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In this paper we present an algorithm that estimation schemes are implemented in a recursive
decouples the autoregressive (At) and the moving way, the recursiveness standing for the filter's
average (MA) estimation procedures in the ARMA order.
parameter identification problem. The technique This ARHA parametric spectral estimation
dualizes the roles of the AR and MA components of technique departs from the usual approach of using
the process, exploring the linear dependencies autocorrelation estimates, to use the Burg technique
between successively higher order innovation and (Ref. 4) that provides the mean square estimation of
prediction error filter coefficients associated with the prediction error filter coefficients. Those are
the process. A least squares recursive "-1
implementation of this algorithm and preliminary the ents oN
results on order estimation are discussed. Some which is the square root inverse of the Toeplitz
simulated examples show the estimator performance covariance matrix
for several ARMA(p,q) processes. R 

RN N N
"-1

A recursive inversion of N' leads to the innovation1. INTBODUCQJN N
The problem of identification of the parameters filter coefficients.

of an autoregressive moving-average process with p The underlying theory concerning this ARMA
poles and q zeros, ARMA (p,q) is of considerable estimation algorithm is discussed, for the
importance. In the absence of the moving average multivariable case, in Ref. 5; a nonrecursive
component, well tested techniques exist that lead to implementation of the algorithm has been compared in
good pole estimation performance,(Refs. l-4).Most of Ref. 6 with an alternative scheme that uses the
these methods explore the linear dependence between estimates of d-step ahead predictor coefficients.
successive autocorrelation lags of the process. The emphasis here is on how the proposed algorithm

When the power spectrum exhibits zeros, the performs under several ARNA(p,q) processes.
poles of the process are still estimated with an Simulated examples show the transient effect
acceptable performance by the usual techniques (see associated with the hA component estimation and the
e.g. Ref. 1). However, the litterature on the existing tradeoff between this asymptotic behavior
subject widely recognizes that the available methods and the estimation errors on the prediction and
yield significant degraded estimates for the zeros. innovation filter coefficients.
One of the underlying reasons stems from the two Preliminary experiments using an order
pass type character of the algorithms where the determination algorithm are also presented. They are
first pass estimates the AR parameters and filters based on the migration pattern of the pole and zero
the autoregressive component of the process and the configurations as higher order (purely) hA processes
second part identifies the NA parameters. and higher order (purely) AR processes are fitted to

The present work describes an ARMA estimation the ARMA process.
algorithm that decouples the AR and NA estimation
procedures, dualizing, in a certain sense, the roles 2. QBSflRYi I w PJgOCS _pNMI.
of the AR and NA components of the process, which The observation process is assumed to be a
are independently estimated without corrupting each scalar, zero mean, stationary sequence, of the class
other. The AR component is obtained from the linear of the ARMA(p,q) processes, i.e. satisfying the
dependence exhibited by successively higher order linear difference equation
innovation filter coefficients. The MA parameters p q
are asymptotically estimated from the linear Yn b * . (1)
combinations satisfied by successively higher order n 
prediction error filter coefficients. The AR and MA where it that i e is a white,

where is assumed that i) (en ) is I white,
AThe work of the first author while at LIDS and MIT, Gaussian, zero mean noise sequence with unit
on leave from IS? (Portugal), was supported by the variance, ii) q 0p, a 0, b #0, iii) the polynomial
Army Research Office under contract DAAG-29-84-K- P q
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p q
A(z)= 1 + a. Zi (, z)- 7 b z i (2) The duality between (10) and (11) is clear, the

-* r- ' coefficients of the normalized innovation filter of
i=l i=O order i, being the entries on line i of the lower

are asymptotically stable and have no common roots.
Define the process autocovariance at lag k, as triangular matrix UN. A closed expression of the

r(k)=E[yn+ky ]. There exists a class of state- is provided in Ref. 7.
nariabke nodels elements of UN and U is provided in Ref. 7.variable models whose output is equivalent, in the

sense defined in Ref. 6, to the process {y n given
.n 3. A :A ESTIA TI__ON ALIg!!Hf

by (1). We will select the element of the class The dual, decoupled, AR and MA estimation
algorithms presented in this section are based on

xn+l= F xn + 9 en (3) the linear dependence of the coefficients of
- h x + b e (4) successive order normalized innovation and linear

