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fbstract

In this paper we present an algoritha that
decouples the autoregressive (AR) and the moving
average (MA) estimation procedures in the ARNA
paraseter identification problea. The <technique
dualizes the roles of the AR and MA coaponents of
the process, exploring the linear dependencies
between successively higher order innovation and
prediction error filter coefficients associated with
the process. A least squares recursive
isplesentation of this algoritha and preliminary
results on order estimation are discussed. Some
siaulated examples show the estisator perforsance
for several ARMA(p,q) processes.

1. INIRODUCTION

The problem of identification of the parameters
0f an autoregressive moving-average process with p
poles and q seros, ARMA (p,q) is of considerable
isportance. In the absence o0f the soving average
component, well tested techniques exist that lead to
good pole estisation perforsance,(Refs. 1-4).Most of
these amethods explore the linear dependence betueen
successive autocorrelation lags of the process.

When the power spectrus exhibits geros, the
poles of the process are still estimated with an
acceptable perforaance by the ususl techniques (see
®.9. Ref, 1). However, the litterature on the
subject widely recognizes that the available methods
yield significant degraded estimates for the geros.
One of the underlying reasons steas fros the two
pass type character of the algorithas where the
first pass estinates the AR paraseters and filters
the autoregressive cosponent of the process and the
second part identifies the MA paraseters.

The present work describes an ARMA estimation
algoritha that decouples the AR and MA estimation
procedures, dualizing, in a certain sense, the roles
of the AR and MA components of the process, which
are independently estimated without corrupting each
other. The AR component is obtained from the linear
dependence exhibited by successively higher order
innovation filter coefficients. The MA paraseters
are asymptotically estisated from the linear
combinations satisfied by successively higher order
prediction error filter coefficients. The AR and MA
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estisation schemes are ieplesented in a recursive
#ay, the recursiveness standing for the filter‘s
order.

This ARMA  parametric spectral estisation
technique departs from the usual approach of using
autocorrelation estimates, to use the Burg technique
(Ref. 4) that provides the mean square estimation of
the prediction error filter coefficients. Those are
the elements of the lower triangular satrix H;l,
square root inverse of the Yoeplite
covariance matrix

~ .r
RN “N “N .
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A recursive inversion of U; leads to the innovation

filter coefficients.

The wunderlying theory concerning this ARMNA
estisation algoriths is discussed, for the
sultivariable <case, in Ref. S; a nonrecursive
implementation of the algoritha has been cospared in
Ref. 6 with an alternative schese that uses the
estinates of d-step ahead predictor coefficients.
The esphasis here is on how the proposed algoritha
perforas under  several  ARMA(p,q) processes.
Simulated examples ‘show the transient effect
associated with the MA coaponent estimation and the
existing tradeoff between this asysptotic behavior
and the estimation errors on the prediction and
innovation filter coefficients.

Preliminary experiments wusing an  order
detersination algoritha are also presented. They are
based on the migration pattern of the pole and zero
configurations as higher order (purely) MA processes

and higher order (purely) AR processes are fitted to
the ARMA process.

2. v ODEL.

The observation process is assumed to be a
scalar, zero mean, stationary sequence, of the class

of the AkMA(p,q) processes, i.e. satisfying the
linear difference equation
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+
Yo Z: 3 Ynoi® boty t 2: by ®n-gr ()
i=l i=]
where it is assumed that §) (en} is a white,

Ler0  mean noise sequence with unit
ii) q<p, up#O, bq#O, iii) the polynosial

Gaussian,
variance,

satrices
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are asymptotically stable and have no common roots.

Define the process autocovariance at lag k, as
r(k)=E[yn+kynJ. There exists a class of state-

variable wmodels whose 6utput is equivalent, in the
sense defined in Ref. 6, to the process {yn} given

by (1), We will select the element of the class

Xne1™ F x, tge (3
Y, * h X + bo LN (3)
with weinisal dimension, i.e. x € Rp, completely
controllable (c.c.) and completely observable
(c.0.), and where F is an asymptotically stable,
nonsingular wmatrix. The initial state X is 3

Gaussian random vector, independent of {en}, with
Zero mean and covariance matrix Po, satisfying

P°= F Pofr + 9 91. (5)

The ARMA estimation algorithm is based on the
successively higher order prediction and innovation
filter coefficients. Those are related with the
Kalman-Bucy filter associated with (3)-(4)

Xnel® F X, * knvn’ n20 , x°=0, (6)
Vo Y5 " h X, (7)

where the variance of the innovation process a is

qiven by
_ T, .2
. d.=h Pn h" ¢ b° ’ (8)
being related to the discrete Riccati equation
= T _ 1 T
Pn+1° E Pn E kn dn kn + 949, 9N

In (9), knstands for the filter gain and Po is given

by (5).

