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THE NONLINEAR PROXIMAL POINT ALGORITHM AND MULTIPLIER METHODS*

Abstract. A new Augmented Lagrangian is introduced. The corre-

sponding method of multipliers is equivalent to the application of the

proximal point algorithm (NPA) to the subdifferential map of the ordi-

nary dual function. Assuming exact minimization of the Augmented La-

grangian, results on the global and asymptotic convergence of the method

of multipliers follow from the theory of the NPA. The sequence of dual

variables monotonically ascends the ordinary dual function and converges

to some element of the (not necessarily compact) Lagrange multiplier

set. The sequence of primal variables is asymptotically optimal, and

all of its cluster points are optimal solutions. The growth properties

of the subdifferential maps of both, the ordinary dual function, and of

the dual of the penalty function, characterize the asymptotic conver-

gence. If those growths are bounded by power functions with exponents

t, s > 0, respectively, with st > 1, convergence is linear, superlinear,

or in finitely many steps --which can be reduced to one-- as st = 1, st

> 1, or t = a. If st, = 1 and the penalty parameter sequence grows to o,

superlinear convergence obtains. Conditions implying sublinear conver-

gence are given. The speed of approach to the common optimal value of

both primal and ordinary dual programs is estimated.

Key words. Convex program, multiplier method, nonlinear proximal-

ity algorithm, global convergence, asymptotic convergence.
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1. Introduction. This paper deals with an application of the non-

linear proximal point algorithm (NPA) in convex programming. (For more

details on the NPA, see Luque (1984a, 1986a), for the "linear" proximal

point algorithm (PPA), see Rockafellar (1976a) and Luque (1984b).) Let

us consider the convex program

(P) minimize.f (x), subject to f.(x) < 0 (i = 1...,),

where f0 ,f,1 ...,f :IR -R R are convex functions. Its (ordinary)

Lagrangian and dual functions are defined, respectively, by

L(x,y) = f0(x) + (f(x),y) for all y EIRm

g(y) = inf L(x,y) for all y E/R+
n +

x EIR

where f(x) = (fl(x),...,f (x)), and (',') is the inner product ofIR .
1 m

The Lagrange multipliers of (P)., the "primal" program, can be

characterized as the optimal solutions of the dual program

(D) maximize g (y), subject to y e R+.

The method of multipliers of Hestenes and Powell for the solution

of (P), consists in the sequential constrained minimization of an

Augmented Lagrangian

L (x,y) = f (x) + P (x,y),
c 0 c

where c > 0 is the penalty parameter, and P is the penalizing or aug-
c

k
menting function. At each cycle, one is given ck > 0 and y . By

k n k
(approximately) minimizing Lc (' ) over Rn one then obtains x . Then
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k k
y is updated by means of some explicit formula depending on ck and x

a new ck is selected and the process is repeated. The limit points of

{x I and {y } are optimal solutions of (P) and (D) respectively.

Rockafellar (1973, 1976b) has shown that the method of multipliers

with quadratic-like penalty function P , is the application of the PPA
c

to the solution of (D). Thus one attempts to solve 0 cE (-g), where

a(-g) is the subdifferential of the convex function -g. This equivalence

arises through the fact that the identity map I is the gradient map of

the convex function |1.12, |' being the euclidean norm of ]nm

Kort and Bertsekas (1972, 1973, 1976) have shown that by choosing

suitable nonquadratic penalty functions P , any (Q-) order of conver-

gence (Ortega and Rheinboldt 1970) can be attained. These methods were

the original motivation for the development of the NPA, the objective

being to develop an algorithm that would stand in the same relation to

nonquadratic methods of multipliers, as the PPA does with respect to

the quadratic method of multipliers.

In section 2, Rockafellar's (1970, 1974, 1976c) perturbational

theory of duality is quickly reviewed. We begin by stating the basic

facts about ordinary duality, and then proceed to introduce another

duality scheme. This latter scheme is at the core of the method of

multipliers developed here.

The relation between the method of multipliers and the NPA is

analyzed in section 3. It is shown that the method of multipliers

--based on the Augmented Lagrangian introduced in section 2-- is equiv-

alent to the NPA applied to the subdifferential map of the ordinary dual

function. This is in complete analogy with the parallelism between the
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PPA and the method of multipliers for a quadratically augmented La-

grangian.

The last section studies the global and asymptotic convergence of

the method of multipliers introduced in sections 2.and 3. Every result

in this section depends on the assumption of exact minimization of the

Augmented Lagrangian. The reasons for this are twofold. First, using

nonquadratic penalty functions introduces fundamental difficulties when

obtaining error estimates, if one wants to use monotonicity methods.

Second, if one gives up the use of monotonicity and instead uses the

fact that the objects under study are numerical functions, then compact-

ness of their level sets could be used to bypass those difficulties.

But this would imply a replication of the analysis performed by Kort and

Bertsekas (1972, 1973, 1976).