Yn = n o n predictor filters, presented at the same column of

with minimal dimension, i.e. x E RP, completely the matrices WN and WN1

controllable (c.c.) and completely observable Pre-multiply the normalized innovation
(c.o.), and where F is an asymptotically stable,
nonsingular matrix. The initial state x is a representation of the process (11) by the lower

0 triangular, band diagonal matrix AN with entries
Gaussian random vector, independent of Se }, with r

n a 1 jO~i-j<p
zero mean and covariance matrix P , satisfying (A i-j (12)

PO= E POFT + ggT (5) J 9i,j=0,l, .,N 0 other iseT P F P= FT + 9 9T (5)

The ARMA estimation algorithm is based on the and define the matrix
successively higher order prediction and innovation
filter coefficients. Those are related with the -= A (13)
Kalman-Bucy filter associated with (3)-(4) N N

F - - which has the following structure (Ref. 5)
n+l n n >O , XO (6) 

Vn = Yn n (7)

where the variance of the innovation process vn is

given by
T 2

d = h P h + b , (8) n n o W .
being related to the discrete Riccati equation

the elements am(i) being expressed as

= F P k d kT + 9 9T (9) P
Pn+l F Pn F - kn dn k *gg (9) pn~l n n n n a (i)C(b b ah r Td1/2

m i mo -r i-m i-in
In (9), knstands for the filter gain and Po is given r-m+(p-q)+l (15)
by (5). Omh<q, i>_p

for the normalired variance process,
For the normalized-12 From (13) and the structure exhibited by (14),vn zvn (dn) equation (7) may be writen, for n>O the elements on the first i-q columns of the matrix

in a matrix fore as Wi (piiN) satisfy the linear recursion (Ret. 5)

T, = Ti-l
,Cv; (10 v. = a ' 0 O•jji-q-l p<i<N

(16)
where ;-1 is a lower triangular matrix of order N defined by the AR component of the process and where

where UN is a lower trian9ular matrix of order N+1. for OijN Conequently, for each
i=()-1j, for O<i,jN. Consequently, for each value

The elements on line i of UN (lines and columns are of i, the column vector
numbered starting from zero) are the coefficients of
the one-step ahead linear prediction, i-th order, a = Ia a a (17)
error filter. a 1 ... p

Pre-multiplying both sides of (10) by iN , satisfy a system of linear equations, written in
yields the process normalized innovation matrix format as
representation

Ci a = fi piN (18)
YT . " . T (11) where

Eyo Y1 '... YN] N N Cv . .; . vN;1
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C i:i-l (19) presence of a finite sample of the observation
[i 00process, the i and a; coefficients are replaced by

ii-l .. . Ji-P suitable estimates, the latter provided by the Burg
Wi-p i-P technique. The use of an oversized system of

equations, has then statistical relevance

2ii1j-l 0 compensating the errors on the U and a estimation.i-q-1 " -q-1 
For the AR component, this is similar to (Ref. 1).

"i -i U i T 20) e will present a scheme that obtains the
i 0 1 i-q-l estimate of the AR component using *11l the linear

relations (16) and that recursively updates the
Using again (13), the dual result of (16), estimation when the coefficient estimation of an

relates the elements on the first i-p columns of the higher order innovation filter is available. Let
N-1

matrix Ui and the am(i) coefficients, k(k) be the least-squares solution of the system of

Ni..i ill .. 'p i-q all the linear equations (16), established for
-(i)+(i)0, O <ji-p-l (21) pi<k. A recursive estimation of the AR component is

given by

where a. stands for the element (U ). -1 i .
-- J j N iJ a(k)= i(k-1) + M(k) CCfk -C k a(k-l)] (27)

The equation (21) is the asymptotic hA -
counterpart of the AR-defined linear relation (16). where a(k) and g(k-l) were defined above, Ck and fk
In tact,

i Ilim a(i) = bm, aOrmq (22) are as in (19) and (20) and h(k) is defined by

the rate of this convergence being governed by the T(k) e(k) (28)
second power of the zeros of the observation process (k) (k) k)
(Ref. 5).