For the norsalized variance process,
~ -
vh=vn(dn) 1/2, equation (7) may be writen, for n}0

in 3 matrix form as

~ ~ ~ I ._1 T
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L
where HNI is 3 lower triangular matrix of order N+l.

The elements on line i of ;;l (lines and columns are

nusbered starting fros zero) are the coefficients of
the one-step ahead linear prediction, i-th order,
error filter.

Pre-multiplying both sides of (10) by W

process

N ’

yields the normalized innovation

representation

~ ~ ~ ~
Ly, ¥peer vyd'= W, [V Vyeee v3T an

The duality between (10) and (11) is clear, the

coefficients of the normalized innovation filter of

order i, being the entries on line i of the lower
~

triangular watrix W A closed expression of the

N
elements of HN and U;l is provided in Ref. 7.

3. ARMA_ESTINATION ALGORITHN

The dual, decoupled, AR and MA estimation
algorithms presented in this section are based on
the linear dependence of the coefficients of
successive order normalized innovation and linear
predictor filters, presented at the same column of
the matrices HN and U;l.

Pre-multiply the normalized innovation
representation of the process (11) by the lower
triangular, band diagonal matrix “N with entries

3.5 0<i-j<p
LW = J (12)
1,J=0,1,...,N | O other ise
and define the matrix
BN = AN UN ’ (13)

which has the following structure (Ref. 5)

S . (14
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the elements u.(i> being expressed as
P
. - 8-r I, ,~1/72
G.(l)={b.b° 2: arhi Pi_.h )di_. .
reat+(p-q)+l (15)
0<m<q, i2p

Erom (13) and the structure exhibited by (14),
the elements on the first i-q columns of the matrix
Ui (pCi<N) satisfy the linear recursion (Ref. S)
gi, . Si-1 ui-p
Wera W "+ L., ¢ .

apUJ = 0

it 0<j<i-q=1  pgigN

(16)
defined by the AR component of the process and where
~g ~
H}=(Hn)ij, for 0<i, j<N. Consequently, for each value
of i, the column vector

= T
3= [al 3y e apJ (17)

satisfy a3 system of linear equations, written in
matrix format as

Cia=1, y  PSIEN (18)

where
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Using again (13), the dual result of (16),
relates the elements on the first i-p columns of the

matrix ﬁ;‘ and the a (i) coefficients,
S Yim] L Yi-q
nb(x)aj+a1(x)aj +...¢o.q(1)aj =0, 0¢j<i-p-1 2

where ;; stands for the element (H;I’ij'

The equation (21) is the asymptotic MNA
counterpart of the AR-defined linear relation (16).
In fact,

lima (i) = b, 0egq (22)

the rate of this convergence being governed by the
second power of the zeros of the observation process
(Ref. 5).

In Ref. 7, the equation (21) was presented for

§=0, i.e. for the first column of the matrix U;l;

this result is generalized here for the first i-p
columns of that matrix.
Let
T

2(1)=[a1(1) 02(13...0h(1)3 (23)

which together with ao(i) converges to the NA

component of the process. For each value of i, (21D
way be written in matrix format as

Ei ali) = ?i PCiCN (24)
where

v lwjo] #ie2 “j-q

cia 3 3, TR MY (25)
“i-1  *i-2 “j-q
d-p-1 Yi-p-1 7 P-pad

Y -12 ~§ T

fi- di [‘0 ‘1 LR R .i'p-lj . (26)

The systems of linear equations (18) and (24)
exhibit the duality behavior of the AR and MA
components of the process in their relation with the
innovation and prediction error filter coefficients.
We note that, for idp+q, both (18) and (24)
represent an oversized system of equations.

The above analysis is based on the exact
knowledge of both the normalized innovation and
prediction error filter coefficients. In that case,
the vector 3 could be deterained by solving jointly
any p of the preceeding equations (16) while the
vector Q(i), which converges to the MA component, is
the solution of any q of the simultaneous relations
(21), defined for that value of i. However, in the

presence of 3 finite sample of the observation
g » .

process, the U; and a} coefficients are replaced by

suitable estimates, the latter provided by the Burg

technique. The use of an oversized systes of

equations, has then statistical relevance

g ~g3
compensating the errors on thg H; and a® estimation.