Under the exact minimization assumption and without assuming that

the Lagrange multiplier set is compact, we prove that the sequence of

dual variables produced by our method of multipliers converges to a

(not necessarily unique) Lagrange multiplier. It is also shown that the

corresponding sequence of primal variables is asymptotically optimal and

each of its cluster points is in fact an optimal solution of the convex

program. This extends the already known results on the exact method of

multipliers with nonquadratic penalties (ibid.) in two directions.

First, the compactness assumption on the set of Lagrange multipliers is

dispensed with. Second, it is shown that the sequence of dual variables

is convergent to a vector, rather than to the Lagrange multiplier set.

The remainder of the section studies the asymptotic convergence

properties of the sequence of dual variables. Using the general theory
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of the NPA (Luque 1984a, 1986a), sufficient conditions for the linear

kk
and superlinear convergence to zero of d(yY) = ily - Y ly E Yk

where {yk} is the sequence of dual variables generated by the algorithm

and Y the Lagrange multiplier set, are given. These results corroborate

those already obtained by Kort and Bertsekas (1976). We also study

conditions resulting in convergence in finitely many steps (cf.

Bertsekas 1975, 1982). Finally we study two subjects that to the best

of the author's knowledge have no counterpart in the literature. The

first of these is a sufficient condition for the sublinear convergence

of {d(y ,Y)}. The second is an estimate of the speed at which {g (yk)}

approaches the common optimal value of both the primal and dual problems.
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2. Duality relations, Let C be a nonempty convex subset of R,

and let fi: JR - (oc,A] be a proper closed convex function for i =

0,1,... m. Let us consider the convex program

(P) min {f0 (x)jx e C, f.(x) ~ 0 for i = 1,2,,,,,m}

In formulating such a problem, we will adhere to the conventions set

forth in Rockafellar (1970 §28)

(a) dom fo = C,

(b) dom f. D C, ri(dom f.) D ri C, i = 1, ..,m,

where ri means relative interior (see Rockafellar 1970 ' §6). A vector

n
x e ER is a feasible solution of (P) iff x 6 C and f. (x) < 0, i =

,... ,m. The set of such feasible solutions is

C0 = {x G Cfi.(x) < 0, i = l,..im},

Let 4P(-;C 0) denote the convex indicator function of the set Co, i.e.,

k(x;C 0) = 0 iff x 6 CO, otherwise O(x;C0) = Em The convex function

f + O(';C0) is the objective function of (P). It is closed because so

are f ,fl ... f It never takes the value -a, thus it is proper iff
01 m

CO 9 0. Minimizing f0 + i(.;C 0 ) over ERn is equivalent to minimizing f0

over C0, i.e., (P). The infimum of f0 + p( '; C0), which belongs to E,

is the optimal value of (P). If f0 + (.';C0) X o, i.e., if C0 # 0, the

vectors where such infimum is attained are the optimal solutions of (P),

We will now quickly review Rockafellar's (1970 ,1974,1976c) pertur-

bational theory of duality, Let U,Y be two real vector spaces in duality

via the nondegenerate bilinear form (,.) :Uxy + JR (Bourbaki 1981)

Rockafellar's starting point is the bifunction (i,e., a function of
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two arguments) F:R x U + R such that F(' ;O) = f0 + (';C0). For u 5 0,

F(',u) can bethought of as the objective function of a (generalized)

convex program obtained by perturbing (P.), the perturbations being .

parameterized by the vector u G U.

n
The Lagrangian function associated with (P) via F, L:R n X Y + R is

defined by

L(x,y) = inf {F(x,u) - (u,y) u G6 },

Since L(x,.) is the pointwise infimum of a collection of affine func-

tions, it is closed and concave.

Let X, V be two real vector spaces paired.by a nondegenerate bi-

linear function (','):XxV + IR Let f:X + R, its Fenchel conjugate

f*:V + R is defined by

f*(v) = sup {(x,v) - f(x)lx e X}.

f* is always a closed convex function (Rockafellar 1974, th 5). Simi-

larly, the function f,: V +TR defined by (ibid. p 18)

f, (v) = inf {(x,v) - f(X)lx 6 X}

is always a closed concave function., The functions *f*,f. will be called,

respectively, the convex and concave Fenchel conjugates of f. If f is

convex then f, * -a, similarly if f is concave f* _ A, thus for convex

or concave functions it will not be necessary to specify which form of

the Fenchel conjugacy we are using as one of them will always yield a

trivial result.
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With these definitions, the Lagrangiar function can be expressed as

L(x,y) = (-F)(x,y) = -F(x,*-y),

where (-F)(x,**) denotes the (partial) concave Fenchel conjugate of

-F(x,.), and F(x,*4) the (partial) convex Fenchel conjugate of F(x,*).