In Ref. 7, the equation (21) was presented for e(k) = C ... TkT (29)

j-O, i.e. for the first column of the matrix 1i ;

this result is generalized here for the first i-p For i>p+q, the least-squares solution of the
columns of that matrix. oversized system of equations (24), has the above

Let mentioned statistical relevance in the presence of a
: T finite sample of the observation process. The

a(i)=tEal(i) a2{i). .aq~i)3 (23) solution is time-varying with i, preventing the
F ari)=[al^i) simultaneous use of the linear relations (21) for

i which together with a (i) converges to the HA different values of i. However, if the value of i is
-° high enough so that the convergence of a (i) to the

component of the process. For each value of i, (21) a
may be written in matrix format as bm coefficients has been attained, a recursive

scheme on the MA estimation may be implemented as
Ci a(i) a= f p(i(N (24)

where + -(k)= (k-l) + (k) Cktfk - Ck (k-l), (30)

;0 1 2 .. i- (25) where b(k) is the least-squares solution of the

system of all the linear equations (21) for N <i<k,

i-1 i-q Ck and fk are as in (25) and (26) and
aLi-P-1ai-P-1 ... i-p-I i -

N --i/ Na N1 Ni T (26) 1(k) * eT(k) e(k)
:: di a0 '1 1' 'N NT TT

The systems of linear equations (18) and (24) 6(k) E CN I C +11 k
exhibit the duality behavior of the AR and MA The recursion (30) is started with b(NA)a(N)
components of the process in their relation with the being assumed that the transient associated with the
innovation and prediction error filter coefficients.
We note that, for i>p+q, both (18) and (24) am(i) coefficients has died out for i>N
represent an oversized system of equations.

The above analysis is based on the exact 4. SIMU A X.IL REJS.
knowledge of both the normalized innovation and In this section we present simulated examples
prediction error filter coefficients. In that case, that illustrate the estieation algorithm performance
the vector a could be determined by solving jointly under several ARhA(p,q) processes. The figures 1 and
any p of the preceeding equations (16) while the 2 refer to two ARMA(4,4) processes, represented by
vector a(i), which converges to the MA component, is (1) with b =1, and pole-zero pattern displayed in
the solution of any q of the simultaneous relations 0

(21), defined for that value of i. However, in the table 1.
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ase case 2 J The zeros of the process referred to as case 2
Poles Zeros Poles Zeros in table 1 have smaller magnitude than those of case

___________________.__________________ 1, the convergence of the estimated zeros to their
j45074 O.97 j60° 0.97±J450 0.°87.±j6o 0 real location being faster in fig.2-b) (case 2) than
0.9 0 go° 07 110° . 907 vil° in fig.2-a) (case 1).

0.9e :t0-J 0.9e±3l10 1 0.9ej3 O j 3 1e We present some preliminar results on order
----------------------------------- estimation, where the dual roles of both the AR and

Table 1 MA compoents is also evident. This is a joint work
In figure 1 we represent both the real and the with R.S.Bucy, observed when the simulations for

mean estimated spectrum obtained with 100 Monte- Ref. 6 were carried out. It is based on the
Carlo runs. For To5000 data points (Fig.lb),one can migration pattern of the pole and zero
see that as N, the highest order filter considered configurations as higher order (purely) hA processes
in the estimation, increases, the zeros are better and higher order (purely) AR processes are fitted to
estimated with evident consequences on the spectral the ARMA process.
valeys estimation. However, for small values of T, The root pattern for the predictor andthere exists a tradeoff between the estimation innovation filters of high order N is displayed in
errors in the prediction and innovation filter fig.3 for an ARMA(2,1) process with poles-.3; -.6
coefficients as N increases and the convergence of and zero=-.8. In fig.3-a) all but one the predictor
the a (N) coefficients to the corresponding b . This roots lie in a Butterworth configuration with
is shown in fig.l1a) obtained with Tx500 data points. magnitude determined by the zero. The other root

coincides with the polet0.3. In a dual way, all but
_N. _ --- ------------- ______________ one innovation filter roots are displayed in a

S(w)-oD SBw)-os Butterworth pattern, defined by the highest pole,
N N. the outsider root estimating the sero of the

process.

NG16 Nvt2

Wr"' ~ ~ /'"- N SO6. 
(a) (b) 

estimation is shown in fig.2, where the real and 
estimated pole-zero pattern are compared for the two Fig.3 - Predictor and innovation roots pattern
processes referred in table 1. The comparison is
done for small values of N and T-S000 to prevent the The ideas herein presented on order estimation
effect of the errors on the filter coefficients. The require turther study.A more sophisticated approach
following notation is used: x - real pole, o - real ill identify the order nd pole/tzro pattern iter-
z rero, * - estimated pole and O - estimated zero. atively, first estimating the outer most poles or

eros, filtering them out and progressing inwards.
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