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Abstract

Over the past fifteen years, there have been persistent claims of anomalous nuclear re-
actions in condensed matter environments. A Unified Model [38] has been proposed to
systematically account for most of these anomalies. However, all the work done so far has
used simple scalar nuclear Hamiltonians. In this thesis, we develop the tools necessary to
use a realistic nuclear Hamiltonian in the Unified Model.

A natural way to include a realistic nuclear potential in the Unified Model is via the method
of coupled-channel equations. The phenomenological nuclear interaction chosen is the
Hamada-Johnston potential [40]. The major portion of the thesis is devoted to deriving the
coupled-channel equations with explicit symmetry constraints for the Hamada-Johnston
potential. A critical input in this derivation is the calculation of the matrix elements of the
various channels. We develop a systematic method, based on group theory, for calculating
matrix elements of few-body correlated spatial wavefunctions. This method can, in some
sense, be considered a generalization of Racah's viewpoint [17] of calculating shell-model
matrix elements.

Towards the end, two related, but somewhat different topics are explored. Firstly, a simple
phonon-coupled nuclear reaction, the photodisintegration of the deuteron, is investigated.
While no observable results are computed, this work should be considered a first step in
calculating the effects of the lattice on nuclear reactions. Secondly, Lie algebra theory is
used to understand the coherent decay, from the highest symmetry state in N-level systems,
in terms of the usual Dicke [21] algebra.

Thesis Supervisor: Peter L. Hagelstein
Title: Associate Professor
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Chapter 1

Introduction

Over the last fifteen years, various experimental claims have been made with regard to

anomalous nuclear reactions in the condensed matter state [12, 55]. Based on these exper-

imental results, Peter Hagelstein has proposed a "Unified Phonon-Coupled SU(N)"model

which seems to explain almost all the anomalies systematically [38]. Hagelstein, using

simple scalar nuclear Hamiltonians, has made a preliminary analysis of his model. The

initial results have been very promising. Recognizing the fact that the nuclear Hamilto-

nian is far from being a scalar potential, the next logical step is to use a realistic nuclear

Hamiltonian with all its angular, spin and isospin' terms. However, phonon operators will

modify the spatial part of the wavefunction. Thus the natural way to couple the lattice and

nuclear degrees of freedom is to try and "scalarize" each spatial channel. In this thesis,

group theory is used to derive the coupled-channel equations for the Hamada-Johnston po-

tential [40]. These equations can now be used to calculate the first realistic consequences

of phonon-coupled nuclear reaction theory.

We recognize that the subject of anomalous nuclear reactions in metal deuterides is ex-

tremely controversial and many in the scientific community consider it akin to alchemy.

However, we feel that this question of "cold fusion" is far too important and the experi-

mental claims (while lacking complete reproducibility) are far too numerous and persistent

l sospin is formally completely analogous to spin. We will briefly discuss it in section 4.2. For now it can
be considered a "nuclear degree of freedom."
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to be ignored completely. This thesis can be regarded as a step to help resolve this contro-

versy.

In the remainder of this chapter, we give some background on the phonon-coupled unified

model, which is the motivation for undertaking the present work. We then explain how our

research fits within this approach to condensed matter nuclear reactions, provide a brief

outline of our method and state the reasons for our choice of the nuclear Hamiltonian. We

end the chapter with a brief summary of the important features of the thesis.

1.1 Unified Phonon-Coupled SU(N) Model

The commonly held view in the physics community is that fusion reactions in the con-

densed matter state can very well be described by vacuum nuclear physics. Their basic

argument is that the nuclear interaction takes place far too quickly for the reaction to in-

fluence neighboring atoms2 . Similarly, while nuclear energies are on the order of MeV's,

the maximum phonon energy is only 50meV; hence exchanging a few phonons cannot

modify a nuclear reaction. However, as stated above, over the past fifteen years, there have

been persistent experimental claims of anomalies by respected laboratories and serious

researchers [39]. Based on such evidence, it has been conjectured [38] in the Phonon-

Coupled Unified Model that vacuum nuclear physics cannot adequately explain all nuclear

reactions in a lattice.

The fundamental theoretical issue is the coupling of phonons to the nuclei. The first thing

to realize is that the nuclear force (even for that matter the Coulombic interaction) can be

considered a highly non-linear phonon operator. As such, when we try to couple the lattice

to nuclear degrees of freedom, perturbation theory on vacuum nuclear physics is bound

to fail. Thus, we need a completely new way of approaching condensed matter nuclear

physics.

In the Unified Model, the condensed matter environment is formally included through the

2Atoms are separated on the angstrom scale where as the nuclear force has a range of 10 fermis and
nuclear reactions take place on the order of 10-21 seconds.
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Lattice Resonating Group Method [38]. This is a generalization of the Resonating Group

Method [101] of vacuum nuclear physics. In this model the basic ansatz is to write out a

trial variational wavefunction I' in the form

i= (DjFj

where the Oj keep track of the nuclear structure of the reactants and the channel separation

factors, Fj, describe the relative coordinates of the reactants. The optimization of channel

separation factors leads to

EFj = (jlHIDj)F + Z(ljIH- ElkFk)
kij

In the generalization to include phonons, Hagelstein starts by a different trial wavefunction

Tt = Z ijj

where the 4>j keep track of the nuclear structure of the reactants as before, but the TI are the

lattice channel separation factors which describe the relative coordinates of the reactants as

well as the particles in the lattice. The optimization of channel separation factors leads to

E'Pj = (jIHI(Ij)~j + (jIH - Elok'k)
k*j

Now, at least, the phonons have formally been accounted for. Hagelstein's conjecture is

that [38]:

All the anomalies in metal deuterides can be accounted for theoretically within

this formulation that generalizes the vacuum models to include the local solid

state environment. No other new basic physics is required beyond what is

needed in textbooks, at least in principle.
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1.2 The Motivation for this Research

Hagelstein has assumed simple scalar nuclear Hamiltonians in his Lattice Resonating Group

Method and analyzed the coupled-channel equations. As discussed above, a more realistic

nuclear potential, such as the Hamada-Johnston (H-J), should be used to make this anal-

ysis more rigorous3 . In the Unified Model, the nuclear interaction takes place between

two, three or four nucleons4 . Over the past decades, the few-nucleon problem has received

a great deal of attention from the nuclear physics community and there are a number of

techniques available to solve the few-body nuclear problem [34, 57]. However, within

the framework of the Unified Model the most natural way to include the nuclear potential

was through the coupled-channel equations for the H-J potential (with each channel being

specified by the spatial symmetry, spin and isospin). This could be achieved for each chan-

nel by algebraically removing the spin and isospin parts of the nuclear potential. While

there were some useful results for the three-body case [4, 18, 45], for the four-body case

we found no comparable work which explicitly dealt with the specification of the spatial

channels [11, 53] . Even the three-body work was not clear, comprehensive or systematic.

The main goal of this thesis is to derive the coupled-channel three and four-body equations

for the H-J interaction so that the Unified Model could be used to make realistic predictions.

Hence, this thesis should be viewed as a step towards generating the tools necessary to

calculate the effects of the lattice on nuclear reactions.

1.3 Outline of Our Method

In order to derive the coupled-channel equations, we first need to construct the nuclear

wavefunctions. These can most naturally be built by using the following facts

* Nucleons are fermions and hence they obey the Generalized Pauli Exclusion Princi-

ple of being antisymmetric under the exchange of space, spin and isospin.

3 We will discuss the reason for choosing H-J in section 1.4.
4A nucleon is a proton or a neutron.
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* Schur-Weyl duality connects angular momenta (space, spin or isospin) and symmetry

under permutations.

Generalized Clebsch-Gordan coefficients can then be used to construct appropriate wave-

functions for the various channels.

After construction of the wavefunctions, we need to evaluate the matrix elements so that we

can derive the coupled-channel equations. Methods for calculating matrix elements of one-

body and two-body operators with multi-particle wavefunctions were developed due to the

pioneering work of Racah [70, 71, 72, 73]. These techniques were extended for the nuclear

problem by Jahn [25, 48, 49] (for LS coupling) and by Flowers [23, 29] (for j-j coupling).

It should be noted that all these calculations were done for the nuclear shell model [17].

In its simplest manifestation, the shell model is an independent particle approximation.

Associated with it is the picture of nucleons having well-defined orbitals in some potential

well.

However, in the applications we have in mind, we will mostly be dealing with variational

correlated spatial wavefunctions. Historically, for correlated functions, the Hamiltonians

were confined to purely scalar radial interactions [10]. Later on, tensor forces were intro-

duced [7]. Around the same time Laskar [60], assuming symmetric spatial wavefunctions,

worked out the few-nucleon case with central forces. However, we did not find any refer-

ence in the literature which systematically deals with the H-J potential. Thus, our approach

to matrix element calculation, should be considered a generalization of the methods initi-

ated by Racah to variational correlated spatial wavefunctions.

This calculation then leads us to the scalar few-body multi-channel equations for the H-J

potential, which could be solved numerically. It should be mentioned here that, with trivial

modifications, this analysis could also be applied to some of the more modem nuclear

potentials [58] as well.

As a corollary, this thesis also opens up the field of low/medium energy nuclear physics

to non-experts. This happens because now the few-body nuclear problem is reduced to

a concrete set of coupled partial differential equations. Hence, with sufficient numerical
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expertise, these equations can be solved for any few-body nuclear problem.

SCALAR HAMILTONIANS

H(S=O,T=O)

Ii
RESIDUAL
INTERACTION

H(S=1,T=O)

H(S=O,T=1)

RESIDUAL

INTERACTION

H(S=1,T=1)

1.4 The Nuclear Hamiltonian

Despite the fact that the nuclear interaction is not well-understood, starting in the 1930's,

physicists began to model various nuclear phenomena. The natural place to start was with
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the simplest scalar nuclear potential e.g.

-2m--VJ + E Ve(lj->)
J 2mj j,k

Unfortunately such a potential does not even bind deuterium, triton and helium with ap-

proximately the right nuclear sizes [37].

There were also early signs [91] of the so-called "exchange forces" e.g. during a proton-

neutron collision, it seems as if a proton is exchanging its charge, instead of its momentum,

with a neutron. Given such experimental evidence and the hopelessness of the simple

nuclear Hamiltonians, physicists quickly moved onto more complicated scalar potentials;

a typical example [76] (ignoring the Coulombic part) was

H = -2V (g )P +gPijQi}J(rij)

i i<j

where the Pij and Qij are operators which exchange the space and spin variables, respec-

tively. While such potentials began to at least bind all the light nuclei with approximately

the right sizes, the deviation from experimental values was still significant. Such scalar

models were also unable to account for the quadrupole moment of the deuteron [77]. Hence

it was realized that to make sensible nuclear models, vector and tensor terms had to be

added to the Hamiltonian.

In the 1950's., a major experimental program was undertaken to understand nucleon-nucleon

interaction and build empirical potentials fitted to scattering and bound-state deuteron data.

This eventually resulted in a new class of realistic potentials in the early 1960's [40, 61, 78].

These potentials were significantly more complicated as compared to the earlier models

and contained all sorts of scalar, vector and tensor terms. A typical example is the H-J [40]

potential.

The H-J potential between nucleon 1 and nucleon 2 can be written in the form

V = VC + VTS12 + VLSL.S + VLLL12
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where

VC = ?1.72 &l.2 Yc(rl2)

VT = Tl.'2 yT(rl2)

S12-3 (&(& - -(
VLS = YLS(r12)

VLL = YLL(rl2)

= r&l.L2 - (&l.L)(.L)- (&2.)(-rL)
L =

12 1
S= =L +2

The y's are defined to be

yc(x) = 0.083Y(x){1 + acY(x) + bcY2(x)}
3

YT(X) = 0.083Z(x){1 + aTY(x) + bTY 2(x)}3

YLs(X) = PIGLsY2(x){1 + bLsY(x)}

YLL(X) = GLLX 2 Z(x){ 1 + aLLY(x) + bLLY 2 (x)

where the a stands for singlet-odd, singlet-even, triplet-odd or triplet-even (singlet/triplet

stands for the spin wavefunction and even/odd for the parity of the spatial wavefunction)

andp is the pion mass.

As explained above, our interest in nuclear phenomena is a by-product of our desire to bet-

ter understand phonon-coupled nuclear reactions. To do this, we need realistic solutions of

the few-body nuclear Hamiltonian. As we have discussed, the pre-1960 nuclear models are

too primitive to give us reliable answers. H-J is one of the first realistic nuclear potentials.

Since the H-J, many new potentials have been introduced e.g. the Paris[58], Bonn [44],

Urbana[59] and Argonne[102]. However, decades of experience with H-J has shown that it
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gives reasonable results for the few-nucleon problem [45, 51, 99] and it is still being used

by the nuclear physics community [1, 67, 69]. Hence we can conclude that using the H-J

potential is a reasonable starting point for understanding nuclear reactions in a lattice. If the

calculations of the unified model with H-J point to some new nuclear phenomenon, then it

would be worthwhile to use one of the modem day potentials to refine the calculations.

1.5 Organization of the Thesis

Chapter 2 and 3 give a brief overview of the necessary portions of group representation

theory. The mathematically inclined reader may also want to read Appendix A, which

discusses the role of symmetric polynomials.

Chapter 4 explains the method of construction of the wavefunctions. The results of the

calculation for the three-body and four-body cases are given in chapters 5 and 6. The

results of chapter 6 are new. We have not seen a systematic enumeration of the completely

antisymmetric four-body nuclear wavefunctions in the literature.

Beginning with chapter 7, the focus shifts to calculation of the matrix elements of the H-J

potential. We generalize Racah's method to correlated, variational spatial wavefunctions.

In this process we find two facts which are of some fundamental importance:

* Racah's method for the shell-model works by choosing the last two particles to have

special symmetry properties. We find that for correlated functions, it is best to expand

the wavefunction with the first two particles having distinguished symmetry.

* Clebsch-Gordan coefficients of SU(2) can be naturally used to construct the spin or

isospin Yamanouchi basis of the group of permutations.

In chapters 8 and 9, we give the results for the 3-body and 4-body matrix elements. Then in

chapter 10, we bring together the results of chapters 8 and 9 to derive the coupled-channel

equations for the 2, 3 and 4-body cases. These coupled-channel equations have a clear and

simple channel-specification. We have not seen such a result in the literature i.e. complete

separation of the spatial part with explicit symmetry requirements.
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Chapter 11 begins to explore the possibility of phonon-coupled nuclear reactions. In this

chapter, we look at threshold photodisintegration of the deuteron in the presence of a highly

excited phonon mode. Since we are considering low energy photons, the precise form of

the nuclear interaction is insignificant [65, 82, 86] and the use of multi-channel equations is

not required. However, had we been interested in nuclear reactions at higher energies, we

would then have to use the full H-J potential to do the computations. Hence, this chapter

establishes the basic framework for phonon-coupled nuclear reactions. For higher energies

or other nuclear reactions, we would have to use the wavefunctions obtained by solving the

coupled-channel H-J equations.

Chapter 12 deals with a somewhat different but related problem. It has been known that co-

herence between atoms that radiatively decay can lead to an enhancement in the decay rate.

This is called Dicke superradiance [21]. A similar kind of enhancement has been proposed

by Hagelstein to be involved in his cold fusion model. The question of whether Dicke co-

herence can be obtained in the case of models more complicated than two-level systems

has become of interest. The chapter is an attempt to simply understand such effects using

Schur-Weyl duality and Lie algebra theory. In this respect it is more abstract as compared

to the rest of the thesis. However the conclusions are very simple and straightforward, and

can be used by anybody familiar with angular momentum algebra.

Chapter 13 summarizes the contributions of the thesis and discusses possible future re-

search.
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Chapter 2

Theory Of Group Representations

In this chapter we build up some of the tools necessary for the construction of the nuclear

wavefunctions. One of the most natural ways to construct wavefunctions is to use group

representation theory. While such an approach leads to a very elegant and simple construc-

tion, it requires the use of somewhat formidable machinery from mathematics [24, 31, 41].

The purpose of this chapter is to make the use of representation theory accessible to the

reader who is familiar with angular momentum algebra. Thus, this chapter is an attempt

to build a "representation theory to quantum mechanics dictionary". We will repeatedly

appeal to facts from angular momentum algebra to "prove" general results for arbitrary

groups . For the construction of the wavefunctions, we need to understand the represen-

tations of the group of permutations, S(n), and their interaction with the representations of

SU(2). These groups are defined to be

S(n) = {Group of permutations of n objects)

SU(2) = {Group of 2 x 2 unitary matrices of determinant 1}

This connection will be explored in chapter 3. However, for now, we focus on general

representation theory. The two most important concepts in this chapter are:

'By arbitrary, we mean either a finite or a compact Lie group.
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1. The generalization of Clebsch-Gordan(CG) coefficients to arbitrary groups.

2. Construction of projection operators.

Both of these will be critical in the construction of the wavefunctions.

2.1 Two Applications of Representation Theory

Group representation theory is tremendously useful to physicists. Here we will only con-

sider two applications. The first one, spherical harmonics, is familiar to us from quantum

mechanics. However, in this thesis, we will mainly be interested in the second application,

namely in the construction of the wavefunctions.

2.1.1 Breaking up the Hilbert space

Consider a closed physical system. We expect such a system to be invariant under the group

of rotations, SO(3), where

SO(3) = {Group of 3 x 3 real orthogonal matrices of determinant 11

This means that given an eigenstate of our system, all the rotated states should have the

same energy eigenvalue. Hence if 1.n(r) is an eigenfunction of the Hamiltonian with energy

E,,, then all the functions 2 , p(R)nI(r), where p(R) is an arbitrary rotation operator, have

energy E,,. Now if we consider the vector space spanned by all these functions, this vector

space (by construction) is invariant under the action of the operators p(R). All the wave-

functions in this subspace can be characterized by an eigenvalue, 1, of angular momentum.

In this way we naturally get a representation of SO(3) 3 .

2A1l the functions may not be linearly independent.
3We have tacitly assumed that we are dealing with bosons. If we were dealing with fermions, the theory

would be a bit more complicated. In quantum mechanics we deal with rays and not vectors. This means
that representations are defined only up to a phase. So what we get in this case are not representations of
SO(3), but projective representations, which are essentially a way of saying that we do not care about phases.
Now it turns out that projective representations of groups like SO(3) are just ordinary representations of the
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Hence, we have managed to break up our Hilbert space into smaller noninteracting pieces.

This means that we can write a general wavefunction as4

/(G, , r) = Z c1 ,mY') I f1 (r) (2.1)
1=0 =-1l

This way of decomposing the wavefunction is useful because under rotations, the Ym( ) only

transform into other Yl's 5. Even if the Hamiltonian is not invariant under rotations, cal-

culation of matrix elements of irreducible tensor operators becomes much easier due to the

Wigner-Eckart theorem [81]. It can be shown that the above results i.e. labeling of the

eigenfunctions and tensor methods can be generalized to arbitrary groups.

2.1.2 Construction of the wavefunctions

Representation theory is also very helpful in building up wavefunctions. The construction

of the two-body electronic wavefunction is a textbook example in quantum mechanics. It is

based on the Pauli Exclusion Principle. Provided spin is a good quantum number, the total

wavefunction is either a product of space-symmetric and spin-antisymmetric or a product

of space-antisymmetric and spin-symmetric eigenfunctions where

space symmetric = 2 [f(il, 2) + f( 2 , )1

space antisymmetric = 2 [f(rl, r2) - f( 2, l)]

universal covering groups [2]. For SO(3) the universal covering group is SU(2). So we should actually
be considering the representations of SU(2). Please note that group theory and quantum mechanics only
tell us the group whose representations we should consider. The realization of group representations is a
physical input (derived from experiment) into the theory i.e. group theory does not imply that any of the
representations are actually realized in nature.

4We have not discussed how we get the label m. Since SO(2) c SO(3), any irreducible representation of
SO(3) is also a (in general reducible) representation of SO(2). SO(2) representations are labeled by m. This is
a standard way of uniquely labeling vectors in our Hilbert space. We will see examples of such a procedure
in the next chapter when we talk about the Yamanouchi labels for the symmetric group.

5 0r in the language that we will learn, for any I the Ym(l) form a representation of the rotation group.
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spin symmetric .1-4-

11·

spin antisymmetric

However, when we get to the three-electron case, our intuition does not work as well. Of

course, we still have the obvious case i.e. the product of space-antisymmetric with spin-

symmetric where (now denoting 1,2,3 to represent ?,, 2, 3 and a(i) for t (i) and ,8(i) for

I (i))6

space antisymmetric =

spin symmetric =

1
6 [f(123) + f(312) + f(231) - f(132)
6

- f(213) - f(321)]

a(1)a(2)a(3)

± {a(1)a(2),(3)

+8(1)a(2)a(3)}

{a(1),8(2),8(3)

+,3(1)f8(2)a(3)}

+ a(1)18(2)a(3)

+ 18(1)a(2)8(3)

1(1)1(2),8(3)

We do not have the product of space-symmetric with spin-antisymmetric because there

is no completely antisymmetric three-particle spin-wavefunction (since we only have two

possible z-directed spins). But do these wavefunctions exhaust the Hilbert space?

The answer to this question lies in the observation that there seems to be a link between

6This change in notation is adopted for convenience in later chapters.
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the symmetry of the spin wavefunction under permutations of particles and the total spin

e.g. for both the two and the three-particle case, symmetric spin wavefunctions are associ-

ated with the maximum possible total spin. In fact our observation is a consequence of a

deep and beautiful relation called the Schur-Weyl duality. This duality exists between the

representations of the symmetric and unitary groups. In our case, this duality implies that

there exist two copies of a "mixed symmetry" representation of the symmetric group7. CG

coefficients of the symmetric group then allow us to construct the few-body wavefunctions.

However, our interest is in the nuclear and not in the few-electron case. For nucleons the

Generalized Pauli Exclusion Principle states that the total wavefunction of a nucleon, made

up of spatial, spin and isospin parts, must be antisymmetric under the exchange of any two

particles. Once the Schur-Weyl duality and CG techniques are understood, the extension to

the nuclear case is completely obvious. The results of this calculation are given in chapters

4 and 5.

Before we can outline some important ideas in representation theory, we need to understand

what a group is.

2.2 Basic Group Theory

Let us consider three different groups

* The integers under addition.

* The non-zero real numbers under multiplication.

* 3 x 3 real orthogonal matrices of determinant 1, under multiplication. This is usually

denoted by SO(3).

In the first example, if we add two integers, we get another integer. Also given an integer a,

if we add -a to it, we get the integer 0. 0 is the unique integer such that a + O = 0 + a = a.

7These will turn out to be nothing more than the familiar fact that when we add three spin ½ particles, we
get two orthogonal total S = states.

33



-a is called the inverse of a and 0 the identity element. The second example has the same

properties as the first one i.e. given two real numbers, we can multiply them to get another

real number. Given a real number b if we multiply it by 1/b we get 1. 1 is the unique real

number such that b. 1 = l.b = b.

Formally, we get the same structure in the third case, with matrix multiplication replacing

multiplication of real numbers, matrix inversion taking the place of reciprocals and the

identity matrix replacing 1. However, we know that such matrices represent rotations in

ordinary three-dimensional space8. Irrespective of the physical content, there are obvious

similarities in the structure of all of these objects.

Hence we define a group to be a set G = {a, b, c... with an associative law of composition,

denoted by a o b, which satisfies the following axioms.

1. There exists a unique element e E G such that for any element a E G, a o e = a and

e o a = a. The element e is called the identity.

2. For every element a E G there exists a unique b E G such that a o b = e and b o a = e.

The element b is called the inverse of a.

So, depending on the group, the o here can stand for "integer addition", "real number

multiplication", "matrix multiplication", "composition of permutations", "composition of

rotations" etc.

The simplest example of a group is G = {e}. Clearly it satisfies all the axioms of a group.

Next, we can consider the group G of order9 2 i.e. G = {e, a) with a o a = e. As the order of

the group increases, the number of possible groups quickly multiplies. However, we move

on to the rotation group, which is the main example of this chapter. This will naturally lead

us to representation theory.

8Please note that all these groups have an infinite number elements in them. We will mostly be dealing
with finite groups or compact Lie groups (like SO(3) or SU(2)). Such Lie groups are very well understood
in the mathematics literature. We will adopt the typical physicists view that going from the discrete to the
continuum just involves changing "a sum to an integral".

9Order of a group G is the number of elements in the set G and is denoted by IGI.
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2.2.1 The rotation group

Let us consider

G = {Group of all rotations in three dimensions)

This group acts to rotate our apparatus in physical 3-D space. Any R E G is going to

correspond to a rotation operator p(R) on the Hilbert space (i.e. the physically rotated

apparatus will correspond to a rotated ket). Please note that we are dealing with two distinct

groups i.e. the group of rotations in real physical space, and its corresponding group on the

Hilbert space. These two groups will have distinct laws of composition. In physical space

we can consider the effect on our apparatus of one rotation R1 followed by another rotation

R2 to get a rotation R2 o R1. We would like the rotation operators, p(Ri), to obey

P(R2 o R) = p(R2 ) p(R) (2.2)

where, on the L.H.S. we are composing group elements in G and on the R.H.S. we are

composing the operators p(R i) on the Hilbert Space. In fact Equation 2.2 captures the

essence of what it means to be a representation.

Equation 2.2 is also an example of something called a homomorphism. A homomorphism

between two groups G and H, with group composition laws o and respectively, is defined

to be a map p: G - H such that p(a o b) = p(a) p(b).

Another simple example of a homomorphism is given by the exponential map, where G is

the real numbers under addition, and H is the positive real numbers under multiplication.

Then the property that exponential map is group homomorphism reads

ea+b = eaeb

An isomorphism is a homomorphism which is one-to-one and onto. We will frequently

write a o b as just ab.
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2.3 Basic Definitions in Representation Theory

We intuitively already know what a representation is, i.e. Y,(t) form a representation of

SO(3). However, in order to give a precise definition, let us revisit the example in section

2.2.1 of the rotation group. Recall that we required our operators to satisfy

p(R1 o R2) = p(R 1) p(R 2) (2.3)

Abstractly, this is a homomorphism from the group G to the group of invertible linear

operators on the Hilbert space 10 i.e. a map

p: G - GL(V) (2.4)

which maps a rotation R to the linear operator p(R) 1. Since p is a homomorphism, Equa-

tion 2.3 is satisfied.

Hence a representation of a group G on a finite-dimensional complex vector space V is

defined to be a homomorphismp : G - GL(V). The dimension of V is called the dimension

of the representation. It is also common to blur the distinction between representations and

vector spaces.

Two representations (Pi, V) i = 1, 2 of G are considered equivalent if there is a linear iso-

morphism T such that for every g E G, p2(g) o T = T o pl(g). A representation (p, V)

is unitary if there is an inner product (-, -) on V s.t. for every g E G and u, v E V,

(p(g)v, p(g)u) = (u, v). It is a fact that every representation is equivalent to a unitary repre-

sentation.

'°Let V be the Hilbert space. Then by GL(V) we mean the automorphisms of V. If V = Cn, then GL(V) is
nothing more than the group of complex invertible n x n matrices.

'lp(R) represents R on the Hilbert space.
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2.3.1 Matrix representations

From linear algebra we know that given a linear operator, p(a), on a n-dimensional complex

(or real) vector space V, by choosing a basis of V, this problem can be reduced to an n x n

matrix acting on C'. The recipe is that if {v, ..., vn is a basis of V and pavi = Ej= rjivj,

then ji is the matrix of Pa in the basis {v, v2..., v,,}. So after choosing a basis, the entire

theory of finite representations reduces to dealing with matrices, e.g. equivalent represen-

tations are nothing more than matrices equivalent under a similarity transformation.

2.3.2 Spherical harmonics

(0)
Consider the simplest possible case of I = 0. Then V is the space spanned by Yo . This is

a one dimensional complex vector space. There is a homomorphism

p : G - GL(V) (2.5)

which maps R to p(R). But as it stands, the equation does not tell us much; we need to

specify more explicitly the linear operator p(R), i.e. how does it act on the vector space V?

We define it to be

p(R): V V

p(R)Y(O)(n) = Yo (n) (2.6)

The linear operator p(R) does not seem to be doing much. In fact this representation is

called the trivial representation, which means that all the rotation operators, p(R), act as the

identity on Yo) 12

Next, we can consider the vector space V, spanned by Y, l) for fixed 1. Again we want to

12It is obvious that the trivial representation is a representation since it satisfies the homomorphism prop-
erty.
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explicitly know the action of the linear operator p'(R) on V. This is defined by

p'(R): V V

p'(R)Y(t)(n) = Y(l)(R-ln)
(1) , (1)

= Ym' (n)Dm,(R) (2.7)
m'

(1)
where the D,,im(R) are some matrix coefficients. The reader is presumed to be familiar with

this equation from quantum mechanics. Now this is to be understood as the action of a

linear operator on a vector space. The reader can verify'3 that p'(R,)p'(R 2) = p'(R1R2) does

indeed hold.

2.3.3 Irreducible representations

When considering representations of SO(3) for a rotationally invariant Hamiltonian, it is

almost frivolous to consider the Y(l) for different 1. The reason being that the various do

not get transformed into each other under rotations. However for a given 1, consider the

vector space V, spanned by all the Y ( ) for -l < m < 1. We need to include all the m's since

arbitrary rotations do inevitably mix the various spherical harmonics. In this sense V is the

smallest vector space that can form a representation of the rotation group: it is irreducible.

A representation p: G -* GL(V) is called irreducible if V has no proper invariant subspace

W 14. The example with spherical harmonics correctly suggests that it should always be

possible to break up a space into a direct sum of irreducible ones.

Hence, if we take for G the group SO(3) and for V the invariant vector space generated by

the rotation operators, p(R), applied to ,(l), then the homomorphism p : R - p(R) is an

irreducible 21 + dimensional representation of the group of rotations'5. Now consider the

group SO(2) c SO(3), where SO(2) = { Group of 2 x 2 orthogonal matrices of determinant

13Using the well-known properties of the Dml(R).
14A vector subspace W c V is a proper invariant subspace if p(R)W c W for every element p(R) E G

where G is a group of operators on the Hilbert Space (e.g. rotations), and W * V and W * 0.
'SFrequently the representations are labeled by the vector space V.
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1 }. We can consider S0(2) to be rotations around the z-axis. While V is irreducible with

respect to S0(3), there is no reason for it to be irreducible with respect to S0(2). In fact we

know that it is reducible. It is a well-known fact that representations of S0(2) are labeled

by m [24]. So for each m, Y,() forms a 1-dimensional irreducible representation of S0(2)

i.e. as a representation of S0(2)

V = Y ED Yl-l@ D...- + () Y-)

In this way we get unique labels for all our basis vectors 6 .

In terms of matrices, consider the set of matrices of all the operators of our group. If, by

a change of basis, they cannot all be simultaneously block diagonalized, the representation

is irreducible.

With this section we wrap up our basic introduction to representation theory. Now we

come to an extremely important part of the chapter: the generalization of the concept of

CG coefficients to an arbitrary group.

2.4 Clebsch-Gordan Theory

The canonical example in this section is angular momentum algebra from quantum me-

chanics. The purpose of this section is to look at this familiar example from a somewhat

different perspective, so that we can easily generalize the concepts to other groups. We al-

ready know that the concepts of angular momentum addition and CG coefficients are very

useful in quantum mechanics. We will similarly find that the generalization of these con-

cepts to arbitrary groups, especially S(n), is essential to our construction of the few-body

wavefunctions.

16Admittedly the reasoning is a bit circular since we started with Ym()s. We could have started with polyno-
mials and derived the Cartesian expansion of the Yl)s [97].
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2.4.1 Direct product of representations

We first have to understand the meaning of direct products of vector spaces 7. Given a

spinless particle of angular momentum 11, the various Ill, m l ) form a representation of the

rotation group. Similarly for a spinless particle of angular momentum 12, the 112, m2) form

another representation of the rotation group. Then a direct product of the two representa-

tions is Il, 12, m l , m2) = Ill, mI) 0 112, m2). We can generalize this to arbitrary vector spaces.

Suppose we have two vector spaces V and W. If V has basis {vl, ..., vn} and W has basis

{wl, ... , w, } then V ® W is nm dimensional and has basis {vi wj}. If v = C aiv i and

w = BZ3jwj then

v w = E aj v i wj (2.8)
i,j

From the above equation it is easy to verify that the product is bilinear (i.e. linear in each

variable) and distributive (relations like v ® (w + x) = v 0 w + v 0 x hold).

We know from quantum mechanics that given II, ml) X Is, ms) = II, s, ml, m) the rotation

operators p(R) can act on the tensor product space in the obvious way i.e.

[p(/) ® p(s)] (R)ll, ml) ® Is, ms) = p(l)(R)ll, ml) ® p(s)(R)Is, ms) (2.9)

The different superscripts "1" and "s" on p(R) are simply meant to distinguish that R has two

different representations on the two different vector spaces, spanned respectively by spher-

ical harmonics and spin eigenfunctions. This construction is completely general. Suppose

we are given two representations p and co i.e.

p: G - GL(V)

: G - GL(W) (2.10)

Then we can define the tensor product or direct product of representations 18. It is denoted
17 These are also known in the mathematics literature as tensor products.
'8 Please note that although we have given a basis dependent definition of the tensor product, it is in fact
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by p ® cr where

p c: G GL(V ® W) (2.11)

We still have to concretely define the action of the linear operator [p®o-](g) (for any g E G),

on the vector space V ® W. This is done by using the representations p and o- as

[p ® o-](g)v ® w = p(g)v 0 o(g)w (2.12)

Sometimes we will not use the words "vector space" or "representation" before "tensor

product". This convention is quite standard in the literature and sometimes even 0 is not

written.

