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Abstract

In this thesis, I consider generalisations of geometric stability theory to minimal Las-
car Strong Types definable in simple theorles. Positively, we show that the conditions
of linearity and 1-basedness are equivalent for such types. Negatively, we construct
an example which is locally modular but not affine using a generalistion of the generic
predicate. We obtain reducibility results leading to a proof that in any w—categorical,
1-based non-trivial simple theory a vector space over a finite field is interpretable and
T prove natural generalisations of some of the above results for regular types. I then
consider some of these ideas in the context of the conjectured non-finite axiomatis-
ability of any w-categorical simple theory. In the non-linear Zariski structure context,
I consider Zilber’s axiomatization in stable examples, and then in the case of the sim-
ple theory given by an algebraically closed field with a generic predicate. Comparing
Zariski structure methods with corresponding techniques in algebraic geometry, 1
show the notions of etale morphism and unramified Zariski cover essentially coincide
for smooth algebraic varieties, show the equivalence of branching number and multi-
plicity in the case of smooth projective curves and give a proof of defining tangency
for curves using multiplicities. Finally, I give a partial results in the model theory of
fields which supports extending the Zariski structure method to simple theories.
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Chapter 1

Lascar Strong Types and

Canonical Basess

In this section, we give a brief overview of Lascar strong types and canonical bases in
simple theories which will be used repeatedly in what follows. Much of this material

can be found in [14], [20], [23], [21], [24] and [5].

Definition 1. A formula ¢(z,by) divides over A if there exists an indiscernible se-
quence {b;: 0 < i < w} over A such that {¢(Z,b;) 10 < i < w} is inconsistent. A type
(possibly partial) forks over A if it implies a finite disjunction of formulae dividing

over A.

For A, B,C C M, with M a very saturated model, we take
AlpC
to mean that tp(A/BC) is a non forking extension of tp(A/B)

Kim proved in [20] that if T is a simple theory then forking inside M satisfies ;

1. Symmetry: Given a,b, A;



alabiffblaa
2. Transitivity: Given A C B C C,
aLACiﬁdiABanddLBC

3. Extension: Given A C B, if p € S™(A), then there exists a realisation a with
alaB.

" 4. Local Character: If p € S*(B), there exists A C B with |A| < |T| such that p

doesn’t fork over A.

5. Finite Character: Given A C B, then @ L4 Biff a |a b for each finite tuple

bC DB.

6. Independence Theorem over a model: If

Glmb e=amdand @, dimb,
then there exists € with

€6 = TG, 8b = db and & [aq @D
We also note the following other trivial consequences of forking.

7. Automorphism Invariance: Non-Forking is preseved under automorphism.

8. Closure: Non-Forking is invariant under closure acl inside ME9, that 18



Alp Ciff acl(A) Loapy acl(C)

For complete types p and g over sets 4 C B, we say that p < g if g is a forking
extension of p. Then SU(p) (Simple U-rank) is defined to be the foundation rank of
p with respect to this ordering. (One can also define the analogous rank on formulae
(Shelah Rank) usually denoted by B® or D in the simple context). We will be con-
cerned exclusively with supersimple theories for which there are no infinite forking
chains, that is sets Ay C A; C ... 4; C ... and types pi € S™(A;) such that p;,, is
a forking extension of p;,. For such theories, it can easily be shown that the Local
Character axiom can be simplified to take A as a finite set. Moreover, SU(p) < oo

for all complete types.

We will say that a complete type p in a simple theory is minimal if SU(p) = 1;
this is easily shown to be equivalent to the property that every forking extension
of p is algebraic. In the stable context, it will be convenient to allow for a slightly
broader definition of a minimal formula or a minimal partial type; namely a formula
¢ is strongly minimal if RM(¢) = dM(¢) = 1 (Morley rank/Morley degree) and a
partial type p over A is minimal if for any A C B it has a unique extension to a a
non-algebraic complete type p. (in the case of a complete type in a stable theory this

is equivalent to p being stationary and having U-rank 1).