Two more functions are of interest, The perturbation function

q:U + 1R , defined by

q(u) = inf {F(x,u)Ix e6 E }I

and the dual function g:Y + R , given by

g(y) = inf {L(x,y)Ix E n },

Note that q(O) is the optimal value of .(P), and that since g is the point-

wise infimum of a family of closed concave functions L(x,'), it is always

closed concave. The dual problem associated with (P) is

(D) max {g(y) Y G Y}.4

Replacing L(x,y) by its expression in terms of F(x,u) in the definition

of g one easily gets

g (y) = inf {q(u) + (u,y) u 6 U}

= (-q),(y) = -q*(yy))

The optimal value of the dual problem, is (-g) (O) which by the above

formula equals -(q)**(O) = q**(O), It is well known that for any
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function h:U + h, h ** or h > h**, therefore

sup g(y) = -g(O) -(q)**(O)

yeY

< q(O) = inf {f (x) + O(x;C 0).Ix 6 n },

and the optimal value of the dual problem (D) is never larger than.the

optimal value of (P),' the "primal" problem, The difference between the

two values is the duality gap.

In what follows the following will be assumed

(Al) F is a closed proper convex function on InxU,

(A2) L is a closed proper saddle function on IR. x>Y convex in the first

argument and concave in the second.

(A3) q is a closed proper convex' function on U.

(A4) g is a closed.proper concave function on Y.

Some of these assumptions are clearly redundant. The joint convexity of

F on (x,u) implies that L(',y) is convex, since it is the pointwise

infimum, with respect to u, of the functions F(x,u) + (u,y) which are

Convex on (x,u). Also as we saw above L(x,-) is always closed concave.

Similar.arguments show that under (Al) q will be convex and g closed con-

cave. Conditions on (P) and F that ensure that (Al) -(A4) hold are dis-

cussed in Rockafellar (1970a,1974,1976c).

Under these assumptions, the formulae giving L and g as partial or

total conjugates of F and q respectively, can be inverted yielding

F(x,u) = sup {L(x,y) - (u,y) y e Y}

= -L(x,*u) = (-L)(x,*-u),
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q(u) = sup {g(y) - (u,y)ly " Y}

= -g, (u) = (-g) *(u) t '

The first of these expressions implies that under the above assumptions

a suitable saddle function L can be taken as the departure point for

constructing F,qig. In particular one sees that

sup L(x,y) = -L(x,*O) = F(x,O.) = f + p('.;C0)
yGY.

and being q proper closed convex -(-q)**.= q, thus the optimal values of

the primal and.dual problems are equal.

Let U = Ym = Y, and let

F (xu) = f0(x) + f(x;C)0 ' u

where C = {x 6 CIf(x) < ul, f = (fl ,..f ), and f(x) < u is understood
u = m =

componentwise. The associated Lagrangian is

LO(x,y) = inf {F (x,u) + (u,y).u 6 R }

inf {f (x) + (u,y) If(x) = u}
0

ff(x) + (y,f(x)) if x 6 C, y > 0

.=co if x 6 C, y O0

.oo ifx C,

Clearly

sup LO(x,y) = sup L(x,y) = f (x) + P(x; CO)

yGm m
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Fur the rmor e

q (u) = .inf nF (x,u) inf f (x),q0 nu ) 0
xelR xeC

u
go ( y) = inf LO(x,y) = inf L0(x,y)

xeJR xec

inf [f (x) + (y,f(x))] - ((y;-m ')

xeC.

The ordinary dual problem is

(Do ) max {g 
( y ) Y 6 g m }G = max {go ( y ) IY G Rm } .

Let 4:JR + ER be a closed proper convex nonnegative function every-

where differentiable, and such that ¢(x) = 0 iff x = O, Suppose, in ad-

dition, that -* also has these properties, Let * = Q| |, '1 being the

m 1
usual norm in R . For any c > 0, let fc c - ( cc), in other words, @

is ~ multiplied on the right by'l/c. Then i* = ( )* = c - *,
c c c

Using the above ordinary duality for (P), and the function. X, we

will construct another duality scheme for (P) which will allow us to

use the Nonlinear Prqoximal' Point Algorithm (NPA) to solve (P),. In

order to do so, one starts by introducing the primal convex bifunction

F (x,u) = F(x,u) + C (u).
c 0 c

From F one can derive all the other elements of the duality scheme, In
c

particular one has qc = q0 + Ac'

Under the usual componentwise partial order Rn becomes a vector

'lattice, Given x,y 6 R n , sup[x,y] , inf[x,y] denote, respectively, the

supremum and the infimum of {x,y} with respect to this partial order,
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For any x 6 ,R
n x will denote sup[jO],

Given a function 'h +n IR, it is inf-compact 'if the level sets

h - (p) = {x 6 n i h(x) < p}

are compact for every p C6 R,

Theorem 2.1. Let F be as above, and let L be the corresponding
c c

Lagrangian. For all x 6 C, y 6 IR , c > O

L (x,y) = inf {F (x,u) + (u,y)lu 6 m
c c

= sup {L (x,S) - *(s - y) s mm }.
c

Both extrema are finite and uniquely attained, respectively, at

u (x,y,c) = sup [f(x),VPc(-y)]

sL(x,y,c) = [VP (f(x)) + y] 