In terms of matrices, let C be the matrix representation of p(g) and D be the matrix rep-

resentation of o-(g) w.r.t. to the above bases. Then the matrix of (p ® o-)(g) w.r.t vi 0 wj

is

[p o0] (g)vi ® wj = E CliDkjvl ® W k (2.13)
kl

Or in other words (Ip 0 cr] (g))kij = CliDkj. In terms of matrices, if C is the matrix of p(a)

and D is the matrix of p'(a) then (C x D)ijk l = CikDjl, where each row and column has a

double index.

2.4.2 Angular momentum addition

Consider a two-electron spinless atom. There is no reason for individual angular momenta

to be conserved. However we know that due to rotational invariance, the total angular mo-

mentum must be conserved. Hence we need to add the individual orbital angular momenta

to get a total angular momentum. The basic idea is that we can add two momenta, L and

L2, to give a new angular momentum L i.e.

II112; im) = E cl;,ml;1 2,m 2 lllml 2 m2 ) (2.14)
mintrinsically defined.,m2

intrinsically defined.
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where the dml,;,m 2 are some coefficients. This equation should be viewed as a change of

basis in the space of W = V ®() ® V(l2), where V(1) is spanned by Ill, m l ) and V(2) is spanned

by 112, m2). W has dimension (21, + 1)(212 + 1). We take this space and break it up into

subspaces labeled by total angular momentum and total z-directed angular momentum m.

Consider two lI = 12 = 1 electrons. The angular momentum eigenkets form a 3 x 3 =

9-dimensional space. This space can be broken up into a 5-dimensional subspace labeled

by I = 2, a 3-dimensional subspace labeled by = 1 and a 1-dimensional subspace labeled

by I = 0. If we choose a basis of each of these subspaces, then the rotation operator will

itself be block-diagonalized. This is an obvious consequence of the fact that the various

(total) angular momenta do not mix under a rotation i.e. thinking of rotation operators as

matrices, we are choosing a basis such that D(i) 0 D(12) is block-diagonalized.

D(2)

D(l)

D(0)

In our new terminology, we are decomposing the representation on V(®) ® V(z2) into ir-

reducible representations of the rotation group. So we can write the same thing in more

abstract (basis independent) notation as

D(s® ) ®9 D(12) = D(
l +1

2) e D(1 l +12-1) @ . . .D ( 1l - 121) (2.15)

The process of decomposing a tensor product of representations into irreducible ones and

the expansion of the bases of the new irreducible representations in terms of the old basis

elements is completely general. The advantage of a basis-independent approach is that

a basis need not be chosen until we start doing explicit calculations. Sometimes basis-

dependent arguments can mystify simple results. So it is useful to spend some time trying

to understand the more abstract version. But we first need to explain the symbol @ for

vector spaces and for representations.
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2.4.3 Direct sum of representations

Before we define what we mean by direct sum of representations, we should define what a

direct sum of vector spaces is. The canonical example to bear in mind is how we can take

R n (n-dimensional real space) and break it up into [Rm and R n- . We can say that

[Rn = Rm Rn -m

Mathematically speaking if W and W2 are vector subspaces of V, then V is called the direct

sum of W. and W2 if every vector v E V can be written uniquely as w, + w2 where wi Wi

andW l n W2 = O. Then V = W W2.

Given two representations (pi, Vi) i = 1, 2 of G, we can form a new representation of the

group, called the direct sum of the two representations on the vector space VI D V2. This is

denoted by p1 E p 2 and is defined by

(1 E p2 )(g)(V1 $ v2 ) = pl(g)VIl ep 2(g)V 2 Vi E Vi (2.16)

We know that any given representation can be broken up into a finite number of irreducible

representations 9. Hence we have the important statement that every representation is

equivalent to a direct sum of irreducible representations i.e. (with the usual abuse of nota-

tion by blurring the distinction between representations and vector spaces)

V = W W2 ... Wn (2.17)

Choosing a basis of each of the Wi, and putting them together to get a basis of V, shows

that p(g), for all g E G, can be simultaneously block diagonalized. Hence we come to the

conclusion that in order to understand representations of any group, we only need to learn

about its irreducible representations.

19If (p, V) is a representation, and W1 is an invariant subspace, the orthogonal complement is also an
invariant subspace. Now use induction on dimension of V.
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2.4.4 Clebsch-Gordan series

20As we know from Equation 2.15, the tensor product of two irreducible representations

p(a) and p(O) is in general reducible.

p(a) ® p() = EZ np() (2.18)
=l1

where the sum is over all the irreducible representations p(Y) of the group G (total ' in num-

ber), and n, is the multiplicity of the irreducible representation (y) in the tensor product.

This is called the Clebsch-Gordan series. So Equation 2.15 is the Clebsch-Gordan series

of D® ) ® D(2) (where each representation has multiplicity n, = 1).

2.4.5 Clebsch-Gordan coefficients

Continuing the example of angular momentum addition, we know that

11112; m) = Ciml;12 ,m2 l, mI) ® 1l2, m2 ) (2.19)
ml,m2

where the CI;ml; 2,m2 are called the Clebsch-Gordan coefficients. These are simply the coef-

ficients of the matrix of the change of basis from Ilm ll 2m2) to 11112; Im). This again applies

to all groups in general.

(a)
Consider two vector representations (p("), V) and (p(), W). V has basis {v( ... , v)} and W

(13) (a) (1)
has basis {w, ..., w}. Then V W is nm dimensional and has {v ® Wj } as a basis.

However by Equation 2.18 we know that there exists another basis { }, 1 < Y < ,

(Y),t
1 < t < n, for V W, such that for fixed y and t, the vectors {uk }, 1 < k < d form a

basis for an irreducible representation p(y), where d, is the dimension of y. Hence it must

2 0The following sections are essentially taken from [24].
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(be possible to choose linear combinations of basis elements ) such thatbe possible to choose linear combinations of basis elements vi wJ such that

(y),t = C(yijk)v(a) ()2.20)
Uk at, jk)vi ® wj (2.20)

ij

which transform irreducibly according to the representation y (provided n., * 0). The C's

are called the Clebsch-Gordan coefficients. Hence the CG coefficients should be considered

as forming a change of basis matrix. The new basis has the property that it brings out the

underlying group structure most explicitly. While Equation 2.18 makes it obvious that

CG coefficients exist, we know from quantum mechanics, the explicit calculation of these

coefficients is a hard and laborious job. This is true for an arbitrary group as well.

2.4.6 Wigner-Eckart theorem

Let (p, V) be a representation of a group G. If S is any other linear operator on V then

p(ga)'S = S' = p(ga)Sp(g 1)

is a representation of G on End(V), where End(V) is the vector space of all linear operators

on V (e.g. if V = R", then End(V) is just the vector space of n x n matrices). If we can find

operators such that

d.

p(ga)'S') = p(g)Si(a)p(g; 1) = pJi (ga)SJ (2.21)
j=1

where d, is the dimension of the irreducible representation (a) of G, then clearly the oper-
(a)

ators Si form an irreducible representation equivalent to (a).

Now for functions like

(a) ( 0)
jii = si ~j
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where (a) and () label irreducible representations of G, it is easy to see that ij transforms

according to the direct product representation (a) (). Using Equation 2.18 or Equation

2.20, we can see that there exists a C(a/py't, ijk') such that

ij E C(aoy't, ijk') (' ) (2.22)
,t,k'

Hence

(oPk5' S PJ(/ )) = E C(aflyt, ijk)(pk(y), @k ~)) (2.23)
t

This equation has far reaching consequences.

1. If (y) does not appear in Clebsch-Gordan series of (a) (8), the matrix element in

Equation 2.23 vanishes.

2. If the group is simply reducible (i.e. there is no summation over t, which means that

in the Equation 2.18 of Clebsch-Gordan series n = 1 for all y), then

(0k , S' ( ) = C(a8y, ijk)(0(Y)llS(~a)JlJ0))

where (0(Y)IIS(a)Ib(0 °I)) = (k , iY)) (it can be shown that this reduced matrix element

is independent of k). The importance of this separation is that the i, j, k dependence

is all in the Clebsch-Gordan coefficient.

2.5 Projection Operators

We are interested in representation theory so that we can construct wavefunctions which

transform according to particular representations of the symmetric group21. For construc-

21 While projection operators can be constructed for Lie groups like SU(2), it is not common to do so in a
course in quantum mechanics [98]. Hence in this section we will not try and make the connection to angular
momentum algebra.
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tion of these wavefunctions, projections operators are very useful e.g. given any func-

tion of f of x, y, using P - (e)+2) or p (e)-(12 we can symmetrize it by considering2 2onside--ng

g(x, y) = f(xy)+f(yx) and antisymmetrize it by considering h(x, y) = f(xy)-f(y,x)

We first define the generalization of these operators to an arbitrary group and then show

that the definition is consistent, for S(2), with the naive idea of symmetrization and anti-

symmetrization.

The projection operators are very simple to construct provided we have representations

given in matrix form. Suppose the representation label is K and K(Aj) is the matrix of the

group element Aj, the group has n elements and the representation is unitary of dimension

dK. Then the projection operators are defined by

Pk=- 1 (Ajn d )kl)*Aj (2.24)
j=1

These d2 operators are called projection operators. Take any arbitrary function f and define

(for fixed 1)

fIk =PK f (2.25)

These form a set of partner functions in the irreducible representation F'. By applying all

projection operators we get a d, x dK square array of functions

f~ fl ... f

f -1 fr2 "' fHd,d
The functions in any one single column form a set of partners in P'. However different

columns may not be independent nor do they need to be non-vanishing. In fact for cer-

tain functions the entire array can vanish, signifying that the particular function has no

"component" corresponding to the particular irreducible representation.
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2.5.1 Projection operators for S(2)

S(2) = {e, (12)} is a very simple group. A moment's reflection shows that it can have

only two irreducible representations and they are both 1-dimensional i.e the "symmetric"

and "sign". In the "symmetric" representation both elements get mapped to 1, and for the

"sign" representation e gets mapped to 1 and (12) gets mapped to -1. The matrix of the

symmetric representation (it is merely a number since it is a 1-dimensional representation)

is

* (1) for e (identity permutation)

* (1) for (12) (exchange permutation)

The matrix of the sign representation is

* (1) fore

* (-1) for (12)

So from the definition of projection operators we conclude that

e+(12)
Psym 2

e- (12)
Psign - 2

Hence f(XY)2+(YX) and fxY)-f(Yx) are the components that transform according to the symmet-

ric and sign representations of S(2). So we can see that when we were naively constructing

our two-particle wavefunctions, we were actually using projection operators.
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Chapter 3

Representation Theory Of S(n) and

SU(2)

The previous chapter was mainly devoted to learning a language to describe representa-

tions. In this chapter, we will specifically learn about the symmetric group, S(n), and the

special unitary group, SU(2). These groups play a crucial role in the construction of the

wavefunctions. Our goal is not to try and prove the well-known facts about representations

of S(n)' and SU(2), but to get some understanding of the important theorems by looking at

a few simple examples.

Before we begin our discussion, let us summarize some relevant facts about the irreducible

representations of SU(2). We already know from quantum mechanics that

1. j (integer and half-integer) labels all the irreducible representations of SU(2).

2. Each basis vector has two labels, namely j and m, to identify it2 .

3. The combined label (j, m), uniquely identifies each basis vector in the irreducible

representation.

'For applications to Hagelstein's models we only need results for the three-body and four-body cases. So
wherever convenient, we will limit our discussion to S(3) and S(4).

2 This is possible because U(1) c SU(2) (U(1) in this context means matrices of the form e'I where I is
the identity), and every irreducible representation of SU(2), decomposes into a reducible representation of
U(1). The U(1) representations are labeled by m.
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4. The angular momenta can be coupled using the "vector model" for angular momen-

tum addition. In group theory language, it means that we know the CG series for

SU(2).

5. The CG coefficients can be easily calculated using standard formulas.

6. For two particles there is a curious link between symmetry under permutations and

total spin, i.e. the symmetric spin wavefunction corresponds to S = 1 and the anti-

symmetric wavefunction corresponds to S = 0.

From our experience with quantum mechanics, we also know that all these properties prove

to be extremely useful in various calculations. Since, for the construction of the wavefunc-

tions, we have to deal with S(n), we would hope that its irreducible representations also

satisfy similar properties. Luckily it does indeed turn out to be true, and we will find that

1. There is a pictorial way to label all the irreducible representations of S(n). These are

called Young diagrams.

2. Using S(1) c S(2) c ... S(n - 1) c S(n), we can get labels for our basis vectors. These

are called the Yamanouchi symbols.

3. The Young diagrams and the Yamanouchi symbols together uniquely identify each

basis vector in the irreducible representation3 .

4. There are general formulas for the CG series of S(n). Since these results are not

relevant to us, we merely quote the formulas for the CG series of S(3) and S(4).

5. The values of the CG coefficients are known. Since we merely want to use these co-

efficients in our calculations, we refer the reader to various tables of CG coefficients

in the literature.

6. There is a deep connection between representations of S(n) and SU(2) called the

Schur-Weyl duality 4 .

3In fact it will turn out that we do not need the Young diagram explicitly, since the Yamanouchi symbols
contain within them the information required to reconstruct the Young diagram.

4This relationship between the representations of S(n) and SU(m) is a rich and beautiful subject involving
symmetric functions, combinatorics and Lie theory. The interested reader should consult [30, 31].
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This chapter is intended to give the reader some understanding of these properties, so that

in the next chapter we can use them to construct our nuclear wavefunctions.

Finally, the notation used to denote permutations should be mentioned. Permutations in

S(n) will be denoted in cycle notation where e.g. (1, 3, 5)(2, 4) means that under a permu-

tation particle 1 goes to particle 3, particle 3 to particle 5, particle 5 to particle 1, particle

2 to particle 4 and particle 4 to particle 2. Similarly (1, 2, 3) means that particle 1 goes to

particle 2, particle 2 to particle 3 and particle 3 to particle 1.

3.1 The Symmetric Group and Construction of Wavefunc-

tions

Our interest is in few-body nuclear systems. According to standard nuclear physics, the

proton and neutron are considered to be the "same" particle, but with a different z-directed

isospin. Hence, all the few-body nuclear systems will consist of identical fermions. This

means that S(n) commutes with the Hamiltonian H. From our general discussion of irre-

ducible representations of SO(3), we know that

* The eigenfunctions can be labeled by the irreducible representations of S(n).

* The degeneracy is at least equal to the dimension of the representation.

So in principle, eigenfunctions could be labeled by any representation of the symmetric

group. However, by the Pauli exclusion principle, for fermions, only the "sign", and for

bosons, only the "trivial" representation is allowed. Thus in this case, representation theory

does not seem to give us particularly useful information.

However, representation theory does become interesting, once we start to think about con-

structing wavefunctions. There is no Pauli exclusion principle operating on the individual

space, spin or isospin pieces. So long as the overall wavefunction is antisymmetric, the

space, spin and isospin parts are free to belong to any representation of S(n). We can then

use CG coefficients to construct an overall antisymmetric wavefunction.
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But first we need to state some important properties of the representations of the symmetric

group.

3.2 Representation Theory of the Symmetric Group

Given any function f(1, 2), it can be broken up into a symmetric part and an antisymmetric

part i.e.
f(1, 2) + f(2, 1) f(1, 2) -f(2, 1)f(1, 2)= 2 +

2 2

Hence we can conclude that the symmetric group only has the trivial and the sign repre-

sentations. However, when we are dealing with more than two particles, the results are not

obvious. To proceed further, we need to know certain facts about the symmetric group.

Representation theory of the symmetric group has a venerable history [41, 80, 100] and is

still actively pursued in the mathematics literature [96]. The amazing property of the sym-

metric group is that all the representations can be enumerated in a very simple way. This

enumeration is important for us, since we want to write down a complete set of wavefunc-

tions in our Hilbert space. It can most easily be done via the graphical method of Young

diagrams. Even after the enumeration, we will need some convenient labels for our basis

vectors of the vector space (which carries the irreducible representation). These will be the

Yamanouchi symbols.

3.2.1 Young diagrams

Consider a partition of n i.e. AI > A2 > ... An > 0 such that A1 + A2 + ... n, = n. These can

be denoted by Young diagrams. These diagrams are just a graphical way of representing

partitions, e.g. for n = 8, if Al = 3, A2 = 2, A3 = 2, 4 = 1, we can picturize it as I.
The amazing fact is that the Young diagrams, which partition n, label all the inequivalent

irreducible representations of S(n) e.g. for S(2) the two irreducible representations are m

(trivial representation) and B (sign representation).
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We will need the enumeration for S(3) and S(4).

* For S(3) we have n, and ].

* For S(4) we have r m, , , , and y.

3.2.2 Yamanouchi symbols

There is a simple way to calculate the dimension d, of the representation Fr() labeled by a

Young diagram 7. First a tableau is simply a Young diagram with entries (allowing repeats

in general) in 1, 2, ... , n. A standard tableau is a tableau in which the numbers increase

from left to right in a row and from top to bottom in a column. A normal tableau is a

standard tableau in which the numbers increase as one goes from left to right, starting out

at the top of the diagram and going towards the bottom5. Then d, is simply the number of

standard tableau corresponding to the Young diagram 7r.

The labeling of the d, basis vectors of an irreducible representation of S(n) is obtained by

looking at the chain of groups S(1) c S(2)... c S(n - 1) c S(n) i.e. given an irreducible

representation of S(n), we break it up (in general) into a linear combination of irreducible

representations of S(n - 1) and so on till we get to S(1). This way we get a unique la-

bel for each of our basis vectors of the irreducible representation of S(n). This label is

called the Yamanouchi symbol. It is simply the symbol [rnr,_...r,] where ri is the row

of i in the standard tableau corresponding to the basis vector6 . The vectors labeled by the

Yamanouchi symbol have the property that they are always symmetric or antisymmetric

under the exchange of the first two particles. This will later on turn out to be very useful in

the calculation of the matrix elements.

3.2.3 Enumeration of Yamanouchi symbols

For n = 3, we have three representations.

5 Hence for each Young diagram there is only one unique normal tableau.
6 Sometimes we will ignore the brackets around the Yamanouchi symbol and write it as rnrnl...r l.
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*· =. It is -dimensional with basis vector [111]. This is the trivial or symmetric

representation.

* E[. It is 2-dimensional with basis vectors [211] and [121]7. This is the mixed repre-

sentation.

*· . It is 1-dimensional with basis vector [321]. This is the antisymmetric or sign

representation.

For n = 4, there are five representations.

*· rn. It is 1-dimensional with basis vector [1111]. This is the trivial representation.

*· Ar. It is 3-dimensional with basis vectors [2111], [1211], [1121].

* E· It is 2-dimensional with basis vectors [2211] and [2121].

* . It is 3-dimensional with basis vectors [3211], [3121] and [1321].

*. It is 1-dimensional with basis vector [4321]. This is the antisymmetric or sign

representation.

To construct our wavefunctions, we will be considering linear combinations of direct prod-

uct of wavefunctions which transform according to particular representations of S(n). For

this we need to know the CG series of S(n).

3.2.4 Clebsch-Gordan series of S(n)

The CG series of S(n) are known. However, we only need some 8 of the CG series for S(3)

and S(4).

The required results for S(3) are

7Here [211] is a normal tableau, whereas [121] is a standard tableau.
8Since we will also be dealing with representations of SU(2), we will see that this interaction restricts the

Young diagrams to two rows only.
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3.2.5 Clebsch-Gordan coefficients of S(n)

As we know from experience with quantum mechanics, the CG coefficient problem is al-

ways much harder than the CG series problem. The main reason for this is that while

the series is independent of a basis, for the calculation of the CG coefficients, we have to

choose a basis9 , and basis-dependent calculations are always tedious. As is true for the CG

coefficients of any group, we also have to deal with the annoying but important question of

phases.

Hamermesh [41] did important and fundamental work on the CG coefficients. Schindler

and Mirman [87, 88, 89] explicitly worked out the CG coefficients for general S(n). How-

9By definition it is the matrix for a change of basis.
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[211].[211]' [211].[121]' [121].[211]' [121].[121]'
[321] 0 l _ O

[211] O _l

[121] 0 X 

[111] _ O 

Table 3.1: CG coefficients of S(3)

ever, their results are numerical and do not implement phase conventions rigorously. Later

on the subject was extensively studied by Jin-Quan Chen and others [13, 14, 32]. Un-

like Schindler and Mirman, they were much more careful about the phase conventions.

Another improvement over the previous work was, that instead of numerical tables, their

results were given in terms of square roots of simple rational numbers. However as pointed

out by Stancu and Pepin [95], there are some phase-related discrepancies in these tables as

well . We will be using the tables from [94, 95]. The tables are too large to be reproduced

here and the reader can easily find these in the references cited. However, to give a feel for

how to use these CG coefficients we reproduce Table 3.1 from Hamermesh [41] for S(3).

And now we go through an example to illustrate how to use Table 3.1.

An example on the use of CG coefficients

Suppose we are given two functions which transform according to the UE representation of

S(3) and we want to construct a function which transforms according to the ~ representa-

tion. Table 3.1 shows that we can construct such a vector. It is obtained by taking the linear

combination

[321] = ([211] ® [121]' - [121] ® [211]') (3.1)

Similarly if we want to construct a totally symmetric function from mixed symmetry func-

tions, Table 3.1 tells us that °

1
[111] = ([211].[211]' + [121].[121]')

'0 As mentioned before, sometimes we will not write the ® symbol.
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transforms according to the rm representation.

This example will be the canonical way that we will construct our antisymmetric wave-

functions. In the construction of the wavefunctions we will particularly be interested in

the sign representation, since our wavefunctions have to be completely antisymmetric. We

would like to know when does the tensor product of two irreducible representations contain

the sign representation. The answer is given by the following lemma

Lemma. p(c) ® p(G) contains the sign (antisymmetric) representation if and only if () is

conjugate to (a) (Conjugate representation is constructed by flipping the Young diagram

about its diagonal e.g. f is conjugate to EFD). In fact we can say that

1(1)[n, n- 1, ... , 1]) = (- 1)(n)l(c)[Y]) ® I(i)[])

where (1") is the completely antisymmetric Young diagram with the Yamanouchi symbol

[n, n - 1, ... , 1], n' is the number of transpositions necessary to bring the standard tableau,

[Y], to a normal tableau and d, is the dimension of the irreducible representation, (a). ()

and [] are the conjugate Young diagram and Yamanouchi symbol to (a) and [Y] respec-

tively.

This lemma gives us another way to verify Equation 3.1 because we know that

() is a two-dimensional representation.

*· is conjugate to itself.

* [211] is a normal tableau conjugate to [121].

* [121] requires one transposition to become the normal tableau [211].
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3.3 Representations of SU(2)

We already know all the representations of SU(2) from quantum mechanics". These are

labeled by one quantum number, i.e. the angular momentum (integer and half-integer).

For our multi-particle states, we will construct wavefunctions in which each particle has

spin (or isospin) = . Such states can easily be constructed using the standard techniques

of CG coefficients of SU(2). However, this would hide the symmetry properties of the

wavefunctions. Hence we should look at this problem from the purely group-theoretical

point of view of chapter 2.

We will use the spin space as the carrier space for the representations (isospin is completely

equivalent). Let ~0 =, and 02 =, be the basis of the 2-dimensional representation of

SU(2) (corresponding to S = ).

Since an n-particle system is under consideration, we are interested in the vector space T2"

spanned by all tensors of the form D = Oi(l). ... p(n), when the subscripts are all 1 or 2. This

vector space has dimension 2". From chapter 2, we know that since the space spanned by 01

and 02 forms a representation of SU(2), T2 also forms a representation of SU(2). But this is

in general reducible. The entire space T2 can be decomposed into independent subspaces

of type ((r7), m) where 77 is a Young diagram labeling an irreducible representation of S(n)

and 1 < m < d 12 i.e.

17

EZZT " (3.2)
r7 m=l

where each subspace T2 is an irreducible representation of SU(2).

3.4 Schur-Weyl Duality

Equation 3.2 is extremely important for the following reasons

* Each subspace T is an irreducible representation of SU(2).

"The notation and discussion in this and the following section closely follow [24].
121n fact in this way we get all the irreducible representations of SU(2).
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* Given any basis function of the T2 , say T2 , it partners with basis functions in

T2 , ... , T2 to form a d,-dimensional representation of S(n).

* The subspace

T217 =>T(7)
T2~ E 

T? )"n (3.3)
m=l

is invariant under S(n) x SU(2). We can find basis vectors OX of T) s.t. if/ (7) is the

dimension of T2 , then we can think of these as forming a matrix

17 1 2 . .- 1 1u()
11 17 7

Id1 (I 2 ... (I)

where each row forms an irreducible representation of SU(2) and each column an

irreducible representation of S(n).

This is the beautiful duality between SU(2) 13 and S(n). The following facts will be useful

for us:

1. The dimension (7) of the irreducible representation corresponding to the Young

diagram () is equal to the number of different permissible ways of placing n integers

from the set {1, 2} in the diagram (1). By a permissible way we mean that integers

are in non-decreasing order in a row (from left to right) and strictly increasing as we

go down a column.

2. One immediate corollary of the above fact is that for SU(2) we do not need to consider

any Young diagram with more than two rows.

All this may seem a bit abstract, so we now go through a few simple examples to make

these results concrete.

'3In general it is between SU(m) and S(n).
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3.4.1 Examples of Schur-Weyl duality

Let us consider some simple examples to clarify the concepts. For n = 2, T2n is 4-

dimensional. The product wavefunctions are I TT), I 1?), I I), I J11). The irreducible

representations of S(2) are labeled by 77 = m and 772 = B. They are both 1-dimensional.

Then

T2'j 1?) ItI)+l) )

and

T'72 ITl)-lt)T2 >>do

For n = 3, T' is 8-dimensional. We know that there are 3 irreducible representations

denoted by l, EP and m. The last one is ruled out by fact 2 of the last subsection. 71 = m

is 1-dimensional as a representation of S(3) (the trivial representation). However, from fact

1 of last subsection we know that as a representation of SU(2) it is 4-dimensional. This is

the S = representation with

T2 ': ITtt) 3( tt-) + I tt)+ 1tt)) ,(I 1) tt)+ 1Jt)) I -)

Let /72 = . As a representation of S(3), it is 2-dimensional. From fact 1 of the last

subsection we know that as a representation of SU(2), it is also 2-dimensional and T2v2 is

given by
21)-tT)-1T) 211t)-,jH1)-j 11)

ItIt)-Il.l ) ,11t1)-JlT1)

Each column forms a A1 representation of S(3) and each row forms a EP representation of

SU(2). Schur-Weyl duality for two and three-particle spin wavefunctions, is also illustrated

in Figure 3-1.

Before we end this chapter, we want to discuss how the symmetric group operates on multi-

particle wavefunctions. This will become important when we construct wavefunctions in

the next chapter. There, the symmetric group will be acting on wavefunctions, for which
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Yamanouchi Symbol
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121 

' W 321 T

Figure 3-1: Schur-Weyl Duality
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we need to fix a convention.

3.5 Action of the Symmetric Group on Many-Particle Func-

tions

There are two standard ways that one can make the symmetric group act on a function,

i.e. it can be a left action or a right action. We assume that it is a left action and the

group acts directly on the particle labels e.g. (12)f(132) = f(231). That this is a group

homomorphism (it has to be, since that is how elements in the group algebra act) can be

explicitly checked, e.g. since (123) = (12) o (23) then

(23)f(213) = f(312)

(12)f(312) = f(321)

(123)f(213) = f(321)

When considering spin or isospin, we want to follow the same conventions as for the spatial

wavefunctions. Consider f(123) = a(1),8(2)y(3). Then according to our convention

(123)a(l),8(2)y(3) = a(2),8(3)y(l)

(123)a(2)(3)y(1) = a(3)(1)y(2)

Now consider spin up and spin down as functions of particle labels. Say

a(1)=, (2)=$ 2 (3)=t3
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with f(123) = a(1)f,(2)y(3). Then

(123)f(123)

(123)f(231)

(132)f(123)

= a(2)8(3)y(1)

= a(3)fl(1)y(2)

= a(3)8(1)y(2)

Since (123) o (123) = (132), we can see that everything is consistent.

Note that this convention is in accord with the usual left action of the symmetric group on

the tensor space by inverse of the group element, i.e. usually we say that

o-(V 1 ® V2 9 V3) = Vo-.(1) ® Vo-1(2) ® Vo-1(3)

Using ar = (123) and v1 =t, v2 =1$ and v 3 =t, we can see that

(123)(v 1, v 2 v3 ) = v 3 ® vI v 2 =ttl

exactly as before.
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Chapter 4

Construction Of The Wavefunctions

The previous two chapters discussed aspects of group theory most relevant for us. Now,

we can begin to apply representation theory for the construction of wavefunctions. Before

we outline our method, we would like to discuss why is it completely natural to use group

theory to construct few-body wavefunctions. The reason is based on the following facts:

* The overall nuclear wavefunction has to belong to the antisymmetric representation

of S(n).

* The various channels in a nuclear reaction are specified by spin, isospin and other

relevant quantum numbers. Specifying spin and isospin implies constraining the

SU(2) representation that the spin/isospin wavefunction can belong to.

* Schur-Weyl duality links the representations of S(n) and SU(2).

This argument is schematically presented in Figure 4-1.

Our method will be to use 1

1. Projection operators to construct space, spin and isospin wavefunctions which trans-

form according to particular representations of S(n).

'Similar ideas are used in the literature for multi-quark calculations [42, 93].
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Channel specification by P

spin, isospin etc.

Antisymmetric .-

wavefunctions

p anrt cantati;nn o

Schur-Weyl duality

Figure 4-1: Reasons for using group theory for the construction of wavefunctions

2. CG coefficients of S(n) to construct the appropriate linear combinations of space,

spin and isospin to form a completely antisymmetric wavefunction.

In this chapter, we also describe a new method, of constructing spin or isospin wavefunc-

tions of the appropriate symmetry. This method, which is based on angular momentum

addition, is far simpler as compared to earlier techniques [85].

In order to elucidate the principles involved, we will exclusively deal with the three-body

nuclear case [20]. While a completely similar calculation can be carried out for the four-

body problem, this is computationally much more complicated, and does not involve any

significant new concepts. However, to establish the form of the wavefunctions and our

notation, we will begin by looking at the familiar two-body example. After that we will ex-

plicitly construct the projection operators for S(3) and use them to build the wavefunctions

of the appropriate symmetry. At the end of this chapter, with the help of CG coefficients,

we will construct the completely antisymmetric wavefunctions.
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Spin = Space
Symmetric = Antisymmetric
Antisymmetric = Symmetric

Table 4.1: Symmetry constraints on two-body atomic wavefunctions

4.1 Two-electron System

This is the simplest example in which we see the CG coefficients at work. The coefficients

are 1, so the calculation is trivial 2 .

The construction of product wavefunctions for two-electron systems is a standard topic in

quantum mechanics textbooks. It is based on the Pauli exclusion principle, which as shown

in Table 4. 1, imposes stringent constraints on the wavefunction.

If we denote m = by a, m = - by ,I then the actual wavefunctions are

spin symmetric

spin antisymmetric

space symmetric

space antisymmetric

a(1)a(2)

= {a(1)g

,i(1)fi(2)

3(2) +/,(1)a(2))

1
{a(1)l(2) -fi(1)a(2)}

V2=

f(rl, r2) + f(r2, rl)
2

f(rl, r2) - f(r2, rl)
2

The complete wavefunction is constructed by taking appropriate products e.g.

2 Please note that we are talking about the CG coefficients of the S(2) and not the usual CG coefficients of
angular momentum addition.
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a(1)a(2)f(rl, r2) - f(r2, rl)
2

Please note that this is not normalized since f(rpr2)f(r2') cannot be normalized until we

know the form of the f(-). This inability to normalize will be a constant feature of this con-

struction. However, this is not a serious drawback, since any given spatial wavefunction can

be normalized. The next simple system we consider is the two-nucleon system. However,

before deriving its wavefunction, we need to summarize some properties of isospin.

4.2 Isospin

The concept of isospin was introduced by Heisenberg [43]. The Coulombic interaction

between protons is much weaker than the strong force between two nucleons. Hence we

can ignore the Coulombic part of the interaction. This is also reflected in the fact that many

of the properties of mirror nuclei are very similar . Mirror nuclei are nuclei which have

the same total number of protons and neutrons e.g. 3He and 3H. Thus we can postulate

that the strong nuclear force does not distinguish between protons and neutrons3 . Nucleons

are then assigned an extra degree of freedom called isospin and the protons and neutrons

are considered the same particle, but with different z-directed isospin. We will only be

interested in some formal properties of isospin, which we summarize here.

* Formally isospin is the same as spin. So all the usual spin algebra works in the case

of isospin as well.

* The proton is represented by t with MT =

* The neutron is represented by $ with MT = -.

* Nuclear reactions mediated by the strong force conserve T and MT4 .

