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Abstract

Elastomeric materials are widely used as tire and sealing materials due to their ability to
undergo large deformations and conform to the mating surface. However, their
applications often result in repeated contact with abrasive particles, which act to
abrasively wear the elastomers. Elastomeric materials are observed to exhibit a
characteristic form of abrasive pattern on the surface after cyclic scratching. The
dimension of this pattern is closely related to the wear rate, whereas the formation of this
pattern is controlled by abrasive particle sizes, material mechanical properties, loading
conditions, thermal conditions, and chemical degradation of materials. Much research has
been conducted in the past. However, direct observations of the wear process are rare.
The mechanics underlying the abrasive wear of elastomeric materials is unclear.

In order to provide fundamental understanding of the abrasive wear of elastomeric
materials due to abrasive particle indentation and scratching, this research studied the
wear of elastomeric materials subjected to scratching by knife geometries that simulate
abrasive particles and contact conditions. Efforts were focused on establishing direct
observations and analysis of the deformation mechanics. An in situ micro scratching test
capability operating within a scanning electron microscope (SEM) was developed and
used together with image processing to reveal the local deformation fields. Surface
profile analyses using both SEM and ZYGO (a non-contact interferometer) were also
conducted to observe the surface change during cyclic scratching.

The large strain nonlinear stress-strain behavior of thermoplastic polyurethanes
(TPUs) exhibits strong hysteresis, rate dependence and cyclic softening. In this work, a
constitutive model capturing the major features of the stress-strain behavior of TPUs was
developed. The model decomposed material behavior into an equilibrium component and
a rate dependent deviation from equilibrium. The cyclic softening behavior was attributed
to be due to the softening of the equilibrium path as a result of the evolution of the
effective volume fraction of the soft domain during deformation, upon which the
occluded soft material was released to carry load due to the relative motions among hard
domains.

Extensive finite element (FE) based simulations of indentation and scratching tests
using the proposed constitutive model were conducted. The FE model was verified by
comparing the variation of normal and tangential forces and the distributions of
displacement and strain fields with those experimentally obtained. The FE simulations
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revealed that the transition from the stick phase to the slip phase during scratching was
accompanied by a large increase in molecular stretch and maximum principal stress
(tensile stress), thus creating conditions for damage initiation. The FE model was then
used to investigate the effects of contact conditions, cyclic scratching, friction, scratching
speed, and material properties on the variation of molecular stretch and maximum
principal stress. The effects of fiber fillers were also investigated by considering three
representative fiber orientations: Horizontal, vertical, and lateral orientations. It was
found that, for the fiber geometries and abrasive particle geometries studied, fibers do not
enhance material wear resistance.

Thesis Supervisor: Mary C. Boyce
Title: Professor of Mechanical Engineering

4



Acknowledgements
First, I would like to thank my advisor, Prof. Mary C. Boyce, for her support and

guidance during the process of my thesis research. Her excellence in academic standard

and dedication toward research and teaching will always be a source of inspiration and

encouragement to me. I would also like to thank Prof. Nam P. Suh, Prof. Robert E.

Cohen, and Prof. Douglas P. Hart for their serving in my thesis committee and for their

numerous insightful suggestions.

I am thankful to Caterpillar Inc. for their generous financial support to my thesis work

and provide materials.

I would also like thank to my colleagues in the Mechanics and Material group: Franco

Capaldi, Adam Mulliken, Ethan Parsons, Mats Danielsson, Jin Yi, Steve Xia, Nuo Sheng,

Cheng Su, Yujie Wei, Yin Yuan, Theodora Tzianetopoulou, Rajdeep Sharma, Antonio

Pantano, and others. Thank you very much for the friendship and the good time that I had

enjoyed with you.

I am grateful to Una Sheenhan, Raymond Hardin, and Leslie Regan, who created an

environment where I could concentrate only on my research. Thank you very much for

taking care of administrative details.

I also would like to Don Galler of Material Science Department for his help and

sharing his experiences on using SEM and designing test apparatus.

I feel indebted to my wife, Zhen Yang, and my parents, Xiangchun Qi and Yan

Cheng, my sister, Yun Qi, for their constant support, patience, and love. Thank you all

for everything.

5



6



Contents

Chapter 1 Introduction 13

1.1 M otivations ....................................................................................................... . 13

1.1.1 Face Seals in Track-type Tractors............................................................. 13

1.1.2 Failure of Face Seals due to Abrasive Wear ............................................. 15

1.2 Abrasive Wear of Elastomeric Materials........................................................... 16

1.2.1 General Descriptions................................................................................ 16

1.2.2 Mechanism for Abrasive Wear of Elastomeric Materials............. 18

1.2 .3 C hallenges............................................................................................... . 24

1.2.4 Typical Length Scales in Abrasive Wear of Elastomeric Materials...... 25

1.3 R esearch P lan .................................................................................................... 27

1.3.1 Three-dimensional to Two-dimensional Simplification ........................... 27

1.3.2 Research Plan and Thesis Outline............................................................. 29

R eferen ces................................................................................................................... 32

Chapter 2 In-situ Micro Indentation and Scratching Testing within SEM 35

2.1 In-situ Micro Indentation/Scratching Test System .......................................... 35

2 .1.1 T est P rocess ............................................................................................ . 35

2.1.2 T est System ............................................................................................... . 37

2.1.3 In-situ Micro Indentation/Scratching Test Apparatus............................... 38

2 .1.4 Sam ples ................................................................................................... . 40

2.1.5 T he K nives ............................................................................................... 42

2.2 In-situ Micro Indentation/Scratching Tests ..................................................... 43

2.2.1 Result: 6 n=50ptm for Unfilled TPU with Wedge-type Knife .......... 44

2.2.2 Result: 6n=80pim for Unfilled TPU with Wedge-type Knife ................... 48

2.2.3 Result: 6n=8Oprm for Unfilled TPU with Bulk-type Knife....................... 51

2.3 Im age Processing ............................................................................................... 55

2.3.1 Introduction to the Software VIC 2D and Sample Preparation ................ 56

7



2.3.2 Results: 6n=50pm for Unfilled TPU with Wedge-type Knife ................. 57

2.3.3 Results: 6n=80pim for Unfilled TPU with Wedge-type Knife ................ 61

2.2.4 Result: 6 n=80pm for Unfilled TPU with the Bulk-type Knife................ 66

2 .4 S um m ary ............................................................................................................... 7 0

R eferen ces ................................................................................................................... 7 1

Chapter 3 Cyclic Scratching: Effect on Surface Topography 73

3.1 Methodology for Topography Study ................................................................. 73

3.1.1 Zygo: A 3D Surface Profiler.................................................................... 74

3.1.2 Z ygo-SE M study .......................................................................................... 75

3.2 Result: Scratching Tests with 6 n=50pm for Unfilled TPU ................ 77

3.2.1 Topography of Fresh Sample................................................................... 77

3.2.2 Topography after the 1" Scratch............................................................... 82

3.2.3 Topography after the 5th Scratch............................................................... 84

3.2.4 Summary of Observations from 6n=50ptm Scratching Tests ................... 86

3.3 Result: 6 n=80pm for Unfilled TPU...................................................................... 86

3.3.1 Topography of Fresh Sample................................................................... 86

3.3.2 Topography after the 1st Scratch............................................................... 93

3.3.3 Topography after the 5th Scratch............................................................... 93

3.3.4 Summary of Observations from 6n=80im Scratching Tests.................... 95

3.4 Result: 6 n=80jpm on 4% Glass Fiber Filled TPU................................................. 95

3.4.1 Topography of Fresh Sample.................................................................... 99

3.4.2 Topography after the 1st Scratch................................................................ 100

3.4.3 Topography after the 5th Scratch................................................................ 101

3.4.4 Summary of Observations from 6 n=80ptm Scratching Tests .................... 104

3 .5 S um m ary ............................................................................................................. 10 5

R eferen ces ................................................................................................................. 10 6

Chapter 4 Stress-Strain Behavior of Thermoplastic Polyurethanes 107

4.1 Introduction: Thermoplastic Polyurethanes (TPUs)........................................... 107

4.2 Stress-Strain Behavior of Thermoplastic Polyurethane ...................................... 111

8



4.2.1 Test Descriptions ....................................................................................... 111

4 .2 .2 H y steresis................................................................................................... 112

4.2.3 Rate-Dependence ....................................................................................... 113

4.2.4 Cyclic Softening......................................................................................... 116

4.2.5 Equilibrium Paths....................................................................................... 118

4.3 Constitutive M odel for Thermoplastic Polyurethane.......................................... 120

4 .3 .1 A rev iew ..................................................................................................... 12 0

4.3.2 Constitutive Model Description................................................................. 125

4.3.3 Hyperelastic Rubbery Network Softening Spring ..................................... 126

4.3.4 Viscoelastic-plastic Element...................................................................... 131

4.4 Parameter Identification for the Constitutive M odel .......................................... 133

4.4.1 M aterial Parameter Summary .................................................................... 133

4.4.2 Material Parameter Identification for Hyperelastic Rubbery Softening

S p rin g ........................................................................................................................ 13 4

4.4.3 M aterial Parameter identification for viscoelastic-plastic component....... 138

4 .5 R e su lts ................................................................................................................. 14 1

4.6 Summary and Future W ork................................................................................. 153

R eferen ces ................................................................................................................. 153

Chapter 5 FEM Simulations of Micro Indentation and Scratching Tests 159

5.1 Physical and Numerical M odel........................................................................... 159

5.1.1 Physical M odel........................................................................................... 159

5.1.2 FEM M odel................................................................................................ 162

5.2 Comparisons with Experiments .......................................................................... 164

5.2.1 8n=50ptm for Unfilled TPU with Wedge-type Knife ............... 164

5.2.2 6 n=80ptm for Unfilled TPU with Wedge-type Knife ............... 171

5.2.3 Indentation/Scratching Tests for Unfilled TPU with Bulk-type Knife...... 178

5.3 M echanics of the Scratching Tests for Unfilled TPUs ....................................... 187

5.3.1 Damage Criterion....................................................................................... 187

5.3.2 Effects of Indentation Depth...................................................................... 188

5.3.3 Effect of Contact Conditions ..................................................................... 195

9



5.3.4 Effects of Cyclic Scratching ...................................................................... 201

5.4 Parametric Study of the Scratching Tests for Unfilled TPUs ............................. 206

5.4.1 Effects of Contact Friction Force............................................................... 206

5.4.1.1 Effects of Contact Friction Force...................................................... 206

5.4.1.2 Mechanism of Effective Friction Force .................... 210

5.4.2 Effects of Scratching Speeds ..................................................................... 213

5.4.3 Effects of M aterial Properties .................................................................... 217

5.4.3.1 Effects of Hysteresis ......................................................................... 217

5.4.3.2 Effects of Initial Young's M odulus .................................................. 221

5.4.3.3 Effects of Chain Extensibility........................................................... 227

5.5 Mechanics of the Scratching Tests for Glass Fiber Filled TPUs ........................ 231

5.5.1 The Horizontal Fiber.................................................................................. 233

5.5.2 The Vertical Fiber ...................................................................................... 239

5.5.3 The Lateral Fiber........................................................................................ 244

5.6 Sum m ary ............................................................................................................. 248

References................................................................................................................. 252

Chapter 6 Conclusions and Future Work 253

6.1 Sum m ary of Conclusions.................................................................................... 253

6.2 Future W orks ...................................................................................................... 259

Appendix A Durometer Hardness and the Stress-Strain Behavior of Elastomeric

Materials 263

Abstract ..................................................................................................................... 263

A .1 Introduction........................................................................................................ 264

A .2 M odels................................................................................................................ 265

A .2.1 The M odel of Durom eter Hardness Tests................................................. 265

A .2.2 FEM M odels for Indentation Sim ulations ................................................ 268

A .2.2.1 Geom etry.......................................................................................... 268

A .2.2.2 M aterial M odel................................................................................. 270

A .3 Results and Discussions..................................................................................... 272

A .3.1 Sim ulations on Durom eter A and Durom eter D ....................................... 272

A .3.2 Com parisons between Shore A and Shore D ............................................ 276

10



A.3.3 Correlation between Gaussian Elastic M odulus and Hardness................. 277

A.3.4 Limiting Extensibility Effect .................................................................... 281

A.4 Conclusions........................................................................................................ 286

R eferen ces................................................................................................................. 2 87

Appendix B Determination of Mechanical Properties of Carbon Nanotubes and

Vertically Aligned Carbon Nanotube Forests Using Nanoindentation 289

A b stract ..................................................................................................................... 2 8 9

B .1. Introdu ction ....................................................................................................... 2 9 1

B.2. Experimental Procedure .................................................................................... 293

B .2 .1 M aterials.................................................................................................... 2 9 3

B.2.2 Nanoindentation ........................................................................................ 295

B.3. A M odel Based on Beam Theory and Statistics................................................ 297

B.3.1 Physical Process of Nanoindentation on VACNT Forest ......................... 297

B.3.2 The Consecutive Contact Model............................................................... 298

B .3 .3 E x am p le ..................................................................................................... 30 0

B.3.4 Parametric Studies: Sensitivities of Penetration Resistance to Geometrical

Parameters of VACNTs. ........................................................................................... 302

B.4. Results and Discussions .................................................................................... 310

B.4.1 VACNT Indentation.................................................................................. 310

B.4.2 Determination of Bending and Axial Modulus of Constituent MWCNTs 317

B5. Conclusions ........................................................................................................ 320

Acknowledgement .................................................................................................... 321

Appendix A: Reducing (EI) and h . . . . . . . . . . . . ....................... . . . . . . . . . . . . . . . . . . . . 321

Appendix B: Bending deformation of a tube ............................................................ 323

R eferen ces ................................................................................................................. 3 2 5

11



12



Chapter 1

Introduction
Elastomers are widely used in industry due to their ability to undergo elastically large

deformations and to conform to a surface that they are in contact with, making elastomers

a material of choice in sealing and tire applications. Although the elastomer-surface

interaction is a drive in material selection, it is also a fundamental and major cause of

eventual failure where abrasive wear constitutes a major source of failure of elastomeric

materials. For instance, abrasive wear is one of the major concerns in mechanical face

seal design[1-1][1-2]; Additionally, it is estimated that each year the tire wear debris

generated in the U.S. is about 5 x 108kg[l-3]. In this chapter, we discuss the challenges in

the research on the abrasive wear of elastomeric material and the goals for this thesis

research. In the first section, the engineering background of elastomer abrasive wear

research is introduced. The current research is motivated by the design of wear resistant

thermoplastic polyurethane elastomers (TPUs). TPUs have been found to exhibit the

characteristic wear feature of more conventional elastomeric (rubbery) materials.

Therefore, a general description of the features of abrasive wear of elastomeric materials

is also presented. In the second section, a review on previous research on abrasive wear

of elastomeric materials is presented. The challenges in this research are also discussed.

In the third section, the goal and the research plan for this thesis research are discussed.

1.1 Motivations

1.1.1 Face Seals in Track-type Tractors

Mechanical face seals are used in the pin joint assemblies of track-type tractors, or

"bulldozers". The wheel of a tractor translates power to the ground by turning a track

(Figure 1-1), which provides the tractor with an enormous amount of traction. The track

is comprised of numerous links, each connected by a pin-joint assembly shown in Figure

1-2(a)(b). The sprockets of the tractor's wheel contact the cylindrical bushing which turns

freely about the pin. End caps are bolted onto both ends of the pin. Prior to assembly,
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seals are pressed into the end caps in order to seal in and maintain lubricant between the

pin and bushing and prevent contaminants from entering the joint. The seals and the flat

ends of the bushing are in contact and in oscillation motion relative to one another during

operation. This type of seal, which contacts its bearing surface along a plane, is classified

as a face seal.

Figure 1-1: A track consists of numerous of links

A typical face seal in this pin-joint assembly is shown in Figure 1-3[1-4][1-6][1-5].

The seal consists of supporting components and a seal lip. The seal lip is the part of the

seal that contacts the bushing surface and provides the actual sealing mechanism. It is

usually made of thermoplastic polyurethane, which is a type of elastomeric material and

is recognized as one of the best wear resistant elastomeric materials.

end cap,..

OilN

end cap N:P'seal

busing

seal

(a) (b)

Figure 1-2: (a) Links are connected by pin joint assembly; (b) a pin joint assembly
consists of pin, bushing, end cap and seal
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The primary function of the pin-joint assemblies is to transfer load from the driving

wheel to the track effectively. If the pin-joint assemblies fail to work, a service must be

called in and the tractor must be idled until the service has been completed. Such a

service is very costly to both manufacturer and customers. Therefore, it is important to

elongate the life of the pin-joint assemblies. In the past, the bushings were worn faster

than the seals. The seals thus could be replaced at the same time when a service for the

bushings was called in. More recently, new designs have prolonged the life of the

bushings, making the seal life a determining factor for the maintenance period. Therefore

there is a clear need to improve the design of the track face seals.

1.1.2 Failure of Face Seals due to Abrasive Wear

In a pin joint assembly, the seal lip is pressed onto the bushing surface, forming a contact

band of about 1mm by applying proper contact pressure. The outer side of the seal lip

interacts with the outside environment, typically full of slurry and soil; whereas the inner

side of the seal lip faces the pin-joint assembly, interacting with lubrication oils. During

the operation of the track, the seal lip oscillates against the bushing surface. Ayala[1-

4][1-5] and Parsons[1-6] built an in-situ seal wear test apparatus in order to mimic the in-

service loading conditions and wear the seal surface while simultaneously observing the

migration of particles under the seal lip and their evolution/interaction with the seal lip.

They found that abrasive particles accommodated their motions to the contact surface by

both rotation and slipping, and abraded the seal material surface repeatedly, resulting in

eventual failure due to abrasive wear.

Figure 1-3 shows the surface of a failed face seal. The surface shows a pattern of

alternating peaks-valleys, typically observed in abrasive wear of elastomeric materials

and known as abrasive patterns. Figure 1-3(a) shows the pattern observed by scanning

electron microscopy (SEM). Figure 1-3(b) and (c) show the surface of the same sample

obtained by ZYGO interferometry, a three-dimensional surface profiler. The periodic

form of the ridges over the surface is clearly depicted in Figure1-3(c), which shows the

profile along the line AB in Figure 1-3(b). Figure 1-3(c) reveals the average valley-valley

distance for this particular sealant material is about 30pjm with the maximum peak-to-

valley height of about 5ptm and average peak-to-valley height of about 2pm.
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Figure 1-3(a)

0.265mm

1.5

0
o 0-0.5

-1

-2

-2.5-

0 01 0 2
Distance (mm)

Figure 1-3(b) Figure 1-3(c)

Figure 1-3 (a) Abrasive pattern seen on worn surface of face seal (a) by SEM; (b) ZYGO;
(c) Abrasive pattern profile along line AB in (b), by ZYGO.

1.2 Abrasive Wear of Elastomeric Materials

1.2.1 General Descriptions

When elastomers are operating under aggressive and repetitive surface contact

conditions, such as seals and tires, abrasive wear constitutes a primary mode of failure. A

dominant feature of abrasive wear of elastomeric materials is the formation of abrasive

patterns on the elastomer contact surface after a certain number of cycles, as shown in

Figure 1-3.
16



Figure 1-4(a)

Figure 1-4(c) Figure 1-4(d)

Figure 1-4: Formation of abrasive patterns observed on natural rubbers[1-8]. (a)

Surface damages observed after a few abrade; (b) and (c) Surface damage grow and form

periodic peak-valley patterns. The distance between neighboring ridges increases with

increasing number of abrading; (d) Abrasive patterns reach a stable state. The distance

between neighboring ridges does not increase but the wear rate is very high.

Schallamach[1-7] is generally recognized to be the first person to systematically

study the abrasive wear of elastomers. In his tests on rubbers, he found that when rubber

was abraded without change of direction, sets of parallel ridges were often shown on the

surface of the samples at an angle normal to the direction of motion[1-7]. These patterns

are called 'abrasion patterns', or 'Schallamach patterns'. It was found that these patterns

grew gradually to a final periodical form rather than formed suddenly. Figure 1-4 shows

the development of abrasive patterns on natural rubber subjected to cyclic abrading by

razor blade as observed by Fukahori and Yamazaki[1-8]. After the first few rubbing

cycles, numerous small damages with space ranging usually from 10 pam to 50 ,um can be

observed on the contacting surface (Figure 1-4(a)). As the number of rubbing cycles

increases, the micro crack or ridge spacing increases. When a critical space, which is
17



typically ranging from a few tens of microns to a few millimeters, has been reached, the

space stabilizes but the each individual ridge is still moving as a result of continuous

generation of new damages and loss of material[1-8]. When the critical space is reached,

the wear rate also arrives at a stable and high value.

1.2.2 Mechanism for Abrasive Wear of Elastomeric Materials

Elastomers have found wide applications in seals and tires, due to their ability to undergo

very large elastic deformations. However, in comparison with the study on wear of

metals and other polymeric materials, the understanding of wear of elastomers is

relatively unexplored, partly because of the shorter research history on elastomers, and

partly because of less understanding and the complication of the mechanical properties of

elastomers.

Schallamach[1-7] found that when rubber was abraded on road surface without

change of direction, the contact surface of rubber could be depicted with saw teeth (tears)

profiles (Figure 1-5). When being abraded, the saw teeth were bent forward, thus

exposing their underside to the abrasive and protecting the forward part of the surface

from abrasion, and finally resulting in the formation alternative ridge-valley patterns. The

development of the pattern was a relatively slow process. It was found that the pattern

maintained its general configuration for short times but moved as a whole across the

surface in the direction of abrasion. The so called saw teeth in Schallamach's description

were actually known as cracks or micro-cracks. This suggests that the progression of

abrasive patterns can be modeled as the propagation of a crack, then one can use fracture

and fatigue mechanics to model abrasive wears[l-9][1-10][1-1 1].

In some carefully controlled tests[1-8][1-12], it was found that the movement of

abraders over samples consisted of a stick-slip phase. Fukahori and Yamazaki[l-8][1-

11][1-13] observed micro-vibrations during slip. They further proposed that the stick

phase was the driving force to propagate cracks whereas the micro-vibration with natural

frequency of rubbers was the driving force for the initiation of cracks.
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Knife Knife Moving Direction

Figure 1-5(a)

2

1

S
1

Figure 1-5(b)

Worn Protected

Abrasion Patterns

Figure 1-5(c)

Figure 1-5: Formation of abrasive patterns: (a) A knife is scratching over the surface.
Note there is a pre-existed crack in front of the knife; (b) As knife moves over the
surface, the crack were bent forward, thus exposing their underside to the abrasive and
protecting the forward part of the surface from abrasion; (c) An alternative worn-
protected surface pattern formed over the abraded surface.

When using blunt glass abraders with large radii (R=2mm) of curvature in friction

tests on rubbers, Schallamach[1-14] and Barquins[l-15][1-16] found small regular folds

of rubber moving like wrinkles on a carpet and crossing the area of contact at velocities

significantly greater than the imposed velocity. This phenomenon is commonly referred

as detachment wave or "Schallamach wave" and was attributed to be due to the formation

19
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of vertical junction on the edge of the contact zone because of adhesive forces (molecular

attraction forces)[1 -14] [1-15] [1-16], resulting in unstable rubber contact surface during

tangential motion of the abrader. Except for soft and highly elastic elastomers, such as

pure natural rubber, these folds became ridges over the surface. If the surface was

continuously abraded by the abrader, extreme stretching of these ridges would result in

damage over the surface[I-16]. However, it is unclear whether Schallamach wave and the

resultant extreme stretch can be related to abrasive pattern. The adhesive force between

the contact surfaces plays an important role in the mechanism of initiation of

Schallamach wave[l-16]. However, it will be reduced in the presence of a tensile stress

along the rubber surface[l-17]. In Schallamach and Barquins, the abraders used were

blunt abraders, where the penetration of the abrader into rubber was small, resulting in a

relatively small tensile stress along the surface surrounding the contact region and

preserving the adhesive force. The asperities present in abrasive wear, however, are

generally much sharper than the blunt abraders, and create large tensile stress along the

surface due to the large ratio between penetration depth and the tip radius of the asperities

as the asperities penetrate into the surface. This tensile stress effectively reduces the

adhesive force. Nevertheless, abrasive tests using sharp abrader also show abrasive

patterns. Indeed, Thomas studied abrasive wear using a razor blade as the abrader and

found abrasive patterns over the abraded surface[l-9]. Therefore, it is unclear whether

Schallamach wave will present in abrasive wear and how it can be related to abrasive

wear.

Gent and Pulford[l-18] found that the abrasive wear process actually took place at

two levels. A basic wear process led to the detachment of small rubber particles,

1~ 5p m in dimension. This process resulted in the formation of the initial cracks or

damages. The tips of the cracks were periodically torn away, probably as a result of

mechanical fatigue[ 1-9] [1-19]. The later created larger particle debris up to several

hundred microns. This bimodal size distribution of abraded particles had been observed

indirectly for tires worn under normal service conditions by collecting wear debris near

highway[l-3]. The small particles were key to the initiation of the wear process. Gent[l-

20] further conjectured that the small particles were formed in each surface scratching

process as a result of the explosion of small cavities of dimension 0. 1 ~Ip m in the
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material due to the inflation pressure or triaxial tension created during frictional sliding.

The possible ways to generate the inflation pressure were: (1) Air, forced into solution in

rubber by the pressure exerted by a sliding surface; (2) Thermal decomposition of the

rubber generating high enough pressures; (3) The dilating action of frictional forces.

Currently, there is no direct evidence showing whether these conjectures are correct and

which one dominates. After the formation of the initial cracks, the wear process

resembles crack growth under cyclic tearing stress and could be modeled using the

energy approach[ 1-19] [1-9].

It is well known that the wear resistance of materials is closely related to the hardness

of the elastomer (note that elastomer "hardness" is a measure of elastic behavior).

Pitman[1-21], Hill et al [1-22] Lancaster[1-23] suggested that the wear rate vs hardness

curve could be divided into three regions (Figure 1-6). In region A (hardness value

ranging from 60A to 75A), the wear rate decreased with increasing hardness and the

mechanism of wear in this region was mainly tearing since the materials were easy to

deform due to relatively low elastic modulus. In region B (hardness value ranging from

75A to 95A), the wear rate was approximately independent of the hardness and the

mechanism of wear changed from tearing to fatigue. In region C (hardness value ranging

from 95A to 65D), the wear rate increased with increasing hardness and the mechanism

of wear changed from fatigue to cutting. Generally, abrasion patterns could be observed

in regions A and B, but not in region C [1-22] [1-24]. A recent study by the author

showed that durometer hardness was only an indicator of the elastic property of

elastomeric materials [1-25]. Materials having different limiting extensibilities could

possess the same durometer hardness value. This shows that hardness cannot be used

alone as an indicator for the wear performance of elastomeric materials.
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Aj B C
I I I

A 13 C

75A 95A 65D

Shore Hardness

Figure 1-6: Schematics of the relationship between wear rate and hardness for
elastomers[1-22].

In most engineering applications, elastomers are filled with fibers or particles to

increase their stiffness and strength. Wada and Uchiyama[ 1-26] found that the addition of

polyamide fibers (3mm in length and 28ptm in diameter) into carbon black filled

chloroprene rubber resulted in improved wear resistance while the largest improvement

was achieved when fibers were oriented normal to the contact surface and the least

improvement in lateral direction. Fukahori and Yamazaki[1-13] found the addition of

carbon black could improve the wear resistance. However, they also found that the rate of

crack growth at small cyclic strain amplitudes was not decreased by carbon black, rather

an increase in filler content increases the crack growth rate. Therefore, other mechanism

might play a role in the mechanism of improving wear resistance. For wear due to

abrasive particles, Lancaster [1-23][1-30] suggested that the addition of fillers reduced

the elongation to break. It followed that the resistance of reinforced composites to

abrasive cutting wear was unlikely to be much better than that of the parent polymers.

Yang et al[l-32] in the study of glass sphere filled rubbers found that when the filler size

was greater than the asperity spacing, the fillers provided load support and the abrasion of

the filler itself became a governing factor in wear. When the filler became comparable in

size to the asperity spacing, filler pull-out was a potential wear mechanism and would

trigger accelerated wear due to the combination of filler loss and the weakened worn

surfaces. When the filler was significantly smaller than the asperity spacing, the worn

topography resembled those of the homogeneous materials and the effect of cavitation
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and debonding at the filler-matrix interfaces became important.

In the study of abrasive wear of elastomers in seal applications, Ayala et al.[1-33]

found that during cyclic motion of a seal operating in a mud box, the wear process

consisted of two distinct stages: a break-in period and an aggressive wear period. The

break-in period corresponded to the period of operation before the dirt front formed at the

seal edge and began to advance, whereas the aggressive wear period corresponded to a

constant wear rate and the seal surface was aggressively worn. In a series of seal abrasion

experiments with filled and unfilled elastomers, Parsons[1-6] found that the tests with

filled elastomers showed much longer break-in period than unfilled elastomers whereas

both filled and unfilled elastomers had about the same aggressive wear rate. With the

help of numerical simulations, Parsons further conjectured that the reason for the

extended break-in period of filled elastomers was because the presence of fibers near the

surface created increasing resistance to prevent abrasive particles (dirt) from entering the

contact band and aggregating into critical size clusters.

Loading and geometrical factors, such as speed, temperature, normal stress, counter

surface, and particle size influence wear usually by affecting the mechanical behavior of

the elastomer or the contact conditions. For elastomers, the sliding speed is significant

due to dissipative effects of friction and strain-rate effects on mechanical behavior[ 1-34].

The abrasive wear resistance of unfilled rubber tended to increase with increasing speed

mainly because the tensile strength increased with the speed[1-7]. However, by rubbing

unfilled rubber against fine abrasive paper(CC 1500, R, = 2. lp m , R, = 13.Op m ), Wada

and Uchiyama [1-26] found that the wear rate dependence on the sliding speed was very

small, even though they observed the spacing of the abrasion pattern became wider with

decreasing sliding speeds.

Much less information is available about lubricated polymer wear[1-34]. Lubrication

is usually achieved by the addition of some lubricants between the two contacting

surfaces; then the wear rate is decreased either by the formation of a thin film which

actually isolates the two contacting bodies, or by reducing the tangential frictional force,

or by the penetration of the lubricant into the surface layer and the change of the

mechanical properties of the material[1-35][1-36][1-37][1-38]. However, both the

formation of a thin film and the penetration of the lubricant have close relation with
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speed. As the speed increases, there is an increasing tendency to load support from

hydrodynamic or elastohydrodynamic lubrication via geometric wedge formation.

Polymers are particular susceptible to this effect because of their relatively low moduli[1-

39][1-40]. On the other hand, an increase in speed makes the beneficial lubricant difficult

to enter the surface layer, then the lubricant effect will decrease[1-34]. From this point of

view, high speed will increase wear rate.

When the sliding speed increases to a certain value, the deforming elastomer cannot

dissipate all the heat generated by the friction, and the temperature at the contacting

surface will increase. The considerable temperature rise is approximately proportional to

the square root of the velocity. This dependence has been predicted theoretically by

Jaeger[1-41] for very high velocity, but appears to be valid for a wider range than

Jaeger's theory[1-7]. Generally, in is known that increasing temperature will soften the

material, which in turn increases the wear rate. However, this is not always true. For

instance, Hill et al[ 1-22] showed that for samples with Shore hardness 55D, the un-rested

test samples had lower wear rate than rested samples did. Since in un-rested test, the

temperature at the contact surface increased sufficiently, this resulted in softening of the

elastomer materials. From Figure 1-6, Shore hardness 55D is located in region C, where

the wear rate decreases as the hardness decreases. On the other hand, a rapidly increasing

temperature is usually an indication that wear is progressing rapidly since it indicates that

the interaction has increased significantly, most possibly due to worn surface and/or loss

of lubricant.

1.2.3 Challenges

Although much research has been conducted in the past and the overall picture of the

development of abrasive patterns has been outlined, several critical questions concerning

the mechanism of the abrasive wear of elastomers remain unanswered. For instance, how

and in what form is damage initiated during the relative motions of the two contact

surfaces? How do the mechanical properties of elastomeric materials relate to the wear

performance? How do factors, such as contact conditions, speed, and fillers influence the

wear? To answer these questions, the mechanics of abrasive wear must be fundamentally

addressed. However, several hurdles discourage the endeavor.

24



First, direct observation of the wear process is difficult to achieve due to technique

challenges in viewing the contact surface during the wear process. In the study of

abrasive wear, conventional research methods adapt the routine of testing followed by

inspection. During this process, however, detailed information about deformation cannot

be achieved.

Second, theoretical modeling of the abrasive wear of elastomeric materials is difficult

due to lack of accurate constitutive model of the stress-strain behaviors of elastomers. A

salient feature of the stress-strain behavior of elastomers is their low moduli and their

capability to recover from large deformation, which is particularly easy to be achieved

due to the low moduli of elastomers. Therefore, traditional contact mechanics, such as

linear elasticity solution based Hertz theory, are not suitable anymore. Finite element

simulations are deterred by the geometric and material nonlinearities occurring during

abrasive wear and the lack of a proper model for the stress-strain behavior of the material.

Due to the above reasons, the mechanics of abrasive wear of elastomeric materials is

unclear, and the mechanically controlling factors in the mechanism of the problem are

uncertain.

In this research, we will try to establish in-situ experimental observation and

numerical analyses of the deformation and mechanics of abrasive wear of elastomeric

materials, with concentrations on the mechanics regarding the initiation of first

cracks/damages on elastomeric materials and the influence of the mechanical properties

of elastomeric materials and the contact conditions on their wear performances.

1.2.4 Typical Length Scales in Abrasive Wear of Elastomeric Materials

While tire and seals operate at the macro-scale, the abrasive wear of elastomeric materials

generally occurs at a micron scale. It is therefore important to review the typical length

scales in the abrasive wear of elastomeric materials in order to identify the proper length

scale where experimental and theoretical study should be conducted. Table 1-1 lists the

typical length scales.

For seal applications, Parsons[1-6] found that only abrasive particles less than

100 ptm could enter the contact surface between sealant material and bushing whereas

abrasive particles less than 1 pm were too small to cause damage to the material surface.
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By deliberately adding particles of different sizes, Parsons noticed that most damage was

caused by abrasive particles about a few microns to a few tens of microns. Therefore, the

abrasive particle size in the current study is 1p jm-1 00pjm. The initial damage in rubber is

observed to be about a few microns[ 1-8] [1-18]. For seals, since the abrasive particles are

1 im-100 m, it is reasonable to believe the initial damages are about the same length

scales. Three-dimensional surface profile inspection of the seal surface shows that the

surface roughness is less than 1pjim. At a stable state, the ridge spacing of abrasive

patterns is found to be about a few tens of microns to a few millimeters. The dimensions

of material structures of rubbers and polyurethanes' are about a few nanometers to a few

hundred of nano meters. Glass fibers and carbon black are two commonly used fillers for

elastomeric materials. Although single carbon black particles are nano-scale materials

(diameter typically of about 40 nanometer), they tend to agglomerate into micro scale

particles. The glass fibers in the material of the current study have average diameter of

16pim and length to diameter ratio of 8[1-6].

Table 1-1: Typical length scales in abrasive wear of elastomeric materials

Abrasive particles 1pm-100ptm

Initial damage 1p m~ 10pim

Roughness of molded surface - jim

Ridge spaces at stable state 10pim~mm

Material micro structure 10nm~100nm

Fillers ijm~10pjm

From Table 1-1, the initial damage occurs at a length scale similar to the size of

abrasive particles but much larger than the microstructure of the homoplolymer. It is

therefore possible to treat the homopolymer as a continuum media. The dimensions of

fillers are comparable with initial damages and abrasive particles. As suggested by Yang

1 Some segmented thermoplastic polyurethanes show large supermolecular structures in the form of

spheulites of dimensions of about 10-50ptm[1-42]. In such case, the spheulites in the material can be treated

as inhomogeneities or inclusions in the material.
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et al[1-32], for the fillers at the comparable scale to asperities, the interaction between

fillers and abrasive particles affect the initiation of damages.

In summary, the current study addresses the problem at the scale of a few microns to

a few tens of microns, where the elastomer can be treated as continuum media and the

interaction between abrasive particles and fillers should be addressed.

1.3 Research Plan

1.3.1 Three-dimensional to Two-dimensional Simplification

Abrasive wear occurs when an abrasive particle is confined between two contact

surfaces. Figure 1-7 shows a two-dimensional schematic of the contact configuration.

Elastomers
y

x

100pm-lmm Abrasive particle
I _j

Figure 1-7: Two-dimensional illustration of the typical configuration of abrasive wear.

Figure 1-8: A tear-shape abrasive particle is observed between the two contact surfaces.

In figure 1-7, the abrasive particle is idealized as a sphere. In reality, abrasive

particles could be any arbitrary shape. It is observed[1-5] that the shape of an abrasive
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particle in face seal application resembles a tear (Figure 1-8). Clearly such a three-

dimensional configuration results in a very complicated multiaxial deformation. The

confined configuration makes it extremely difficult to establish direct observation of the

deformation at a micron-scale during the wear process. Moreover, the three-dimensional

configuration dramatically increases the cost of numerical simulation addressing

nonlinearities arising from large deformation, contact, and material stress-strain behavior,

making it unreasonable to implement numerical simulations.

Scratching

Elastomer

Knife

Figure 1-9(a)

Sample

Y Knife Smooth surface
Protrusion

Scratching

Figure 1-9(b)

Figure 1-9: Abrasive wear is simplified as a process where the surface of an elastomer is
scratching by (a) a wedge type knife; and (b) a bulk type knife.

A two-dimensional simplification of the confined configuration is proposed in the

current study. Figure 1-9 shows the schematics of the proposed model. Here, abrasive

wear is simplified as a process where a knife indents and scratches the surface of an
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elastomer. The wedge-type knife (Figure 1-9(a)) simulates the interaction between a

single abrasive particle and the elastomer, which is the dominant interaction in abrasive

wear, whereas the bulk-type knife(Figure 1-9(b)) studies the effect of an overall surface

compression on simultaneous knife indentation and scratching. It is noted that the wedge-

type scratching test has been used in literature to emulate more complex abrasive loading

and exhibit abrasive patterns[1-9][1-8][1-11][1-13].

The two-dimensional simplification of the abrasive wear process releases partially the

confined configuration in Figure 1-7. The advantage of such a simplification is that direct

observations of the abrasive wear process can be established and the cost for numerical

simulations is reduced significantly. Since the dominant mechanics of abrasive wear of

elastomeric materials is associated with processes where an abrasive particle

abrades/scratches the surface of elastomers, such a simplification from a highly confined

three-dimensional configuration to a partially confined two-dimensional configuration

retains the major features of the mechanics.

1.3.2 Research Plan and Thesis Outline

Abrasive wear of elastomers are complicated by the couplings among mechanics,

temperatures, and chemical reactions. A comprehensive study where all of these factors

are addressed would be extremely complicated. As discussed above, in some

circumstances, at elevated temperature mechanical properties of materials will change but

the fundamental mechanism of abrasive wear due to cyclic scratching remains the same.

Therefore, in this research, in order to provide initial fundamental understanding of

abrasive wear due to the dominating effect of abrasive particle indentation and

scratching, we will study the mechanics of abrasive wear without considering

temperature.

This research provides fundamental understanding of the abrasive wear of elastomeric

materials due to abrasive particle indentation and scratching, and studies the wear of

elastomeric materials subjected to scratching by knife geometries that simulate abrasive

particles and contact conditions. Efforts will be focused on establishing direct

observations and analysis of the deformation mechanics. To achieve this goal, both

experimental and theoretical studies will be conducted. Figure 1-10 shows the flow chart
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of the research plan. The thesis is arranged as the following:

In the second chapter, direct observations of deformations of the indentation/

scratching process using a micro in-situ indentation/scratching system will be established.

Micrographs will be collected at different stages of the deformation to provide visualized

deformation and will be further used together with an image processing technique to

reveal the displacement and strain fields during indentation and scratching.

Establish direct observation Study the surface profile
of deformation; Use image change during cyclic
processing technique to scratching tests.
reveal deformation field.

SNumerically simulate Constitutively model the

Nuindentation/scratching tests stress-strain behavior of
_________________________ _ t sselastom ers

Figure 1-10: Flow chart of research plan.

In the third chapter, topography evolution during cyclic scratching tests will be

investigated using both SEM and Zygo (a three-dimensional interferometric surface

profiler). Surface change will be monitored after each cycle of scratching tests in order to

provide surface evolution during cyclic scratching tests.

The material used in this study is a thermoplastic polyurethane, which exhibits strong

hysteresis, rate dependence, and cyclic softening. In order to properly model the

indentation/scratching process, it is important to capture the history dependent nonlinear

behavior of the material. In the fourth chapter, a constitutive model accounting for the

hysteresis and rate dependence will be presented.

In the fifth chapter, numerical simulations of indentation/scratching tests will be

conducted. Results obtained from simulations under the same test conditions in the real
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tests will be compared with the displacement and strain fields obtained from image

processing of the micrographs in Chapter 2, and will be employed to investigate the

topography evolution observed in Chapter 3. Numerical simulations will be further

conducted to study the effect of contact conditions, material properties, scratching speed,

and filler effects on the abrasive wear of elastomers. This study will provide insight into

factors which influence initiation of wear and will also provide insight into correlations

between the viscoelastic behavior of elastomers and their "traction" capability.

In the last chapter, we will give conclusions and discuss future research directions.

The Durometer hardness test, which measures indentation resistance of materials, is

one of the most commonly used measurements to qualitatively assess and compare the

mechanical behavior of elastomeric and elastomeric-like materials. The hardness value is

commonly related to the elastic behavior of the material using linear elasticity theory and

was used by many researchers in the study of abrasive wear resistance. Since both

Durometer indentation tests and abrasive wear involve significant amount of large

deformation of the material, it is unclear how the stress-strain behavior of the material at

large deformation will affect the durometer hardness. In Appendix A, nonlinear finite

element simulations of hardness tests, which act to provide a mapping of measured

Durometer Shore A and D values to the stress-strain behavior of elastomers, are

presented. This work is published in Rubber Chemistry and Technology[1-25].