The notion of Lascar strong type, generalising the notion of strong type in stable
theories, will be central to what follows, so it is worth giving a brief summary of
its properties. The idea is to find a rather broader class of sets for which the Inde-
pendence Theorem holds. In stable theories, it can be shown that if p 1s a complete
type over a set A, algebraically closed in M, then it is stationary, that is has a
unique non-forking extension to any A C B. Then the Independence Theorem must
hold for such types, as for any tuples @ and b, if p, € S"(Aa) and p; € S™(Ab) are
non-forking extensions of p, then there must be a unique global non-forking extension

p3 € S™(M) over a model M containg Aab. Unfortunately, the proof that strong



types are stationary relies on two facts unique to stable theories. The first is the
existence of a local rank R, which is defined exactly as for RM but restricting to
instances of Boolean combinations of a given formula; this allows us to develop a
precise notion of multiplicity and therefore to show that locally a type p over A can
only have finitely many non forking extensions. The second is the fact that paral-
lelism with respect to A formulae is definable, that is given A formulae d(za), w(Z,7),
{6 : Ra(o(za) A 1p(2,D)) = Ra(4(%a)) is definable. This allows the construction of
defining schemas for A formulae inside any non-forking extension of p to a model
M, which, using the first property, must be defined over acl(A). See [30] and [3] for
details. For simple theories, stationarity fails but one still wants to apply the inde-
pendence theorem, so the notion of Lascar strong type, Lstp, is introduced. Namely
one defines Lstp(a/A) = Lstp(b/A) if there exists g € Autf(M) with g(a@) = b, where
Aut f(M) is the subgroup of Aut(M) generated by

{9 € Aut(M) : g € Auty (M), for some A C N C M}

As is shown in [24], the Independence Theorem holds for Lstps. However, the no-
tion of Lstp as defined above is rather inconvenient to work with. To overcome this
difficulty, one introduces Af*a containing M®? consisting of names for classes of type
definable equivalence relations on M. As is shown in [23], the following are equivalent,

1. Lstp(a/A) = Lstp(b/A)

2. E(a,b) for any A invariant bounded equivalence relation on A

where a bounded equivalence relation is one having strictly less than Card(M)

classes. Moreover, as in [23], equality of Lstps is type definable, therefore

Lstp(a/A) = Lstp(b/A) iff tp(a/bdd(A)) = tp(b/bdd(A))



where bdd(A) denotes the bounded closure of A in Ahed,

If T is small, Kim shows in [23] that any type definable equivalence relation is

equivalent to an intersection of definable ones, from which it easily follows that

Lstp(a/A) = Lstp(b/A) iff tp(a/acl(A)) = tp(b/acl(A)) (*)

where acl(A) denotes the algebraic closure of A in M®. This result was later im-
proved in [5] with the assumption that 7" is supersimple. As everything we consider

here only requires this, from now on we will take (x) as the definition of Lstp.

For the rest of this section, I will make a few remarks about canonical bases in
simple theories, as they are also used on several occasions. In [14], a notion of canon-
ical bases is developed for Lstps. The idea is to define a relation R, on tp(a), where

p(Z,a) is a complete type having the amalgamation property, given by

Ry(a, b) iff p(x,a) and p(z,b) have a common non-forking extension

Unlike the stable case, this is not an equivalence relation, however it is type de-

finable and its transitive closure is shown to be type definable by
E(a,b) iff 3z(R(a, z) A R(z,b)) (**)
where R is the relation given by
R(a,b) iff R,(a,b) A Generic(b, a)
and Generic(b, a) is a type definable relation saying that & has maximal SU-rank

among realisations of R;(z,a), at least in the case that T is supersimple. Note that

a may stand for a sequence of infinite length and for Lstps in supersimple theories



will generally denote acl®(a) for some finite tuple!

The parallelism class B of p(Z,a) is the E class of p where E is the transitive
closure of the parallelism relation on complete types with the amalgation property. If
T define the canonical base of p to be ¢ = a/E, then it follows that an automorphism
fixes ¢ iff it fixes P setwise. In fact, if & is any automorphism fixing ¢, then it follows
by () that I can find b having the same type as a such that p(z,a)||p(z,b) and

p(z,b)||p(z, a(a)), that is T can amalgamate p(z, a) and its image in 1-step.

We need 3 other properties of canonical bases. The first, as shown in [14], is that
the Independence theorem still holds for the restriction of a Lstp over a to its base
¢ C a. Therefore, as a is algebraically closed, if b is a congugate over ¢ such that

a }. b then p(x,a) and p(z, b) are parallel types.

The second is the relation of a canonical base to other sets in our structure M.

The result is the following, found in [21);

If AC B are sets and a is a tuple, then a J4 B iff Cb(Lstp(a/B)) C acl(A).(***)

As an immediate consequence we have that if ¢ = Cb(Lstp(a/A)), then @ |. A
and of course @ 4 ¢. Moreover, a simple application of the rules of forking shows

that if d = Cb(Lstp(a/B)) and @ }4 B, then ¢ and d are interalgebraic.