3Actually there is a difference between charge symmetry and charge independence [ 16].
4Isospin is not conserved by electromagnetic or weak interactions [91].
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Table 4.2: Symmetry constraints on two-body nuclear wavefunctions

While we will only be using these properties, the concept of isospin is very useful in par-

ticle and nuclear physics and allows important predictions to be made in scattering/decay

experiments [33].

4.3 Two-nucleon System

The construction of the two-particle nuclear wavefunctions takes places in a completely

analogous manner to the two-electron case except that we include isospin. The Generalized

Pauli Exclusion Principle states that the total wavefunction (including isospin) has to be

antisymmetric under the exchange of any two particles. Hence the wavefunctions have the

symmetry requirements as given in Table 4.2.

If we denote m = 1 by , ms 1 by, , m - by p, mT = - by v, then the explicit

wavefunctions are
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spin symmetric =

spin antisymmetric =

isospin symmetric =

isospin antisymmetric =

space symmetric =

space antisymmetric =

The complete (unnormalized) wavefunction

e.g.

I

a(1)a(2)

Ica(1)8(2) +(1)a(2)}

/3(1)3(2)

-{a(1)3(2) -,8(1)a(2)}

p(1)(2)

~2u(1)v(2) + p(2 )v(l)}

v(1)v(2)

1
- pu(l)v(2 ) - p(2 )v(1)}

f(rl, r2) + f(r2, rl)
2

f(rl, r2) - f(r2, rl)
2

is constructed by taking appropriate products

(1)a(2)2 u(1)v(2) - v(l)p(2)}f(r l r2) + f(r 2, rl)
2

Again, the wavefunction cannot be normalized until we know the explicit form of f. These

examples seem completely straight forward, and use no knowledge of group theory. How-

ever, as we saw in chapter 2, when we tried to deal with the three-body problem, we en-

countered some serious difficulties. Now that we have enough theoretical background, we

can proceed (with the method outlined at the beginning of the chapter) to write down the

wavefunctions. We first need the projection operators for S(3).
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4.4 Explicit Three-body Projection Operators

There are three irreducible representations of S(3). Obviously we have the 1-dimensional

trivial and sign representations. The trivial representation matrices are all I and the sign

representation matrices are 1 or -1 depending on the sign of the permutation. We only have

to worry about the 2-dimensional mixed representation EP.

The matrices in the Standard Young-Yamanouchi representation are well known [41, 94].

These are

0 1 (0 2 2-1 

(4.1)

3-1 _- 1 _-
(13)= 2 2 (123)= 2 2 (132)= 2 2

2 2 2 2

The rows and columns are labeled by the Yamanouchi symbols in descending order i.e.

they are labeled by [211] and [121]. Now that we have these matrices, we can use them to

construct the projection operators easily. For the mixed representation, we get

2 [ 1 1 1 1 1
PI = 2 e+(12)- 1(23)- 1(13)- 1(123)- 1(132)

P (23)- (13)- -+ (132)]
P2 62 2 2 2 

P 2 =4 (23) - (13) + (123)- (132)

P22 = [e-(12) 23)+ (23)+ - (123)- (132) (4.2)

For the trivial representation, we have

1
p = - [e + (12) + (23) + (13) + (123) + (132)] (4.3)

6
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and for the sign representation

1
P= [e + (123)+ (132)- (23)- (12)- (13)] (4.4)

6

In the next two sections we will apply these projection operators to space and spin/isospin

wavefunctions. It is important to note that since the rows and columns of the matrices in

Equation 4.1 are labeled by the Yamanouchi symbol, the projected functionss can also be

labeled by the Yamanouchi symbol. This can be shown by an explicit computation. The up-

shot is that by using the projection operators, we directly get the projected functions which

can be labeled by [211] or [121] and which transform according to the EP representation of

S(3). The labeling depends on the row of the matrix and not on the column.

4.5 Construction of Space Wavefunctions

We know that given any functions f, pllf and P21f form partners in an irreducible repre-

sentation (provided it is non-zero). Similarly P12f and P22 f form partners in an irreducible

representation (provided it is non-zero). Given an arbitrary function f(123) i.e. a func-

tion which depends on the coordinates of the three particles, we can apply the projection

operators to get

plf(123) = [f(123) + f(213) - f(132) - lf(321)- f(231)- (312)

p21f(123) 2[ -f(132) 321)- f1(231) + f(312)}

p12f(123) = 22 3 ((132) - f(321) + f(231) - f(312)}]6 2
2r 1 1 1 1 1

22f2 [(123) - f(23) - f(213) f(32)+ f(132) + (321) - f(231) - -f(312)]6 [ 2 2 2 2

5By projected functions we mean the functions that we get by applying projection operators of Equa-
tion 4.2 to a given function.
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Using the statement at the end of the last section we can label pllf and P12 f by [211]6.

Similarly P21f and P22 f can be labeled by [121]7. In this way we see that the projection

operators give us the required basis vectors directly.

4.6 Construction of Spin/Isospin Wavefunctions

The construction of spin or isospin wavefunctions is exactly similar because formally the

spin and isospin algebra is the same. We will explicitly treat spin, but all the arguments

go through in exactly the same way for isospin by replacing "spin up" by "isospin up" and

"spin down" by "isospin down" respectively.

Given the r representation of spin, we know from chapter 3, that its total spin is S = 3.

We can get all the four wavefunctions by considering the following four spin wavefunctions

and applying projection operator of rm to them. These are

a(1)a(2)a(3), a(1)a(2)/(3), a(1)](2)](3),,8(1)(2),8(3)

After symmetrization and normalization we get,

a(1)a(2)a(3)

1 {a(1)a(2)/3(3) + a(1),8(2)a(3) +,8(1)a(2)a(3)}
75 (4.5)
' {a(1)1(2)13(3) + 3(1)a(2),8(3) + ,8( 1)/3(2)a(3)}

,8(1),8(2)1/(3)

Note that as mentioned in chapter 3, each one of these functions individually forms a 1-

dimensional irreducible representation of S(3) and collectively form a 4-dimensional irre-

ducible representation of SU(2); both of these are labeled by rm.

Similarly we know that the E representation has total spin S = . To construct the spin
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wavefunctions we use the appropriate projection operators on

a( 1)a(2)13(3), a( 1),(2)/f(3)

If we apply Pij to these functions we get

{f l(1)a(2) + a(1),l(2)}oa(3) - yfa(1)a(2),I(3)

ff(1)a(2) - a(1)/f(2)}a(3)
(4.6)

6{l(1)a(2) + a(1)/3(2))},(3)- /l(1),l(2)a(3)

1{ (1)a(2) - a(1),(2))},(3)

Again, as mentioned in chapter 3, the first two wavefunctions form a 2-dimensional irre-

ducible representation of S(3) and the last two form another copy of the same 2-dimensional

irreducible representation. However wavefunctions 1 and 3 form a 2-dimensional irre-

ducible representation of SU(2) as do wavefunctions 2 and 4. This is the beautiful Schur-

Weyl duality at work! As for the spatial case, the Yamanouchi label of a symmetry-adapted

basis vector depends on the projection operator that was applied to obtain it i.e. wavefunc-

tions 1 and 3 are labeled by [211] and wavefunctions 2 and 4 are labeled by [121].

However, we have found an easier way, based on angular momentum algebra, to do the

same construction for multi-particle spin/isospin wavefunctions.

4.7 Clebsch-Gordan Approach

Note that in this section we are using the CG coefficients of SU(2) i.e. the ones that are

routinely taught in a quantum mechanics course. Projection operators are generally useful

because they can be applied to any function. However if we are only interested in spin or

isospin, we can use a simpler method based on addition of angular momentum.

The Yamanouchi symbol gives us a clue as to the construction of appropriate wavefunctions

without the use of the projection operators. The construction of the completely symmetric
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Examples

i1 2 ((sl,s2) s12 = 1, s3) S = 1/2
3

, 31 3 ((sl,s2) s12 = 0, s3) S = 1/2

Explanation:

Yamanouchi symmetric under

lI2I l -- 2 exchange, so s12 = 1

Only one way to couple s12 = 1

to s3 = 1/2 to get S = 1/2. Can

1 K2 continue by induction
3

Figure 4-2: Clebsch-Gordan approach to constructing spin/isospin wavefunctions

wavefunction is straightforward via the Clebsch-Gordan approach. One simply couples

j = to j2 = to get J 2 = 1 which in turn is coupled to 3 = to get a total J = 

The mixed symmetry representation is a bit more interesting. Consider the spin wavefunc-

tion [211]. Particle labels 1 and 2 are in the top row and particle label 3 is in the second

row. So it suggests that we should first couple particle 1 to 2 to build a state of Jl2 = 1 and

then couple Jl2 =1 to J3 = to get a total J = . However in order to construct [121], we

couple J = 2 to 2 = to get a total state of J12 = 0 which in turn couples to the j3 =

state to get the J = state.

This construction depends on the fact that given a fixed number of particles, there is a one-

one correspondence between the Young diagrams and spin of the wavefunctions. This can

be generalized to any number of particles e.g. in order to construct the spin wavefunction

corresponding to [1211], we couple j, = to 2 = to get J12 = 1, then couple J12 = I to

J3 to get J123 = and then couple J 23 = to 4 = to get a final J = 1.

This method is illustrated in Figure 4-2. Now at this point it is still possible that the wave-

functions we get from the projection operators and the ones that we get from the CG ap-
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proach may differ by a phase factor. However, in all our calculations, we have found that

there is no phase difference between the two approaches. It is also important to point out

that this approach will break down for any other special unitary group other than SU(2),

because no one-one correspondence exists between Young diagrams and total angular mo-

mentum for the higher dimensional unitary groups.

By using either projection operators or the SU(2) (only for spin/isospin) CG coefficients,

we can now construct space, spin and isospin wavefunctions with the prescribed symmetry.

However, we still need to mix appropriate combinations of these wavefunctions in order to

construct a totally antisymmetric wavefunction. This is done via the CG coefficients of the

symmetric group.

4.8 Explicit Construction of Wavefunctions

In this section we will use the wavefunction with S = and T = as an example of our2 2 an example of our

method of constructing wavefunctions. We already know that:

1. Both the spin and isospin wavefunctions belong to the [P representations . This is a

consequence of Schur-Weyl duality.

2. The relevant CG series is

3. From each of ia, E, , using the conjugate tableau for space, (i.e. , , m re-

spectively) we can construct three different antisymmetric wavefunctions. This is a

consequence of using the lemma in section 3.2.5.

From Table 3.19
8We have intentionally not mentioned whether it is a representation of S(3) or SU(2), since from Schur-

Weyl duality we know that these functions form a representation under both the groups.
9The subscripts of R, S or T on the Yamanouchi symbols tell us which part of the wavefunction we are

considering e.g. [21 1] s is a spin wavefunction with Yamanouchi symbol [211] where as [211]ST is a spin-
isospin wavefunction with Yamanouchi symbol [211 ].
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1
[2 1 11sT = -{[ 2 1 1 ]s[2 1 1 ]T - [1211s[121]1}

1
[12 1]sT = -/ [2 1 1]s[ 1 2 1]T + [121]s[211]

1
[321]ST = i{[211]s[121]T

1

[111sT = v{[2111s[2I

- [12 1]S[2 1 1]T}

+ [1211s[1211}

Using Table 3.1 againl°, the antisymmetric wavefunction corresponding to EPST is

[321]RS =
1

X/~{[211][121]ST - [121]R[21 ST

The antisymmetric wavefunction corresponding to mST is

[321]RST = [321]R[111]ST

And the antisymmetric wavefunction corresponding to UST is

[321]RST = [111]R[321]sT

Since in the previous sections we have already constructed basis functions for space, spin

and isospin corresponding to [321], [211], [121] and [111] representations, we have now

completed our objective of constructing few-body wavefunctions.

For the S = T = 1 case we were considering, the three wavefunctions are (without taking

into account the different ms and mT values)
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C I 2 2 -
qf = {f (_i )(q v + q2 v') -

N i v2

i' = f4( )(qIvl

" = f3( )(q'v2
-C2

f2( )(q V1 - q2v2)}
w q q

+ q2v2)

- q2vl)

where

* q is used for spin

* v for isospin

* f for space

* The superscripts on the q's, v's and f's represent the particular Yamanouchi basis

vector with
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Chapter 5

Summary Of Three-body Wavefunctions

This chapter summarizes our results for the construction of the three-body wavefunctions.

In some ways, our approach resembles the method initiated by Jahn and others [29, 48, 49]

for the shell model. Later on, group theory was applied to various three-body calcula-

tions [4, 5, 9, 18, 19, 20, 45, 46, 64, 84, 103]. However, we have not found a completely

systematic treatment of the three-body problem in the literature that explicitly treats the

symmetry properties of the spatial parts of general wavefunctions. We will first enumer-

ate the possible symmetries of a three-body wavefunction. The CG series of S(3) restricts

the wavefunction to the form give in Table 5.1. For example, the last line of Table 5.1

implies that when we tensor a S = representation with T = , we get a 2 x 2 = 4 di-

mensional representation of S(3). This breaks up into a 2-dimensional representation BA, a

1-dimensional representation and another 1-dimensional representation m. As we saw

in chapter 4, in order to get a totally antisymmetric wavefunction, we need to combine the

Ed part with the spatial part (of conjugate symmetry) EP. This gives us one antisymmetric

spin isospin = X space
rnS = 3 rrT = 
rmS= EPT = B 
Eps = AT -X
EPS= - [PT=2 EP+ +m > [ +l

Table 5.1: Symmetry constraints on three-body nuclear wavefunctions
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wavefunction. We can also combine the with the spatial symmetry m to get another an-

tisymmetric wavefunction. And finally we can combine the =o with the spatial symmetry

2 to get the third antisymmetric wavefunction. This exhausts the possibility of constructing

antisymmetric wavefunctions from S = and T = 2.

We are also going to label m s = 2 as a, ms - as,, m = 2 as and m= 2 as v. Now

we explicitly write out the wavefunctions for each of the 4 possible cases (corresponding

to each row of the table above). The labeling of the wavefunctions is done according to the

standard Yamanouchi method.

5.1 Spin = 2, Isospin = 3

Since spin and isospin are completely symmetric, the spatial part is completely anti-symmetric

and it is trivial to write down the wavefunction .

5.2 Spin = , Isospin =

Spin is rn and Isospin is EP.

1
[321]sT = /[211][121] - [121][211]r}

where

[12 1]ST = [111]S[121]T

[2 11]ST = [111]s[211]T

'It is just a simple product of the usual S = 3 and T = 3 wavefunctions.2 2 T=3waeuctos
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5.3 Spin = , Isospin =

It is clear that, as before

[2 11]ST = [211]S[111]T

[12 1]ST = [121]s[111]T

Then we can write down the total wavefunction as

[3 2 1]RST = 1{[211]R[121]ST

5.4 Spin = , Isospin =2 2~
[3 2 1]RST = I{[211]R[121]ST

The other two antisymmetric wavefunctions are constructed by

[3 2 1 ]RST = [321]R[1 1]ST

[3 2 1]RST = [1 1 1]R[3 2 1]sT

where

1
[2 1 1]ST = I[211]s[211r

[121]ST = - {[ 2 1 1]s[121]T + [121]s[211]}
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[2 1 1] = 1 mixed symmetry
[1 2 1] = 2 mixed symmetry
[1 1 1] = 3 symmetric part
[3 2 1] = 4 antisymmetric part

Table 5.2: Shorthand for three-Particle Yamanouchi symbol

[3 2 1]ST = {[2 11][121]T - [121]S[211]T)

[111]T = {[ 2 1 1 [2 11 ]S[21 + [121]S[121]T)

5.5 Notation

To simplify the notation, we use q for spin, v for isospin and f for the space part of the

wavefunction. The superscripts on the q's, v's and f's represent the particular Yamanouchi

basis vector. The shorthand for Yamanouchi symbols is given in Table 5.2.

5.6 Spin Wavefunctions

Let us define spin wavefunctions corresponding to various ms values and permutation sym-

metries. We will denote them by qan, where the subscript refers to the value of ms and the

superscript labels the various Yamanouchi basis vectors defined in Table 5.2.

5.6.1 m =3

[111]3 = q = a(1)a(2)a(3)
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15.6.2 m = 

E7

[211] = q= U8(1)a(2) + a(1),8(2)}c(3) - -(1)a(2),(3)

2 1
[121] = q = -B( )a(2) - a(1)(2)(1)(2)}a(3)

3 1
[111]½ = q = -{a(1)a(2),8(3) + a(1),8(2)a(3) +,8(1)a(2)a(3)1

5.6.3 ms = 2s 2

[211] = q_ = 6{8(1)a(2) + a(1),8(2)}13(3) -
2
3(I1,(2)(3)
3

2 1[121]_I = q = {,(1)a(2)- (1)/3(2)}(3)
2 

2 2

rm I

1 1 1 1(3) + [111l]_½ = q½ = {a(1),8(2),8(3) +,8(1)a(2),8(3) +,8(1),8(2)a(3)}2 F
5.6.4 m = 2SI 2
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[511]_3 = q_3 =a (1)e(2)n(3)

5.7 Isospin Wavefunctions

In a completely analogous way to the spin wavefunctions, we can define isospin wavefunc-

tions with the q's replaced by the v's.

5.8 Space Wavefunctions

Please note that the superscript is the Yamanouchi symbol from Table 5.2 and the subscript

refers to the row in the matrix representation.

FT-

1
[11I1 =f = [f(123) + f(132) + f(213)+ f(321) + f(231) + f(312)]

[2 1]R= f[ = -= f (123)

[121] = i =

+ f(213) - If(132) -
2 - 2

6 2

i-(321)
1

- -f(231)-
2

- f(231) + f(312)}]

Or we can use the other pair

[211]R = f2 = 62 {f(132) - f(321) + f(231) - f(312)}]

84

If(312)
2 j



S- T I- f4q3v3

S=2 T' I=f I q3v2 _ tq3'v 

S- T -{tfl q2 3 f 2 qlv 3}2 1 112 2 1
S = 2 T = r f = ¢ 2{(f(- l)( q vq + q2V) -_ f2()(qll q2v2)}

_ = f4(2)(qvl + q2V2)
T= f t)(q v2 - q2vl)

Table 5.3: Complete three-body nuclear wavefunctions

[1 2 1]R = f 2 f(123) - f(213) + f(1 1 1 (321)2)lf(132) + f(321)- f(231) - f(31

321]R = = [f(123) + f(231) + f(312) - f(l32) - f(321) - f(213)]

As we observed in chapter 2, these pairs can turn out to be linearly dependent if the func-

tions have certain symmetries.

5.9 Summary

In Table 5.3, we give the complete three-body nuclear wavefunctions. In that table q is used

for spin, v for isospin and f for the space part of the wavefunction. The superscripts on the

q's, v's and f's represent the particular Yamanouchi basis vector as defined in Table 5.2.

5.10 Atomic Wavefunctions

S q3f4 
S 1= I /= {flq 2 f 2ql}

Table 5.4: Complete three-body atomic wavefunctions
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In a completely analogous way (it is much simpler, since we do not need to combine

isospin), in Table 5.4 we write down the atomic wavefunctions (with the same definitions

of space and spin as for nuclear wavefunctions).
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Chapter 6

Summary Of Four-body Wavefunctions

In this chapter we summarize the results for the construction of the four-body wavefunc-

tions. These results are new. Unlike the three-body case, where we found some work with a

similar approach, we have not been able to find any paper explicitly dealing with the spatial

symmetries of the four-body wavefunctions. The literature on the variational approach to

the four-body problem is ad hoc and not systematic [11, 52, 53, 68]. However, in our ap-

proach to few-body nuclear physics, the four-body case naturally follows from the method

that is adopted for three nucleons. We will first enumerate the possible symmetries of a

four-body wavefunction. The CG series of S(4) restricts the wavefunction to the form give

in Table 6.1.

We are again going to label m s = 2 as a, ms = - as, = as and mT = - as v. Now

we explicitly write out the wavefunctions for each of the 9 possible cases (corresponding

to each row of the table above).

6.1 Spin = 2, Isospin = 2

Since spin and isospin are completely symmetric, the spatial part is completely anti-symmetric

and it is trivial to write down the wavefunction.

87



spin isospin =� space
rrS = 2 rrmT = 2 rTrm

m-nS=2 fflT=O ffl
rmS = 2 EPnT = 1 E1P
]S = 0 rTrT=2 [

E3S=O fflT=O +m
RS=O EFT= 1 + 
F1 S = 1 rmrT=2 [F
EFS = 1

mm
m
ED

,,, +[B

F+H
f+
Om+ ff

+ E+F + f
fRT = 

EFS=1 BFT=1 r+ +f+F

Table 6.1: Symmetry constraints on four-body nuclear wavefunctions

6.2 Spin = 2, Isospin = 0

[4321RST [2 2 11]R[ 2 1 2 1 ]ST - [2121]R[221 1]ST}
[4321]sr = V-

where

[2121]ST = [1111]S[2121]T

[2211]ST = [1111]S[2211]T

6.3 Spin = 2, Isospin = 1

{([321 ']R[ 12 1]sT - [3121]R[1211]ST + [1321]R[2111]ST

where

[2111]ST = [1111]S[2111]T

[1211]ST = [1111]S[1211]T

[1121]ST = [1111]S[1121]T
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6.4 Spin = O, Isospin -= 2

[4 32 1]RST =
1
1[2211]R[2121]sT - [2121]R[2211]T}

r2Z

where

[2121]ST = [2121]S[1111]T

[2211]ST = [2211]s[1111]T

6.5 Spin = 0, Isospin = 0

[4 32 1]RST = [4321]R[1111]ST

[4 321]RST = {[2211]R[2121]ST - [2 1 2 1]R[2 2 1 1]sT}

[43 2 1]RST = [1111]R[4321]sT

where

[1111]ST =

[2211]ST =

[2121]S =

[4321]S =

1
1{[2211]s[2211]T

1
{ '[2211][2 2 11]s

-1
-[2211]s[2121]T

1{[2211]S[2 12 1 ] r

+ [2121]s[2121]T}

- [2121]S[21211T}

+ [2121]s[2211]T)

- [2121]S[2211]}

6.6 Spin = 0, Isospin = 1

1
[4321]R = [3 2 11]lR[1121]sT -[3121]R1211]s +[1321R[2111ST
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1
[4321]RST= I{[2111][1321]sT - [1211]R[3121]sT + [1121]R[3211]sT}

[4321], =3

where

[2111]ST = I{[2211]s[1211]T + [2121]s[1121]T }Nr2- ~ ~

1
[1211]ST = 1{2[2211]s[2111] + [2211]s[1211]T - [2121]s[1121]r }2

[1121]S = 22[2121]S[2111]T - [2121]S[1211]T - [2 2 11]l[1121]T }2

1
[321 1]s = 2{2[2211]s[2111]T - [2211]s[1211]T + [2121]s[1121] r }2ST 

[3121]s = {2[2121]s[2111] + 2121][1211] + [2211]s[1121]r }2

[1321]S =
1

r{-[2121][1211] + [2211]s[1121]T

I{ [3211]R[1121 ]ST - [3121]R[1211]ST + [1321]R[2111]ST}

[1121]ST = [1121]S[1111]T

[1211]ST = [1211]S[1111]T

[2111]ST = [2111]s[1111]T

6.8 Spin = 1, Isospin = 0

[4 32 1]RST = {[3211]R[1121]ST - [3121]R[1211]ST + [1321]R[2111]ST}
,v 3
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[4 32 1]RST =

where



1
[4 32 1 ]RST = [2111R[1321s-

[2111]ST =

[1211]R[3121]ST + [1121]R[3211]ST}

{ [1211]S[2211]T + [1121]S[2121] T}

[121 1 ]ST = 2{22111]s[2211]T + [1211]s[2211]T - [1121]s[2121]T }

[1121]ST = -{ 2 [2 1 1 1]s[ 2 12 1]T - [1 121 ] - [11212211
2

[3211IST = I2[2111Is[221lIT - [1211JS[22111T + [1121]s[212']T)
2

1
[3121IT = +2[2111]S[2121]T +[1211][212']T

2
+ [1121]s[2211]}

1
[1321]ST = [{--[ 1 21 1][ 2 1 21]T + [1121]S[2211]T}

6.9 Spin = 1, Isospin = 1

[43 2 1]RST = [4321]R[1111]ST

[4 32 1]RST = I{[22111R[2121]ST - [2 1 2 1 1R[22 1 1]ST}
,V-2

[4 32 1]RST =

[4 3 2 1]RST =

1
E{[2111]R[1321]sT

{[3211][1121]
V[ 3 2 11IRd112]ST

- [1211]R[3121]ST + [1121]R[3211]ST}

- [3121]R[1211]ST + [1321]R[2111]ST

+ [1211]s[1211]T + [1121]s[1121]T}
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[2 1 1 1]ST = -{ 4 [2 1 1 1 ]s[2 1 11 ]T - [12 1 1 ]s[ 12 1 1 ]T - [1121]S[1121]T

- [2111]S[12 1 T - [121 1]s[2 1 11]T +2[1211]s[1211] - 2[1121 ] s[1211 ]T}

-1
6 [2111]s[1121]T + 2 [12 1 1]s[1 1 2 1]T + [112 1 ]s[2 1 11 ]T + 2[1121]s[1211]T}

6{ 2[2111]S[1211]T + 2[1 2 11 ]S[2 11 1 ]T + [12 1 1]S[1 2 11 ]T - [1121]s[1121]r }

162[2111]s[11211T - [1211]s[11211T + 2[1121]s[2211]T - [1121]S[1211]T}

- [1211]S[2111]T}

- [1121]S[2111]T}

- [1121]S[1211]T}

[32 1 1]ST =

[3121]S =

[1321]ST =

I{[211 1]S[1 2 1 1]T

2 {[2111]S[1121]T

I{[ 1211][11 21]T1r2

6.10 Notation

As in the previous chapter, in order to simplify the notation, we use q for spin, v for isospin

and f for the space part of the wavefunction. The superscripts on the q's, v's and f's rep-

resent the particular Young-Yamanouchi basis vector. The short-hand for the Yamanouchi

symbol is given in Table 6.2
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[1 11]=1 [2121]=6
[2 1 1]=2 [32 1 1]=7
[121 1]=3 [3121]=8
[1121] =4 [1321]=9
[2211]=5 [4 321] = 10

Table 6.2: Shorthand for four-particle Yamanouchi symbol

6.11 Spin Wavefunctions

As in the three-body case, let us define spin wavefunctions corresponding to various ms

values and permutation symmetries. We will denote them by q,s where the subscript

refers to the value of ms and the superscript labels the various Yamanouchi basis vectors

defined in Table 6.2.

6.11.1 ms = 2

VIT l

[1111 ]2 = a(1)a(2)a(3)a(4)

6.11.2 m = 1

fi---rl-1

[11111] =ql = -{a(1)a(2)a(3),8(4) + a(1)a(2)/3(3)a(4)

+ a(1),(2)a(3)a(4) + ]8(1)a(2)a(3)a(4))

E]

93



[2111] = q

[1211] =
1

ql = - 2a(

[1121], = ql

1
- {3a(1)a(2)a(3),8(4) - a(1),8(2)a(3)a(4)

- a(1)ao(2),8(3)a(4) - 8(1)a(2)a(3)a(4)}

1)a(2),8(3)a(4) - a(1),8(2)a(3)a(4) - /,(1)a(2)a(3)a(4)}

= -{a(1),8(2)a(3)a(4) - 8(1)a(2)a(3)a(4)}

6.11.3 m =O

1
[1111]o = ql )a(2),8(3),8(4) + a(1),8(2)a(3),8(4) + a(1),8(2),8(3)a(4)

+ 8(1)a(2)a(3),8(4) + 8(1)a(2),8(3)a(4) + 8(1),8(2)a(3)a(4)}

[2111] 0 = q2

[121110 = q3

-1
= {a(1)a(2),8(3),8(4) + a(1),8(2)a(3),8(4) +,8(1)a(2)a(3),8(4)

- 8(1 )8(2)a(3)a(4) - ,8(1)a(2),8(3)a(4) - a( 1 ),8(2),8(3)a(4)1

-1
= - {2a(1)a(2),8(3),8(4) - 2,8(1),8(2)a(3)a(4) - a(1),8(2)a(3),8(4)

- ,8(1)a(2)a(3),8(4) + a(1),8(2),8(3)a(4) + ,8(1)a(2),8(3)a(4)}
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[1121]0 = qo

[2211]1 = qo

[2121] = q6

-= {a(1),8(2)a(3)/f(4) - 8(1)a(2)a(3),8(4) + a(1),8(2),8(3)a(4)
2
-,8()a(2)f8(3)a(4)

1 {2a(1)a(2),8(3),8(4) + 2,8(1),8(2)a(3)a(4) - a(1),8(2)a(3),8(4)

- /8(1)a(2)a(3),8(4) - a(1),8(2),8(3)a(4) - ,8(1)a(2),8(3)a(4)}

1
= I{a(1),8(2)a(3),8(4) - 8(1)a(2)a(3),8(4) + /(1)a(2),8(3)a(4) -2

a(1),8(2)/3(3)a(4)}

6.11.4 ms =-1

= {a( 1 ),8(2),8(3),8(4) + /3(1)a(2),8(3),8(4) + ,8(1),8(2)a(3),8(4)

+ 8(1)/3(2),8(3)a(4)}

[2111]_1 = q 2
1

1
_ {38(1),8(2),8(3)a(4) - a(1),8(2),8(3)/3(4)

- 8(1)a(2),8(3),8(4) - 8(1),8(2)a(3),8(4)}
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[1211]_, = q3
1

{2/3(1)(2)a(3)/(4) - a(1)/3(2)/3(3)fi(4) - /3(1)a(2)/3(3)/8(4)}

[1121]_ = q4 =
-1

-{ a(1)fi(2)/3(3)/3(4) - /3(1)a(2)i(3)/3(4)}

6.11.5 ms = -2

[1111] 2 = q'-2 =/3(1),8(2)8(3)/3(4)

6.12 Isospin Wavefunctions

In a completely analogous way to the spin wavefunctions, we can define isospin wavefunc-

tions with the q's replaced by the v's.