For all x 6 C, L (x, ') is a continuously differentiable concave function

on Rm which has the same set of maximizers as L (x,'). Furthermore

L (X,SL (X,y,c)) C lLc(X,y) ,

uL(X,y,c) = V\c(SL(X,y,c) - y)

V IL (xy), 6 IL (X's (XYc)2.c 2L0(Xy L(X Xytc) )

-y 6 2 F c(x,uL(X,y,c))

= 2FO(X,UL(X,y,c)) + Vc(UL(X,y,c)),
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ProQf, By definition

L (x,y) = inf {F (x,u) + (u,y) Iu G m }

= nf {FO(x,u) + c(u) + (u,y) u 6 }.

The properties of F (x,'), , imply that the minimand is a proper closed

inf-compact strictly convex. function. Let us denote by uL(X,y,c)

the unique vector where the above infimum is attained. Since ( is

finite, Fenchel's duality theorem implies that

L (x,y) = sup {L (x,s) *(s -y)- s m m },c 0 c

where the supremum is uniquely attained, by the strict convexity of

~*, at SL((x,y,c) As

-*(s - y) = (-c) (y - s),

it follows that if [I denotes the sup-convolution of concave functions,

L (x,y) = (L0(x, ) c(- Tc (y) 

cLet O denote also, the convolution of multifunctions. (-9 ), is every-

where differentiable thus (Luque 1984a, th II.4.1(2), 1986b, th 4.1(2))

2Lc(x,y) = (a2L0(X) (y)

= {V(-c)*(y- sL(x,y ,c ))},

which implies (by concavity) that L (x,) is continuously differentiable
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with gradient

V2Lc(X c*(s (xy, c)y) G 2Lo (xs L (x ,yc))

As x 6 C

inf {F (x,u) + (u)) + (u,y)|u G Rm }

inf {f (x) + c (u) + (u,y) u > f(x)}

from which the value of u (X,y,c) follows. Similarly, sL(X,y,c) follows

from

sup {L (x,s ) c(s y)|s e ym }

sup {f0(x) + (s,f(x)) - s*(ss-y) Is JIR}

The above developments imply that

L (x,y) - F (x,u (x,y,c)) + (Y.uL(Xyc))

F (x,u (x,l,c)) + % (u (x,y,c)) + (yu (x,y,c))o L c L L

= L0 (X,SL(X,yC)) - c*(SL(x,y,c) Y)

which can be broken down into

L (x,y) - Fc(x,uL(x,y,c)) = (y,uL(x,y,c)),

L (X's (x,y,c)) - F (X ,UL(X,y,C))0 ' L ' U L

c(UL(X,y,c)) + *(S L(x,y,c) - y) + (y,u (x,y,c)),
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Given the conjugacy relations between pimaJ, bifunctions and their

corresponding Lagrangians plus Young's. inequality,. it follows that

uL(Xyc) = V2LC(XrY),

-y (2L(X.,UL(x,y,c) ),

uL(x,y,c) = V;*(SL(X,Yy,) - Y) 

sL(x,y,c) - y = Vc(UL(X,yc)),

UL(Xyc) e a2LO(XsSL(xryrc)) 

-sL(x,y,c) e a2FO(X,UL (X,y,c)).

QED

The next theorem studies the properties of the penalty function

corresponding to L .

Theorem 2.2. Let c > 0, for all (x,y) 6 C xRm

L (x,y) = f(x) + P (f(x),y),
C 0 C

where P : Rmx Rm IR is a closed proper convex-concave saddle function,
C

nondecreasing with respect to the first argument, and continuously

differentiable in its two arguments. The expressions of P and of its
C

two partial derivatives are

P (t,y) - (supft,VW*(-y)]) + (y,sup[t,V4*(-y)])

(t, [(Vc (t) +yl) - *(sup[V c (t) ,y]),

V1P (t,y) = [V c(t) + y] 
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V2P (t,y) = sup [t,VP*(-y)],2c c

Proof,. By the preceding theorem, taking into account the forms of

F0(x,u) and of L0(x,s) on C K. B, the expression of L (x,y) on CX Rm

is

L (x,y) · f0 + inf [1 (u) + (u,y)]
u>f(x)

f (x) + sup [(s,f(x)) - y)]
s>O

Therefore, for all t,y e ER

P (t,y) = inf [4 (u) + (u,y)] = sup [(s,t) *(s- y)].·
c c

u>t s>O

Since P c(,y) is the pointwise supremum of a family of affine functions,

it is closed convex. Similarly, Pc(t,,) is closed concave. The inf-

compactness and strict convexity of ~ and D* imply that both extrema
c c

are uniquely attained at a common finite value. This ensures the

m m
finiteness of P on IR x ER . As before, the optimal solutions to the

C

above optimization problems are

up(t,y,c) = sup [t,V*c (- y)],

s (t,y,c) = [V (t) + y]