Given a type p with domain A, we define p* = dcl{A U p). Suppose a € p and B
is an arbitrary set of parameters. The third property is that, under the assumption of
T being supersimple, C = Cb(Lstp(a/B)) C p®. This follows as we can find a finite
Morley sequence @i, . ..a, realising p with C C dcl(@1, - . - Gy). In general C will be
an infinite tuple of elements, but using this fact we can always take C to be a finite

tuple ¢ in p°? up to interalgebraicity.

10



Chapter 2

Pregeometries

A pregeometry is a set S with a closure operation cl : P(S) — P(S) satisfying the

following axioms found in [30];
1. Il A C S, then A C cl(A), cl(A) = cl(cl(A)).
2. It AC B CJS, then cl(4) C cl(B).
3. fACS, a,b€ S, then a € cl(A4b) \ cl(A) implies b € cl(Aa).
4. Ifa € S and a € cl(A), then there is some finite 4y C A with a € cl(4o).

We will give a number of examples relevant to what follows, each one generalising

the preceeding one!
Example 1:

One of the simplest example of a pregeometry is vector space over a field F. The
closure operation ¢l on V' is given by cl(A) = span(A) = {v eV :v € span(a)} where
a 1s a finite tuple of elements from A. The axioms 1,2 and 4 are trivial to verify, and

axiom 3 follows from the well known Steinitz Exchange Lemma for vector spaces.

11



Example 2:

More generally, suppose I) is a strongly minimal set inside a structure A , defined
over a parameter ¢, then (D, cl) is a pregeometry with cl defined by ¢f (A)={zeD:
z € acl(Ag)}, where acl denotes algebraic closure inside the structure M. Axioms 2
and 4 are again immediate, axiom 1 is just transitivity of algebraic closure and the
only work is to verify axiom 3; the following is a rather straightforward proof of this

fact requiring only the definition of a strongly minimal set;

Proof. Without loss of generality, assume A¢ = §, and let q ¢ acl(b) \ acl(P). Then
there is some formula #(xy) such that 3"k (2b) and ¢(ab) holds. Now consider the

formula

¥lay) = 3¢ (2y) A dlay)

Then clearly 1(ab) holds and we may therefore suppose that I*yp(ay), otherwise
we are done. By strong minimality, ¥ (ay) is cofinite in D, that is F="—h(ay). As
@ ¢ acl(¢), we can find an infinite sequence (ai,...q;...) C D such that F=m—eh(azy)
for each ¢. By compactness, we can then find ¥ € D such that ¥(a;b') holds for all
¢. Then on the one hand we have that F*=*¢(zb') while on the other d(a;b') holds for
infinite 4. This is a contradiction.

O
Example 3:
With the discovery of simple theories, generalising stable theories, we can find an

~eéven more plentiful supply of pregeometries. This relieg crucially on property 1 of

forking inside simple theories (see section 1);

12



Proof. We recall the definition of a minimal type p inside a simple theory from section
L. Then the realisations D of p form a pregeometry under the closure operation ¢l
given by cl(A) = {z € p: = € acl(Ac)}. Here again acl denotes usual model theoretic
algebraic closure and ¢ denotes the domain of p. We need to check the axioms. 1,2
and 4 are trivial to verify. For 3, assuming that Az = (), suppose that a € cl(b)\ el (0),
then a f b and by forking symmetry b f a. Then b realises a forking extension of p

over a and therefore b € acl(a).

Example 4:

It is in fact possible to go one step further! We will say that a non algebraic
complete type p is regular if it is orthogonal to all its forking extensions. Then the
realisations of D of p form a pregeometry with the the closure operation ¢l given by

cl(A) ={z € p:z f A}, where I have supressed the defining parameter of p.

Proof. Again we check the axioms, 2 is trivial and 4 follows from the finite character of
forking. 3 follows immediately from forking symmetry and all the work is in showing
that 1 holds, namely we have to see that if A C p, @, by ... b, is a tuple in p such that
b; £ A for each ¢ and @ [ b, ...b, then in fact a J A. Suppose not, so a realises a
non forking extension of p to A. Each b; realises a forking extension of p to A so by
definition of regularity, we must have that a {4 ;. Now we Just repeat the argument
with Ab, replacing A, clearly b; J Ab, for i > 2 and again using regularity a | 4p, bs,
so we get a 4 biby. After n steps, using transitivity, we have that a J4 b,...5, and
soasal Awegetalb ... b, Thiscontradicts the original hypothesis.

O

Having found plenty of examples, we will analyse properties of pregeometries in
more detail. Given any pregeometry (S, cl), we can associate a canonical geometry

(S',cl’). In order to do this, we define an equivalence relation E on S \ cl(®), by

13



E(z,y) iff cd(z) =cl(y) =,y€S

Then S is given as a set by S\ /(D) where for z € S, T denotes the equivalence

class of z with respect to F.