When indentation tests are conducted at a scale much larger than the length scale of

the structures of tested materials, such as durometer hardness indentation and micro

indentation on elastomers where the indentation depths are 10pm-1mm and are greater

than the structural length scale of the material, it is possible to treat the material as a

homogenous media. However, when indentation tests are conducted at a nanometer scale,

the interaction between material structure and indentor becomes dominant. In Appendix

B, nanoindentation tests on a special type of materials-vertically aligned carbon nanotube

(VACNT) forests-are presented. Unlike indentation tests on bulk material,

nanoindentations on VACNT forest are a process where the indentor consecutively bends

individual nanotubes during the penetration of the indentor into the forest. The

indentation resistance is thus the result of the consecutive interaction between the

indentor and individual nanotubes. The model of this process shows that indentation
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resistance is a function of mechanical properties, geometry, and areal density of

constituent nanotubes. The average mechanical properties of nanotubes can hereby be

reduced from nanoindentation resistance. A paper[1-43] based on this work is submitted

and accepted by Journal of Mechanics and Physics of Solids and will be published soon.
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Chapter 2

In-situ Micro Indentation and Scratching

Testing within SEM
One of the challenges in the study of abrasive wear of elastomeric materials is the lack of

data on the local deformations occurring during the abrading process due to both the

micro-scale deformation and the localized region of material where the abrasive wear

process takes place. The simplification of the abrasive wear process from a general three-

dimensional (3D) configuration to a two-dimensional (2D) scratching process by a

wedge-type knife makes it possible to directly observe the process in an in-situ manner

whilst the salient features concerning the basic mechanics are retained. In this chapter, an

in situ micro indentation/scratching test system operating within a scanning electron

microscope (SEM) developed by the author is introduced first. Tests using this system on

unfilled thermoplastic polyurethane were conducted and micrographs taken during the

tests are presented in the second section. Image processing of the displacement field,

using software VIC 2D together with a software computing the corresponding strain

fields using appropriate large deformation continuum mechanics, is conducted to post-

process the micrographs from in-situ micro-indentation/scratching tests and to reveal the

deformation and strain fields in the abrading process. Finally, summary of experimental

observations are presented.

2.1 In-situ Micro Indentation/Scratching Test System

2.1.1 Test Process

The new test setup establishes direct observations of material deformation during the

indentation/scratching process. Figure 2-1 schematically illustrates the test process and

the surface in-situ observed during deformation as well as the surface observed post

deformation.
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Figure 2-1 Test process: (a) 3D view of test process; (b) Top view of test process; (c)
Normal (8n) and tangential (8t) displacement history.

Figure 2-1(a) shows the sample and the relative position of the knife and the

observation locations. Figure 2-1(b) and (c) show the test process schematically. The

knife, whose sharp edge is parallel to the sample surface, is first driven toward the

surface following the loading curve denoted by 6,, in Figure 2-1(c) until a maximum

specified indentation depth 6,, is reached. It is then moved tangentially to scratch the

surface following the loading curve denoted by 6, in Figure 2-1(c), whilst the indentation

depth is held constant. Finally, a negative motion in the normal direction is applied to
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withdraw the knife.

In this chapter, observation is conducted viewing along the z-axis during the test so

that the in situ deformation is obtained. In the next chapter, both Zygo interferometry and

SEM will be employed to inspect the abraded surface (the surface with normal in the y

direction in Figure 2-1(a)), which had been in contact with the knife during the scratching

test.

2.1.2 Test System

Conventional experimental studies on abrasive wear use the procedure of surface

abrading followed by inspection. In this procedure, however, the in-situ deformation

during scratching is unavailable. Establishing direct observation of the deformation

during the abrading process becomes an even greater challenge in the study of abrasive

wear of sealing materials, where the size of abrasive particle is typically 10 ~1 O0pm.

Motion Controls

/ Scanning Electron Microscope \

Micro In-situ Test Setup

Force Data Acquisition Video and Printer

Figure 2-2: In-situ micro-indentation/scratching test system.

In order to obtain detailed in-situ deformation information, an in-situ micro-

indentation/scratching test system was developed by the author. Figure 2-2 shows a

schematic of the system. The core part of the system is the new in-situ micro

indentation/scratching test apparatus, located within an SEM (Scanning Electron
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Microscope) chamber. The motion controls of the test apparatus, including indentation

and scratching, are fed into the apparatus from outside of the SEM. Force data are

acquired by load cells in the test apparatus, and recorded by a computer. Image and video

can be obtained through the computer connected with the SEM.

2.1.3 In-situ Micro Indentation/Scratching Test Apparatus

The in-situ micro-indentation/scratching test apparatus was designed using

Pro/Engineering software and was realized in a local machine shop. A 3D schematic of

the apparatus generated by Pro/engineering is shown in Figure 2-2(a). Figure 2-3(b)

shows a photograph of the apparatus sitting on the platform fixed on the door of the SEM

and Figure 2-3(c) shows a photograph of the knife. The SEM used in this research is the

LEO 438VP from LEO Electron Microscopy Ltd located in Professor Gibson's

laboratory in the Material Science Department at MIT. During operation, the SEM door

is closed, and the sample is located beneath the SEM beam. The apparatus occupies a

space of about 16mm in length, 15mm in width and 10mm in height and fits within the

SEM chamber. Figure 2-4 shows the schematics of the front and top view of the

apparatus. The setup consists of a lower stage and an upper stage, necessitated due to the

limited available space within the SEM chamber, available equipments, and interfaces

with external control through ports. The lower stage has two stands, which can move in

opposite directions driven by two stepper motors. The sample is fixed on a sample holder

mounted on one of the stands. The knife is fixed on the upper stage mounted on another

stand in the lower stage, and moves in the direction normal to the motion of the lower

stand. Therefore, the upper and lower stages generate two perpendicular motions: The

lower stage provides scratching/tangential motion of a range of about 20mm and the

minimum displacement larger than 40nm; The upper stage provides indentation/normal

motion of a range of about 6mm and the minimum displacement larger than 50nm. Load

cells are embedded in the lower and the upper stages to measure the axial forces along the

directions of each motion: The one in the lower stage measures the tangential force; The

one in the upper stage measures the normal force. The load cells used are Omega LC 101

S-type load cell with load capacity of +/-12kg. The knife and the sample are arranged to

be located directly beneath the SEM beam for observation. Motors and load cells are
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wired through special ports out of the SEM chamber to enable simultaneous collection of

video images of the indentation/scratching tests and the normal/tangential force-

displacement data. Data acquisition is realized using Labview of National Instrument.

Sample holder Knife

Sample Upper stage load cell

Boyce Lab. @ MIT

Figure 2-3(a)

Figure 2-3(b) Figure 2-3(c)

Figure 2-3: In-situ micro indentation/scratching test apparatus, (a) schematics from
Pro/Engineering; (b) photograph taken besides an SEM; (c) the knife and the sample.

To automatically control the motions, additional instrumentation to measure the
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motion of the knife should be used to create a closed-loop control system, which requires

extra expense to refine the current test apparatus and is also limited by the available space

and available ports leading out of the SEM chamber. In the test, indentation depth is

controlled by in-situ measuring the indentation depth using the SEM operating software.

Upper stage Sample Sample holder

Lower stage

-y
y

Tangential motion

Normal m

Figure

Knife

)tion Load cell on
upper stage

2-4 (a)

Sample Sample holder

Upper stage

Tangential motion

Lower stage

z

x Load cell on lower stage

Figure 2-4 (b)

Figure 2-4: Schematic of the mechanism of the new setup, (a) Front View; (b) Top View

2.1.4 Samples

Samples were prepared from 3mm thick thermoplastic polyurethane (TPU) sheets, which

were cut into rectangular shapes. Figure 2-5 shows the schematic of the shape and
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dimensions of the sample. A cutting die was produced to facilitate preparation of the

sample. During the test, the knife cuts into the sample generating a contact zone along the

z direction, and scratches along the x direction.

Scratching direction

4mT

4mm

16mm

x

Figure 2-5: Schematics of the shape and dimensions of the sample.

TPUs are electrically and thermally non-conductive polymeric materials. The

common issues for obtaining high quality SEM micrographs of the surface of non-

conductive materials are electronic charging and heating up of materials. The electronic

charge could cause loss of image contrast, creating very bright (edge effect) or dark areas,

and image shift, whilst heating up the material could change the properties of the

materials and electronic beam could cause crosslinking in the polymer. To avoid these

problems, it is common to coat the imaged surface by a thin layer of gold or other

metallic thin film of typical thickness of 20~60nm to improve the conduction of electrons

and heat[2-1]. When use of a metallic thin film coating is unsuitable, an alternative is to

use the technique commonly known as environmental SEM (ESEM, or variable pressure

(VP) mode for LEO). Unlike common SEMs operating in high vacuum environments, the

ESEM technique allows a low pressure of some gas (about 10~10OPa) in the SEM

chamber. The collisions between electrons and the gas molecules ionize the gas. The

cloud of ionized gas surrounding the sample acts as a conductor and allows the charge on

the sample surface to dissipate. However, the cost of ESEM is the relatively low

resolution. To obtain similar quality images, scanning speed has to be reduced by 2 to 4

fold, resulting in lengthened imaging time. It is also possible to inspect non-conductive
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uncoated surfaces without using ESEM. In such a situation, a low accelerating voltage

should be used to reduce the charge effect.

In this study, samples were prepared according to the specific test conducted. For the

indentation/scratching tests where videos were taken, the surface facing the SEM beam

was gold coated in order to maintain a high scanning speed essential to obtain videos. For

the tests used to obtain static micrographs for image processing, the surface was uncoated

and the SEM was operated in the high vacuum mode with low accelerating voltage.

Special treatment of the sample surface was necessary to obtain desired surface features

to accommodate the image processing technique. For the test for the inspection of the

abraded surface, as will be discussed in Chapter 3, the sample surface was uncoated and

the SEM ran in the variable pressure mode (ESEM) with a pressure of about 20Pa.

2.1.5 The Knives

Two types of knives were used in the current study. The first one was a wedge-type knife,

made of stainless steel and machined on a wire cut EDM machine. Figure 2-6 presents

the knife, showing a round tip with radius of about 3-8pm. Tests using this type of knife

study the effect of the interaction between a single abrasive particle and the material.

Figure 2-6 Wedge-type knife. The knife is made by stainless.

The second knife will be referred to as a bulk-type knife, presented schematically in

Figure 2-7(a) and in the SEM micrograph of Figure 2-7(b). In contrast to the previous

wedge-type knife, the latter shows a configuration of a smooth surface with a small sharp

protrusion (40-100pm) in the middle of the surface and across the surface. We use this
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knife to study the effect of the superposition of an overall compression on the material

deformation during indentation/scratching.

Protrusion Smooth surface

A/
Y

x

Figure 2-7(a)

60um

Sx

Figure 2-7(b)

Figure 2-7: The bulk-type knife: (a) Schematics of the knife; (b) micrographs of the

knife.

2.2 In-situ Micro Indentation/Scratching Tests

In-situ micro indentation/scratching tests with different indentation depths were

conducted to obtain the material deformation in these processes. The material tested in

this chapter is unfilled thermoplastic polyurethane (TPU), whose mechanical behavior is

given in detail in Chapter 4.

43



2.2.1 Result: 6n=50pm for Unfilled TPU with Wedge-type Knife

An in-situ micro indentation/scratching test with 50pm indentation depth using a wedge-

type knife was first conducted. Figure 2-8(a) shows the normal/tangential force vs time

curves of the test whereas Figure 2-8(b) shows the normal/tangential force vs normalized

distance curves. The distances are normalized by 3 ,a" (the specific maximum

indentation depth). The curves can be divided into three regions according to different

dominant features of the test: The first region corresponds to the indentation, where the

normal force initially increases nonlinearly then almost linearly; The second region

corresponds to the start of scratching and the tangential force increases almost linearly.

During this stage, the test shows the material around the contact surface moving with the

knife essentially blocking the knife movement thus giving the increase in the tangential

force with tangential displacement, and demonstrating features commonly known as the

stick phase. The normal force decreases during this phase since the contact with the

backside of the knife is lost. The transition from the second region to the third region

corresponds to the curve for the tangential force to gradually bend over toward a constant

value. In the third region, a constant tangential force and normal force are observed and

the knife slips over the surface (known as slip phase) with essentially a steady state

contact configuration between the knife and the TPU. From Figure 2-8(b), the

corresponding scratching distance where the constant tangential force and normal force

are reached is about 40ptm. Finally, the knife is withdrawn. The material partially

recovers from the deformed state.

Figure 2-9(a)~(d) show a sequence of the deformations during the test whereas Figure

2-1 O(a)-(d) show the same images but with outlines (white lines) of the surface profile to

clearly illustrate the deformation. Figure 2-9(a) and Figure 2-10(a) show the surface of

the material before the indentation. Since the sample used here was uncoated and was

observed under the high vacuum mode of the SEM, surface charges can be seen as

indicated by the bright zones on the surface. The micrographs were taken with 200X

magnification and the scale bars in the micrographs show the dimensions. Note that this

surface had been purposely roughened in order to provide the needed image contrast for

later image processing.
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Figure 2-8: (a) Normal/tangential force vs time curves, and (b) Normal/tangential force
vs normalized distance curves from indentation/scratching test with 6,=50ptm.
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Figure 2-9(a) Figure 2-9(b)

Figure 2-9(c) Figure 2-9(d)

Figure 2-9: SEM micrographs of material deformation during indentation/scratching
process (the knife moves rightward): (a) before the test; (b) 6,=50pim, 6t=0pm (upon
indentation); (c) 6n=50ptm, 8t~40tm (upon scratching); (d) 6n=50pm, 8t>100pm (upon
scratching).

Figure 2-9(b) and Figure 2-10(b) show the material deformation immediately after

indentation. The material shows the conformation around the knife tip (Figure 2-10(b))

due to the large deformation capability of TPUs. The conformation is symmetric and has

the contact length of 20-30ptm on both sides of the knife. The material also shows

features of deforming out of the plane directly beneath the knife as a result of the local

Poisson effect due to compression in this region.

Upon scratching (Figure 2-9(c) and Figure 2-10(c)), the material conformation to the

knife tip becomes biased: The material on the left side of the knife starts to lose contact

with the knife, while the curvature of the surface profile on the right side increases,

implying material compression on the right side of the knife. When the micrograph was

taken, there was no significant relative movement between the knife and the material.

This period is also known as stick phase and corresponds to the increase of the tangential
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force and the decrease in the normal force.

Figure 2-10(a) Figure 2-10(b)

Figure 2-10(c) Figure 2-10(d)

Figure 2-10: SEM micrographs of material deformation during indentation/scratching
process (the knife moves rightward): (a) before the test; (b) 6n=50p1m, 6t=Opm (upon
indentation); (c) 8n=50ptm, 8t-40ptm (upon scratching); (d) 6n=50tm, 8t>100pm (upon
scratching). The white lines in the images outline the surface profile.

As the knife further moves to the right (Figure 2-9(d) and Figure 2-10(d)), the

conformation is further biased: The material on the left side of the knife almost fully

loses contact with the knife, while the material on the right side of the knife is pushed.

When the micrograph was taken, the knife is slipping over the contact surface, typically

known as slip phase. This period corresponds to a constant tangential force. As the knife

moves rightward, the location where the knife indented shows a small amount of residual

deformation, indicated by the arrows in Figure 2-9(d) and Figure 2-10(d).
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2.2.2 Result: 8n=80ptm for Unfilled TPU with Wedge-type Knife

The in-situ micro indentation/scratching test with indentation depth of 80[m using a

wedge-type knife was also conducted. Figure 2-11 shows the normal/tangential force vs

time curves. The curves show similar features as the one with 6n=50pm, i.e. the curves

can be divided into three regions according to different dominant features of the test: The

indentation corresponding to the increase of the normal force, the stick phase in

scratching corresponding to the increase of the tangential force and decrease of the

normal force, and the slip phase in the scratching corresponding to a constant tangential

force and constant normal force.

Sequential micrographs of deformations during the test are shown in Figure 2-

12(a)~(c) whereas Figure 2-13(a)~(c) show the same micrographs but with outlines

(white lines) of the surface profile to clearly illustrate the deformation. Figure 2-12(a) and

Figure 2-13(a) show the material deformation immediately after indentation. As

expected, the material shows similar features as observed in the test with 6n=50pm but

larger conformation to the edge of the knife. The conformation length is 30~40pim on

both sides of the knife.

Upon scratching (Figure 2-12(b) and Figure 13(b)), similar to what was observed in

the test with 6n=50im, the material conformation to the knife tip becomes biased: the

material on the left side of the knife starts losing contact with the knife, while the

curvature of the surface profile on the right side increases due to the compression force

applied by the knife.

As the knife further moves rightward (Figure 2-12(c) and Figure 2-13(c)), the knife

starts to slip over the surface. At this stage, the conformation is further biased: the

material on the left side of the knife almost fully loses contact with the knife, while the

material on the right side is pushed by the knife. It is also noticed that the location where

the knife indented shows a small amount of residual deformation, as indicated by the

arrows in Figure 2-12(c) and Figure 2-13(c).
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Figure 2-11: (a) Normal/tangential force vs time curves, and (b) Normal/tangential force
vs normalized distance curves from indentation/scratching test with 6,1=80tm.
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Figure 2-12(a) Figure 2-12(b)

Figure 2-12(c)

Figure 2-12: SEM micrographs of material deformation during indentation/scratching
process: (a) 6n=50ptm, 6t=Oiim (upon indentation); (b) 5n=80pm, 5t-40ptm (upon
scratching); (c) 61=80pm, 6t>1OOpm (upon scratching).
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Figure 2-13(a) Figure 2-13(b)

Figure 2-13(c)

Figure 2-13: SEM micrographs of material deformation during indentation/scratching
process: (a) 8,=50ptm, 8t=0pim (upon indentation); (b) 61=80pjm, t-40pm (upon
scratching); (c) 6n=80ptm, 8t>100pm (upon scratching). The white lines in the
micrographs outline the surface profile.

2.2.3 Result: 6n=80pm for Unfilled TPU with Bulk-type Knife

The in-situ micro indentation/scratching test using a bulk-type knife was also conducted.

The knife is shown in Figure 2-7(b). The small protrusion is about 60pm above the bulk

surface and has a tip radius of about 15ptm. The bulk surface is 10mm in width and

10mm in height. For the bulk-type knife, the penetration of the knife into the material

was difficult to measure due to lack of reference for measurement. The force control was

therefore used in the tests. Figure 2-14 shows the normal/tangential force vs time curves.

A maximum indentation force of 19N was applied to ensure complete contact between

the bulk surface and the material. If the bulk surface and material surface could be

perfectly parallel, a transition in the slope of the normal force from a lower slope
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corresponding to only the protrusion indenting into the material to a greater slope

corresponding to both the protrusion and the bulk surface in contact with material surface

would have been observed. However, the perfect alignment between the bulk surface and

material surface was difficult to achieve in the test. A simple calculation using the

geometry of the bulk-knife used in this study shows that a tilt angle of about 0.6 degree

between the bulk surface and the material surface would result in the protrusion and one

of the end of the bulk surface touching the material surface simultaneously. It was

observed in the test that as soon as the protrusion indented into the material, the left end

of the bulk surface touched the material surface, and effectively increased the normal

reaction force. In figure 2-14, the part of normal force during indentation shows an initial

nonlinear increase where the increasing slope corresponds to the increase of contact area.

As the bulk surface fully contacts the material surface, the normal force increases almost

linearly. Generally, the curves during scratching show similar features as those with

wedge-type knife: the stick phase in scratching corresponding to the increase in the

tangential force, and the slip phase in the scratching corresponding to a constant

tangential force. It is noticed that during the transition from the stick phase to the slip

phase, compared to the wedge-type test, the decrease in the normal force is notably

relatively small. The small decrease in the normal force during scratching is primarily

because the normal force now has major contributions from bulk contact between the

smooth surface and the material.

A sequence of deformations during the test is presented in Figure 2-15(a)~(d)

whereas Figure 2-16(a)~(c) show the same image but with outlines (white lines) of the

surface profile to illustrate the deformation. Figure 2-15(a) and Figure 2-16(a) show the

relative positions of the bulk knife and the material before the test. Figure 2-15(b) and

Figure 2-16(b) show the material deformation immediately after the indentation. Due to

the existence of the protrusion, the material around the protrusion is not in contact with

the bulk surface. The material shows conformation to the protrusion with the

conformation length of about 20tm on both sides of the protrusion.
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Figure 2-14: Normal/tangential force vs time curves from indentation/scratching test
using bulk-type knife.

Upon scratching (Figure 2-15(c) and Figure 2-16(c)), the material conformation to the

protrusion becomes biased: the material on the left side of the protrusion starts losing

contact with the knife, while the curvature of the surface edge on the right side of the

knife increases due to compression force applied by the knife.

As the knife further moves rightward (Figure 2-15(d) and Figure 2-16(d)), the knife

starts to slip over the surface. However, due to the constraint from the bulk surface, the

slip occurs not as obvious as those in the tests using the wedge-type knife. At this stage,

the conformation is further biased: the material on the left side of the knife almost fully

loses contact with knife, while the material on the right side of the knife is heavily

pushed. The edge of the material on the left side of the knife shows an almost straight line

with smaller slope, suggesting this part of the material being strongly stretched.
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Figure 2-15(b)Figure 2-15(a)

Figure 2-15(d)Figure 2-15(c)

Figure 2-13(e)

Figure 2-15: SEM micrographs of material deformation during indentation/scratching
process using a bulk-type knife: (a) Before the test; (b) Immediately after indentation; (c)
Upon scratching, 8t~40ptm; (d) Upon scratching, 8t>100pm; (e) After withdrawn the
knife.
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Figure 2-16(a) Figure 2-16(b)

, ipm

Figure 2-16(c) Figure 2-16(d)

Figure 2-16: SEM micrographs of material deformation during indentation/scratching
process using a bulk-type knife: (a) Before the test; (b) Immediately after indentation; (c)
Upon scratching, 8t-40pm; (d) Upon scratching, 8t>100pm; (e) After withdrawn the
knife. The white lines in the images outline the surface profile.

2.3 Image Processing

Qualitative information on the local deformation during the indentation/scratching

process was obtained from the micrographs in the previous section. To establish

quantitative knowledge on the local displacement and strain fields, however, one has to

employ image processing techniques to analyze the micrographs. In this section, digital

image correlation, an image process technique to quantify displacement and strain using

consecutive images taken during deformation, is implemented to reveal quantitative

deformation and strain fields.
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2.3.1 Introduction to the Software VIC 2D and Sample Preparation

Originated from digital image correlation, VIC 2D is a recent image processing software

for experimental displacement analysis of large strain deformation[2-2][2-3]. The so-

called digital image correlation technique is a mathematical correlation method to

analyze digital image data taken on samples subjected to mechanical deformation.

Consecutive images captured during a test will present changes in surface characteristics

as the specimen is deformed. The digital image correlation technique determines the

displacements of gray value patterns in the digital images by tracking the gray value

patterns in small local neighborhoods commonly referred to as subsets. To determine the

displacement of the subset center in a second image, a similarity measure is employed.

The digital image correlation algorithm finds the subset center displacement by

maximizing this similarity measure.

One critical aspect of successful application of the digital image correlation technique

is the presence of surface characteristics in the form of patterns or speckles of proper size.

These patterns or speckles provide basic information for the algorithm to track. In small

strain and regular test conditions, to create such patterns or speckles on the specimen

surface is not very difficult: A spray or an ink-pen can fulfill this task. For a test at large

strain, however, care must be taken to provide a surface speckle pattern that is robust to

large stretches[2-4]. Moreover, for a test running in a high vacuum SEM chamber and

under the magnification of about 100~20OX, to create sustainable and traceable speckles

imposes challenges. Under the magnification of 10OX-20OX, traceable speckles about

the size of 1~2mm in the micrographs should have the physical size of 1-5pm. Spray

particles, such as boron nitride, of 1-10m can be easily removed in a high vacuum

environment due to the continuous pumping to maintain the high vacuum, resulting in the

loss of features shown in previous micrographs. The thin film by gold coating sometimes

can create traceable patterns on the size scale of a few microns due to inhomogeneous

coating and porosity over the surface. In the current study, however, such coatings will

crack due to the large deformation.

An easy way to create the surface feature has been realized. A fine sand paper (600

grain) was employed to abrade the sample surface. After a few rounds of abrasion, the

initially shining surface became dull, a symptom of small features over the surface.
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Micrographs under the SEM show that the abrasion by fine sand paper created surface

features of the size of 1-5pm for TPUs.

2.3.2 Results: an=50pm for Unfilled TPU with Wedge-type Knife

Micrographs obtained from the indentation/scratching test with 6n=50ptm were processed

first. Images in Figure 2-17 show the results immediately after indentation, i.e. 8n=50tm

and 6t=Opm. Figure 2-17(a), taken at the magnification of 80X, was used together with

an image taken before the test to generate the desired contours. For the purpose of

comparison, Fig 2-17(b) shows the magnified image, taken at 200X under the same test

conditions. It was desired to use the images at a higher magnification to post-process so

that more detailed information about the deformation would be revealed. However, two

hurdles deterred using higher magnified images. First, at a higher magnification the

surface speckles created by fine sand paper appear too large compared with the scope of

the observation, resulting in the charge effect becoming pronounced and forming a

number of large white-zones, as shown 2-17(b). These white zones are unstable and

move during the test, making the micrographs impossible to be applied to the image

processing software. The second hurdle is that at a higher magnification there are

relatively larger amount of materials flowing in and out of the observation area, making

the comparable zone become too small to be valuable for analysis.

Figure 2-17(c) to (g) show the contours for displacements and strains obtained from

image processing. The contours are superposed on the micrographs at the same position.

Since the image processing software currently cannot generate accurate information on

the boundary due to the usage of subsets, the contours only cover the area of about

1.2mm by 0.6mm inside the material. The lower edge of the contour field is about

0.08mm above the lower edge of the material.
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Figure 2-17(a)

Figure 2-17(c)

Figure 2-17(e)

Figure 2-17(d)

Figure 2-17(f)
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Figure 2-17: Results from image processing of SEM micrographs from indentation/
scratching tests with 6n=50ptm, 6t=Opm: (a) unprocessed SEM micrographs; (b) SEM
micrograph at larger magnification; contours for (c) u,; (d) u2 ; (e) 6, 1; (f) En ; (g) 612-
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Figure 2-17(c) and (d) show the contours of the displacement in the horizontal

direction u1 and the vertical direction u2 , respectively. In figure 2-17(c), the color

changes from red, representing the displacement of about 5pm, to blue for the

displacement of about -5gm. In Figure 2-17(d), the red color represents the displacement

of about 30pm, to the blue for the displacement of about 7gm. The image processing

nicely captures the displacement field. As expected, both contours show symmetric

features: The u, contour shows material being pushed in the horizontal direction with a

maximum displacement occurring along 45* lines away from the center line; The u2

contour shows the decrease of the displacement from the contact point to the far field. It

is noticed that u2 is 50gm at the displacement at contact point and decreases to 30gm at

point about 80gm below the contact surface.

The displacement fields were then used to generate true strain contours. Figure 2-

17(e), (f) and (g) show the contours of strains e1, 622, and e, 2 respectively. It should be

noted that the contours for strains show some un-smooth changes, most pronounced for

ell , due to the first order derivative to the displacement and numerical discretion over the

field. In figure 2-17(e), the red color represents the strain 61, of about 0.07, whilst the

blue color for about -0.02. In Figure 2-17(f), the red color represents the strain 622 of

about 0.02, to the blue color for the strain 622 of about -0.04. In Figure 2-17(g), the red

color represents the strain e,2 of about 0.05, to the blue color for about -0.05. Below the

contact point, the material is subjected to tensile strain along horizontal direction and

compression strain along the vertical direction. The strains decrease along the radial

direction.
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Figure 2-18(a) Figure 2-18(b)

Figure 2-18(c) Figure 2-18(d)
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Figure 2-18: Results from image processing of SEM micrographs from indentation/
scratching tests with 6n=50ptm, 8t=6Op0m: (a) unprocessed SEM micrographs; (b) SEM
micrograph at larger magnification; contours for (c) u.; (d) u2 ; (e) 6 ; (f) 622 ; (g) 612.
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Figure 2-18 (a) to (g) show the contours from image processing on micrographs from

the indentation/scratching test with 6n=50tm, 8t=60p~m. Figure 2-18(a) shows the

micrograph used for image processing while Figure 2-18(b) shows a micrograph taken at

a higher magnification but under the same testing conditions. Figure 2-18(c) and (d) show

the contours for the displacements u, and u2 , respectively. In figure 2-18(c), the scale for

the displacement ul ranges from 2ptm (blue) to 19pm (red), while in Figure 2-18(d), the

scale for the displacement u2 ranges from 2im (blue) to 32ptm (red). The contours very

nicely reveal the features of the biased displacements where material is pushed rightward

by the knife during scratching. The overall displacement fields are biased. The horizontal

displacement shows a beautiful butterfly-like symmetric distribution about the line biased

from the vertical line by about 300 to the left. The maximum horizontal displacement

occurs in front of the knife along the line of about 30* away from the horizontal direction,

whereas the minimum displacement occurs along the line of about 300 away from the

vertical direction due to the large drag force from the bulk material in this direction. It is

also noticed that the horizontal displacement behind the knife is large. The vertical

displacement also shows features of bias: the symmetric line is about 66' away from the

horizontal direction.

True strains were calculated based on the obtained displacement fields. Figure 2-

18(e), (f), and (g) show the contours of strains C1 , 2 , and c,2 ,respectively. In figure 2-

18(e), the scale for the strain 6 ranges from -0.05 (blue) to 0.11 (red); In Figure 2-18(f),

the scale for the strain c22 ranges from -0.09 (blue) to 0.04 (red); In Figure 2-18(g), the

scale for the strain c12 ranges from -0.10 (blue) to 0.10 (red). As the knife moves

rightward, compression strain in the horizontal direction is developed in front of the

knife, providing the resistance to the movement. Compared with the strain contours in

Figure 2-17(e), (f), and (g), the magnitudes of the strains increase in both tension,

compression, and shear. The strains also tend to concentrate to the contact point as shown

in the figures, implying locally more severe deformation is expected during scratching.

2.3.3 Results: 5n=80pm for Unfilled TPU with Wedge-type Knife

Micrographs obtained from indentation/scratching test with 6n=80ptm were processed.
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Images in Figure 2-19 show the result immediately after indentation, i.e. 6t=Opm. Figure

2-19(a), taken at the magnification of 80X, was used together with an image taken before

the test for analysis. For the purpose of comparison, Fig 2-19(b) shows the magnified

image, taken at 200X, from a different test but under the same test condition.

Figure 2-19(c) to (g) show the contours for the displacements and strains obtained

from image processing. The contours are superposed on the micrographs at the same

position. The contour area only covers the part of the analyzed micrographs and is about

1.2mm by 0.5mm. The lower edge of the contour field is about 0.12mm inside the edge

of the material.

Figure 2-19(c) and (d) show the contours of the displacements ul and u2 ,

respectively. In Figure 2-19(c) and Figure 2-19(d), the displacement u, ranges from -

7pm (blue) to 7pm (red), whereas the displacement u2 ranges from -12pm (blue) to

40pm (red). Compared with the contours for the indentation depth of 50pm, the

variations of the maximum and the minimums from those in Figure 2-17(c) and (d) to

those from in Figure 2-19(c) and (d) are proportional to the variation in the indentation

depth from 50ptm to 80pm. The image processing nicely captures the displacement fields:

The u contour shows material being pushed horizontally with maximum displacement

occurring along about 450 away from the center line; the u2 contour shows the decrease

of the displacement from the contact point to the far field. It is noticed that u2 = 80pum at

contact point and decreases to 40pm at point about 120pm inside the material.
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Figure 2-19(a)

Figure 2-19(c)

Figure 2-19(e)

Figure 2-19(d)

Figure 2-19(f)

0.02

0.01

-0.01

-0.02

-0.04

Figure 2-19(g)
Figure 2-19: Results from image processing of SEM micrographs from indentation/
scratching tests with 6n=80pm, 6t=Otm: (a) unprocessed SEM micrographs; (b) SEM
micrograph at larger magnification; contours for (c) u,; (d) U2 ; (e) 611; (f) 22 ; (g) 6-12
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Figure 2-20(a)

Figure 2-20(c)

Figure 2-20(e)

Figure 2-20(b)

Figure 2-20(d)

2-20(f)

Figure 2-20(g)
Figure 2-20: Results from image processing of SEM micrographs from indentation/
scratching tests with 6n=80pm, 6t=40pm: (a) unprocessed SEM micrographs; (b) SEM
micrograph at larger magnification; contours for (c) u,; (d) u2 ; (e) -0, ; () 22 ; (g) 612.
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The displacement fields were then used to produce true strain contours. Figure 2-

19(e), (f) and (g) show the contours of strains 6, , e 2 , and 812, respectively. In Figure 2-

19(e), the scale for the strain cH ranges from -0.03 (blue) to 0.10 (red); in Figure 2-19(f),

the scale for the strain 622 ranges from -0.09 (blue) to 0.02 (red); in Figure 2-19(g), the

scale for the strain -12 ranges from -0.04 (blue) to 0.04 (red). Similarly as observed in the

test with indentation depth of 50ptm, below the contact point, the material is subjected to

tensile strain along the horizontal direction and compression strain along the vertical

direction. The strains decrease along the radial direction.

Figure 2-20 (a) to (g) show the contours from image processing on micrographs from

the indentation/scratching test with 6n=80ptm, 8t--40ptm. Figure 2-20(a) shows the

micrograph used for image processing while Figure 2-20(b) shows a micrograph taken at

a higher magnification but under the same testing condition. Figure 2-20(c) and (d) show

the contours for the displacement ul and u2 - In figure 2-20(c), the scale for the

displacement u, ranges from -5pm (blue) to 20pm (red), while in Figure 2-20(d), the

scale for the displacement u2 ranges from 10pm (blue) to 40ptm (red). The contours very

nicely reveal the feature of the biased displacements where material is pushed rightward

by the knife during scratching. The distribution of the horizontal displacement shows a

symmetric distribution about the line about 450 left to the vertical line. The maximum

horizontal displacement occurs in front of the knife along the line of about 310 away from

the horizontal direction, whereas the minimum displacement occurs along the line of

about 450 away from the vertical direction. The vertical displacement also shows features

of bias: the symmetric line is about 200 away from the horizontal direction.

True strains were calculated from the displacement fields. Figure 2-20(e), (f) and (g)

show the contours of strains cn , 122 and 812, respectively. In figure 2-20(e), the scale for

the strain 8i ranges from -0.04 (blue) to 0.12 (red); in Figure 2-20(f), the scale for the

strain e22 ranges from -0.25 (blue) to 0.04 (red); in Figure 2-20(g), the scale for the strain

812 ranges from -0.06 (blue) to 0.04 (red). As the knife moves rightward, a certain

amount of compressive strain in the horizontal direction is developed in front of the

knife, providing the resistance to the movement. Compared with the strain contours in
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Figure 2-20(e) and (f), the magnitudes of the strains increase in both tension and

compression direction as the knife moves. The strains also tend to concentrate to the

contact zone, implying locally more severe deformation is expected during scratching.

2.2.4 Result: 6 n=80pm for Unfilled TPU with the Bulk-type Knife

Micrographs from the indentation/scratching test using the bulk-type knife were

processed. Images in Figure 2-21 show the result immediately after indentation, i.e.

6t=Optm. Figure 2-16(a), taken at magnification of 80X, was used together with an image

taken before the test for the analysis. For the purpose of comparison, Fig 2-16(b) shows

the magnified image, taken at 200X under the same test condition.

Figure 2-21(c) to (f) show the contours for the displacements and strains obtained

from image processing. The contours are placed over the original micrographs at the

same position and cover an area of about 1.0mm by 0.6mm. The lower edge of the

contour field is about 0.12mm below the contact surface.

Figure 2-21(c) and (d) show the contours of the displacements u, and u2 ,

respectively. In figure 2-21(c) and figure 2-21(d), the displacement u, ranges from -8 pm

(blue) to 14prm (red), whereas the displacement u2 ranges from 20ptm (blue) to 45ptm

(red). The u, contour shows asymmetric field. As mentioned before, due to the imperfect

alignment between the bulk surface and the material surface, the left end of the knife

touched the surface soon after the protrusion indents into the material, causing an overall

larger contact force in the right-side of the protrusion and pushing the material leftwards,

and resulting in the asymmetry in the u, contour. However, the u, contour does show the

general features of the material being pushed laterally away from the centerline.
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Figure 2-21(a)

Figure 2-21(c) Figure 2-21(d)

Figure 2-21(e) 2-21 (f)

Figure 2-21(g)
Figure 2-21: Results from image processing of SEM micrographs from the indentation/
scratching test immediately after the indentation: (a) unprocessed SEM micrographs; (b)
SEM micrograph at a larger magnification; contours for (c) u,; (d) u2 ; (e) _v .; (f) 622;

(g) 612.

67

Figure 2-21(b)



Figure 2-22(a)

Figure 2-22(c)

Figure 2-22(e)

Figure 2-22(d)

2-22(f)

Figure 2-22(g)

Figure 2-22: Results from image processing of SEM micrographs from the indentation/

scratching test upon scratching: (a) unprocessed SEM micrographs; (b) SEM micrograph

at a larger magnification; contours for (c) u,; (d) u2 ; (e) 1 ; (f) 622 ; (g) 612
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The displacement fields were then used to computer the true strain contours. Figure 2-

21(e) and (g) show the contours of strains e 1, 22 and 6,2. respectively. In Figure 2-

21(e), the scale for the strain e ranges from -0.01 (blue) to 0.09 (red); in Figure 2-21 (f),

the scale for the strain c22 ranges from -0.05 (blue) to 0.02 (red); in Figure 2-21(g), the

scale for the strain c,2 ranges from -0.04 (blue) to 0.04 (red). It is also noticed that the

material surrounding the protrusion is lifted by the protrusion, resulting in the lack of

contact of the material surrounding the protrusion, and similar features of the strain

contours as those observed from the tests using the wedge-type knife.

Figure 2-22 (a) to (g) show the contours from image processing on micrographs

during scratching with 6t=100ptm. Figure 2-22(a) shows the micrograph used for image

processing while Figure 2-22(b) shows a micrograph taken at a higher magnification but

under the same testing condition. Figure 2-22(c) and (d) show the contours for the

displacement u, and u2 . In Figure 2-22(c), the scale for the displacement u, ranges from

10pm (blue) to 50pm (red), while in Figure 2-22(d), the scale for the displacement u2

ranges from 10pm (blue) to 48pm (red). Even though there are factors causing

asymmetry in the displacement field upon indentation, the contours during scratching

very nicely capture the feature of the biased displacements where material is pushed

rightward by the knife as it moves toward right.

True strains were calculated from the displacement fields. Figure 2-22(e), (f) and (g)

show the contours of strains ela, 622, and c,2 respectively. In Figure 2-22(e), the scale

for the strain e ranges from -0.03 (blue) to 0.08 (red); in Figure 2-22(f), the scale for

the strain c22 ranges from -0.04 (blue) to 0.02 (red); in Figure 2-22(g), the scale for the

strain c,2 ranges from -0.04 (blue) to 0.03 (red). Compared with the strain contours

immediately after indentation (Figure 2-21(e), (f), and (g)), the distributions of the strains

during scratching show features of the material being push rightwards, whilst the

magnitudes of the strains are generally smaller. This is probably because that the contact

between the material and the smooth surface of the knife restrict the relative motion

between the protrusion and the material, resulting in less severe deformation than those in

the wedge-type knife test where the surface surrounding the knife is essentially free to
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move.

2.4 Summary

An in-situ micro indentation/scratching test system was introduced in this chapter. The

new system provided micro indentation/scratching test within an SEM and enabled

simultaneous collection of video images of the indentation/scratching tests and the

normal/tangential force data.

The new system was used to conduct in situ micro indentation/scratching tests within

the SEM on thermoplastic polyurethane at different indentation depths to obtain direct

observation of deformation as well as normal/tangential forces. Two types of the knives

were used in this study. The first one was a wedge-type knife. We used this type knife to

study the interaction between an asperity and the sealant material without considering the

overall pressure applied by the bushing. The second one was a bulk-type knife, which

was designed as a small protrusion (60pm in height) over a large smooth surface. The

purpose of using this type of knife was to study the effect of the superposition of an

overall compression on the material deformation during indentation/scratching.

For the indentation/scratching test using the wedge-type knife, it was observed that

the normal/tangential force vs time curves could be divided into three regions according

to different dominant features of the test: The first region corresponded to the indentation,

where the normal force increased initially nonlinearly then almost linearly. At this stage,

the material symmetrically conformed to the knife; The second region corresponded to

the start of scratching. At this stage, the tangential force increased almost linearly and the

material around the contact surface moved with the knife, demonstrating features

commonly known as stick phase. The material behind the knife gradually loses contact

with the knife and the conformation of the material to the knife became biased; At the

third region, the curve for tangential force gradually bent over to a constant value, and the

knife slipped over the surface (known as slip phase). The material behind the knife lost

contact with the knife whereas the material ahead of the knife was pushed by the knife,

providing resistance to the knife movement; After the removal of the knife, small

amounts of residual deformation were observed at the locations where the knife indented

into the material with the indentation depths of 50pm and 80tm.
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For the test using the bulk-type knife, during scratching, the transition from stick

phase to slip phase was also observed. However, the normal force showed only a small

decrease during the transition period primarily because the normal force now had major

contributions from bulk contact between the smooth surface and the material. The

material deformation around the protrusion showed similar features as those observed in

the tests using wedge-type knife.

