,...,m elements of Fs-i+1, given by
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the products

vi, v ji ...l 1 1 jk < mk-l 1 _ k _ i. It is worthwhile to

notice that, in general, it is not a normal basis for Fs-i+i over F [13].

5. The matrix A( 5 ) of the bilinear representation (2) associated to

the basis (16) in example 2 has the following block structure:

=3 [

If the basis has the nested structure of remark 4 it can be seen that the

matrices of the bilinear representation (2) present a block structure. In

the above case A( 5) can be described as the "tensor product" [7] of the

matrices A2 and A3 of example 2 (this is a particularization of the more

general case).

VII. CONCLUSIONS

A new algorithm for multiplication in finite field F has been

presented. The algorithm is based on the hypothesis that the dimension of

the field F over the subfield F is a highly composite number and exploits

the existence of intermediate fields E between F and F. The algorithm

allows highly parallel fast computations of products in a finite field with

a substantially smaller number of computational elements than in some other

methods. The underlying algorithmic principle of exploiting intermediate

fields can be extended to other algorithms in order to achieve better
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performances in term of speed and/or required operations.
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