In addition, P (. ,y) is the pointwise supremum of the family of affine
c

functions { (s,-) - c*(s - y) s > 0}, only onze of which is exact, the one

corresponding to sp( ,yc,). Thus V P (t,y) equals the slope of the
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affine function exact at t, i.e, sp(tSy, c) , similarly

V2P (t,y) = up(t,y,c)

QED

The properties of gc are analyzed in the next

---c c

for all y 6 Rm , c > O

gc(y) = inf L (x,y) = inf L (x,y)

xCR n x6C

inf [q (U) + (u,y)]

u> 0O

= sup [g (s) - (s - y)] 
s>O0 c

The last two finite extrema are uniquely attained at u (y,c), s (y,c)g g

respectively. gq is an everywhere continuously differentiable concave

function on Rm which has the same sets of maximizers as g0. For all

m
y e R , c > 0, one h'as

ug(y,c) = V*(s (y,c) y)
g c g

= Vgc(Y) 6 ag0(sg(y'c))'

-y C aq (ug(y,c)) = aq0 (Ug(y,c)) + VOc(U (y,C)),
cq

If the infimum of L (-,y) is reached at x (y,c), then

s (y,c) = (X (Y,C) ,y,c) = f(x(,C)))+ +,
g L cL c Cx~ ))-17-
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(y,c) UL (XL(y,C) ,y,C) sup [f(,L(' C)) Y ,V*(Cy).1 

V2 Lc (x L( y,.c),y) = Vg c( Y) ,

2L (xL(y,c),S (y,c)) C gq (sg(y,c)),

g0 (Sg (y,c)) = L(xL(Y,C) ,s (y,c)).
O 9 0 L g

The last equation is equivalent to the fact that L (.,s (y,c)) reaches

its infimum at xL(y,c),

Proof. In the expression of g , the first equality is by defini-

tion, as well as the second, since dom L (.,,y) = C, The third equality

is standard, it can be readily obtained upon replacing L by its defi-
c

nition in terms of F and interchange of the order of minimizations.
C

The fourth is obtained from q = q + Since by assumption q is

proper closed convex and P is finite everywhere, Fenchel's duality
C

theorem yields not only the last equality but also that the supremum

with respect to s is attained, By assumption gc is proper, in addition

to always being closed concave, and ~* is everywhere finite, thus
C

Fenchel's duality theorem implies that the infimum with respect to

u is reached. The fact that these extrema are attained can also be

deduced from the inf-compactness of both c ,*, Their strict convexity

implies that the extrema are uniquely attained, Fenchel's duality

theorem, or properness plus existence of extremizers, implies that

their common optimal value is finite, As was done for L in theorem 2.1,
C

agc (Yy) = aV ( C) * (yT s (y,c))},
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which implies that gc is everywhere continuously (by concavity)

differentiable with gradient ·

Vgc(y) = VD*(s (y,c) - y) e ag (sg(y,c))
c c g 0 g

Also

SUPm g (y) = sup sup [g ( ) - ~ * ( s - y)]
yeCR yecR s m R

= sup sup [g0(S) - (s - Y)]

selR yelR

= sup g0(s).

seJR

From the expression of gcin terms of go, it follows that g > g0' thus
0 c= 0

taking into account the above inequality, it follows that

Arg max go C Arg max gc.

To prove the reverse inclusion, Let us suppose that y a Arg max gc, then

sup g= gC (y).' g (Sg (yc)) - C*g (yS c) -y)

< g(sg(yc)) < sup m g0 (y),
ye2R

where the first inequality follows from the fact that 4* is nonnegative.c

Since the suprema over ERm of go and gc are equal, it follows that

4*(s (y,c) -y) = 0, thus s (y,c) = y, and y e Arg max gc.

From these developments

g (y) = qC(Ug(y,C)) + (yu (y,c))
-19-
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= q (Ug(yc)) + 1 (ug(y,c) + (y,u (y,c))cg c g

g0 (S (y,c)) - 4*(s (y,c) - y)c g

which can be broken down into

go(Y- q (u (yc)) - qc(Y,(y,c))

g0 (Sg(y, c))-q(Ug(y,c)) (u (y,c)) +*(s ((y,c)- y) + (y,u (y,c)).c g cg g

Given that go = (-q0)*, gc = (- qc)* Young's inequality yields

u (y,c) = Vg (y),
g c

-y e aqc(Ug(y,c)),

u (y,c) = V\*(s (y,c) - y),
g c g

S (y,c) -y = (u (y,c)),

U (y,c) e ag0 (sg(y,c)),

-S (y,c) e aq0(Ug(yc)).