Image processing, together with a software to compute large strains, was successfully

used to obtain displacement and strain fields of the material in the indentation/scratching

tests. For the test using the wedge-type knife, symmetric deformation was observed

during indentation and biased deformation field was observed during scratching. It was

also observed that during scratching, the strains tended to increase and concentrate

toward the contact zone, implying more severe deformation during scratching. For the

test using the bulk-type knife, it was found that during indentation, due to the material

being lifted by the protrusion (or asperity), the deformation of the material around the

protrusion/asperity was similar to that from the tests using the wedge-type knife. During

scratching, however, due to the constraint applied by the contact between the smooth

surface of the knife and the material, the deformation was generally less severe than that

using the wedge-type knife. Therefore, the wedge-type knife test created more severe

deformation than the bulk-type knife, and might result in accelerated abrasive wear.
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Chapter 3

Cyclic Scratching: Effect on Surface

Topography
A surface will be damaged after it is subjected to cyclic abrasion. For elastomers, surface

damage acts as a precursor to the formation of abrasive patterns. Although the number of

scratching cycles for the formation of a characteristic abrasion pattern is generally much

longer than that for the formation of initial damage, it is important to study the initiation

of damages. The formation of abrasive patterns is a bimodal process where the initiation

of new damage and propagation of existing damage occur simultaneously. The former

supplies new sources for damage, whilst the latter results in the ultimate loss of material.

The formation of initial damage and propagation/progression of this damage during the

early stage will eventually influence the form and rate (with respect to number of cycles)

of abrasive wear. This chapter studies the topography change during cyclic scratching

tests. In the first section, the equipment and methodology used in this study are

introduced. The second to fourth section present detailed results from both SEM and

Zygo (a three-dimensional noncontact surface profiler) inspections of the surface

topography after different numbers of cycles on different materials at different

indentation depth, i.e., the second and the third section provide results for unfilled

thermoplastic polyurethane (TPU) with indentation depth of 50ptm and 80pim,

respectively, and the fourth section provides results for glass fiber filled thermoplastic

polyurethane with indentation depth of 80ptm. The fifth section summarizes the

observations.

3.1 Methodology for Topography Study

A surface profiler and a SEM are employed for surface topography study. The surface

profiler is the Zygo NewView 5000 from Zygo Corporation. In the following, we
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conveniently refer to it as Zygo. The SEM is LEO VP438 from LEO Electron

Microscopy Ltd.

3.1.1 Zygo: A 3D Surface Profiler

Zygo is a three-dimensional (3D) non-contact surface profilometer, using scanning white-

light interferometry, a traditional technique in which a pattern of bright and dark lines

(fringes) resulting from an optical path difference between a reference and a sample beam

is used to deduce the surface profile. The mechanism is simple. The incoming light is

split inside an interferometer (Figure 3-1), one beam going to an internal reference

surface and the other to the sample surface. After reflections, the beams recombine inside

the interferometer, undergoing constructive and destructive interference and producing

the light and dark fringe pattern. The Zygo instrument uses a precision vertical scanning

transducer together with a camera to generate a 3D interferogram of the surface,

processed by the computer and transformed by frequency domain analysis resulting in a

quantitative 3-D image. The Zygo NewView 5000 offers performance of up to 0.lnm

vertical resolution and 0.45tm to 11.8 pim lateral resolution. The interferometric

objective used was 20X Mirau, which offered a field of view of 0.35mm by 0.26mm at

IX system magnification and 0.875mm by 0.65mm at 0.4X system magnification. The

lateral resolution for 20X Mirau objective is 0.88pm at 1.OX system magnification and

2.2pm at 0.4X [3-2].

Unlike SEM, where only two-dimensional (2D) information about the surface is

obtained, Zygo provides a quantitative 3D surface profile of the surface and the white-

light avoids the issues of heating and radiation. However, the drawback of Zygo is that it

requires the surface to be relatively smooth and surface features with dramatic changes

are difficult to identify from surface profile solely. In this chapter, Zygo and SEM are

combined to provide desired information: SEM shows the surface visually, and Zygo

provides quantitative information about the surface.
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Figure 3-1: Mechanism for Zygo, a 3D surface profiler.

3.1.2 Zygo-SEM study

In this chapter, the topography change during cyclic scratching will be inspected using a

systematic method. Figure 3-2 shows the procedure of this method. It should be

mentioned that in this chapter it is the abraded surface, i.e. the x-z surface plane (Figure

3-3) being inspected using both Zygo and SEM.

A fresh sample prepared into the rectangular shape (Figure 2-5) is first inspected

using both SEM and Zygo. In SEM, several random locations are inspected at

magnifications of 1 OOX to 200X. Since the purpose of the SEM study is to provide visual

information of damages, which are unknown before the test runs, the SEM micrographs

before the test can be regarded as the overall landscape of the surface. For Zygo

inspection, an area of about 1mm by 6mm is analyzed to provide an overall 3D surface

profile. The locations inspected by SEM are also analyzed by Zygo.
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1. Surface Inspection on Fresh Sample Using Zygo and SEM

2. Scratching Tests Using in-situ Micro Scratching
Technique in SEM.

I

3. Surface Inspection Using both Zygo and SEM.

Figure 3-2: Flow chart of the procedure for the Zygo-SEM study.

Surface viewed in SEM during
deformation

z

y

Sample-

3

/2

Surface inspected after scratching
(Zygo-SEM study)

Figure 3-3: Surface inspected in Zygo-SEM study

The sample is then tested following the test process outlined in Figure 2-1 with the

indentation depth of 6n. The distance of the scratching should cover the area of Zygo and

SEM study in step 1.
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The sample is inspected by Zygo and SEM after the scratching test. Both SEM and

Zygo will be used to inspect the locations inspected previously as well as locations of

damage, which will continue to be inspected in the thereafter tests. Step 2 and Step 3 will

be repeated.

It is arguable that material properties in the small area where the SEM image is taken

might have been changed due to electron radiation and heating. However, it is unclear

and difficult to evaluate the degree of such change. In the test, operation scheme for

reducing charge and heating should be carefully followed and locations of SEM

inspections are limited to a few areas. In the case where surface properties do change,

such an area should be taken as locally inhomogeneous region with different material

properties, and damage due to scratching might be accelerated.

3.2 Result: Scratching Tests with 5n=50pm for Unfilled TPU

The images in Figure 3-4 show the overall topography change during cyclic scratching

tests with indentation depth of 3, = 50p m. The arrow in Figure 3-4(a) indicates the

scratching direction. In Figure 3-4, each image covers an area of about 1.2mm (width) by

4.6mm (length). Since a single Zygo image only covers an area of 0.875mm by 0.65mm

(here, 20X Mirau objective is used under the system magnification of 0.4X), each image

in the figure consists of 18 small image patches, resulting in certain mismatch on the

boundary of these patches. Attention should be paid to the overall topography instead of

these mismatches.

3.2.1 Topography of Fresh Sample

The images in Figure 3-4(a) show the topography before the scratching tests. The surface

is smooth overall, except for a few marks on the surface due to scratches on the surface of

the mold used for TPU production. From Figure 3-4(b), the surface roughness is about

0.6tm overall, except for a few local region showing rougher than most of the areas. For

instance, the area indicated by a rectangle shows a locally high region of about 0.20mm

by 0.15mm on the surface. The variation of height in this area is gentle and the surface

roughness around this area is about 1 pm.
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Figure 3-4 (a)
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Figure 3-4 (b)
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Figure 3-4 (c)
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Figure 3-4 (d)
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Figure 3-4: Surface profile by Zygo after scratching tests on unfilled TPU with indentation depth of t,, = 50p m ; (a) Fresh surface; (b)

Surface profile along line 1 in (a); (c) Surface after the 1st scratching; (d) Surface profile along line 1 in (c); (e) Surface after the 5th

scratching. (f) Surface profile along line 1 in (e).The dimension of the area is 1.2mm by 4.9mm. The scratching direction is illustrated

in (a).
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Figure 3-5: Surface before the scratching: (a) SEM image; (b) Surface profile obtained by

Zygo; (c) Surface roughness along line 1 and line 2 in (b). The area shown by Zygo

corresponds to the same area enclosed by the larger rectangle in SEM image.

Figure 3-5(a) shows a close-up micrograph image taken by the SEM, the area

enclosed by the larger rectangle was also investigated by Zygo, shown in Figure 3-5(b).
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Figure 3-5(c) shows the surface profile along line 1 and line 2 in Figure 3-5(b). The

surface roughness is less than 1 pm. Before the scratching test, there are some small dirt

particles attached to the surface. The line 2 in Figure(b) is deliberately chosen to cross

one of the dirt particles, showing the height of the dirt particle is about 1.5ptm.The marks

left by the mold are also clearly shown on the surface. Zygo image reveals the height of

these mold marks is about 0.8pm.

3.2.2 Topography after the 10 Scratch

Figure 3-4(c) shows the surface profile after the 1st scratching. The surface profile does

not change significantly overall, even though there are some new features. The previously

observed locally high region (enclosed by the rectangle in Figure 3-4(a)) shows a steep

peak. The height of the peak is about 1.1 pm, the width is about 30pm (measured at

h=0.6pm), and the length in the 2-direction increases to 300gm, probably as a result of

local permanent deformation due to scratching. It is also noticed that there is an

indentation mark left on the surface after the 1st scratching. Since the scratching test was

running continuously, a conjecture about the formation of this indentation mark is due to

local effect, such as a locally strong blocking effect perhaps due to material

inhomogeneity. Since only one such indentation mark is observed in the course of

scratching, we attribute it to be due to a random event. However, we note that such

random event may be responsible for the initiation and initial stage of damage.
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Figure 3-6 Surface after the 1st scratching: (a) SEM image; (b) Surface profile obtained

by Zygo; (c) Surface roughness along line 1 and line 2 in (b). The area shown by Zygo

corresponds to the same area enclosed by the larger rectangle in SEM image. The arrow

in (a) indicates the scratching direction.
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Figure 3-6 shows the close-up surface by SEM and Zygo. The same surface was

inspected before the 1 st scratching test (Figure 3-5). The previously shown dirt particles

were removed due to sweeping of the knife over the surface. The indentation mark shown

in Figure 3-6 was created before the 1st scratching test and served as a reference to locate

the area during the cyclic scratching. The SEM image reveals that there is no significant

topography change due to its presence. One surface feature after the 1 st scratching is that

there are a number of small pits present on the previously smooth surface. These pits

show the shape resembling the feature of the crater of a volcano and are a few microns in

size. The line 2 in Figure 3-6(b) is chosen to cross one of the pits and reveals by Figure 3-

6(c) that the depth of the pit is about 0.75 pm. It is unclear about the reason for the

formation of these pits, but one conjecture is that these pits are due to the loss of small

inclusions or material irregularities close to the surface. The dimensions of these pits

coincide with the dimension of small damage in the bimodal form of abrasive wear of

rubber proposed by Gent and Pulford[3-3] and indirectly observed by Cadle and Williams

in road test[3-4]. This may strongly suggest that these pits are the small initial damage.

However, it is still premature to make such a conclusion since direct observations of the

small damage proposed Gent and Pulford are unavailable. Another interesting feature is

the presence of a new small protrusion on the surface, as indicated in the smaller

rectangle in Figure 3-6(a), in contrast to the smooth surface before the test shown in

Figure 3-5(a). Such small protrusion clearly shows the feature of an inclusion initially

underneath the surface emerging to the surface due to the local large deformation during

the scratching process. These two features will be further inspected after the 5th

scratching tests.

3.2.3 Topography after the 5th Scratch

Figure 3-4(c) shows the overall surface profile after the 5 th scratching. Even after the 5th

scratching, the surface does not show significant change. The previously observed locally

high region (enclosed by the rectangle in Figure 3-4(a) and the peak in Figure 3-4(b))

becomes a plateau of the height of 1.1 jpm, the width of 60ptm and length in the 2-

direction of about 450pm, due to the accumulation of local permanent deformation
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during scratching. The indent observed after the 1" scratching, however, neither increases

in size nor invokes damage to the surface.
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Figure 3-7 Surface after the 5th scratching: (a) SEM image; (b) Surface profile obtained

by Zygo; (c) Surface roughness along line 1 and line 2 in (b). The area shown by Zygo

corresponds to the same area enclosed by the larger rectangle in SEM image. The arrow

in (a) indicates the scratching direction.
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Figure 3-7 shows the close-up surface by SEM and Zygo. The same surface was

inspected before and after the 1st scratching test and is shown in Figure 3-5 and Figure 3-

6. In comparison with features in Figure 3-6, several major changes are observed. First,

some small pits observed in Figure 3-6 are removed from the surface, and at the same

time, some new pits are generated. In Gent and Pulford[3-3], the small damage acted as

the precursor to the large damage that results in final loss of materials. Clearly, our

observation does not support this conjecture. Second, the small protrusion in the smaller

rectangle is removed due to the break of the surface material. The SEM image clearly

shows the damage caused by this process. Third, new small damages are observed, for

instance, the one on boundary of the smaller rectangle boundary shows material lost.

Fourth, permanent deformation in the form of wrinkles is also observed, for example, the

one at the center of the larger rectangle. The area of such wrinkle-like permanent

deformation is much larger than the damages observed above. Either removal or

propagation of this wrinkle-like area will cause more damage on the surface. Therefore,

this wrinkle-like permanent region may act a precursor of surface damage. Last, the mold

marks are almost totally removed and it seems unlikely there are any damages due to the

removal of these mold marks.

3.2.4 Summary of Observations from 5n=50pjm Scratching Tests

Topography changes during the cyclic scratching tests with cY, = 50p m were inspected.

Local high region on the surface may increase in dimensions due to the accumulation of

plastic deformation caused by the scratching process. Small inclusions or material

irregularities close to the surface may cause small pits over the surface due to the removal

of these inclusions. However, the small pits generally are removed in the thereafter

scratching and are unlikely to grow into larger damages.

The topography changes observed during the cyclic scratching tests with 6,, = 5 p m

are generally small in size. Some small features are simply removed during the scratching

process. Wrinkle-like permanent deformation, which is susceptible to act as a precursor

of surface damage, is observed after the 5th scratching Therefore, for the test with
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indentation depth of 50pm, the development of abrasive patterns, if it is possible, will be

a very slow process.

3.3 Result: 5n=80pm for Unfilled TPU

The images in Figure 3-8 show the overall topography change during cyclic scratching

tests on unfilled TPU with indentation depth of o,, =80p m. The arrow in Figure 3-8(a)

shows the scratching direction. In Figure 3-8, each image covers an area of about 1.0mm

(width) by 4.5mm (length). As discussed in the previous section, there are some sharp

color differences in the overall image due to the difference among the image patches used

for assembling the overall image. Attention should be given only to the overall

topography change instead of these mismatches.

3.3.1 Topography of Fresh Sample

Figure 3-8(a) shows the topography before the scratching tests. Compared with Figure 3-

4(a), the overall surface is similar for the two samples: The surface is smooth overall and

the surface roughness is about 1 pm.

Figure 3-9(a) shows a close-up image taken by the SEM, and Figure 3-9(b) shows the

surface inspection by Zygo. The marks left by the mold are clearly shown on the surface.

Zygo image reveals the height of these mold marks is less than I pm.
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Figure 3-8: Surface profile by Zygo after scratching tests on unfilled TPU with indentation depth of 6,, = 80p m; (a) Fresh surface; (b)

Surface profile along line 1 in (a); (c) Surface after the 1" scratching; (d) Surface profile along line 1 in (c); (e) Surface after the 5 th
scratching. (f) Surface profile along line 1 in (e). The dimension of the area shown is 1.0mm by 4.5mm.
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Figure 3-9 Surface before the scratching tests with o,, =80pj m: (a) SEM image; (b)

Surface profile obtained by Zygo; (c) Surface roughness along line 1, line 2 and line 3 in

(b). SEM and Zygo inspect the same area.
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Figure 3-10 Surface after the 1St scratching tests with 5,, = 8 0 p m : (a) SEM image; (b)

Surface profile obtained by Zygo; (c) Surface roughness along line 1, line 2 and line 3 in

(b). SEM and Zygo inspect the same area. The arrow in (a) indicates the scratching

direction.
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3.3.2 Topography after the 1't Scratch

Figure 3-8(c) shows the overall surface profile after the first scratching. With indentation

depth of 6,, = 8 0 p m , a significant level of surface damage is observed. The damage over

the surface shows a pattern of an alternating valley-peak form, with valley-valley

distance of 40-170pm and average of about 80gm. From Figure 3-8(d), the surface

roughness also increases to about 2gm, with some peaks higher than 1gm and valleys

deeper than 1gm. The knife used in this test is the same one used in the tests with

6,, = 50p m and does not show change after the tests. Therefore, the formation of these

damages should be mainly due to the increase in indentation depth.

Figure 3-10 shows the surface profile at a higher magnification by SEM and Zygo.

The surface inspected by SEM and Zygo here is different from the surface shown in

Figure 3-9 because it was difficult to predict where the damage would occur before the

test. However, comparison between the surface in Figure 3-9 and Figure 3-10 does

provide the contrast about the dramatic topography change resulting from the first

scratching test. It is noticed that surface topography changes occur in two forms. One

form is plastic deformation, as indicated by the wrinkle-like surface profile changes

shown in the SEM micrographs (Figure 3-10(a)). The surface profile along Line 2 (in

Figure 3-10(b)), which crosses such wrinkles, shows the distance between these wrinkles

is about 70gm, and the peak-valley height is about 2gm. These wrinkles generally have

length less than the contact length of the knife with the surface, implying local effects

may influence the size of these plastic zones. Another form of topography change is

surface damage. The SEM micrograph clearly indicates that such damage is due to local

material loss because of tearing and rupture of the material. Line 1 in Figure 3-10(b)

crosses one of the damaged area and shows that the depth due to material removal is

about 2.8gm and the width is about 40gm. The places of the occurrence of damage are

random but most of damages are close to the edge of the wrinkles.

3.3.3 Topography after the 5th Scratch

Figure 3-8(e) shows the surface profile after the fifth scratching. In comparison with

Figure 3-8(f), regions of surface damage increase in number. These damaged areas over
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the surface also show a clear pattern of alternating valley-peak form with valley-valley

distance of 30-170pm and average of about 70pm. The surface roughness increases to

about 3-4pm, with significant amount peaks and valleys about 2gm above/below the

middle line of the surface.
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Figure 3-11 Surface after the 5 th scratching tests with 3, = 80m : (a) SEM image; (b)

Surface profile obtained by Zygo; (c) Surface roughness along line 1, 2 and 3 in (b). SEM

and Zygo inspect the same area. The arrow in (a) indicates the scratching direction.
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Figure 3-11 shows the surface profile at a higher magnification by SEM and Zygo.

The bimodal form of surface topography still exists. The wrinkle-like plastic deformation

expanded in width but the distance between these wrinkles remains about 70pjm. The

height of the previous plastic peak-valley observed in Figure 3-10(b) and crossed by line

2 increases to 4pim. Surface damages occur more frequently and most of the damages

occur in the area close to the edges of the plastic deformation zones. It is noticed that the

damage formed in the first scratching test increases in width, as shown by the one crossed

by line 1 in Figure 3-11(b) being about 3.24m high and about 60ptm wide.

3.3.4 Summary of Observations from 8n=80ptm Scratching Tests

In contrast to the observations from the tests with 6,, = 50u m, where the topography

does not change significantly, dramatic topography changes are observed from the tests

with 6,, = 80u m . The surface topography changes occur in two forms: One is due to

local plastic deformations, whereas the other one is due to the rupture of the material. The

plastic deformation renders surface peak-valley patterns, whereas the rupture of the

material due to extreme stretch causes material loss and occurs randomly over the

surface. As the number of scratching cycles increases, the dimensions of both plastic

zones and surface damages increase, accompanied by new damages generated after each

scratching. Surface damages generally occur around the edge of the plastic zones.

3.4 Result: 5n=80pm on 4% Glass Fiber Filled TPU

The images in Figure 3-12 show the overall topography change during cyclic scratching

tests with indentation depth of 6,, = 80p m on glass fiber filled TPU. The fibers have

average diameters of about 10~1 6p.tm and average length to diameter ratio of 8[3-5]. Each

image in Figure 3-12 covers an area of about 1.5 mm (width) by 4.5 mm (length). As

discussed in the previous section, the sharp color differences in some regions are due to

assembling image patches to obtain the overall image. Again, attention should be given

only to the overall topography change instead of these mismatches.
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Figure 3-12: Surface profile by Zygo after scratching tests for 4% glass fiber filled TPU with indentation depth of 9,, = 80p m: (a)

Fresh surface; (b) Surface profile along line 1 in (a); (c) Surface after the 1 s scratching; (d) Surface profile along line 1 in (c); (e)

Surface after the 5th scratching. (f) Surface profile along line 1 in (e). The dimension of the area shown is 1.5mm by 4.5mm.
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Figure 3-13 Surface before the scratching tests with 8, = 80pm: (a) SEM image; (b)

Surface profile obtained by Zygo; (c) Surface roughness along line 1, line 2 and line 3 in

(b). SEM and Zygo inspect the same area.

3.4.1 Topography of Fresh Sample

Figure 3-12(a) shows the fresh sample surface. The overall surface is smooth. The
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surface roughness is below 1pm. The arrow in Figure 3-12(a) shows the scratching

direction. Figure 3-13(a) shows a close-up image taken by the SEM, the same area was

also investigated by Zygo, shown in Figure 3-13(b). Figure 3-13(c) shows the surface

profile along line 1, 2 and 3 in Figure 3-13(b). The marks left by the mold are clearly

shown on the surface. Zygo image reveals the height of these mold marks is less than

1 Im.

3.4.2 Topography after the 1" Scratch

Figure 3-12(c) shows the surface profile after the first scratching. For the glass fiber filled

TPU with indentation depth of S, = 80p m, a significant amount of surface damages are

observed. These damages over the surface show a pattern of the alternating peak-valleys,

with valley-valley distance of 60-190ptm and average of about 120ptm, which is about the

same dimension as observed in Figure 3-9(c) for the unfilled TPU. However, the

dimensions of single damage are larger than those in Figure 3-9(c). The surface

roughness increases to about 2ptm. The knife used in this test is the same one used in the

tests on unfilled TPU samples and does not show change after the tests. Therefore, such

change in the outlook of the damage should be mainly due to the difference of the

materials.

Figure 3-14 shows the surface profile at a higher magnification by SEM and Zygo.

The surface inspected by SEM and Zygo is the same surface as shown in Figure 3-13.

The comparison between them provides the contrast about the dramatic topography

change resulted from the first scratching test. It is noticed that surface topography change

occurs mainly from plastic deformation, as indicated by the wrinkle-like surface profile

changes shown in SEM micrographs (Figure 3-14(a)). The surface profile along Line 1

(in Figure 3-14(b)), which crosses one of such wrinkles, shows the dimension of the

wrinkle is about 100ptm in width, and the peak-valley height is about 4pm. The length of

these wrinkles is less than the contact length of the knife with the material surface,

implying local effects may influence the size of these plastic zones. At this stage, surface

damage due to material rupture is not as obvious as in unfilled TPU in Figure 3-10. The

SEM surface topography also shows a fiber-like inclusion being lifted partially out of the
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surface after the first scratching, indicated by the rectangle in Figure 3-14(a). This site

will be inspected after the 5th scratching.

2

1

3

Figure 3-14(a)
4

2

0

-2

-4
0

Figure 3-14(b)

- - 2
- -.------ 3

-

-N

0.1 0.2

X(mm)

Figure 3-14(c)

Figure 3-14 Surface after the 1St scratching tests with 5, = 80pm : (a) SEM image; (b)

Surface profile obtained by Zygo; (c) Surface roughness along line 1, 2 and 3 in (b). SEM
and Zygo inspect the same area. The arrow in (a) indicates the scratching direction.
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3.4.3 Topography after the 5h Scratch

Figure 3-12(e) shows the overall surface profile after the 5th scratching. These damages

over the surface also show a pattern of alternating valley-peak form, with valley-valley

distance of 60-190pm and average of about 120km. The surface roughness increases to

about 4-6pm. In comparison with Figure 3-12(c), surface damages increase in both

number and dimension.

Figure 3-15 shows the surface profile at a higher magnification by SEM and Zygo.

The surface inspected by SEM and Zygo is the same surface shown in Figure 3-14. It is

noticed that the surface topography change occurs bimodally, as indicated by the wrinkle-

like surface profile changes shown in SEM micrograph and the damages on it (Figure 3-

15(a)). The wrinkles shown in Figure 3-14(a) still exist, but they also act to initiate

subsequent damages in the form of material rupture. The surface profile along Line 1 (in

Figure 3-15(b)) shows the dimension of the wrinkle is about 100pm in width, and the

peak-valley height is about 4pm, implying no significant further development of the

plastic zone. Surface damage due to material rupture is obvious in Figure 3-15(a). The

dimensions of the damages Figure 3-15(a) are about 70pm in width, 100pm in length,

and 2-4[ m in depth.

It is also noticed that the surface showing features of an inclusion in Figure 3-14(a)

after the first scratching changes into a fiber-like geometry in SEM, shown in Figure 3-

16(a). Zygo inspection shows such a fiber-like geometry is a hole left by a fiber having

been pulled out during the cyclic scratching. Figure 3-16(c) presents the profile of the

site, showing the width of the hole is about 20pm and the depth is about 12pm, which are

consistent with the dimensions of the fibers in this material. As it can be seen in Figure 3-

15(a), the fiber pullout results in the TPU matrix material being stretched along the

scratching direction.
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Figure 3-15 Surface after the 5th scratching tests with 5,, = 80U m: (a) SEM image; (b)

Surface profile obtained by Zygo; (c) Surface roughness along line 1, line 2 and line 3 in

(b). SEM and Zygo inspect the same area. The arrow in (a) indicates the scratching

direction.
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Figure 3-16: A fiber was pulled out after the 51h scratching. (a) SEM image shows a fiber-

like geometry; (b) Zygo image shows it is a hole left by a fiber being pulled out. (c)

Surface profile along line 1 in (b). The arrow in (a) indicates the scratching direction.

3.4.4 Summary of Observations from 5n=80im Scratching Tests

Dramatic topography changes are observed from the tests with 9, =80p m on glass fiber

filled TPUs. After the first scratching, the plastic deformation in the form of wrinkles
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dominates the surface topography. The plastic deformation results in surface damages

after the 51h scratching. The plastic deformation renders surface peak-valley patterns and

provides the sites for the initiation of damages due to material rupture. Fiber pullouts are

also observed after the 5th scratching.

In comparison with unfilled TPU, after the first scratching, the filled TPU shows

surface features dominated by wrinkle-like plastic deformation, whereas unfilled TPU

shows both wrinkle-like plastic deformation and rupture of the material. After the fifth

scratching, both filled and unfilled TPU show both wrinkle-like plastic deformation and

rupture of the material, but filled TPU shows larger plastic deformation and smaller

rupture zone. The filled TPU seems not to show improved wear resistance over unfilled

TPU. This observation is consistent with Parsons' macro-mechanical study[3-5] on filled

TPU, where he found that the improved service life of seals using filled TPU was mainly

due to prevention of particle ingestion and agglomeration and as soon as wear started,

both filled and unfilled TPUs showed about the same wear rate.

3.5 Summary

Topography changes during the cyclic scratching tests with two distinct indentation

depths on unfilled and glass fiber filled TPUs were studied using SEM and Zygo in this

chapter.

For the test on unfilled TPU with 3,, = 50u m, the topography changes were

generally small in size. Some small features created during the cyclic scratching, such as

small pits over the surface caused by small inclusion close to the surface, were simply

removed during the scratching process. Wrinkle-like permanent deformation, which was

susceptible to act as a precursor of surface damage, was observed after the 5th scratching.

However, the dimension of this wrinkle-like permanent deformation was small.

Therefore, for the test with indentation depth of 50ptm, the development of abrasive

patterns, if it was possible, would be a very slow process.

In contrast to the observations from the tests with 3,, = 50pm, dramatic topography

changes were observed from the tests with 3,, = 80p m on both unfilled and glass fiber

filled TPUs. For unfilled TPUs, the surface topography changes occurred in two forms:
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One was due to plastic deformations, whereas the other one was due to the rupture of the

material. The plastic deformation rendered surface peak-valley patterns, whereas the

rupture of the material due to extreme stretch caused material loss and occurred randomly

over the surface but generally around the edge of the plastic zones. As the number of

scratching cycles increased, the dimensions of both plastic zones and surface damages

increased, accompanied by new damages generated after each scratching.

For glass fiber filled TPUs, dramatic topography changes were also observed from

the tests with t, = 80um. After the first scratching, the plastic deformation in the form

of wrinkles dominated the surface topography. These plastic deformations resulted in

surface damages after the 5th scratching. These results implied that the fiber filled TPU

would wear at a similar or even faster rate than the unfilled TPU. Therefore, these results

were consistent with Parsons macroscopic testing of seals, which indicated the role of the

fibers in extending seal life was the prevention of particle ingestion as opposed to actual

improvement/delay of material wear rate.
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Chapter 4

Stress-Strain Behavior of Thermoplastic

Polyurethanes
The large strain nonlinear stress-strain behavior of thermoplastic polyurethanes (TPUs)

(also referred to as segmented polyurethane elastomers) exhibits strong hysteresis, rate

dependence and cyclic softening. Proper modeling of the multiaxial stress-strain behavior

of the material within a large strain continuum mechanics framework is important in the

simulation of boundary value problems involving inhomogeneous deformation. In this

chapter, a constitutive model capturing the major features of the stress-strain behavior of

TPUs is developed. The first section of this chapter introduces TPUs and describes basic

morphological features of the material. The second section describes various rate and

loading history dependence of the stress-strain behavior of TPUs through a series of

uniaxial compression tests. The third section presents a constitutive model for the

observed stress-strain behavior of TPUs. In the fourth section, a systematic method to

estimate the material parameters for the model is presented. The fifth section presents

numerical simulations of the uniaxial compression tests using the new model. Finally,

future work on constitutive modeling is discussed.

4.1 Introduction: Thermoplastic Polyurethanes (TPUs)

The first commercial thermoplastic polyurethanes (TPUs) were well established in

Germany by Bayer-Fabenfabriken and in the U.S. by B.F. Goodrich in the 1950s[4-1].

The Alliance for the Polyurethane Industry (API) describes TPUs as "bridging the gap

between rubber and plastics", since TPUs offer the mechanical performance

characteristics of rubber but can be processed as thermoplastics. This special niche of

TPUs among other polymers and elastomers imparts TPUs high elasticity, high

resilience, and high abrasion resistance, and results in wide applications of TPUs ranging

from ski boots and footwear to gaskets, hoses, and seals.
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Figure 4-1: (a) The alternating -A-B-A-B- structure of TPUs; Hard domains and soft
domains of TPUs with (b) a low hard segment content; (c) a high hard segment
content[4-2].

Figure 4-2: Transmission Electron Microscope (TEM) image of TPU (57% soft segment
and 43% hard segment). The bright color regions are hard domains and the dark color
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regions are soft domains.
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Figure 4-3: DSC test of the TPU used in this study.

Thermoplastic polyurethanes are block copolymers with urethane backbone linkage

composed of hard and soft segments, forming an alternating -A-B-A-B- structure (Figure

4-1(a)). The hard segments are polymer blocks from the reaction of a diisocyanate and a

short chain diol, whilst the soft segments are either polyesther or polyester oligomeric

diol blocks with molecular weights ranging from 400 to 6000, where the molecular

weight of 1000~2000 are exclusively used[4-2]. The molecular weight for hard segments

is proportional to the molecular weight of soft segments[4-2]. Generally, phase separation

occurs in most TPUs due to the intrinsic incompatibility between the hard segments and

soft segments: the hard segments, composed of polar materials, can form carbonyl to

amino hydrogen bonds and thus tend to cluster or aggregate to ordered hard domains,

whereas the soft segments form amorphous domains. Such a phase separation, however,

is often incomplete, i.e., some of the hard segments are isolated in the soft domains as

illustrated schematically in Figure 4-1(c). In many TPUs, the hard domains are immersed

in a rubbery soft segment matrix[4-2][4-3]. Depending on the fraction of hard segments,

the morphology of hard domain changes from isolated domains with a lower hard
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segment content (Figure4-1(b)) to interconnected domains with a higher hard segment

content (Figure4-1(c))[4-2][4-4]. The interconnected domain structure is verified for the

TPU sample used in this research by TEM (Transmission Electron Microscope) in Figure

4-2, and DSC (Differential Scanning Calorimeter) test in Figure 4-3. The sample for the

TEM was microtomed at -100 0 C to a thickness of about 50nm, then exposed in osmium

tetroxide (OsO 4 ) vapor for about 4 hours. Since the soft domain has a larger inter-

molecular space, the Os0 4 molecules tend to reside in the soft domain, rendering the soft

domain a dark color in the TEM image. The domain size in Figure 4-2 is 10~20nm,

which is consistent with other observations on various types of TPUs (e.g., [4-5][4-6][4-

7]). For instance, Koutsky et al. [4-7] observed domain size of 3nm~IOnm for a polyester

based polyurethane and 5nm~10nm for a polyether based polyurethane; Chen-Tsai et

al.[4-8] observed a size of hard domains to be about 1 nm and the inter-domain distance

of 13nm for a PBD/TDI/BD based polyurethane. The DSC test was conducted over the

temperature range from -70 'C to 200 'C. The two distinct changes of the slopes in the

curve (Figure 4-3) correspond to two transition temperatures, verifying the two-phase

structure of TPUs. The first transition temperature (about -40'C) marks the change of soft

domain from glassy state to rubbery state, while the second transition temperature (about

70'C) represents the thermal dissociations of hydrogen bonds.

The presence of hard domain in segmented polyurethane is very important to the

mechanical properties. In segmented polyurethanes, hard domains play the role of

physical crosslinks, playing a role similar to crosslinks in vulcanizates and imparting the

material's elastomeric behavior. Since hard domains also occupy significant volume and

are stiffer than soft domains, they also function as effective nanoscale fillers and render a

material behavior similar to that of a composite. At room temperature, the soft domain is

above its glass transition temperature and imparts the material its capability of rubber-like

behavior; the hard domain is below its glassy or melt transition temperature and is

thought to govern the hysteresis, permanent deformation, high modulus, and tensile

strength. Generally, TPUs have high tear strength, toughness, abrasion resistance, and

resistance to polar solvents[4-9] [4-10].

A wide variety of property combinations can be achieved by varying the molecular

weight of the hard and soft segments, their ratio, and chemical type. For instance, shore
110



hardness ranging from 60A to 80D can be achieved. At present, thermoplastic

polyurethanes are an important group of polyurethane products because of their

advantage in abrasion and chemical resistance, excellent mechanical properties, blood

and tissue compatibility, and structural versatility.

4.2 Stress-Strain Behavior of Thermoplastic Polyurethane

The stress-strain behavior of TPUs demonstrates strong hysteresis, rate dependence, and

cyclic softening effects. In this section, a series of uniaxial compression tests were

conducted to identify these features.

4.2.1 Test Descriptions

Uniaxial compression tests were conducted using a computer controlled servo-hydraulic

uniaxial compression test machine, Instron model 1350. The sample material is

thermoplastic polyurethane supplied by Caterpillar, Inc. with durometer hardness value of

92A immediately after production and about 94A after 1 year shelf life at room

temperature. Sheets of the material of about 3mm in thickness were cut into cylinders of

about 12mm diameter using a die cutter. To eliminate potential buckling, the sample

height to diameter ratio should be less than 1; and also the height to diameter ratio should

be at least 0.5 to reduce any effects from barreling due to the frictional interaction with

the compression platens of the testing machine. Therefore, two cylinders were stacked to

form one sample for a test. Teflon sheets were placed between the sample and the fixtures

to reduce the friction.

The specimens were subjected to constant true strain rate loading-unloading cycles

and the true stress vs. true strain curve was documented for each test. The true strain is

defined as the logarithm of the compression ratio determined as the current height over

the initial height, where the current height of the sample is monitored during testing using

an extensometer. Height measurements are used to form a feedback loop with the

actuator to precisely define and control the displacement history such that constant strain

true rate conditions are achieved. The true stress is defined as the compression force

divided by the current cross-sectional area of the sample; the current area is computed

using the height measurement and assuming the material to be incompressible. Such
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assumption on the material compressibility is reasonable for elastomeric materials since

this type of material demonstrates very little volume change during axial deformation.

TPU samples exhibit a certain amount of permanent set after each loading-unloading

cycle. The dimensions (diameter and height) of the samples were measured after each

loading-unloading cycle to ensure that the true stress-true strain curves always started

from the new unloaded specimen height for each cycle. The measurement of the

dimensions took about 2-3 minutes, including re-positioning the sample on the

compression platen and replacing the Teflon sheets whenever necessary.

4.2.2 Hysteresis

Figure 4-4 shows the true stress-true strain curves from two uniaxial compression tests on

two fresh samples loaded to two different maximum strains, i.e. 'mx = 0.5 and

Cinax =1.0, respectively. The loading curves show an initially stiff response, followed by

rollover at a strain of about 0.15, and stiffen again after a strain of 0.70. The unloading

paths show a large hysteresis loop. Additional recovery occurs with time after unloading.

The residual strains were measured approximately 1 minute after the tests and were found

to be ' = 0.02 for the max =0.5 test, and ' = 0.062 for the max =1.0 test.
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Figure 4-4: Uniaxial compression tests on fresh sample at strain rate .=0.01 /s, to
different maximum strains (emax = 0.5 and emax = 1.0 , respectively).

4.2.3 Rate-Dependence

Figure 4-5 shows the true stress-true strain curves to 8 .6ax = 1.0 at three different

strain rates, i.e. , = 0.01/s, '2 = 0.05 /s , and Z- = 0.1/ s . For the loading portions of

the curves, the higher the strain rate, the larger the stress. The unloading curves from

different strain rate tests are about the same, suggesting that unloading behavior has less

rate dependence than loading behavior. The residual strains were measured to be

,' = 0.062 for the , = 0.01/s test, er = 0.046 for the 2 = 0.05 /s test, and s' =0.043

for the 2 =0.1/s test.

20

Strain Rate: 0.01/s
-r-r- Strain Rate: 0.05/s

16 - --- Strain Rate:0.1/s *

10
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0 0.25 0.5 0.75 1
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Figure 4-5: Uniaxial compression tests at three different strain rates.

During the process of loading and unloading, if the test is suspended, relaxation either

in stress (stress relaxation when the strain is held constant) or in strain (creep when the

stress is held constant) will be observed for TPUs. Stress relaxation tests were conducted

during the course of loading-unloading cycles where the sample was compressed to a

maximum strain of 1.0 at a strain rate of 0.1/s with intermittently pausing compression
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for 60s at strains of 0.2, 0.4, 0.6 and 0.8 during both loading and unloading. Figure 4-6(a)

shows the applied strain history. Figure 4-6(b) shows the corresponding true stress-time

curve for the test on a fresh sample. During each hold period, the largest amount of stress

relaxation occurs in 5~1 Os. The material time constant is thus determined to be about 2-5

seconds. During loading, the stress is observed to decrease during the strain hold period;

whilst during unloading, the stress is observed to increase during the strain holding

period. This behavior is a characteristic of the time dependent behavior of elastomeric

materials. (see, for example, Bergstrom and Boyce[4-1 1], and Lion[4-12])
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Figure 4-6: (a) Schematics of loading history for stress relaxation tests; (b) True-stress vs.
time curves for uniaxial compression test with a number of intermittently stops. (c) True-
stress vs. time curves for the same test.
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4.2.4 Cyclic Softening

Figure 4-7 shows the true stress-true strain curves from the cyclic loading-unloading

tests with . = 1.0 and -= 0.01 / s . Several features are observed. First, in cyclic tests,

strain-induced softening is observed after the first cycle, most obvious in the 2"d cycle

test, as demonstrated by the large decrease in stress level for any given strain from the Ist

cycle test to the 2 "d cycle test shown in Figure 4-7. Second, the cyclic softening effect is

reduced, or the stress tends to stabilize, after a few cycles. In other words, the stress

difference between the 2nd cycle and the 4 th cycle is much smaller than the difference

between the 1 't and the 2nd cycle tests. Third, the cyclic strain softening effect is

significant in the middle range of the strain, and as the strain upon reloading approaches

the maximum strain, the stress tends to approach the stress level of the 1st cycle. Fourth,

the unloading paths after given strains all follow the same curve, independent of cycle

number. Last, the residual strain occurs predominately for the first cycle test, and no

significant height changes were observed from the tests after the 1 st test. In the rest of this

chapter, the test whereupon the stress does not show significant decrease from previous

cycles will be referred as the stabilized test, e.g. in the current tests, the 4th test is the

stabilized test.
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Figure 4-7: Cyclic uniaxial compression tests at strain rate = 0.01 /s .

20-
A: E=0.5, 1 st test

18 B: E=0.5, 4 th test
C: E=1.0, 1st test

16 D: E=1.0, jst test after the E=0.5 tests
:D: E,=1.0, 4th test after the E-=0.5 tests
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8
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2
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0 0.25 0.5 0.75 1

-True Strain Figure 4-8: Uniaxial

compression tests with cyclic loading to different maximum strains. The strain rate is
=0.01/s

The cyclic softening was further explored by tests with cyclic strain to different

maximum levels. Two uniaxial compression tests with Emax = 0.5 and emax = 1.0 were

conducted on two fresh samples, respectively. The true stress-true strain curves shown

earlier in Figure 4-4 are repeated in Figure 4-8. The sample strained to emax = 0.5 was

then subjected to cyclic loading-unloading with 'Emax = 0.5. The true stress-true strain

curves tend to stabilize after the 4th cycle, as shown in Figure 4-8. This sample was then

tested with cmnx =1.0. As illustrated in Figure 4-8, upon straining to e max =1.0 after a

previous excursion to Emax = 0.5, the true stress-true strain curve for e < 0.5 moves

along the previously stabilized softened curve; as the strain approaches 0.5, the stress

approaches the previous maximum stress. After c = 0.5, the true stress-true strain curve

follows the course shown by the fresh sample test with emax = 1.0, and the material

exhibits the same behavior as the fresh material. The cyclic tests with ,max = 1.0 result in

the stress-strain behavior being softened to the new stabilized curve as defined by

117



1
6rax =1.0 cycle tests on the fresh sample. These variations in the stress-strain behavior

of the material demonstrate the strong dependence of the material behavior on the strain

history.