6.13 Space Wavefunctions

Please note that the superscript is the Yamanouchi symbol from Table 6.2 and the subscript

refers to the row in the matrix representation.

mm

1
I [f(1234) + f(1243)

24
+ f(1324) + f(1432) + f(1423)

+ f(1342) + f(3214) + f(4231) + f(4213) + f(3241)

+ f(2134) + f(4132) + f(2431) + f(3124) + f(2314)

+ f(2143) + f(4123) + f(3412) + f(2341) + f(4321)

+ f(2413) + f(3142) + f(3421) + f(4312)]
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[f(1234) - f(1243) + f(1324) - If(1432) -f(1423)
24 [ l31 3 3 3

1 1 1 1- 3f(1342) + f(3214) - f(4231) - f(4213)- -f(3241)
3 3 3 3

1 1+ f(2134) - 3f(4132) - f(2431) + f(3124) + f(2314)
3 3

1 1 1 1 1- f(2143)- f(4123)- f(3412)- f(2341)- f(4321)
3 3 3 3 3
1 1 1 1

- f(2413)- f(3142)- f(3421)- f(4312
3 3 3 3 L+I]

-2 f(1243)- -- f(1432)+ -f(1423)- f(1342)
3 3 3 3

- -- f(4231) + f(4213)-

- f(2431) + -f(2143) +
3 3

- f(2341) - f(4321) +

- 3f(3421)- 3f(4312)

-f(3241)
3

-- f(4123)
3

<8f(2413)
3

- -Ff(4132)
3

- --f(3412)
3

f(3142)
3

-24-X [f(143 f(132) ) - f(4231) - f(3241) + f(4132)

- f(2431) + f(3412) - f(2341) - f(4321) + f(3142)

- f(3421) + f(4312)]
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234 3f(1243)- f(1432)-243 3 --- J
3

- --f(4231) - -f(4213) + f(T

- -f(2431) + 38f(2143)- -- f(Z

+ -8f(2341)- f(4321)- f(:

- -f(3421)- -f(4312)

23 f(1234) + f(1243) - f(1324) +
24 f( 2 3 2

c(1423) + -f(1342)
3

3241) - -f(4132)
3

1123)- -(2f(3412)
3

2413) + V-8f(3142)
3

5 1
-f(1432) - f(1423
6 6

1
-6(1342) - -f(3214) + -f(4231) - f(4213) - f(3241)
6 2 6 6 6

+ f(2134) + 5f(4132) + 5f(2431) - If(3124) - -f(2314)
6 6 2 2

1 1 2 1 2+ f(2143)- f(4123) - f(3412)- f(2341)- f(4321)
3 6 3 6 3
1 1 2 2-f(2413)- f(3142)- f(3421)- 2f(4312

6 6 ~ 3 3 L31 ]
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3 45 1 _ 1
= 234 - f(1324) + If(1432) + -f(1423) + If(1342)24 2 2 2V\

- 2 f(3214)- f(4231)- -f(4213)- 2f(3241)
+ f1 2 -F 2 2 -F3

+ If(4132)- If(2431)+ 3f(3124)- f(2314)
2-2'3 i-7\3 2 2

+ 2 f(4123)-

- 2 f(2413) +

- f(43 12 )

N/ *3 '

I 1
f(3412)- f(2341)+
,C3 2 V-3

1
-f(3142) +

f(4321)

1
-f(3421)

244 [f(1432) + f(1423) - f(4231) - f(4213) - f(4132) + f(2431)

- f(4123) + f(3412) - f(4321) + f(2413) + f(3421) - f(4312)]

3 V
234 2 f(1324)

- 23 f(3214)-

1
2- f(4132)-

2,V

1+ If(1432)+
2 y-3

1 
If(1423)+ -f(1342)

2V~F3- 2

1 1
2f(4231)- Xf(4213)-

2-\F- 2 f3

f(2431)- -f(3124)+
2 -\F 2

f(3241)

- f(2314)
2

1 1
- If(4123)- xf(3412)+ f(2341)2 V ~ 2

1 1 1~ I
+ f(4321) + f(2413) - -f(3142) - f(3421)

+ 3f(4312)]
-V-3-~~
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[2111]R = f



= - f(1234) + f(1324) +
24 2J~L~~ 

1
+ -f(3214) +

2

- f(4132)-
2--f(4123)-
2

If(4231) +
2

-f(2431) -
2

-f(2341) -
2

If(1432) +

-f(4213) +
1

f(3124) -

-f(2413)-
2

If(1423) +
2

If(1342)
2

If(3241) - f(2134)
2

-f(2314) - f(2143)
2

-f(3 142)1
2 J

24 f[(1234)

+ -f(1342)-
2

- f(1243) -
1 1
If(1324)- If(1432) +
2 2

If(1423)
2

2f(3214) - If(4231) + -f(4213) + f(3241)
2 2 2 2

1 1 1 2
+f(2134)- If(4132)- f(2431)- f(3124)- -f(2314)

2 2 2 2
(2143) + 1-f(2143) + -f(4123) + -f(2341)
2 2

1+ -f(2413) +
2

1f(3142)
2

= 34 f(1324)+ 2f(1432) - If(1423)- f(1342)24 2 2V3 2-J 2-- f(3214)-
2

1+ If(4132)-
2 V-3

1 1
f(4231) + 2f(4213) +

2- 2(3124)-

- f(2431)+ f(3124)-

-2 f(3241)

- f(2314)
2

- f(4123) + f(3412) + f(2341)- xf(4321)
2Vr3 V3 2 N~3

+ I-f(2413)
2 r3

- 2 f(3142) - If(3421) + If(4312)
2 -C3 NF3
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345
-24 3 [-f(1432) + f(1423) + f(4231) - f(4213) - f(4132) + f(2431)24 3
+ f(4123) + f(3412) - f(4321) - f(2413) - f(3421) + f(4312)]

234 -- f( 132 4) + f(1432)- -f(1423) - I/f(1342)

--f(3214)- f(4231)+ -f(4213) + If(3241)
2 i22V 2 2-F3-f(4132) + f(2431) - -f(3124) + -f(2314)

2V 2 2

+ 2 f(4123)+ If(3412)- If(2341)- If(4321)

- f(2413) + --f(3142)+ f(3421)- f(4312)
2 2V3

24 [f (1234) -
1--f(1342) +
6

If(1243) + If(1324) - -f(1432) - If(1423)
3 2 6 6

-f(3214)- -f(4231)- If(4213)- -f(3241)
2 6 6 6

5 5 1 1
-f(2134) + -f(4132)+ -f(2431)- -f(3124)- f(2314)

6 6 2 2
1 1 2 1 2

+ -f(2143) + -f(4123) - -f(3412) + -f(2341) - -f(4321)
3 6 3 6 3
1 1 2 2

+-f(2413) + -f(3142) + -f(3421) + -f(4312
6 6 3 3
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2--4 -f(1243)

- 2f(4231) +

+ -- f(2431)-
3

+ -- f(2341) +
3

- - f(3421)-
3

- -f(1432) +
3

- f(4213) - -
3

-f(2143)--

- f(4321)--

-f(4312)1
3

-8f(3241)
3

2f(4123)
3

3

+ -- f(4132)

+ --f(3412)
3

+ N8f(3142)
3

= 3- [-f(1432) + f(1342) + f(4231) - f(3241) + f(4132)- f(2431)
+ f(3412) + f(2341) - f(4321) - f(3142) + f(3421) - f(4312)]

2-3 8f(1243)- f(1432)- -f(1423)+ f(1342)2 3 3 3 3

- -2f(4231)-
3

+ 2 f(2431)-

- -2f(2341) +
3

-f(4213) + f(3241) + -f(4132)
3 3 3

-f(2143)
3

f(4321)
3

+ -- f(4123) +

+ --8f(2413)-
3

-f(3412)

-f(3142)
3

- -2f(3421)- f2(4312)
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3 r 1 1 124 [f(1234) + If(1243) - f(1324) + If(1432) - If(1423)

1 1 1 1
- -f(1342) - f(3214) + If(4231)- -f(4213) - f(3241)

3 3 3 3
1 1- f(2134) - -f(4132) - f(2431) + f(3124) + f(2314)
3 3

1 1 1 1 1- -f(2143) + -f(4123) - If(3412) + If(2341) - If(4321)
3 3 3 3 3
1 1 1 1 1+ If(2413) + If(3142) + If(3421) + f(4312)
3 3 3 3\L 1

2 rcl234) + t·l243) - I1
2 f(1234) + f(1243) - f(1324)-
24 L 2

If(1432) - 1f(1423)
2 2

1 1 1 1- (1342)- 2f(3214)- If(4231)- f(4213)- -f(3241)
2 2 2 2 2

1 1 1 1+ f(2134) - If(4132) - If(2431)- f(3124) - If(2314)
2 2 2 2
1 1+ f(2143) - If(4123) + f(3412) - f(2341) + f(4321)
2 2

1 1 

2f(2413)- f(3142) + f(3421) + f(4312)2 2~~~~~~~~~~~

- 22 N [f(1324) - f(1432) - f(1423) + f(1342) - f(3214) + f(4231)

+ f(4213) - f(3241) - f(4132) + f(2431) + f(3124) - f(2314)

- f(4123) - f(2341) + f(2413) + f(3142)]
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-22- [f(1324) - f(1432) + f(1423) - f(1342) - f(3214) + f(4231)
24 2

- f(4213) + f(3241) + f(4132) - f(2431) - f(3124)

+ f(2314) - f(4123) - f(2341) + f(2413) + f(3142)]

2 If(1234)

1
- f(1342)

2

- f(1243) + f(1324) + lf(1432) - f(1423)
2 2 2

+ f(3214
2

1
- f(2134) - If(4132)

2

1 1 1
$) + f(4231) - f(4213) - 1f(3241)

- f(2431)- l(3124)- 1 1(2314)
2 2 2

+ f(2143) + -f(4123) + f(3412) + f(2341) + f(4321)
2 2

1 1 1
+ f(2413) + f(3 142) - f(3421) - f(4312)I

1

24
[f(1234) - f(1243) - f(1324) - f(1432) + f(1423)

+ f(1342) - f(3214) - f(4231) + f(4213) + f(3241)

- f(2134) + f(4132) + f(2431) + f(3124) + f(2314)

+ f(2143) - f(4123) + f(3412) - f(2341) + f(4321)

- f(2413) - f(3142) - f(3421) - f(4312)]

6.14 Summary

In Table 6.3, the complete four-body nuclear wavefunctions are given. As in the three-

body case, q is used for spin, v for isospin and f for the space part of the wavefunction.
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S =2 T = 2 V = fqlvl
S = 2 T = 0V � = I{fqlv 6 _ f6 qlv 5)

S = 2 T = 1 V = {f7qlv 4 - fqlv3 + f9 qlv2}

S= T = 2 VI= {f5 q6v' -f 6q 5vj}

S = T = O = fPO I{q5v + q6V6}

p = {f()(q 5 v 6 + q6V5 ) - f6( )(q5v5 q6v6)}

= f( ){q5v6 - q6 v 5}

S = I T = 1 6V2 _ q6v 3 -q 5V4) _f 8 1(2q5v2 + q5v3 -q 6v 4)
S=0 T=I1 r3- 2

(q5V3 + q6 v 4)

- { f2 (-_q6v 3 + q5V4) - f3 (2q6v2 + + q6 5V4)+

f4(2q 5v2 _ q5V3 + q6v4)}

S = 1 T = 2 = -{f7 (q4v1) - f(q3vl1) + f(q 2vl)}

S = T = O - If1(2q2v6 -q3v6 -q4v5) -f8 (2q2v5+ q3v5-q4V6)=1P Pq , q - )--q + q 4v6 )+f9 (q v v + q4v6)
= $,1=fI (-q3V6 + q4V5) - f3½(2q2v6 + q3v6 + q4V)+

f4 1(2q2v5 _ q3v5 + q4 V6 )}

S = 1 T = 1 I = f' 0 (q 2v 2 + q3v3 + q4v4)

= f p (2q2V4 - q3 + 2q4V5 - q4v3)
_f6-(2q2 3 + 2q3v2 + q3v3 - q4V4)}

Vp = {f2 (q 3v4 - q4V3) - f3 (q2 4 - q4V2)

+f4 1(2v 3 _ q3v2)

f (2v4 + 2q3v4 + q4v2 + 2q4v3)

_f8 (-q2v3 _ q3v2 + 2q3v3 - 2q4v3)

+f9 (4q2v2 _ q3v3 - q4v4)}

Table 6.3: Complete four-body nuclear wavefunctions

The superscripts on the q's, v's and f's represent the particular Young-Yamanouchi basis

vector as defined in Table 6.2.

6.15 Atomic Wavefunctions

In a completely analogous way (it is much simpler, since we do not need to combine

Isospin), in Table 6.4, we write down the atomic wavefunctions (with the same defini-

tions of space and spin as for nuclear wavefunctions). It should be noted that this notation

105



Table 6.4: Complete four-body atomic wavefunctions

does not differentiate between the various Ms values.
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Chapter 7

Matrix Elements: First Attempt

In the first few chapters, we have used group theory for the systematic construction of few-

body nuclear wavefunctions. In this chapter we will use those wavefunctions to calculate

the matrix elements for the H-J potential. These matrix elements will eventually, in chapter

10, lead us to the coupled-channel equations.

As discussed in the introduction, systematic methods for calculating matrix elements of

one-body and two-body operators in the nuclear shell model were developed due to the

pioneering work of Racah, Jahn and others. Racah's approach, by giving special status

to the last two particles, achieves tremendous simplification for these matrix element cal-

culations. However, in the phonon-coupled model, we will use correlated wavefunctions.

Hence we wanted to explore whether it is possible to generalize Racah's method to arbi-

trary wavefunctions. The answer, as we will demonstrate, is unfortunately negative, and

retrospectively completely obvious: Racah's method is based on treating two nucleons as

special and there is no natural way for correlated wavefunctions to do so.

However, in order to see how far Racah's method can help us, we want to emulate it as

much as possible. So the natural scheme for us turns out to be

1. Use Racah's method on spin and isospin (since these are angular momentum eigen-

states). For this we need to expand our wavefunction in terms of a basis which has

explicit symmetry under the exchange of the last two particles.
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2. Leave our spatial functions in their original form.

3. Evaluate our matrix element, with the result given in terms of multidimensional spa-

tial integrals.

However, going through these calculations it will become obvious that such a method fails

completely for the H-J potential i.e. it cannot in principle be applied to H-J. However, even

if we were not dealing with H-J, we observe that

1. Since we cannot utilize the full power of Racah's method, there is no particular ad-

vantage in working with the last two particles.

2. In fact for variational correlated wavefunctions, it is much better to give special sta-

tus to the first two particles. This is a radical departure from Racah's established

approach of more than fifty years.

We will first write out the H-J potential in terms of Racah's irreducible tensor operators.

This simplifies the calculation of the two-body, two-particle matrix elements. These matrix

elements will also be utilized in the next two chapters.

7.1 H-J Potential

The Hamada-Johnston potential between nucleon 1 and nucleon 2 can be written in the

form

V = VC + VTS12 + VsL.S + VLLL12 (7.1)
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where

VC = Tl-T2 .O-2 yc(rl 2)

VT = l-T2YT(rl 2)

3(&.2 )(&2.)
12 - r 2

VLS

VLL

= YLS(r12)

= YLL(rl2)

12 = 61. 2

L = Li +L 2

S =
2

1- .L)(.L )2 2

The definitions of the y's are

= 0.083Y(x){1
3

= O.o8PZ(x){1
3

+ acY(x) + bcY2(x)}

+ aTY(x) + bTY2(x))

YLS(X) = GLsY2 (x){1 + bLsY(x)}

YLL(X) = PGLLX-2Z(x){1 + aLLY() + bLLY 2 (x)}

where the pion mass p = 139.4 = (1.415fm)- l and the nucleon mass M = 6.73P. The

inter-nucleon distance, x, is measured in #-1 and

e-x
Y(x) = _x

Z(x)
3 3

= (1+-+ -)Y(x)
x 2

The numerical values of the parameters are given in (using a hard core radius of xO = 0.343

in all the states) Table 7.1.
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state ac bc aT bT GLs bLs GLL aLL bLL
singlet even +8.7 +10.6 -0.000891 +0.2 -0.2
triplet odd -9.07 +3.48 -1.29 +0.55 +0.1961 -7.12 -0.000891 -7.26 +6.92
triplet even +6.0 -1.0 -0.5 +0.2 +0.0743 -0.1 +0.00267 +1.8 -0.4
singlet odd -8.0 +12.0 -0.00267 +2.0 +6.0

Table 7.1: Parameter values for H-J potential

7.2 H-J and Irreducible Tensor Operators

The form given above is not suitable for matrix element calculations since most of these

two-body potentials are not written as irreducible tensor operators. However this transfor-

mation to tensor operators can easily be made. This form was first published by Boersma

[6], who gives the nuclear force in terms of

Z[S[K] x V[K]][° ]

K

This notation is standard in the angular momentum literature [17] and is a succinct way

of using Clebsch-Gordan coefficients' to couple two tensor operators of rank K to give an

operator of rank 0.

We reproduce Table 12 from [6] as Table 7.2.

Interaction K S[K] V[K]

Vc 0 ((1).(2))((1).(2)) 1

VLS 1 ½ (o'l ] (1) + a;l](2)) L]

VT 1 2/(-(l1).(2)[)-(1) x 6-(2)]K y,[2

VL,2 0 2-(1).&(2) L.L

VL,2 2 -[5(1) x (2)][2] [L x L][2]

Table 7.2: H-J as irreducible tensor operators

In the next few subsections we verify that the Boersma definitions are consistent with

Hamada-Johnston.

'The usual SU(2) ones of angular momentum addition.
2Boersma uses &-(1) instead of &l etc.
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7.2.1 Vc

There is no need to modify this part, since it is given in the form of an irreducible tensor

operator.

7.2.2 VT

[21 [2]
The definitions of Sk and Vk] from Table 7.2 are

[2] = [ 2]
Sk = [4r rk
V[2] [2]Vk = Yk 2 6 r

In order to figure out what S 21is, we need to use Clebsch-GordanIn order to figure out what Si is, we need to use Clebsch-Gordan coefficients (in the usual

way we add angular momentum). Explicitly,

S[2 X V[2]] [0]
00 , [2] [2] 00 [2 [2 ,0,0 [21 [2]

- C2-2;2,2S-2V2 + C1,-l;11S-Vi] + CIoI,OS V
0o0 [1] [1] 0,0o [2] [21

+CI:I;I,-1 s'I V-1 + Ci:2 ;2,-2 2 V-2

= 3(& )(A' ) -

l,,n
where the Ci, ;12, m2 are the Clebsch-Gordan coefficients. This is exactly the form as written

out in the H-J Hamiltonian.

7.2.3 VLS

Using

P]'Si

1]
Vi

i r-[1] [2)
= -V3( + 

2

=L1]
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we can see that

PO,[ 1] [1] 00 [1] II]

oo [1, [1]
+Ci;1,-sil V-1

= -i&.L

There seems to be a discrepancy of -i between the Hamada-Johnston result and Boersma's

tensor operators: we have not found a way to resolve it, and believe that Boersma probably

included this factor in his definition of YLS. For our calculations, we will be using the H-J

definition, since it is well-established and widely used.

7.2.4 VLL

There are two components of VLL. One is the K = 0 and the other is the K = 2 component.

The 0 component is very simple and the 2 component is analogous to the tensor force, VT.

The K = 0 component is

[0]
so

[0]
V0

2 -
= §qC1.o-2

= L.L

Hence [S[0° x V[°]][01 = 2&l.2L.L.

For the K = 2 component, using

[2]
Sk

[2]
Vk

= [xL] 21

= [L X L][2 1
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after a brief calculation we get

1[S [2] X V[2]] [0] 1 )L2
2 ( L)(2.'cL + (2L)(dL)}

Adding the 0 and the 2 components we get

&r Ir - 2 ((c.£)(r.£) + (2.L)(~.£))2·~ ~ +

exactly as in the H-J Hamiltonian.

7.3 Two-body Matrix Elements

Since we have expressed our potential as a linear combination of irreducible tensor opera-

tors, two-body matrix elements can easily be calculated. We only calculate the spin matrix

elements since, as the calculation in subsection 7.3.1 will show, that the l ' ?2 is a diagonal

operator with values -1 or 3. The results of these subsections are important and will also

be utilized in the next two chapters.

7.3.1 Vc

We want to evaluate

1 1 1

(1 - 2 2 -= 2 S MSi.dIs2S = 22 = 2' S Ms ) =

s; s 1I (Sl Ill lS )(S211lI2)(S,S 6MSMs, (7.2)

Using Wigner-Eckart, we can easily see that

(S = a11~1lls, = = 62 2
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Plugging this value into Equation 7.2, we get the result that for S = 0 (hence S' = 0),

1 1
(S = 1,S= 2

1 ' 2 2 2'
1 , I

sI Ms ,I4ls &2 1s =' s2 2', M,) =-3

And for S = 1 (hence S' = 1)

1 1
(sI =2 S2 = ' S, MI&.6c2lsl =

1

2
1

2' MMs) 'Ms'

7.3.2 VT

We want to evaluate

X r12
] (2)(s ='1 1

2' 2 2 5'
st =1 S, 1
IsI 2= ,2 2 5, MS), zrJlSIJ 2

12

In order to calculate this matrix element, we need to know

1 1 MSI[I x 2)
%1 2 = , M, [ x m I

SMs
CS',Ms, ;2,m

(S
~~/2S;I~~~

1 1

2 2=. S1[

1 1
2, S2 =2'

x 2]2)Is; =

One can easily evaluate

= S2 = SII[&l x G-2](2)lls = 2 =

1 1
2 2

V(2S + 1) (2 x 2 + 1)(2S' + 1) I 

1 1

-s) =

S
1 2

S' ( I1"11)2

2

Putting everything together, we find that the Equation 7.3 is non-zero only for S = S' = 1.

The matrix elements are given in Table 7.3.
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S', MS) =

1
S' 22' 2

= _s2) (7.4)

v Af [ X &(2)I V12
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M M (S = 1, MS21S' = 1, MS,)
-1 -1 2z2

-x
2 - ?

-1 0 /3- (x+iY)z

O 1 3 ~(x+iy)z
1 1 2z2-x2..9

Table 7.3: S2 Matrix Elements

M Ma (S = 1, MSILSIS' = 1, M)
-1 -1 -L
-1 0 L-

-1 1 O

0 1 L

1 1 2L

Table 7.4: L.S Matrix ElementsTable 7.4: L. Matrix Elements

7.3.3 VLS

Taking S = "2 , we want to get the matrix elements of L.S. Again the non-zero coupling

is only between S = S' = 1. The matrix elements are given in Table 7.4.

7.3.4 VLL

The operator is

0= 3 L2 + [-2[(1) x (2)]x x L(2)]

Since the first part resembles Vc and the second VT, the details of the matrix element calcu-

lation are very similar to the Vc and VT matrix elements which we have already calculated.
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M M (S = 1, MslOS' = , M s, )
-1 -1 L2 + L2

-1 0o 1[L+L + LL +]
-1 1 -L 2

0 0 2L2
o 1 - [L+LZ + LzL+]

1 1 L2 + L 2

Table 7.5: L 12 Matrix Elements

The only non-zero coupling is for S = S' = 1 or for S = S' = 0. For S = 0,

(S = O, M s= OOIS = 0, M = 0) = -2L 2 (7.5)

The results are given in Table 7.5 for S = 1.

7.4 Standard Approach of Matrix Element Evaluation

In this section we describe the standard way of evaluating two-body matrix elements. This

method was developed for shell-model calculations and is most effective when it is used on

angular momentum eigenstates.

The first observation that we make is that the potential is completely symmetric, and the

wavefunctions are completely antisymmetric under the exchange of any two particles. This

allows us to prove the following lemma:

Lemma. If and 0 are completely antisymmetric, then

(1 E Vijl) = n(n - 1)(Vpq
2 <i<vj_ I

where 1 < p < q < n.

Proof It will be sufficient to show that all the terms in the sum Z1<i<j:n(lijl1) are equal.
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Suppose P is the operator which permutes particle labels 2 and 3, leaving 1 fixed. Then

(lIVl2l0> = (pP-1 PV 12P'Pk l )

= (-lVIV31 - )

- (lV 13 q10)

Because of this lemma, our work reduces by a factor of 3 for the three-body calculation and

a factor of 6 for the four-body one. Note that this argument depends only on the symmetry

properties of the operators and wavefunctions and has nothing to do with the shell model.

Hence this lemma will hold in our case as well. While this is a significant simplification,

the task ahead is still quite daunting.

Let us suppose that we can expand our completely antisymmetric n-particle wavefunction

as a linear superposition of products of n - 2 particle wavefunctions, In,-2, and two-particle

functions, '12, i.e.

n = £(afln-2(a)
a,8

'1', = £ tvn-~2(8)wV ) (7.6)

where Tn-2 is completely antisymmetric under the exchange of the coordinates of the first

n - 2 particles, and 2 is antisymmetric under the exchange of the coordinates of the last

2 particles. This dramatically simplifies the matrix element calculation because V,,_,, only

acts on the last two coordinates i.e.

(¶nlVn-lnlPn) = £ av('n- 2 (a)IPn- 2(')) ('12()Vl1'2(v))

This is the basic idea of Racah's method. It reduces the matrix element of a two-body

operator with antisymmetric n-particle wavefunctions to calculating simple dot products

and two-body matrix elements with two-body wavefunctions. In this approach, all the
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work is done in calculating the coefficients ,,/B and ,,v in Equation 7.6. These are called the

coefficients offractional parentage. Instead of showing how to calculate these coefficients,

we refer the reader to Appendix B, chapter 7 of [54] and the rather detailed papers by Jahn

and others [25, 48, 49]. Briefly, however, the basic method is to write each space, spin and

isospin wavefunction as a linear combination of products of functions of n - 2 particles and

2 particles e.g. using V/ for space, we would write,

= Z CjIn-2~l/2

where c are some coefficients, kn4-2 is an n - 2 particle wavefunction which transforms

according to the jth irreducible representation of S(n - 2) and '24 is symmetric or anti-

symmetric under the exchange of the last two particles. Even without going into details

of how these coefficients are calculated, we can see that for arbitrary correlated spatial

wavefunctions, there cannot be any meaningful expansion in terms of wavefunctions that

are antisymmetric in the first n - 2 and last 2 particles. Hence we conclude that Racah's

method cannot be generalized to arbitrary wavefunctions.

7.5 New Wavefunctions

We know from the previous section that Racah's method will not be completely applicable

in our case. However, for our first attempt, we still try to follow the classical method as

much as possible. As explained above, this means that only for spin and isospin wavefunc-

tions, we will assign special symmetry properties to the last two particles.

Note that we are not defining new wavefunctions, but merely expanding them in a basis

of functions that have explicit symmetry under permutations of the last two particles. For

the three-body problem only the T = state corresponds to physically observed particles.

While the notation used in chapters 4 and 5 was convenient for the purposes of enumeration,

it is not convenient for the purposes of calculation of matrix elements. Using Vf for space,

0 for spin and F for isospin, and denoting the Yamanouchi symbol in parentheses, we can
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see from chapter 4 that the relevant wavefunctions are

1
= (111) [(211)r(121) - 0(121)r(211)]

1
2 = 0(321) [O(211)F(211) + 0(121)r(121)]

1
13 = -- (211) [(211)r(121) + 0(121)r(211)]

2

-1 (121) [(21 1)r(211) - 0(121)r(121)]

1
4 = X[V(211)O(111)r(121) - q(121)0(111)F(211)]

These spin and isospin wavefunctions have no particular symmetry under the exchange of

particles 2 and 3. However we can define two new wavefunctions i.e.

1 1 1 1(1 21) = (Sa = 2 b = 2 = 2(Sbc = 1), S = MS)4(21)= (a =, Sb = 2Sc =(S 2 = 2 

where the O's are constructed by vector coupling sa to SbC3 . By an explicit calculation we

can see that 0(121) is symmetric and 0(121) is antisymmetric under the exchange of the

last two particles. Now we need to expand our spin/isospin functions with the Yamanouchi

symbol 211 or 121 in terms of the 0(121) and 0(21). The details of this computation are

given in Appendix B. The results are

0(121) = 0(121)- 20(121)
2 2

1 3 -
b(211) = 20(121)+ -2 (121)

Using this expansion we can rewrite our wavefunctions as

3Sb, is the spin obtained by coupling Sb to s,..
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I= (111)-I [O(f2 1)r(l21) - 0(121)r(21) ]

' = t,(321)- [q(121)r(121) + q(f21)r(f21)]

= (211) [0(21)F(f-21) - 0(f21)F(121) - 0(121)F(121) - -F-(21)F1(21)]

-(121(1(121(121)+ -(121)F(121)+ -3(121)r(1f21)-
2 2 2 2

1 _()F(-21)

7.6 [¢(211)0(11 )r(121) - (1Exampl21)(11 )r(2)]

7.6 An Example

We can calculate matrix elements in both the old basis and the new basis. Because of the

Lemma in section 7.4, we know that

(%ilO12I'j) = (i[0231j)

To see this explicitly let us concretely work out a particular case e.g. (? I1 .7i2S12IT4) and

compare it to ( 1I2.) 3S2 31'P4 ). Using our wavefunctions and Appendix B, we easily see

that

(,I IlT 32S 1 2 YTIq 4 )

( 172' 73S23YT IT 4 )

= -2 V( 11(0(211 1)IS 2YTIO(111))k(121)

= -- f f(111 )((121)IS 23YTIl(1 11))q(211) -

4 3 q(1 1 1)(cp(121)IS23YTrI0(1 11))Ol(121 )

Ostensibly they do not seem equal. However, let us look at a concrete case. Say Ms = 
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and M = 2. Then4

= 22 z2 11) 12YT(r12)V(211)2~~ JIY(111) X12

= f4 j (l 1l)X2 Y 23 23YT(r23)/(21 1)-

X Z(111)23YT(r23)lb(121)
4

(7.7)

However we can expand ¢(211) and ¢(121) as

1
(211) = 1/

2 + 2

1
f(121) = -

2 2

where s = symmetric and a = antisymmetric refer to the symmetry under the 2 - 3 trans-

position. Using the fact that due to symmetry only f will couple to i, we come to the

conclusion that

3= f6 VR(l) 11) 3 + Y23 2Y

2 r23

We now see that apart from an insignificant overall phase factor the two matrix elements

are the same.

This example was very illustrative. We have learnt that, for correlated functions, it is

immaterial which two particles we choose to make special. However it is critical that

we choose the same two particles for the space, spin and isospin parts of the wavefunction.

If we do not, then we get a spurious coupling between q/(111) and A&a, which in general,

4Equation 7.7 clearly shows, why this method does not make sense for the H-J. The problem is that the YT

in the H-J has hidden superscripts which tell us whether the matrix element is to be calculated with respect
to even-triplet, even-singlet, odd-triplet or odd-singlet states. However, for the 2.'T3S23 case, we can see that
there is non-zero coupling between odd and even states. Hence practically speaking, we would not know
which value of YT to use.

121

(T I (MSY�l -�APF4(MS

(T I (MSO�2-�3SBIqVMS

(qj I (MSO�2-;�A3 lq'4(MS



complicates the computation. However, for H-J, this coupling leads to an even more serious

problem: it leads to ambiguities because of the form (even-singlet etc.) of the H-J and we

cannot calculate the matrix element.

7.7 An Observation

Historically, in this field, the expansion has always been done in the last two particles.

This was probably been done for two reasons, one of which is fundamental and the other,

probably conventional.

* Physically it was natural to think about the many-electron (or many-nucleon) prob-

lem as building up the shells by putting in one electron (or nucleon) at a time. This

naturally leads to the particle numbering in which the last particles were in the outer

shells. This we believe to be a conventional reason.

* However, there is a deeper reason why it makes sense to use this numbering. In

Appendix B and the references cited there, we can see that for uncorrelated spatial

wavefunctions (e.g. shell model wavefunctions), to utilize the full power of Racah's

method, we need Racah's factorization Lemma. This lemma only makes sense if we

treat the last two nucleons as special.

However in our case, since we cannot use Racah's Lemma, it is better for us to expand

in the first two coordinates. The reason for choosing the first two particles is that given a

function f corresponding to any Yamanouchi symbol Y, f is always either symmetric or

antisymmetric under the exchange of the first two particles (because 1 always has to appear

in the left-most top-most box and 2 has to be adjacent to it. And in a Yamanouchi symbol,

when two consecutive integers appear in consecutive rows (and the same column) they are

antisymmetric and when they appear in consecutive columns (and the same row) they are

symmetric). This approach has the advantage that we do not have to do any work on our

original wavefunctions.

We have learnt four important lessons from this chapter:
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1. We should keep our symmetries consistent.

2. If we do nothing to our spatial wavefunctions, because of the way they were con-

structed, they will be symmetric or antisymmetric under the exchange of the first two

particles.

3. Since we are not using the classical method, it is not advisable to transform all the

wavefunctions into being symmetric or antisymmetric under the exchange of last two

particles. We are better off using our original wavefunctions.

4. Because we will be taking our matrix element with the V12 operators, expressing our

wavefunctions in terms of singlets or triplets, made up by coupling particles 1 and 2,

will make our computations easier.

We will apply these ideas in the next two chapters to calculate our matrix elements.
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Chapter 8

Three-body Matrix Elements

From the last chapter, we know that since our wavefunctions are arbitrary, we will not be

able to utilize the full power of Racah's method. However, we will get some simplifications

due to our approach: symmetry will prevent the coupling of symmetric and antisymmetric

states. As noted in the last chapter, we should rewrite our wavefunctions so that the cou-

pling is between particles 1 and 2. This will make the computation much easier. We will

then calculate the three-body matrix element in two steps:

1. First, we only calculate the isospin part of the matrix element. In this step we can

use the fact that V 2 is symmetric under the exchange of 1 and 2, so there can be no

coupling between symmetric and antisymmetric states'.

2. We then tabulate the results for the spin matrix elements.

The results of Step 1 are multi-dimensional spatial integrals of spin matrix elements. We

can use the spin matrix elements from Step 2, to reduce the results of Step 1 to multi-

dimensional spatial integrals. This approach was followed because there are two classes

of operators in the H-J potential: those with ?1.72. dependence and those with no isospin

dependence. From section 7.3 we know that ?1.72 is a diagonal operator with a value -3

for a singlet and +1 for a triplet. Hence, it is convenient to remove the isospin dependence

1This is a direct consequence of the Wigner-Eckart theorem applied to the symmetric group. It can also
be seen directly since there are only two representations of S(2).
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from the matrix elements first. The spin matrix elements are also not difficult to evaluate

since we have expanded our spin wavefunctions in terms of singlets and triplets made from

particles 1 and 2. Hence, we can use our two-body results from section 7.3 to compute the

matrix elements. These calculations can be done by hand but get to be somewhat tedious.

We checked these calculations by using Mathematica.

8.1 Three-body Wavefunctions

For our applications, we are only interested in the T = state. Using

0(211)

0(121)

0(111)

F(211)

r(121)

¢(111)

¢l(321)

¢f(21 1)

¢(121)

= a

= aa

= S

/= a

= s

= {a

as our new shorthand, we can rewrite our wavefunctions as

S= 2

-1
't2 = _1 [s + aa]

1 1

13 = - I[/s ['Sfl a + 'afls] IV a [l s - af a]
2 2
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S3

2 M [ri3 las]

8.2 Matrix Elements

In the Hamada-Johnston potential the operators are either of the form ?,.#20 or just 0, where

0 has no dependence on the isospin variables.

