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ABSTRACT

We propose a class of iterative aggregation algorithms for solving infinite horizon
dynamic programming problems. The idea is to interject aggregation iterations in the course of
the usual successive approximation method. An important new feature that sets our method
apart from earlier proposals is that the aggregate groups of states change adaptively from one
aggregation iteration to the next, depending on the progress of the computation. This allows
acceleration of convergence in difficult problems involving multiple ergodic classes for which
methods using fixed groups of aggregate states are ineffective. No knowledge of special
problem structure is utilized by the algorithms.

SECTION 1: Introduction

Consider a Markov chain with finite state space S = { 1,...,n}. Let x(t) denote the state of
the chain at stage t. Assume that there is a finite decision space U, and that, for each state x(t)
and decision u(t) at stage t, the state transition probabilities are given and are independent of t.
Let oa E (0,1) be a discount factor and g(x(t), u(t)) be a given cost function of state and
decision. Let g: S -> U denote a stationary control policy. The infinite-horizon discounted

optimal control problem consists of selecting the stationary control policy which minimizes, for
all initial states i, the cost

00O

J {(i) = E{f at g(x(t), [t(x(t)) I x(0) = i , g }. (1)
t=O

The optimal cost vector J* of this problem is characterized as the unique solution of the
dynamic programming equation [1]

J* = ming {g, + oa P. J* }. (2)

Here the coordinates of J* are J*(i) = mingJ*(i), gg is the vector with coordinates g(i, J.(i)), Pg
is the transition probability matrix corresponding to At, and the minimization is considered
separately for each coordinate.

One of the principal methods for solving the problem is the policy iteration algorithm
which iterates between a policy improvement step

gn = arg ming {gi + aP c 1 jn-l} (3)
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yielding a new policy [pn, and a policy evaluation step that finds the cost vector Jn

corresponding to policy gpn by solving the equation

Jn = g 1n + o Pn Jn. (4)

Eq. 4 is a linear nxn system which can be solved by a direct method such as Gaussian

elimination. In the absence of specific structure, the solution requires O(n3 ) operations, and is

impractical for large n. An alternative, suggested in [11], [12] and widely regarded as the most

computationally efficient approach for large problems, is to use an iterative technique for the

solution of eq. 4, such as the successive approximation method; this requires only O(n2) per

iteration for dense matrices P (see the survey [2]). It appears that the most effective way to

operate this type of method is not to insist on a very accurate iterative solution of eq. 4. Two

points relevant to the present paper are that:

(a) The choice of iterative method for solving approximately eq. 4 is open.

(b) For convergence of the overall scheme it is sufficient to terminate the iterative method at a

vector J such that a norm of the residual vector

J - (gun + ocPgn J)

is reduced by a certain factor over the corresponding norm of the starting residual

Jn-1 _ (gon + cPln jn-1)

obtained when the policy improvement step of eq. 3 is carried out.

This paper proposes a new iterative aggregation method for solving eq. 4 as per (a)

above. Its rate of convergence can be superior to that of other competing methods, particularly

for difficult problems where there are multiple ergodic classes corresponding to the transition
matrix Pin. Its convergence is assured through the use of safeguards that enforce a guaranteed

reduction of the residual vector norm as per (b) above.

Several authors have proposed the use of aggregation- disaggregation ideas for

accelerating the convergence of iterative methods for the solution of eq. 4 (Miranker [4],

Chatelin and Miranker [5], Schweitzer, Puterman and Kindle [6], Verkhovsky [7], and

Mendelshohn [8]). In [5], Chatelin and Miranker described the basic aggregation technique

and derive a bound for the error reduction. However, they did not provide a specific

algorithm for selecting the directions of aggregation or disaggregation. In [7], Verkhovsky

proved the convergence of an aggregation method which used the current estimate of the
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solution J as a direction of aggregation, and a positive vector as the direction for

disaggregation. This idea was extended in [6] by selecting fixed segments of the current

estimate J as directions for aggregation, and certain nonnegative vectors as directions for

disaggregation.

There is an important difference between the aggregation algorithms described in this

paper and those developed by the previous authors. In our work, aggregation and

disaggregation directions are selected adaptively based on the progress of the algorithm. In

particular, the membership of a particular state in an aggregate group changes dynamically

throughout the iterations. States with similar magnitude of residual are grouped together at

each aggregation step, and, because the residual magnitudes change drastically in the course of

the algorithm, the group membership of the states can also change accordingly. This is in

contrast with the approach of [6] for example, where the aggregate groups are fixed through

all iterations. We show via analysis and experiment that the adaptive aggregate group

formation feature of our algorithm is essential in order to achieve convergence acceleration for
difficult problems involving multiple ergodic classes. For example, when P, is the n x n

identity matrix no algorithm with fixed aggregate groups can achieve a geometric convergence
rate better than cz. By contrast, our algorithm converges at a rate faster than 2a /m where m is

the number of aggregate groups.

The rest of the paper is organized as follows. In section 2, we provide some background

material on iterative algorithms for the solution of eq. 4, including bounds on the solution

error. In section 3, we derive the equations of aggregation and disaggregation as in [5], and

obtain a characterization of the error reduction produced by an aggregation step. In section 4,

we describe and motivate the adaptive procedure used to select the directions of aggregation

and disaggregation. Section 5 analyzes in detail the error in the aggregation procedure when

two aggregate groups are used. Throughout the paper we emphasize discounted problems.

Our aggregation method extends, however, to average cost Markovian decision problems and

in Section 6 we describe the extension. In section 7, we discuss and justify the general

iterative algorithm combining adaptive aggregation steps with successive approximation steps.

Section 8 presents experimental results.