The softening with strain history is often observed in unfilled and filled rubbers, and

is referred as the Mullin's effect ([4-13][4-14][4-15][4-16]). A similar phenomenon has

also been observed in thermoplastic vulcanizates[4-17][4-18] and segmented

polyurethanes[4-19]. Typically, the uniaxial stress-strain curve remains unchanged at

strain levels above the previous maximum strain, but experiences a substantial softening

below this maximum strain. The higher the previously attained maximum strain, the

greater the subsequent loss of stiffness. Almost all of the loss in stiffness takes place

during the first deformation cycle and steady-state response is attained in very few cycles.

4.2.5 Equilibrium Paths

In the stress relaxation tests, the stress relaxes towards an equilibrium state during the

holding periods (Figure 4-6(b)(c) and 4-9(a)(b)). Bergstrom and Boyce have

demonstrated this equilibrium state is independent of the strain rate and only depends on

the current state of strain and loading history[4-14]. Figure 4-9 shows the stress

relaxation during the 1st cycle and the 4th cycle tests after cycling between strains of 0.0

and 1.0. In these tests, depending on which cycle number, the stress tends to stabilize at

two distinct equilibrium paths after 60 seconds relaxation for the fresh sample and the

cycled sample. Further strain relaxation can be expected if the relaxation time is longer,

but the difference between the two stabilized values is so significant that simply

accounting for such a difference as the result of insufficient idling time is unrealistic. The

relaxed value at any strain depends upon the maximum strain the material has

experienced on its prior loading history. During unloading the increase in stress at each

hold period is the same for both the 1st cycle and the 4th cycle tests since both have been

strained to a strain of 1.0. The stress difference between the stabilized stress at loading

and unloading holding periods are fairly small for the 4th cycle test. These observations

strongly imply that the unloading stress and the loading stress (except the 1 st loading)

converge to the same equilibrium path but this path depends on the maximum strain

experienced on the loading history. Precisely determining the equilibrium paths for the 1st
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cycle test and the stabilized test, however, is difficult because of ambiguity in the concept

of "long enough time for relaxation". For the first loading, equilibrium paths were

determined by finding the point where another 10% stress relaxation would occur at the

same strain. The equilibrium path for the relaxation tests on a previously loaded sample is

determined by simply finding the midpoint of the points of the same strains on the

loading and the unloading paths of the stabilized test (the 4th cycle test), assuming that the

set points under the same strain would converge at their middle points if given infinite

time.

Comparing the simple monotonic loading-unloading cyclic tests with 8
max = 0.5

(Figure 4-8), we conclude that the stabilized equilibrium path with emax = 0.5 must be

stiffer than the stabilized equilibrium path determined from the test with minax = 1.0, since

the unloading curve in Figure 4-8 shows a stiffer response than the stabilized equilibrium

path determined by the relaxation test with e.a = 1.0. Therefore, the degree of softening

of the stabilized equilibrium path increases with the increase in the prior maximum strain

experienced during the overall loading history.
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Figure 4-9: Uniaxial compression test with a number of intermittently stops, (a) true-
stress vs. time curves, and (b) true-stress vs. true-strain curves and the equilibrium path.

4.3 Constitutive Model for Thermoplastic Polyurethane

4.3.1 A review

A constitutive model for the large strain deformation of TPUs should address the three

salient features of the material behavior: 1. Nonlinear large strain elastomeric behavior;

2.Rate dependence; 3 .Softening of the equilibrium paths during cyclic tests.

The experimental data indicates that the stress-strain behavior can be decomposed

into a time-independent equilibrium path and a time-dependent departure from the

equilibrium path, as illustrated in Figure 4-10. The constitutive model developed by

Boyce et al[4-20] for the stress-strain behavior of thermoplastic vulcanizates (TPVs) is

used here as a starting point of the new constitutive model. The equilibrium part of the

stress-strain behavior acts as the backbone of the overall material stress-strain behavior

and originates from the entropy change of long molecular chains in the amorphous soft
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domain due to orientation of molecular network with deformation. The rate-dependent

part is taken to originate from the concomitant internal energy change due to elastic

deformation of the hard domains as well as their visco-plastic deformation. The

viscoplastic response tends to relax the elastic deformation and hence produces the

relaxation of the stress-strain behavior to the equilibrium behavior with time. As the

strain rate approaches an infinitesimal value, the hard domain elastic deformation will be

fully relaxed and the deviation from the equilibrium path will diminish. The viscoplastic

behavior comes from energy dissipation sources; potential sources include plastic slip in

hard domains, the breakage of hydrogen bonds in the hard domain, the frictional behavior

as two hard domains pass each other, and the interaction between soft and hard domains.

In this paper, all of these energy dissipation behaviors are lumped into a single

viscoplastic constitutive element.
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Figure 4-10: Decomposition of material behavior into a rate-independent equilibrium part
and a rate dependent part.
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Within this framework of decomposition of material behavior into an equilibrium

component and a rate dependent deviation from equilibrium, we attribute the cyclic

softening behavior to be due to the softening of the equilibrium path. In rubbery material,

the softening of the equilibrium path is called "Mullins' Effect", so named due to the

comprehensive study of this behavior by Mullins observed in unfilled and filled rubbers

during the 1950s and the 1960s ([4-13] and [4-21]~[4-24]). The advantage of the addition

of reinforcing filler into rubber is the increase in the stiffness and strength of the

vulcanizate. This increase, however, is reduced and may be substantially destroyed by

deformation. The attempts to understand this softening behavior date back to the 1950s.

Although Mullins identified cyclic softening to occur in both unfilled and filled

elastomers, its effect is far more pronounced in filled elastomers and therefore generally

it is identified to be a filled elastomer phenomenon. At present, most of the theories are

based on essentially two explanations. The first theory originates from Blanchard and

Parkinson[4-25] and Bueche[4-26][4-15], who considered the increase in stiffness

produced by fillers to be a result of rubber-filler attachment providing additional

restrictions in the crosslinked rubber network. They attributed the softening to the

breakdown or loosening of some of these attachments. Bueche[4-26][4-15],

Dannenberg[4-27], and Rigbi[4-28] generalized the softening to be a result of strain-

induced relative motion of carbon and rubber, and in some cases local separation of

carbon black particles and rubber. Simo[4-29], Govindjee and Simo[4-16][4-30], and

Miehe and Keck[4-31], Lion[4-12][4-32] extended Bueche's idea and developed damage

based constitutive models to simulate the material behavior within the framework of large

strain continuum mechanics. Ogden and Roxburgh[4-33][4-34], and Dorfmann and

Ogden[4-35] developed a phenomenological model using a damage function without

considering the underlying physical structure of the material. The second theory is due to

Mullins, Tobin, Harwood, and Payne[4-13] [4-21] [4-22] [4-23], who treated filled rubbers

as a composite system and proposed the concept of amplified strain. In filled elastomers,

due to the existence of stiffer fillers, usually carbon black, the strain, or stretch, is

magnified by an amplification factor of X due to the amplification of the strain in the

elastomer domains needed to accommodate the applied strain because of the very low

strain in the stiffer filler domains. For uniaxial tension loading, the amplified material
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stretch is A = 1 + X(A -1). X generally has the form of

X +2.5v +14.lv, (4.1)

and for dilute solution, X 1 +2.5vf . These researchers proposed that the cyclic strain

softening was a property of the unfilled vulcanizate and was magnified through the

amplified strain for filled rubbers. They further related strain softening to be a result of

quasi-irreversible rearrangement of molecular networks due to localized nonaffine

deformation resulting from short chains reaching the limit of their extensibility. This

nonaffine deformation resulted in a displacement of the network junctions from their

initial state, which thus produced some form of rearrangements of hard and soft domains

in the elastomeric phase with strain, acting to increase the effective volume fraction of

soft domain.

As demonstrated in the previous section, segmented polyurethanes also show a cyclic

softening behavior. Trick[4-19] first reported the softening in segmented polyurethane. It

is generally believed the domain structure of segmented polyurethane is responsible for

the softening, the hysteresis behaviors and corresponding energy dissipation. Replacing

physical crosslinks in segmented polyurethanes by disrupting the hard domain structure

and forming chemical crosslinks was shown to reduce the softening and hysteresis;

however, this also resulted in a loss in modulus and tensile strength[4-36]. A number of

experimental studies were conducted to investigate the relationship between mechanical

properties and material morphology ([4-37]-[4-47]). Bonart and coworkers[4-37][4-

38][4-39] first systematically studied the morphology change during deformation using

X-Ray scattering. They and, more recently, Yeh et. al.[4-46] using both SAXS and

WAXD found that stress was not homogeneously distributed in the soft domains during

deformation, and consequently, the stress distribution in soft domains around each hard

domain could lead to a torque to rotate the hard domains and to minimize the local stress.

They also found that at large stretch, the hard domain would break down to further

accommodate stretch. For segmented polyurethanes with higher concentrations, the

interconnected hard domains had profound influence on the softening and hysteresis.

Sequela and Prudhomme[4-48] in their study on tri-block copolymer and Sung et al[4-42]

in their study on polyurethaneureas found that polymers with less interconnected hard
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domains showed reduced softening and hysteresis. Coopers and coworkers[4-4] found

that, during tensile deformations, the hard domains were moved into a position where

their longer dimensions were predominantly oriented perpendicular to the stretching

directions, i.e., a configuration where the hard domains appeared to align perpendicular to

the applied stress. To achieve the high degree of hard block orientation, it was necessary

that the irregularly shaped hard domain underwent plastic deformation. Such process was

accompanied by the breakage and reformation of hydrogen bonds in hard domain. At

sufficiently high strains, hard domains might break into smaller units[4-4].

Based on the concept of amplified strain, Mullins and Tobin[4-24] in their very early

work suggested that the softening in filled rubber was due to the decrease of volume

fraction of hard domain, vf, as a result of conversion of hard domain to soft domain.

However, this idea seems to be abandoned in later work of others, probably because of

the vagueness in the definition of these hard domains and soft domains in rubber

vulcanizates and how the conversion occurs. The concept of phase transition has been

used by Wineman and coworkers[4-49][4-50], and Beatty and coworkers[4-51][4-52] [4-

53] to develop constitutive models to study stress softening. However, the mechanism for

the stress softening is not clear in these models. Recently, a series of micro-mechanics

study on filled elastomers and filled polymers were conducted by Boyce and

coworkers [4-54] [4-55] [4-17] [4-18]. Bergstrom and Boyce[4-54] revealed that for

randomly distributed filled particles, some of the rubber became trapped among hard

particles and could not deform, thus resulting in the effective fraction of stiff particles to

be larger than the physical fraction, so named "occluded volume" effect postulated by

these workers and others [4-56] in filled elastomers. In the study of cyclic softening in

thermoplastic vulcanizate, where the vulcanizates are the fillers, Boyce et al[4-17][4-18]

showed that the cyclic softening is due to the gradual evolution in particle/matrix

configuration during previous loading cycles. The plastic deformation of the contiguous

thermoplastic phase acted to "release" vulcanizate particles creating a pseudo-continuous

vulcanizate phase and thus a softer response during subsequent cycles. Although the

material in the latter is a system of soft fillers/hard matrix, opposite to filled rubbers and

TPUs, which are hard fillers/soft matrix, their research does enlighten the evolution of the

filler/matrix structure and their relative configuration in filled rubbers and TPUs.
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In this chapter, inspired by the experimental observations of Bonart[4-37][4-38][4-

39], Cooper[4-4][4-36], and Sung[4-40] [4-41] [4-42], and theoretical analysis of Boyce

and coworkers, we continued Mullins' early idea, and propose a constitutive model where

the softening of the equilibrium path is due to evolution of the effective volume fraction

of the soft domain during the deformation process, upon which the occluded soft material

is released to carry load due to the relative motions and deformation of hard domains.

4.3.2 Constitutive Model Description

The model requires three constitutive elements, illustrated schematically in Figure 4-

11 for a one-dimensional rheological analog to the elastomer deformation model. The

viscoelastic-plastic component consists of a linear elastic spring characterizing the initial

elastic response due to internal energy change, and a nonlinear viscoplastic dashpot

capturing the rate and temperature dependent behavior of the material. The equilibrium

behavior is modeled with the hyperelastic rubbery spring component capturing the

entropy change due to molecular orientation of soft domains and is responsible for the

major part of strain stiffening/hardening and cyclic softening. We note that in the actual

material, there are constant interchanges and interplays between deformations in the soft

and hard domains. Here, we average out this interplay by taking the two elements to be

"in parallel" in the one-dimensional analog which, in turn, corresponds to subjecting both

elements (the rubbery spring element and the viscoelastic-plastic elements) to the same

deformation in the general three dimensional case. In the following, superscript N

denotes the variables acting on the hyperelastic rubbery spring, whilst superscript V

denotes the variables acting on the viscoelastic-plastic component. Due to the parallel

arrangement of these components,
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Figure 4-11: One-dimensional schematics of the constitutive model

FN =Fv =F, (4.2)

where F is the deformation gradient; FN is the deformation gradient acting on the

hyperelastic rubbery spring, and FV is the deformation gradient acting on the

viscoelastic-plastic component. The total Cauchy stress is thus given by

T=T N + T7. (4.3)

TN is the portion of the stress originating from the hyperelastic rubbery behavior; T ' is

the portion originating from the viscoelastic-plastic (hard) domains. The rubbery and

viscoelastic-plastic element each require constitutive models as described below.

4.3.3 Hyperelastic Rubbery Network Softening Spring

TN, the stress acting on the hyperelastic rubbery spring, captures the resistance to

entropy change in the soft domain due to molecular network orientation, and is modeled

using a modified Arruda-Boyce model detailed below.

Besides behaving as physical crosslinks, the hard domains also occupy a significant

volume serving as effective fillers in the material[4-10]. This suggests that it is

reasonable to model the equilibrium behavior of TPUs using the methodology for

composites. Here, the soft domain is treated as the matrix with effective volume fraction
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of v,, and the hard domain is treated as fillers with effective volume fraction of v11. We

emphasis that v, and v1 should be regarded as effective volume fraction and are different

from the actual volume fractions calculated from the material composition of soft and

hard segments. This difference will be discussed in more detail following the presentation

of the model for the hyperelastic rubbery spring.

The estimation of the overall behavior of particulate filled materials can be traced

back to Einstein[4-58][4-58], who derived the increase in viscosity for a dilute solution of

rigid spherical particles in a viscous fluid. His approach was later applied by

Smallwood[4-59] to predict the effective small strain Young's modulus KE) of a rigid

particle filled solid,

(E) = E,, (I + 2.5v.), (4.4)

where E,, is the Young's modulus of the matrix material and vf is the volume fraction

of the rigid filler. A number of attempts have been conducted to incorporate interactions

between neighboring particles to predict the effective modulus of a composite with a high

volume fraction of rigid filler. For instance, one of the most cited models for spherical

rigid fillers is the Guth-Gold model[4-60][4-61][4-62],

(E) = E, (I + 2.5vyf + 14.v f, (4.5)

And for non-spherical particles, the Guth model[4-62]

(E) = E,, (I+0.67gf vf + 1.62gv .), (4.6)

where gf is the factor to characterize the shape of fillers, and is typically found to be

between 4 and 10. A good review of these models and other general composite theory of

rigid particle filled materials can be found in Bergstrom and Boyce[4-54].

The above models are essentially developed for small strain predictions. At large

deformation, Mullins and Tobin[4-24] introduced the notion of amplified strain,

A = 1 + X(A - 1) for the case of uniaxial loading, where A is the applied axial stretch, A

is the amplified stretch (the average stretch in the matrix) and depends on the volume

fraction of fillers; X is the amplification factor and depends on filler content. Following

their procedure, the stress-strain behavior of a particle filled elastomer is then obtained by

replacing A by A in the constitutive model. In the Mullins and Tobin work[4-24], it is
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the uniaxial stretch being amplified. Bergstrom and Boyce[4-54] extended this theory to a

general three dimensional deformation state, where the first invariant of the stretch

1 = + +2 +2 is amplified by

I)111= X((11) - 3)+3, (4.7)

where (I,), is the average 1, in the matrix, and (1i) is the overall macroscopic I, of the

composite material. X depends on the shape and properties of fillers, and interactions

among particles, and can take a general polynomial form of X = 1+ avf + bv. The

amplified (',) thus can be applied to any I, based hyperelastic model. For a neo-

Hookean matrix with rigid particles, the strain energy density of the composite (W) is

found from the strain energy of the matrix (W,,) and is given as

W = 1-vf )(W,,) (I - vf )2 (I,),, - 3= (1 - v., )X P'(I, - 3).
2 2

For X being capable to model dilute solution and high concentrations,

(1 - v, )X -> (I + 2.5v, ) as vf -> 0 , resulting in a = 3.5. We hereby take

X =+3.5v, + bv, 

where b is a coefficient depending on the nature of the dispersion of

matrix. The amplified chain stretch can be obtained as

A chain = ' = X~i +1.
3

(4.8)

it must satisfy

(4.9)

particle in the

(4.10)

where 'Z
2 = I /3. The Langevin chain based Arruda-Boyce eight chain model[4-63]

captures the hyperelastic behavior of elastomers up to large stretch and is used here to

represent the equilibrium behavior of the material. The Arruda-Boyce eight chain model

as modified by amplified strain generates[4-14]

T N - X IA p 1 r "h" B' (4.11)

where

J detFN

B N F NT
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_N = FN

B' = B -tr(BA,
3

Achain = X( 2(main - 1)2 + i

X =l+3.5(1-v)+b(1-vj,

chin = 1itr [B])J

pu is the initial modulus of the matrix material, N is the number of rigid molecular units

between entanglements and crosslinks (in the form of physical crosslink for TPUs) in the

soft domains. In this model, FN will potentially contain a small volumetric strain, which

is taken out through FN = FN. B is the left Cauchy-Green tensor, and B' is the
J 3

deviatoric part of B so that the initial stress free condition is satisfied. Achai,, = is a

scalar equivalent macroscopic stretch and Achain is amplified chain stretch. Eqn (4.11)

takes the form for a compressible material, but the bulk resistance to volumetric strain

(i.e. the bulk modulus) will be lumped into the viscoelastic-plastic component which acts

in parallel with the rubbery spring element. Note that v. in eqn (4.9) is replaced by

1- v, ._f is the Langevin function defined as

_f(8)= coth(p)--.

The contribution to the overall initial Young's modulus from the rubbery hyperelastic

spring can be obtained as

E= 3vX 1+ 40425 39501 42039 (4.13)
0 67375N 67375N 3  67375N 4

In a TPU, the effective volume fraction vs for the soft domain is not equal to the

volume fraction of soft segments calculated from the material chemistry. In fact, on the

one hand, phase separation in TPUs is generally incomplete and there exist non-clustered

hard segments, resulting in a smaller volume fraction of hard domain than that obtained
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from composition calculation; on the other hand, some of the soft domain material are

occluded by the hard domains, resulting in an increase in the effective hard domain

volume fraction to contribute to stiffen the material overall behavior. The latter will

dominate the small to middle deformation, whereas the first causes the effective soft

domain volume fraction to possibly become larger than the segment composition

calculation at large deformations when all of the soft domain has been released from the

occlusion and some isolated hard segment may also resolve in soft domains. Here, we

take vs to evolve with deformation where initially occluded regions of soft domains are

gradually released with deformation. We model this evolution to be driven by the local

chain stretch, Aclai,,, in the soft domain. Therefore, v, is modeled to increase with

increasing Acha,,, and thus the amplification X decreases with increasing Aclai,.. It is

thus reasonable to assume vs varies from an initial value vSO to a saturation value v.. as

the local chain stretch A c,,, reaches the locking stretch of the chain, A'" . The

evolution of v, is taken to obey the following rule:

A chain -1
(v - v, ) A Al"ck - A (4.14)

chain chain

where A is a parameter that characterizes how fast vs evolves toward the saturation

value v. with increasing Acai,,. Note that eqn(4.14) is analogous to the rate form of the

evolution rule commonly used in damage mechanics and plasticity, but satisfies the

conditions that as A cai =1, , v. = vsO , and as A ca-,, -> A'", , v, ->.

We also assume that as soon as an occluded soft domain is released from the hard

domain, it will not relapse to the original occluded configuration upon unloading, i.e. the

configuration change of hard domain is taken to be permanent (In reality, there is a very

long time constant to recover back to the original state. This recovery time constant is far

greater than the time period of interest here and we thus take the softening to be

irresversible). v, thus remains at its value attained at the maximum chain stretch before

unloading. Evolution in v, will be re-activated as the local chain stretch exceeds the

previous maximum chain stretch, i.e. when A c > A"a.
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4.3.4 Viscoelastic-plastic Element

The stress acting on the viscoelastic-plastic component is T', determined from the

elastic spring in the viscoelastic-plastic component, where the elastic deformation

gradient is FV'. The stress Tv is

Tv = V' L [inV'e] (4.15)
detFVe

where L is the fourth-order tensor modulus of elastic constants and V'e is the left

stretch tensor of the elastic deformation gradient obtained from the polar decomposition

FVe = VVCRVC, where Rye is the rotation tensor of the elastic deformation gradient. v,

is an effective volume fraction of hard domain accounting for the interaction between soft

and hard domains. It should be noted that a TPU is not a composite material, even though

the methodology for composite material is used here. Since the viscoelastic-plastic

component models the material initial elastic behavior and lumped energy dissipation, the

combination of these behaviors is believed to relate to the hard domain and soft-hard

domain interactions. We assume v = 1- fv,, where f is a material parameter, implying

v, is related to v, through a parameter f featuring the interactions between soft domain

and hard domain.

FFCurrent configuration

Initial configuration

Relaxed configuration

Figure 4-12: Schematic of decomposition of Fv into elastic and visco-plastic parts.
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To obtain F" , F' is further decomposed into elastic and visco-plastic parts (Figure

4-12)

Fv = FFVeF'.

The corresponding decomposition of the velocity gradient is

Lv = PvF-1 =Pve Fve- + FvePv'' Fv''V~IJ

The velocity gradient of the relaxed configuration is given by

(4.16)

(4.17)

L" 'FV -1 = D"' + Wv,, (4.18)

where Dv' and W"' are the rate of stretching and the spin, respectively. We take

W"' = 0 with no loss in generality as shown in Boyce et al[4-64]. The visco-plastic

stretch rate Dv ' is constitutively prescribed to be

Dv' = 7 T , (4.19)

where Tv is the stress acting on viscoelastic-plastic component in

configuration (TV R e TvR Ve). and the prime denotes the deviator;

equivalent shear stress and

1 ' '

its relaxed

T> is the

(4.20)

j' denotes the visco-plastic shear strain rate of the viscoplastic component, and is

constitutively prescribed to take the form

= O exp AG -_ ], (4.21)

where jo is the pre-exponential factor proportional to the attempt frequency; AG is the

zero stress level activation energy, k is Boltzmann's constant and 0 is absolute

temperature. s is the athermal shear strength, which represents the resistance to the

visco-plastic shear deformation in TPUs.

The true stress-true strain curve including relaxation periods (Figure 4-9) shows the

amount of stress decrease during loading strain holding periods is larger than the amount

of stress increase during unloading holding periods. Such effect is significant during the

Ist cycle test. This suggests that there may be a different rate-dependent mechanism
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operative during unloading. Although the mechanism is unclear yet, a possible conjecture

is that such mechanism change is related to the configuration change of soft and hard

domains as evidenced by Estes et al[4-4]. During the loading course, the hard domain

clusters will irreversibly change their configuration to accommodate local deformation by

breaking and reforming the hydrogen bonds. During unloading and reloading, the hard

domain will remain in the configuration that formed during the previous maximum

loading. From equation (4.21), for the same shear strain rate at loading and unloading, the

unloading path has a lower driving stress F,, therefore its resistance s for unloading

must be smaller than that for loading. We propose the following evolution rule as a first

step to capture this behavior,

s = so. (4.22)
VhO

4.4 Parameter Identification for the Constitutive Model

4.4.1 Material Parameter Summary

The deformation behavior of TPU is not trivial: It is highly nonlinear; it is rate

dependent; it is hysteretic; and it softens with cyclic loading where the degree of

softening depends on the maximum strain level reached in prior cycles. The new

constitutive model captures all of these behaviors but requires 13 material parameters.

The material parameters are listed in the following table, together with their

corresponding material behavior and equations.

Due to the ability to systematically break down the stress-strain behavior, a

systematic procedure for determining values for the material parameters can be identified.

The three constitutive elements in the model each account for different material

behaviors, i.e. the hyperelastic rubbery softening spring for equilibrium behavior, and the

evolution of effective volume fraction of soft domains for the softening of equilibrium

paths, the linear elastic spring accounting for the initial stiffness of the time dependent

behavior, and the viscoplastic dashpot accounting for the rate dependent behavior. It is

thus possible to identify these parameters associated with different features of the

material behavior.
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Table 4-1. Material parameters in the constitutive model.

Hyperelastic Hyperelastic , N, TN = V p h i Ae

Rubbery "filler" effect
b X =1+3.5( -v,)+b( -v.,) 2

Spring Cyclic A , - - Achaiti -l

Element .V =V,, -i(v. -vo )eXp - A ic A
Softenig A "iaI - A in

Linear E. rTv Vi eUInVv ]
E' -detFve L

Spring

Element f V, 1 -fv,

Time
Viscoplastic . .AG AG

Dashpot Dependence-

Element CyclicSO , n s Vh n S
Softening v0) S

4.4.2 Material Parameter Identification for Hyperelastic Rubbery Softening Spring

The material parameters associated with the hyperelastic rubbery component of the

constitutive model can be determined using two equilibrium paths (the 1 st cycle test and

the 4th cycle test after cyclic loading to a strain of 1.0) presented in Figure 4-13. The

initial Young's moduli for these two curves are measured from the initial slopes of the

curves, EO ~~ 24MPa and E' ~ 17MPa, where EO denotes the initial Young's modulus

for the 1st cycle equilibrium path, and E' denotes the initial Young's modulus for the

stabilized equilibrium path after a maximum cyclic strain of 1.0. In the following, a

superscript 0 denotes the variables for the 1s' cycle equilibrium, and a superscript s

denotes the variables for the stabilized equilibrium path. The ratio is EO /ES = 1.4, and

from eqn. (4.13),
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- - SX- =_____+_3.5 ___-_IV ____ (4.24)
EC" v"X'V v I+ 3.51 - Vs )+ b(1 - V. )2

where v =v ; v, is effective volume fraction of soft domain at e = 100%, and remains

constant during the 4 th cycle test.

The chemical composition of the TPU used in the current study is 57% soft segment

and 43% hard segment. Therefore, based on the argument in the discussion of the

effective volume fraction, it is reasonable to assume that v, = 0.4 and v., = 0.8. Since

in the test, the TPU shows increase in its stiffness at e = 100%, meaning a large strain is

approached, it is thus reasonable to assume vs ~ 0.7 for the purpose of parameter

estimation. Note that this value is subjected to change during material parameter fitting,

and it is assumed here only for the purpose of material parameter estimation. Using

vO =0.4, and vs = 0.7, we obtained from eqn.(4.24) b 13. Thus X 0 = 3.832 and

X = 2.58.

20 -

18
1st cycle equilbrum path

16 ---- 4th cycle equilbium path

14

12

10

8

S6 -

2 -

0 0.25 0.5 0.75 1

-True Strain

Figure 4-13: Equilibrium paths from the 1 st relaxation test and the 4 th relaxation test.

Since in the 4 th cycle test, both v, and X remain constant, it is convenient to use the

stabilized equilibrium path to determine parameters p and N in the Arruda-Boyce
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model[4-56]. We found p = 0.52MPa and N = 5.26. The locking chain stretch hence is

2 hIjcking = -N = 2.3.

In a uniaxial compression test, the compression ratio in the axial direction is A, and is

related with compression strain e by A, = e~". Assuming material is incompressible, the

lateral stretch ratios are A2  = 1// t. Then the macroscopic equivalent stretch is

2
chain - - ~ 2 +±2e6 (4.25)

3 3 3

For e = 100%, 2 chain ~1.35. The amplified chain stretch ratio is thus A chain =1.77. From

eqn (4.14), we obtained A ~ 1.0.

The parameters obtained above provide the estimations, and are used as a guide to

attain the material parameters by fitting the curve with the modified Arruda-Boyce

model. Figure 4-14 shows the curve fitting using the following parameters

pu=1.70MPa, N =5.26, b =10, A = 3.0, vo = 0.4, v,,= 0.8.

20

18 - sy cycle equilibdum path
------ Stabilized equilibdum path

16 - Armda-Boyce modellst cycle
---- Anuda-Boyce model2nd cycle

14

12

10

8

S6

4

2

0.25 0.5 0.75 1

-Tme Strain

Figure 4-14: Material parameter identification for the rubbery hyperelastic spring.
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Figure 4-15(a)
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0.8
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Figure 4-15(b)

Figure 4-15: Numerical simulations of equilibrium behavior during cyclic loadings to a
maximum strain of 0.5 for first cycle, then reloading to 1.0 for two cycles: (a) The stress-
strain behavior; (b) The variation of effective volume fraction of soft domain.
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The obtained parameters for the equilibrium path were used to simulate the tests

where the sample is subjected to three load-unloading cycles: the first one to a maximum

strain of 0.50, whereas the last two to a maximum strain of 1.0. Figure 4-15 shows the

numerical simulations. Clearly, the loading to the maximum strain of 0.50 shows less

softening in the stress-strain behavior than that with the maximum strain of 1.0.

4.4.3 Material Parameter identification for viscoelastic-plastic component

From the one dimension simplification of eqn.(4.3), the stress acting on the viscoelastic-

plastic component T' is determined by

TV =T-To. (4.26)

The elastic modulus E,, for the elastic spring in the viscoelastic-plastic component can be

determined since the initial Young's modulus of the material is the summation of the

contributions from hyperelastic rubbery spring and the elastic spring. The initial overall

Young's modulus is measured from the true stress-true strain curve in Figure 4-7,

E ~ 55MPa. Hence, E,, = E - E0  35MPa. Poisson's ratio is chosen as v = 0.49 to

ensure small material compressibility. f is chosen as f = 0.5 as an estimation.

For the material parameters associated with the viscoplastic dashpot element, so, AG

,and je can be determined using the loading curve, thus leaving n to be decided solely

by the unloading and reloading curves. From eqn.(4.26), T' vs e plots for the tests at

difference strain rates are constructed, as shown in Figure 4-16(a).

The equivalent shear strain y and shear stress r are related to strain and stress in

uniaxial compression tests by

y= Ve, r - Tv (4.27)

The equivalent visco-plastic shear strain is obtained by subtracting the elastic shear

deformation from the total equivalent shear strain

y" = y-r/G, where G = E/3 (4.28)

The equivalent visco-plastic shear stress and shear strain curves at different strain rate

hereby are constructed for the loading path (Figure 4-16(b)).
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Figure 4-16: (a) Tv vs c plots at different strain rates; (b) r - y" plots at different strain

rates.
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Eqn(4-2 1) describes the viscoplastic flow rate and can be rewritten as

'r = c lnj" + b, (4.29)

C = s , b= -s--(D - no), D = AG (4.30)
D D kG

Eqn. (4.29), together with Figure 4-16(b), provides insight into the evolution of s

during deformation. Indeed, a detailed evolution rule for s can be identified by

constructing r vs j' curves at a number of y" from Figure 4-16(b), and then

investigating the variation of the slopes and interception of the curves with respect of y" .

Here, for the sake of brevity, we assume so is a constant value, s = so , during the loading

course. As shown in the results, such simplification generally can give good predictions

of the stress-strain behavior of the material.

From Figure 4-16(b), the equivalent shear stress at each equivalent shear strain rate

approximates to a constant value at large equivalent shear strain. For f'' = 0.0 173 / s

(from e =0.01/s), r =2.9MPa; for f' = 0.0866/s (from i =0.05/s), r2 = 3.8MPa;

for f' = 0.173 /s (from e = 0.1/s), r3 = 4.3MPa . Using least square fit gives

c = 0.60, b = 5.3.

From eqn (4-30), we obtain

y 0 =e D-. (4.3 1a)

D so (4.31b)
0.60

Using a kinked model, Argon[4-65] and Argon and Bessonov[4-66] predicted for a

wide range of glassy polymers,

0.077G
s= .7 (4-32)

1-v

Although the resistance to flow is a more complicated mechanism in the TPU, we use this

expression as a guideline. From eqn(4-22), s ~ 1.76MPa. so = 1.76MPa is thus used as a

starting point for identifying material parameters. so, AG, and j% can be determined

using the loading curve. Parameter n is thereafter determined by simply best fitting the

unloading and reloading curves.
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4.5 Results

The material parameters are identified for the TPU tested in this study by following the

procedure outlined above and are listed in Table 4-2.

Table 4-2: Material parameters.

Hyperelastic Rubbery Spring

p,. N b A vsO vI

(MPa)

1.70 5.26 10 3.0 0.4 0.8

Viscoelastic-plastic Component

Linear Elastic Spring Viscoplastic Dashpot

E0  v f so AG Yo n

(MPa) (MPa) (10 19 J)

35 0.49 0.5 4.55 0.41 2.26 3.0
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Figure 4-17: (a) True Stress-true strain curves for uniaxial compression tests; (b)
Decompositions of the stress-strain behavior into an equilibrium part and a time
dependent part.
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Figure 4-18: True Stress-true strain curves for uniaxial compression test with = 0.01 /s
and 30 seconds delay before unloading. The inset shows the true strain loading history.

Uniaxial compression tests at different constant strain rates on fresh samples are

simulated to verify the proposed constitutive model. Figure 4-17(a) shows the simulated

stress-strain curves for the tests at 1 =O.01s1  and 1,l=O.1s1 , respectively. The

experimental curves are also presented in the figure for comparisons. The simulated

results agree very well with the experimental loading curves and capture the stress

response at different strain rates. Figure 4-17(b) shows the one dimensional

decomposition of the material stress-strain behavior into an equilibrium part and a time

dependent part. In Figure 4-17(b), the equilibrium parts for the tests at different strain

rates follow the same course. This observation verifies the fact that the equilibrium part is

independent of the strain rate and the methodology of material behavior decomposition.

The proposed model does not fully capture the feature that the unloading curves follow

the same path for the tests at different strain rate, but the difference is small.

Improvement can be achieved by allowing certain small amount of time before

unloading. Figure 4-18 shows the true stress-true strain curve from the simulation when a
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30 second delay before unloading is used. To precisely capture the feature in unloading,

however, the unloading mechanism should be subjected to a more detailed study, where

additional material parameters are expected.

Simulations on cyclic loading-unloading tests were also conducted. Recall that the

TPU sample showed residual strain (permanent set) after each cycle of test. In the

experiments, the dimensions of the sample (diameter and height) were measured each

time before the test, and were used as the new dimension for the sample so that the true

stress-true strain curves always started from the new unloaded specimen height for each

cycle. Such a process of having the true stress-true strain curve begin at the origin by

measuring the dimensions before each test corresponds to simply shifting the true stress-

true strain curves based on the fresh sample dimension leftward by the amount of residual

strain '. In simulations, the true stress-true strain curves were first obtained based on

the initial dimensions of the sample and were then shifted leftward by the amount the

residual strain after 2 minutes idling time between the two cyclic simulations, so chosen

corresponding to the 2 minute period between cycles used to measure the dimension

change and reposition the sample on the platen for the next cycle of loading. Figure 4-

19(a) shows the loading history for the test with emax =1.0 and ,| = 0.1s-1 . Due to the

shift of the curve, the second cycle simulation was loaded to the strain I + Z, where Z'

is the residual strain measured from the first cycle simulation.

Simulations on cyclic loading-unloading tests were conducted at a strain rate of

J= 0.01s 1  (Figure 4-19(b)) and 1 1=0.1s-1 (Figure 4-19(c)). The model very well

captures the loading paths for both loading and re-loading tests at both strain rates. As

expected, the unloading paths show relative larger error; especially the one with

1J = 0.1 s-' which shows the largest deviation from experiments. The residual strains

after 2min idling time in the simulation were about 0.05, which was very close to the

residual strain of 0.04~0.06 observed in the experiments. Figure 4-19(d) and (e) show the

one dimensional decomposition of the material stress-strain behavior into an equilibrium

part and a time dependent part for each cycle of the tests. From Figure 4-19(d) and (e),

the equilibrium parts during loading and unloading for the second cycle follow the same

path, implying they do not soften in the second loading cycle. It is also noticed that for a
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given the cycle, the equilibrium paths are same for the different rate tests as long as the

maximum strains reached are same.
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Figure 4-19(b)
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Figure 4-19: Numerical simulation on cyclic loading tests: (a) loading history; Stress-
strain behavior for (b) = 0.01 / s ; and (c) = 0.1 / s ; Decompositions of the stress-strain
behavior into an equilibrium part and a time dependent part for (d) g= 0.01 / s ; and (e)
g=0.1/s.

Figure 4-20(a) shows the cyclic loading to different maximum strains, i.e. the sample

was subjected to three loading-unloading cycles: the first cycle was loaded to

. =0.05, and the second and the third cycles were loaded to . =1.0. The strain

rate for these cyclic tests is = 0.01 / s . The corresponding experimental results are also

presented in the figure. The numerical simulations adequately capture the softening

effects during the cyclic tests. It is noted that the experimental results used to obtain

material parameters do not include the tests with loading to C. = 0.5, but the model

predicts the softening response corresponding to 0.5 strain, catches up the stress response

after the strain exceeds 0.5. Figure 4-20(b) and (c) the equilibrium parts and the time

dependent parts for each cycle of the tests. From Figure 4-20(b), the equilibrium part of

the second loading cycle first follows the softened course determined by previous loading

withes = 0.5, then follows the course determined by fresh sample. For the third
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loading cycle, the equilibrium part coincide with the one determined by the second

loading cycle. These observations together with the observations from Figure 19(d) and

(e) verify the fact that the softening of equilibrium part is independent of the strain rate

and is dependent of the maximum strain reached in previous tests.

Figure 4-20(d) shows the evolution of the effective volume fraction of soft domain

during this deformation course. The v, evolves with strain from the original vO = 0.4

and reaches v, = 0.66 at .max = 0.5. Such value of v, is retained until the strain exceeds

0.5 upon reloading, whereupon v, starts increasing again.

C Simu: Is ttest, strain=50%
20 - - Simu:Isttest,stmin=100%afterstrain=50%

- Simu:4th test, stmin=100%

18 Exp: lst test, strain=50%
- - Exp:lsttest, strain=100% afterstrain=50%

16 - - Exp:4th test, strain=100%

14

12

10

4-

2-

0 0.25 0.5 0.75 1

-Tr e Strain

Figure 4-20(a)
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Figure 4-20 (d)

Figure 4-20: cyclic loading to different maximum strains, i.e. e = 50% first, then

e = 100% with strain rate of & = 0.01/s. (a) true stress-true strain curve; (b) The
equilibrium parts and (c) The time dependent parts; (e) evolution of effective volume
fraction of soft domain.

Figure 4-21 shows the numerical simulation of the relaxation test at i = 0.1 / s . For

the first cycle (Figure 4-21(a)), the numerical simulation captures the decrease/increase of

the stress during each hold period, except for the stop at e = 80% during unloading due

to relative slow stress drop at the transition from loading to unloading in the simulation.

Since a constant athermal shear resistance is used in the current model, the model

generally gives about constant stress decrease/increase at each stop. For the stabilized

relaxation test, the numerical simulation (Figure 4-21(b)) captures the stress

decrease/increase, but gives relatively large or fast stress changes. Figure 4-21(c) and (d)

show the one dimensional decomposition of the material stress-strain behavior into an

equilibrium part and a time dependent part for each cycle of the tests. This decomposition

clearly shows that the stress relaxation is due to the relaxation of the time-dependent part

while the equilibrium part does not change during the holding period.
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Figure 4-21: Numerical simulations on relaxation test: (a) 1st cycle; (b) stabilized curves;
Decomposition the material stress--strain behavior into (c) an equilibrium part and (d) a
time dependent part.
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4.6 Summary and Future Work

A constitutive model accounting for the rate dependent hysteresis behavior of

polyurethane materials and the Mullins' cyclic softening behavior is presented in this

chapter. The constitutive model decomposes the material behavior into a rate-

independent equilibrium part and a rate-dependent viscoelastic-plastic part. For the the

softening of equilibrium path, the model adopts the concept of amplified strain, and takes

the strain amplification factor to evolve with loading history due to structure

reorganization of the soft and hard domains to effectively increase the volume fraction of

effective soft domain. Comparison of numerical simulations of uniaxial compression tests

with experimental data verifies the proposed constitutive model. The model adequately

captures the Mullin's effect and rate dependent behavior of the TPUs, and captures the

strain relaxation behavior of the material.

It is believed that during large deformation of TPUs, the underlying material structure

will undergo significant changes, such as reorientation of molecular network, damage

development and recovering. As the result of such change, the rate dependent parameter

should evolve with the deformation. The underlying physical process for these evolution

rules is not clear. The softening effects can also demonstrate certain amount of

anisotropy. In the future, multi-scale modeling, together with advanced experiments

monitoring material structure change, should be used to explore these important aspects.
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Chapter 5

FEM Simulations of Micro Indentation

and Scratching Tests
In this chapter, computational modeling studies on the mechanics of the micro

indentation and scratching tests are conducted using the finite element method (FEM).