8.2.1 Isospin dependent matrix elements

(I (Ms, MTW)I.201'pl (MS, MI)) =

1 f i [3yet(aasll) + yes(aalolaa)] t 6
MT,M

2 u.L-''5MTVUr U VMT/'M~

= 0

('I1 (MS, MT)I0l .201'IF3(MS, MI)) =

21 I bF* [3yetr(aSIlOlcS) + yes (taOIQta)] ObS6MM

( (MS, MT)1il ?2 91~'4(MS, MI)) =

-- f ye (agS[)tpS Mr.M.
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(I 2(MS, MT)I"l* 2ol' 2(MS, M)) =

I f g* [yO-t(fa'l-S) 3y°S(aal101a)] t6Mr M

(J2(Ms, MT)IlI? 2 II 4 (M s, M;)) =

_1 I t} yt (a 11)~" ,M'2 Tm

( 3 (MS, MT)Il. 20 IT3(Ms , M;)) =

1 f is* [_3yet(aSlOlaS) + yeS(alola)] 'pSTsm +

I Ha* [yOt(taslOlaS) - 3y°S(aalOlaa)] a MrM

(' 3(Ms, MT)I, .T2004(Ms, gM)) =

2X/' J s*yet (asO )tMr' MT + X f a*Y (aI ) M'MT
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(q 4(MS, MT)IFl .201' 4(MS , MI)) =

-2 - (ye /01)'MT M' + 2 y (/1IOI/ MMT,J Tr'Cv"ClswsV 2 JTJ

8.2.2 Isospin independent matrix elements

(T'J (Ms, MT)IOIl't (MIS, MI)) =

1 f * [yet(a1sOias) + ye (a 101Oa)1 ]S MTM

2TMT

= 0

(lI (MS, MT)lOIt 3(M, M;) =

2I1 f>* [yet(aslO[as) _ yes(alO11 ao)] 'm
5 MTM

(Iw' (Ms, MT)IOI'4(MS, M;)) =

4 f Y (aI1)q M

(' 2(MS, MT)IOIT2(M, MI)) =

2fI y* [Y (asllOas) + yO (alOlaa)] ¢S6 mT,MM
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(I 2(MS, MT)IOI' 3(MS, M)) =

2- 2 f * [yOt (oaSOlS) - yO(ao0la)] MMT

(P2(Ms, MT)IOI''4(MS, M)) =

y Sl 6M

(I 3(MS, MT)IlOI'3(MS, M)) =

4 ~J [Y e I(alOlas)+ yes (aall a)] V 6 MT,M~ +

J1 f * [yOt(aSlOlaS) + y°S(aalola a)] 65 MTMT4TMT

Q(F(MS' MT)IOII4(MS, M;)) =

1I f ,*yet(slO)¢s.M M s +2x / 2 04M 2_2f Va*y t (aSI Oi)qa6MrM, 

(I' 4(MS, MT)IOI' 4(M, M;)) =

2I fs*ye t(-1O/)/6 - ,m + I

Thus, in order to evaluate these matrix elements, we need to know the various spin matrix

elements, which are tabulated in the next section.
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8.3 Spin Matrix Elements

We know that the first two particles can couple to form a singlet or a triplet. Hence, we can

rewrite our wavefunctions of chapter 5 as 2

= fIS= ,Ms= 1)

= -IS = 1, Ms

1Is

=0)! -IS
3

= 1, Ms = ) t

= , M = -1) 

= 5=0)1'

= 15=0).!

= IS=1, M =1)1

- Is

3is

= 1, M s = 0) t

= 1, Ms= 0) 

+ -IS = 1, M = 1) $

+ IS = 1, M = -1) 

0(-2 ) = IS = 1, Ms = -1 )

Now we can simply evaluate these three-body matrix elements3 in terms of the two-body

matrix elements of the last chapter. The results are

2Since isospin is completely analogous to spin, we do not explicitly rewrite the isospin part.
3In the following formulas we skip the S label in the triplet state i.e. IS = 1, Ms) = IMs) but write down

all the quantum numbers for the singlet case.
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(a'"( I)ll21as( ))2 12

2 2(a1( 3 , ( 

(as( )1 210(-))2 2

1 1(aS( )lOl 2 ( 2))2 2))

(S( )1 1210(- ))

(a'(- )10121a'(- I))

2 1 3
(aS(- 1012l1( ))

(as(- )lO1phi( ))2 12 2

1 aI

(a"( )lO12a ())2 2

2 1

= 3(10ll21) + 3(Oll2O)

13(l1l210) + 3(l121 - 1)= - (0101211)
_ v

= 3 (ll211)- 3 (01i210)

= (1101210)- (010121- 1)

= (11021 - 1

3 2
= -(0101210) + -(-1012- 1)

2 13 3= -(-1101210) + (Ol21 )3 3

= 3 (Ol1210)- 3(-11121 - 1)

1
= 0(olo,21 - 1)

(S= O, M = 1021S = , M s = 0)
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(a( - )l 121 ( ))
2 2
1 1

(aa(- )10121oa(- ))
2 2

(0(2)1121b( 2 ))

-3 -
(( )101210(-2))

-3)

= 

= (S = O, M = 1021S = O, Ms = O)

= (1101211)

= V (1I01210)

1

=- ,(lll21 - 1)

= 0

_1 -1
()02kb())

-1 - 12 2

-1) 1( 1

O2 l0(2))

2
= (01210) +

= 3 (010121 -=
1

= -_.(110121 -

1
3(11012 l1)

1) + -- (1101210)
3

- I 1
(0(-2)l1210(- 2))

2 2

2 2

(~(-3)1012l0(-3))
2 2

=- 3 (101210) + 3(-11012 1 - 1)

-(010121 - 1)

= (-110121 - 1)
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Chapter 9

Four-body Matrix Elements

In this chapter we will summarize our results for the four-body matrix elements. These

are completely new results. The wavefunctions used will be from chapter 6, since these

functions naturally have appropriate symmetry properties under the exchange of particles

1 and 2.

4 He has T = 0. This is the case that we will be dealing with here. For the evaluation of the

matrix elements, we repeat the techniques of chapter 8. Namely, we will first expand our

spin/isospin wavefunctions (which have special properties under 1 -= 2), in terms of a basis

in which the first two particles are coupled to form singlets and triplets. We then calculate

the four-body matrix element in two steps

1. Evaluate the isospin dependent matrix element first.

2. Tabulate the results for the spin matrix elements.

9.1 Four-body Wavefunctions

Using the shorthand that

0(2211,M = ) = as
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0(2121, M s = O) = a

0(2111, MS) = aS(Ms)

o(1211, Ms) = 3S(Ms)

o(1121, Ms) = ya(Ms)

0(1111, Ms) = O(ms)

F(2 211,MT = 0 ) = FS

F(2121, M = 0) = Fa

F(llll,MT) = F

we see that the T = 0 wavefunctions are

S=O

1
l = ¢(1111)I [pSra - pars]

~2 = ¢(4321)- [sFs + aa]

1 s1I

T3 = --2(2211) [OsrF + ar] - -@(2121) [Spr - Oara]
2 2

S=1

Y, I 'A(21f1) [fsa- y+/] + YA +

4 =2 (32 11) [/ia ra -y r ] -

(31211) [V[asFa +/3srF yrsa] +

1
2q-f(1321) [-rTsP8ya-]
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S=2

6 = i1 [ 1(2211)ra - (2121)Or]

9.2 Matrix Elements

As with the three-body case, we use the observation that the nuclear force operators are of

two types i.e. they are either of the form T1.T2 01 2 or 012 where 012 depends on the spatial

and spin parts only.

9.2.1 Isospin dependent matrix elements

Using V = ?I. l?2, we can write down the matrix elements (dropping the subscripts on 0.

('P 1I 2W211)
1 f* [ 3 yet (slOIsS) + yes(aloioIa)] 
2

= 0

(P I1 1 .'T20 121T3) 2-'-J @-* [ 3 et(slOIsl ) - yeS(al l0 a)] 2 -\_2 f

3;* [-3ye t(<,slOls) + yes(alOIya)] Vf(21 11)

r * [ 3-\y yet(cSIlOs) - 3yet(<oslOls) _ yes(¢jraloiya) (1211)
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2 J i [32y (etslOlas) + 3yet slos)]f(3211)

+ o' f *y es(alOla)Vf(321 1)

(1" IT1 ."20 12Il'6)

(211T 2012 12)

= _ *Vye, [3(1psj01)] (2211)

= J Vf(4321)* [yot(slOI/s) - 3yos(balloIqa)]¢ (4321)

2\ /2f I(4321)* [yOt(0SIrOs) + 3y°S(qalIca)] f(2121)

(,P21T 1 .T2 0 12 1'J'4 )

( 2171'r2012l" 5 )

- I / (4321)* [ -yOt(0SIOlaS) + yt(0BSIlfS) + 3yos(alOlya)] (1121)

- f (4321)* [yOt(SlOlIs) + yot (cSIOI/S) + 3y°S(aOya)] r(3121)

I f +(4321)* [yot(SlOI/3s) - 3y°s(OalOlya )] (1321)

? 2 T1'T2021'2 I 6 ) = 2 - 0(4321)* [y-yOS(ps101)] f(2121)2If
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1 re~soo)+ e~aoo)
= J qb(2211) [3ye t (c/SlOIqS) + yes(calOqa]f (221 1)

1 2
+ ¢i(2121Y' [yo(Sl0sObs) - 3yoS(oalOICpa)] ¢t(2121)

4I

1

2Ai
1

4
1

4 -3

-1

4W3
1

+-
4<7

f (2211)* [-3yet(Pslo/s) _ yeS(palOly) )] ¢f(21 11) -

S ¢(2211)* [ -3/yet(OS5[siS) - 3yet'(s 1,s) + yes(Oallya)] @(1211) -

f f(2121) [-iyt(sIlOas) + yt ( pSOfls) - 3y°(OalOlya)] f(1121)

S f(221 1) I-3yet V(sl0Oas) + 3yet (Osl 128) - yes(kalolya1)] /(3211)

j (2121)* [2yet (sOlls) +yet (slOls) _ 3yes(Palsoya)] f#(3121)

-2- f(2121)* [yot(SIlOl,8s) + 3yos(alOlya)]¢ (1321)

f(2211)* [-3y et(csllo)] (2211) +
1

2W\

2I1
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1 ye, (Os Co ps) +yes ( 6 J [(2111)* [3yet(soI/S) + yeS(Oya)] ¢(2111) +

6X/- f 2- (2111)* [-3 y 1- 3y ) - yes)y yal @ (121 1) +

6 f -it s(1211)* [_ 3Vyet( asjIos) - 3yetqs.Iols) -yes(YaIOYa)] Vf(21 11)

+ A f q(1211)* [63yet(aslOIas) - 3yesIy1s) - 3yet(aslOs)

- 3\yetslslaS) + ye(yalOlIya)] i(121 1) + A (1 121)* [2y°t(SOlIaS)+

yOt S1il[/3S) _ V*yOt(.Sli3S _ 'yOt(SloiaS) - 3yOS(ylaly)] ¢(1121)

('' 4 171 .I'2 012 1O5 ) 6 f (2111) [-3-y (et SlOla )+ 3Y (et1IOlS)+ yes(yallya)] (3211) +

12 J V(1211)i [-6yt(asOlItas) + 3yet 3sSlOlls) + 3 /2yet(aslO1s ) --

3 -2yet,(sllas) _ yeS(yalOlya)]¢ (3211)- f
YOt(11S) - /yOt(aSI1/sls) + V2yot(SlOlaS) - 3y°S(lyalya)] @(3121) +

6I f (1121)* [- (syOt(S) + y t i/3s 01s) + 3yos(ya4Oly)] (1321)

2 4
¢f(2111)* [-3 yet(3sj0O)] ¢(2211) +

qf(1211)* [-3 -yet (aslOl) - 3yet1|0|1)] ¢f(2211) +

V(1121)* [yotV(asI) - y°'tSIJI)] ¢(2121)
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( 5 T1. T 2 0 12 145) = 2 [(3211) -6yet(aS0&) - 3 yet(BSlols) + 3f\yet(oAOs[3s)+

3fyet(3BSlIOas) + y( )] (3211)(3121)* [2y (aIOl Ia)+

yt(/3lO/Ss) + \y(siOlB/s) + yt/2(8slOlas) - 3yS(ylOo)] I](3121)-

[i2yot (SlOI3s) + yO° l sls3 ) + 3y°S(y'1lyl)] ¢/(1321) -

[VIJyotqSlltas) + yo°tSslolBs) + 3yoS(yalOly))] ¢(3121) +

6W2 ¢(3121)*

6W if(1321)*
6 (1321)* [yI

1

2 -C

(B3SIO) - 3yS(y0ll1)] ¢(1321)

f(3211)* [-3-yet(asIolj + 3yetG(IlSlO)] (2211) -

[--Vy°t(aqslSO - y 1°' slo1)] f(2121) +
2V6 f(3121)*

=- f (2211) [ e ¢(2211) +
2

4 f(2121)* [yo(tl01)] ¢(2121)

9.2.2 Isospin independent matrix elements

- j f , [yet ( sloiS) + yeS(q0,alOa)] -2 VIV
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= 0

= - 2 f * [yet (s0oleo) - yeS(oalloa)] sks2 -\F2*

I2 ifS * [yet (sloIls) + yeS(palOlOya)] ¢(2111)
2/-5V'

-* [yet 2(,slOIos) + yet ( bSlOI38s) _ yes{(alOla)] tp(1211)

I/ -*6 [JV2yt (Sll0a's) _ yet (0l s/3s)] V'(3211)

- r7*L qf YeqPl) (3211)

2Vf

2¥6 J

= 2 f* [y ¢e(lel>]¢ (2211)

= 2f f(4321)* [y t( 10loiq) + yS(alIoa)1 )] f(4321)
2

[yot(OpslOslP) - y°S(Oall a)] f(2121)
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2

2Wr
f (4321)*

(T 10121' 2)

21
(T% 101215)
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(T?)IPP3 �



(T 2 10121P4 )

(P 2 1012 '5)

2'S J (4321)* [-V 2y(0l101oa) + y o(Sl1O/3s) - yos(qaloly)] V(1121)

i2V 0(4321) V2Y°'(CslOlas) + Yt(sSlO/3s) yoS(01ala)] f(3121) +

2 f 0(4321)* [yo(c1sio18s) + yS(Opaloly)] V(1321)

(P210 12 1P6 )

(P 3 1012 1P3 )

= ifr2J

4= - q(2211)* [yet ( sioslO)s +y es( alo la)] (2211)

+ (21 21) [y(Sl 1OI) + y(lO) a)]s(2121 )+- I qb(2121y'ly ]lsol) + YolaI ) 1 I/I(2121)4J

1 [Ve 1 oslolgs) _rr - . es 1sioly=- - X (2211) [Y (c 1l1/3) - Y(~b1l1l )] ¢(2111) -

f (221 )* [-ye t(qslOlas) + yet'(,slOl/s) + yes(alOlya)] (1211) -

4-3 I(2211)* [-V20yt (sIojs) + yo(5s5IoI/) + yo(oa1r)] V/i(1121)
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-J= (22 1) [yet(0bsIoiy ) yet y e S( - yalOIya)] (3211)

+4 t/(2121)" [v2y(00i1a 5) + y t(okl0113) + yos(aOIya)] V(3121)

4- X3 (2121)* [y((p1oF) - yo( lI)] -(1321)

(1310121'6)
=- X2/2 I (2211)* [yet(0slO0)] f(2211) +

2 VI(2121)* [yot(oslO)] @(2121)

= r (21 11* [yet(sllI/38s) + yes(yalOlya)] i(2111) +

(211 1)* [2yet SlOlaS) + et 3sllIs) yeS(al)] (1211) +

(1211)* [2yet(lso3s) + yet 3sl01/s) - yeyalOlya)] (2111) +

if1 ~~ C

yeS(yalOlya)] V(1211) + 1- ¢,(1121)* [2y°t(aSlOlas)+ y°t (OsB1/3s)-

x/yOt(asl3sa - Vyot (/3SIOlas) + y°S(yalOy1a)] @(1121)
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6 f(2111)* [lyetBsllsas) - yetQsloI/3s) + yes(y)] 1) +6Vr 0\2q(211 I'[~ ~o& i311)*+

12 f if(1211)* [2y (Oas 1Oas) - Y et 1 I - Lyet (asI0) +

yes(yaiy101)] q'(3211)- 1 
12 

¢f(1 121)* [-2yot(aSIOlas) + yo t'sWIOIs ) -

V\y ot(a'SlII/S) + 'xy°t3SlOleS) + y°S(4yaOly4)] f(3121) +

Y°(y4lOlya)] (1321)6X f (1121)* F[ -\iyotasls) + yt WlQsws) -

1

2V
1

2 1

2V4

f(2111)*

f(1211)*

[yet/3oslol)] ¢(221 1) +

[Xyet(aslOlI) + yet (fisllO)] ¢f(2211) +

fS (1121)* [i-2y°t(aSlOl) - y°tSlOI] (2121)

1 I i/(3211)* [2yet(SIll0s ) + yet //sllOs ) -\ /yet(asI/3S) - yet sOlas)+

1'2fyes(/ljOlya)] q(321 1) + -

12 
¢f(3121)* [2yot(a(sISlas) + y°ot (slOl83s)+

VyOt(a(tSI/3s) + Xy°t(8SlOIas) + y°S(ya1010a)] f(3121) +
1

6v2
If(3121)* [y ° t(aslOIBs ) + yot Q3sl01B8s) - yS(ylOlya)] ¢(1321) -

X J (1321)* [2y°t Qs lOlas) + yt(sSls) - yos(ylIya)] q(3121) +

6 f (1321) [y°ot(3SlOlS) + y°S(yalOIya)] f(1321)If
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= X\/ f (3211) [2ye t(asI 11) yet Gslolo)]¢f (2211) -

I qf(3121) [-Nl'2y°t(a'Sll ) - yOt(BJSO)] qf(2121)+

X ¢,(1321)* [-y°'(s101)] ¢(2121)

-= f (221 1)* [ye (0101-)] f(2211) +

2J212) 1 ¢tM0*(2121)* [°(01](2121)
2
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9.3 Spin Matrix Elements

We can express our spin/isospin wavefunctions in terms of a basis which has explicit cou-

pling between particles 1 and 2. The results are

0(2211, Ms = O) = 1
6 S = 1, M s

= +10) i + IS 

I 1S = 1, M s=0) I +1S = 1, Ms =-1) t

0(2121, M s = 0)

0(2111, M s = 1)

Is O,M s 0) t -iS =O,Ms

= -IS
2

1 IS

1

I Is

NlS
2

= o) t]

= 1,MS = 1 I)
1
- Is

2V3

= 1,Ms = O) tt

= 1, M = 1) ,1

= 1, Ms= O) t

= 1, M = O) 11

+ IS = 1, M = ) t -

- IS = 1, M = -1) tt

+ 1iS = 1, M =-1) -
2 V-3- ,

= , MS = -1) t

O(1211, M s = 1)

O(1211, Ms = 0)

0(1211, Ms = -1)

= -Is

1 Is
1

1= IS

= 1, M = 1) t

= 1, M s = 1) 

= 1, Ms = O) t

= 1, M s = 0) 1

1
- IS =

1
- 1 Is =

- IS =
-VI =

-3lS = 1, Ms = -1) 11

Ilsospin is completely analogous to spin, so we only give the spin wavefunctions.
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1, M = ) tt

1, Ms = -1) tt

I'M = 1) 11 

06(21 11, Ms = )

0(2111, Ms = -1)



O(1121, M s = 1)

0(1121, Ms = 0)

q5(1121, Ms = -1)

0(1I111,M s = 2)

¢p(1 1, M s = 1)

= IS=O, M=O)tt

-[IS = O M = 0) ,I +Ms = , +I M = O) IT]

= SO,Ms =0) 4,

= = IS=1, M = 1)1'
1 1

= -IS=1,M =1)[I+ n']+ IS =1, M = ) 1
2 S r- 

0b(1111, M s = 0)

(I (llll,Ms = -1)

q(1111,Ms = -2)

= 1S =
- r =1, M = 1) 11 + IS

= 1S = 1, Ms = -1) +

= -IS=I,M =-1)LT +
2 S

= Is = 1, M = -1) 4

= 1, M = 0) [t + 4t] +

IT] + IIS = 1, Ms = ) h

Now we can simply evaluate these four-body matrix elements2 in terms of the two-body

matrix elements of chapter 7. The results are

(OS191q5s)

(slolas(1))

(Oslolas(o))

(OSola(-l1))

(4,los(1))

1
= (-1101-

3
1

-= 3(-110
3 W
1

= ~ (11011)
3W2

1 (0101 -
345

1
= -- (-11010)

3

1
1) + -(01010) +

3
-(11011)
3

10) - (01011)
3W

-- (-1101- 1)
3 W

1) + I-(11010)

- 1(01011)

2In the following formulas we skip the S label in the triplet state i.e. IS = 1, Ms) = IMS) but write down
all the quantum numbers for the singlet case.
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(xSI0oVs(o))

(OpSll18S(-1))

(0S1010(2))

= (11011)>- -(-111 - 1)
3 3

1 1
- (0101 - 1) + -(11010)

3 3

1
= -(-11011)--(11010)

1
(-1101 -32

(<SIOr(- 1)>

(0SS10(-2)>

(<baOlra(1))

(oalIya(_ 1))

(as()llas(1))

(as(1)lOlas())

- I (01011)

1)> - (01010)
3

1 1
= 1 (11010)>-

= 1(1101 - 1)

= (S = O, MOlIS

= 0

= 0

= 0
1

= -o(0101)
6

= (010 -
6

1
+ -(11011)

3W'

-(olol - 1)

= O, M s = 0)

5
+ (11011)

6
2

1 + (11010)
3
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(as( 1)101as( 1))

(as(1)lOl(11))

1
=- (1101- 1)

2
1

- (0101°)

3W
1

- ( 11011)
3V2

(1()lOIB(o))

(as(1)101S(- 1))

(as(1)101(2))

(as(1)101(1))

(as(1)101(O))

(as(1)101(- 1))

(as(1)101p(-2)) =

(as(O)lOlas(O))

1
= - (0101- 1)-

3W

- -I (1101- 1)

1

V6lli

1
= - (01010) +2

1
= - (0101 - 1) +

6
1

= 213 (1101- 1)

0

= I(-1101- 1+
6

1
(11011)

1
-(11010)
3

2(01010)
3

(as(O)lOla(- 1))

(as(0)10lls(l))

(as(0)101(ols())

2
= -(01O - 1) +

3

1
= _ (-11010)

3WC2

1

1
-(11010)
6

1- (02 0)
3 W

1
+ 3(11011)

3 W2

(as(0o)lol(- 1))

(as(0)101l(2))

(as(O)101q(l))

= (0101 - 1) + 3X(11010)
3 3 r23
1

= - I (-11011)

1
= -- (-11010)

2150
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1
+ 6(11011)
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(ad(O)ll())

(aoS(O)IlOI ( - 1))

(as(0)lo0k(-2))

(aS(- 1 )0las(- 1))

(as(- 1)10o (1))

1
= -- (-1101 - 1) +

6
1

= _ (11010)

21

= -(1101- 1)

5 1
-= (-1101- 1) + 

6 6

= - (-11011)
45

-- (-11010) +
3

(a(-1)l0s(o))

(as(-)lolS(-1))

(as(-1)l010(2))

(as(- 1)101(O))

(as(- 1 )I01P(-1))

(as(-1 )101(-2))

(3s(1)I10 s(1))

S(lt)101/S(o0))

((1)llS(- 1))

1= 
=0

-1101- 1)+ (o01010)
3W

1
= -- 2X(-llI01)

1 1
= -(-11010) + (01011)

3 6
1

= - 3 (-1101-2r'
= l(0101- 1)

-/6

= -(01010)
3
1

= -(Ol0 -
3

-0

1) + (0110)
2V3

2
+ -(11011)

3

1)+ (11010)
3

(/3s()lIl0(2))

W(M10140,(1))

1
= -- 1(0ol011)

1
-- (0oll00) +
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(s(l)ll0k(O))

(il)l0(-1) )

(s(o)101s())

(O/3S()I01s(-1))

(/3(0)1010(2))

(s(o)II0I( 1))

1= -- (10- 1)+ (1I0Io)3W 3__ 1
= (1101- 1)

= O

= (-1101 - 1) + -(01010) + -(11011)
3 3 3
1

= -(0101o- 1)
3

1
+ -(11010)

3

= -- 1 (-11011)

1
- - <(-11010)

(s(o)1l00(o))

(S(O)1I01I(-1))

<(o)1Il0(- 2))

s(-)lo 1l3S(- 1)'

/s(-1)0l)(2) ',

(S(-_)l40(1)

(3s( - 1)1010(0))

(/3S(1 )10lq(- 1))

(- 1 )101(- 2))

(y(l)Olya(1))

1
= -- (-11l0

3W
1

= - (11010)

1
- (1101-1)

2
-- 1101- 1)
3

= 0
1

-= - (-11011)

= -- (-11010)
3

= -- I(-1101-1g

1
- 1 + (11011>

1
+ -(01010)

3

1
+ (01011o)

3W
1

1> + (01010)

1
= -(0101o- 1)

= (S = O, MsOIS = O, M = 0)
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(ya(1)lIOll (o))

(3a(1)113~(-1))

(ya(o)1o1a(0o))

(ya (o)1o1y (- 1))

(a(-1)1 ya(-_1))

(0(2)1010(1))

((2)1014(0))

(~(2)1010(- 1))

(Q(2)1010(-2))

(q(1)1lk1(1))

((1))10q(0))

(q(1)101*(-1))

(0(1)1010(-2))

= (S = O, MsOIIS = O, Ms = O)

= O

= (S = , MsOIOIS = , M = 0)

= (11011)

= -(11010)

1

= -(1101- 1)

= 0

= 0
1

= (01010)
2

1

2
116

1
= (01o1- 1)+

1
(11011 - 1)

2

= 0

911)

1
I(11010)

1
= -(-1101- 1)+

6
((o00)1l410())

(*(o) IOk(-1))

(-(0)101¢(-2))

(q(-1)1010(-2))

(&(-2)1010(-2))

= (0101(olrl
1

- 1) + -(11010)
2,V3

1
= -- (1101- 1)

1 1
(-1101 - 1) + (01010)

2 2
1

= -(0101 - 1)

= (-1101- 1)
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-(01010) +
3
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Chapter 10

Coupled-Channel Equations

In this chapter we will complete our task of scalarizing the H-J, the fundamental goal of this

research project. We shall explicitly write down the coupled channel equations for the H-J

potential. We are not aware of such a result in the literature i.e. coupled-channel equations

for the H-J potential with explicit symmetry requirements on the spatial wavefunctions.

For applications, these coupled-channel equations need to be solved numerically. These

are very complicated coupled partial differential equations. We presume that in order to

solve them, certain approximations will have to be made e.g. in certain cases LS terms are

known to be small. For such problems, LS terms could be ignored. Since these differential

equations are exact, the user of these differential equations, depending on the application,

can make the relevant approximations to get physical results.

In this chapter, first by employing projection operators, we give a formal derivation of

the coupled-channel equations. In the same section, we then show that such operators

can indeed be constructed in our case. However, it is well-known, that while projection

operator formalism is conceptually very simple, in practice it is not easy to compute with;

the technique to use is the variational method. So we re-derive the formal coupled-channel

equations via the variational method. This shows how the matrix elements of the previous

chapters lead us to the coupled-channel equations directly. At the end, we tabulate some

of the results for the 2-body, 3-body and 4-body cases. We do not derive all the coupled-

channel equations because these can easily be written down using the matrix elements of
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the previous two chapters. These results are only presented to give the reader a feel for the

form of these equations.

A note of warning to the reader: the coupled-channel equations that we derive are not

democratized i.e. the Hamiltonian only contains interactions between particles 1 and 2. The

reason for this peculiarity is, that when we calculate the matrix elements, we give special

status to particles 1 and 2. Hence, the results of the coupled-channel equations are given,

with the interaction between particles 1 and 2 only. Not only is this physically unnatural, it

also makes numerical computations somewhat difficult. At the end of the chapter, we show

why, in the case of H-J potential, even the brute force method of matrix element calculation

does not easily yield the democratized coupled-channel equations. However, the ground-

state case is easy, so at the end of the chapter, we give the democratized versions of the

two, three and four-body ground-state coupled-channel equations. More work is required

to find a general method to yield democratized coupled-channel equations.

10.1 Projection Operators

Coupled-channel equations are formally based on Feshbach's projection operators [27, 28].

For simplicity we assume that we can expand our wavefunction as

I = '1 + /2

Then

E(P + 2 ) = H(IP + 2)

Assuming the existence of projection operators such that P1 + P2 = 1, Pi = Pi, p2 =

Pi, Pi 'j = i7'j, we can rewrite

EgP = PHP P1 +P1 HP2 g2

E P2 = P2 HP2P2 +P 2HPP 1
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Defining Pi H Pi = Hi and for i * j, Pi H Pj = Vij we see that our equations are in the form

ES, = Hi 1 + V2'2

EIP2 = H 2 2 +V21'l

These are the coupled-channel equations. While such a derivation is formally very simple,

in practice, the projection operators are notoriously difficult to handle. The usual procedure

of actually writing down the equations is via the calculation of matrix elements. This is the

method we will use ourselves. However in our case, formally, the projection operators are

very simple and we can write them down as

IR ® 'S ® T ( i (z Ii)IJ (z kX(FkJ

where the Pii are our projection operators from chapter 2, the li) are the spin states' and

IF) are the isospin states.

10.2 Variational Principle

As mentioned above, the projection operator method is not a practical way of deriving

coupled-channel equations. However, the variational principle does yield multi-channel

equations in a straightforward manner. We will define a channel to be labeled by a spatial

symmetry and a spin and isospin part, i.e. each channel wavefunction can be written as

'Pi = /ioiqi, where ¢i, i and yi are the spatial, spin and isospin parts of the channel 2. As an

example let us assume that we have only two channels and expand our wavefunction D as

(D = ' + P2

'For spin and isospin, we are merely using the property of completeness i.e. 1 = Cj Ij)(jl.
2We will explicitly define our channels for the 2, 3 and 4 body cases later on in the chapter.
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The coupled-channel equations are simply derived from

(HlI()
6E = 6 = 0 (10.1)

Since 4I is complex we can vary I4) and (Dl1 independently, i.e.

E + a _(Zi(i + 5E = (i)ilHI > j @ljojyj)
(Zk(fk + 4Ik)kkl I l @0yl)

We know that $i1 and ¢2 can be varied independently and for simplicity assume (6b 1, 1 2) =

(6q/2 ¢1) = 0. Then we can easily show that Equation 10.1 reduces to the set of coupled-

channel equations

EIlVI) = Hllll) + H 12 1l2)

El& 2 ) = H22l12) + H211k¢)

where Hi = (Oi lHIij)).

10.3 Channel Definitions

In this section we explicitly define our channels. Later on in the chapter we will see that

while the number of channels multiplies very quickly with the number of nucleons, there

is no channel-coupling between the symmetric and antisymmetric channels. This signifi-

cantly reduces the numerical work that would be required to solve any given problem.

10.3.1 Two-body channels

The deuteron is the only stable two-body bound state with T = 0 and S = 1. This means

that the spatial symmetry is m. The relevant wavefunction is

= ¢(11)0(l1l)F(21)
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where O(1 1) is the symmetric spin and F(21) the antisymmetric isospin part3 . We number

the channels as

channel definition
1 #(11),M s = 1

2 (11),M s =0
3 ¢(1), M s = -1

Table 10.1: Definition of two-body channels

10.3.2 Three-body channels

From chapter 8, we know that our wavefunctions are

1TI = V/1 (1 1 1) [as,& - afis]

P2 = #2(321) [aSs + a/3]

I3 = -1#3(211) [aspa + afls] - 213(121) [SfS - fl]

s=3

1
4 = [¢(211)/ - #4(121)8fls]

The only difference between these and the wavefunctions from chapter 8 is that now we

have a subscript on the spatial wavefunction denoting which antisymmetric wavefunction

it is derived from. This is convenient for labeling our channels.

Next we define our channels for MT = . Since the strong force does not distinguish

between MT = and MT = -, exactly the same channels can be used for MT = -. We

number the channels as shown in Table 10.2.

It is important to note that there is no channel mixing between the symmetric channels of

column 1 and the antisymmetric channels of column 2. Now we can see how group theory

3The symbols within the braces are the Yamanouchi symbols.
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channel definition channel definition
1 1 (~lll),MS = 9 1M2(321)M = 2 2
2 #(111),MS = - 10 ¢1(321)M = -

3 3(211), Ms = 1 3( M 242 ¢3 (121), Ms= -
4 3(21Ms = - 12 (121), Ms = -I

5 4 (211),MM = 13 V4(121),Ms =3

6 ¢ 4 (211),Ms = 14 14 (121)Ms = _
7 /4 (21l),Ms = 15 l/ 4(121),Ms =-
8 ¢ 4 (211),Ms= -2 16 ¢ 4 (121),Ms= 

Table 10.2: Definition of three-body channels

cleanly separates out the channels and reduces what could have been a 16 x 16 matrix to

two 8 x 8 matrices.