SECTION 2: Successive Approximation and Error Bounds

For the sake of simplicity, we will drop the argument g from equation 4, thereby

focusing on obtaining an iterative solution to the equation

J = T(J) (5a)



where the mapping T : R n -- Rn is defined by

T(J) A g + cP J. (5b)

A successive approximation iteration on a vector J simply replaces J with T(J). The

successive approximation method for the solution of eq. 5 starts with an arbitrary vector J, and

sequentially computes T(J), T2 (J), .... Since P is a stochastic matrix (and hence has spectral
radius of 1) and ox £ (0,1), it follows that T is a contraction mapping with modulus (X. Hence,

we have

limko,, Tk(J) = J* (6)

where J* is the solution of eq. 5 and Tk is the composition of the mapping T with itself k
times. The rate of convergence in eq. 6 is geometric at a rate ot, which is quite slow when oc is

close to 1.

The rate of convergence can often be substantially improved thanks to the availability of

error bounds due to McQueen [9] and Porteus [3] (see [1] for a derivation). These bounds are

based on the residual difference of T(J) and J. Let J(i) denote the ith component of a vector J.
Let y and f3 be defined as

y = mini [T(J)(i) - J(i)] (7a)

P = m axi [T(J)(i) - J(i)] (7b)

Then, the solution J* of eq. 1 satisfies

T(J)(i) + acxT < J*(i) < T(J)(i) + X4 (8)
1-oc 1-oc

for all states i. Furthermore, the bounds of eq. 8 are monotonic and approach each other at a
rate equal to the complex norm of the subdominant eigenvalue of acP, as discussed in [2] and

shown in Section 4 of this paper. Hence, the iterations can be stopped when the difference

between the lower and upper bounds in eq. 8 is below a specified tolerance for all states i. The

value of J* in this case is approximated by selecting a value between the two bounds.

There are also several variations of the successive approximation method such as Gauss -

Seidel iteration, successive over-relaxation [10], and Jacobi iteration [2]. Depending on the
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problem at hand these schemes may converge faster than the successive approximation method.
However their rate of geometric convergence is often close to a when a is large and P has

more than one ergodic class, in which case the subdominant eigenvalue of P has a norm of

unity.

SECTION 3: Aggregation Error Estimates

The basic principle of aggregation-disaggregation is to approximate the solution of eq. 1

by solving a smaller system of equations obtained by lumping together the states of the original

system into a smaller set of aggregate states. We have a vector J and we want to make an

additive correction to J of the form Wy, where y is an m-dimensional vector and W is an nxm

matrix, so that

J + Wy - J* (9)

Our method makes use of two matrices Q and W. We will later assume that Q = (WTW)-1WT

(superscript T denotes transpose), but it is worthwhile to postpone this assumption for later so

as to develop the following error equations in generality. We thus assume:

Assumption 1. Q is an m x n matrix, and W is an n x m matrix, chosen so that Q( I- ca P)W

is nonsingular, and QW = I where I is the m-dimensional identity.

From eq. 5, we get

T(J) - J = (I - aP)(J* - J) (10)

Multiplying this equation on the left by Q yields

Q(T(J) - J) = Q(I- aP)(J* - J) (11)

It follows that, if J* - J is approximately Wy as in eq. 9, then a good choice for y is the unique

solution of the following mxm system obtained by replacing J* - J with Wy in eq. 11

Q(T(J) - J) = Q(I - tcP)W y, (12)

or, using the fact QW = I,
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Q(T(J) - J) = (I - aQPW) y

Thus we define

y = (I - xcQPW)-lQ (T(J) - J),

and view the vector J1 defined by

J1 = J + Wy = + W W (I- aQPW)- 1Q (T(J) - J) (13)

as an approximation to J* (cf. eq. 9). The conversion of eq. 10 to the lower dimensional eq. 12

is known as the aggregation step. The disaggregation step is the use of eq. 13 to approximate
the solution J*. Note that there is no claim or guarantee that J1 approximates well J*; this

depends on the choice of the subspace W which is the key for the success of aggregation
methods. If J - J* lies on the range space of W then J1 = J*. Generally J1 will be close to J* if (J

- J*) nearly lies on the range space of W.
After obtaining J1 using eq. 13, the aggregation method performs a successive

approximation iteration on it yielding

T(J1) = T(J) + ta PWy (14)

(this improves the quality of the solution and is also a necessary first step for the subsequent

aggregation step as seen from eq. 13). In some cases it is desirable to perform several

successive approximation iterations between aggregation steps (see the discussion of section

4). We thus define the iterative aggregation method as a sequence of iterations of the form of

eq. 13 with each pair of consecutive iterations possibly separated by one or more successive

approximation iterations.

To understand the properties of the iterative aggregation method it is important to
characterize the error T(J 1) - J* in terms of the error J - J*. From eq. 14 we get

T(J 1) - J* = (T(J) - J) + (J - J*) + a PWy (15)

which, using eqs. 10 and 12, yields

T(J1) - * = (xP{ I - W (I - oQPW)-1Q (I- xoP)} (J -J*) (16)
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Eq. 16 is in effect the equation obtained by Chatelin and Miranker [5] to characterize the

error obtained by additive corrections based on Galerkin approximations. It applies to general

linear equations where the matrix P is not necessarily stochastic. In order to better understand

this equation, we will derive an expression for the residual obtained after an aggregation-

disaggregation step. Define the matrix

1I = WQ (17)

which is a projection on the range space of W. Generally I1 is not an orthogonal projection but

with the choice Q = (WTW)-lWT that will be used later in this paper I becomes the orthogonal

projection matrix on the range of W. From eqs. 16 and 10 we get

T(J1) - J1 = (I - cP){ I - W [Q(I - aP)W-l 1Q (I- aP) }(J* -J)

{ I - (I- xP) W [Q(I - xoP)W]- 1Q} (I- aP) (J* -J)

= (I- II) (T(J) -J) + {W[I- xcQPW] - (I- oP) W}[I - oxQPW]-lQ (T(J) -J)

= (I- I1) (T(J)-J) + a(I- LI) PW [I - xQPW]- 1Q (T(J) -J)

= (I- Hi) (T(J)-J) + ca(I- FI) PWy (18)

Equation 18 is the basic error equation which we will be working with. There are two

error terms in the right side of eq. 18 (see Figure 1). Our subsequent choice of W and Q will

be based on trying to minimize the first error term on the right above. We generally estimate

errors using the pseudonorm

F(J) = Maxi (J(i) ) - Mini (J(i)) (19)