The first section will introduce the models for the FEM simulations. The second section

will compare the displacement and strain fields obtained by FEM with those obtained by

image processing of the SEM micrographs from the in-situ micro indentation/scratching

tests in Chapter 2. The third section studies the effects of the indentation depth, contact

condition, and cyclic scratching on the mechanics of the scratching, and investigates the

underlying mechanics and mechanism for the damage observed in the Zygo-SEM surface

topography studies in Chapter 3. The fourth section conducts parametric studies on the

mechanics of indentation and scratching by varying the parameters in the FEM model,

i.e. the contact friction coefficient (or the adhesive force), the scratching speed, and the

material properties. In section five, mechanics of the scratching tests on glass fiber filled

TPUs is investigated by studying three representative orientations of the fiber in the

material. Conclusions and future research directions will be discussed in the last section.

5.1 Physical and Numerical Model

5.1.1 Physical Model

The finite element model is developed to investigate the scratching tests, which were

studied experimentally in Chapter 2 where direct observation of deformation of the

material surface ABCD (Figure 5-1) was established. Figure 5-1(a) shows a schematic of

the scratching test. Since the side surface ABCD is free of normal traction, the surface

deformations observed in the in-situ tests are essentially in plane stress state. However,

the goal of current research is to study the mechanics of abrasive wears, where the most

critical deformations and stresses occur in the middle of the contact zone between an
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abrasive particle and the material (the projection of line KL on the material surface

EADH). In this regard, the problem of interest of current research is a plane strain one,

and thus is modeled as a two-dimensional plane strain problem. Note that the in-plane

displacement fields of surface ABCD will be nearly identical to the displacement fields

of any interior parallel plane (most of which are in a plane strain state).

In the tests, the two ends of the sample (EFBA and HGCD) were fixed by two screws

and the distance between them was about 15mm. The locations for indentations were

generally at least 3mm away from one of the ends and the scratching distance was about

5~7mm. The indentation depth was less than 100tm whereas the thickness of the sample

was about 3mm. A metal tape was used between the sample surface FBCG and the

sample holder to ensure full contact between the two surfaces.

The model for FEM simulations is built based on the test geometry and the

consideration of the computational efficiency. Figure 5-1(b) shows the schematics of the

model for FEM simulations. The edge AB and CD are fixed in the x-direction but are

allowed to move in the y-direction, i.e., uI AB UDC 0 . The back surface BC of the

sample is fixed in both x and y directions. In simulations, the indentation depth is less

than 100pm and scratching distance was 120-160 pm. The dimension of the model is

chosen to be 3mm by 6mm (Figure 5-1(b)). The large ratio between the dimensions of the

model and the applied displacement ensures that the model can provide boundary

conditions similar to the real tests.

The material stress-strain behavior is modeled using the constitutive model developed

in Chapter 4. The knife is modeled as a rigid surface of the wedge shape with a rounded

tip based on the observation from the SEM micrograph of the knife tip (Figure 5-2(a)).

The half angle of the tip is 15' and the tip radius is 3-8pm. Figure 5-2(b) shows the

simplification of the knife geometry used in the finite element simulations. The tip radius

used in simulation is 6 tm.
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Figure 5-1: Schematics (a) of scratching tests; (b) of the model for FEM simulations

The loading conditions used in simulations follow the same scheme as those in the

tests (Figure 5-3). Indentation and scratching are realized by applying proper motions to

the knife, i.e., a y-direction translation of the knife u2 normal to the surface creates the

indentation motion whereas an x-direction translation u, tangential to the surface creates

the scratching motion. In figure 5-3, the indentation is first applied until a maximum

indentation depth of , is reached. The indentation depth is then held constant and the
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scratching is applied until a maximum scratching distance of 3,I" is achieved. In the

simulations of cyclic scratching, the knife is withdrawn by decreasing 3,, to zero from

9,". The knife is then moved back to its original position by decreasing 3, to zero from

,". The loading conditions in Figure 5-3 are applied again to generate the second

indentation and scratching cycle.

aI

Figure 5-2(a) Figure 5-2(b)

Figure 5-2: (a) SEM micrograph of the knife; (b) Model for the knife.
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Figure 5-3: Knife displacement history.

5.1.2 FEM Model

The boundary value problem presented in Figure 5-1(b) is solved using the finite element

software package ABAQUS. Plane strain quadratic hybrid continuum elements with
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biquadratic interpolation of the displacement field and linear interpolation of pressure are

used to model the elastomer. Figure 5-4(a) shows the mesh used for the simulations. It

has 11202 nodes and 3670 elements. The mesh is refined near the contact region where

large gradients in stress and strain prevail due to the large ratio between indentation depth

and the knife tip radius. Several mesh densities were analyzed and an optimal mesh was

finally chosen for use in all simulations.

Figure 5-4(a)

il0,

Figure 5-4(b)

Figure 5-4: (a) The mesh used for finite element simulations; (b) Refined mesh near the
contact region.

The knife is modeled as a rigid contact surface since it is much stiffer than

elastomers. Contact conditions are applied between the knife and the element surface

where the contact occurs. A frictional coefficient of 0.1 is applied to simulate the real
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contact conditions.

5.2 Comparisons with Experiments

Numerical simulation results are compared with observations from image processing of

the deformation fields obtained in SEM micrographs. These comparisons provide

verification of the FEM model.

5.2.1 6 n=50ptm for Unfilled TPU with Wedge-type Knife

A FEM simulation with indentation depth of 3,, = 50pm is first conducted. The

indentation speed is 2,um / s and the scratching speed is 4um / s, corresponding to the

speeds in the test. Figure 5-5(a) shows the normal/tangential force vs time curves. The

corresponding curves from the test are also shown in Figure 5-5(b) for comparison. The

FEM simulation nicely captures the overall reaction forces. During indentation, the

normal force increases linearly. Upon scratching, the normal force experiences a decrease

then becomes a constant. The tangential force increases first linearly then gradually bends

over toward a constant force, resulting in an overall nonlinear increase in tangential force.

Numerical simulation using Arruda-Boyce eight chain model (examples of such

simulation are presented in the fourth section), which only captures the equilibrium

behavior of elastomeric materials and does not account for the time dependence and

stress relaxation, do not show such variations in normal and tangential forces. Therefore,

such features are believed to be due to time dependent aspect of the material behavior.

Figure 5-5(c) shows the effective friction coefficient, defined as the ratio between the

tangential force and the normal force. It is noticed that even though the contact friction

coefficient used in the FEM model is only 0.10, the effective friction coefficient is

predicted to be about 1.0, in agreement with the result from the test. Clearly, effective

friction behavior of the scratching test is affected by the contact friction as well as other

factors, such as material blocking, as will be discussed later.
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Figure 5-5: Normal/tangential force vs time curves (a) from numerical simulations; (b)
from tests; (c) Effective friction coefficient.

Contour plots in Figure 5-6 show the displacement fields immediately after the

indentation, i.e., 6n=50ptm, t-Optm. For the purpose of comparison with the results from

the test, contour plots obtained from image processing of the SEM micrographs are also

presented in Figure 5-6. In order to achieve better comparison, contour plots for the same

variables are presented based on the same scale (In the remainder of this section, for the

same purpose, contour plots for the same variables are presented based on the same

scale). For the displacement u, (Figure 5-6(a) and (b)), the color changes from the blue

for the displacement of -5pm to the red for the displacement of 5 im. For the

displacement u2 (Figure 5-6(c) and (d)), the red color represents the displacement of

30ptm, where the blue represents the displacement of 7pm. Both numerical simulation

and image processing give similar features of the displacement fields: The ul contour

shows material being pushed in the horizontal direction with maximum displacement

occurring along 450 lines away from the center line; The u2 contour show the decrease of

the displacement from the contact point to the far field. This excellent similarity between
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the contour plots from the numerical simulation and the test verifies the numerical

simulation results.

Figure 5-6(a) Figure 5-6(b)

Figure 5-6(c) Figure 5-6(d)

Figure 5-6: Displacement fields for the indentation/scratching test with 6n=50ptm,
8t=Optm: (a) u, contour from FEM simulation; (b) u, contour from image processing of

SEM micrographs; (c) u2 contour from
processing of SEM micrographs.

FEM simulation; (d) u2 contour from image
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Figure 5-7(a) Figure 5-7(b)

Figure 5-7(c) Figure 5-7(d)

Figure 5-7(e) Figure 5-7(f)

Figure 5-7: Strain fields for the indentation/scratching test with 6n=50p1m, 8t=Optm: (a)

6H contour from FEM simulation; (b) 6,, contour from image processing of SEM

micrographs; (c) 622 contour from FEM simulation; (d) 622 contour from image

processing of SEM micrographs; (e) 612 contour from FEM simulation; (f) 612 contour

from image processing of SEM micrographs.

The strain contour plots from both numerical simulations and image processing of

SEM micrographs are presented in Figure 5-7. For the strain 6,, (Figure 5-7(a) and (b)),

the blue color represents the strain of -0.02, whilst the red color represents the strain of
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0.07. For the strain 6,, (Figure 5-7(c) and (d)), the blue color represents the strain 6e of

about -0.04, to the red for the strain 622 of about 0.02. For the strain oU (Figure 5-7(e)

and (f)), the blue color represents the strain of -0.05, to the red for the strain of 0.05. Due

to the noise in the test results, the strain contour plots obtained from image processing

show some un-smooth variations, most pronounced for 6, . However, both numerical

simulation and image processing give similar features of the strain fields: Below the

contact point, the material is subjected to tensile strain along the horizontal direction and

compression strain along the vertical direction. The strain decreases along the radial

direction. The excellent similarity further verifies the capability of the numerical model

to generate correct strain results.

Figure 5-8(a) Figure 5-8(b)

Figure 5-8(c) Figure 5-8(d)

Figure 5-8: Displacement fields for the indentation/scratching test with 6n=50pm,

6t=60im: (a) u, contour from FEM simulation; (b) u, contour from image processing of

SEM micrographs from; (c) u2 contour from FEM simulation; (d) u2 contour from

image processing of SEM micrographs.
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Figure 5-9(a) Figure 5-9(b)

Figure 5-9(c) Figure 5-9(d)

Figure 5-9(e) Figure 5-9(f)

Figure 5-9: Strain fields for the indentation/scratching test with 8n=50pm, 8t=60pm: (a)
e contour from FEM simulation; (b) e contour from image processing of SEM

micrographs; (c) e22 contour from FEM simulation; (d) C22 contour from image

processing of SEM micrographs; (e) 612 contour from FEM simulation; (f) 612 contour

from image processing of SEM micrographs.

Contour plots in Figure 5-8 show the displacement fields upon scratching, i.e.,

8n=50tm, 8t=60ptm. Contour plots obtained from both numerical simulation and image
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processing of SEM micrographs are presented in Figure 5-8. For the displacement u,

(Figure 5-8(a) and (b)), the scale ranges from 2pm (blue) to 19ptm (red). For the

displacement u2 (Figure 5-8(c) and (d)), the scale ranges from 2ptm (blue) to 32tm (red).

Both numerical simulation and image processing give similarly biased displacement

fields as the knife moves rightward: The horizontal displacements from FEM simulation

and image processing show beautiful butterfly-like symmetric distributions about the line

biased from the vertical line by about 300 to the left. The maximum horizontal

displacements occur in front of the knife along the line of about 300 away from the

horizontal direction, whereas the minimum displacement occurs along the line of about

300 away from the vertical direction. The vertical displacements also show features of

biased displacement field: the symmetric lines are about 650 for both FEM results and

about 620 for image processing results away from the horizontal direction. The excellent

agreements between the directions of the symmetric lines for the biased displacement

fields provide solid evidence that the proposed FEM can capture the material deformation

behavior during scratching process.

Contour plots for the strain fields upon scratching, i.e., 6n=50ptm, 8t=60pm are

presented in Figure 5-9, where both FEM simulation results and the results of image

processing of SEM micrographs are presented. For the strain el (Figure 5-9(a) and (b)),

the scale ranges from -0.05 (blue) to 0.11 (red). For the strain 622 (Figure 5-9(c) and (d)),

the scale ranges from -0.09 (blue) to 0.04 (red). For the strain 612 (Figure 5-9(e) and (f)),

the scale ranges from -0.10 (blue) to 0.10 (red). The unsymmetrical strain fields clearly

demonstrated the biased deformation during scratching.

The remarkable similarity in the displacement and strain fields upon scratching

between the FEM results and image processing of SEM micrographs verifies the

predictions of the numerical model for scratching tests.

5.2.2 6 n=80ptm for Unfilled TPU with Wedge-type Knife

FEM simulation with indentation depth of 8n=80ptm was conducted. The indentation

speed was 2[tm/s and the scratching speed was 4pm/s, corresponding to the speeds in the

test with 80pm. Figure 5-10(a) shows the normal/tangential force vs time curves. The
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corresponding curves from the test are also shown in Figure 5-10(b) for comparison. The

same features of the curves as those from the test and simulation with 8n=80pim are

observed. The FEM simulation nicely captures the overall reaction forces.

Figure 5-10(c) shows the effective friction coefficient. It is noticed that even though

the contact friction coefficient used the FEM model is only 0.10, the effective friction

coefficient is predicted to be about 1.2, in agreement with the result from the test, but

higher than the value in the case with 8n=50ptm. A detailed discussion about the effective

friction behavior in scratching tests will be presented in section 4.
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Figure 5-10: Normal/tangential force vs time curves (a) from numerical simulations; (b)
from tests; (c) Effective friction coefficient.
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Contour plots in Figure 5-11 show the displacement field immediately after the

indentation, i.e., 8n=80p m, 8t=Optm. For the displacement u, (Figure 5-11(a) and (b)), the

color changes from the blue color for the displacement of -7pm to red color for the

displacement of 7pm. For the displacement u2 (Figure 5-11(c) and (d)), the blue

represents the displacement of -1 2pm, whereas the red represents the displacement of

50 pm. Both numerical simulation and image processing give similar distributions of the

displacement fields: The u, contour shows material being pushed in the horizontal

direction with maximum displacement occurring along 450 lines away from the center

line; The u2 contour shows the decrease of the displacement from the contact point to the

far field. This similarity between the contour plots from the numerical simulation and the

test verifies the capability of the proposed model to simulate even more severe

deformation, i.e. the test with the indentation depth of 6n=80pm.
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Figure 5-11: Displacement fields for the indentation/scratching test with 6n=80pLm,

8t=0pm: (a) u, contour from FEM simulation; (b) u, contour from image processing of

SEM micrographs from the test; (c) U2 contour from FEM simulation; (d) U2 contour

from image processing of SEM micrographs from the test.
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Figure 5-12(a) Figure 5-12(b)

Figure 5-12(c) Figure 5-12(d)

Figure 5-12(e) Figure 5-12(f)

Figure 5-12: Strain fields for the indentation/scratching test with 8n=80tm, 8t=Otm: (a)

CH contour from FEM simulation; (b) e contour from image processing of SEM

micrographs; (c) 622 contour from FEM simulation; (d) 622 contour from image

processing of SEM micrographs; (e) 6,2 contour from FEM simulation; (f) 612 contour

from image processing of SEM micrographs.

The strain contour plots are presented in Figure 5-12. For the strain .1 (Figure 5-

12(a) and (b)), the blue represents the strain of -0.03, whilst the red color represents the

strain of 0.10. For the strain e22 (Figure 5-12(c) and (d)), the blue represents the strain of
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about -0.09, and the red color represents the strain of 0.02. For the strain e2 (Figure 5-

12(e) and (f)), the blue represents the strain of -0.04, and the red color represents the

strain of 0.04. Both numerical simulation and image processing give similar distributions

of the strain fields: This similarity between the contour plots for strain fields from the

numerical simulation and the image processing of SEM micrographs verifies the

capability of the numerical model to generate correct strain results at a larger indentation

depth.

Contour plots in Figure 5-13 show the displacement fields upon scratching at

scratching distance about 40pm, i.e., 6n=80pm, 6t=40pm. For the displacement ul

(Figure 5-13(a) and (b)), the scale ranges from -5pm (blue) to 20pm (red). For the

displacement u2 (Figure 5-13(c) and (d)), the scale ranges from 10pm (blue) to 40pm

(red). The contours very nicely reveal the feature of the biased displacements where

material is pushed rightward by the knife during scratching: The distribution of the

horizontal displacements from both FEM simulation and image processing shows a

symmetric distribution about the line about 450 left to the vertical line. The maximum

horizontal displacement occurs in front of the knife along the line of about 310 away from

the horizontal direction, whereas the minimum displacement occurs along the line of

about 450 away from the vertical direction. The vertical displacement also shows features

of biased: the symmetric lines are about 770 for FEM results and 750 for image processing

away from the horizontal direction. The excellent agreements between the directions of

the symmetric lines prove that the proposed FEM can capture the material deformation

behavior during scratching process for even more sever deformation.

Contour plots for the strain fields upon scratching, i.e., 6n=80pm, and 6t=40pm, are

presented in Figure 5-14. For the strain 6, (Figure 5-14(a) and (b)), the scale ranges

from -0.04 (blue) to 0.12 (red). For the strain e22 (Figure 5-14(c) and (d)), the scale

ranges from -0.25 (blue) to 0.04 (red). For the strain 012 (Figure 5-14(e) and (f)), the

scale ranges from -0.06(blue) to 0.04 (red).

The remarkable similarity in the displacement and strain fields upon scratching

verifies the predictions of the numerical model for the simulations for the scratching test

at a deeper indentation depth.
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Figure 5-13(b)

Figure 5-13(c) Figure 5-13(d)

Figure 5-13: Displacement fields for the indentation/scratching test with 6n=80pm,

6t=40pm: (a) u, contour from FEM simulation; (b) u, contour from image processing of

SEM micrographs from the test; (c) u2 contour from FEM simulation; (d) u2 contour

from image processing of SEM micrographs from the test.
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Figure 5-14(a) Figure 5-14(b)

Figure 5-14(c) Figure 5-14(d)

Figure 5-14(e) Figure 5-14(f)

Figure 5-14: Strain fields for the indentation/scratching test with 6n=80pm, 6t=40pm: (a)

CH contour from FEM simulation; (b) e,, contour from image processing of SEM

micrographs from the test; (c) 622 contour from FEM simulation; (d) 622 contour from

image processing of SEM micrographs from the test; (e) 6,2 contour from FEM

simulation; (f) .62 contour from image processing of SEM micrographs from the test.

5.2.3 Indentation/Scratching Tests for Unfilled TPU with Bulk-type Knife

FEM simulation of the indentation/scratching test using a bulk-type knife was conducted.

178



In the test, the contact length (the length of the smooth surface) of the bulk-type knife

was 10mm, the protrusion was about 60jim above the smooth surface, and the tip radius

was about 15ptm. Since the model used previously was 6mm in length, which could not

cover the region of the contact between the bulk knife and the material, a larger model

with the length of 15mm is built for the simulation with the bulk-type knife. Recall that

such dimension was the same dimension as the effective sample length (the distance

between the end surfaces of the sample) in the test. Figure 5-15 shows the mesh used in

the study for the bulk-type knife scratching test.

Figure 5-15(a)

x

Figure 5-15(b)

Figure 5-15: The mesh used for the simulations of the indentation tests using the bulk-
type knife: (a) Overall mesh; (b) Mesh near the protrusion.

In the test, due to the lack of the power of the stepper motor driving the scratching

motion, the scratching speed falls to below 1 pm/s. In the numerical simulations,

however, in order to be consistent with above numerical simulations, we still use the
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indentation speed of 2ptm/s and the scratching speed of 4ptm/s. As discussed in Chapter 2,

because of the difficulties in measuring the displacement in the test with the bulk-type

knife, the load control was used. The indentation and scratching marks on the sample

were inspected after the tests to determined the real contact width. The average contact

load in terms of N/m was then calculated and used as the load control in the simulations.

Figure 5-16(a) shows the normal/tangential force vs time curves. The corresponding

curves from the test are also shown in Figure 5-16(b) for comparison. The FEM

simulation nicely captures the overall reaction forces. During indentation, the normal

force increases at a small rate due to the small contact region between the protrusion and

the material. As soon as the smooth surface of the bulk-type knife becomes in contact

with the material, a dramatic increase in the slope of the normal force is observed due to

the sudden increase in the contact area. Such feature, however, was not seen in the real

tests because of the imperfect alignment of the smooth surface of the bulk-type knife to

the material surface. Upon scratching, the normal force linearly decreases whereas the

tangential force increases nonlinearly.
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Figure 5-16: Normal/tangential force vs time curves for the indentation using the bulk-
type knife: (a) from numerical simulations; (b) from tests; (c) Effective friction
coefficient.
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Figure 5-16(c) shows the effective friction coefficient. It is noticed that even though

the contact friction coefficient used the FEM model is only 0.10, the effective friction

coefficient is predicted to be about 0.2.

Contour plots in Figure 5-17 show the displacement field immediately after the

indentation, i.e., 6t=Opm. For the displacement u, (Figure 5-17(a) and (b)), the color

changes from the blue for the displacement of -5pm to red for the displacement of 5ptm.

For the displacement u2 (Figure 5-17(c) and (d)), the blue represents the displacement of

20ptm, whilst the red represents the displacement of 40ptm. Due to the imperfect

alignment between the bulk-type knife and the material, image processing gave

asymmetric displacement field for u,, where the basic features of the deformation field

could not be retrieved. Numerical simulation gives a symmetric displacement field for

U1 : The u, contour shows material being pushed in the horizontal direction with

maximum displacement occurring along 400 lines away from the centerline. Recall that

for the test using the wedge-type knife, the maximum displacement u, was along the 450

lines away from the center line. This difference in the distribution of u, is due to the

constraint applied by the contact of the smooth surface with the material.

The strain contour plots from both numerical simulations and image processing of

SEM micrographs are presented in Figure 5-18. For the strain e (Figure 5-18(a) and

(b)), the blue represents the strain of -0.01, whilst the red color represents the strain of

0.08. For the strain c22 (Figure 5-18(c) and (d)), the blue represents the strain '22 of -

0.05, whereas the red color represents the strain of 0.02. For the strain .62 (Figure 5-18(c)

and (d)), the blue represents the strain of -0.04, whereas the red color represents the

strain of 0.04. It is noticed that even though the strain contours from image processing

show features of asymmetric distribution (the strains on the left side of the protrusion

have higher magnitude than the right side) due to the asymmetric displacement field u

because of the imperfect alignment, both numerical simulation and image processing give

similar overall distributions of the strain fields. This similarity between the strain contour

plots from the numerical simulation and from the tests verifies the capability of the

numerical model to result in correct strain fields for the indentation tests using the bulk-

182



Figure 5-17(a) Figure 5-17(b)

Figure 5-17(c) Figure 5-17(d)

Figure 5-17: Displacement fields for the indentation/scratching test with the bulk-type

knife, 8t=Opm: (a) u, contour from FEM simulation; (b) u, contour from image

processing of SEM micrographs; (c) u2 contour from FEM simulation; (d) u2 contour

from image processing of SEM micrographs.
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Figure 5-18(b)

Figure 5-18(c) Figure 5-18(d)

Figure 5-18(e) Figure 5-18(f)

Figure 5-18: Strain fields for the indentation/scratching test using the bulk-type knife,

6t=O m: (a) .,, contour from FEM simulation; (b) 6,, contour from image processing of

SEM micrographs from the test; (c) 622 contour from FEM simulation; (d) 622 contour

from image processing of SEM micrographs from the test; (e) .12 contour from FEM

simulation; (f) 6,2 contour from image processing of SEM micrographs from the test.

Contour plots in Figure 5-19 show the displacement fields upon scratching, i.e.,

6t=100lm. For the displacement u, (Figure 5-19 (a) and (b)), the scale ranges from

1Optm (blue) to 50tm (red). For the displacement u2 (Figure 5-19(c) and (d)), the scale
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ranges from 1 Otm (blue) to 40ptm (red). Both numerical simulation and image processing

give similarly biased displacement fields as the knife moves rightward.

Figure 5-19(a)

Figure 5-19(c) Figure 5-19(d)

Figure 5-19: Displacement fields for the indentation/scratching test with the bulk-type
knife, 8t=1p00pm: (a) u, contour from FEM simulation; (b) u, contour from image
processing of SEM micrographs; (c) u2 contour from FEM simulation; (d) u2 contour
from image processing of SEM micrographs.

Contour plots for the strain fields upon scratching, i.e., 6t=100m are presented in

Figure 5-20, where both numerical simulation results and image processing of SEM

micrographs are presented. For the strain e,, (Figure 5-20(a) and (b)), the scale ranges

from -0.03 (blue) to 0.08 (red). For the strain v22 (Figure 5-20(c) and (d)), the scale

ranges from -0.04(blue) to 0.02 (red). For the strain 612 (Figure 5-20(e) and (f)), the scale

ranges from -0.04(blue) to 0.03 (red).

The similarity in the displacement and strain fields upon scratching verifies the

predictions of the numerical model for the simulations for the scratching test at a deeper
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indentation depth.

Figure 5-20(a) Figure 5-20(b)

Figure 5-20(c) Figure 5-20(d)

Figure 5-20(e) Figure 5-20(f)
Figure 5-20: Strain fields for the indentation/scratching test using the bulk-type knife,
8t=100im: (a) 6,, contour from FEM simulation; (b) 6,, contour from image processing
of SEM micrographs from the test; (c) e22 contour from FEM simulation; (d) 622 contour
from image processing of SEM micrographs from the test; (e) 012 contour from FEM
simulation; (f) .62 contour from image processing of SEM micrographs from the test.
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5.3 Mechanics of the Scratching Tests for Unfilled TPUs

5.3.1 Damage Criterion

During scratching process, the material undergoes complex multi-axial stress-strain state.

However, few studies have been made on the failure of elastomers under multi-axial

stress-strain state, largely because of the difficulty in designing and conducting proper

experiments[5-1]. The study of the failure of elastomers under multi-axial stress-strain

state is further complicated by the fact that the failure form depends on the state of

applied stresses. For instance, rupture stress in uniaxial tension is highly dependent upon

factors such as whether crystallization occurs under high strains, whereas the critical

stress for failure under triaxial tension is solely dependent upon the modulus of

elastomer[5-2][5-3][5-4]. Currently, no single criterion based on a simple relationship,

such as the Tresca, von Mises, or modified forms, is generally applicable to the fracture

of elastomers[5-1].

Gent and coworkers proposed[5-2][5-3][5-4] that under triaxial tension cavitation

may occur as soon as the inflation pressure, defined as p = (C-a + o2 + -33 )/3, exceeded

a critical pressure pc,, which was given by

Pcr = -E, (5.1)
6

where E was the elastic modulus of the rubber material. In this model, the crack

initiation was treated as a consequence of an elastic instability of pre-existing cavities too

small to be readily detected. It is noted that the applicability of this criteria depends on

whether material is subjected to a triaxial or near triaxial tensile stress state. As will be

shown later, the stress state in indentation and scratching process is mostly tensile in one

direction and compression in another direction. Therefore, such a criteria is not applicable

to the problem of current interest.

In the following, in order to provide the insight into the mechanics about possible

damage initiation, we inspect two parameters: the maximum principal stress S3 and

limiting chain stretch ratio q.

The maximum principal stress indicates the severity of the stress in a multi-axial
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stress state: When S3 >0, it represents the largest tensile stress; when S3 <0, it

represents the minimum compression stress. It is thought that very large maximum

principal stress may result in the damage in the form of tensile rupture.

Limiting chain stretch ratio q is defined as

7 A chain (5.2)
-N

where Achain is the amplified chain stretch defined by eqn.(4- 11) and depicts the stretch

ratio of molecular chains in the soft domain of TPUs; N is the number of rigid molecular

units between entanglements and crosslinks whereas N represents the maximum

stretch ratio that a molecular chain can sustain, or the chain extensibility. Clearly, as

7 -> 1, chain breakage may occur.

5.3.2 Effects of Indentation Depth

Numerical simulations of the scratching tests with indentation depths of 6n=50ptm and

6n=80ptm were conducted. In the both simulations, the indentation speed was 2pm/s

whereas the scratching speed was 4ptm/s. Figure 5-21 shows the normal and tangential

force vs time curves for both cases. In Figure 5-21, for the purpose of comparison, the

abscissa has a normalized time scale t*, defined as

{ tt] for t <ti
1+(t-t])/t 2  for ti <t <t 2

where t, is the time for the indentation, and t2 is the time for the scratching for a given

scratching distance. For the simulations of 6n=50ptm, t, = 25s and for the simulations of

8n=80tm, t, = 40s. The scratching distance for 6n=50pm simulation was 120ptm

whereas for 8n=80pm simulation was 160pim. t2 was chosen as 30s.

In Figure 5-21, the maximum normal force per unit length is 588 N/m for 8n=50 m

and 956N/m for 6n=80[tm. During scratching, the normal forces are stabilized at 553N/m

for 8n=50ptrm and 895N/m for 6n=80pjm, i.e., the normal forces decreases about 6.3% for

6n=50ptm and about 6.8% for 6n=80ptm. The tangential forces increase initially linearly

then gradually bend over toward different constant values, depending on the indentation
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depth. For 8n=50ptm, the stabilized value is approximately 584N/m, and for 8n=80p1m, it

is approximately 1040N/m. It is also noticed that it takes a longer time (or distance) for

the tangential force to achieve a stabilized value for the 6n=80pm simulation than for the

8n=50ptm simulation. Since the process of the tangential force achieving a constant value

corresponds to the transition from stick phase to slip phase, the test with deeper

indentation depth should have longer transition time or distance.

400 - NonnalForce fordn=50um
-- O-- Tangential Force fordn=50um

200 - .- Nonnal Force fordn=80um
-- )-- Tangential Force fordn=80um
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Figure 5-21: Normal/tangential force vs. t* curves from numerical simulations for the
indentation tests with 6n=50pm and 6n=80tm.

To further investigate the mechanics, the contour plots for the maximum principal

stress S3 and the limiting chain stretch ratio q (where q = Aam/ N) at different

scratching distances are presented in Figure 5-22 and Figure 5-23 for 6n=50pm and

6n=80ptm, respectively.

Figure 5-22 shows the contour plots of the maximum principal stress S3 and the

limiting chain stretch ratio 7 for the simulation with 6n=50tm. Upon indentation, i.e.,

8n=50tm, 6t0pm (Figure 5-22(a) and (b)), the material symmetrically conforms to the

knife tip with the conformation length of about 20pm. The largest S3 occurs about 2-
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5 pm underneath the contact surface instead of on the contact surface due to the constraint

applied by the frictional force. It is also noticed that upon indentation, the material on the

contact surface is subjected to compression stress. The largest value of S3 is 3.98MPa.

The largest limiting chain stretch ratio q, however, occurs on the contact surface with

nma" = 0.79. The difference between the locations for the largest maximum principal

stress and the largest limiting chain stretch ratio is because q is a parameter identifying

the molecular chain stretch in the multi-axial strain state and its largest value is not

necessary to occur at the same place as the largest maximum principal stress. In this case,

the largest limiting chain stretch occurs at the location where the compression stress

prevails.

Upon scratching (Figure 5-22(c) and (d)) with the scratching distance of 6t--30tm,

the material conformation to the knife tip is biased: the material on the left side of the

knife loses contact with the knife whereas the material on the right side still contacts with

the knife tip. Accompanying the bias of the material conformation to the knife tip, the

location for the largest maximum principal stress moves to the contact surface and behind

the knife tip whereas location for the maximum limiting chain stretch ratio moves to the

position ahead of the knife tip. With the scratching distance of &t=30tm, the largest

maximum principal stress increases dramatically to 17.5MPa whereas the largest limiting

chain stretch ratio increases moderately to 0.86. It is also noticed that the location of the

largest limiting chain stretch ratio occurs in the region where the material is subjected to

compression.

Upon further scratching (Figure 5-22(e) and (f)) with the scratching distance of

6t-100ptm, the material conformation to the knife tip is further biased: the material on

the left side of the knife totally loses contact whereas the material on the right side still

contacts with the knife tip. Residual deformation due to indentation and scratching is also

observed behind of the knife. During this process, the location for the largest maximum

principal stress moves to the material surface and behind the knife tip whereas location

for the maximum limiting chain stretch ratio moves to a position ahead of the knife tip. It

is also observed that very large maximum principal stress prevails over a relatively large

region of the material surface behind the knife tip. At the scratching distance of
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8t=100pm, the largest maximum principal stress decreases dramatically to 8.81MPa

whereas the largest limiting chain stretch ratio also decreases to 0.84.

Figure 5-22(a) Figure 5-22(b)

Figure 5-22(c) Figure 5-22(d)

Figure 5-22(e) Figure 5-22(f)

Figure 5-22: Contour plots for (a) S, and (b) 7 at indentation; (c) S3 and (d) q at

6t=30pm; (e) S3 and (f) q at 6t=I00pm for the test with 8n=50p m.
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Figure 5-23(a) Figure 5-23(b)

Figure 5-23(c) Figure 5-23(d)

Figure 5-23(e) Figure 5-23(f)

Figure 5-23: Contour plots for (a) S3 and (b) q at indentation; (c) S3 and (d) q at

6t=30prm; (e) S3 and (f) q at 8t=100pm for the test with 8n=80pm.

Figure 5-23 shows the contour plots of the maximum principal stress S3 and the

limiting chain stretch ratio q for the simulation with 6n=80pm. Upon indentation, i.e.,

8n=80tm, 6t=Opm (Figure 5-23(a) and (b)), the material symmetrically conforms to the

knife tip with the conformation length of about 30ptm. The largest S3 occurs underneath

the contact surface and the largest limiting chain stretch ratio q occurs on the contact
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surface with 77"" = 0.87. The largest value of S3 is 12.1MPa, which is about 300%

greater than the largest value of S3 for 6n=50ptm. The large increase in S3 indicates the

molecular chain under the knife tip may undergo stretch near its limiting extensibility.

Upon scratching (Figure 5-23(c) and (d)) with the scratching distance of 8t=30pm,

the material conformation to the knife tip is biased: the material on the left side of the

knife loses contact with the knife whereas the material on the right side still contacts with

the knife tip. The location for the largest maximum principal stress moves to the contact

surface and behind the knife tip whereas the location for the maximum limiting chain

stretch ratio moves to a place ahead of the knife tip. With the scratching distance of

8t=30ptm, the largest maximum principal stress increases dramatically to 24.2MPa

whereas the largest limiting chain stretch ratio increases to 0.90.

Upon further scratching (Figure 5-23(e) and (f)) with the scratching distance of

8t-100ptm, the material conformation to the knife tip is further biased: the material on

the left side of the knife totally loses contact with the knife whereas the material on the

right side still contacts with the knife tip. During this process, the location for the largest

maximum principal stress moves to the material surface and behind the knife tip whereas

the location for the maximum limiting chain stretch ratio moves to a location ahead of the

knife tip. It is also observed that large maximum principal stress prevails over a relatively

large region of the material surface behind the knife tip. With the scratching distance of

&t=100[tm, the largest maximum principal stress decreases to 17.1MPa whereas the

largest limiting chain stretch ratio maintains about the same level, 77"ax = 0.90.

The contour plots in Figure 5-22 and Figure 5-23 show that accompanying the change

of the conformation of the material to the knife tip, the largest maximum principal stress

and the largest limiting chain stretch ratio changes. To further illustrate the variations of

the largest maximum principal stress and the limiting chain stretch ratio, Figure 5-24

shows the largest maximum principal stress and the largest limit chain stretch ratio vs. the

scratching distance curves. The scratching distance is normalized by the indentation

depth, i.e., the normalized scratching distance D*

D D (5.4)
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where D is the scratching distance.
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Figure 5-24: The variations of (a) the largest maximum principal stress, and (b) the
largest limiting chain stretch ratio with the normalized scratching distance.
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From Figure 5-24, it is clear that upon scratching, the largest maximum principal

stress increases first, then gradually decreases and tends to stabilize at a constant value,

whereas the largest limiting chain stretch ratio increases then maintain the highest value

during the scratching. The largest maximum principal stress for 6n=80pim is about

27MPa and is about 1.6 times higher than the one for 6n=50pm, which is about 17MPa.

The largest chain limiting stretch ratio is 0.91 8n=80tm and 0.87 for 6n=50ptm. The

combination of the large maximum principal stress and chain limiting stretch ratio in

6n=80 im may be responsible for the observations in Chapter 3 where surface damages

were observed only for the test with 6n=80Vm whereas the surface remained almost

unchanged for the test with 6n=50tm.

It is also noticed that for both simulations, the largest maximum principal stress

occurs at a scratching distance equal to about 60% of the indentation depth. Such

scratching distance is within the distance where the transition from the stick phase to the

slip phase occurs. Therefore, the transition from the stick phase to the slip phase, marked

by the change of the material conformation to the knife from a symmetric one to an

asymmetric one, is the period where the damage is most likely to occur.

5.3.3 Effect of Contact Conditions

Numerical simulation of the scratching test using the bulk-type knife was conducted. The

mesh shown in Figure 5-15 was used as the FEM model. In order to compare the results

with the wedge-type knife, the geometry of the knife protrusion was chosen to be 50pm

above the smooth surface and the tip radius to be 6jim. The normal displacement

(including protrusion and overall compression) was 80ptm. In the simulation, the

indentation speed was 2ptm/s whereas the scratching speed was 4pim/s.
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Figure 5-25: Normal/tangential force vs. t* curves from numerical simulations for the
indentation tests with 6n=80ptm using the bulk-type knife. The tip radius of the protrusion
is 6pm and the protrusion is 50pm above the smooth surface. (a) Overall curves; (b)
Close-up look at the section of the curve as the smooth surface of the knife touches the
material surface.
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Figure 5-25 shows the normal/tangential force vs normalized time t* curves. t* is

defined according to eqn.(5-3). During indentation, the normal force first increases at a

small rate due to the small contact region between the protrusion and the material. As

soon as the smooth surface of the bulk-type knife comes into contact with the material, a

dramatic increase in the slope of the normal force is observed. The maximum normal

force is 32kN/m. The average pressure on the surface contact is then calculated as

3.2MPa (the length of the smooth surface in the model is 10mm). Upon scratching, the

normal force shows a decrease. Due to the limited length of the region with a refined

mesh, the scratching distance in the FEM simulations was not long enough to reveal the

stabilized value of the normal force. The tangential force, however, starts to bend over

towards a constant value of about 5kN/m. It is also noticed, even though the frictional

coefficient used in the simulation is 0.10, the effective friction coefficient, defined as the

ratio between the tangential force and normal force, is larger than 0.10. For instance, at

the end of the simulations, the ratio between the tangential force and the normal force is

about 0.19. Since the curves show the trend of increasing tangential force and decreasing

normal force, a larger effective frictional coefficient is expected for a longer scratching

distance.

Figure 5-26 shows the contour plots of the maximum principal stress S, and the

limiting chain stretch ratio q for the simulation with 8n=80pLm using the bulk-type knife.

Upon indentation, i.e., 5n=80pm, 6t=Opm (Figure 5-26(a) and (b)), the material

symmetrically conforms to the knife tip with the conformation length of about 30pm. The

largest S3 occurs underneath the contact surface and is 13.5MPa. The largest limiting

chain stretch ratio 7, however, occurs on the contact surface with 7"" = 0.91.

Compared with the corresponding values for the tests with 8n=80pm using the wedge-

type knife, these values are higher as a result of the constraint due to the frictional force

between the smooth surface and the material. For the wedge-type knife, the material close

to the knife moves toward the knife from both sides during the indentation, effectively

reducing the severity of the deformation under the knife tip. For the bulk-type knife,

however, such motion is constrained by the frictional force, resulting in a more severe

deformation.
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Figure 5-26(a) Figure 5-26(b)

Figure 5-26(c) Figure 5-26(d)

Figure 5-26(e) Figure 5-26(f)

Figure 5-26: Contour plots for (a) S3 and (b) q at indentation; (c) S3 and (d) q upon

scratching 6t=30pm; (e) S3 and (f) r7 upon scratching 8t=1O0pm for the test with

8n=80ptm using the bulk-type knife.

Upon scratching (Figure 5-26(c) and (d)) with the scratching distance of 6t=30pm,

the material conformation to the knife tip is biased and the change of the conformation
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demonstrates the same features as those observed from the using the wedge-type knife.

However, with the scratching distance of 6t=3j0pm, the largest maximum principal stress

increases slightly to 15.5MPa and the limiting chain stretch ratio remains about the same

as the values immediately after the indentation.

Upon scratching (Figure 5-26(e) and (f)) to a scratching distance of 1t-100pm, the

material conformation to the knife tip is further biased and has the same features as those

observed using the wedge-type knife. The residual deformation due to indentation and

scratching is also observed behind the knife tip. At a scratching distance of 8t=100pm,

the largest maximum principal stress increases to 18.5MPa whereas the largest limiting

chain stretch ratio decreases only slightly to 0.90.

To further illustrate the evolution of the largest maximum principal stress and the

limiting chain stretch ratio, Figure 5-27 shows the largest maximum principal stress and

the largest limit chain stretch ratio vs. the scratching distance curves. The scratching

distance is normalized using the indentation depth of 8n=80pm. The corresponding

curves from the wedge-type knife test with 8n=80pm are also shown in the figure.

Although immediately after the indentation the largest maximum principal stress for the

test using the bulk-type knife is higher than the test using the wedge-type knife, the

former shows a slow increase during scratching. In comparison to the test with 8n=80pm

using the wedge-type knife, the largest maximum principal stress (20MPa) is about 7Mpa

(25%) smaller than the latter and the limiting chain stretch ratio is about the same,

implying that for the same overall indentation depth, the superposition of an overall

pressure to the contact surface reduces the severity of the deformation during scratching.

In comparison to the test with 8n=50ptm using the wedge-type knife, the largest

maximum principal stress (20MPa) is about 3MPa (17%) higher than the latter and the

limiting chain stretch ratio is about 0.06 (7%) higher, implying that for the same size of

the asperity, the superposition of an overall compression to the contact surface increases

the severity of the deformation during scratching.
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Figure 5-27: The evolutions of (a) the largest maximum principal stress, and (b) the

largest limiting chain stretch ratio with the normalized scratching distance.
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5.3.4 Effects of Cyclic Scratching

Numerical simulations of the cyclic scratching tests using the wedge-type knife were

conducted. The simulation on the fresh sample using the wedge-type knife with 6n=80plm

was first conducted following the loading condition defined in Figure 5-3. After the

scratching, the knife was withdrawn by decreasing 3,, to zero, and then was moved back

to its original position by decreasing 5, to zero. The loading condition defined in Figure

5-3 was then applied again. Here, only the results for the second scratching are presented.