Now, let us assume that the infimum of L (.,y) is reached atc

xL(y,c). The subgradient inequality for L with respect to its secondL c

argument yields for all y' e Rm

L (x (y,c),y') < L (xL (y,c),y) + (y' -y,V2 L (x (y,C),y))c L c L L

Thus L (x (y,c),y') > gc(y'y) and gc(y) =L (xL (y,c),y) imply, via thec L c c L

above inequality, that

Vgc (y) = V2Lc ( x (y,c),y).
2c L20-
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By above and theorem 2.1

Vgc(y) =u (y,c) = Vc(Sg (y,c) - y),

V L c( L(Y,),y) = UL(XL(y,C),y,c)

= V*(s (x(y,c),y,c) - y) 
c L

from which

ug(y,c) = uL( L(y,c),y,c) = sup [f(xL(y,c)),V*c(-y)],

Sg(y,c) = L(XL(Y,c),y,c) = [V (f (x (y,c))) + y]
g L L c L

Also

L (x (y,c),y) = gc(y)= g0(Sg(y,c)) - (s (y,) - y)
c L(ycy c g

L (x (y,),s L(x (y,c),y,c) ) - P*(sL(x L(,c),y ,c) - y).0 L L L c L. L

Since sL(xL(y,c),y,c) = s (y,c), it follows that g0 (s (y,c)) =

Lo(xL(Y,C),s (y,c)), and thus x (y,c) minimizes L0 (',Sg(y,c)). Let
0 L 9 g L

w e 2L(x L(y,c) ,s (y,c)), for all y' e mR
2 0 L g

L (XL(y,c),y') < LO(XL(y,c),s (y,c)) + (y' - y,w)

But L0 (xL(y,c),s (y,c)) = go(Sg(y,C)) and L0 (xL(y,c),y') > g0 (Y') imply

that w e Dg0(sg(y,c)).

QED
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3. The method of multipliers. The method of multipliers is a

sequential unconstrained minimization technique applied to the Lagrangian

function L . After selecting a penalty function ~ of the type describ-

ed in section 2, the augmenting function P of theorem 2.2 is used to
c

construct the Augmented Lagrangian L . For some value of dual variable y
c

and of the penalty parameter c, L (.,y) is minimized, and the dual
c

variable y, is updated as suggested by theorem 2.3.

Formally

0 m
(1) Select cO > 0, and y e IR

k k
(2) Given Ck, y , find x such that

kk k
L (x ,y ) = min L (x,y ).

ck yeRm ck

k+l k k k+l k
(3) Compute y = V (f(x ),yk ). If y = y , stop, otherwise

1 c
k.

select ck+ > 0, set k = k + 1, and go.to 2.

As will be seen below this algorithm is equivalent to the applica-

tion of the NPA to the maximization of the ordinary dual function go.

Thus the optimal solution set of (D), Y, mustbe nonempty (Luque.1984a

th III.2.1, 1986a th 2.1). Conditions that insure that Y is not

empty are given in Rockafellar (1970 , §28).

In order to be able to carry out step (2), the set of global min-

imizers of L (.,y ) must be nonempty for each k > 0. Again sufficient
ck 

conditions to 'insure this fact can be given. Typically, one assumes

that the set of optimal solutions of (P), X, is compact (Bertsekas 1982,

ch 5).

The problem with the sufficient conditions alluded to in the above
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two paragraphs is that they are stronger than needed. For example, a

typical byproduct of them is that the set of optimal solutions of (D) is

compact. Thus rather than take those sufficient conditions as our prim-

ary assumptions, we will assume the following. Problem (P) is such that

(A5) For every c > 0, y G R, L (.,y) has a nonempty set of min-
c

imizers.

(A6) The set of optimal solutions of (D) is nonempty.

Henceforth, we will assume that these two assumptions, in addition

to (A1)-(A4) of section 2, are in force. Note that (A1l)-(A6) is not the

minimal such set that would imply the well-possedness of our developments.

The termination criterion in (3) can be justified directly by an

appeal to results of the Kuhn-Tucker saddle point theorem variety (see

Bertsekas, 1982, ch 5), or else to. the theory of the NPA (Luque 1984a,

k+l k
1986a). In the latter case, it is justified because y = y

implies that yk is a fixed point of the proximal map of ag0 with respect

k
to a well-behaved enough monotone map to be described below. Then y is

an optimal solution of (D) (ibid., th III.2.4, th 2.4, respectively). And

k k
x , the minimizer of L (-,y ), can be shown to be an optimal solution

ck

of (P) by the same argument as in Bertsekas (1982, prop 5(a)).

Finally let us note that by theorem 2.2, the sequence of dual

vkai .k k
variables {y }k>l is feasible, i.e., y > 0 for all k > 1

k>l 

We now show that the method of multipliers described above is just

the NPA applied to -Dg0.