Since the scalar F(T(J) - J) is proportional to the difference between the upper and lower

bounds in eq. 8 we see that reducing F(T(J) - J) to 0 is equivalent to having the upper and

lower bounds converge to each other, thereby obtaining J*. The second error term in eq. 18 is

a measure of how well is the action of the stochastic matrix P represented by the aggregation-

disaggregation projections based on W. Note that if P maps the range of W into itself, the

second term is zero since, from eq. 17 and the condition QW = I of Assumption 1, we have (I -

rI)W = 0. Hence, the second term is small when the range of W is closely aligned with an

invariant subspace of P. When this is not the case, the inverse in this second term introduces a

tendency for instability. Despite this fact it will be seen that the effect of this term can be

adequately dealt with.
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First error term
(I - II) (T(J) -J) T(J)- J Second error term

j K < t (I -rl) a PWy a PWy

-1

__ __ _ ____ . [Wy =W[Il-a QPW] Q(T(J)-J)

0 rI (T(J)- J) e ofRange of W

Figure 1: Geometric illustration of the two error terms of eq. 18. The matrix Il
projects orthogonally on the range space of W. Note that if the range of W
is invariant under P, the second error term is zero.

SECTION 4: Adaptive Choice of the Aggregation Matrices Based on Residual Size

We introduce a specific choice of Q and W. Partition the state space S = { 1,2, ... , n}
into m disjoint sets Gj, j = 1,... m (also called aggregate groups). Define the vectors wj

with ith coordinates given by

wj(i) = 1 if i e Gj (20)

= 0 otherwise.

Let the matrices W and Q be defined by

W = [Wl,. .. , Wm] (21)

Q = (WTW)-lw T . (22)

Note that WTW is a diagonal matrix with i-ith entry equal to the number of elements in group
Gi. If one of the groups is empty, then we can view the inverse above as a pseudoinverse.

Lemma 1. Assume Q and W are defined by eqs. 20, 21, 22. Then,

(a) QW = I
(b) Pa A QPW is a stochastic matrix

(c) Q and W satisfy Assumption 1.
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Proof: (a) Immediate from the definition of eq. 22.
(b) By straightforward calculation we can verify that the (i,j)th element of Pa is

[Pa]ij -iGI Pkm
1 keGi mEGj

where IGil is the number of states in Gi. It follows that [Pa]ij > 0 for all i, j, and

j [Paij = 1 for all i= 1,., m.

Therefore Pa is a stochastic matrix.

(c) The eigenvalues of Pa lie within the unit disk, so, in view of (a < 1, the matrix I - acP a

cannot have a zero eigenvalue and must therefore be invertible. This combined with part (a)

shows that Assumption 1 is satisfied. q.e.d.

Figure 2 illustrates the "aggregated Markov chain" corresponding to the stochastic matrix

Pa and identifies its states with aggregate groups. This chain provides an insightful

interpretation of the aggregated system of eq. 12. By writing this system as

Q(T(J) - J) = (I- aPa)y

and by comparing it with the system of eq. 10 we see that y is the cost vector corresponding to

the aggregated Markov chain, and to a cost per stage equal to Q(T(J) - J) the ith component of

which is the average residual

iGl ZI [T(J)(k) - J(k)]
i keGi

over the ith aggregate group of states. Thus the aggregation iteration solves in effect a (lower

dimensional) dynamic programming equation corresponding to the aggregated Markov chain.
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Figure 2: Illustration of the aggregated Markov chain associated with the transition matrix
Pa = QPW. The aggregate groups are G1 = {1, 2, 3}, G2 = (4, 5), G3 = (6) and they
correspond to states of the aggregated Markov chain. The transition probability from state
Gi to state Gj equals the sum of all transition probabilities from states in G. to states in G.
An aggregation step can be interpreted as a policy evaluation step involving the aggregated
Markov chain.

We now describe the method for selecting the aggregate groups. We write eq. 18 as

T(J1) -J1 = R 1 (J) + R 2(J) (23)

where

R 1 (J) = (I- rI) (T(J) -J) (24a)

R 2(J) = (x(I- 1I) PW (I - aQPW)-lQ (T(J)-J) (24b)

We want to select the partition Gj, j = 1, ... , m so that F[R 1(J)] is minimized. For a given

value of F(T(J) - J), and number of aggregate groups m, the following procedure, based on

residual size, is minimax optimal against the worst possible choices of P and J. The idea is to
select Gj so that the variation of residuals within each group is relatively small.

Consider

y = mini [T(J)(i) - J(i)]; P = m ax i [T(J)(i) - J(i)]

Divide the interval [y,3] into m equal length intervals, of length L, where

L = (3 -y )/m = (F(T(J) - J))/m (25)
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Then, for j < m, we select

Gj = {i ly + (j-1)L < (T(J) - J)(i)< y, + jL}, j < m (26a)

and we select

Gm = {i I y + (m-1)L < (T(J) - J)(i) < 3 } (26b)

To understand the idea behind this choice, note that if j(i) is the index of the group
containing state i and IGj(i)l is the number of states in Gj(i), the ith coordinate of a vector -ix =

W(WTW)-lWTx (cf. eqs 15 and 22) can be calculated to be

(IHx)(i) = x (k) (27)
k_ £F Gj j(i)lGj(i)

i.e. the average value of Ix over the group Gj(i). Therefore, the ith coordinate of R 1(J) = (I -

II)(T(J) - J) is the difference of the residual of state i and the average residual of the group
containing state i. As a result of the choice of eqs. 25 and 26, the coordinates of Rj(J) are also

relatively small.
Figure 3 illustrates the choice of Gj for a typical vector T(J) - J using three aggregate

groups. In Figure 4, we display the vector R 1(J). Note that the spread between the maximum

element and the minimum element has been reduced significantly. We have the following

estimate.