The results for the first scratching are used here for the purpose of comparison.

Figure 5-28: Residual deformation after withdrawing the knife back from the first
scratching simulation with 8n=80ptm.

Figure 5-28 shows the deformed mesh after withdrawing the knife back from the first

scratching simulation. Due to the large deformation during the first cycle of indentation

and scratching, significant residual deformation is observed. After the first cycle of

indentation and scratching, the material surface is 10-12ptm under the original surface

level. The mesh shown in Figure 5-28 is used for the second cycle indentation and

scratching simulation.
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Figure 5-29: Normal/tangential force vs. t* curves from numerical simulations for cyclic
the indentation/scratching tests 6n=80tm.

Figure 5-29 shows the normal/tangential force vs normalized time t* curves. It is

noticed that for the second indentation/scratching test, the variation in the

normal/tangential force shows the similar overall features as those observed for the first

cycle test. However, it also shows the features of material softening due to pre-loading.

The normal and tangential forces for the second indentation/scratching test are smaller

than those from the first cycle simulation. A positive tangential force is also observed

during the second indentation. This is because the residual deformation after the first

scratching test renders an asymmetric contact condition for the second indentation. From

Figure 5-29, the asymmetric contact will push the knife rightward during the indentation,

resulting a positive tangential reaction force of the knife.
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Figure 5-30(a) Figure 5-30(b)

Figure 5-30(c) Figure 5-30(d)
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Figure 5-30: Contour plots for (a) S3 and (b) 7 at indentation; (c) S3 and (d) q upon

scratching 6t=20pm; (e) S3 and (f) 7 upon scratching 6t=100tm for the second cycle

scratching test with 6n=80pm using the wedge-type knife.

Figure 5-30 shows the contour plots of the maximum principal stress S3 and the

limiting chain stretch ratio q for the second scratching test with 8n=80ptm using the
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wedge-type knife. Upon indentation, i.e., 8n=80pm, t=0pm (Figure 5-30(a) and (b)), the

material conformation to the knife tip is asymmetric due to the residual deformation after

the first scratching. The distributions of the maximum principal stress and the limiting

chain stretch ratio are thus asymmetric. The largest S3 occurs underneath the contact

surface and has the largest value of 10.3MPa, which is smaller than that from the first

cycle indentation (12.1MPa). The largest limiting chain stretch ratio 7 occurs on the

contact surface with q"ax = 0.87, which is the same as that from the first scratching test.

Upon scratching (Figure 5-30(c) and (d)) with the scratching distance of 6t=30pm,

the location for the largest maximum principal stress moves onto the contact surface and

behind the knife tip whereas the location for the maximum limiting chain stretch ratio

moves to the place ahead of the knife tip. However, with the scratching distance of

8t=30ptm, the largest maximum principal stress increases dramatically to 23.4MPa

whereas the limiting chain stretch ratio increases moderately to 0.90.

Upon further scratching (Figure 5-30(e) and (f)) with the scratching distance of

8t=100tm, the material conformation to the knife tip is further biased. The largest

maximum principal stress decreases to 15.6MPa whereas the largest limiting chain stretch

ratio is about 0.90.

To further illustrate the variations of the largest maximum principal stress and the

limiting chain stretch ratio during the second cycle indentation and scratching, Figure 5-

31 shows the largest maximum principal stress and the largest limit chain stretch ratio vs.

the scratching distance curves. The scratching distance is normalized according to eqn.

(5-3), using the indentation depth of 6n=80tm. The corresponding curves from the first

cycle scratching with 6n=80ptm are also shown in the figure. From Figure 5-31, the

largest maximum principal stress for the second cycle scratching shows faster increase

and has the largest value of about 24MPa, which is about 11% smaller than the largest

value in the first cycle scratching. The limiting chain stretch ratio (Figure 5-31(b)) is

generally the same as that in the first scratching test. Clearly, for the cyclic scratching

tests, the largest maximum principal stress is still very high and the limiting chain stretch

ratio remains the same, which may create the condition for the damage to initiate and

propagate due to fatigue.
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5.4 Parametric Study of the Scratching Tests for Unfilled TPUs

In this section, parametric studies by varying contact friction force, scratching speed, and

material properties of elastomers are conducted to identify and evaluate the influence of

these factors on the abrasive wear performance of the material under various conditions.

5.4.1 Effects of Contact Friction Force

5.4.1.1 Effects of Contact Friction Force

It has been observed that the effective friction coefficient defined as the ratio between the

tangential force and normal force demonstrated much higher values than the contact

friction coefficients used in the FEM model. In addition, the contact friction force will

affect the transition from the stick phase to slip phase, which has been shown

accompanied by the increase of the largest maximum principal stress and the largest

chain limiting stretch ratio, and has profound influence on the damage initiation during

the scratching process. In this part, numerical simulations using three contact friction

coefficients, i.e., f = 0.00, f =0.05, f = 0.10, and f = 0.20 are conducted to

investigate the effects of contact friction coefficients on the material behavior during

scratching.

Figure 5-32(a) shows the normal/tangential force vs. time curves for the simulations

using f = 0.00, f = 0.05, f = 0.10, and f = 0.20. During indentation, even with

different contact friction coefficients, the normal forces are about identical for all the four

cases. During scratching, the courses of the normal and the tangential forces for f = 0.00

and f = 0.05 are almost identical. The courses of the normal/tangential forces are the

same for the four cases until t* > 1.2 where the tangential force curves for f = 0.00 and

f = 0.05 starts to bend over and deviate from the other two, and until t* > 1.28, the

tangential force curve for f = 0.10 starts to bend over and deviates from the curve for

f = 0.20 (See Figure 5-32(b) for details). It is also noticed that even with f = 0.00, the

effective friction coefficient is about 1.0. In comparison to the effective friction

coefficient for f = 0.20, which is about 1.4, it is clear that factors not due to contact

friction force account for much of the effective friction coefficient.
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Figure 5-32: Effects of contact friction coefficient on: (a) Normal/tangential force vs time
curves; (b) Close-up look of the Normal/tangential force vs time curves during
scratching; (c) Effective friction coefficient.

Figure 5-33(a) shows the effect of contact friction force on the variations of the

largest maximum principal stress. Upon indentation, the simulation using f = 0.00

shows the greatest largest maximum principal value. As the contact friction force

increases, the largest maximum principal stress decreases, Clearly, the presence of the

frictional force constrains the deformation around the contact surface, and hence reduces

the largest maximum principal stress during indentation. During scratching, the contact

friction force raises the peak value of largest maximum principal stress significantly. For

instance, as f increases from 0.05 to 0.20, the peak value of the largest maximum

principal stress increases by 120%. It is also noticed that the contact friction force delays

the peak value to occur at a longer scratching distance. Since the occurrence of the peak

value corresponds to the transition from stick phase to slip phase, the larger contact

frictional force lengthens the stick phase and stick distance, resulting in high stretch

behind the knife and greater largest maximum principal stress.
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Figure 5-33(b) shows the effect of contact friction force on the variations of the
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largest limiting chain stretch ratio. From Figure 5-33(b), it is observed that increasing the

contact friction force decreases the largest limiting chain stretch ratio upon indentation,

whereas increases largest limiting chain stretch ratio during scratching.

5.4.1.2 Mechanism of Effective Friction Force

TPUs are well known for their low friction coefficients. However, large effective friction

coefficients (defined as the ratio between the tangential force and normal force) were

observed from both tests and numerical simulations of scratching. Moreover, as revealed

in the previous part, even with contact frictional force being zero, a very large effective

friction coefficient was observed. Clearly, the effective friction coefficient must be

related with the stress-strain behavior features, i.e. cyclic softening and hysteresis, of

TPUs. To further explore the mechanism for this phenomenon, the effective friction

coefficient is studied in this part. For the sake of clarity, the contact frictional force is

taken to be zero, i.e., f = 0.00.

In order to inspect the effects of cyclic softening, hysteresis and rate dependence on

effective friction coefficients, three materials are studied: the first material (Material Fl)

is modeled using Arruda-Boyce model without cyclic softening; the second material

(Material F2) is modeled using Arruda-Boyce model with cyclic softening; and the third

material (Material A) is modeled using the constitutive model proposed in Chapter 4.

Therefore, the difference between Material F1 and Material F2 is the presence of cyclic

softening, whereas the difference between Material F2 and Material A is the presence of

hysteresis and rate dependence.

Figure 5-34(a) and Figure 5-34(b) show the normal/tangential forces and effective

friction coefficients. For Material Fl, which has no softening, hysteresis, and rate

dependence, without the presence of contact friction force, the tangential force is always

zero and normal force is constant during scratching. With cyclic softening behavior,

Material F2 shows small amount of decrease in normal force and small tangential force

during scratching. Clearly, such differences in normal forces and tangential forces are due

to cyclic softening. As cyclic softening, hysteresis, and rate dependence present, during

scratching, Material A shows significantly larger tangential force and there is a relatively

large decrease in normal force at beginning. The effective friction coefficient at slip
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phase is zero for Material F1, about 0.1 for Material F2, and about 1.1 for Material A.
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Figure 5-34: (a) Normal/tangential force vs time curves; (c) Effective friction coefficient
for Material Fl, Material F2, and Mat A. The contact friction force used in simulations is

zero, i.e., f = 0.00.
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To further explore the mechanism of the effective friction coefficient, the contour

plots of the maximum principal stress for the three materials during scratching

t, = 30pm are presented in Figure 5-35.

From Figure 5-35, Material Fl shows a symmetric deformation and distribution of

maximum principal stress. Such a symmetric deformation results in the balanced stress

about the knife and zero tangential force. For Material F2, the deformation is biased and

the material in front of the knife has larger conformation to the knife than the material

behind the knife. Such a biased deformation results in a non-zero tangential force. For

Material A, the deformation is highly biased: The material in front of the knife has very

large conformation to the knife whereas the material behind the knife almost loses

contact with the knife, resulting in a large tangential force.

Figure 5-35(a) Figure 5-35(b)

Figure 5-35(c)

Figure 5-35: Contour plots of maximum principal stress at 3, = 34pm for (a) Material

Fl; (b) Material F2; (c) Material A.
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During the scratching process, as the knife approaches and passes by a particular part

of material, that part of material will undergo loading (as the knife approaches), then

unloading (as the knife passes by). For TPU material, due to cyclic softening and

hysteresis, for a given strain, the material has higher resistance to deformation in loading

state that it does in unloading state. Clearly, in Figure 5-35, the material behind the knife

undergoes unloading and has smaller resistance to deformation, whereas the material in

front of the material undergoes loading and has larger resistance to deformations. Such a

difference in the deformation resistance of the material in front and behind the knife

causes the significant amount tangential force when cyclic softening, hysteresis and rate

dependence present.

In pneumatic tire applications, the tangential force provides desired tire traction. The

case of f = 0.0 is of special interest because it provides the situation of wet-sliding,

where the adhesive force does not present and mechanism to provide traction has to be

sought. It has been widely accepted that wet-sliding friction primarily comes from the

bulk hysteretic energy dissipation[5-6][5-7][5-8]. It is been widely practiced in tire

industry to use the loss tangent, tan 8, from dynamic viscoelasticity measurements at a

low frequency of about 10Hz and at a specific low temperature to evaluate the wet

traction performance of a tread compound using empirical relations. However, it is still

unclear what is the mechanism for the relationship between the loss tangent tan 8 and

tire traction. It is also desirable to have analytical tools to predict tire traction. The

proposed mechanism and numerical simulation model together with the new constitutive

model meet this demand and will be used to address the relationship between tire traction

and viscoelasticity in the future.

5.4.2 Effects of Scratching Speeds

Effects of scratching speeds on the mechanics of scratching were studied by varying the

scratching speed in the FEM simulations whereas the indentation speeds were the same.

Figure 5-36(a) shows the normal/tangential force vs time curves for the simulations with

three different scratching speeds, i.e., v=4tm/s, v=8pm/s, and v=16pm/s. Figure 5-36(b)

shows the corresponding effective friction coefficient curves. From Figure 5-36(a), the

normal forces are different as soon as the scratching starts and the higher the scratching
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speed, the higher the normal force. The simulation with lower scratching speed v=4ptm/s

shows some initial decrease in the normal force until t* = 1.3, after which the normal

force increases; whereas the simulations with higher scratching speed v=16pm/s shows

relatively smaller decrease in the normal force until t* = 1.2, after which the normal

force increases. The amount of decrease in the normal force decreases with increasing

scratching speed. It is also noticed that the amount of the increase in the tangential force

decreases with increasing scratching speed. For instance, the difference in tangential

forces at t* = 2.0 is about 40N/m for the tests with v=4pm/s and v=8ptm/s, whereas the

difference is about 20N/m for the tests with v=8pm/s and v=16ptm/s. It is unclear yet

whether a saturated tangential force can be achieved, but it seems that the increase in the

tangential force will be less sensitive at higher speed than that at lower speed.

From Figure 5-36(a), the normal force increase at a faster rate than the tangential

forces at higher scratching speed, resulting in the decrease in the effective friction

coefficients, as indicated in Figure 5-36(b). From Figure 5-36(b), the effective friction

coefficients for different scratching are indistinguishable until t* > 1.4. It is also noticed

that although the general trend is that the higher scratching speed, the lower the effective

friction coefficient, the differences are generally small.

Figure 5-37 shows the effect of scratching speeds on the variations of the largest

maximum principal stress and the largest limiting chain stretch ratio. From Figure 5-

37(a), the peak value of the largest maximum principal stress increases with increasing

scratching speed, i.e. for v=4ptm/s, Sf ~26MPa, for v=8ptm/s, Sf ~28MPa, and for

v=16ptm/s, Sf 30MPa. However, the largest limiting chain stretch ratio does not show

significant dependence on the scratching speed, as shown in Figure 5-37(b). Although

Figure 5-37(b) only shows the dependence of largest value of the limiting chain stretch

ratio on the scratching speed, it is reasonable to expect that the limiting chain stretch ratio

is essentially independent upon the scratching speed, since limiting stretch ratio is related

with the reorientation of molecular chain which occurs at a much higher rate than the

scratching speed in current study.

214



04
0 - v=4um/s, tang e ntial fo re e
-- E]-- - v=4um/s, normal force
--- '@--- v=8um/s, tangential force

00 -- )-- - v=8um/s, normal force
v=16um/s, tangential force

---uCau-- v=16um/s, nonnalforce

00

00

00-
b

00

0 0f ' ' ' ' ' ' ' ' ' '

0.5 1 1.5 2 2.5

Figure 5-36(a)

1.5 r-
v=4um/s

- -- - v=8um/s
- - v=16um/s

' 1 1 1 10 1 1.5 2 2.5

Figure 5-36(b)

Figure 5-36: Effects of scratching speed on: (a) Normal/tangential force vs time curves;
(b) Effective friction coefficient.
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Figure 5-37: Effects of scratching speed on: The variations of (a) the largest maximum
principal stress, and (b) the largest limiting chain stretch ratio with the normalized
scratching distance.
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5.4.3 Effects of Material Properties

The stress-strain behavior of TPUs shows an initially stiff response, followed by rollover,

then stiffen again during the loading course, whereas the unloading paths show a large

hysteresis loop. The material also shows various dependences. The constitutive model

proposed in Chapter 4 successfully captured the complicated behavior of the material and

made it possible to inspect the effects of different aspects of material behavior on the

deformation and mechanics by deliberately varying the material parameters in the

constitutive model. In this part, the effects of hysteresis, initial modulus of the material

stress-strain behavior, and the chain extensibility, on the mechanics of the scratching tests

are investigated.

5.4.3.1 Effects of Hysteresis

Effects of hysteresis on the mechanics are studied by comparing the responses of

materials with different level of hysteresis in their uniaxial compression stress-strain

behaviors. Here, three materials are chosen: the first one (Material A) is the material

discussed in Chapter 4, and the second material (Material B) is created by deliberately

choosing material parameters to generate smaller hysteresis. To further investigate the

effects of hysteresis, the third material to demonstrate the extremity of low hysteresis, i.e.

the third material (Material EQ) is chosen to demonstrates equilibrium behavior of

Material A and Material B. Material EQ is modeled by Arruda-Boyce 8 chain model and

uses the same material parameters as those used in hyperelastic rubbery spring of

Material A and Material B. As discussed in Chapter 4, the hysteresis and rate dependent

behaviors are attributed to the three material parameters fr , AG, and s0 in the

constitutive model. Therefore, Material B is chosen by only varying these parameters.

Table 5-1 shows the material parameters for Material A and Material B. In Table 5-1,

only parameters related with viscoplastic dashpot element in the constitutive model are

presented, and other parameters in the material model are same for both Material A and

Material B and are not shown for the seek of brevity. Figure 5-38 shows the true stress-

true strain curves for the three materials. From the figure, the Material B shows lower

hysteresis than the Material A does: the area between the loading and unloading curve for

Material B is about 54% of the one for the Material A for the first cycle, and about 44%
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for the second cycle.

Table 5-1: Material Parameters for Material A and Material B.

so AG Yo

(MPa) (10- 9 J)

Material A 4.55 0.41 2.26

Material B 2.275 0.41 4.52

20

18 - - Mat A
- Mat B

16 -O' - Mat EQ

'14

12

10-

2-

0.25 0.5 0.75 1

-Tme Strain

Figure 5-38: The true stress-true strain curves for Material A, Material B and Material
EQ.
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(b) Effective friction coefficient.
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Figure 5-40 Effects of rate dependence on: The variations of (a) the largest maximum
principal stress, and (b) the largest limiting chain stretch ratio with the normalized
scratching distance.
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Figure 5-39(a) shows the normal/tangential forces from the simulations for the three

materials and Figure 5-39(b) shows the effective friction coefficients. Reducing the

hysteresis decreases both the normal force and the tangential force significantly. As

indicated in Figure 5-39(a), reducing the hysteresis by about 50% in the material stress-

strain behavior results in about 29% decrease in the normal force and about 35% decrease

in the tangential force. As hysteresis is totally removed, the normal force does not show

the feature of decreasing to a stabilized value during scratching and maintains the force

value. The effective friction coefficient at t* = 2.33 is about 1.1 for Material A whereas

is about 1.0 for Material B, and is only 0.4 for Material EQ.

Figure 5-40(a) and Figure 5-40(b) shows the variations of the largest maximum

principal stress and the largest limiting chain stretch ratio vs. the normalized scratching

distance. Due to the decrease in the normal and tangential forces for Material B, the

largest maximum principal stress is reduced significantly: the peak value for the largest

maximum principal stress for Material B is about 15MPa, only about 55% of the value

for Material A; the stable value for the largest maximum principal stress for Material B is

about 12MPa, which is about 75% of that for Material A. Without hysteresis, the peak

value of the largest maximum principal stress is only about 27% of that of Material A.

The largest limiting chain stretch ratio is about 0.90 for Material A, 0.87 for Material B,

and 0.84 for Material EQ. Clearly, reducing the rate dependence and hysteresis decreases

the largest maximum principal stress significantly, and decreases the largest limiting

chain stretch moderately.

5.4.3.2 Effects of Initial Young's Modulus

The effects of initial modulus E0 of the material are studied in this part. From Chapter 4,

it is known the initial modulus of the material has contributions from the hyperelastic

rubbery spring and the elastic spring of the viscoelastic-plastic component. From eqn.(4-

13), the initial Young's modulus for the hyperelastic rubbery spring is determined by the

parameters p and N. The initial Young's modulus for the elastic spring is E'. Therefore,

by varying any of these three parameters and any combinations of them will change the

initial Young's modulus of the material. Here, we will study the effect of P and E" on

the mechanics of the scratching test, and will leave the effect of N for the next. In this
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part, three materials are studied: Material A studied in Chapter 4 is used here as a

reference for comparison; Material C and D are created by varying P and E". Table 5-2

lists the material parameters p and E", and corresponding material initial Young's

modulus E0 . Material C is chosen by doubling the p of Material A and uses the same

E". Material D uses the same E" but doubling u. The rest of material parameters for all

the materials are the same and are not presented in the table for the sake of brevity.

Figure 5-41 shows the true stress-true strain curves for the materials studied in this

part. It is noticed that parameters p and E' have different influences on the material

stress-strain behaviors: E" only changes the initial modulus of the material, resulting in

the almost identical stress-strain behavior at large strains (Material A and Material C

follow almost identical course at large strain), whereas p changes both initial modulus as

well as large strain behavior, as indicated by the greater stress response of Material C.

Table 5-2: Material Parameters for Material A, C, and D

p (MPa) E" (MPa) E0 (MPa)

Material A 1.7 35 48

Material C 3.4 35 64

Material D 1.7 70 77
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Figure 5-41: The true stress-true strain curves for Material A, Material C, Material D, and
Material E.

Figure 5-42(a) shows the normal/tangential force vs. time curves from the simulations

for the three materials. Increasing the initial Young's modulus generally increases both

normal force and tangential force. However, increasing material stress response at small

strain (Material D compared with Material A) increases the normal force moderately and

tangential force significantly, whereas increasing material stress response at both small

and large strain increases the normal and tangential forces significantly with normal force

having much larger level of increase than the tangential force. The change of the normal

force and tangential force is more clearly demonstrated by Figure 5-42(b), which shows

the effective friction coefficient from the simulations for the four materials. Clearly,

Material D, which doubles the modulus for the elastic spring in the viscoelastic-plastic

component, results in the highest effective friction coefficient, whereas Material C, which

doubles the initial modulus of the hyperelastic rubbery spring, generates the smallest

effective friction coefficient. In practice, normal force provides loading carrying of the

material, whereas the tangential force represents the resistance for the tangential motion

and dissipation of the energy. Therefore, increasing only the modulus of hyperelastic
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rubbery spring p provide an effective way to increase both loading carrying as well as to

reduce energy dissipation.
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Figure 5-42: Effects of material initial modulus on: (a) Normal/tangential force vs time
curves; (b) Effective friction coefficient.

224

I I

----- Mat A
- Ma t C
- -- --- Mat D

I I



Figure 5-43(a) shows the variations of the largest maximum principal stress vs. the

normalized scratching distance. It is found that the peak value of the largest maximum

principal stress during scratching increases with increasing initial Young's modulus of

material. Figure 5-43(b) presents the peak value of the largest maximum principal stress

vs. the initial modulus of the materials curves, and shows an almost linear relationship

between them,

S3eak = 0.21E 0 +16. (5.5)

Figure 5-43(c) shows the variations of the largest limiting chain stretch ratio vs. the

normalized scratching distance. From the figure, it is found that increasing the initial

modulus of the hyperelastic rubbery spring reduces the largest limiting chain stretch ratio

whereas increase the modulus of the elastic spring of the viscoelastic-plastic component

increases the largest limiting chain stretch ratio. In this regard, increasing the initial

modulus of the hyperelastic rubbery spring will benefit the abrasive wear performance of

material.
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Figure 5-43: Effects of material initial modulus on: The variations of (a) the largest
maximum principal stress, and (b) Relation between the peak value of the largest
maximum principal stress and the initial modulus of the material; (c) the largest limiting
chain stretch ratio with the normalized scratching distance.

226



5.4.3.3 Effects of Chain Extensibility

The effects of chain extensibility, N, of the material are studied in this part. From Chapter

4, it is known the initial Young's modulus E' of the hyperelastic rubbery spring is

determined by the parameter p and N by eqn. (4-13). Therefore, simply varying N will

also change the initial modulus of the material. In order to isolate the effects of N from

the effects of u, the change of N is accompanied by the change of p to maintain the

same initial Young's modulus E' for all the materials studied. Three materials are

studied here: Material A studied in Chapter 4 is used as a reference for comparison;

Material F and G are created by varying p and N. Table 5-3 listed the material

parameters p and N, and corresponding initial Young's modulus EO of the hyperelastic

rubbery spring. Material F is chosen by doubling the N of Material A whereas Material G

uses the half of N of Material A.

Table 5-3: Material Parameters for Material A, F, and G.

N p (MPa) Er (MPa)

Material A 5.26 1.70 5.70

Material F 10.52 1.79 5.70

Material G 2.63 1.51 5.70

Figure 5-44 shows the true stress-true strain curves for the Material A, Material F,

and Material G. It is noticed that the difference between the stress response of the

materials becomes significant at relatively large strains: Material G shows a sharp

increase in stress response after s = 0.60, implying that molecular chain is stretched

close to the chain extensibility. Material F shows smaller response stress at strain

e =1.00 than Material A due to the larger chain extensibility of Material F.
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Figure 5-44: The true stress-true strain curves for Material A, Material F, and Material G.

Figure 5-45(a) shows the normal/tangential force vs. time curves from the simulations

for the three materials. From Figure 5-45(a), it is clear that the smaller chain extensibility

results in the smaller tangential forces as well as smaller normal forces. The normal force

generally shows less sensitive to the change in chain extensibility than the tangential

force. For instance, as the chain extensibility is reduced by half from Material A to

Material G, the normal force decreases only by about 3% whereas the tangential force by

about 20%. Figure 5-45(b) shows the effective friction coefficient from the simulations

for the three materials. Therefore, decreasing the chain extensibility provides an effective

way to reduce energy dissipation. It is also that found since the initial modulus of the

hyperelastic rubbery spring is related with N through eqn.(4-13), which shows that

decreasing N increases E'. Therefore, the relationship of eqn.(5-5) obtained by varying

p and E" cannot be generally held when N varies. However, eqn(5-5) can be still

provide insight on the mechanics of scratching and be applied as long as N is constant.
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Figure 5-45: Effects of chain extensibility on: (a) Normal/tangential force vs time curves;
(b) Effective friction coefficient.
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Figure 5-46: Effects of chain extensibility on: The variations of (a) the largest maximum
principal stress, and (b) the largest limiting chain stretch ratio with the normalized
scratching distance.

Figure 5-46(a) shows the effects of chain extensibility on the variations of the largest
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maximum principal stress with the normalized scratching distance. For the chain

extensibility of N = 2.63, the peak value of the largest maximum principal stress is

S'e"k =13MPa; For N =5.26, Sf""k =26MPa; For N=10.63, Sak = 41MPa.

Clearly, the peak value of the largest maximum principal stress is very sensitivity to the

variation in chain extensibility. The smaller chain extensibility results in significant

smaller peak value.

Figure 5-46(b) shows the effects of chain extensibility on the variations of the largest

limiting chain stretch ratio with the normalized scratching distance. The material with

smaller chain extensibility shows quite large limiting chain stretch ratio. Therefore,

cautions should be applied when reducing chain extensibility if chain breakage is the

dominant failure mode of the material.

5.5 Mechanics of the Scratching Tests for Glass Fiber Filled

TPUs

In this section, effects of the interaction between a single fiber with different orientations

and the wedge-type knife will be studied. Three representative fiber orientations, i.e., the

horizontal, the vertical, and the lateral, are investigated. Figure 5-47 shows the FEM

mesh and relative position of the fiber. Fiber dimensions of 16pm diameter and length to

diameter ratio of 8 were used by Parsons[5-5]. Here, the diameter of 12pim and the same

length to diameter ratio were used to accommodate the FEM mesh. In all the three cases,

the lower edge of the fiber was 56tm above the surface of the material. Figure 5-47(a)

shows a fiber in the horizontal configuration, where the left end of the fiber was about

50pm left to the centerline of the knife. Figure 5-47(b) shows a fiber in the vertical

arrangement, where the left edge of the fiber is about 50tm away from the centerline of

the knife. Figure 5-47(c) shows a fiber in the lateral arrangement, where the center of the

fiber is about 50pim away from the centerline of the knife. The overall geometry of the

model and boundary and loading conditions were the same as those in the study of

wedge-type knife indentation/scratching study on unfilled TPUs. The indentation depth

was 6n=80pm. The indentation speed was 2ptm/s and the scratching speed was 4pim/s.

The Young's modulus of the glass fiber was 72GPa whereas the Poisson's ratio was
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0.22[5-5].

.. .. ....

Figure 5-47(a)

Figure 5-47(b)

Figure 5-47(c)

Figure 5-47: FEM mesh and relative position of the fiber: (a) A horizontal fiber; (b) A
vertical fiber; (c) A lateral fiber. The fibers are represented by the black blocks.
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It should be noted that since the boundary value problems in above models are in

plane strain state, the horizontal and vertical fibers are effectively "plates" with infinite

width in z-direction whereas the lateral fiber is effectively a fiber with infinite length.

The model with each representative fiber orientation thus reveals the overall interactions

between the knife and the fibers that are predominately orientated in the same direction of

the representative fiber.

5.5.1 The Horizontal Fiber

The scratching test on the glass fiber filled TPUs with a horizontal representative fiber

was investigated. Figure 5-48 shows the normal/tangential force vs. normalized time t*

curves. The time is normalized according to eqn.(5-2). For the purpose of comparison,

the results from indentation/scratching simulation on unfilled TPU are presented in

Figure 5-48(b). From Figure 5-48, during indentation, the normal force demonstrates

similar features as those observed in unfilled TPUs, since in the current case the knife is

relatively far away from the fiber and thus cannot "feel" the existence of the fiber. Upon

scratching, the knife cannot "feel" the fiber until it moves close enough to the fiber. From

Figure 5-48(b), the normal and tangential forces for the filled TPU deviates from those

for unfilled TPUs at about t* = 1.3, corresponding to the scratching distance of 36tm,

implying the knife starts to feel the fiber as it moves about 14ptm away from the fiber. As

the knife passes underneath the fiber, increases in both normal force and tangential force

are observed, implying a larger resistance has to be overcome for an abrasive particle to

move across a the horizontal fiber. In this study, the lower edge of the fiber is 56pim

above the surface of the material. It is expected that an even larger resistance force should

be overcome if the fiber were closer to the surface. In reality, abrasive particles may not

be able to overcome such resistance and will be blocked[5-5].
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Figure 5-48: Normal/tangential force vs. t* curves from the numerical simulation for the
case of the horizontal fiber.
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Figure 5-49(a) Figure 5-49(b)

Figure 5-49(c) Figure 5-49(d)

Figure 5-49(e) Figure 5-49(f)

Figure 5-49: Contour plots for (a) S, and (b) q at indentation; (c) S3 and (d) q upon

scratching 8t=20pm; (e) S3 and (f) r7 upon scratching 8t=100pm for the scratching test

with 6n=80pm using the wedge-type knife.

Figure 5-49 shows the contour plots of the maximum principal stress S3 and the

limiting chain stretch ratio q during the scratching process. Upon indentation, i.e.,
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6n=80gm, 5t=Opm (Figure 5-49(a) and (b)), the material conformation to the knife tip is

almost symmetric, although the material on the fiber side of the knife shows a larger

amount of conformation than the material on the other side of the knife. Because of the

incompatible deformation capabilities of the fiber and the TPU material, the fiber shows

being bent upward during the indentation, which in turn provides extra resistance to the

indentation force. The largest S3 occurs underneath the contact surface and is 10.7MPa,

which is smaller than that from the scratching test on unfilled TPU (12.IMPa). The

largest limiting chain stretch ratio q occurs on the contact surface with "x = 0.88,

which is the almost identical as that from the scratching test on unfilled material.

Upon scratching (Figure 5-49(c) and (d)) with the scratching distance of 8t=30pm,

the location for the largest maximum principal stress moves onto the contact surface and

behind the knife tip whereas the location for the maximum limiting chain stretch ratio

moves to the place ahead of the knife tip. The similar features were observed from the

scratching test on unfilled material. With the scratching distance of 8t=30pm, the largest

maximum principal stress is about 22.2MPa whereas the limiting chain stretch ratio

increases moderately to 0.91. In comparison with the scratching test on unfilled material,

the largest maximum principal stress for the horizontal fiber filled TPU is smaller than

the unfilled TPU whereas the limiting chain stretch ratios for both materials are almost

identical.

Upon further scratching (Figure 5-49(e) and (f)) with the scratching distance of

8t=100pm, the material conformation to the knife tip is further biased. With the

scratching distance of 8t=1O0pm, the largest maximum principal stress decreases to

17.4MPa whereas the largest limiting chain stretch ratio is about 0.90, both of which are

about the same as for the unfilled material.

Figure 5-50 shows the variations of the largest maximum principal stress and the

largest limit chain stretch ratio vs. the scratching distance curves. The scratching distance

is normalized according to eqn.(5-4), using the indentation depth of 6n=80pm. The

corresponding curves from the scratching test with 6n=80pm on unfilled material are also

shown in the figure. From Figure 5-50, the largest maximum principal stress for the

horizontal fiber filled material is almost identical to that for unfilled material until
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D*=0.3, corresponding to a scratching distance of about 24tm and about 26 p.m away

from the left end of the fiber. For D*>0.3, the horizontal fiber filled material shows

relatively smaller amount of increase in the largest maximum principal stress and the

peak value is about 24MPa, which is about 92% of the peak value for the unfilled

material. The reason for the smaller peak value of the largest maximum principal stress in

the horizontal fiber filled material is because the presence of the fiber provides the

resistance to the material moving with the knife, hence facilitates the material to pass by

the knife, and effectively reduces the stick phase, resulting in less stretch behind the knife

and thus less maximum principal stress. As D*=l.0, which corresponds to the knife

moves under the fiber, the largest maximum principal stress is almost the same as that for

the unfilled material. It is also noticed that during the scratching process, very large S3

exists in the material around the comer of the fiber, implying the possibility for the

damage such as debonding occurring in these regions. From Figure 5-50(b), the variation

of the largest limiting chain stretch ratio is almost identical to that from the unfilled

material until the knife moves under the fiber, where the filled material shows larger

limiting chain stretch ratio, but the amount of the difference between the filled and

unfilled materials is small. The presence of a horizontal fiber, which is shown to reduce

the peak value of the largest maximum principal stress, may benefit to the abrasive

performance. However, the presence of a horizontal fiber also creates stress concentration

around the corner of the fiber, which may cause debonding and fiber pullout. Indeed, this

form of material damage, i.e. interface debonding and fiber pullout, was observed in

Chapter 3. Therefore, from the point view of micro-mechanics, the presence of the

horizontal fiber may benefit the performance, but such benefit may be overshadowed by

the adversary effects due to interface debonding and fiber pullout.
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Figure 5-50: Effects of a horizontal fiber on: The variations of (a) the largest maximum
principal stress, and (b) the largest limiting chain stretch ratio.
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5.5.2 The Vertical Fiber

The scratching simulation on the glass fiber filled TPUs with a vertical representative

fiber was investigated. Figure 5-51 shows the normal/tangential force vs. normalized time

t* curves. The results from indentation/scratching test on unfilled TPU are presented in

Figure 5-51(b). From Figure 5-51, during indentation, the normal force demonstrates

similar features as those observed in unfilled TPUs. Upon scratching, the knife cannot

"feel" the fiber until it moves closer to the fiber. In contrast to the observation from the

case of a the horizontal fiber, the normal and tangential forces for the filled TPU deviates

from those for unfilled TPUs at about t * =1.1, corresponding to the scratching distance

of 12pm, implying the knife starts to feel the fiber as it moves about 40 m away from the

fiber. From Figure 5-51, it is also noticed that the highest resistance due to the vertical

fiber occurs at about t* = 1.6, corresponding to the scratching distance of 72p.m, in other

words, the highest resistance due to the fiber is realized immediately after the knife

passes the fiber due to drag from the fiber. After the knife passes the fiber, both normal

force and tangential force decrease and follow the same course as determined from

unfilled TPUs.

Figure 5-52 shows the contour plots of the maximum principal stress S3 and the

limiting chain stretch ratio q during the scratching process. Upon indentation, i.e.,

6n=80pm, 6t=Olpm (Figure 5-52(a) and (b)), the material conformation to the knife tip is

almost symmetric and the distributions of the maximum principal stress and the limiting

chain stretch ratio around the knife tip are almost symmetric. From Figure 5-52(a), the

fiber shows the features of a cantilever subjected to bending and provides extra resistance

to the indentation force. The largest S3 occurs underneath the contact surface and is

11.OMPa, which is smaller than that from the scratching test on unfilled TPU (12.1MPa)

but about the same as that for the horizontal fiber. The largest limiting chain stretch ratio

7 occurs on the contact surface with q'max = 0.88, which is almost identical as that from

the scratching tests on unfilled material and filled material with a horizontal

representative fiber.
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Figure 5-52(a) Figure 5-52(b)

Figure 5-52(c) Figure 5-52(d)

Figure 5-52(e) Figure 5-52(f)

Figure 5-52: Contour plots for (a) S3 and (b) q at indentation; (c) S3 and (d) q upon

scratching 6t=20ptm; (e) S3 and (f) q upon scratching 6t=100 tm for the scratching test

with 8n=80pim using the wedge-type knife.
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Figure 5-53: Effects of a vertical fiber on: The variations of (a) the largest maximum

principal stress; and (b) the largest limiting chain stretch ratio with the normalized

scratching distance.
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Upon scratching (Figure 5-52(c) and (d)) with the scratching distance of 6t=30pm,

the location for the largest maximum principal stress moves onto the contact surface and

behind the knife tip whereas the location for the maximum limiting chain stretch ratio

moves to the place ahead of the knife tip. The similar features were observed from the

scratching test on the unfilled material. With the scratching distance of 6t-30pm, the

largest maximum principal stress is about 21.2MPa whereas the limiting chain stretch

ratio increases moderately to 0.91. In comparison with the scratching test on unfilled

material and fiber filled material with a horizontal fiber, the largest maximum principal

stress for the vertical fiber filled TPU is smaller whereas the limiting chain stretch ratios

are almost identical.

Upon further scratching (Figure 5-52(e) and (f)) with the scratching distance of

8t=100pm, the material conformation to the knife tip is further biased. With the

scratching distance of 6t= 100pm, the largest maximum principal stress decreases to

17.7MPa whereas the largest limiting chain stretch ratio is about 0.90, both of which are

about the same as for the unfilled material and the filled materials with a horizontal fiber.

To further illustrate the variations of the largest maximum principal stress and the

limiting chain stretch ratio, Figure 5-53 shows the variations of the largest maximum

principal stress and the largest limit chain stretch ratio vs. the normalized scratching

distance curves, defined by eqn.(5-4) and using the indentation depth of 8n=80tm. The

corresponding curves from the scratching simulation with 6n=80ptm on unfilled material

are also shown in the figure. From Figure 5-53, the largest maximum principal stress for

the horizontal fiber filled material is almost identical to that for unfilled material until

D*=0.3, corresponding to a scratching distance of about 24pm and about 30 pm away

from the left end of the fiber. For D*>0.3, the vertical fiber filled material shows

relatively smaller amount of increase in the largest maximum principal stress and the

peak value is about 22MPa, which is about 84% of the peak value for the unfilled

material. As discussed in the case of the horizontal fiber, the presence of the fiber

provides resistance to the material moving with the knife, hence effectively reduces the

stick phase and results in less material stretch behind the knife and thus less maximum

principal stress. Clearly, a vertical fiber provides a higher resistance than the horizontal
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fiber does, thus reduces the maximum principal stress more effectively. It is also noticed

from Figure 5-52 that during the scratching process, S3 is essentially compression stress

in the material around the corner of the fiber, implying vertical fiber might be not

vulnerable to debonding. From Figure 5-53(b), the variation of the largest limiting chain

stretch ratio is almost identical to that from the unfilled material until the knife moves

under the fiber, where the filled material shows larger limiting chain stretch ratio, but the

amount of the difference between the filled and unfilled materials is small. Clear due to

the smaller peak value and less vulnerable to debonding, the presence of a vertical fiber is

benefit to the abrasive performance.

5.5.3 The Lateral Fiber

The scratching simulation on the glass fiber filled TPUs with one lateral representative

fiber was investigated. Figure 5-54 shows the normal/tangential force vs. normalized time

t* curves. The results from indentation/scratching test on unfilled TPU are presented in

Figure 5-54(b). From Figure 5-54, due to the relatively small volume occupied by in the

x-y plane, the fiber has no effects on the normal force and the tangential, i.e., the normal

force and the tangential force follow the same courses as those from the test on unfilled

TPUs. As one can expect, as the distance of between the fiber and the contact surface

decreases, the knife will feel the fiber and both normal and tangential forces will increase.

However, the increase will not be as significant as those with horizontal and vertical

fibers because of the relatively small volume occupied by the fiber.
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Figure 5-54: Normal/tangential force vs. t* curves from the numerical simulation for the
case of the horizontal fiber.
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Figure 5-55: Contour plots for (a) S, and (b) q at indentation; (c) S3 and (d) q upon

scratching 6t=20pm; (e) S3 and (f) q upon scratching 5t=100pm for the scratching test

with 8n=80jm using the wedge-type knife.
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Figure 5-55 shows the contour plots of the maximum principal stress S3 and the
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limiting chain stretch ratio q during the scratching process. Upon indentation, i.e.,

6n=80pm, t=0pm (Figure 5-55(a) and (b)), the material conformation to the knife tip is

almost symmetric. The distributions of the maximum principal stress and the limiting

chain stretch ratio are almost symmetric. The largest S3 occurs underneath the contact

surface and is 12.3MPa, which is about the same as that from the scratching test on

unfilled TPU (12. 1MPa). The largest limiting chain stretch ratio 77 occurs on the contact

surface with 17"ax =0.88, which is also about the same as that from the scratching test on

unfilled material.

Upon scratching with the scratching distances of &t=30pLm (Figure 5-53(c) and (d))

and 6t=100[m (Figure 5-55(e) and (f)), the presence of a lateral fiber does not change

the distribution of the maximum principal stress and the limiting chain stretch ratio

significantly, and the largest values for them are almost identical to those for unfilled

materials.

To further illustrate the variations of the largest maximum principal stress and the

limiting chain stretch ratio, Figure 5-56 shows the variations of the largest maximum

principal stress and the largest limit chain stretch ratio vs. the scratching distance curves.