Theorem 3.1. The method of multipliers for the solution of (P) is

a realization of the NPA in which T = -ag0
= a(-g 0)' and S = V*.
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Proof. From theorem 2.2

k+l k lck k ;
y ~l·= V P (f(x ),yk) = [Vc (f(xk )) + yk]+

k k

k (,k ) hk k k+1
But x minimizes L (,y ), thus x = xL(y ck) and by theorem 2.3, y

k k k+l
= s (y c). Therefore y satisfies

g k

gc (Y sup [g(S) - * (s- yk)]
Ck seIR Ck

k+l k+l k)
g(y ) _ *(y - y)

Reversing signs throughout

((g0) * (.))(y) = ( (yk+l) + k* ( yk+l k
Ck Ck

Let p(-,*), P(*,*) denote respectively, proximal maps for functions, and

for multifunctions (Luque 1984a, 1986b,c). Strict convexity of T* implies

the first equality of

k+l} = g, (_.))(yk) = P(a(-g0 ),-V (_.))(yk)
Y = P (-g0' c k

dom C* = m and Luque (1984a th II.4.1, 1986b th 4.1) imply the second one.

follows from the fact that D* is everywhere finite and theorem II.4.1.

The function ~ = po<· is clearly even, thus so is 0*, and -V%* (--) )
1 k

V - ck VD*. Finally
.Ck

k+1 -L k k
{y P((-g0) V*) = P(c (gg 0g ,V(P*)y QED
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4. Convergence of the'method of multipliers. The fact that the

method of multipliers is a realization of the NPA ('theorem 3.1), allows

Us to prove results about the global and symptotic convergence properties

of the method of multipliers.

Theorem 4.1. Let the penalty sequence {ck } be bounded away from

zero. Let {x }, {y } be sequences generated by the method of multipli-

k k
ers as above. Then for all k > 1, y > 0, the sequence {y } ascends the

dual functional to the optimal value g of the dual program (D), and

converges towards a (not necessarily unique) maximizer of go. The

sequence {x k} is asymptotically feasible, i.e., lim sup f(xk) < 0,

and asymptotically optimal, i.e., lim f (xk ) = f, the optimal value of
k+o

(P). Furthermore, every cluster point of -xk is an optimal solution of

(p).

Proof. By theorem 2.2

yk+ V P (f(x ),yk)) = [V (f(xk)) + yk]+
! c
k k

k
thus for all k > 1, y > 0. Since by theorem 3.1, the method of multi-

pliers is but a realization of the NPA, it follows that

y + y a maximizer of go (Luque 1984a th III.2.12, 1986a th 2.12).

k k
By its definition x = xL (y ,ck), which substituted in the above

k+l
expression of y yields

k+l k k+
y = [V~c (f(xL(yk,ck))) + yk]

= L(xL(ykck),ykck ) S (y kck),
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where the last two equalities follow from theorem 2.3. From the same

theorem it follows that

(k+l k k k
VPCk (yk ) =Y Vc(* (Sg(y k) y)

k Ck k

(ykc k)UL(XL( k= u(y ck) = u (x (y ,ck ) ,y ,ck )

sup [f(xL(y k) ' Vc) (yk
(k

= sup [f(xk ) , V* (-_yk )] > f(xk ).

Ck =

and

k k+l k
lim sup f(x) < lim sup VC ( y Y)

k- co k co k

k+l k -1
F-urthermore (ibid.) y - y + 0. Also V4c* Ck V*, ck is bounded

away from zero, and VD* is continuous with VD* = (0) O0. thus

lim V* (yk+l_ yk) = 

k-co Ck

k
from which the asymptotic feasibility of {x } follows.

By theorem 2.1

k k k k k
L (x ,y ) = FO(x ,uL(x ,y ,ck))
Ck0

kk k kk
+ c (UL (x ,y ,Ck)) + (Y ,u ,(x Ck)) 

c L k L k

We have seen above that f(xk ) < uL(x ,y ck), thus F (x ,u (x ,y ,ck))
-L 0 L k

Since x ,k) it follows that L ( g
= f (x). Since x = x (yk ) it follows that L k(x ,yk) = g (Y).~0 L k ~ck ck

Therefore
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kk kg (Yk ) = fO(xk ) + c (UL(x ,y ,c k )) + (y ,uL(xU,y ,c k) ) .

From the expression of g in theorem 2.3, one obtains

Ck

- k

and

c(yk) ( g0(Sgyk, -Ck)) (s(y ) y)

k+l k+l k k+
g(y +) C(k _ y ) < g(y )*

Thus for all k > 0

(k) (k+l
go y <gck (Y (y k =< go y

kand the sequence Igo(y )} is nondecreasing. It is also bounded above

by the optimal value of the dual problem (D), thus it converges.

Using again Luque (1984a th III.2.12, 1986a th 2.12)

y + y y Arg max go.