Lemma 2. Let Gj be defined by eqs. 25 and 26. Then, for m > 1,

F[R1(J)1 < 2 (28)
F[T(J)-J] m

Proof: From eq. 27, II (T(J) -J) is the vector of average values of residuals within each
group Gj. The operation (I - 17) (T(J) - J), as shown in Fig. 4, subtracts the average value of

the residuals in each group from the value of the residuals in each group. Since all of the
residuals in each group belong to the same interval in [y,y], so does the average value, which

establishes that each coordinate of (I - 1) (T(J) - J) lies between -L and L. Therefore, using eq.

25, we have
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F[(I - IJ)(T(J) -J)] < 2L = 2 F(T(J) - J) / m (29)

which proves the result. q.e.d.

We note that the argument in the proof above can be refined to give the improved estimate

F[Ri(J)l < 2 1.5ni (30)

F[T(J) - J] m Q.5nJ + 1)

where LxJ denotes the largest integer less than x. For large n, the improvement is small. Also,

the bound above is a worst-case estimate. In practice, one usually gets a reduction factor better

than 1/m (as opposed to 2/m). This has been verified computationally and can also be deduced

from the proof of Lemma 2.

Lemma 2 establishes that with our choice of W and Q we get a substantial reduction in the
error term R 1 (J). Hence,

Residual

(T(J) - J)(i)

p x
x group 3

x

xx x

x
x group 2

x

x x

group I

Y _ x
_ a I I I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14

State i

Figure 3: Formation of Aggregate groups is based on magnitude of the residuals. Here the
three aggregate groups are obtained by dividing the residual range into three equal portions
and grouping together the states with residuals in the same portion.
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First Error
Term
R1 (J)(i) = (I-f-)(T(J)-J)(i)

x x x

, I I x * , , , , I I , I State i
x x

x x x

Figure 4: Illustration of the first error term R 1 (J) for the case of the residuals of Figure 3.
R 1 (J) is obtained from (T(J) -J) by subtracting the average residual over the group that contains
state i.

the aggregation step will work best in problems where the second term R 2(J) is small. To

illustrate this, consider the following examples.

Example 1: P = I, the n x n identity
In this case, R 2(J) = 0, because PW = W. Hence, the aggregation-disaggregation step reduces

the spread between the upper and lower bounds in eqs. 7 and 8 as:

F[T(J 1) - J1] < 2 F[T(J)-J1 (31)

In this case, the geometric rate of convergence is accelerated by a minimum factor of 2/m.

Example 2: m = 1, W = e where e is the unit vector eT = [1, 1, ... , 1].

In this case,we obtain a scheme known as the error sum extrapolation [2]. Starting from J, a

successive approximation step is used to compute T(J). Then, an aggregation step is used to
compute T(J1) directly as:

n
T(J1)(i) = T(J)(i) + a E (T(J) - J)(i)

n(l-a) i=l

This aggregation step is followed by a sequence of successive approximation steps and

aggregation steps. The rate of convergence of this method can be established using eq. 18.

The residual produced by the second successive approximation step is given by
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T(T(J1 )- J1 ) = (P(RI(J) + R 2(J))

= P (I- -I) (T(J) -J)

since R2 (J) vanishes (P is a stochastic matrix and Pe=e). After n repetitions of successive

approximation and aggregation steps, the residual rn will be

rn = an [P (I - If)]n (T(J) -J)

= a n P (I - 1) pn-l (T(J) -J) (32)

because from eq. 27, P11 = II which implies that (I - IH)P(I - II) = (I - TI)P. Consider a

decomposition of Pn-1(T(J) -J) along the invariant subspaces of P. There is a subspace

corresponding to a unity eigenvalue that is spanned by e, and the component of P"-1(T(J) -J)
along that subspace is annihilated by (I - 'I) (cf. eq. 27). Therefore, rn will converge to 0

geometrically at a rate determined by the largest complex norm of eigenvalues of aP in a

direction other than e (the subdominant eigenvalue norm).

Example 3: P is block-diagonal and the aggregate groups are aligned with the ergodic classes.

In this case we assume that P has multiple ergodic classes and no transient states. By

reordering states if necessary, we can assume that P has the form

P = diag { pl, p 2 ,...,r (33)

We assume also that each aggregate group Gj, j = 1,..., m consists of ergodic classes of

states (no two states of the same ergodic class can belong to different groups). The matrix W

then has the form

F1 ... 1o... o .... 0 T

I ... 1 ... 10 o .... 1O
W= I . ] (34)

Lo... oo... oo... 1... 1J

and it is easily seen that PW = W. Therefore, the second error term R 2 (J) vanishes and the

favorable rate estimate of eq. 31 again holds. Note that it is not necessary that each aggregate
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group contains a single ergodic class. This restriction would be needed for fast convergence if

the aggregate groups were to remain fixed throughout the computation.

The case of a block diagonal matrix P is important for several reasons. First, block

diagonal matrices P present the most difficulties for the successive approximation method,

regardless of whether the McQueen-Porteus error bounds are employed. Second, we can

expect that algorithmic behavior on block-diagonal matrices will be replicated to a great extent

on matrices with weakly coupled or sparsely coupled blocks. This conjecture is substantiated

analytically in the next section and experimentally in section 7.

The favorable rate of convergence described above is predicated on the alignment of the

ergodic classes and the aggregate groups. The issue of effecting this alignment is therefore

important. We first remark that even if this alignment is not achieved perfectly, we have

observed experimentally that much of the favorable convergence rate can still be salvaged,

particularly if an aggregation step is followed by several successive approximation steps. We

provide some related substantiation in the next section, but hasten to add that we do not fully

understand the mechanism of this phenomenon. We next observe that for a block-diagonal P,

the eigenvectors corresponding to the dominant unity eigenvalues are of the form

ej = [O ... 0 1 ... 1 0 ... 0]T j = 1,. . ., r

where the unit entries correspond to the states in the j-th ergodic class. Suppose that we start

with some vector J and apply k successive approximation steps. The residual thus obtained

will be

Tk(J) - Tk-l(J) = ((aP)k-l(T(J) - J)

and for large k, it will be nearly a linear combination of the dominant eigenvectors. This means

that Tk(J) - Tk-l(J) is nearly constant over each ergodic class. As a result, if aggregate groups

are formed on the basis of the residual Tk(J) - Tk-Il(J) and eqs. 25 and 26, they will very likely

be aligned with the ergodic classes of P. This fact suggests that several successive

approximation steps should be used between aggregation steps, and provides the motivation

for the algorithm to be given in Section 7.