10.3.3 Four-body channels

From chapter 9, we know that our four-body wavefunctions are:

S=O

1 = V1(1111) - [OrFa _ ar s ]

2 = ¢2(4321) [0S s + ar]-

3 = -¢3(2211)[0 sr + rs]1- ¢(2121) [ sr s -0 ar a]
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S=1

P4 = /-4(2111) L8 F - y r ] +

2 4(121)[-/i~asrs +/ sr s -yrp]+ +

3V1021< [VJaSFS +,3sFs y-apa +

1-4(1321) [Vr + sr ]

~~~S~~~~~~ =2I, _ 2211) -a -- 1r s]

where the subscripts on the spatial wavefunctions again denote which antisymmetric wave-

function it was derived from. We number the channels as given in Table 10.3. Again the

sixteen symmetric channels of the first column do not couple to any of the antisymmetric

channels of the second column.
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channel definition channel definition
1 1 (1111),M s = 17 ¢12(4321),Ms = 0
2 b13(2211),Ms = 0 18 ¢3(2121)M = 0
3 ¢/4(2111), Ms = 1 19 ¢ 4 (1121),M s = 1
4 ¢4(2111), M = 0 20 i/4(1121), M = 0
5 4 (21 1), Ms = - 21 qp4 (1121), Ms = -1
6 ¢ 4(1211), M = 1 22 I5(3121), M = 1
7 /4(1211),Ms = 0 23 ¢/5(3121),Ms = 0
8 ¢4(1211), Ms = -1 24 ¢5 (3121),Ms = -1
9 / 5(3211),Ms = 1 25 f5 (1321),Ms = 1
10 ¢ 5 (3211), Ms = 0 26 ¢5 (1321), Ms = 0
11 ¢5(3211),Ms = -1 27 5(321),Ms = -1
12 ¢6 (2211), M = 2 28 ¢6(2121), M = 2
13 6(2211), M = 1 29 ¢ 6 (2121), M = 1
14 ¢6(2211),Ms = 0 30 ¢6(2121), M = 
15 6 (2211), M= -1 31 6 (2121), M = -1
16 ¢6(2211),Ms = -2 32 6(2121),Ms = -2

Table 10.3: Definition of four-body channels

10.4 Three-body Coupled-channel Equations

The channels are defined above in section 10.3.2. As a representative we only give one

8 x 8 block of the coupled-channel matrix. Please note that

* The kinetic energy part is not explicitly written, but it does appear in all the diagonal

terms (of the form Hii).

· Hi j = 3 Hi',j.

Hence the coupled-channel operator will be of the form

3 Hz'j + 6i j k 42mVk
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L_y, LYt
3

-3 (ys - ye)
2V2

- ((Lx2 + Ly2 + L 2) (3 ye - Yt)) Lz y

Lz Yt

3 4

- (L_ Yt)

3 2

3 (ye + ye)
2

-(L+Yt) (

2 

_ LzYt ( Lx2

3 W

L L + + L) Yt

2 4
+ Ly 2 -2 Lz2) Yt

3 W

+
3 4 (iy + x) Yt z

r2

3 ye (x2 + y2 _ 2 Z2)

Wsr2

(L,L_ + L_ L) Yt

(Lz L_ + L_ Lz) Yt

2 4

9 (iy - ) Yt Z

Wr2

9 (iy - x) Y z

2Wr2

Lz Yt
3

- ((Lx2 + Ly2 + L 2 ) (3 ye _ ye))
=~~~~ 

- (L+ Yt)
3 W
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3 W
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2

-3 ye + 3 ye
+ 2. 

2 

163

H1,3
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H,5

H,6
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L_ Yt
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112,2
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L+2 Yt 3 (iy + x)2 ye
+

-(L+ Yt) (Lz L+ + L+ Lz) Y 9 (iy + x) Y z

6v2 2V r2

Lzey (Lx2 + Ly2 -2L 2) ye 3ye

3 W5 3 W5

(x + y 2 - 2z2 )

NWr2

L_ y, (Lz L_ + L L) Y--t- 
-((Lx2 + Ly2 + L 2) (3 ye- y))

6
L_yt

6

L+ Yt

4X-3

(Lz L+ +L+ L) Yt

4-f3

Lz Yt 3 (y + Yt)6 4
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3 (iy +x) YtZ
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3 ye (x 2 + y 2 _- 2z2 )

6

- (L_ yt)
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6
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4

2r2
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2 r2

Lz Yt

6
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2Vj
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12 4

9 (iy +x) y z
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2r2

-(L Yt) (L 2 + Ly2 2L 2) yte 3y (X2 + y 2 _ 2 2)
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- (L_yt) (LzL_ + LL) Yt
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-3 Yt

2

L_Yt
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+ 

2

(LZ L_ + L Lz)

2V3

- (L_2 ye)

2V~

+ Lz Yt
2

2r 2

3 3 (iy- x) y z

2r2

3 yt (x 2 + y2 2 Z2)

2r2

Yt 3 (iy-x) ytz
r 2

3 (iy -X) yt

2r2

= 0

-3 ye L y

2 6

L Yt

+
(Lx2 + Ly2 + 4 Lz2) yt

6

3 yt ( X 2 + y 2 _ 2 Z2 )

2r2

3
- (L_2 ye)

H6,8
3 V"3 (iy - x) 2 Yt

2r2

-3 y _
2

L ye

- t +2 V3

Lz ytL +

6

(Lx 2 + Ly2 + 4Lz 2 ) yt

6

3 y (X2 + 2 - 2 Z2 )

2r2
(Lz L + L Lz) yt 3 (iy-x) y z

245 r 2

(L 2 + Ly2) y L ye
2 2

3 y (x2 + y2 _ 2 z2)
+ 212

2 r 2
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10.5 Four-body Coupled-channel Equations

Note that in this section, we only give a representative sample of the equations because the

number of channels is very large. Please note that

* The kinetic energy part is not explicitly written, but it does appear in all the diagonal

terms (of the form H i).

* Hi, j=6-Hij.

Hence the coupled-channel operator will be of the form

h2

6. Hj + ij - 2mk
k k

- ((Lx2 + Ly2 + Lz2) (3 ye _ ye))
3

-3 (y - ye) (Lx2 + Ly2 + Lz2

3 (ys + yt)

2

) (3 ye + yt)
2W 3W

- (L+ Yt)
36

Lz Yt

33
L_yt

- (L+ Yt)

3W
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2 LZ Yt
1,7 

L_ yt
1,8 - 3

H9 = 0

HI = 01,10

H' = 0
1,11

H' _ -(L+2 yt) 3 3 (iy + x) 2ye
1,12 -r2

(Lz L+ + L+ L) Yt 3 x (iy + x) Yt z
1,13 2-1 r2

3 2 3 r2

-((Lz L_ + L_ L) Yt) 3 3 (iy -) Z

H' _ -(L_ t) 3 (iy -x)2 y
1,16 - 2 - - 2 r2

_((LX2 + Ly2 + Lz2) (3-Yt)) 3 (ye +y )
2,2 6 4

H23_ L+ yt

- (L, ye)

H' -(L t)2,4 =
3V06

Hi 1
2,5 = 6
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L+ t

3 6
-(L ye)

3 V
- (L_ yt)
34 

= 0

= 0

= 0

L+2 3 J (iy + x)2 ye
2 + 2r2

H 32. 13

H2,14

- ((L L+ +L+ L) yt)

2 -
- ((Lx2 + Ly2 - 2 Lz2) t

6

3 (iy + x) Y z
r2

) 3 3y (x2 +y 2 -2 2 )
2r2

(L_ Lz + L L_) y 3 (iy - x) t z

r2

L-2yt 3 (iy-x)2 Y
2 + 2r2

10.6 Difficulty with the Brute Force Method

In this section, we show why, even with the brute force method, the democratization of

the coupled-channel equations for the H-J is not easy. The reason has to do with the form

of H-J, which is parameterized in terms of even-singlet, even-triplet, odd-singlet and and

odd-triplet interactions. We discuss a particular 3-body example to show why such a pa-

rameterization, leads to complications in the construction of democratized coupled-channel

equations.

168

Ht
H2,7

H'2,8

H'H2,9H2,10

2,11

H2,12

2,16-, 16



10.6.1 Three-body example

As an example, let us calculate

(1IE ti ' ?jlijl'3)
i<j

The brute force method is based on the fact that in order to calculate a matrix element for

the ij part of the H-J potential4 , we need to expand our wavefunctions in terms of a basis

which gives special status to particles i and j. The reason is that the H-J is parameterized

in terms of even-singlet, even-triplet, odd-singlet and odd-triplet terms, and to calculate the

matrix element, we need to know the coupling between particles i and j. As an example,

let us calculate

(<~ E ?i ' iOijl 3)
i<j

where i are the three-body wavefunctions of chapter 8, with Ms = MT = 1/2. Since we

are using the brute force method, we will not utilize the Lemma in section 7.4, which gives

a factor of n(n - 1)/2 for matrix elements. So we have to calculate

(,I EI i i joijl' 3 ) = (PITl ' 20121'P3) + (Pl1 l T30131'3) + ('Pll2 7i02313)
i<j

= A+B+C

We have already calculated A in chapter 8. Now we will try to compute B. As a particular

example of 013 we can assume that

1' 3013 = 31' A3C 3YC(r3)

where the * stands for even-singlet(es), even-triplet(et), odd-singlet(os) or odd-triplet(ot).

Thus, in order to know which value of y* to use, we need to know, which states we are

coupling. However, the wavefunctions are given in terms of states which are es, et, os or

ot only for particles 1 and 2. In order to proceed, we would need to expand our original

4By the ij part we mean Vii in H = Xk<l Vkl.
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wavefunctions, 't1 and I3, in terms of wavefunctions with special status given to particles

1 and 3. This can be easily accomplished by choosing a basis of functions which diag-

onalizes the matrix representing the (13) permutation in the standard Young-Yamanouchi

representation. The results are

f(211) = 2F3 + f

f(121) = IfI 3 f 3

where, for example, f(211) can represent a space(O), spin(O) or isospin(y) wavefunction,

with Yamanouchi symbol 211 and f3 is antisymmetric and f3 is symmetric under the

exchange of particles 1 and 3. By an explicit computation we can easily see that for spin

wavefunctions

~13 = -0(S153(S13 = 1)S2S123 = )

13 = O(S1 , S3(S13 = O)S2S123 = 2)

Similarly for isospin wavefunctions

Y13 = -Y(tlt 3 (tl 3 = 1)t2t123 = 

1
T3 = Y(tl, t3(t13 = O)t2t 23 =

Now we can go ahead and compute the matrix element to be

(Ptl? 3 &3y(r 3)IW3) = 2X2 0(111)*[-3yc + 3yes]S 3

A completely analogous calculation for V23 yields,

1
('11 2 c &3y(r2 3)W3) = 2 Jf(111)* [-3y'(r23) + 3yeS(r23)]q123

However, to derive the coupled-channel equations, we need the integral to be between
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wavefunctions which have special symmetry properties under the exchange of particles 1

and 2. We can then expand the spatial wavefunction Fr13 in terms of (211) and V/(121) to

get the final answer to be

('1'? 31 3Y(r 13)1l'3) = -2 f (1 lll)*[- 3 y'(r 3)+3yc(r 13)] (V(211) - 2(121)

Similarly, we can expand

f23 = q(211) + - (121)

to yield

( 1 1T2 -33Yc(r 23)I'I'3) 2I f(lll )*[-3 y~c(r23)+3yes(r23)] 1((211) + 23 (121)

However, these expansions, do not yield the coupled-channel equations, because we have

now mixed the symmetries of the various channels i.e. we are getting coupling between

symmetric and antisymmetric channels. If we go back and look at the derivation of the

coupled-channel equations, it is clear that we need, in this example, for our coupled-channel

operator to be only operating upon ik(211) (since that is the spatial channel-wavefunction).

However, we are getting both the @&(211) and Vb(121) terms. Hence, in general, for these

coupled-channel equations, there does not seem to be a simple way of treating all the par-

ticles on an equal footing.

10.7 Ground-state Coupled-channel Equations

As we saw in the previous section, that there are difficulties with trying to treat all particles

on an equivalent footing in the coupled-channel equations. However, the ground-state case

is very simple, because the ground-state spatial wavefunctions belong to the trivial repre-

sentation of the symmetric group. Hence the democratization process, is straight-forward.

171



The algorithm is simply to assert that for channels a and f,

n(n - 1)V
( ,2 j(1, 2) = ~ V,(i, j)

i<j

where Va,p(12 ) was the coupled-channel operator for the non-democratized version of the

coupled-channel equations.

10.7.1 Two-body equations

Then the diagonal parts of the coupled-channel equations can be written as

h 2 h2

= V2 - MV2 - 3YC
2M 2ML(L + L

+YLs + Y xLt +

h2

V2
2M 2

2z 2 _ X2 _ y2
-3yT r2

,_et2X 2 + 2y2 - 4Z2

-"'C -' T

- 3yet - 3y 2 z2 -x 2
2M2

-YLsLZ + YLL(LX + L)

The off-diagonal terms can also be simply written down as

et 3 x- iy)z +Ye, L_

e (x- iy)2

Ly
3

et 3 (X -iy)z= -yV3X2( xr2
et L-

YLS ,

et 1

-YLL (LZL- + L

-+Ytt (LZL_ +
-
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H22

H33

= _ V2
2M

+2yLLLz

h2 
=- _ 12V

2MI

H12

H13

H23 L_LZ)

_r * s5 ,

_ .et

r 2

,_Lz)



10.7.2 Three-body equations

2= Z-2 V2
/

- Z 3 (Ycs(rij) + c(ri))+
i<j

1 et I ye es _ t£3 YLS( ri j)Lz (ij) (3yLL(ri j) -YLL(rij))L(iJ)2
i<j i<j

H12 = Y 3y L (r i )L - ( ij )

2 3Z Ls
22 = 2 V2 - Zycri

iyeS ),i< j

3 yLS - (3y(r ij ) Y(rij))L(ij)2
i<j i<j

where Lz(ij), L(ij) etc. refer to the relevant angular momentum between particles i and j.

10.7.3 Four-body equations

The diagonal part of the Hamiltonian for the ground state is

2 1
H 2 V - 3(3ya(rij)

I i i<j 
YLL(rij) )L (ij )2 - ( y (ri) + Yet(ri))

i<j
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Chapter 11

Photodisintegration Of The Deuteron

In this chapter, we begin to explore the simplest of phonon-coupled nuclear reactions: pho-

todisintegration of a deuteron, which is embedded in a lattice with one highly excited

phonon mode. The problem of phonon-coupled reactions is a complicated one, and the

work in this chapter is of a very preliminary nature. This should be regarded as a report of

progress-to-date, rather than a finished result.

Interest in the photodisintegration of the deuteron started early on in nuclear physics [3, 8,

26, 66]. As a two-body problem, it is reasonably straight-forward to solve it in the center-

of-mass (COM) frame1. We will, instead, work in the laboratory frame, because we want

to look at the effects of the lattice on this reaction. This also allows us to make a connection

with the thermal neutron scattering literature.

We will begin by calculating the vacuum differential cross-section. After the vacuum cal-

culation, we compute the phonon-coupled matrix element. For this calculation, we assume

that the neutron is ejected from the lattice, but the proton stays on as a part of the condensed

matter environment. This assumption is required for two reasons

1. We want to make a connection with other phonon-coupled reactions that are of in-

terest to us. These reactions are characterized by a change of phonon mode structure

due to a Duschinsky [22] type mass effect e.g. 4He 3 He + n. We get a similar

'Center-of-mass frame is defined to be the frame in which the sum of initial momenta = 0.
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mass-change effect in the photodisintegration of the deuteron, when the proton is left

behind in the lattice.

2. At the moment, we do not have a way of analyzing the general case in which the

proton may or may not leave the lattice.

We will show that an experiment will satisfy this assumption provided

* Energy of the incoming photon is matched to the binding energy of the deuteron.

* The emerging neutrons are nearly collinear with the incoming photon.

* We measure the energy-resolved differential cross-section.

However, in our first attempt in section 11.2, we will not calculate the energy-resolved

differential cross-section, but merely the interaction matrix element. Since this work is

of a preliminary nature, this computation gives us a feel for what happens in a condensed

matter environment2 However, in section 11.4, we do begin to calculate the energy-resolved

forward differential cross-section. Unfortunately, due to time constraints, we were unable

to complete the calculation.

Before going ahead and discussing our results, we would like to enumerate the various

ways in which these calculations are incomplete. These are

1. The lattice changes by the conversion of a deuteron to a proton, and hence the initial

lattice modes are different from the final lattice modes. This means that the initial

thermal modes project into the final highly excited phonon mode and the initial highly

excited mode projects into the final thermal phonon modes. This mode-mixing has

not been properly taken into account.

2. Experimentally, we cannot initialize the lattice in an eigenstate of the highly excited

phonon mode. However, we can put the lattice into a classical state. Hence we should

repeat these phonon-coupled calculations with classical states instead of eigenstates.

2As discussed later on, this result, along with the vacuum density of states and an energy conserving delta
function, should give the energy-resolved differential cross-section.
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3. We calculate the energy-resolved differential cross-section in two ways:

* In section 11.2, we calculate the interaction matrix element. This can be com-

bined with the density of states3 and an energy conserving Dirac delta function4

to give the energy-resolved differential cross-section.

* In section 11.4, we explicitly calculate the energy-resolved differential cross-

section. This second method clearly shows how the Debye-Waller factor shows

up in the first calculation in section 11.2.

However, we do not prove that these two methods yield the same result.

4. We do not compute the angular momentum exchanged in this reaction. Exchange

of angular momentum is one of the cornerstones of the Unified Model. By using

this experiment, we should try and improve our understanding of angular momentum

coupling.

11.1 Vacuum Photodisintegration of the Deuteron

We will assume that the deuteron is at rest in the laboratory frame. Suppose the photon has

momentum K0, and frequency o0 . It hits a deuteron, which disintegrates into a proton with

momentum kp and a neutron with momentum K,. We will assume that the binding energy

of the deuteron is Eb (Eb > 0), the mass of the neutron is M and mass of the proton is Mp.

The differential cross-section is given by the golden rule

do- = I(flVi,,tli) 2p(Ef)-

This calculation is broken into two parts: the calculation of

* density of states, p(Ef).

3We can use the vacuum density of states calculated in subsection 11.1.1. The reason for this is explained
in section 11.2.

4It is well-known [92] that to convert a two-body differential cross-section to an energy-resolved differ-
ential cross-section, we only need to add an energy conserving delta function.
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* interaction matrix element, (flVjjli).

11.1.1 Density of states

The equations for momentum and energy conservation are

Ko = Kp+ K

E i = ho - Eb
h2 K2 h2K 2

P 2 =Ef
2M 2MhK 2

(11.1)

We can plug Kp = Ko -K. into the energy equation to get the expression for the final energy,

Ef
2K2

Ef 2M2n

2Ko
2Mp

2K2
2Mp

2h2KoKn cos 
2MP

where 0 is the angle between the incoming photon and outgoing neutron. Then the density

of states can easily be calculated to be

p(Ef) = (2 ) 6Ef h2K2
n2M

2Mn 2Mp

h2K2

2MP
+ 2K cos O)Kn2dKdl2Mn

Defining unitless parameters : = KK o and y = Mn/Mp, we get

(Ef) = ( 2MnKO 1 r
h2 +J

f(:) = 2 _ 2yu a -y
1+y l+y

2Mn,E
a =- h2K2

Cos = U

Since we want to figure out the explicit form of p(Ef), we need to know, when do the two
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roots of the quadratic expression inside the delta function, contribute. Thus, denoting Se to

be the two roots of f(S), it is easy to see that

(1 + ) = u+ y/ 2u2+ (a -y)(1 + y) (11.2)

Using Equation 11.1 and the fact that y 1, we can see that

A2K0

2M,
K K h2

= E + 2 M,-- cos 7

where 77 is the angle between the outgoing proton and neutron. Hence

Ef KpKn
2K2/2M = 1-2 cos 77h2 ,2 K2

Now from the Equation 11.2, we can see that whether both roots contribute depends on

cos q i.e.

cos > O --> a < 1 - a -y < O

cosi7 <0 a> 1 - a --y> O

So when a - y < O, both the roots contribute and when a - y > O, only contributes.

Hence, when cos 77 < O, then

p(Ef) =2()
2M,nKO

h2
1

l+y ;[If (+)12 i )I2

and when cos 77 > 0, then

p(Ef)= (2
2MnKo

h2
1

1 +y

[ 2 ]d1

LIf (;)I2A

This finishes our calculation of the laboratory frame density of states. In order to compute

the differential cross-section we need to calculate the interaction matrix element (fIVIi).

This is done in the next subsection.
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11.1.2 Interaction matrix element

We can divide the interaction into the photoelectric part and the photomagnetic part and

calculate each one separately. This is done because it is well known [26, 79] that

* The photoelectric and photomagnetic matrix elements do not interfere with each

other.

* While at high energies the photoelectric part is dominant, at threshold, the photo-

magnetic part is also very important.

Photoelectric part

In this section we will assume that Mn = M = M. This is not a new assumption, since in

the previous subsection, we assumed that y 1. Using

2idc 2

A(ro) = L w
Kh

[akAeik' + aLe-ik]K,K, I 4,;

the photoelectric part of Vint can be written as

pe= ea
V~t =-EMaC

where pe stands for the photoelectric part. Hence we wish to calculate the following matrix

element

(flVin li)
iMe 2IrhAc2

Mc L3 tEKo'
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We will use the definitions

Rcm
rp + r,

2

r = r -rp

Kf = Kp +K

k K,, - KP=
2

As a first approximation, a plane-wave approximation is used for the proton-neutron part

i.e.

= 1 eiKf.Rcmeik.r ms

where lgs ) can either be a triplet or a singlet. However a deuteron is only found in a spin

triplet, so the deuteron wavefunction is 5

e-r 1 1
r L3/2 ®' 

Since -iV = -'V m + ihV, and EK0-.Ko = 0 6, we see that

(flvin i) =

-ihe /2mrc 2 - E- m, M

Mc L3 6(o Kf) L3 2 (X s

e-Pr-trr

So for the photoelectric part, the initial and final spin wavefunctions have to be the same.

5There are some issues here with normalization since the relative wavefunction of the deuteron wants
to be normalized in a sphere of radius R, and the COM motion is a plane wave normalized in a cube. So

the factor of /(y/(27r) is actually 4y/(2r(1 - e- R)). We will assume that when R or L is large, there is
essentially no difference between the two approaches.

6Actually we do not need this fact here, since we have assumed the deuteron to be at rest. If the deuteron
had some initial momentum, then this fact would be relevant and we would get the same results except that
the delta function would contain the initial momentum of the deuteron, as it should for conservation of linear
momentum.
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Since the deuteron is initially at rest

k+ 2 =K n2 n

Usually the r integral is carried out by doing a partial integration, resulting in K,, . 4Ko

outside the integration sign, and getting the answer to be

(fIVlt i) -ihe 27rhc - -K L3n ' 

Mc L-W0 6(K . .. n

e-/r
r

Now assuming Ko = Ko2, Kn,.gko, = K,, sin 0cos4 , where 0 is the angle between the

projection of Kn onto the x - y plane and ko-Ao' So in the end, the total result is 7

-ihie 2idc 2 -

Mc L 6(Ki

= Io [ 27r

-, 1
- Kf)Ln -K n sin 0 cos 0 I(K n)

ei k nr dP
r

only depends on the magnitude of RK.

Photomagnetic part

The photomagnetic part of the interaction allows spins to change. The magnetic field is

given by

H(, t) = E
K, 3

2rh c [K e -i -i., ] (K x
L wK t e a ejK, ae

Then

Vint = -p.H(rp, t) - 4,n.H(n, t)

7If we assume that light is unpolarized, the averaging will give us a factor of in the differential
cross-section expression.
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where pm stands for the photomagnetic part, and

eh

2Mc

P = 2 Cr

n- 2

r = -r,

Now,

(flvit i) =

27rhC2 k iK O ir ko qdL3(0 x0,;(o)' - "pn ' +iI L3Wo Mce 21 [ 2 2nei ] d

In this form the prefactor is the same as in the photoelectric case, so that now we can ignore

the constants and focus on the important residual matrix elements

Wij= 2 Pn 2 Pe"P+ g eikon] 

where ij can stand for st or tt, denoting a singlet-triplet or a triplet-triplet transition. We

will denote the spatial parts by pn, and Ed. There are two types of possibilities: the triplet

- singlet transition or the triplet -, triplet transitions. We can use the fact (which can easily

be verified by a direct computation) that

(S = 1, mI,)S' = 1, m, = (S= 1, m S' = 1, m,)

(S = O, msl'plS' = 1, m,) = -(S = O, mslnlS' = 1, m,,)

This simple observation allows us to write our triplet-triplet and singlet-triplet transitions
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as Wtt and W t where

_= 2 x .k o)- i ml') [ p * Y ofPVd gn f-* i[ .nId]

Simplifying, we get the results that

-W - (s mXEo .).X1l In )L32 [ 1126(ko - f)t22 'i

Wt = 2(Ko x EM.,o).(X1l )L2 [2] 6(K - Kf)

gP J i(k+t)'ef + nt)r-e- r

Now, we need to average over the initial spins and photon polarizations and sum over the

final spins(we will see photon averaging is trivial, so that it does not matter whether we

consider a polarized or an unpolarized beam). Then using

Vst = - (Ko x E o).(Xoo CnlY >

V = -(Ko x x Aj )

we can see that

27r

4 3 2r J0 [lv-+ ]d
ms ,4I 3* 21( ,( ) Ko2 COS 0 o(rn~xll 5 1 + Ko sin n2x(olykl I12

Since Il(x I(o)xlxi )1 = I(xOl(1 n)y~'s )1, the 0 integration is trivial. That m I(°l(Io)x' l )I2 =

1, can be easily verified. Hence we can say that
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12
Istlavg - 12

A similar calculation for IV,,avg can be carried out, with the difference being, that we have

to sum over the three final ms states. The result can be easily calculated to be

I ttavg 6

11.1.3 Summary of results

For vacuum photodisintegration the results of our calculations are

I(flVPeli)l = V 6(K -Kf)K n sin 0cos 0I(Kn)

)(f IIi = ,2L3/2 (Ko - Kf)K [y2I(K) + I(KP)

I(flV, mli)l = 2L3 /2 6(K - ff)o PI(K) + g

where
iMe / 21rc 2

° Mc L3 W

Note that in the case of the magnetic calculation, we are off by a factor of 2 as compared to

[79]. We have not been able to resolve this.

11.2 Phonon-coupled Photodisintegration of the Deuteron

As in the previous section, the photoelectric and photomagnetic matrix elements are again

separately calculated. If we can ensure that no thermal phonon modes are excited, then we

can still use the vacuum density of states for the calculation of the differential cross-section.

This can be done by introducing a Debye-Waller factor in the computation. The details are
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given in subsection 11.2.2. However, now we have to deal with two very different pictures:

a phonon-coupling which is non-local, and a photon-deuteron interaction which is local.

This presents a problem, which needs to be further discussed.

11.2.1 Local and non-local pictures

In this calculation, we have a local picture of the interaction between a deuteron and a

gamma ray and a non-local picture of phonon modes. Such a mixing of local and non-local

pictures is very difficult to deal with. However, we can make an approximation [36], that

if we are dealing with thermal phonon modes and one highly excited phonon mode, the

highly excited phonon mode can be separated out and the rest can still be approximately

treated as a local coordinate i.e.

rfP = p + uPq (11.3)

where the highly excited phonon mode is isolated and appears as upq. The contribution

of all other modes make up the residual coordinate, rp. Note that Equation 11.3 is exact.

The approximation is in the interpretation of the residual coordinate, rp , as a coordinate

vector. However for Equation 11.3 to be valid, the proton has to stay within the lattice. This

means that nearly all of the gamma momentum has to be taken up by the neutron.

For the neutron to carry nearly all the photon momentum, it is clear that the photon has to

have energy that is matched to the binding energy, Eb 2.2MeV, of the deuteron i.e we

are interested in the threshold photodisintegration of the deuteron; if the energy is lower,

the deuteron will not disintegrate and a higher energy will force both the proton and the

neutron to leave the lattice. However, even with this energy matching, we are not guaran-

teed that the proton will stay within the lattice. A simple calculation can be done to find

out the angular range within which the proton stays behind. The photon comes in with a

momentum hKo. The neutron flies off with momentum K,, at an angle 0 and the proton

moves with a momentum Kp at an angle f. By conservation of energy and momentum,
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hKo = MVn cos 0 + MVp cos3

MV,n sin 0 = MVp sin/3

Eo-Eb = E + En

where V and V, are speeds of the proton and neutron, Eb(> 0) is the binding energy of

the deuteron and E0, Ep, E,, are the energies of the photon, proton and neutron respectively.

Using these equations we can write down a quadratic equation for E in terms of 0, namely

= 16M2E2 + 8Ep [ 2 sin 02 - 2M 2(E - Eb) + + 4M 2(Eo - Eb)2+

8MEo2 4ME 2

c2 (Eo - Eb) sin - c2 (E - (11.4)

By solving this quadratic equation, we can see that if we want the proton energy to be less

than, say 50 meV (to make sure that the proton stays within the lattice), then the angle has

to be on the order of 0.01 degrees. However, we should be careful, because, due to the

quadratic nature of Equation 11.4, for a given angle, we will get two solutions. Hence

even when the angle is 0.01, we would get very low energy neutrons, with the protons

flying off with nearly the photon momentum. In order to eliminate this situation, we would

need to do an energy resolved cross-section. Thus we should calculate the energy-resolved

differential cross-section in the forward direction, 0 O. The interaction matrix element is

an important part of such a calculation, and as a first attempt, it is calculated next.
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11.2.2 Detailed calculation

Photoelectric part

While the interaction is the same as in the vacuum case, the wavefunctions have to account

for the presence of the lattice. Hence we will use

{li >

ITf >

Vint

= I1) In) I/L)'d()

_f eiKnrn
= 10), In')I¢r) L3/2

= Voe-iSVi oe'tako, °

where

In)

In')

e-iSD

= Intial eigenstate of the highly excited phonon mode

= Final eigenstate of the highly excited phonon mode

- All the initial thermal phonon modes

= All the final thermal phonon modes

= Duschinsky operator which converts the initial lattice into the final lattice

and the superscripts i and f on, for example P or f, refer to the initial lattice or final lattice

coordinates. Using f = ?f + ?f, we can see that

pe J (O ~J-n df,f -le (f e c vg a , .L,'SVf, n)d3i
(flVint li) = ( , e P

Since COM motion does not contribute (because the deuteron is stationary), we can just

replace V-i = -Vi. Let us denote -Vifd(P) = (). Then we can see that

(flVinti) = L3 E2 oo. S(L, nle(ko-,,.Pe-ise-in'(r)I4L, n')d 3

= L 2 EKo, A4.(L, n'lei' % - Kn)' e- 'iD l , n) f eik-in()d3P

188



By partial integration, - f e-'iKnVrid(P) = iKn f e-iKn ' -d(')d3 = iK I(Kn) . Hence

we conclude

pe iV -f -R 3J .
(flVi' i) = L3 .o.Knl(Kn)( n le ' -n) r pe- sD 

Now, we use the expansion that we talked about in the beginning of this section, namely

=f + upq

Then we can say

(filint Ii) = ~iVo ,R(fI) ktL3/2 k,-n1(Kj(,ZLfp I(k0n) r e-I 4Id )(nlei(e-K'n)'4 ln')

Please note that

(4, nIle'( °-Kon)rPeisD 1, n = (4-fe(KKn)rPei3DI4)(ne(oKn)uqPIn')

is the no mode-mixing approximation that we talked about at the beginning of the chapter.

Let the light be x-polarized. Then K ,.R, = K sin 0cos k. So

(fn FIi) = = i Vco AIfL3/2Kn sin 0 cos I(Kn)e- w (n'le'(- )qln)

where ew ( ei(K°Kn) e - isD4L), being the square root of the Debye-Waller factor, is

the square root of probability that we are not exchanging any thermal phonons9. Now we

only focus on the (n'le'(k-k)p4lIn) part. Define K0 - Kn = K and K.ip = K up cos 7 = v.

The (n'leivyln) can be easily evaluated in terms of Laguerre polynomials. The complete

answers are, that going from an initial state, Ii), which contains n phonons to a final state

If) of n + 2p phonons, the matrix element

8This only depends on the magnitude of Kn
9Note that we know that averaging over polarizations (i.e. averaging over ) will give us a factor of 4/.
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peli)
(fivlt i) = i3V/2 sin sn 0 cos bI(Kn)e- w

a112 1 2 l)b2-2/4L2nP()

r[l1/22n+2p(n + 2p)! 7l1/22nn!] a 2 fl4 J
Similarly, in going from a state with n phonons to a state with n + 2p + 1 phonons, we get

(flVPrei) i32 Kn sin 0 cos pI(Kn)e- w

(i +a a 2. n!(-l)p b2p+le-b2/4L2+(b)
[i/22n+2+l((n + 2p + 1)! l0'2nn ! !(-1)b 2 'e 2 44L

In the above equation the depends on the sign of b where (in both the equations) b =

v/o = Kup cos 7/ca where K = K0 - Kn, K.up = Kup cos rl.

Photomagnetic Part

The photomagnetic part can be evaluated using the results from the vacuum calculation and

the phonon-coupled photoelectric part. The complete answers are given in the next section.

11.3 Results

The entire matrix element (fIVin,li) can be broken up into three non-interfering parts, namely

the photoelectric part, the singlet-triplet photomagnetic and the triplet-triplet photomag-

netic part. The results are 10

'l°In the state vectors, we are explicitly writing down the excitation of the phonon mode and the spin of the
initial and final states.
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In the vacuum

(f, Sit li, S)

(f, S = OIVint li, S = 1)

(f, = Vn l i, n,S = 1)

VO L 3)(Ko - Kf)Kn sin 0 cos I(K n)L3/2

= 2L32 (K - Kf ) 

= 2L6( - Kf)Ko0
- 2L,2 

In the lattice

VO3 eKn sin 0cos I(K,)(n'leiK' pqln)L32
(f, n', SlVifntli, n, S)

(f, n, S = Ont li, n, S = 1) 2LVo 3 , - (Kn) +-2L 3/2 -F3 2 n 
gnI(K)] (n'lei'UP41n)
211/

+ gI(K) (n'leiu"Pln)
2 ]

where K = K0 - K,. The matrix element (n'leiPqln) can be split into two parts depending

on whether the difference in the phonon excitation between initial and final states is even

or odd i.e.

(n + 2pleiup41n) =

a. 1 1/2 2 2n-1/2
r l/22n+2p(n + 2p)! 1 /22nn! a

(n + 2pleiupqln) =

ri F2,+2P+(n + 2p + 1)! 2 2n!
[ Jrl~~~~~~[F/2nn!l

with b = K = cos. where K = Ko - K K.upa 1 p

'I
I2 b2
n!(-)pb 2e-b2/4L2p(- )
2 ' n 

2 n
a

[-PI(Kn)+ nI(K)]

g [PI(KfZ) + 2nI(K)

n! 1)Pb2p+ -b2/4 2p+ (b 2

2f n!(_ 4

= Kup cos71.
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11.4 Thermal Averaging

From thermal neutron scattering literature [62, 92] and our own calculations, we know that

in order to calculate an experimentally measurable quantity, we need

* An energy resolved differential cross-section.

* Thermal averaging.

* A classical state of the highly excited phonon mode.

In this section we will be able to accomplish the first two of the three tasks. Due to time

constraints, we were not able to use classical states for the highly excited phonon mode;

instead we will settle for the eigenstates.

(do- ' i 1 W'o ,n,7'

k' Edfl

where

27/
= 2pRIni(fIVI%)I 2

-Z Wk,,OL.k'
KnEdn

= 11)., ® IA) ® ad

= 10)>, ® 1') %

(inc = The incoming flux

Here

1 fl/ 2 e-r e'iRm Ms

Ld = - eenn ® s

, = -/ eiK.- s )
P/_ /V

It is important to note that the COM coordinate of the deuteron is a part of the lattice, A.

Here A and A' refer to the initial and final state of the lattice. Now the neutron density of
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states and in c can easily be calculated to be

Lj m

Pkn = (2zr)3 K n d

inc L3

Hence we can put everything together as

do- kL6K,M
(L KnM(Kn A'IVIK' A)12

Now for a two-body reaction it is well-known [92](2 that2

Now for a two-body reaction it is well-known [92] that

d2o'- do
dfdE) =(dAQ) 6(Einitial -Efinal)d n d ,ia

where (Eb > 0)

Einitial

Efinalfinal

= E+ EO-Eb

= E + E,

Using the wavefunctions, it can be seen that

( Tf lVint i ) , l(K)(A' lKr e-isD A)('J'fIt--57n.KiK,) ,. =e e I~2

and hence

d2 o-

dldE _,

L3KM iVo(K

ch3(27r 0 ) l 2V k . 2 IKl (Ae'e- Is lA)126(E - Ei)

Now Ef -- = E - E, + cw where hw = EO - Eb - En. We can use the expansion

6(x) = I eikxdk
27r Joo
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to rewrite

( d2o-

dfldEn )AA'

L3 (2n 2VoJ(Kn)121toxoe.Kn2A(XIe eDL)(ie e-'iKrPeiSD - )e-' dt

We then need to average over the thermal phonon modes and sum over all the possible final-

state modes (including the thermal phonon modes and the highly excited phonon mode).

We can use the fact that

JI) = If, n)

L' n')IA') = 'L, n')

to see that
d2o = d2 C

dfdEn LddPdE- A '

where the summation f4 does not include the highly excited phonon mode and

eP= Z
PV= z
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with Z being the partition function. Also, in the Boltzmann factor, EV will include the

energies of all the phonon modes except the highly excited one.

d2cr ) e-EffL L3Kn M

(.eIeiK LR)eiei hKrPe Se- i D i~I)elwt dt

L3KM IVI(K )I2 I ,K 12 e I12f fz

(44,,nIeis iKg(tO)I4 f n,(, ' ·- tdt
~~~~~where~ e2= z e 4 n le'iDeiKrP e(t)I )(eiKrp(t)-iSDI )