For the AR component, this is similar to (Ref. 1).
We will present a scheme that obtains the
estimate of the AR component using all the linear
relations (16) and that recursively updates the
estimation when the coefficient estimation of an
higher order innovation filter is available. Let

alk) be the least-squares solution of the systea of
all the 1linear equations (16), established for
pSick. A recursive estimation of the AR component is
given by

-1.7

alk)= 3(k=1) + M(k) Ck[fk - C, ak-1)1 (27)

k
where 3a(k) and a(k-1) were defined above, Ck and tk
are as in (19) and (20) and M(k) is defined by

Kik) = €Tk €ik) (28)
1.1
€)= 1 1 €0 .en | EIT (29)

For i>p+q, the 1least-squares solution of the
oversized system of equations (24), has the above

‘mentioned statistical relevance in the presence of a

finite sample of the observation process., The
solution is time-varying with i, preventing the
simultaneous use of the linear relations (21) for
different values of i. However, if the value of i is
high enough so that the convergence of di(i) to the

bn coefficients has been attained, a recursive
scheme on the MA estimation may be implemented as
_1nr ~ - ~

bOO= bik-1) + K0 TIETEe, - €, bek-1)3, (30)

where b(k) is the least-squares solution of the
systea of all the linear equations (21) for N*gigk,
l:.L and ‘k are as in (25) and (26) and
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The recursion (30) is started with b(N®)=a(N®)
being assumed that the transient associated with the

u.(i) coefficients has died out for izﬂi.

4. SIMULATION RESULIS

In this section we present sisulated examples
that illustrate the estimation algorithm perforsance
under several ARMA(p,q) processes. The figures 1 and
2 refer to tuwo ARMA(4,4) processes, represented by
(1) with bosl, and pole-zero pattern displayed in

table 1.




Case 1 Lase 2
Foles Zeros Poles Zeros
T e TS T """""""C o "%
0.97e345" g g7e2i60 | o.snijﬁo 0.87¢%80
0.9e29%0 0,910 g g 23907 gy 23110

Table 1

In figure 1 we represent both the real and the
sean estimated spectrua obtained with 100 Monte-
Carlo runs. For T=5000 data points (Fig.lb),one can
see that as N, the highest order filter considered
in the estimation, increases, the seros are better
estisated with evident consequences on the spectral
valeys estimation. However, for small values of T,
there exists a tradeoff between the estimation
errors in the prediction and innovation filter
coefficients as N increases and the convergence of
the ui(N) coefficients to the corresponding b.. This

is shown in £ig.13) obtained with I=500 data points.
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Fig.1 - Real and wean estimated spectrum, obtained
with 100 Monte-Carlo runs, for Case 1.

The convergence rate associated with the MA
estimation is shown in £ig.2, where the real and
estimated pole-zero pattern are compared for the two
processes referred in table 1. The comparison is
done for swall values of N and T=5000 to prevent the
effect of the errors on the filter coefficients. The
following notation is used: x - real pole, o - real
gero, ¢ - estimated pole and © - estimated gero.
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Fig.2-Real and estimated pole-zero pattern for
T=5000 data points.
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The zeros of the process referred to as case 2
in table 1 have smaller magnitude than those of case
1, the convergence of the estimated zeros to their
real location being faster in fig.2-b) (case 2) than
in fig.2-a) (case 1),

We present some
estisation,
NA compoents
with R.S.Bucy,

preliminar results on order
where the dual roles of both the AR and
is also evident. This is a joint work
observed when the simulations for
Ref. 6 were carried out. It is based on the
sigration pattern of the pole and sxero
configurations as higher order (purely) MA processes
and higher order (purely) AR processes are fitted to
the ARMA process. '
The root pattern for the predictor and
innovation filters of high order N is displayed in
£i9.3 for an ARMA(2,1) process with poles=.3; -.6
and zero=-.8. In £ig.3-3) all but one the predictor
roots lie in a Butterworth configuration with
magnitude determined by the sero. The other root
coincides with the pole=0.3. In a dual way, all but
one innovation filter roots are displayed in a
Butterworth pattern, defined by the highest pole,
the outsider root estimating the sero of the

process.

N=16 N®=12

Predictor Iinnovation

Fig.3 - Predictor and innovation roots pattern

The ideas herein presented on order estimation
require further study.A sore sophisticated approach
will identify the order and pole/zero pattern iter-
atively, first estimating the outer most poles or
zeros, filtering them out and progressing inwards.
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