SECTION 5: Adaptive Aggregation with Two Groups

The preceding section showed that the contribution of the second error term R 2(J) of eq.

18 is crucial for the success of our aggregation method. The analysis of this contribution seems
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very difficult in general, but the case where m = 2 is tractable and is given in this section.

Experiment and some analysis show that the qualitative conclusions drawn from this case carry

over to the more general case where m>2. Assume that W, Q have been selected according to

eqs. 20 - 22. By appropriate renumbering of the states, assume that W is of the form

W = r1...10...0O T
Lo...o 1... 1J

Let k be the number of elements in the first group. Then a straightforward calculation shows

that

1-b b
Pa (35)

c 1-b

where

k
b= 1 I bi (36a)

k i=l

n
c = 1 E ci (36b)

n-k i=k+l

n
bi = I Pij, i= 1,...,k (37a)

j=k+l

k
Ci = I Pij, i = k+l, ... ,n. (37b)

j=1

The right eigenvectors and eigenvalues of Pa are

v= [1 1]T ; v 2 = [1 -c/b]T (38)

h1 = 1 ~; 2 = 1 -b -c. (39)

assuming b • 0. If b = 0 then v2 can be chosen as

v 2 = [ 1 ]T (40)
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and X1 = 1, ?,2 = 1 - c. From eq. 22 and the form of W we obtain

1 0o
k I W (41)
0 (n-k)

We can decompose the term Q(T(J) - J) of eq. 18 into its components along the eigenvectors
v1, v2, as

Q(T(J) - J) = alvl + a2v2 (42)

We have (I - aPa)vl = (1-ac)vl from which we obtain

W(I- cPa)-lvl = (l-o)-lvl (43)

Hence

a((I- 1I) PW (I - oPa)-lvl = (1-) -1 (I - I)Pv1 = 0,

and it follows that the only contribution to R2 (J) comes from the term a2v2 in eq. 42. Using

eqs. 35, 38, and 39 we obtain

(I - ctPa)-lv2 = [ 1-a + a(b + c) ]-1 v2 . (44)

Thus, using eq. 24b, we obtain

R 2(J) = c(I - 17) PW (I - aPa)-la2v2 = aoa 2Q(PW - WPa)[ 1-a + a(b + c) ]-lv2 (45)

From eqs. 34 - 37, we can calculate the (i,1) element of the matrix PW - WPa to be

(PW-WPa)(i,1)= b - b i if i<k (46)

= -c + c i if i>k

Similarly,

(PW- WPa) (i,2) = -(PW- WPa) (i,1).
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Thus, from eq. 45

R 2 (J) = a a 2F(v 2 )h (47)

where h is the vector with coordinates

h(i) = b-b i if i<k (48)
1 - a + ¢c(b+c)

= c_ if i >k

1 - a + xc(b+c)

and F(v 2) = 1 + c/b (cf. eqs. 19 and 38). From eqs. 36, 37, and 48 we see that in order for the

coordinates of h to be small, the probabilities bi and ci should be uniformly close to their

averages b and c. If this is not so then at least some coordinates of R 2(J) will be substantial,

and it is interesting to see what happens after a successive approximation step is applied to
R2 (J). The corresponding residual term is the vector

q = aPR2(J).

From eqs. 47 and 48 we see that the ith coordinate of q is
k n

q(i) = a2a 2F(v2 ) [ Pij (b- bj) + E Pij (cj - c)] (49)

1 - a + ((b+c) j=l j=k+l

Since b and c are the averages of bj and cj respectively, we see that the coordinates of q can be

small even if the coordinates of h are large. For example if P has a totally random structure

(e.g. all elements are drawn independently from a uniform distribution), then for large n the

coordinates of q will be very small by the central limit theorem. There are several other cases

where either h or q (or both) are small depending on the structure of P. Several such examples

will now be discussed. All of these examples involve P matrices with subdominant

eigenvalues close to unity for which standard iterative methods will converge very slowly.

Case 1: P has uniformly weakly coupled classes of states which are aligned with the aggregate

groups
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The matrix P in this case has the form

p1 p 2

P3 4 (50)

where pl is k x k and the elements of p 2 and P3 are small relative to the elements of pl and P 4.

From eqs. 36, 37, 47, and 48 we see that if b and c are considerably smaller than (1 - ct), then
R 2(J) =0. This will also happen if the terms bi and ci of eq. 37 are all nearly equal with their

averages b and c respectively. Even if R2 (J) is not near zero, from eq. 49 we see that q = 0 if

the size of the elements within each row of pl, p2 , p3 and P 4 is nearly uniform.

What happens when the groups identified by the adaptive aggregation process are not

perfectly aligned with the block structure of P? We examine this case next.

Case 2: P block diagonal with the upper k x k submatrix not corresponding to the block

structure of P.

Without loss of generality, assume that i = 1,. .. , m1 < k are all elements of one group of

ergodic classes of P, while i = m 2 +1, ... , n, m 2 > k, are elements of the complementary

group of ergodic classes. Note that the states ml < i < m 2 are not aligned with their ergodic

classes in the adaptive aggregation process.

In this case, we have

m2

bi = I Pij if i< ml
j=k+l

n
= L Pij if k > i > mi (51)

j=m2 +1

ml

Ci = Y Pij if m 2 > i >k
j=1

k
= Y Pij if m 2 < i < n (52)

j=ml+l
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Suppose

k-m lr m 2 -k; k= n/2; k-ml << k (53)

so that the aggregate groups are nearly aligned with the block structure of P. The ergodic
classes corresponding to group 1 consist of the set of states i = 1,. .., ml and i=k+l, ... , m2 ,

while the remaining states correspond to the ergodic classes in group 2. From eq. 51 we see
that bi will tend to be small for i=l,. . ,ml and large for i=ml+l,...,k. Similarly c i will tend to

be small for i=m2 +1, ...,n and large for i=k+l, ... ,m 2. It follows from eq. 48 that

h(i)> 0 if i=1,...,ml or i=k+l,...,m2 (54)

h(i) < 0 otherwise.