- L- L nle'sL, n)D n'le~K.r e- n)e-idt

where we have used the expansion

Oe -SI5,ne-'d V e e-S ~LZ'ek.P')newd
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Using ,,, In')(n'I = 1, we can see that

(d1dE,, ) C3 (2z) 2 IVoI(KI)I IEk A' .K 12e-2 w (ne-iKp(°) e-iK t)l-i

This calculation very clearly shows how we get the Debye-Waller factor in the previous

calculation, where it was inserted by hand. However, given the time constraints, we were

unable to take this calculation further and get a concrete result and compare with the work

of section 11.2.
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Chapter 12

Coherence Factors In N-level Atoms

This chapter is somewhat different from the rest of the thesis, both in terms of physical

motivation and mathematical sophistication. It deals with the phenomenon of superradi-

ance, which is the spontaneous emission of a coherent system of atoms. It was originally

introduced by Dicke [21]. The superradiant 2-level atomic problem is very well under-

stood [83]. With the help of group theory, a significant amount of research has been done

to understand superradiance in three and N-level systems [15, 50, 56, 63, 74, 75, 90]. This

chapter focuses on a different aspect as compared to these works. Our objective is to find

out whether it is possible to understand coherence effects in N-level atoms, in terms of such

effects in 2-level atoms. We will see, that while this is indeed possible for the completely

symmetric state, for lower symmetry states, such a simple description cannot be achieved.

It should be mentioned here, that in this thesis, we have not discussed all the mathematical

ideas used in this chapter e.g. Cartan subalgebras, weight spaces etc. These concepts

belong to the theory of complex semisimple Lie algebras [31, 47], which is far beyond

what we discussed in chapters 2 and 3. However, the result which we present at the end, at

least for the symmetric case, is delightfully simple.

We will first discuss the 2-level problem. While this can be understood in terms of the

usual angular momentum techniques, we will also develop the Lie algebra point of view.

Such a perspective makes the generalization to the 3-level and N-level system seem much
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more natural. We then go on to discuss representation theory of the Lie algebra 51(3, C),

which is used to study the three-level problem. We then give a brief outline showing how to

generalize to the N-level case. We finish the chapter by discussing why the lower symmetry

states are not easy to understand in terms of two-level systems.

12.1 Physical Motivation

Within the realm of physics, there are many kinds of coherence that are of interest in differ-

ent fields. One of the earliest such examples from classical physics is the case of radiating

antennas. If two identical antennas are widely separated (by many wavelengths of the

radiated electromagnetic waves), then the total radiated power will be close to twice the ra-

diated power from a single antenna in isolation. If the two antennas are brought very close

together and made to oscillate in phase, then the total radiated power will approach four

times that of a single antenna in isolation. We understand this effect classically in terms of

the electric and magnetic fields, which double in strength as the antenna is "doubled". The

radiated power is proportional to the product of the fields, and this leads to an increase of a

factor of four over what a single antenna radiates.

Atoms and nuclei act as antennas on a microscopic scale in radiative decay. If two well-

separated identical excited atoms decay, the total power radiated is again roughly twice that

for a single decaying atom. The same two atoms, if placed within a fraction of a wavelength

and radiate in phase, emit roughly four times as much power as a single atom in isolation.

This implies that they will also decay roughly twice as fast. This effect is called Dicke

superradiance.

Dicke superradiance has been observed experimentally in many systems, including spin

systems in the 1950s and optical systems in the 1970s. In optical experiments, atoms are

prepared initially in excited states by an optical 7r-pulse, and then the coherent decay of the

system is observed. The coherent decay of the system of atoms leads to a "burst" of optical

radiation which is emitted as the atoms decay collectively. Enhancements of many orders

of magnitude in the decay rate have been observed in such experiments.
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12.1.1 Link to the phonon-coupled Unified Model

The fundamental idea behind superradiance is that when the coupling between the atoms

and the resonant electric field is strong, the interaction has to to take into account the entire

system at once. This is very similar to the Phonon-coupled Unified Model, in which nuclei

are strongly coupled to a highly excited phonon mode; the system has to be treated as

a whole and the various nuclei cannot be treated independently. Thus a similar kind of

coherent enhancement is expected in the Unified Model.

12.2 Two-Level Atoms

We begin by reviewing Dicke states in the case of two-level systems. Consider a 2-level

atom, with energy levels la) and lb).

12.2.1 Two atoms

If there are two such atoms, we are working in a 4-dimensional space. The natural direct

product basis is la, a), la, b), lb, a), lb, b). However, it is conceptually and computationally

much better to use a different basis: namely, the three symmetric states

1
lb, b), (la, b) + lb, a)), la, a)

and the antisymmetric state

-(la, b) - lb, a))

The decay (electric dipole transition) is determined by the matrix element of

(ao-(1) + o-(2)I/)
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1
where the c-(j) = [cr(j) - i,(j)] (, oy are Pauli matrices). It is easy to see that since

there can be no transitions between symmetric and antisymmetric states, the antisymmetric

state cannot decay'; it is subradiant.

In the abstract notation of Appendix A, i.e. we are decomposing V 0 V as

V V = Sym2V A2 V

where V represents the 2-dimensional space spanned by la) and lb), Sym 2V represents sym-

metric tensors and A2V the antisymmetric tensors.

12.2.2 Three atoms

With three atoms, we are in a 8-dimensional space. The Dicke states are well known [83].

They are

= laaa)

= 1/V(laab) +

= 1/f(lbba) +

laba) + Ibaa))

Ibab) + labb))

= Ibbb)

= 1/(laab) + laba) - 2baa))

= 1/-(lbba) + Ibab) - 2labb))

= 1/2(laab) - laba))

= 1/¥V(bba) - Ibab))

One can see by explicit computation that for Dicke states:

1. The matrix elements are zero between states of different symmetry.

1These selection rules are a consequence of the Wigner-Eckart theorem for S(2).
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2. The decay rates are higher among symmetric states as compared to states of lower

symmetry.

In fact the first one is a direct consequence of the Wigner-Eckart theorem (as applied to

S(3)) and the second effect is a manifestation of superradiance. Typically the superradiant

decay rate of the maximally symmetric state grows as N2 , where N is the number of atoms.

As for two particles, in the notation of Appendix A, we are merely decomposing V ® V ® V

as

V®3 = VU -l VE O V

Before we begin to discuss representation theory of Lie algebras, we want to highlight

some of the interesting mathematical properties of Dicke states. This will help us in our

generalization to N-level atoms.

12.2.3 Group theoretical properties of Dicke states

There are several group theory properties that are of interest to us:

* The unprimed states form a 4-dimensional irreducible representation of s1(2, C) =

{2 x 2 complex traceless matrices).

* The primed states and the double primed states form (isomorphic) 2-dimensional

irreducible representations of 1[(2, C).

* 13), 12), 11), 10) (each state individually) forms the trivial representation of S(3). Simi-

larly {12'), 12")) and {1l'), 1I")) form two (isomorphic) 2-dimensional irreducible rep-

resentations of S(3). However, The "sign representation" of S(3) is missing.

We can see that representation theory provides us insights into the structure of Dicke states,

otherwise not easily obtainable. From the above-mentioned properties, we can deduce that
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the important groups are

S(d) = {Group of permutatations of d objects)

sl(n, C) = {Lie algebra of n x n traceless matrices)

However, using the Weyl Unitary trick [31], we know that there are natural bijective corre-

spondences between the complex linear representations of Il(n, C), real linear representa-

tions of su(n) and the real analytic representations of SU(n) where

5u(n) = Lie algebra of n x n anti-hermitian traceless matrices)

SU(n) = {Lie Group of unitary n x n matrices of determinant 1)

Before we begin to study these objects, it is best to discuss angular momentum algebra,

both from the familiar physicists perspective and from the Lie algebra point of view. This

will help us understand terminology and the theorems that will be needed.

12.3 Representation Theory of 51(2, C)

12.3.1 The physicist's way

From quantum mechanics we know that angular momentum operators, Ji, generate irre-

ducible representations of SU(2) via exp -i. These operators infinitesimally satisfy the

following relations

[Ji, Jj] = iEijkJk

with the usual

Jlj,m) = mlj, m)

J+lj,m) = h(j -m)(j+m+ 1)lj,m+ 1)

J+lj,m) = hv(j+m)(j-m+ l)lj,m-1)
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While the Ji are Hermitian operators, the J+ and J_ are not.

12.3.2 The mathematician's way

As mentioned in subsection 12.2.3, su(2) consists of anti-hermitian traceless matrices.

From general Lie theory it is known that the exponential map is the critical link between

any Lie algebra g and its Lie group G. In the case of Lie subgroups of GL(n, C), the ex-

ponential map is just the matrix exponential. It can be checked by direct computation that

anti-hermitian traceless matrices exponentiate to special unitary matrices. Hence, as ex-

pected, the matrix exponential is the link between su(2) to SU(2). Since mathematicians

have no reason to prefer hermitian over anti-hermitian operators2 , they use anti-hermitian

matrices for ou(2).

Using

X 1 = -r 1 X2 =-22 X3 = 2C3

where the ui are the Pauli matrices. With these definitions we get the commutation relation

[Xi, Xi] = EijkXk

where Eijk is the usual Levi-Civita tensor. Since s1(2, C) = C ®R su(2) = su(2) iu(2),

any complex representation of su(2) bijectively corresponds to a complex representation of

,1(2, C). A convenient basis for 1l(2, C) is

= -i(X - iX2) = 1
0 0

2Unlike the physicists, for whom hermitian operators correspond to physical observables.
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Y = -i(X 1 + iX 2) =

H = =H = -iX = 

Mathematicians normally use H = -2iX 3, but we will

make the connection with the physicists.

adhere to the above defined value to

With these definitions, the commutation relations look like

[H,XI

[H, Y] = -Y

[X, Y] = 2H

The above are the commutation relations for the raising and lowering operators of angular

momentum (provided we normalize h = 1). If we think of H - J,, X - J+ and Y - J_,

then we can rewrite the above equations as

[,z, J+]

[J, J_]
[1j][]+9 ]-

= hi+

= %

We can now proceed exactly as in any modem quantum mechanics text [81] to get the

matrix elements of X or Y. However, keeping in mind our generalization to sl(n, C), we

introduce some ideas from the theory of Lie algebras.
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Let V be an irreducible representation of 51(2, C). Then

V = E V

where a E C s.t.

H v = a v, v E V

H generates a subalgebra, h, which is called the Cartan subalgebra, a are called the weights

and Va are called the weight spaces.

Consider the standard representation V of 81(2, C) on C2. If

x [I] y []

then
x yHx= - Hy= -2' 2

Hence we can conclude

V = V_,2 V1/2

where V 1/2 is spanned by y and V 2 is spanned by x. The representation Sym(")V, which

is a completely general algebraic construction, will feature prominently in the rest of the

chapter. It is the quotient of V®n by the subspace generated by all v, ® ... ® v,, - v,o() ®

·.. v(nl, where o- is any permutation of { 1, * *, d}, where d = dim V. We can also think of

Sym(n)V c Vo n by mapping vlv2 ,vn ZCES(n) V-r(1) ® ® V(n)'

Consider Sym(2)V. This has basis {x2, y2, xy}. Then

H(x.x) = x.H(x) + H(x).x = x.x

H(x.y) = xH(y) + H(x).y = 0

H(y.y) = yH(y) + H(y).y = -y.y
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Hence W = Sym(2)V = Cy2 ~ Cxy Cx = W_1 Wo D W1. More generally Sym(m)V has

basis {x", xm-ly, ", ym}. Then

Hxm-kyk = m -2 kxy k
2

The eigenvalues of SymmV are -m/2, -m/2 + 1, *-, m/2}. These are exactly the same

results we get from quantum mechanics. In fact, any irreducible representation of sl(2, C)

is a symmetric power, Sym(m)v of the standard representation V C2.

By analogy to two-level systems, we know that when we will try to generalize to the three-

level systems, we will need to understand the representation theory of o1(3, C).

12.4 Representation Theory of 51(3, C)

Concretely, for 61(3, C), we will be using the basis

0

E12 = 0

0

E23 

0

0

0

0

E3 = 0

1 0

00
0 0

00
0 1

0 0

00
00
0 0

E13 = 

E21 =

0

0

0

0

1

0

0

E32 = 

0 1

00
0 0

0 0
00
0 0

00
00
1 0
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1 0 0 0
HI= 0 -1 0 H2= 1 0

0 0 0 0 -1

Note that Eij are precisely what are commonly accepted as the raising and lowering opera-

tors. The Hi's generate what is called a Cartan subalgebra and denoted by h.

For 1l(3, C), we have to generalize our theory of 51(2, C). The role of H c 1(2, C), is now

played by the Cartan subalgebra of all diagonal matrices h in 51(3, C). Let V be a representa-

tion of 51(3, C). Using the fact that commuting diagonalizable matrices are simultaneously

diagonalizable, we can decompose V as

V = D V,

where v E V is an eigenvector (in the generalized sense) for every H E h i.e.

H v = a(H) v

where a E h* (i.e. a is a linear map from a!: h - C).

Any Lie algebra acts on itself by the adjoint action i.e. H.Y = [H, Y]. This action is usually

written as H.Y = ad(H)Y. Under this adjoint action,

51(3,) = h c) (e9c)
aEh*

[H, Y] = ad(H)Y = a(H)Y H h, Y E ,r

a are called the roots and the _g are called the root spaces. Let D be any diagonal matrix.

Then

[D, Eij ] = (Li - Lj)(D)Eij (12.1)
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Figure 12-1: Root diagram of 81(3, C)

where

Li a2a i

h = a2 ;a + a2 + a3 = 0

h* = C{L1,L 2,L 3} / (L +L 2 +L 3 = 0)

The root diagram is drawn in Figure 12-1.

Hence by Equation 12.1 we can see that the linear functionals a E h* appearing in the

direct sum decomposition are Li - Lj, where the space 9 L-L is generated by Eij.

Now if V is a representation of 81(3, C), then we already know that

V = V
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A simple calculation reveals that

HXv = XHv + [H, X]v = (a(H) +f3(H))Xv X E g, V E VP

Hence Xv is again an eigenvector for the action of h, with eigenvalue a +jB. In other words

a : Vp V+

For each root a, g§, g_ and [ga, ge_] generate a Lie subalgebra 5 - 1(2, C). This sub-

algebra which gets attached to each root, will play a crucial role in our application. Then

,, V+nc, forms a representation of 5, 51(2, C). Now it is clear that g,, g_ are precisely

the raising and lowering operators of quantum mechanics.

12.5 Three-Level Atoms

Having developed some expertise in representation theory of 51(3, C), we can now try to

use it to understand coherence effects in three-level atoms. We compute the matrix ele-

ments of the maximally symmetric state since it is probably the most important3 of all the

symmetry-adapted states. Our intuition also suggests that these symmetric-state matrix el-

ements should be the easiest to calculate as well. As the following calculations show, this

indeed turns out to be true.

12.5.1 Highest symmetry state

Consider V an irreducible representation of l1(nC). Then we know from the theorem in

Appendix A that

Vn = DS etvomx
A

Hence the highest symmetry states are precisely those corresponding to Sym(n)V. We al-

3It controls the decay rate in a superradiant system
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ready know that

Sym(n)V = E Vim

The remarkable property of Sym(n)V is that all the weight spaces have dimension 1. This

fact will turn out to be very important in simplifying our answer for the N-level system.

If we consider the action of e = 1(2, C) on any weight space Vp then dn Vt+n, forms

an irreducible representation (since all weight spaces are 1-dimensional) of ,1(2, C). And

we know the matrix elements of the raising and lowering operators for the irreducible

representations of s1(2, C).

A concrete example: Sym(2)V

The weights for Sym(2)V are {2Ll , 2L2, 2L3, L + L2, L + L3, L2 + L3}. The weight diagram

is drawn in Figure 12-2.

IL

Figure 12-2: Weight diagram for Sym(2)V

In the theory of semisimple Lie algebras, we can define positive roots and simple roots

which lead to the concept of the highest weight. We will not go into any details, but will

merely state that for our purposes 2L is the highest weight and the Li - Lj, i < j are the

positive roots. As mentioned in the section 12.4 the gLi-L = CEij maps the weight spaces
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as shown in Figure 12-3. We now think of an atom with 3-levels (corresponding to o1(3, C)).

/

E32

E,

F.,

U, \/ v
Figure 12-3: Raising and lowering operators

Since we are dealing with Sym(2)V, this means that there are 2 bosons to deal with. We will

use the convention that the highest weight space corresponds to both the particles being in

the highest energy level i.e. to (n = 2, n2 = 0, n3 = 0). The precise correspondence that

we use is shown in Figure 12-4.

As already mentioned the {(2, 0, 0), (1, 1, 0), (0, 2, 0)} states form a 3-dimensional irreducible

representation of 91(2, C). The 51(2, C) is generated by {§L2-L', SL,-L2 ' hL2 -LI } where hL2-LI

[L 2-L ' LI-L2] E h. Hence we know for example that

E2112,0,0) = V21,1, 0)

E21 11, 1,0) = V210,2,0)

E2112,0,0) = 0

corresponding to J+ and for j = 1 and
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Fr2Cenceeto0.ofrylvladeg

Figure 12-4: Correspondence between occupation of energy levels and weights

E1 2 12, 0, 0)

El 211, 1, 0)

E 1210, 2, 0)

= 0

= i212, 0, 0)

= V211, 1, 0)

corresponding to J_ for j = 1.

Similarly {(1, 1, 0), (0, 1, 1)} correspond to a 2-dimensional (i.e. j = 1/2) representation

of 1l(2, C). In this case the 61(2, C) is generated by {L 3 -L 1' §L1-L 3 ' hL3-L } where hL3-L =

[9L 3 -L' SL 1-L3 ] E h. Hence e.g.

E3 11,1, 0)

E 3 1 10, 1, 1)

= 10,1,1)

= 
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E21 jf= m21 = 2

E 3 1 j31 2 31 2
n1 +-n2 M n2-n

E3 2 32 = 2 32 

Table 12.1: Correspondence between level occupation in a three-level system and angular
momentum

for J, and

E1 310, 1, 1) = 11, 1, 0)

E1311, 1,0) = 0

corresponding to J_.

12.5.2 Summary

Thus with n = n, + n2 + n3, we can construct a 1-1 correspondence between angular

momentum eigenstates and the occupation of the highest symmetry state in a three-level

system. This is defined in Table 12.1. If we wish to calculate the matrix element for the

lowering operator from state (n - 1, 1, 0) to (n - 2, 2, 0), then this corresponds to E21 with

j21 = n and m21 = n - 2. Hence,

E 2 1ln - 1, 1, 0) = (J21 + m21)(j21 -m21 + )n - 2, 2, 0)

We can, in principle, generalize the above result for the three-level symmetric case, to the

N-level symmetric case.

12.5.3 Sym(m)V for ls(n, C)

It is hard to draw weight diagrams even for 51(4, C), and impossible for higher n. How-

ever, the basic fact that the weight spaces are 1-dimensional still holds true for Sym(")V

of sl(n, C). This was the critical fact that let us consider "l-dimensional subspaces" of the
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weight diagram as irreducible representations of 51(2, C). The 51(2, C) subalgebra associ-

ated to each root is still generated by {gLj-Li,, L,-Lj hLj-L i} where hLLi = [Lj-Li' §Li-Lj]'

The highest weight is still mLl, and it corresponds to "m particles in the highest energy

level (with n levels in all)". Any consistent set of conventions for lowering operators can

be made, with the relevant angular momentum still defined by j = 2 , m = 2, k > I.

12.5.4 Mixed symmetry states

The mixed symmetry states are relatively difficult to understand in terms of this simple 2-

level picture. This becomes apparent in the simplest of cases. This problem does not occur

in 1(2, C) since all the irreducible representations are given by Sym(')V, and we know

the weight spaces have dimension 1. However, let us consider ,1(3, C). The irreducible

representation rF1,, has a weight diagram which is drawn in Figure 12-5. The vector spaces

are labeled by integers, with the zero weight space, VO, assigned the numeral 0.

0~~ 5

Figure 12-5: The problem with Tll

The circle around VO denotes the fact that there are two linearly independent vectors in V0.

This causes our simple method to breakdown. The fundamental problem is that when we

want to calculate the matrix elements of the raising/lowering operators in the transitions
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3 - 0 - 2, the vector in the 0 which forms a 3-dimensional irreducible representation

of 1l(2, C) in the 3, 0, 6 sequence is linearly independent of the vector which forms a 3-

dimensional irreducible representation of 81(2, C) in the 2, 0, 5 sequence.

This problem of linear independence appears in all the mixed symmetry representations.

As we have seen, this makes it hard to use the two-level formalism to understand the N-

level problem. While it is true that in a particular case, by explicit computation, we can

figure out the effects of this linear independence, there do not seem to be useful, general

results for the N-level mixed symmetry problem.
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Chapter 13

Conclusions

In this chapter we summarize the main contributions of this thesis and outline some possible

directions for future research.

13.1 Summary of Contributions

In this thesis, we have

* explicitly constructed all the channels for the three and four-body nuclear problems.

* found a simple method for constructing symmetry-adapted spin/isospin states.

* formally calculated matrix elements for the Hamada-Johnston potential.

* identified a possible generalization of Racah's method.

* devised a systematic way of calculating matrix elements with correlated wavefunc-

tions.

* derived the democratized coupled-channel equations for the Hamada-Johnston for

the three and four-body ground-state problems.

* analyzed phonon-coupled photodisintegration.
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* introduced a simple method of thinking about N-particle coherence problems.

The main objective for undertaking this research was to allow realistic nuclear potentials to

be used in the Unified Model. However, this research can have a broader impact on the field

of phonon-coupled nuclear reactions. This is because progress in condensed-matter nuclear

reactions requires collaboration from various disciplines. The coupled-channel equations

open up this field to atomic physicists, applied mathematicians etc.

13.2 Future Directions

The coupled-channel equations could be used to

* develop pedagogic applications to few-body vacuum nuclear physics. Nuclear physics

is a daunting subject, and the coupled-channel equations could be used to simplify

presentation of the few-body nuclear problem. Apart from ground-state calculations,

these equations could be used to study excited state spectra of few-body nuclei or d-d

fusion reaction cross-sections.

* realistically compute the predictions of the Unified Model. This could include an

attempt to explain the Kasagi experiment[38] or calculate d-d fusion reaction cross-

section in a lattice.

There are certain aspects of the research which are left unfinished. These are to

* democratize the coupled-channel equations.

* complete the phonon-coupled photodisintegration.

* understand why the phases of the Clebsch-Gordan and the projection operator ap-

proach are the same.

* figure out whether a generalization of the Clebsch-Gordan approach to arbitrary

SU(2) (or even SU(n)) representations is possible.
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The democratization of the coupled-channel equations is crucial because without it, nu-

merical computations will be difficult. It is also important to understand the phenomenon

of phonon-coupled photodisintegration, as it is the simplest possible condensed matter nu-

clear reaction. A better comprehension of this basic reaction is a prerequisite to understand

the more complex phonon-coupled nuclear reactions. Hence both these projects should be

undertaken as soon as possible. The last two aspects of unfinished research require some

leisure time, and if possible, would be fun and satisfying to understand.
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Appendix A

Representation Theory And Symmetric

Polynomials

A.1 Introduction

The material in this appendix is not really required for understanding any part of the thesis.

The reason for including this material is to give the reader an idea of the amazing interac-

tion between representation theory of the symmetric and general linear groups, symmetric

polynomials and combinatorics. It is obvious that these few pages are certainly insufficient

to do any justice to the above mentioned subjects. Unfortunately, we also cannot follow the

example-based procedure, adopted in chapters 2 and 3 for learning group theory, because

most physicists are not already familiar with the objects discussed in this appendix. The

motivation for including this appendix is only to pique the interest of the reader into read-

ing the mathematics literature which expounds these results in great detail and from where

most of this discussion has been taken [30, 31, 35].

This appendix is mainly about the celebrated Littlewood-Richardson rule. This rule can

come in various forms. The principle ones are

* Multiplication in the plactic monoid.
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· Multiplication of Schur polynomials.

* Product in the Grothendeik group of irreducible representations of S(m).

* Tensor products of irreducible representations of GL(n, C).

where GL(n, C) are invertible complex n xn matrices, the plactic monoid is a construct from

combinatorics and Schur polynomials are some symmetric polynomials. On the surface,

all these four objects seem to be very different, and one does wonder, what, if anything,

can these objects have in common with each other. The beauty of the subject arises from

the very fact that the Littlewood-Richardson rule unites these ostensibly disparate fields of

mathematics.

Towards the end of the appendix, we make some remarks about representations of SU(n)

and SL(n, C). This is intended to clarify why physicists, when dealing with representations

of SU(n), can (and in fact do)use the mathematics associated with SL(n, C) representations.

A note of warning is that the term Young tableaux used here is different from the one

used in chapter 3. This is done because there are some differences in terminology in the

mathematics and physics literature.

We should first define all the groups that we will be discussing in this appendix.

* S(m) = Permutations of { 1, ... , m}.

* GL(n, C) = Invertible complex n x n matrices.

* SL(n, C) = Complex n x n matrices of determinant 1. This is a complex Lie group.

*· 1(n, C) = traceless n x n. matrices. This is the Lie Algebra of SL(n, C).

* SU(n) = n x n matrices of determinant 1 such that AtA = I. This is a real Lie group

(although the matrices have complex entries!) since its Lie algebra is defined over R

and not over C.

* su(n) = traceless, anti-hermitian n x n matrices. This is the Lie algebra of SU(n).
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* Symmetric polynomials in m variables. This needs a bit of explanation. S(m) acts

naturally on the polynomial ring R[Xl, .. .Xm] where R = Z or Q by ro(Xi) = X(i) for

or E S(n). All polynomials invariant under S(m) are called symmetric polynomials.

In fact it is clear that symmetric polynomials form a graded (by the degree of the

polynomial) ring.

Am = dAm

f(X, ... , X,) E Am f(X .... C X
lal=d

where X = XX ...Xmm with lal = a +... + am.

A.2 Representation Theory of the Symmetric Group

Young diagram is a collection of boxes, arranged in left-justified rows, with weakly decreas-

ing number of boxes in each row. A partition of m is a sequence of weakly decreasing non-

negative integers (A,, A2, ... Am) such that Z Ai = 1. It is clear that partitions of m are equiv-

alent to Young diagrams with m boxes. e.g. # corresponds to A = (4, 3, 3, 2) = (4, 32, 2).

Sometimes the notation A F m or II = m is used.

Apart from the convenience of a graphical representation, the reason for introducing the

Young diagram is to put something in the boxes. Any way of placing positive integers in

each box will be called a

* numbering, if the entries are all distinct.

* filling, if the entries are not distinct.

A tableau is a filling that is

1. Weakly increasing in each row.

2. Strictly increasing in each column
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X is called the shape of the tableau T. A standard tableau is a tableau which is a numbering.

We can transpose a Young diagram by flipping it along the diagonal e.g. -*o 5.

A.2.1 A preview of symmetric polynomials

To any numbering of T of a Young diagram we associate a monomial XT which is a product

of the variables Xi corresponding to the i's that occur in T. e.g. if contains two l's, two

2's, one 3 and one 5 then, f -o X2X22X3X5. Associated to each partition X and integer m

such that A has at most m rows, there is a very important symmetric polynomial called the

Schur polynomial which is defined as

S(X1, ...,Xn) = E X T

where the sum is over all tableau of shape A using 1, ... , m = [m]. It turns out the sx are

symmetric polynomials and form a basis of the ring of symmetric polynomials.

The Schur polynomial corresponding to the Young diagram of A = (n) is called the nth

completely symmetric polynomial. It is the sum of all distinct monomials of degree n in

the variables X ...X,. It is denoted by hn(Xl, ... , X ) = h(X). Similarly the Schur poly-

nomial corresponding to A = (In), is called the nth elementary symmetric polynomial. This

polynomial is the sum of all monomials Xi, ... , Xin for all strictly increasing sequences i.e.

1 < i < i2 ... < in < m and is denoted by en(X1, ... , Xn) = en(X). It is clear that ei and hi are

symmetric polynomials. The first few polynomials are given by

hl=e 1=X l+X 2+...+Xm

h2= EXiXj
i<j

e2= E XiXj
i<j

There are some beautiful identities dating back to the nineteenth century in the ring Am.

They can be proved by brute-force techniques. However, it is much easier to follow the
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somewhat circuitous path of the plactic monoid which was developed in the latter half of

the twentieth century.

A.2.2 Plactic monoid

Before we explain what a plactic monoid is, we need to give some other preliminary ex-

planations. First we give the Schensted Row-insertion Algorithm. Given a tableau T and

a positive integer x, we construct a new tableau denoted by T - x. The algorithm is: if x

is at least as large as all the entries in the first row of T, simply add x in a new box to the

end of the first row. If not, find the left-most entry in the first row that is strictly larger than

x. Put x in the box of this entry, and remove ("bump") the entry. Take this entry that was

bumped from the first row, and repeat the process on the second row. Keep going until the

bumped entry can be put at the end of the row it is bumped into, or until it is bumped out

at the bottom, in which case it forms a new row with one entry It turns out that we again

get a tableau with one more box.