Clearly, due to the relatively small volume occupied by the fiber in the x-y plane, the

fiber has barely effects on the largest maximum principal stress and the largest limiting

chain stretch ratio, i.e., the largest maximum principal stress and the largest limiting

chain stretch ratio are almost identical to those for unfilled TPU during the entire

scratching distance.

5.6 Summary

Extensive FEM simulations of indentation/scratching tests were conducted in this chapter

to investigate the effects of indentation depth, contact conditions, cyclic scratching,

contact friction, scratching speed, material properties, and fiber fillers. The FEM model

was built based on the configuration of the tests with the consideration of the

computational efficiency. The material stress-strain behavior was modeled by the

constitutive model proposed in Chapter 4, which accounted for the various dependences

of the stress-strain behavior of TPUs.
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In order to judge the correctness of the proposed FEM model, the model was first

used to simulate the indentation/scratching tests in Chapter 2. The FEM simulations

showed excellent agreements in the normal and tangential forces with the test results and

remark similarity in the displacement and strain fields obtained from image processing of

micrographs in the SEM in situ indentation/scratching tests, verifying the capability of

FEM model to predict the highly nonlinear deformation during indentation and

scratching.

The FEM simulations with two different indentation depths were conducted to

investigate the general mechanics. Upon indentation, the normal force increased linearly;

upon scratching, the normal force experienced a decrease then became a constant,

whereas the tangential force increased first linearly then gradually bent over toward a

constant force, resulting in an overall nonlinear increase in tangential force. The contour

plots at different stages of the indentation/scratching tests revealed the evolution of the

maximum principal stress S3 and limiting chain stretch ratio during the

indentation/scratching process. During indentation, the largest maximum principal stress

was tensile stress, and was a few microns under the contact surface due to the constraint

applied by the frictional force on the contact surface; the largest limiting chain stretch

ratio was on the contact surface. During scratching, the location of the largest maximum

principal stress moved onto the material surface and fell behind the knife whereas the

largest limiting chain stretch ratio moved in front of the knife tip where large

compression stress prevailed. The largest maximum principal stress experienced a

dramatic increase to a peak value as scratching started, then decreased to a constant

value, whereas the largest limiting chain stress ratio increased moderately to a constant

value. The peak values of S3 and q were 17.5MPa and 0.87 for the test with indentation

of 50ptm whereas were 26MPa and 0.91 for the test with indentation of 80pm. The

combination of high values in the test with indentation depth of 80pm may explain why

the surface for the 5,, = 80um test experienced large amount of damages whereas the

surface for the o,, = 50pm test essentially remained unchanged.

In seal applications, the surface of the sealant material is compressed onto the bushing

surface, and the abrasive particles between these two surfaces abrade the sealant surface
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and cause abrasive wear. FEM simulation using the bulk-type knife, a configuration

consisting of a smooth surface with a small sharp protrusion, was conducted to

investigate the effects of the superposition of the overall compression on the mechanics

of the scratching test. It was found that the general mechanics showed the similar features

as those observed in the wedge-type knife tests, except for the normal force during the

indentation. Assuming that the height of the asperity is J, and the overall compression is

achieved by compressing the bushing onto the sealant material by (2, the indentation test

using wedge-type knife with indentation depth of 5, provides smaller maximum

principal stress and chain limiting stretch ratio response, whereas the indentation test

using wedge-type knife with indentation depth of (, +52 provides higher maximum

principal stress and chain limiting stretch ratio response.

During cyclic scratching, softening in normal and tangential forces were observed due

to material softening after the first scratching. However, the variation of the normal and

tangential force was similar as those in the first scratching. It was also found that even

with softening, the peak value of the largest principal stress and the largest limiting chain

stretch ratio remained very high values during the scratching process, implying that the

material was subjected to repeated very high largest maximum principal stress and chain

limiting stretch ratio during cyclic scratching.

TPU is well known as a material with low friction coefficient. However, very high

friction coefficient (about 1.0) was observed in both tests and simulations. It was found

that cyclic softening, rate dependence and hysteresis contributed to much of this large

effective friction coefficient. Numerical simulations revealed that such high effective

friction coefficient was a result of asymmetric conformation of the material to the knife

tip due to the softening and hysteresis. During scratching process, the material behind the

knife was in unloading state whereas the material in front of the knife underwent loading.

Due to softening and hysteresis, for a given strain, the material under unloading had

much lower stress response than that under loading state, such unbalanced stress response

caused material asymmetric conformation, resulting high effective friction coefficients.

Scratching speed effects were also investigated by varying the speed used in the

simulations from 4ptm/s to 16pm/s. The largest limiting chain stretch ratio did not show
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significant dependence on the scratching speed. However, the peak value of the largest

maximum principal stress increased with increasing scratching speed. For scratching

speed changing from 4 jm/s to 16pim/s, the peak value increased by about 15%.

Parametric studies by varying contact friction force, scratching speed, and material

properties of elastomers were conducted to identify and evaluate the influence of these

factors on the abrasive wear performance of the material.

Effects of hysteresis were first investigated. It was found that the decrease in the

hysteresis decreased both the normal force and the tangential force significantly. As

hysteresis was totally removed, the normal force did not show the feature of decreasing to

a stabilized value during scratching; instead, it maintained the force magnitude of

immediately after the indentation; the tangential force showed a linear increase then

became to a constant value. It was also found that reducing hysteresis decreased the

largest maximum principal stress significantly, and decreased the largest limiting chain

stretch moderately.

It was found that the small difference in the initial stress-strain response of material

resulted in significant differences in the tangential forces. Generally, increasing the initial

Young's modulus increased normal force and tangential force, as well as the largest

maximum principal stress. However, increasing the initial modulus of the hyperelastic

rubbery spring reduced the largest limiting chain stretch ratio and the effective friction

coefficient whereas increase the modulus of the elastic spring of the viscoelastic-plastic

component increased the largest limiting chain stretch ratio and the effective friction

coefficient.

The extensibility of molecular chains in elastomers affects the stress-strain behavior

of materials at moderate to large strain significantly. From our investigations, the material

with less chain extensibility showed smaller effective friction coefficient and less

tangential force. The smaller chain extensibility also resulted in significantly smaller peak

value of the largest maximum principal stress, but significantly high chain limiting

stretch ratio.

Addition of fibers into TPUs had been shown to improve the abrasive wear

performance of the sealant material. Effects of fillers on the mechanics of scratching were

studied by investigating three representative orientations of fibers in the material, i.e. a
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horizontal fiber, a vertical fiber, and a lateral fiber. The presences of a horizontal fiber

and a vertical fiber close the material surface were found to increase both the normal

forces and tangential force as the knife approached to fiber. Clearly, the increase in

normal force and tangential force would make asperities harder to move along the surface

hence reduced the abrading distance and the possibility to agglomerate. A lateral fiber,

however, did not provide such improvement. It was also found that during scratching, the

horizontal fiber and vertical fiber could reduce stick phase during scratching, and hence

could reduce the largest maximum principal stress and benefit the abrasive wear

performance. However, large stress concentrations were also observed around the

horizontal fiber, suggesting that interfacial damage and thus fiber pullout be occur.

Therefore, the advantage of a horizontal fiber to decrease the largest maximum principal

stress might be overshadowed by the damage created by fiber pullout.
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Chapter 6

Conclusions and Future Work
The goal of this thesis research is to provide fundamental understanding of abrasive wear

of elastomeric materials due to the effect of abrasive particle indentation and scratching.

To achieve this aim, both experimental and numerical studies were conducted.

Fundamental considerations have been achieved in several area including experimental

study of indentation and scratching of elastomers with direct observations of local

deformation fields; characterizing and modeling the nonlinear rate-dependent, cyclic

softening stress-strain behavior of elastomers; simulations of indentation and scratching

of elastomeric materials. Details of each of these achievements are summarized below;

this research has also triggered new directions for future work in this area as described

below.

6.1 Summary of Conclusions

Abrasive wear occurs when an abrasive particle is compressed between two contact

surfaces. The confined configuration makes it extremely difficult to establish direct

observations of the deformation at the micron-scale during the wear process and prohibits

numerical simulations that address the nonlinearities arising from large deformation,

contact, and material stress-strain behavior. A two-dimensional simplification of the

confined configuration was proposed, which simplified abrasive wear as a process where

a knife indented and scratched the surface of an elastomer. Two types of knives were

developed: The wedge-type knife and the bulk-type knife. The former simulated the

interaction between a single abrasive particle and the elastomer whereas the latter studied

the effect of an overall surface compression on the simultaneous knife indentation and

scratching. With such a simplification, direct observations of abrasive wear process could

be established and the cost for numerical simulations was reduced significantly, and

allowed the dominant mechanics of abrasive wear of elastomeric materials being

retained.

An in-situ micro indentation and scratching test system was first developed. The new
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system conducted micro indentation/scratching test within an SEM and enabled

simultaneous collection of video images of the indentation and scratching tests and the

corresponding normal and tangential force data. For the indentation/scratching test using

the wedge-type knife, it was observed that the variations of normal and tangential forces

could be divided into three regions according to different dominant features of the test.

The first region corresponded to the indentation, where the normal force increased

initially nonlinearly then almost linearly and the material symmetrically conformed to the

knife. The second region corresponded to the start of scratching where the tangential

force increased almost linearly and the material around the contact surface moved with

the knife, demonstrating features commonly known as stick phase. The material behind

the knife gradually lost contact with the knife and the conformation of the material to the

knife became biased. The third region corresponded to the scratching where the curve for

tangential force gradually bent over to a constant value, and the knife slipped over the

surface (known as slip phase). The material behind the knife lost contact with the knife

whereas the material ahead of the knife was pushed by the knife, providing resistance to

the knife movement. For the test using the bulk-type knife, the material deformation

around the protrusion showed similar features as those observed in the tests using wedge-

type knife.

Image processing, using digital image correlation technique, was successfully used to

obtain displacement and strain fields during the indentation/scratching tests. For the test

using the wedge-type knife, the displacement and strain fields showed symmetric features

during indentation and biased features during scratching. For the test using the bulk-type

knife, it was found that during indentation, due to the material being lifted by the

protrusion (or asperity), the deformation of the material around the protrusion/asperity

was essentially similar as that from the tests using the wedge-type knife. During

scratching, however, due to the constraint applied by the contact between the smooth

surface of the knife and the material, the deformation was generally less severe than that

using wedge-type knife.

Topography changes during the cyclic scratching tests were studied using SEM and

Zygo. For the test on unfilled TPU with a relatively smaller indentation depth,

, = 50p m, no significant surface change was observed. Some small pits and plastic
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deformations were observed during the cyclic scratching. The small pits were formed

possibly due to small inclusion or inhomogeneity close to the surface and were about the

same size as that of the initial damages in Gent and Pulford's bimodal model. However,

instead of growing into larger damage, they were simply removed during the thereafter-

scratching process. In contrast to the observations from the tests with 3,, =50pm,

dramatic topography changes were observed from the tests with 3,, = 80U m on unfilled

TPUs. The surface topography changes occurred in two forms: One was the surface peak-

valley pattern due to plastic deformations, whereas the other one was material loss due to

rupture of the material. As the number of scratching cycles increased, the dimensions of

both plastic regions and surface damages increased, accompanied by new damages

generated after each scratching.

For glass fiber filled TPUs, dramatic topography changes were also observed from

the tests with 5,, = 8 Ou m . After the first scratching, the plastic deformation in the form

of wrinkles dominated the surface topography. These plastic deformations resulted in

surface damages after the 5th scratching. These results implied that the fiber filled TPU

would wear at a similar or even faster rate than the unfilled TPU, which consistent with

Parsons' macroscopic testing of seals, where it was found that the role of the fibers in

extending seal life was the prevention of particle ingestion as opposed to actual

improvement/delay of wear rate.

The large strain nonlinear stress-strain behavior of thermoplastic polyurethanes

(TPUs) exhibits strong hysteresis, rate dependence and cyclic softening. In this thesis

work, a constitutive model capturing the major features of the stress-strain behavior of

TPUs was developed. The proposed constitutive model decomposed material behavior

into an equilibrium component and a rate dependent deviation from equilibrium. The

cyclic softening behavior was attributed to be due to the softening of the equilibrium path

as a result of the evolution of the effective volume fraction of the soft domain during the

deformation process due to the relative motions among hard domains, upon which the

occluded soft material was released to carry load. Numerical simulations of uniaxial

compression tests verified the efficacy of the proposed new constitutive model.

Extensive FEM simulations of indentation/scratching tests were conducted to
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investigate the effects of indentation depth, contact conditions, cyclic scratching, contact

friction, scratching speed, material properties, and fiber fillers. The FEM model was first

verified by comparing the variations of normal and tangential forces and the distributions

of displacement fields from the tests and numerical simulations. The numerical

simulations showed excellent agreements in the normal and tangential forces from the

test results and remark similarity in the displacement and strain fields obtained from

image processing of micrographs in the SEM in situ indentation/scratching tests,

verifying the capability of FEM model to predict the highly nonlinear deformation during

indentation and scratching.

The FEM simulations with two different indentation depths were conducted to

investigate the general mechanics. Upon indentation, the normal force increased linearly;

upon scratching, the normal force experienced a decrease then became a constant,

whereas the tangential force increased first linearly then gradually bent over toward a

constant force, resulting in an overall nonlinear increase in tangential force. During

indentation, the largest maximum principal stress was tensile and occurred a few microns

under the contact surface due to the constraint applied by the frictional force on the

contact surface; the largest limiting chain stretch ratio was on the contact surface. During

scratching, the location of the largest maximum principal stress moved onto the material

surface and fell behind the knife whereas the largest limiting chain stretch ratio moved in

front of the knife tip where large compression stress prevailed. The largest maximum

principal stress experienced an initial dramatic increase to a peak value, then decreased to

a constant value, whereas the largest limiting chain stretch ratio increased moderately to a

constant value. The increases in the largest maximum principal stress and the largest

chain limiting chain stretch ratio may account for the damage initiation. For instance, the

peak value of the largest maximum principal stress and the largest chain limiting chain

stretch ratio were 17.5MPa and 0.87 for the test with indentation of 50pim whereas were

26MPa and 0.91 for the test with indentation of 80pm. The latter were significantly

higher than the former, which might account for why the surface for the 8,, =80um test

experienced large amount of damages whereas the surface for the 8=,, 50pjm test

essentially remained unchanged.
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FEM simulation using the bulk-type knife was conducted to investigate the effects of

the superposition of an overall compression on the mechanics of the scratching test. It

was found that the general mechanics showed similar features as those observed in the

wedge-type knife tests. Assuming that the height of the asperity is 8, and the overall

compression is achieved by compressing the bushing onto the sealant material by 52, the

indentation test using wedge-type knife with indentation depth of '51 provides smaller

maximum principal stress and limiting chain stretch ratio, whereas the indentation test

using wedge-type knife with indentation depth of 5, + 2 provides larger maximum

principal stress and limiting chain stretch ratio.

During cyclic scratching, softening in normal and tangential forces were observed due

to material softening after the first scratching. However, the variations of the normal and

tangential forces were similar to those in the first scratching. It was also found that even

with softening, the peak value of the largest principal stress and the largest limiting chain

stretch ratio remained very high value during the scratching process, implying that during

cyclic softening the material was subjected to repeatedly very high maximum principal

stress and chain stretching.

In both tests and simulations, a very high effective friction coefficient was observed.

Numerical simulations revealed that such a high effective friction coefficient was a result

of softening, hysteresis, and rate dependence of the stress-strain behavior of the material,

which resulted in asymmetric conformation of the material to the knife tip during

scratching. During scratching process, the material behind the knife was in unloading

state whereas the material in front of the knife underwent loading. Due to softening and

hysteresis, for a given strain, the material under unloading had much lower stress than

that under loading, such unbalanced stress response caused greater material asymmetric

conformation, resulting in high effective friction coefficients.

Scratching speed effects were also investigated by varying the speed used in the

simulations from 4tm/s to 16tm/s. The largest limiting chain stretch ratio did not show

significant dependence on the scratching speed. However, the peak value of the largest

maximum principal stress increased with increasing scratching speed due to the rate

dependency of the stress-strain behavior. For scratching speed changing from 4pm/s to
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16ptm/s, the peak value increased by about 15%.

Parametric studies of material properties by varying hysteresis, initial modulus, and

chain extensibility were conducted to identify and evaluate the influence of these factors

on the abrasive wear performance of the material. It was found that the decrease in the

hysteresis decreased both the normal force and the tangential force significantly. It was

also found that reducing hysteresis decreased the largest maximum principal stress

significantly, and decreased the largest limiting chain stretch moderately.

The initial Young's modulus of TPUs consists of the contributions from equilibrium

hyperelastic rubbery behavior and rate-dependent viscoplastic behavior. The effects of

these two components on the mechanics of abrasive wear were investigated. Generally,

increasing the initial Young's modulus increased normal force and tangential force, as

well as the largest maximum principal stress. However, increasing the initial modulus of

the hyperelastic rubbery spring or equilibrium behavior reduces the largest limiting chain

stretch ratio and the effective friction coefficient whereas increasing the modulus of the

elastic spring or rate dependent behavior of the viscoelastic-plastic component increases

the largest limiting chain stretch ratio and the effective friction coefficient.

The extensibility of molecular chains in elastomers affects the stress-strain behavior

of materials at moderate to large strain significantly. From our investigations, the material

with less chain extensibility showed smaller effective friction coefficient and smaller

tangential force. The smaller chain extensibility also resulted in significantly smaller peak

value of the largest maximum principal stress but higher chain limiting stretch ratio.

Addition of fibers into TPUs had been shown to improve the abrasive wear

performance of the sealant material. Effects of fillers on the mechanics of scratching were

studied by investigating three representative orientations of fibers in the material, i.e. a

horizontal fiber, a vertical fiber, and a lateral fiber. The presences of a horizontal fiber

and a vertical fiber close to the material surface were found to increase both the normal

forces and tangential force as the knife approached the fiber. Clearly, the increase in

normal force and tangential force would make asperities harder to move along the surface

hence reduced the abrading distance and the possibility to agglomerate. A lateral fiber,

however, did not provide such improvement. It was also found that during scratching, the

horizontal fiber and vertical fiber could reduce stick phase during scratching, and hence
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could reduce the largest maximum principal stress and benefit the abrasive wear

performance. However, large stress concentrations were also observed around the

horizontal fiber, suggesting that interfacial damage and thus fiber pullout be occur.

Therefore, the advantage of a horizontal fiber to decrease the largest maximum principal

stress might be overshadowed by the damage created by fiber pullout. The vertical fiber,

which did not show high stress concentration around it, may offer better wear

performance than the horizontal fiber.

6.2 Future Works

In retrospect, we find that the current thesis work has approached such a stage that on the

one hand, it extends our fundamental insight about the mechanics of abrasive wear of

elastomeric materials; on the other hand, it also provides means to conduct more

complicated analysis to account for the factors missed in current thesis research;

moreover, it also raises some interesting questions that is worth for elaboration in the

future. In the future, several directions are worth for future consideration:

1) Temperature effects. The energy dissipated during the relative motions of the two

contact surfaces will raise the temperature of the material, which in turn changes its

mechanical behavior. Thermoplastic polyurethanes are especially susceptible to

temperature change because of its relative low transition temperature of the hard

domain. The constitutive model developed in this work has been shown to be

effective in the simulations of scratching tests using both wedge-type knife and bulk-

type knife. Yet it is also open for accounting for the temperature in the model.

Therefore, incorporating temperature into the constitutive model and study the

temperature and mechanical property change will be an interesting yet important

work for the future.

2) Multi-protrusion bulk-type knife tests. In seal applications, small asperities are

ingested into the contact surface, then undergoes interactions with material surface as

well as neighboring asperities. It will be very informative to study the mechanics of

abrasive wear in the presence of multi-asperities. As a first step toward this end,

multi-protrusion bulk-type knife will certainly be very informative in the study of the

effects of these interactions on the mechanics of abrasive wear and on the
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agglomerations of abrasive particles. The production of the bulk-type knife with one

protrusion provides invaluable experience for the future work in this direction.

3) Simulations of damage initiation and progression. In the current thesis work, the

maximum principal stress and the limiting chain stretch ratio have been used for the

study of the mechanics of abrasive wear. However, the final goal of the study of

abrasive wear is to predict the damage initiation and progression, and hence to

improve material design. In this regard, it is importance to consider damage initiation

and progression in the future. With the fundamental mechanics becomes clear in the

current thesis work, one important thing left is to study the criterion for damage

initiation and progression of elastomeric materials. As soon as such criterion is

available, proper model will be generated and the scheme used in current study can be

adapted to address this important problem.

4) Surface properties of TPU using nanoindentation and nanoscratching. Surface

material, which consists of material between the surface and a few microns below the

surface, has been found to have different properties from those of bulk materials in

most materials. In the application of metallic and polymeric materials, surface

modifications have been shown to be an effective way to improve wear performance

of materials. However, it is unclear yet whether this surface property difference will

change the abrasive wear performance of elastomers. Therefore, inspecting the

evolution of surface properties using nanoindentation and nanoscratching during the

scratching process and properly modeling such evolution will provide insight and

direction to improve wear performance.

5) Surface stability and formation of Schallamach wave. It is well known that the

formation of Schallamach due to the instability of the surface during scratching is

responsible for the friction of elastomeric materials. In current research, the wrinkle-

like surface profile resembles the small ridges formed due to Schallamach waves.

However, it is unclear how Schallamach waves can be related to the mechanical

properties of elastomers as well as abrasive wear. The numerical model proposed in

the current work can be possibly applied to simulate this important phenomenon.

6) Multi-scale modeling. In the current thesis work, the dimension of the FEM model is

a few millimeters in order to simulate real boundary conditions, whilst the area of
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interests for mechanics of abrasive wear was only a few hundreds of microns where

refined mesh was used to address the large deformation gradient. In such a model,

tremendous number of nodes and elements had also been given to the transition

region from the area of interest to the far field material, where the deformation was

essentially small. As more complicated factors, such as multi-asperities, multi-fibers,

and damages, have to be addressed in the future, the current FEM model would

become less effective due to even more refined mesh has to be used in the area of the

contact between the knife and the material. Multi-scale modeling is therefore highly

desired in the future research. One idea for multi-scale modeling is to only model the

small area of interest where the large deformation prevails and to apply proper

boundary conditions to it. The boundary conditions for such an area can be obtained

from a simulation using a full-size model but without the details around the area of

interest, such as fibers, surface damages.
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Appendix A

Durometer Hardness and the Stress-

Strain Behavior of Elastomeric Materials'

Abstract

The Durometer hardness test is one of the most commonly used measurements to

qualitatively assess and compare the mechanical behavior of elastomeric and elastomeric-

like materials. This paper presents nonlinear finite element simulations of hardness tests

which act to provide a mapping of measured Durometer Shore A and D values to the

stress-strain behavior of elastomers. In the simulations, the nonlinear stress-strain

behavior of the elastomers is first represented using the Gaussian (neo-Hookean)

constitutive model. The predictive capability of the simulations is verified by comparison

of calculated conversions of Shore A to Shore D values with the guideline conversion

chart in ASTM D2240. The simulation results are then used to determine the relationship

between the neo-Hookean elastic modulus and Shore A and Shore D values.

The simulation results show the elastomer to undergo locally large deformations

during hardness testing. In order to assess the potential role of the limiting extensibility

of the elastomer on the hardness measurement, simulations are conducted where the

elastomer is represented by the non-Gaussian Arruda-Boyce constitutive model. The

limiting extensibility is found to predict a higher hardness value for a material with a

given initial modulus. This effect is pronounced as the limiting extensibility decreases to

less than 5 and eliminates the one-to-one mapping of hardness to modulus. However, the

durometer hardness test still can be used as a reasonable approximation of the initial neo-

Hookean modulus unless the limiting extensibility is know to be small as is the case in

many materials, such as some elastomers and most soft biological tissues.

Keyword: hardness, modulus, durometer, elastomer, soft tissue

1 This work is published in Rubber Chemistry and Technology, Vol. 72, No. 2, May-June 2003, pp 4 19 -4 3 5 .
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A.1 Introduction

Durometer (Shore) hardness[A-1] is one of the most commonly used hardness tests for

elastomeric materials. Durometer hardness measurements, which assess the material

resistance to indentation, are widely used in the elastomer industry for quality control and

for quick and simple mechanical property evaluation[A- 1]. The hardness value is

primarily a function of the elastic behavior of the material. The nondestructive and

relatively portable nature of the test enables property evaluation directly on elastomeric

products or components. This feature has also led to the use of hardness tests in

mechanical property evaluation of soft tissues such as skin[A-3][A-4] and tumors

surrounded by soft tissues[A-5].

Durometer hardness is related to the elastic modulus of elastomeric materials. Several

theoretical efforts have been conducted in the past to establish the relationship between

hardness and elastic modulus[A-6] [A-7]. However, most of these efforts have been based

on linear elasticity, even though the indentation in durometer hardness tests involves

significant large-scale nonlinear deformation. Gent[A-6] obtained a simple relation

between the elastic modulus and durometer Shore A hardness by approximating the

truncated cone indentor geometry as a cylinder and using the classic linear elastic

solution for the flat punch contact problem. Briscoe and Sebastian[A-7] considered the

actual shape of the Shore A indentor and linear elasticity theory to obtain a prediction

using an iterative solution. The difference between the Gent and the Briscoe and

Sebastian results was as large as 15% to 25% for durometer hardness values larger than

50A. In this paper, the ability of durometer Shore hardness tests to provide properties for

the stress-strain behavior of elastomers for small to large deformation is assessed. Fully

nonlinear finite element analyses are conducted to simulate the durometer hardness tests.

The nonlinear stress-strain behavior of the materials is modeled using the Gaussian (neo-

Hookean) model and the Arruda-Boyce eight-chain non-Gaussian model. The latter

constitutive model captures the limiting extensibility of elastomers (and also of soft

tissues[A-8]) and thus permits evaluation of the relevance of correlating the durometer

measurements to limiting aspects of material behavior. Durometer tests for Shore A and

Shore D scales are simulated for the Gaussian (neo-Hookean) material. The ability of the
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model to predict the corresponding Shore D hardness for a given Shore A hardness

material acts as a verification. A mapping of Shore A and D values to the elastic modulus

predictions is then provided. Comparisons of the new model with prior models are also

given. The influence of the limiting extensibility of elastomeric materials on this mapping

is assessed.

A.2 Models

A.2.1 The Model of Durometer Hardness Tests

The durometer hardness test is defined by ASTM D 2240[A-1], which covers seven types

of durometer: A, B, C, D, DO, 0, and 00. Table A-1 shows the comparison of different

durometer scales.

Table A-1. Comparison of different scales of durometer tests.

Type A 10 20 30 40 50 60 70 80 90 100

Type B 10 20 30 40 50 60 70 80 90 100

Type C 10 20 30 40 50 60 70 80 90 100

Type D 10 20 30 40 50 60 70 80 90 100

Type DO 10 20 30 40 50 60 70 80 90 100

Type O 10 20 30 40 50 60 70 80 90 100

Type 00 10 20 30 40 50 60 70 80 90 100

Most commercially available products for durometer tests consist of, according to

ASTM D 2240, four components: pressor foot, indentor, indentor extension indicating

device, and calibrated spring, as shown in Figure A-1. The scale reading is proportional

to the indentor movement (Figure A-2)

AL
H = , AL = Lo - L (A-1)

0.025mm

where H is the hardness reading, A L is the movement of the indentor.
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Indentor Extension
Indicating Device

0.0

DUROMETER
Calibrated Spring
(Internal)

Pressor Foot

Indentor

Figure A-1: A typical durometer

A durometer essentially measures the reaction force on the indentor through the

calibrated spring when it is pressed into the material. The relation between the force

measured and the movement of the indentor is

F = 0.55+3A L (A-2a)

for type A, B and 0 durometers; and

F = 17.78A L (A-2b)

for type C, D and DO durometers.
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Figure A-2(a) Figure A-2(b)

Figure A-2: Schematics of the working mechanism of durometers. (a) Before the
durometer is pressed down; (b) the durometer is pressed down.

In durometer tests, as the durometer is pressed onto the specimen surface, the

indentor penetrates into the specimen, and is simultaneously pressed up into the device as

well. This process is depicted in Figure A-2, where Lo is the free length of the calibrated

spring, do is the distance between the indentor tip and the pressor foot lower surface and

according to ASTM D 2240, do = 2.5mm, d, is the corresponding distance in the fully

loaded condition. Since the lower surface of the pressor foot is always in contact with the

specimen surface when the reading is taken, it is straightforward to obtain (Figure A-2)

A L +(di -0)= 2.5 (A-3)

The indentor is in equilibrium, therefore

Fr (h) hd, = F (A-4)

where F, is the reacting force of the elastomeric specimen due to the indentor penetration

denoted by h. Therefore, the objective equations relating the hardness measurement to

the stress-strain behavior of the elastomers consist of eqn.(A-3) and eqn.(A-4). The exact

form of Fr(h) however is unknown. Gent[A-6] used the linear elastic Hertz contact

solution for the case of a simplified indentor shape. Briscoe and Sebastian[A-7]

considered the actual geometry of the indentor. This method however requires

computationally cumbersome numerical methods for the solution. In this paper, we take
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advantage of developments in nonlinear finite element method

simulate the hardness tests to obtain F, (h) in the form of a force

curve. The hardness scale reading is then obtained by finding the

in Figure A-3.

F=0.55+3(Lo-Li)

FEM

(FEM) and numerically

vs indentation, F vs h ,

intercept point as shown

2

Figure A-3: Schematic of the method to obtain durometer readings.

A.2.2 FEM Models for Indentation Simulations

A.2.2.1 Geometry

The force vs indentation curve is obtained using a fully nonlinear finite element

simulation of the indentation test. Since the indentors have axially symmetric cross

sections, it is effective to model the problem as an axisymmetric one. As shown in Figure

A-4, the vertical boundary AD is subjected to the axisymmetric boundary condition,

Ur IA = 0. In order to reduce the influence from the specimen boundary, ASTM D 2240

requires that the test specimen should be at least 6mm in thickness and the locus of

indentation should be at least 12mm away from any edges. Therefore, in Figure A-4,

AB = 15mm, and BC = 8mm. Due to the existence of friction, the lower surface AB of

the specimen cannot move freely along the horizontal direction, ur AB = zAB 0 .
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Figure A-4: The finite element method model for simulations of indentation.

The boundary value problem is solved using the finite element code ABAQUS.

Axisymmetric 8-node, hybrid continuum elements with biquadratic interpolation of the

displacement field and linear interpolation of pressure are used to model the elastomer.

Figure A-5 shows the mesh used for the durometer A analyses. The indentor is modeled

as a rigid surface since it is much stiffer than the elastomers being tested. The mesh is

refined in the vicinity of the contact region where large gradients in stress and strain

prevail. Several mesh densities were analyzed and an optimal mesh was finally chosen

for use in all simulations. For durometer D analyses, a similar mesh has been used with

the exception of the shape of the indentor.

The effect of friction on the simulation was studied by simulating selected cases of A-

type and D-type tests using a friction coefficient of 0.3 between the indentor and the

elastomer. Friction was found to increase the F vs h curve by no more than 4% in most

cases. A similar result has been reported by Chang et al[A-9] for indentation with a rigid

ball. Therefore, friction was neglected with exception that in D type analyses a friction

coefficient of 0.1 was used to reduce the large deformation experienced by the elements

on the contact surface.
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Figure A-5: The mesh used for the FEM simulations.

A.2.2.2 Material Model

The rubber elasticity constitutive laws in the simulations are the Gaussian (neo-Hookean)

model[A-10] and the Arruda-Boyce eight-chain model[A-1 1]. Both models are based on

the concept of an elastomer as a three-dimensional network of long chain molecules,

linked together at points of cross-linkage. The Gaussian model assumes Gaussian chain

statistics to apply and the strain energy density function is given by

=G 1 P2+A+Z2-)=IpI-3), (A-5)2 '"'2 3 2

where p = nkeO, n is the number of chains per unit volume, k is Boltzmann's constant,

o is absolute temperature; 2,, A2, and A3 are the three principal stretches and I1, is the

first invariant of the stretch I,= 2 + A2 +2.
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ro = [Ni

ao

/

r = ro

Figure A-6(a) Figure A-6(b)

Figure A-6: The network for the eight chain model. (a) Unstretched state. (2) stretched
state.

The limitation of the Gaussian theory is that as chains become highly stretched, the

stress level is underpredicted, necessitating a non-Gaussian statistical theory to depict the

behavior of the chain deformations approaching their limited extensibility. The Arruda-

Boyce model employs a representative description of the network containing eight non-

Gaussian chains extending from the center of a cube to each corner (see Figure A-6) to

simulate the network structure of the polymer. The initial chain length is, from random

walk statistics, given by ro = jNi, where N is the number of rigid links of length I

between the points of cross linkage. The maximum length of the chain is Ni and the

maximum chain stretch, which is called the locking stretch or limiting extensibility, is

AL=Ni (A-6)

The cube is deformed in the principal stretch space and the stretch of each chain in the

network is
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Note that the concept of the effective chain stretch Ahain can also be applied to the

Gaussian model. The strain energy density function for this 8-chain network is [A-i 1]

WAB = PAchain [Nf + NI sin. -0C (A-8)

where / is the inverse Langevin function, 8 = f-'[Achain / N], and

Z1[,8] = coth/p - (11,), c is a constant.

It can be shown that the initial elastic modulus of the material from a uniaxial tensile

test is

E0 = 3p (A-9a)

for the Gaussian model and

E =40425 39501 42039
E0 = 3pul+ + + +--(A-9b)

0 67375N 67375N 3  67375N 4

for the Arruda-Boyce model using a power series expansion representative of the inverse

Langevin function. Observe that the elastic modulus predicted by Gaussian model is

independent of chain limiting extensibility. The difference between the initial moduli for

the Arruda-Boyce model and the Gaussian model increases as N decreases or the

crosslinking density increases; when N is 6, the difference is 10% and when N is 4, the

difference is 16%.

A.3 Results and Discussions

A.3.1 Simulations on Durometer A and Durometer D

Finite element simulations of representative durometer hardness tests are conducted for

Gaussian materials with p = 1.6MPa for a Shore A test and p = 30MPa for a Shore D

test, respectively.
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Figure A-7: The solid line is the force-penetration curve for the calibrated spring
following eqn.(A-2(a)); The dashed line is the force-indentation curve from the Shore A
test simulation for a Gaussian material with u = 1.6MPa.

In Figure A-7, the force-indentation curve from the simulation of the Shore A test is

depicted together with the spring behavior described earlier in eqn.(A-2(a)). The Shore A

hardness value is obtained by finding the intersection of these two curves, which occurs

at an indentation depth of 1.00mm, giving a Shore A value of 60A. Figure A-8 (a) and (b)

show the contours of principal strain and chain stretch ratio Lcha,, at the indentation depth

of 1.00mm, respectively. These contours reveal that the elastomer experiences modest to

large strain for this representative case (the Shore A scale is commonly used to indicate

the durometer of materials between 30A to 90A). The maximum chain stretch ratio is

observed around the corner of the indentor tip and is 2.2. For elastomers with a low

limiting extensibility, this result indicates that it may be necessary to consider this effect

when relating durometer to nonlinear stress-strain behavior.
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Figure A-8(a)
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Figure A-8(b)

Figure A-8: Results for Shore A simulation for the Gaussian material with U = 1.6MPa.
(a) contours of the maximum principal strain; (b) contours of the chain stretch ratio.
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Figure A-9: Results for Shore D simulation for the Gaussian material with p = 30MPa
(a) Contours of the maximum principal strain; (b) Contours of the chain stretch ratio.

Similar to the Shore A case, the Shore D hardness value for the Gaussian material of

p = 30MPa is obtained by finding the intersection of the spring response of eqn.(A-2(b))

and the force-indentation curve for Shore D hardness indentation. The Shore hardness for

this material is 62D and the penetration is 0.95mm. Figure A-9(a) and (b) show the

maximum principal strain contour and the chain stretch ratio contour, respectively, at the
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fully loaded indentation (0.95mm) for this representative Shore D test. The strains are

highly localized for this cone shape indentor and are rather high. The maximum chain

stretch ratio is 9.5, and maximum principal strain is 3.9, suggesting that the limiting

extensibility of the material may play an important role in evaluating material Shore

hardness.

A.3.2 Comparisons between Shore A and Shore D

To verify the proposed method, the finite element simulations of durometer hardness tests

for scale A and scale D were conducted for three Gaussian materials with p = 3.3MPa,

p = 6.OMPa , p = 9.2MPa, respectively. The materials were chosen to provide

durometer readings where the A and D scales overlap.

Table A-2. Comparison of Shore A and Shore D hardness by simulations. Both Shore A
and Shore D values are obtained for the same materials by finite element method so that a
conversion between A scale and D scale is established. These conversions are compared
with the comparison chart in Table A-1, given as errors in D values.

p (MPa) Duro A Duro D (Simulated) Duro D (from TableA-1) Error

3.30 75 25 24 4%

6.0 85 32 29 10%

9.20 90 40 35 14%

For the material with p = 3.3MPa, the predicted durometer hardness is 75A and

25D. According to the guideline comparison chart in ASTM D 2240[A-1], the material

with durometer hardness 75 in scale A should give a hardness of about 24 in scale D.

Similar comparisons are made for materials with p = 6.OMPa , p= 9.2MPa and are

listed in Table A-2. It should be noted that the comparison chart in ASTM D 2240 is

loosely defined and cannot be used for absolute comparison purposes. Indeed,

conversions which differ slightly were found[A-12]. Therefore, although a relatively

large error exists for 90A, Table A-2 shows generally good agreement between simulated

values and values from the comparison chart. This verifies the capability of the current
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finite element simulation to predict both A scale and D scale durometer hardness. The

regions where direct conversions are not as reliable will be shown to occur at the tail end

of the A scale where the relationship between the hardness and modulus becomes highly

nonlinear.

A.3.3 Correlation between Gaussian Elastic Modulus and Hardness

Figure A-10 shows the relationship between the elastic modulus E by eqn.(A-9(a))

for the Gaussian model vs shore hardness A obtained by finite element simulations. The

Gent predictions, and the Briscoe/Sebastian predictions are also presented for comparison

purposes. In Figure A- 10, all predictions give the same trend for the relation between EO

and shore A hardness. However, the fully nonlinear analysis generally gives a higher

prediction of elastic modulus for a given hardness than the other three predictions. Figure

A-Il shows the difference between the elastic modulus predicted by the fully nonlinear

analyses and those predicted by the other two theories, given as deviations from the fully

nonlinear analyses. The difference between the Briscoe/Sebastian theory and the fully

nonlinear model ranges from 18% to 10% and shrinks as the hardness increases, since the

deviation of their theory from the fully nonlinear analyses becomes smaller as the

penetration of the indentor decreases due to the increasing stiffness of the elastomer.

However, a different trend is observed in the difference between the Gent theory and the

fully nonlinear analyses. The reason for this trend is because the Gent theory used the

average diameter of the upper and lower surface of the truncated cone indentor as the

diameter of the equivalent flat punch, whose deviation from the reality is pronounced as

the penetration decreases.
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Fig. 10. Relations between Shore A hardness and initial elastic moduli of elastomeric
materials.

A first order estimation for type D durometer hardness can be obtained using the

linear elastic solution[A- 13]. For the cone indentor, the normal force on the indentor is

FD _ 2E tan 0 h 2  (A-10)

Combining with eqn(A-5(b)), the relation between elastic modulus and durometer D

hardness for 0 =15', v = 0.5, is

00-2+ 78.188 + 6113.36+ 781.88E)
HD =100 -0 818± E(A-li)E

Figure A-12 shows the comparison between simulated results and the first order

approximations to D scale hardness. The two predictions give the same trend between the

relation of elastic modulus and shore hardness D. However, the fully nonlinear analysis

generally gives lower elastic modulus predictions than the linear elastic theory for a given

hardness. The difference increases as the hardness increases.
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Fig. 12 The relation between Shore D hardness and initial elastic moduli of elastomneric
and elastomeric -like materials.
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Figure A-13 shows the relationship between elastic modulus and Shore A/Shore D

hardness, given by finite element simulations. For both hardness scales, the logarithm of

elastic modulus is proportional to the hardness values in the range of 20A(D) to 80A(D).

The region where the two scales overlap corresponds to a linear region for Shore D, but

mostly nonlinear region for Shore A. When the overlap is in the linear region for both

scales, good conversions can be obtained, as for 75A to 25D; whereas when the overlap

occurs in linear vs nonlinear regions, the conversions become worse, as for 90A to 40D,

since the logarithm of the elastic modulus varies with Shore A values in a much faster

rate than it does with Shore D values.

Shore D
20 40 60 80 100

Shore A

-1-3 Shore D

- - - - - -Linear Approximation /

&102

10 -

101 ''' 

'

20 40 60 80 100
Shore A

Figure A-13: The relations between elastic modulus and Shore A/Shore D hardness for
elastomeric and elastomeric-like materials, given by finite element simulations. The
linear approximation is given by eqn(20).

It is also noted that there exists an almost linear relation between the logarithm of

elastic modulus and a hardness scale S

log E. = 0.0235S -0.6403 (A-12a)
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Shore A ,S = '
Shore D + 50,

20A < S < 80A

80A < S < 85D

A.3.4 Limiting Extensibility Effect

As seen from Figure A-8(b), large chain stretches can develop during the indentation

process. For materials having small limiting extensibilities, this large chain stretch could

be close to its locking stretch. Therefore, it is important to evaluate the effect of chain

extensibility on the durometer hardness. Since the Arruda-Boyce material model captures

the limiting extensibility of elastomeric materials, it is used in this section and then

compared to the results that had been obtained using the Gaussian model.
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20
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N=9
N=16
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N=36
N=100

20

Fig. 14 The stress-stretch curves for p =1.35MPa and
model.

different Ns of the Arruda-Boyce

Figure A-14 depicts the tensile stress vs stretch curve for the Arruda-Boyce materials

with u = 1.35MPa and with various N values ranging from N = 2 to N = 100. At

small stretches, the initial modulus for the material with smaller N is larger (eqn.(A-

9(b))); At large stretches, the stiffness of the material with smaller N increases
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dramatically. Note that N = 100 corresponds to a limiting chain extensibility of AL = 10

and the upturn of the stress stretch curve occurs at an axial stretch of about 17, and N = 4

corresponds to a limiting chain extensibility of AL = 2 and the upturn occurs at an axial

stretch of about 3.4. Note that the chain limiting extensibility is significantly lower than

the limiting extension of the sample observed in a uniaxial tensile test because the

molecular chains in the underlying molecular network accommodate macroscopic

deformation through both chain stretching and chain rotation.