Hence, R 2(J) is contributing terms of opposite sign to the ergodic classes in groups 1 and 2.

By following the aggregation step with repeated successive approximation iterations, this

contribution will be smoothed throughout the ergodic classes. Thus, the next aggregation step

will be able to identify groups which are aligned with the block structure of P, thereby reducing

the error as in case 1. The following example illustrates this point.

Example 4: Let P be the 20 x 20 matrix
p1 0 .le 0T
o .1 o .le

.1T 0 .1 0 (55
0 .le 0 Fp

where pl, p2 are 9x9 blocks with uniform entries .1, and e is a 9 dimensional vector of all 1 s.

Note that one ergodic class has states i = 1, ... , 9 and i = 11, while the rest of the states are in

the second ergodic class. Assume that J is such that

(T(J) - J)(i) = 1 if i < 10

=-1 if i> 11.

In this case, the aggregation matrix W is defined by

wl(i) = 1-w 2(i) =1 if i 10,
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=0 if i>11.

Note that the groups are almost aligned with the ergodic classes of P. Using eqs. 46, 51 and

52, we get

b =c =.18
h(i) = .08 [ 1-(o + ac(.36) ]-1 if i <9

h(10) = - .72 [ 1-a + x((.36) ]-1

h(ll 1) = .72 [ 1-ac + a(.36) ]-1

h(i) = -. 08 [ l-a + a(.36) ]-1 if i > 11.

From eqs. 38 and 42, we obtain F(v2 ) = 2 and a2 = .8. Hence,

F(R2(J)) = a 1.44 [ 1-ca + o(.36) ]-1 (.8)2 < 6.4 (56)

Note also that R1 (J) = 0 for the choice of T(J) - J of this example.We can now see the effect of

the aggregation step. We started out with F(T(J) - J) = 2 and ended up with F(T(J1 ) -J 1) = 6.4

(assuming (c = 1). Therefore the residual error as measured by F has increased substantially as

a result of the aggregation step.

Consider now the effect of a successive approximation step subsequent to the aggregation

step. Since

(Ph)(i) = .144 [ 1-a + oa(.36) ]-1 if i < 9 or i = 11

= -.144 [ l-a + (x(.36) ]-1 otherwise.

we see that the corresponding residuals (T2(J 1) - T(J1))(i) will be constants of opposite sign

over the two ergodic classes. (The smoothing of the error after a single successive

approximation step in this example is a coincidence. In general, several successive

approximation steps will be required to diffuse the effect of the initial aggregation step

throughout the ergodic classes.) The end effect is to align the aggregate groups with the

ergodic classes at the next aggregation step.

Note also that using eq. 49 we have

F( T2(J 1) - T(J1 )) = F(oPR2 (J)) = F(q)

= 2.288 [ 1-oc + cc(.36) ]-1(.8) 2 < 1.28.
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Therefore, after a single successive approximation step, the error will be reduced substantially

below the starting error F(T(J) - J) = 2. Thus, we see that the aggregation step itself causes an

increase in the error as measured by F. Yet, it produces a vector that is oriented sufficiently

away from the dominant eigenvectors of P so that the subsequent successive approximation

step is highly effective. This phenomenon was consistently observed during our

experimentation and has also been observed by Chatelin and Miranker [5].

Case 3: P has sparsely-coupled classes of states

In this case, P has the general form

P1 23 4

where elements of pl, p4, p2, p3 are of the same order, and pl, p4 are dense while p2 , p3 are

very sparse. Assume that the groups are aligned with the block structure of P. Then we have

n-k
bi = P2ij if i< k (57a)

j=l

k

Ci = p P3ij if i >k. (57b)
j=1

As in case 1, if bi and ci are small (of the order of (l-a)), or vary little from the corresponding

averages b and c, then R2 (J)=0O. If the size of the elements within P1 and P4 is nearly uniform,

then from eq. 49 we see that q=O. Furthermore, the behavior observed in case 2 is replicated in

this case and, when the aggregate groups are not aligned with the block structure of the P
matrix, the term R2 (J) forces the next aggregation step to be better aligned with the block

structure of P.

In conclusion, the cases studied in this section indicate that, for classes of problems

where there are multiple eigenvalues with norm near unity, a combination of several

successive approximation steps, followed by an aggregation step, will minimize the
contribution of R 2(J) to the error, and thereby accelerate the convergence of the iterative

process as in Lemma 2. In Section 7, we formalize these ideas in terms of an overall iterative

algorithm.
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SECTION 6. Extension to the Average Cost Problem

The aggregation procedure described in section 3 can also be used in the policy

evaluation step of the policy iteration algorithm in the average cost case. Here the cost vector

for a stationary policy gt is given by

T

JR = lim (1/T) E { Y g(x(t), WL(x(t))) I g (58)
t--- t=O

As in the discounted cost case, the average cost incurred by policy jg can be characterized

by the linear equation ( see [1] for a detailed derivation)

JI + hg = gg + P.i hi. (59)

The vector h, is the differential cost incurred by policy gl. In what follows we drop the

subscript g.

The solution of eq. 59 can be computed under certain conditions using the successive

approximation method [1]. Fix a state which for simplicity is taken to be state 1. Starting

with an initial guess hO for the differential cost, the successive approximation method

computes hn+ l as

hn + l = T(hn ) - ee lTT(h n) (60)

where T(h) is defined by

T(h) = g + Ph,

and el = [ 1, 0,..., 0 ]T is the coordinate vector corresponding to the fixed state 1. Eq. 60

can be written as

hn+l = gA + PAh n. (61)

where

gA = (I - e e1T) g
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PA = (I - e elT)P.