This algorithm can be used to define the product tableau T.U of two tableau T and U. The

algorithm is to start with T and row-insert the left-most entry in the bottom row of U into

T. Row-insert into the result, the next entry of the bottom row of U, and continue until all

entries in the bottom row of U have been inserted. Then insert, in order, the entries of the

next to last row, left to right, and continue with other rows until all entries of U have been

inserted i.e. if we list entries of U in order from left to right and bottom to top, we get the

sequence x l, x2, ... , xs then

T.U = ((((...(T xl) -x 2) ... ) X_l) X,- Xs)

(see pages 11-12 [30] ).

Theorem. The product operation makes the set of tableau an associative monoid. The

empty tableau is a unit in this monoid 0. T = T.0 = T.

Proof. See pages 30-35 [30] .

'See page 7, [30] from where this description is copied and the example there.
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This is called the plactic monoid (this is actually called the monoid of tableau and another

monoid, isomorphic to the monoid of tableau, is called the plactic monoid. See page 23

[30] ). A monoid has an associated group ring. For the monoid of tableau with entries in

[m] we denote this tableau ring by R[,]. This is a free Z-module, with basis, the tableau

with entries in [m] = {1, ... , m}. There is a natural ring homomorphism from

RIm] + Z[XI ... X m ]

which maps T -, XT, where XTis the product of variables Xi, each occurring as many times

in XT as i occurs in T. It turns out that it is easier to prove certain identities in R[m] and

carry them over, by the ring homomorphism to Z[X l, ... , Xm]. This is the reason why we

introduced the plactic monoid in the first place.

A.2.3 Some useful identities in RIml

Let SA = S[m] be the sum of all tableau of shape A with entries in [m].

Lemma 1.

SAS(p) = E SP

where the sum is over all p's that are obtained from A by adding p boxes, with no two in

the same column. Similarly

SA.Sop = E Sy= P

where the sum is over all ,'s that are obtained by adding p boxes to A, with no two in the

same column.

Proof: See page 24 [30] .

A tableau T has content p = (p1, ...p)if its entries consist of u1 l's, u2 2's etc. up to u l's.

Let A be a partition of n and p = (1 ... , p1) a sequence of non-negative integers. Then

define K - number of tableau of shape A with content p.
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Lemma 2.

SW (PI),S·2) ... Sl) = E K] SAt
A

S(lPl). ...S(l) =
A

where A is conjugate to A.

Proof. See pages 25-26 [30].

Littlewood-Richardson Rule 1.

S* So = E cASV
V

Proof See page 63 [30] .

The are non-negative integers called the Littlewood-Richardson integers.

A.2.4 More symmetric polynomials

We have the ring homomorphism

Rim] - 7[X ... Xn]

mapping T H XT. Under this homomorphism

SA HS2(X ... Xm)

S(p) hp(X, ... , Xm)

S(lp) H e(X ..., Xm)

and our results of the previous subsection transfer over to the ring of symmetric polynomi-

als. Hence we have the following lemma.
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Lemma 3.

SA(X, ...., Xm)hp(X,, .... X) = E s,(X, Xm)

s;A(X, .. , X)ep(X1. .... X,) = E s(X' *., Xm)

Littlewood-Richardson Rule 2.

v
sAs, = CV S v

Although the theorem follows from the corresponding theorem in R], there is an elegant,

direct proof given by Stembridge [96] . The reader is strongly urged to look at it. In fact as

a corollary to Stembridge's Theorem we get an alternative definition of Schur polynomials

(which was the original one given by Jacobi).

Corollary.
Ai+m-i

IXf I

sA = ix- i i

where lai jl = determinant of a m x m matrix.

For a partition A define

hA = hA hA ***hAm

eA = eA eA ... een -e1 2e...em

We also define a new basis by m, = sum of all distinct monomials obtained from Xi ... Xm

by permuting all variables e.g.

m(2,1) = XXj
i*j

Theorem. The following are bases over Z of the homogeneous polynomials of degree n in

m variables.

1. [{m: A a partition of n with at most m rows }
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2. {sx : A a partition of n with at most m rows }

3. e, : A a partition of n with at most m columns }

4. ha: A a partition of n with at most m columns }

5. hx : A a partition of n with at most m rows }

Proof See pages 73-74 of [30] .

For many useful identities relating to these and other symmetric polynomials, a good start-

ing point would be pages 72-78 of [30]. It is somewhat difficult to keep track of the number

of variables m. Either we can assume they are "sufficiently large" or use something slightly

more fancy (see page 77 of [30] ). In either case, we now drop m and get our ring of

symmetric functions as

A = n=oAn

where n is the degree of the symmetric polynomial.

Since the Schur functions form a a basis of An, we can put an inner product on An by

requiring that sA form an orthonormal basis i.e. < s, s. >= 6~

A.2.5 Construction of the representations

Let T be a numbering. S(m) acts on the set of numberings with o E S(m) mapping T r oT,

where o-T is a numbering that puts o-(i) in the box in which T puts i. For any numbering T,

we have a subgroup R(T) of S(m) which consists of those permutations that permute entries

of each row among themselves. Analogously we can define the column group C(T).

R(T) = S(Ai) x S(A2) x ... x S(Am)

C(T) S( 1) x S(X2) x ... x S(,m)

where A is conjugate to A.
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Now for any given partition A, let us fix a standard tableau T2 . We can then define

aA, bA, CA E C by

aA = E 
peR(T)

bA = E (sgn q)q
qeC(T)

CA = aAbA

Let A = $(m). We can define SA = A baA AcA and MA = AaA. Clearly SA c MA. In fact

one can show that

Theorem. For each partition A of n, S is an irreducible representation of S(n). Every

irreducible representation of S(n) is isomorphic to exactly one S .

Let Rn be the free Abelian group on isomorphism classes of irreducible representations of

S(n) i.e. [V] E Rn - [V] = Y mA[SA] mA E Z where [V] denotes isomorphism class of V, a

representation of S(n). Define

R=E )n=Rn R=Z

Define a product on R

Rn x R - Rn+m

by

[V].[W] = [IndsnxsV ® W]

This product is associative and makes R into a commutative, associative, graded ring with

unit. This is called the Grothendeik group. Now we can define a symmetric inner product

on Rn by requiring [SA] form an orthonormal basis. Since hA form a basis of A we can
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define a ring homomorphism

o : A R

sending hA - [MA].

Theorem. (c is a homomorphism of graded rings which preserves inner products and

q(s) = [Sql.

Proof. See page 91 of [30].

This is the main result that now allows us to transfer what we know about symmetric

functions to the irreducible representations of S(m). Hence we get our third version of the

celebrated Littlewood-Richardson Rule: this time it is for the irreducible representations of

S(m).

Littlewood-Richardson Rule 3.

SA.Sy _ D SVOC

Corollary.

SA () U m Sx

where Uin is the alternating representation and A is conjugate to A.

A.3 Schur-Weyl Duality

Consider V where V = Cn. GL(V) and S(m) act on V m in the obvious manner: let

g GL(V) and co E S(m) then

V1 ® V2 ® .. Vm. = Va(1) ® V,(2) ...V = ( ) V(2) V(m)

These two actions of S(n) and GL(V) commute with each other3

3In fact GL(V) and S(n) are commutants of each other. This fact plays a very important role in Schur-Weyl
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Let A be a partition of m, and T a standard tableau with C(T) - c. Define the Schur

module 4.

$SV = Im(cA)

Theorem. Let n = dim V. Then

1. $V is zero if A,n+l O. If A = ( > A2 ...A,, O) then dim $SV = s(1, 1, ... , 1).

2. Under the action of GL(n, C) x S(m), the space of m-tensors over Ca decomposes

VOm = @S(V) S t

where the sum is over all partitions of m with at most n parts.

3. Each $SV is an irreducible representation of GL(V).

4. For any g E GL(V)

XxV(g) = sA(xl, ... , Xn)

where xl, ... , xn are eigenvalues of g.

Proof See pages 84-87 [31] and page 374 [35] .

Corollary. Let c E CS(m) and (CS(m)).cr = DAV, r v as representations of S(m), there is a

corresponding decomposition of GL(V)-spaces by

V®m.c = EAt$]Qr x

Littlewood-Richardson Rule 4.

SAV 9 TV - Ec$V

duality vector space W. For any S c End(W) we define

Comm(S) = {x E End(W): xs = sx for all s E S}

Comm(S) is called the commutant of S. Let W = V®m, 1 = p(C[GL(V)]) and B = r(C[S(n)]) where p, 7r are
representations of GL(V) and S(n) on V®m described above.

4We can define the Schur module in an intrinsic way.

232



where c are Littlewood-Richardson numbers.

A.3.1 Remarks

Since SV is an irreducible representation of GL(V), SAV is also an irreducible represen-

tation of SL(V). By the correspondence between irreducible representations of connected

Lie groups and their Lie algebras, we get an irreducible representation of sl(n, C).

Theorem. The representation $AV is the irreducible representation of sl(n, C) with highest

weight AIL1 + ... + AnLn where the weight lattice is given by

A = ZL ...Ln/(Z L i =O)

Proof. See page 223 of [31].

By the Theorem of Highest Weight, we know that these are all the irreducible representa-

tions of sl(n, C).

A.4 Some Comments on SU(n) and 51(n, C)

Physicists are mostly interested in irreducible representations of SU(n) and yet they use

the representation theory of sl(n, C). The reason is that there is a one-one correspondence

between representations of the real lie group SU(n) and the complex lie algebra sl(n, C).

This occurs via Weyl's Unitary trick.

Suppose we are given a complex representation p of 6l(n, C). Since

6L(n, C) = C ® 5u(n) = su(n) E iu(n)

Restrict p to u(n). p is still irreducible under eu(n). Since su(n) is the Lie algebra of a

simply connected Lie group SU(n) it lifts to a representation of SU(n). Since SU(n) is

connected, this lifting is still irreducible.
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Conversely, given an irreducible representation of SU(n) it gives an irreducible representa-

tion of su(n) (since SU(n) is a connected Lie group) > it extends to an irreducible repre-

sentation of sl(n, C).
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Appendix B

Semi-Classical Matrix Element

Calculation

This appendix should be considered as a supplement to sections 7.5 and 7.6. Here we

discuss the classical method of calculating matrix elements in some detail and apply it to

the spin and isospin parts of three-body wavefunctions. As explained at the beginning of

chapter 7, in this method we

* Expand spin and isospin wavefunctions in terms of a basis with special symmetry

properties under the exchange of the last two particles.

* Leave spatial wavefunctions in their original form (and hence it has no symmetry

properties under exchange of last two coordinates).

* Evaluate matrix elements, with the results given in terms of multidimensional spatial

integrals.

It should be emphasized, that this approach to calculating matrix elements cannot be ap-

plied to the H-J potential. The reason being, that in the H-J, the potential is dependent on

the spatial symmetry and spin of the wavefunctions involved. When the matrix elements

are calculated, we get (as shown in section 7.6) spurious couplings between states of even

and odd spatial symmetry (the same applies to spin as well). Hence, in evaluating the
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matrix elements, we do not know whether to use even-singlet, even-triplet, odd-singlet or

odd-triplet values. However, this method can be applied to other potentials which are not

given in terms of even-singlet, odd-singlet etc. parameters.

We will first give a proof of Equation 7.6 and then summarize the results. In the end we

will show how to put everything together in order to explicitly calculate matrix elements.

B.1 Proof of Equation 7.6

Take our given wavefunction . Then

= 1[][1 r1']s77 /]T)

= [ - n((7)' [Y]) E C((r/)[Y'](77f)1(7l)Y)n((f)' [Y '] Ms)((r') [Y" M T )

[X 1 ['1, [y"]

where

* d is the dimension of the representation (1).

* the C's are the Clebsch-Gordan coefficients of S(n).

* (), (') and (77") are the Young diagrams with corresponding Yamanouchi symbols

[Y], [Y'1 and [Y"].

* () and [Y] are the conjugate Young diagram and Yamanouchi symbol to (r7) and [Y]

respectively.

· tIn, On and Frn are n-body space, spin and isospin wavefunctions.

Let the Yamanouchi symbols be given by Y = pq y, where p, q refer to the rows of particles

n and n - I and y is the remaining Yamanouchi symbol. Suppose we could write out each
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of the space, spin and isospin wavefunctions as a product

In ((71'), [p'q'Y'] Ms=(( ) Y= I' 'M})02([s])
s,St ....

rn((r"), [p"q"y"], Ms) = E ,,q,,r_ 2((pq,)[y ], M) 2([t])
t,t"....

~n(([7), [/TqY] = E P7n-2((71q ) [ M]) S2( [r])

't ....

(B.1)

where ¢, 0, y depend on the coordinates of the last two particles and are either symmetric

or antisymmetric under transposition of particle labels and e.g. 1rpq' is the Young diagram

we get by removing the boxes from i7' containing particles n and n - 1.

From Racah's factorization lemma [94] we know that

C([i1'], p'q'y' [q"], p"q"y"[ri]pqy) = K2 ([q]I, pq[7'p'q'[rl"]pq p"q")C([rp ]y'[iq[r ,,q ]y"l[1pq]y)

where K2 is an isoscalar factor [94] of S(n). After some algebra, we see that

= -->3 C o7.,,,, ,pip, P_ K2([77], pq[7f]lp'q'j[7"]p"q")
7 r,s,t,r'..... P'q' P" q"

¢2([r])02([S])2([t])~n-2

Now, modulo the proof of Equation B. 1, we have proved Equation 7.6. In the next sec-

tion we use the diagonalized Young-Yamanouchi-Rutherford representation to prove Equa-

tion B.1.

B.2 Diagonalized Young-Yamanouchi-Rutherford Repre-

sentation

As stated before, this method only works for product states. Hence it is not applicable to

our correlated spatial wavefunctions. However, if we were dealing with angular momentum

eigenstates, then Equation B.1 would be true, which in turn would imply Equation 7.6,
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and hence we would get all the simplifications of the classical method as mentioned in

section 7.4. However, in our case, we can only apply it to spin and isospin wavefunctions.

Two facts will be used to break up a spin (or isospin) wavefunction into something which

is symmetric or antisymmetric in the last two variables. The first is the change of order of

angular momentum coupling [49]

(J, l, jl(Jab)' J, M) = U(icjaJjb;Jac'a Jb)(Jl' J2' (ac)' j3, J, M)
J.,

where U is the Jahn U-coefficient which is related to the famous Racah W-coefficient by

U(abcd; ef) = (2c + 1)(2f + )W(abcd; ef)

The other fact is that given a Young diagram [f] with Young-Yamanouchi symbol Y = pqy

(with p and q representing the first two numbers and y the last n - 2), then

1[r/]qy) d= -I[77]pqy) + -[r]qpy)

I[i7irPqy) = X l[7]pqy) - X Il]qPy)

provided p < q where

· p = c n - Cn-1 - (rn - rn_1) where ci(ri) is the column(row) of the the number i. It is

called the axial distance. Here particles n and n - I are in rows p and q respectively.

* pq-pQq) represents a wavefunction symmetric(antisymmetric) in the last two particles

i.e. in n and n - 1.

Let us see how these two facts allow us to expand a spin (or isospin) wavefunction of

arbitrary symmetry in terms of wavefunctions, symmetric or antisymmetric in the last two

variables. Following the method of Elliot, Hope and Jahn [25], we illustrate it via a concrete

example.
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B.2.1 An example

Consider the spin wavefunctions 0p([EP]121, S = ,M s) and 0([E]211, S = ,Ms). By

using the first fact, we can write these as

0([EP] 121, S = MS)2'

1 1 1 1

= (Sa (S S = S = -, Ms)2a2bGa 2' 2
x-, 1111 1 1 1 1

-- 1,S)O(sa= sb c = = Sbc S =, Ms)
sb,

1

= 2(sa = ' Sb

2 = Sb
1 1 1

= ' S C = c(Sbc = 1), S = 2' Ms)

0([[E]211, S Ms) = 1(s = , b = (Sa = 1), = S = -,M s)

C~c 1 1 1 1 1= u(- - ; 1, Sc)((Sa = 2 Sb ,= 2S MS)

2 (Sa 2= ' s b = c = ( Sb c = 0), S = MS)+
1(S 1 1 M1 )22( 2-,S2,M(Sl)SM5) (B.2)

Note that since we are dealing with SU(2), there is no need to write the total value of spin,

since given the total number of particles, there is a one-one correspondence between the

shape of the Young diagram and total spin i.e. given that 0 belongs to the B representation,

we know that S = . Also the M s value is a constant in each equation, and the coefficients

are independent of Ms. Thus, unless explicitly needed we will not carry these two labels.

For the Yamanouchi symbol 121, the axial distance p = 2 (in the statement of second fact

p < q for a Yamanouchi symbol pqy so we cannot use 211 here). By the second fact

1
0([~]121) = ([En], 121) + ([EF] 211)

([ 21) = ([], 121) 2

0([11721) = ([Eff], 121) - -(EP, 211)
2 2
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Using this equation we can write

0([B], 121)

0([E], 21 1)

= 2 0([E]121) + ([E121)
= ([]]21) - (

1
([EP]121) - -([[P1]21)

2 2

Comparing Equations B.2 and B.3, we easily conclude that (dropping the Young diagram

EP)

1
0(121) = 0(a = 2, Sb

q5(f21) 1
0(121) = -0(s = sb2 bb

1 1

, Sc= 2(Sb = 1),S =
1

= -, S
2 

1Ms)
2

(S 1
= (S = ), s = -, M)2 bc MS

In all the calculations that we do, we change this notation slightly and use

0([[E], 121)

0([P], 211)

= 2 0([EP]121)2

1
2([g]121)+2

- 0([[] f21)
2

,r3q([J] f21)
2

and correspondingly change the sign of 0(121) i.e.

0(121)

0(f21)

= (s =2Sb=Sc (Sbc=),S=
1

2'
= 1 Ms)

2 2 2 2 

With this, we have solved the problem of rewriting our total wavefunction in terms of

spin/isospin wavefunctions which are symmetric or antisymmetric under the exchange of

the last two particles.
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B.3 Wavefunctions

Using Equation B.4, we can rewrite the three-body wavefunctions as

Il = F(111) H2 [(1f21)r(121) - l)(1/21) ]

2 = (321) X
2 V=2If

1(i21)r(121) -
2

1-1r12) -1)(1
2 2

-1¢(121) I(121)Fr(121)+ +---(121)(121) + -(121)F(121) - 2(121)rF(121)l

1

B.4 Matrix Elements

To reduce the length of the formulas, we will use the short hand

s = 0(121)

rFS = (121)

P = F(1 21)

ra = r(f2l)

0 = 0(111)

IF = ¢q(321)

We also know that the operator V23 , with or without any isospin dependence, does not

couple symmetric and antisymmetric states i.e.

(ralV231 F)

<ralv23[r~>

= 0

= 0
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This can be seen as a simple application of Wigner-Eckart theorem for the symmetric group.

If one looks at the nuclear force, there seem to be two types of operators; one, isospin

dependent, of the form ?2.?3023 and the other, isospin independent, of the form 023, where

023 contains spin and space terms only. We give the results of our calculations in the next

couple of subsections.

B.4.1 Isospin dependent potentials

Using the fact that

- -MTs,MT

we can start calculating the various matrix elements.

('I'(M S, MT)I?2.- 301Wl (MS, MT) =

J * [-3(Os (Ms)lolks(Ms)) + (a(MS)loltqa(MS))] I6MTrM

(I (M, MT)I 2.- 3O1P2(MS, M)) = 0

('I1(Ms, MT)I2- 301P3(Ms, M) =

2/r . * [-f2(MS)(M)) - l(ca(MS)Isalc(Ms))] fi(21 1)6MT,M

-2 f 3 [3 L-(q (M)I10S (MS)) + -- 2 (aOa)] i(121)6M ,M
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(T I(MS, MT)?2 ?3 0I W4(MS, MrT) =

-1 -( ((MS)0lc(Ms))l(2(M ) - * 2((MS)1010(M s))(121)6

(J 2(Ms' MT)I?2 ' 30[' 2(MS, MT) =

I t* [ (O/S(Ms)M01qsS(M))- 3<0(MS)IOoa(Ms))] ¢SMr M'

(P2(MS, MT)IO2.301' 3(MS, M) =

1- f - 271* [ \ (os(MS)I01(M))- 323 (o(MS)I(MS(2 1)MTM

24:5 2

-- J --(M (MS))-3 (0i I)] q(21)MM

2,TfJI2 2* 2Ks( )Iq(M)j (2 1 1i7,)[!)(MTMT)

(~2(MS mT )T2.T30['4(MS, MT) =

-O, s 2 (O (M )l()) i(21)2 - (WSA010(MS) q(121)Ml2 2 2 2 s T)-T
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(J 3(MS, MT)IW2"7301o3(MS, MT) =

- J @*(211) [-2(o1a)] ¢(211)6MT, -

4 J *(21 1) [- V(OIooa) + V(SIoIjS)] V,(121) -

f*(121)[-V 3(oao101a) + X-g(sloqs)] @(211) +

(I 3(MS, MT)I12 30IW4(Ms, MT) =1 'r3
X J *(211) [- (s(Ms)I01'(Ms)) (211)6MM

2 JV f*(21 1) 2 (cOs(Ms)I1I0/(Ms))] (121)6MTMT

1

2W2
f( 211) 6 MTMT +

1 ' 5-

2WJ *(121) K (p (M)1013(Ms)) ¢(121)6MTM~

( 4 (MS , MT)I?2 .301oT4 (MS , MT) =
1

2J
1J

r

l* (121) [-2(((Ms) (Ms))] (121)6MTMT
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4J
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VY 21 1) [V3 (�(MS)101�(Ms))] Vi(I 21)(5m TM�

qf*(121) [-Y'3-((MS)101l(MM))j Vf(211)s5m



B.4.2 Isospin independent potentials

(TI' (MS, M)IOl1 l' (Ms, MT) =

2 ,*R [(<O(M)IOll S(Ms)) + (fOa(MS)IO1a (MS)>] i(SMT}M

(I, (Ms, MT)IOIW2(MS, MT)) = 0

(T (MS, MT)IOI 3(MS, MT) =

I22 f (* [(qS(Ms)IOlc s(M)) -
*1 (qa(Ms)llqa(MS )) 

1

24v2
Jf* [-2 (OS(M)IOIS(MS)) + 2(qal la)

(Q I(MS, MT)IOI' 4(MS, MT) =

2 J* (O((MS)IoI/(M))j if(211) - - f [((M)II(M)](121)MM

(I 2(MS, MT)IOIT2(MS, MT) =
1 

+ (a(Ms)IOjIa(MS))] 1(S6MT,M
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(T 2 (M, MT)IOIT3 (MS, MT) =

f f*[ (-S(Ms)OISl(Ms))

2 Hi |-2 (2"(Mlls(M)

+ -((M s)Oc)1 (MS))] |fr(21 1)MT,MT

+ (alO oa ) (121)6M MT2 J TMT

(J 2(MS, M7T)IOI'4 (MS , MT) =

2 S Ad-| 2 (Os(Ms)1010(Ms))] ¢(211) -
[ 1 s

2 * J (Os ms)1013(ms))] YI(2 1)OMTM'2 2tp [

( 3(MS, MT)IOS'3(MS, MT ) =

-J f *(21 1) [( o101 )] + (slOs )/(211)6M M, +

- V/*(121) [(kalola) + (0S1Q0s)] V(121) [( + (121)6MTM

( 3(MS, MT)IlI'' 4(M S, M) =

2V Jq f*(21 1) - (cpS(M s))l o(Ms))] l(211)6MTM-

2A J f*(211) 2( (SMs)II(Ms)) f(121)6MTM -2,2 [~-4
1

1
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2;

f* (121) [ 2-- ( (Ms)OI(Ms)) (21 1)5M M +

q * (121) (Cs(MS)ll0(Ms)) l (121)6MM



(' 4 (MS, MIT)IOI 4(MS, M1) = (M) (21 1)6MTM; +

-1 b (121) [(~(Ms)IOI(MS) ] ¢(121)MT MT

In order to get the answers, we still need to know the actual matrix elements of the nuclear

potential operators. These are tabulated in the next subsection.

B.4.3 Certain useful three-body matrix elements

In chapter 7, we have already calculated the two-body matrix elements. Using those results,

we can calculate the three-body matrix elements of the various nuclear force operators. For

the three-body case there are two core "building blocks" of our wavefunctions. These are

labeled 's' and 'a', being symmetric or antisymmetric under permutations of particles 2

and 3. The symmetric wavefunction is

1 1 1 1
0b3(MS) = b3(s"= ; 2 = s3 = S2 = ;S= , MS)Z 1

C',n,, iIs" ,m )IS11) (B.5)= £ 2 m;IMS2l= 2 ms") IS2 = 1 MS)
m,' +M2 =Ms

And the antisymmetric wavefunction is

03(MS) = (33(S" = ;2 = S = MS)

2'= £ m ;ms Is = 2 ms) ® IS2
= O, MS2)

mS,, +Ms2 =M

1'M
= C½M,;soM2=O.MS=O = M s ) IMS2 = )

Im=s, = M ) IMS2 = 0) (B.6)
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Now we need to calculate the three matrix elements (101~0), (Os101~0) and (a101) where

0 is one of the operators in the nuclear force. Without doing any calculations, we can say

that

(s031013) = 0

This is because 0 is completely symmetric under the exchange of particles 2 and 3 which

means that it only couples symmetric to symmetric and antisymmetric to antisymmetric.

This is a simple application of the Wigner Eckart theorem as applied to the symmetric

group. In order to do these calculations we will use the results of the last section. As an

example, we work out the details of the VT operator. The rest can be worked out in exactly

the same way.

B.4.4 The detailed VT example

We want to calculate the matrix elements of

S2 3 = [[2 X 3](2 ) X Y(2)](0)2

(03(MS)lS2313(MS,)) = (m,, = MSI ® (MS2 = OIS23IMs = O) ® Im, = MS,)

= 0

The Osb can be computed by
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( 3 (Ms')lS231s3(Ms,)) =

Zi M C;2 ,Ms2 (ms,I (Ms2IS 23 1
Nlls +MS2 =MS

msn+Ms2 =Ms

= +
ms, +Ms2 =MS

!Ms,

Z C,'5 ;',Ms; ImS ) IMS2)
mnI, +MS =Ms,

S2 = 1IS2 3 IMs2 S2 =
1,M 

The results are explicitly calculated as below:

MS 2 MS 12~ 2,~: 

1/2,1/2 1/2,1/2 1/2,1/2 1/2,1/2
C1/2,1/2;1,0Cl/2,1/2, I,o(01S 23 10) + 1/2,-1 /2;1,1 /2-1/2;1, 1 (S 23 11) =

1 2 2 + 2y2 - 42 2 2z2 - X2 - y2
+- =0

3 , 2 3 r2

MS = 2' MS - 2

1/2,1/2 1/2 -1/2 + C 1/2 1/2 1/2,-1/2
2,/2;1,OC1/2,1/2,1,-I (01S2 3 1 - 1) + 1/2,-1/2, C 1/2-1/2;1,0o11S 23 10) =

- iy)2 + (- 2 )(-)(3/2)(xV 3
z

- iy)- = 
r2

Ms = -' Ms = -2

C1/2,-1/2 1/2 -1/2 1/2,-1/2 1/2 -1/211/2,1/2;1,-lCI/ 2 ,1/2 ,1,-i (-11S231 - 1) + C/2,-1/ 2 ;1,OC1/2 ;-1/2 ;1,0(01S 2 3 10) =

2 2 2 -x 2 - y 2 1 2X2 + 2y2 - 4z2
4--

3 r 2 '3 r2
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B.4.5 Summary of results

Results for V'

Using 0 = &.6, we get

= Ms,M

M= -S,M

= 

= MsM

Results for VT

Using 0 = S, we get

= 0

= 0
(O3 (MS)IS23 103 (M S ))

(cp (Ms)IS2310a (Ms))

(O3( )1013(3))

I - 1
(3(()IIO 3(- ))

(O(5)I0I3y ) 

= (X + iy) 

r2
= VX2 y 2 _2z 2

-32(x- iy) 
r2
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-- - 1(0 (MS) 01 -03 0'3 W)

(Os(MS)IEQ3(MS

�03(MOIE)103(MS



= /(x + iy) 2

r

= -3(x + iy) 

/t2Z2 _ X2 _ y2

= (-ir2

= 4(X - iy) 2

(~3(3)1®103(3))

(3( )11¢3( ))2 2(3 -
(3( )1103(-))2 2

(03(~)113(- ))2 2-3 - 3
(3( ))103(- ))2 2-I I)
(03(1)101 3( )2 2

- 1 - I
(03(E)1®103(--))2 2

- (1) ( 3))
(03()10103(- ))2 2

I 1~~~
i ( I I 13 - -))

2 2
3 

(03(- )1®103(- ))

3 2

(3( 3 2)1®l3(- ))

2Z2 _ x 2 _ y2

r2

= 24(x - iy) 2

,6 (X- iy)2=3

r2

= 0

x2 + y2 _ 2 2

r2

= 0

=,6( X - iy )2
r2

X2 + y2 _ 2z 2

r2

= -2X3(x - iy)

2Z2 _ x 2 _ y2

r 2

~51

32 2

2 2
1 1

2 2



Results for VLS

Using 0 = VLS

(3 (I)IL. Io ( ))

3(). 2))

(OS ( )-L.S4s(- ))

(q3a(Ms)L.Slq3 (Ms))

1 3
(O()[lolE3())

32 2

(O3(j)IE03(9))3 2 - 2

(O 3( )1I03(- ))

1 -3

(3(- )113( ))
3 2 3 ((O3( )103(- ))

2 2

= -2 -2L

-2 L3 -
= 0

= 

= -L
3 +

= -2 - L
3 

252

4
- -L3

4
= -L3 -

4
= -- L
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-3 3
(3()13(2)) = 2Lz

(2 2 ))=3 2

3- 1

(03(3)1®10 3(- ) = 0

(p3 ()Oq0 3(- 2) = 0
2 2-- ~ -3

2 2- 1 2

-12 2 

(03(- )1103(- 2)) = L

(03(-=)1 103(- 2)) -= -2L

Results for V L

Defining : =&2.-3 - (2.L&3.L + &3.L&2.), we get

2 2 3
(S 1 -1

(Ms=IIO(M s = -)) = 0
1 2

(qa(MS)I®I,~a(MS)) = -2L 26Ms M

(3)10 3 ()) = -i(L+LZ +LL)
(Os )1®-(3 = (L,z + mL+)
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I 1

(03(~)101~3(~))

(S3(_)113( ))

(S(-)1913(-)
32 2
1 2 - 23))32 21 - 3

(<S3(- )11(03(- ))3 2 2

;(-3()114( 1)>1 1

(~3(~)I913(-~))3 2 2

1 _ 1

(03(-)103(- ))2 2

(03 ( 3)IOl3(3)-3 -12 2<~3(~)ll~3 -Z ))-3®-
(P3( )I)103( ))2 2

<3 13(-)2 2

-3 3 

(03( )I103(- ))
2 2

= (2L2 - L2 _ L2)
3
1

= (L_L, +LL)

L2

= 3 -

1

=[(L+Lz + LL+)

=L 2

1= 2 (L2 , + L )

= L2 +L2 L)

= 1(4L2 + L2 + L)
3 z

=0
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-1 3~~
(03( )1103(- ))2 2

-- 1 -- 1
(03 (- )[103 (- ))2 2

- 3)

(03(--) 1 03(--)>2 203 (_3O3( )
2 2

- 1 2

= -(L2+L 2 +4L2)

= (L_L + LzL)

L'+ L

B.5 Putting It All Together

Finally we can put everything together to get the answers we are looking for. We will ex-

plicitly do one example to explain the method of calculating nuclear force matrix elements.

The wavefunctions are

= ([111])- {-S(M (MT) + Oa(Ms)Fr(MT)}

= f[321]1 {S(Ms)rF(MT) + Oa(MS)ra(MT)}-[4 3 
- ([211]) { a3(MSa(MT)

2 2- 3 ( 3 2

- 2 0q3S(Ms)3(MT)}
_if([121])

2

+ 2- 43(MS)F(MT)- 2S(MS)l7(MT)}

From Hamada Johnston we know

Vc = &2.&32t.3Yc(r23)

Let us calculate (I(Ms, MT)IVclPl(Ms, MT)) in detail.

255

p -s3(Ms)F(MT)

{l 3(M)r(MT) + 2 - a(MS)rF(MT){ 3 - 2- c 3 ( )3 ( )

IT, (MS, MT))

11F (MS, MT))

11F (MS, MT))



(PI (MS, MT)IVc[I (Ms, Mr)) =

(1r([1 111]) {_a(-(Ms)S(MT) + ,(Ms)J(MT)}

1a

= jfr*([l1])¢f([ 1]) YC(r2 3) [(pS(MS)F3(MT)I? 2.? 3&c2.31

s3(Ms)F3(MT)) + (3(MS)F3(M)l2.3.l3(Ms)F3(Mr))]

= ¢*r ,([ 1 ])([11 1]) YC(r23) [(-3)(1) + (-3)(1)] 6MsMS6MrTM

I* 01 1 ])([ 1 1 1 ])YC(r23)(- 3 )MS,MSMT,M
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