70 -
Arruda-Boyce

65 - - Gaussian

60 -

55

50 -

45 -
pt=0.75

40

35

30

25 - p=0.35

0 25 50 75 100
Limiting Extensibility N

Figure A- 15: The solid lines show the dependence of the durometer A hardness vs N for
p =1.35MPa, p = 0.75MPa and u = 0.35MPa. The corresponding Gaussian results

with the same EO are also presented as the dashed lines.

Figure A-15 shows the dependence of the durometer hardness vs limiting chain

extensibility, N, for p =1.35MPa, p = 0.75MPa and p = 0.35MPa. The corresponding

Gaussian result with the same E is also presented. For N smaller than about 25

(corresponding to a limiting chain extensibility of )LL = 5 and uniaxial tensile stretch of

A = 8.5), the predictions which account for the non-Gaussian behavior of the elastomer

begin to deviate from those using the Gaussian material model and are substantially
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higher than those of the Gaussian material as N decreases. These higher hardness

predictions are not purely a result of the effect of N on the initial modulus since the

simulations using the Gaussian model with the same initial E give lower predictions of

hardness. The higher hardness prediction also result from the durometer test applying

stretches that approach the limiting chain extensibility for cases when N is less than 25.

The effect of the limiting extensibility is also influenced by p. As shown in Figure

A-15, when p is small, large chain stretch can develop during indentation, the effect of

the limiting extensibility is pronounced. When p increases, the penetration of the

indentor becomes small. Hence, the molecular chains are unlikely to be stretched close to

their locking stretch, and the effect of the limiting extensibility is reduced. As shown in

Table A-3, when p = 2.15MPa, the difference in Shore A hardness is less than 4% when

N varies from 4 to 100. Therefore, it is more likely that when AL is less than 5 and p is

less than 2MPa the effect of the chain limiting extensibility is important. Note that

limiting extensibilities significantly less than 5 are quite common in soft biological

tissues[A-8][A-14] as well as in elastomers.

Table A-3 gives predictions of Shore hardness A for different combinations of p and

N in the Arruda-Boyce model. In Table A-3, different combinations of N and p may

lead to the same predicted durometer hardness. Table A-4 gives two examples of N and

p pairs which lead to Shore 73.6A. The corresponding initial elastic moduli are also

listed in Table A-4. Although the materials have the same durometer hardness, their

elastic moduli are different by about 5%. It is therefore important to notice that predicting

elastic moduli from durometer tests sometimes gives ambiguous results due to the

limiting extensibility of the chain. There does not exist a one-to-one mapping between the

initial elastic modulus and durometer hardness.
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Table A-3. Predictions of durometer A hardness for different combinations of p and N
in the Arruda-Boyce model.

N

4 9 16 36 64

0.35 32.9 27.6 26.0 23.1 23.1

0.55 42.9 37.9 35.8 31.6 31.6

0.75 49.8 45.3 43.5 40.0 40.0

0.95 54.9 50.9 49.9 48.5 48.5

1.35 62.4 58.8 58.1 56.9 56.6

1.75 67.7 64.6 63.6 63.1 62.5

2.15 71.8 68.9 68.2 67.3 67.1

P (MPa) 2.55 74.9 72.4 71.8 70.9 70.7

2.95 77.5 75.2 74.5 73.7 73.6

3.35 79.6 77.5 77.0 76.3 76.1

3.75 81.4 79.4 78.9 78.2 78.2

4.15 82.9 81.1 80.4 80.0 79.9

4.45 83.8 82.1 81.6 81.2 81.0

5.0 85.4 83.8 83.3 83.0 82.8

5.0 86.6 85.1 84.7 84.3 84.2

6.0 87.6 86.2 85.8 85.5 85.4

9.0 91.4 90.5 90.2 90.0 89.9

12.0 93.4 92.7 92.4 92.3 92.2
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Table A-4. Materials with different material parameters have same durometer hardness.

N p (MPa) Duro (A) EO (MPa)

5.76 2.55 73.6 8.59

36 2.95 73.6 9.01

Table A-5. Material with higher durometer hardness and higher elastic modulus can have
higher extensibility.

N u (MPa) EO (MPa) Duro (A) Maximum
extension

9 0.95 3.06 50.9 480%

16 2.55 7.95 71.8 690%
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Figure A-16: The stress-stretch curves for two different Arruda-Boyce materials. The
material with p = 2.55MPa and N = 16 has larger initial elastic modulus and larger
extensibility.
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In the applications of durometer hardness, many researchers assume that larger

durometer hardness corresponds to larger elastic modulus but less extensibility. However,

one should be precautious when making this inference. For instance, considering two

combinations of p and N in the Arruda-Boyce model in Table A-5, the second

combination gives larger durometer hardness, but has higher extensibility as well, as it

can be seen from the stress-stretch curves (Figure A- 16).

A.4 Conclusions

Durometer hardness tests were analyzed using fully nonlinear finite element

simulations accounting for both material and geometrical nonlinearities. The simulation

results are verified by matching the predicted durometer hardness in scale D with ASTM

D 2240 for the Gaussian material with the given durometer hardness in scale A. The

relations between elastic modulus and the durometer hardness A scale and D scale are

provided. The fully nonlinear finite element analyses predict higher values of the elastic

modulus than those given by the Gent theory and the Briscoe/Sebastian theory. The

influence of the limiting extensibility of the elastomer is evaluated using the non-

Gaussian Arruda-Boyce eight-chain model. The chain extensibility eliminates the one-to-

one mapping between the elastic modulus and the durometer hardness. The limiting

extensibility also increases the reaction force to the indentation and thus increases the

hardness of the material. This effect is pronounced as the chain extensibility decreases to

values of 1L less than 5, particularly when p is less than 2MPa. These results indicate

that the durometer hardness test can be used to provide a reasonable approximation (the

error is generally less than 4% for large AL and p) to the initial neo-Hookean modulus

using the plot of Figure A-13 or eqn.(A-12), however care must be used if the limiting

extensibility is known to be small. The mapping does not address the time dependence of

the material behavior, the initial yield-like phenomenon present in thermoplastic

elastomers, or the initial anisotropy existing in many soft tissues. However, it does

provide the framework for exploring such complexities in future work.
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Appendix B

Determination of Mechanical Properties

of Carbon Nanotubes and Vertically

Aligned Carbon Nanotube Forests Using

Nanoindentation'

Abstract

Vertically aligned carbon nanotubes (VACNT) have been a recent subject of intense

investigation due to the numerous potential applications of VACNTs ranging from field

emission and vacuum microelectronic devices to the creation of super-hydrophobic

surfaces and as a source of well defined CNTs. In this paper, a new method to determine

the mechanical properties of VACNT and constituent nanotubes using nanoindentation

tests is proposed. The study of nanoindentation on a VACNT forest reveals a process

whereby nanotubes are consecutively bent during the penetration of the indentor.

Therefore, the resistance of a VACNT forest to penetration is due to successive bending

of nanotubes as the indentor encounters nanotubes. Using a micro-mechanical model of

the indentation process, the effective bending stiffness (EI),f of constituent nanotubes in

the VACNT array is then deduced from nanoindentation force-penetration depth curves.

A simple method accounting for the multiwalled structure of multiwall nanotubes is used

to interpret the obtained (EJ)eff in terms of an effective bending modulus E" , an

effective axial modulus E,", and a wall modulus E,7 of a nanotube. Nanoindentation tests

on three VACNT forest samples reveal the effective bending modulus of multiwall

carbon nanotubes to be E" = 0.91~ 1.24TPa , and effective axial modulus to be

This work has been accepted by Journal of Mechanics and Physics of Solids, and will be published soon.
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E 0.90TPa ~1.23TPa. These values are in good agreement with tests conducted on

isolated MWCNTs. Taking the mechanical wall thickness to be 0.075nm, the nanotube

wall modulus is found to be E,' = 4.14TPa ~ 5.61TPa , which is in good agreement with

predictions from atomic simulations. The use of nanoindentation together with the

proposed micromechanical model of the successive bending of nanotubes as the indentor

penetrates into the forest is hereby shown to result in a novel approach for determining

not only the dependence of the indentation resistance on the key structural features of the

forest (CNT diameter, length and areal density), but also provides a measure of the

stiffness of the constituent carbon nanotubes. This new technique requires no special

treatment of the samples, making it promising to apply this method to a large number of

tests to determine the statistical properties of CNTs, and implying the potential use of this

method as a quality control measurement in mass production.

Keyword: A. Nanoindentation; Mechanical Properties; B. Multiwalled Carbon

Nanotubes; Vertically Aligned Carbon Nanotubes; Nanofibers.
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B.1. Introduction

Carbon nanotubes (CNTs) are a subject of intensive investigations due to their

remarkable electrical and mechanical properties (Baughman et al., 2002). CNTs exist in

one of two forms: Single-walled carbon nanotubes (SWCNTs) or multi-walled carbon

nanotubes (MWCNTs), and can be further classified by their chirality (the wrapping

angle of the hexagonal atomic thin layer). The primary methods used to produce CNTs

are carbon-arc discharge, laser ablation of graphite, and chemical vapor deposition

(CVD). In many applications, it is desirable that CNTs have well defined diameters and

lengths so that the properties of CNTs can be readily tailored for their applications.

Recently, plasma enhanced chemical vapor deposition (PECVD) has been used to grow

forest-like vertically aligned carbon nanotubes (VACNTs) onto substrates coated with a

suitable metal catalyst (Huang et al., 1998; Chhowalla et al., 2001; Huang et al., 2002;

Han et al., 2002). There is presently great interest in VACNTs for field emission and

vacuum microelectronic devices, as well as for the creation of super-hydrophobic

surfaces and as a technique for producing well defined CNTs. Compared with the efforts

focused on optimizing the PECVD growth conditions, however, little attention has been

given to the mechanical properties of these forests even though the stiffness and

mechanical integrity will be important issues in their ultimate success.

Due to the nanometer scale of dimensions, it is a challenge to experimentally measure

mechanical properties of CNTs. The first measurement of the elastic modulus of CNTs

was conducted by Treacy et al. (1996) whereby the amplitude of thermally-induced

vibrations of isolated nanotubes was measured within a TEM; classical beam theory,

where the nanotubes were idealized as solid rods, was then used to calculate the modulus.

The effective bending modulus derived from this method ranged from 0.4 TPa to

4.15 TPa with 1.8 TPa as an average value over 11 CNTs. In addition to the large range

in the value of the elastic modulus, this method is also limited by the requirement that the

vibration of nanotubes must be neither too high nor too small for TEM detection. Wong

et al. (1997) dispersed MWCNTs on a smooth flat surface and pinned the nanotubes by

the deposition of an array of square pads on this substrate. An AFM was then used to
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scratch the surface at the "free" end of the nanotube and the lateral force and

displacement were measured. Beam theory, assuming a solid cross section, was then used

to reduce the data, yielding a modulus of MWCNTs 1.28 ±0.59 TPa . It should be noted

that although adhesive and frictional forces might increase scratching resistance, they

were neglected in their method. Salvetat et al (1999) deposited CNTs on a well polished

alumina ultra-filtration membrane, on which a CNT occasionally laid over a pore. The

tube was then subjected to bending using nanoindentation. The effective bending

modulus from this method was found to be 0.81 ± 0.41TPa. These three techniques, each

providing bending modulus measurements on individual nanotubes, require complicated

preparations before the measurements can be conducted. In these methods, the effective

bending modulus E," is determined using beam theory whereby an effective bending

stiffness (EI),f is measured and the modulus is then determined assuming an effective

moment of inertia I, = zr (D4 - D /64, where D is the outer diameter and D, is the

inner diameter. Furthermore, this is approximated as I, ~ r Do /64 , since D, is

typically much smaller than Do. The modulus is then computed to be

F, (EI)f(i
Ef ~ '(B-1)

In this paper, nanoindentations on VACNT forests will be shown to provide a

measure of the indentation resistance of a nanotube forest coating as well as a statistical

measure of the effective bending stiffness (EI),f and effective bending modulus E' of

MWCNTs when combined with a simple analytical model of nanoindentation tests.

Further reduction of the results, which account for the nested tube structure of a MWCNT,

enables the calculations of a wall modulus and a tube axial modulus. Below, descriptions

of the materials and the experimental procedure are first presented. A model of the

behavior of VACNT forests during nanoindentation is then presented and is used together

with tests to determine the average bending stiffness, bending modulus, wall modulus,

and axial modulus of the constituent nanotubes in the VACNT forest studied.

Nanoindentation is thus shown to be an excellent new technique to measure both the
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indentation resistance of VACNT forests and the elastic modulus of individual

constituent CNTs.

B.2. Experimental Procedure

B.2.1 Materials

Three vertically aligned carbon nanotube forest samples were prepared at University of

Cambridge using PECVD (Plasma Enhanced Chemical Vapor Deposition) method

(Chhowalla et al., 2001) with different nickel catalyst thickness (ranging from 3.5nm to

7nm) and growth time. The samples were then studied at MIT under a JOEL SEM, with

the samples tilted by 0 (observed from top), 150, and 250. Figure B-1 shows images

where samples were tilted by 25' so that the forest-like landscapes of the VACNTs were

clearly depicted. The areal density measurement for each sample was conducted by

counting the number of nanotubes in the image, then dividing the total number of

nanotubes by the total area of the image; measurements were made on images with the

sample tilted by 00, 150 and 25*, then averaged over these three measurements. The

diameter and length were measured from images with the samples tilted by 0* (for

diameter only), 15, and 250, respectively. For each image, at least 30 nanotubes were

randomly selected for measurements. The length and diameter measurements were

further verified by measuring nanotubes that had been laid flat on the substrate with a

pair of tweezers. The average and deviation of diameter and length, and the areal density

(number of tubes per pm2 of substrate) for each of the three samples are listed in Table 1.
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Figure B-1(a)

Figure B-1(b)
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Figure B-1(c)

Figure B-1. Vertically aligned carbon nanotubes: (a) Sample A; (b) Sample B; (c) Sample

C. The samples are tilted by 25* to reveal the forest-like landscapes.

Table. 1 Dimensions of the three VACNT samples.

Sample Outer diameter Length Areal Density

Average Deviation Average Deviation mp m-2) Percentage of

(n m) a,, (n m) L(n m) L (n m) Area Covered
by CNTs (%)

A 104 36 930 123 27 23

B 90 17 1150 160 26 17

C 55 13 570 107 40 10

B.2.2 Nanoindentation

Nanoindentation tests on VACNT forests were conducted at MIT using a Digital

Instrument Dimension 3100 SPM (Scanning Probe Microscopy). The nanoindentation

cantilever is made of stainless steel and has a diamond tip. The working resonant
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frequency is about 55kHz to 60 kHz in tapping mode. Figure B-2 shows a schematic of

the geometry of the diamond tip and the cantilever (Digital Instrument, 1998). The

diamond tip is a three-sided pyramid, with an apex angle # = 60, measured from a face

to an edge of the pyramid. According to the specification from the tip supplier, the radius

of the diamond tip is less than 25nm.

Figure B-2. Schema
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Figure B-3. Typical indentation force-penetration curve (f-p curve) during
nanoindentation of VACNT forest.
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The standard procedure for nanoindentation tests within an AFM was followed. The

tapping mode is first engaged to scan the surface and the area of interest is located. When

nanoindentation is initiated, the tip is lifted slightly (typically about 100nm-300nm)

above the surface. As the nanoindentation is executed, the tip is driven by the piezo-

scanner toward the surface until a pre-set reaction force is reached. The tip is then

retracted back to its initial position.

Figure B-3 shows a typical indentation force-penetration curve (f-p curve) for a

nanoindentation test on a VACNT forest sample. The indentation force starts from zero

until a certain penetration depth is reached, then grows in a nonlinear manner where the

slope of the curve increases as the penetration depth increases.

B.3. A Model Based on Beam Theory and Statistics

B.3.1 Physical Process of Nanoindentation on VACNT Forest

When the pyramidal diamond tip indents into the VACNT forest, individual nanotubes

are subjected to bending deformation. Figure B-4 illustrates this process with a 2D

schematic, where the tip is depicted as a wedge with a semi-apex angle of 0. Only two

nanotubes are shown in the Figure B-sequences for the sake of brevity. The lengths of the

nanotubes are L. The tip is initially located a distance ho above the top surface of the

nanotubes (Figure B-4(a)). In Figure B-4, the penetration h is measured from the top

level of VACNT forest, and h + ho gives the total travel distance of the indentor. The

value of ho will vary from test to test and is determined using the method outlined in

Appendix A. As the tip is driven towards the substrate surface, at a certain penetration

depth of h,, a surface of the indentor encounters a nanotube (Figure B-4(b)). This first

nanotube then bends as the indentor penetration depth increases; at a certain penetration

depth of h2 , the indentor surface encounters a second nanotube (Figure B-4(c)). This

process continues until a pre-set maximum force is reached. The tip then retracts back to

its original position. The indentation force vs. penetration depth curve (f-p curve) can be

predicted using the model presented below.
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Figure B-4. Schematics of consecutive contacts of the indentor and nanotubes in a
nanoindentation test (a) Before the nanoindentation; (b) The tip encounters one nanotube;
(c) The tip encounters two nanotubes.

B.3.2 The Consecutive Contact Model

When a nanotube is in contact with the indentor, (see the free body diagram of Figure B-

5), the bending deflection at the tip of the nanotube can be estimated using beam theory

and is related to the indentation force P, and lateral force T by (see Appendix B for the

formulation):

L

Figure B-5. Free body

x

WO

T

w P

////////77
diagram of a nanotube touched by the indentor.
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wo = -- tank-L _L (B-2)
P ki

where k, = P, /(EI . (EI), is the effective bending stiffness of a nanotube in the

VACNT forest and is the variable to be determined. The deflection w0 of the nanotube is

related to the geometry of the indentor and the depth of penetration; it is given by:

wO = (h - h,)tanO, (B-3)

where h is the penetration depth of the indentor, h, is the penetration at which the ith

nanotube is touched by the tip. Assuming any frictional force at the contact surface can

be neglected gives

' = tan 0. (B-4)
T

Then, combining eqn.(B-2), (B-3), and (B-4), a nonlinear relationship between

penetration depth h and indentation force P for a single nanotube is obtained

1 (tan k L =
h= h, + (ta -) L , k, = QP /EI,. (B-5)

For the case where n nanotubes are in contact with the tip, the total indentation force P is

given by

P = aP , (B-6)
i=1

where a, = 0 when h h,, and a, = 1, when h > h,. The parameters a, and h, can be

determined through geometrical calculations.

As illustrated in Figure B-4, the value of h, for an individual nanotube depends on

the position of the indentor relative to the nanotube. Nevertheless, for a large number of

indentation tests, the average value hi for the ith contact can be calculated using

statistical information about the VACNT. The diamond tip is a three-sided pyramid with

an apex angle of 60' measured from a face to an edge of the pyramid. At a depth h, the

area enclosing the cross-section of the indentor and a nanotube with diameter D,, (Figure

B-6) is given by
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A = 0.813h 2 + 4.11OD h +3.141D ( m2) (B-7)

Cross section of nanoindentor

-- 7

A nanotube

Area enclosing
indentor and
the nanotube

Figure B-6. Area enclosing the cross-sectional area of the indentor and a nanotube with
diameter D, .

The nanotube areal density is denoted by m nanotubes per pm 2 . Therefore, the

average number i of nanotubes in contact with the indentor at a given depth h, is given

by

i = Am. (B-8)

The effective bending stiffness (EI),, is determined by best fitting the average of the

f-p curves from tests with theoretical predictions using eqn.(B-5)~(B-7), where (EI),,

and ho are variables. The elastic modulus of the walls of a CNT and the effective bending

modulus of the MWCNT can then be determined from (EI),f and the geometry of the

MWCNTs, as will be described later.

B.3.3 Example

We now consider the indentation of an example VACNT forest with nanotube diameter

of 80nm, length of 11 00nm, areal density m = 5 tubes/pm2 , and effective bending

stiffness (El), = 2. 1N(nm) 2 . Nanotubes are randomly distributed over the substrate.

Figure B-7 presents the average indentation force vs penetration curve that would be

measured for the nanoindentation tests and shows the force contributions from the

successive interactions between the indentor and individual nanotubes.
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Figure B-7. Superposition of interactions between the indentor and nanotubes
encountered by the indentor during nanoindentation gives the total penetration resistance.
The thick line is the total resistance. The thin lines are the resistance forces from
individual nanotubes.

The f-p curve in Figure B-7 is also a representative curve and would vary depending

upon the particular location of the indentation. In addition, there is typically a range in

geometric features (diameter and length) of nanotubes in a VACNT forest. A statistically

representative model can be achieved by generating a VACNT array, where positions,

diameters, and lengths of nanotubes are varied in a statistical manner. Then, several

indentations on such a VACNT are simulated and averaged to determine the indentation

vs penetration curve (Note that several curves are also experimentally measured and

averaged). For the purpose of comparison and discussion, the prediction using average

geometrical parameters will be denoted as the representative average simulation (RAS),

while the simulations using random distributions of geometrical parameters will be

referred to as statistical simulations.

B.3.4 Parametric Studies: Sensitivities of Penetration Resistance to Geometrical
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Parameters of VACNTs.

Using the model of nanoindentation proposed above, the sensitivity of the indentation

resistance curve to various geometrical parameters is examined, including the effects of

indentation locations, spatial distribution of the CNTs, distribution in the diameter and

length of the CNTs.
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Figure B-8. A two dimensional F.C.C. pattern of nanotubes.

As discussed above, an individual f-p curve depends on the location where the

indentor penetrates into the VACNT forest. To further illustrate this effect, a two

dimensional FCC (Face Centered Cube) spatial distribution of nanotube positions is

created with an areal density of m = 12 tubes /pm2 (Figure B-8). The diameter and length

of nanotubes are 8Onm and 110O0nm, respectively, and are taken to be identical for all

nanotubes. (EI)eW is taken to be 2.lN(nm)2 . Six nanoindentation tests are conducted

numerically (Case I), with indentation positions chosen deliberately (Figure B-9(a)).
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Figure B-9. Case 1: nanoindentations on a two dimensional F.C.C. patterned VACNT
forest, (a) locations of nanoindentations; (b) f-p curves.

The f-p curves (Figure B-9(b)) for the indentations at positions 1 and 5, and 2 and 4,

are identical, respectively, due to symmetry. The interaction between nanotubes and the

indentor occurs first for the indentations at positions 1 and 5. Position 6 is deliberately

chosen so that the indentation at this point encounters two nanotubes simultaneously at

the first touch. Therefore, the initial slope of the indentation force-penetration curve for

position 6 is twice that of other curves. It is also noted that the chosen indentation

positions capture the overall variations in f-p curves. Indeed, f-p curves from numerical

nanoindentation simulations with randomly chosen indentation positions showed no

significant variation from those of Figure B-9(b).

To study the dependence of the indentation resistance of a VACNT forest on the

distribution of nanotubes, the positions of nanotubes are allowed to vary randomly

(Figure B-10(a)) on the substrate (Case 2), while areal density is retained to be about

12 tubes / pm2 . The length and diameter are taken to be the same values as those in the

above study. 20 nanoindentations at randomly chosen positions are conducted, and Figure

B- 10(b) shows the f-p curves from the first 6 nanoindentations for the sake of brevity. As

expected, given the random distribution of nanotubes on the substrate, the indentation

force-penetration curves show greater variation compared to the curves from

nanoindentation on a regular FCC patterned nanotube forest. When nanotubes form a

regular pattern, there is a limited variation in indentation locations relative to neighboring

nanotubes and thus a limited variation in the number of CNTs that will be encountered as

a function of penetration depth. In contrast, if nanotubes are randomly distributed, the

occurrence of consecutive contacts is unpredictable and highly varied, especially for

VACNT forests of low areal density. As the areal density increases, such variation is

reduced.
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Figure B-10. Case 2: random nanoindentations on a VACNT forest where nanotubes are
randomly distributed, (a) positions of nanotubes; (b) f-p curves.
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Figure B- 1I shows the effect of a distribution in lengths on the f-p curves of a

VACNT forest (Case 3). The nanotubes are spatially arranged in a two dimensional FCC

pattern (Figure B-8). All nanotubes have identical diameter of 80nm, but a Gaussian

distribution in lengths with an average length of 11 00nm and standard deviation of 20%.

Compared with Figure B-9(b), where the lengths of nanotubes are fixed, the variation in

length results in a significant scattering in the f-p curves.
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Figure B-11. Case 3: random nanoindentations on a VACNT forest where the nanotubes
are distributed following a two dimensional F.C.C. pattern, and all the nanotubes have
identical diameter of 80nm, but average length of I 100nm with deviation of 20%.

Figure B-12 shows the effect of a distribution in nanotube diameter on the

nanoindentation of a VACNT forest (Case 4). The nanotubes are spatially arranged in a

two dimensional FCC pattern (Figure B-8). All nanotubes have identical length of

I 100nm, but a Gaussian distribution in diameter with an average diameter of 80nm and

standard deviation of 20%. The effective bending stiffness for each nanotube is scaled

through

(EI)f, = (EI)ett - j4, (B-9)
D
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where (EI),,j = 2. 1N(nm)2 . The variation in diameter is seen to give a wider range in f-p

curves because of the fact that the standard deviation of 20% in D generates a higher

deviation in (EI),,, according to eqn. (B-9).
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Figure B-12. Case 4: nanoindentations on a VACNT forest where the nanotubes are
distributed following a two dimensional F.C.C. pattern, and all the nanotubes have
identical length of 1100nm, but average diameter of 80nm with deviation of 20%.

Figure B-13 shows the effect of a distribution in spatial positions, lengths and

diameters on the nanoindentation of a VACNT forest (Case 5). The nanotubes are

randomly distributed, and have a Gaussian distribution in length and diameter with

average length of 1100nm and average diameter of 80nm, and standard deviation of 20%

for both. As expected, the indentation force-penetration curves are significantly scattered.
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Figure B- 13. Case 5: random nanoindentations on a VACNT forest where the nanotubes
are randomly distributed, and have average length of 11 00nm with deviation of 20%,
average diameter of 80nm with deviation of 20%.

Figure B-14(a) shows the average f-p curves over 6 simulations for Case 1, and over

20 simulations for Case 2 to Case 5. Although large scatters in f-p curves for Case 2, 3

and 5 are observed, the average curves over 20 simulations converge to the representative

average simulation (RAS). The only exception is Case 4, where the average f-p curve

shows a stiffer response than those predicted in other cases.
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Figure B-14. (a) Average f-p curves for Case 1-5; (b) Number of contacts vs. penetration
depth curves from Case 2.
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It is also noticed that the average f-p curves are smooth whereas the RAS curve has

distinct changes in the slope. Figure B-14(b), depicting the average number of contacts vs.

penetration depth curve for Case 2 and for the RAS, clearly demonstrates how the

number of the contacts changes from a jump function of penetration depth for an

individual indentation to a continuous function over the average of 20 indentations.

The parametric study has demonstrated that a statistically representative f-p

indentation resistance curve can be obtained. Averaging the f-p curves obtained from

indentation at several locations provides a representation of the behavior of the VACNT

even for a relatively sparse array with a 20% variation in CNT geometry. Therefore,

experiments should be conducted at several locations and averaged in order to best

represent the VACNT behavior; comparison with simulations can then be used to identify

CNT properties.

B.4. Results and Discussions

B.4.1 VACNT Indentation

Nanoindentation tests were conducted on three VACNT forest samples, whose

dimensions are listed in Table 1. In the experiment on each sample, more than 60

nanoindentations were executed at different locations, each of which was at least 800nm

away from another. The first 20 f-p curves for each sample are shown in Figure B- 15 (a),

(b) and (c), while the average curve for each VACNT is calculated over all experiments.

Also note that repeated indentations at some random locations showed good repeatability

when the indentation force is less than about 8000nN, demonstrating both the elastic

nature of the indentation and the repeatability of this measurement.
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Figure B-15. Indentation force-penetration curves for (a) Sample A; (b) Sample B; and (c)
Sample C; The thin solid lines are experimental curves; the thick solid lines are averaged
curves.
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Figure B3-16. Average f-p curves for the three samples from experiments.
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Figure B- 15 shows the f-p curves for 20 nanoindentation tests on each of the three

samples, where the thick solid lines give the average experimental f-p curves and the thin

lines give the f-p curves from the first 20 tests. Figure B-16 compares the average f-p

curves from the three samples. As discussed before, since Sample C has the highest

nanotube areal density, the f-p curves from Sample C show less scatter than those from

Sample A and Sample B. Since Sample C has the largest areal density and smallest length,

it has the highest indentation resistance. Although Sample A and Sample B have nearly

the same areal density, Sample A has a larger average diameter and a smaller average

length, resulting in a stiffer penetration resistance than that from sample B.

The theoretical models, together with numerical simulations, are now used to

determine the effective bending stiffness (EI), of the nanotubes in each sample. In the

model, both ho and (EI), are variables for optimization to minimize the deviation of the

average of statistical simulations from the average of experimental results. Appendix A

discusses the details on how to obtain the parameters (EI),If and ho.

Figure B- 17 compares the average curves from statistical simulations and from

experiments. Figure B- 18 shows the f-p curves from 20 simulated nanoindentations on

the three samples, where the areal density, length, and diameters of nanotubes are

generated statistically, following the data in Table 1. Table 2 lists the predicted effective

bending stiffness for the three samples.
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Figure B-17. The average curves from theoretical predictions
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Figure B- 18. Indentation force-penetration curves from 20 simulated nanoindentations on
the three samples, where the areal density, length, and diameters of nanotubes follow the
statistical data in Table 1. (a) Sample A; (b) Sample B; (c) Sample C.
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Table 2. Predictions of effective bending moduli for the three VACNT samples.

VACNT sample (EI).ff (N(nm)2)

A 5.2

B 4.0

C 0.51

B.4.2 Determination of Bending and Axial Modulus of Constituent MWCNTs

The elastic modulus of the constituent nanotubes is now reduced from the measured

(EI) , using various approaches.

An effective bending modulus E, is estimated following the technique used by other

investigators in experimental studies on isolated nanotubes. The effective bending

modulus of the MWCNT, E,b, is calculated by dividing the measured effective bending

stiffness, (EI),, by an effective moment of inertia, I,, which is assumed to be given by

the outer diameter of the MWCNT D,,,

b(EI) f' 64 (EI),
E, = =f.

II ;TD
(B-10)

The effective bending modulus for samples A, B, and C are calculated to be 0.91TPa,

1.24TPa, and 1.14TPa, respectively. These values are in good agreement with the values

obtained by Wong et al. (1997) and by Salvetat et al. (1999). However, note that by using

(EI), = Eb x rD4 /64, important details of the nanotube structure are neglected.

To further verify the new method and investigate mechanical properties of nanotube

structure, the multi-walled nature of the structure is considered in interpreting (EI),. A

MWCNT consists of concentric walls of effective wall thickness t and inter-wall spacing

s , as shown in Figure B-19. The walls maintain an inter-wall spacing of s due to normal

van der Waals interaction. This separation is sustained during bending as observed-in

TEM (e.g., Poncharal et al., 1999). The shear interaction/stiffness between walls is
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observed to be very low (Cumings and Zettl, 2000; Yu et al., 2000). Indeed, this has led

to proposals that CNTs be used as slider bearings (Cumings and Zettl, 2000; Kolmogorov

and Crespi, 2000). These wall to wall interactions suggest that the effective bending

stiffness (EI),, of the MWCNT can be well approximated through the sum of the

bending stiffness of each tube. This summation approach has also been proposed by

Govindjee and Sackman (1999).

si-i Outer wall

jth wall

Inner wall

Figure B-19. Schematic of the cross section of the multiwalled structure of MWCNTs.

For thejth wall, the moment of inertia I and cross sectional area A1 are given by

I [ =[D -(D -2t , (B- 11a)

A =[D. - (Di -2ty (B-11lb)

where D is the outer diameter for thejth tube. The outer diameter of the (j-1)th wall is

D 1 = D, - 2s. (B-12)

The total bending stiffness (EI)ff and axial modulus (EA),ff of a MWCNT are then

given by
N N

(EI),f = EvI, =EwI , (B-13a)
.1=1 J=1
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N N

(EA), =>Ew A, = Ew A, , (B-13b)
j=1 j=1

where N is the number of walls, and E,' is the modulus of a tube wall and is taken to be

identical for all walls in a CNT. Since (EI),,f is the bending stiffness measured in the test,

the tube wall modulus E," is obtained as:

Ew = N . (B-14a)

j=1

If the effective axial stiffness (EA),f of a nanotube is the summation of the axial

stiffness of the N walls in the nanotube, then the effective axial Young's modulus E," of

a nanotube can be obtained as

N

E,V > A1
E= , (B-14b)

At

where A, is the total cross sectional area, A, = rD' /4.

The inter-wall spacing, s, is set by the equilibrium spacing of the walls as determined

by the van der Waals interactions, and values have been reported ranging from 0.34nm

to 0.39nm (Saito et al., 1993; Sun et al., 1996; Kiang et al., 1998); here we take

s = 0.344nm . The effective mechanical wall thickness has been determined by

investigators by comparing atomistic level simulations and shell theory, e.g. Yakobson et

al. (1996). Investigators suggest that the effective mechanical thickness of a nanotube

wall range from t ~~ 0.066nm to 0.075nm (see Pantano et al., 2003). The inner diameter

of various VACNT structures is typically less than 10nm, while the exact value of inner

diameter should be determined from HRTEM. Nevertheless, from eqn.(B-11(a)), the

inner tubes of diameter less than 10nm contribute minutely to the total moment of inertia.

Therefore, D, ~ 6nm is used in current analysis. Using D, = 6nm , t = 0.075nm , and

s = 0.344nm, we obtain the wall modulus, E7, the tube axial modulus, E,", and the

average number of walls, N for each sample. Results are given in Table 3. These

predictions are in good agreement with other theoretical and experimental reports, and
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verifies the efficacy of the new method. For example, when using a mechanical thickness

of 0.075nm, atomistic simulations give a wall modulus of 4.8TPa (see Pantano et al.,

2003), which agrees well with predicted values of 4.14TP to 5.61TPa in Table 3.

Table 3. El', E', E", and N for the three samples.

Sample ( EI )f (N(nm)) E'(TPa) Ew(TPa) E" (TPa) N

A 5.2 0.91 4.14 0.90 143

B 4.0 1.24 5.61 1.23 123

C 0.51 1.14 5.11 1.11 72

B5. Conclusions

Nanoindentation tests have been used to determine the mechanical properties of vertically

aligned carbon nanotube (VACNT) forests and constituent carbon nanotubes. A study of

the physical process of nanoindentation on VACNT forests reveals a process where

nanotubes are consecutively bent during the penetration of the indentor. Unlike

nanoindentation on homogenous materials, such as thin film coatings, where the elastic

modulus and yield stress of coating materials are typically obtained, the resistance of

VACNT forests to penetration is a result of superposition of the bending responses of

nanotubes as the indentor successively encounters tubes in the forest. Nanoindentation

tests, together with a micro-mechanical model using beam theory, were used to determine

the effective bending stiffness (EI),ff of the MWCNT of the VACNTs studied. A simple

method which accounts for the multiwalled structure of multiwall nanotubes was used to

interpret the obtained (EI),,f in terms of the modulus of a nanotube wall E7', and the

effective axial modulus of a nanotube E,".

Nanoindentation tests on three VACNT forest samples revealed the effective bending

modulus of the MWCNTs to be E,' = 0.91TPa ~1.24TPa, effective axial modulus to be
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E" = 0.9TPa ~ 1.23TPa, and the wall modulus to be E,' = 4.14TPa - 5.61TPa, using a

mechanical wall thickness of 0.075nm. The good agreement of these predictions with

other theoretical and experimental results supports the effectiveness of the new method.

The use of nanoindentation together with the proposed micromechanical model of the

successive bending of nanotubes as the indentor penetrates into the forest is shown to

provide a relatively easy measure of the bending stiffness, wall modulus and axial

modulus of the constituent nanotubes. This new technique requires no special treatment

of the samples, making it promising to apply this method to a large number of tests to

determine the properties of CNTs in a statistical manner, which sometimes is more

important than knowing properties for a few isolated nanotubes. The simplicity of the

measurement suggests the potential use of this method as a quality control measurement

in mass production. This proposed technique has been shown to be effective on VACNTs

with random distributions of CNTs and would be even more effective on regularly

patterned and more uniform VACNTs, where processes for producing such VACNTs are

under investigations by several groups. For highly dense arrays, the model can be

extended to account for the van der Waals interactions by monitoring the proximity of

neighboring tubes during tube bending in much the same way as the interactions between

nanoindentor and nanotubes were determined. The proposed nanoindentation and

corresponding reduction of data are also applicable to vertically aligned nanofibers.

Indentation of vertically aligned nanofibers is currently being investigated.
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Appendix A: Reducing (EI), and h0

The parameter ho can be eliminated by scrutiny of the nanoindentation process using DI

Dimension 3100 SPM. In such a nanoindentation, the output from the test is indentation
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force vs. piezo-scanner indentation movement (z movement) curve (f-z curve, which can

be directly obtained from the raw output, photo detector voltage vs. z movement curve),

which is constructed such that the indentation movement is measured backward starting

from the point where the maximum indentation force is reached. It is therefore

recognized that depending on where the maximum force is reached, the output f-z curve

floats along the indentation direction. A force-penetration curve (Figure B-20) can be

deduced from the f-z curve. In Figure B-20, we define the interaction distance as

measuring the distance between the point where the indentor encounters the first

nanotube and the point where the maximum indentation force is reached. Clearly, the

penetration depth is distinct from the interaction distance by the amount of ho + hi . As

the number of tests increases, the difference between the average of interaction distance

and the average penetration depths approaches ho + hi . The benefit of interaction

distance is that ho falls at the end of interaction distance, making ho a trivial parameter.

Penetration

ho + hi Interaction Distance

Figure B-20. Penetration and interaction distance.

Taking advantage of this feature, we proposed a method to determine (El),. The

method requires to reconstruct all f-p curves from experiments and simulations, and starts

with choosing a suitable reference indentation force f0 and a reference position q . As
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discussed in Appendix B, a small value of f0 should be used (in this paper,

fo = 4000nN is used for the three samples). We denote the ith f-p curve as f, = f (p,),

and f (po ) = fo . We then shift the ith curve so that f (qo ) = fo , which can be obtained

simply by a coordinate translation where q, = p, + (qO - po). Such a process makes all

the curves converge to a point where f = fo and q = q 0 . The shifted curves are then

averaged. The same process should also apply to curves from statistical simulations. The

two averaged curves are compared and the final (EI), is determined such that the best

agreement between the two averaged curves can be reached.

Appendix B: Bending deformation of a tube

From the free body diagram (Figure B-5), the moment at any point x along the tube is

M =-Tx -P,(wO -w) (B-15)

Classical beam theory gives the relationship between moment and curvature (taking

d 2w
deflection and curvature to be related by K = 2 ) to be

d 2w
(EI)"' 2 = Tx + P,(wo - w). (B-16)

dx2

Although the nature of the bonding between nanotubes and substrate is not clear, SEM

micrographs taken at the locations where tweezers swept over the surface show crater

shape debris on the substrate, implying a strong connection between nanotubes and

substrate. Therefore, it is reasonable to assume a clamped boundary condition at the end

of the tube, e.g.

dw
WI xL =0 and = 0. (B-17)

dxc x=L

Taking ki = (EI) ,and y = wo - w, eqn.(B-16) and eqn.(B-17) can be written as

d 2 y Tixd2Y+ ky = - ,j (B-18)
dx2  (EI),,ff

with boundary conditions
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ylO = 0 and dy 0. (B-19)
dx L

The general solution to eqn. (B- 18) is

y = A cos kix + B sin ki x- ' x, (B-20)
P

where A and B are constants determined from eqn.( B-19),

A=0,and B= ' (B-21)
Pik, cos ki L

Therefore,

w= wO - ' sin kix + ' x . (B-22)
Pk cos kiL P,

Since wLL =0,

T (tank.L L
wo = - L (B-23)

P ki

and

T T
W= i (sin kL - sin kx) -- T(L - x). (B-24)

Pik, coskL P

The slope of the nanotube deformation of the tube is - w', and

T. coskix~
w'='i 1- c i. (B-25)

P coskjL)

Since the nanotubes are bent by the side surface of the indentor, the slope cannot exceed

the slope of the side surface, or

-w' <tan 0. (B-26)

If the inequality (B-26) is violated, the solution to this problem becomes complicated

due to the change of the contact condition between the tube and the indentor from a point

contact to a line contact. Nevertheless, a simple approximation to the solution can be

realized using iterative method. Starting with eqn.(B-25), an effective length L' can be

obtained with - w'L = tan0. This new L' and previous P are then used to calculate

new k,, P. This process will continue until inequality (B-26) is satisfied.
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The occurrence of violation of inequality (B-26) depends on the nanoindentation

location relative to the nanotube and usually is at large penetration depth. It should be

noted that as penetration depth increases, the deflection of a tube could be so large that

classical beam theory, which is based on small deformation assumption, will deviate from

the true solution. The deformation at large penetration will be even more complicated by

the increased possibilities of the interactions between nanotubes. Therefore, it is authors'

suggestion that using above theory only for penetration depth less than about 70% of the

average length of constituent CNTs.
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