We assume that all eigenvalues of P except for a single unity eigenvalue lie strictly within

the unit circle (see [1] for a method that works under the weaker assumption that P has a
single ergodic class). A straightforward calculation shows that PA2 = PAP from which we

obtain PAk = PAP k- 1 for all k > 0. Since PA annihilates the eigenvector e corresponding to the

unit eigenvalue of P, it follows that the eigenvalues of PA all lie strictly inside the unit circle,

guaranteeing the convergence of the iteration of eq. 61. Furthermore the rate of

convergence is specified by the subdominant eigenvalue of P.

Note that the iteration in eq. 61 is identical to the discounted cost iteration

hnfl = g + aPhn,

except that gA replaces g and PA replaces oaP. Thus, the aggregation and error equations of

section 3 can be extended to the average cost problem using the above substitutions. The

following lemma establishes that the choice of the matrices Q and W used in section 4 result

in a well-posed aggregate problem provided the fixed state 1 forms an aggregate group by

itself:

Lemma 3. Assume Q and W are defined by eqs. 20 - 22 with the set G1 consisting of just

state 1, and that all eigenvalues of P except for a single unity eigenvalue lie strictly within
the unit circle. Then the aggregate matrix QPAW has spectral radius less than unity.

Proof: It is straightforward to verify that

QPAW = (I - eme,mT)Pa, (62)

where Pa = QPW is the aggregate stochastic matrix defined in Lemma lb, em is the m-

dimensional vector of all l's, and el,m is the m-dimensional vector with first coordinate 1,

and all other coordinates 0. Therefore, as earlier, we obtain (QPAW) 2 = (QPAW)Pa from

which

(QPAW)k = (QPAW)Pa k- 1 = (I - emel,mT)Pak, for all k > 0. (63)

We have Pak = (QPW)k = QPkW for all k > 0, and from this we obtain that Pa has all its

eigenvalues strictly within the unit circle except for a single unity eigenvalue. Using this
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fact, eq. 63, and the fact that (I - emel,mT) annihilates the eigenvector em corresponding to

the single unity eigenvalue of Pa, we see that QPAW must have all its eigenvalues strictly

within the unit circle. q.e.d.

Equation 62 illustrates that the solution to the aggregate linear equation is the solution of
an aggregate average-cost problem with transition probabilities Pa. The equations for the

aggregation step are:

hI = h + W(I - QPAW)-Q (gA + PAh - h)

Using this equation we obtain error equations similar to eqs. 23 and 24, indicating that the

same choice of Q and W will result in similar acceleration as in the discounted case. This

has been verified by the experiments of section 8.

SECTION 7. Iterative Aggregation Algorithms

The method for imbedding our aggregation ideas into an algorithm is straightforward.

Each iteration consists of one or more successive approximation steps, followed by an

aggregation step. The number of successive approximation steps in each iteration may depend

on the progress of the computation.

One reason why we want to control the number of successive approximation steps per

iteration is to guarantee convergence. In contrast with a successive approximation step, the

aggregation step need not improve any measure of convergence. We may wish therefore to

ensure that sufficient progress has been made via successive approximation between

aggregation steps to counteract any divergence tendencies that may be introduced by

aggregation. Indeed, we have observed experimentally that the error F(T(J) -J) often tends to
deteriorate immediately following an aggregation step due to the contribution of R 2 (J), while

unusually large improvements are made in the next few successive approximation steps. This

is consistent with some of the analytical conclusions of the previous section. An apparently

effective scheme is to continue with successive approximation steps as long as F(T(J) - J)

keeps decreasing by a "substantial" factor.

One implementation of the algorithm will now be formally described:

Step 0: (Initialization) Choose initially a vector J, and scalars e > 0, P1,P 2 in (0,1), co= 

and o2 oo.
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Step 1: (Successive approximation step) Compute T(J).

Step 2: (Termination Test) If F(T(J) -J) < £, stop and accept

T(J) + (1/2) a (1 - x)-l[max i (T(J)-J)(i) - mini (T(J)-J)(i)]

as the solution (cf. the bounds in eq. 8). Else go to step 3.

Step 3: (Test for an aggregation step) If

F(T(J)-J) < ol (64)

and
F(T(J)-J) > 0)2 (65)

set col:=[1 F(T(J) -J) and go to step 4. Else, set c02:=132 F(T(J) -J), J:=T(J) and go to step

1.

Step 4: (Aggregation Step) Form the aggregate groups of states Gj, j = 1,..., m based on
T(J) - J as in eq. 26. Compute T(J1 ) using eqs. 13 and 14. Set J:=T(J 1), co2 = o, and go to

step 1.

The purpose of the test of eq. 65 is to allow the aggregation step only when the progress
made by the successive approximation step is relatively small (a factor no greater than [P2). The

test of eq. 64 guarantees convergence of the overall scheme. To see this note that the test of eq.
64 ensures that, before step 4 is entered, F(T(J) - J) is reduced to a level below the target col,

and c1 converges to zero when an infinite number of aggregation steps are performed. If only

a finite number of aggregation steps are performed, the algorithm reduces eventually to the

convergent successive approximation method.

An alternative implementation is to eliminate the test of eq. 65 and perform an aggregation

step if eq. 64 is satisfied and the number of consecutive iterations during which an aggregation

step was not performed exceeds a certain threshold.

SECTION 8: Computational Results

A large number of randomly generated problems with 100 states or less were solved
using the adaptive aggregation methods of this paper. The conclusion in summary is that
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A large number of randomly generated problems with 100 states or less were solved

using the adaptive aggregation methods of this paper. The conclusion in summary is that

problems that are easy for the succcessive approximation method (single ergodic class, dense

matrix P) are also easy for the aggregation method; but problems that are hard for succcessive

approximation (several weakly coupled blocks, sparse structure) are generally easier for

aggregation and often dramatically so.