0Since g0 is upper semicontinuous by closedness, it follows that

lim g0 (yk lim sup g C0 (y) O = g,
k +

and {yk} ascends go to the optimal value of (D).
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The interleavedness of {g (y ) } and {g (yk)} implies that

k -

lim g (y) =g.
k-oo Ckk

Since y k} is convergent, it is bounded. Also we have seen that

UL(x ,y ,ck) = UL(XL (y ck), Y ,ck)

= * (yk+l _ yk)+ 0

and by theorem 2.1

k k -1 k k
~Ck(UL(X ,y ,ck )) = ck (CkU (X ,y ,y k ) )

-1 k k k
= Ck 4 (CkV (S (SL ,y ,ck) -

Ck

-1 k k k
= Ck y(V,*(s ( ck ) - y ))= L k

kk
from which it is clear that D (u (x IY ck )) - 0.

·A', cku L k

This is so because ck is bounded away from zero, F is continuous with

(0) = 0, and

L kV~*(SL(xky ,c k) - yk) = V~*(yk+l yk)

as discussed above. Putting all these facts together, it follows that

lim f (x) = lim g (yk ) = g < f
k- k-oo Ck

where we actually have equality by assumptions (1) - (4) of section 2.
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k k -
Let x be a cluster point of {x }, thus {x } -+ x for some sub-

K

sequence indexed by K C I . Since the functions fi',i=0,l,...,m are

lower semicontinuous one has

f(x) = lim inf f(xk ) < lim sup f(xk ) < lim sup f(xk ) < 0

keK keK k +o

and x is feasible. Also

f0(x) = lim inff (x ) < lim sup f (xk ) < lim sup f (xk)

k e K k eK k co

lim f(xk) = f,

from which f (x) < f. By the feasibility of x, it follows that x is an

optimal solution of (P)

QED.

We now turn our attention to the study of the asymptotic convergence

of the method of multipliers. Let Y be the set of optimal solutions of

the dual problem (D)'.' Since go is closed concave, Y is always closed

and convex. Furthermore, by assumption (A6) (see section3), it is non-

empty. Thus for any sequence of dual variables {y } generated by the

algorithm, the sequence {d(y ,Y)} is well defined.

k
We have seen (theorem 4.1) that y -+ y a (not necessarily unique)

maximizer of go, thus d(y ,Y) + O. In our asymptotic convergence anal-

ysis of the method of multipliers we focus our attention on the speed of

convergence of d(yk,Y). Via theorem 3.1 we are able to apply the results

developed'in Luque (1984a, 1986a) for the general NPA.
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Theorem 4.2. Let go satisfy the following estimate for some

numbers n,a,t > 0

Vy* e TB, (y* e ag(Y) => d(y,Y) < aly*lt)

Let P* satisfy the following estimate for some numbers 6,b,s > 0 such

that st > 1

Vy e 6B, IVw* (y) < by -.

If st = 1, the method of multipliers converges linearly at a rate

bounded above by

a

(a2 + (c/b)2t)

where c = lim inf ck, and thus superlinearly if c = A. In any case the
k oo

(Q-) order of convergence is at least st > 1.

Proof. Everything follows directly from the equivalence between

the method of multipliers and the NPA shown in theorem 3.1, plus a

theorem of Luque (1984a th III.3.1, 1986a th 3.1) QED

Theorem 4.3. Let everything be as in theorem 4.2, except that now

9g0 satisfies the following estimate

Vy* C qB, (y* e ago(Y) => y e Y).

Then, the method of multipliers converges in finitely many steps

which can be reduced to one if 6 > d(y ,Y) and co > bd(y ,Y)S/n.
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Proof. Luque (1984a th III.3.2, 1986a th 3.2). QED

Theorem 4.4. Let a,t,6 be positive numbers, and let T: R+ R +,

be continuous at zero with T(O) 0 O. Let ag0 satisfy the following

estimate.

Wy* By* * e 6Bg (Y* y ) => aly* t < d(y,Y) < T(iy*/))-

Let b,s,n be positive numbers, and let G: R + IR be continuous at zero
+ +

with O(0) = 0. Let VW* satisfy

Vy e nB, blyls < IVwc*(y)J < (lyl).

If st< 1, then

k+l
d(y -Y)

lim inf ,
k o o d(y ,Y)

and the convergence cannot be faster than sublinear. If st = 1, then

k+1-
lim inf d(y

k + co d(y ,Y) ab + c

where c = lim sup ck.

Proof. Lugue (1984a th oII.3.3, 1986a th 3.3). QED

We can also give an estimate of the speed of convergence of g0 (yk
).

Theorem 4.5. Under the assumptions of theorem 4.2, for all k large

enough
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- ( yk+

< c bd(y ,Y).
X k+l k 

Proof. Luque (1984a th III.5.2, 1986a th 5.2). QED

The results of theorems 4.2 and 4.3 are similar to those report-

ed in the literature (Bertsekas 1982, props 5.20, 5.21, 5.22). On the

other hand, to the best of the author's knowledge, theorems 4.4 and 4.5

are completely new.
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