Tables 1 and 2 summarize representative results relating to problems with 75 states

grouped in three blocks of 25 each. The elements of P are either zero or randomly drawn from

a uniform distribution. The probability of an element being zero was controlled thereby

allowing the generation of matrices with approximately prescribed degree of density. Table 1

compares various methods on block diagonal problems with and without additional transient

states, which are full (100%) dense, and 25% dense within each block. Table 2 considers the

case where the blocks are weakly coupled with 2% coupling (size of elements outside the

blocks is on the average 0.02 times the average size of the elements inside the blocks), and the

case where the blocks are 100% coupled (all nonzero elements of P have nearly the same size).

Each entry in the tables is the number of steps for the corresponding method to reach a

prescribed difference (10-6) between the upper and lower bounds of section 2. Our accounting

assumes that an aggregation step requires roughly twice as much computation as a succcessive

approximation step which is quite realistic for most problems. Thus the entries for the

aggregation methods represent the sum of the number of succcessive approximation and twice

the number of aggregation steps. In all cases the starting vector was zero, and the components

of the cost vector g were randomly chosen on the basis of a uniform distribution over [0, 1].

The methods are succcessive approximation (with the error bounds of eq. 8), and six

aggregation methods corresponding to all combinations of 3 and 6 aggregate groups, and 3, 5,

and 10 succcessive approximation steps between aggregation steps. Naturally these methods

do not utilize any knowledge about the block structure of the problem.

Table 1 shows the dramatic improvement offered by adaptive aggregation as predicted by

Example 3 in section 4. The improvement is substantial (although less pronounced) even when

there are transient states. Generally speaking the presence of transient states has a detrimental

effect on the performance of the aggregation method when there are multiple ergodic classes.

Repeated successive approximation steps have the effect of making the residuals nearly equal

across ergodic classes; however the residuals of transient states tend to drift at levels which are

intermediate between the corresponding levels for the ergodic classes. As a result, even if the

alignment of aggregate groups and ergodic classes is perfectly achieved, the aggregate groups
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TABLE 1. Discount factor .99, Block Diagonal P,
3 Blocks, 25 states each
Tolerance for Stopping: 1.0 E-6

Successive (SA) 3 SA Steps 3 SA Steps 5 SA Steps 5 SA Steps 10 SA Steps 10 SA Steps
Approximation per aggregation, 6 aggregate 3 aggregate 6 aggregate 3 aggregate 6 aggregate

3 aggregate groups groups groups groups groups groups

100 %
density,

O transient 9 11 1 5 1 5 25 25
states 11 95

100%
density,
20 transient 1225 31 1 6 58 1 7 170 27
states

25%
density, 1212 23 26 29 23 27 27
0 transient
states

25%
density,
20 transient 1197 186 105 177 72 194 50
states

typically contain a mixture of ergodic classes and transient states. This has an adverse effect on

both error terms of eq. 18. As the results of Table 1 show, it appears advisable to increase the

number of aggregate groups m when there are transient states. It can be seen also from Table 1

that the number of succcessive approximation steps performed between aggregation steps

influences the rate of convergence. Generally speaking there seems to be a problem-dependent

optimal value for this number which increases as the problem structure deviates from the ideal

block diagonal structure. For this reason it is probably better to use an adaptive scheme to

control this number in a general purpose code as discussed in Section 7.

Table 2 shows that as the coupling between blocks increases (and consequently the

modulus of the subdominant eigenvalue of P decreases), the performance of both successive

approximation and adaptive aggregation improves. When there is full coupling between the

blocks the methods become competitive, but when the coupling is weak the aggregation

methods hold a substantial edge as predicted by our analysis.

An interesting issue is the choice of the number of aggregate groups m. According to
lemma 2, the first error term R 1(J) of eq. 24 is reduced by a factor proportional to m at each

aggregation step. This argues for a large value of m, and indeed we have often found that



30

TABLE 2. Discount factor .99, coupled P,
3 Blocks, 25 states each,
Tolerance for Stopping: 1.0 E-6

Successive (SA) 3 SA Steps 3 SA Steps 5 SA Steps 5 SA Steps 10 SA Steps 10 SA Steps
Approximation per aggregation, 6 aggregate 3 aggregate 6 aggregate 3 aggregate 6 aggregate

3 aggregate groups groups groups groups groups groups

100 %
density, 170 17 17 22 22 37 37
2% coupling

25%
density, 167 38 33 36 32 40 40
2% coupling

100%
density, 6 7 7 8 7 7 7
100% coupling

3%
density,
100% coupling 66 56 66 60 64 64 66

increasing m from two to something like three or four leads to a substantial improvement. On
the other hand the benefit from reduction of R 1(J) is usually exhausted when m rises above

four, since then the effect of the second error term R 2(J) becomes dominant. Also the

aggregation step involves the solution of the m-dimensional linear system of eq. 12, so when

m is large the attendant overhead can become substantial. In the extreme case where m=n and

each state forms by itself an aggregate group, the solution is found in a single aggregation step.

The corresponding dynamic programming method is then equivalent to the policy iteration

algorithm.

Table 3 shows the performance of adaptive aggregation algorithms for the infinite horizon

average cost case. In these algorithms, the number of successive approximation steps between

aggregation steps was determined adaptively as in the algorithm of section 7, by performing

aggregation steps whenever the rate of error reduction of successive approximation steps was

slower than .9. Table 3 shows that, while the rate of convergence of successive approximation

methods is very sensitive to the strength of the coupling between blocks of P, the rate of

convergence of the adaptive aggregation methods remains largely unaffected. In particular, the

results for the adaptive algorithms using only two aggregate groups illustrate that major

reductions in computation time can be achieved even if the number of aggregate groups is

smaller than the number of strongly-connected components of the stochastic matrix P.



31

TABLE 3: Average Cost Infinite Horizon Problems,
Coupled P, 3 Blocks, 25 states each,

Stopping Tolerance 1.0 E-6

Successive Adaptive Aggregation, Adaptive Aggregation
Approximation 2 Aggregate groups 3 aggregate groups

100%
density,
2% coupling 184 62 13

25 %
density,
2% coupling 164 26 26

100 %
density,
1% coupling 338 64 13

25%
density,
2% coupling 307 43 27

100%
density,
.1% coupling LARGE 71 10

25%
density,
.1% coupling LARGE 50 26
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