Given A C ', we let

A'={zeS:% €A}

and we define cl’ on S’ by setting;

cd'(A) = {zZ:z € cl(A)}.

As is easily checked, (', cI') is still a pregeometry and moreover has the desirable
additional properties that cl'(a) = a for every a € S and cl’ (M) = 0. If we consider
Example 1 above of a vector space V' over a field F, then the corresponding geometry

is exactly projective space P(V') over F.

Given (S,cl) and A C S we can also localise S at A to obtain a pregeometry
(S4,cl4). Namely, one takes Sy ={z € 5: % ¢ cl(A)} and given B C Sy, we define
cla(B) = {z € Sa:z € cl(AUB)}.

If A C S is a closed subset, we define a basis of A to be a a maximal subset AgC A
such that the elements of Ay are independent, that is a ¢ cl(Aq \ a) for every a € Ap.
By Zorn's Lemma, using axiom 4, every closed set has a basis. Moreover, if Ag is a
basis for A, then, given z € A, {Ag, z} must form a dependent set. Using 3, we easily
conclude that z € cl(Ag) and so 4g spans A. More importantly, any two bases A
and A, for A have the same cardinality; this follows easily by repeated application of
axiom 3 to interchange elements of Ag and A;. We then have a well defined notion of

dimension for closed sets A C S given by dim(A) = Card(A.), Ao a basis for A. For

14



closed sets B C A C S, we may also define dim(A/B) = dim{A) — dim(B) and for
arbitrary sets A, B C S, we define dim(A/B) = dim(cl(A U B)/cl(B)). As is easily

verified, we then have the following additive property of dimension;

dim(AU B) = dim(A/B) + dim(B)

Moreover, if we work inside a strongly minimal set or an SU-rank 1 complete type
as above, the notion of dimension on the corresponding pregeometry S coincides with

MR or SU-rank.

We consider the case for SU-rank first. By the laws of forking inside simple the-
ories, in particular transitivity, it is a straightforward exercise (using induction!), to
check that if a,b € M and A C M, then SU(ab/A) = SU(a/bA) +SU(b/A), provided
both sides of the equation are finite. Then if dim(ay, . . . a, /A =n1in S, to show that
SU(ay ...an/A) = n, we just need to check that SU rank is preserved under non fork-
ing extension, again this is an easy exercise, in fact implicit in showing the additivity
of SU-rank. For arbitrary tuples @ from S, observing that algebraic types have SU
rank 0, we conclude easily that dim(a/A) = SU(a/A) for @ in S. The case for MR is
slightly complicated by the fact that M R is not in general additive. However, in this
case, n independent elements a; . . . a, from S over A will determine a unique n type p",
over A, as S is the solution sets of a strongly minimal formula. Using this, it is reason-
ably straightforward to deduce that MR(a; ...a,/A) = dim(a; .. .an/A) = n. The
general result then follows from the fact that if @ C acl(Ab), MR(a/A) < MR(b/A),
so MR is preseved by interalgebraicity. See [3] for details. In general, [ will use dim

and the model theoretic ranks interchangably.

We now examine possible behaviours of closure inside pregeometries. Let (S, cl)

be a pregeometry, then

Definition 2. 1.(5,cl) is trivial if for A C S, cl(A) = {Ucl(a) : a € A}

15



2.(8, cl) is modular if for A, B finite dimensional closed subsets of S, dim(AUB) =
dim(A) + dim(B) — dim(AN B)
3.(8, cl) is locally modular if it is modular after localising at a point in S

All the above properies are preserved under localisation, in particular modularity
implies local modularity.
We will now look at these 3 cases in more detail.

1. Trivial Case.

Trivial pregeometries are in a sense as degenerate as possible. Examples are an in-
finite set with no extra structure, or a model of the theory of the random graph. In the

latter case, the random relation makes no contribution to the model theoretic closure.
2. Modular Case.

The canonical example of a modular pregeometry is projective space over a field
P(F). Here the closure operation cl is defined by taking cl(A) = span(A) = {v €
P(F) : v € span(a)} with span(a) denoting the projective plane spanned by a finite

tuple @ from A. The example is canonical by the following classical fact found in [1];

Fact 1. If (S,cl) is a non-trivial, modular geometry of dimension > 4 in which each
closed set of dimension 2 contains at least 3 elements, then (S, cl) is isomorphic to

projective geometry over G divison ring.

We now need to analyse the notion of modularity further. First note that we can

rewrite the modularity formula in a more digestible form as follows. We have,

16



dim(A U B) = dim(A/B) + dim(B) = dim(A) + dim(B) — dim(A N B)
therefore
dim(A/B) = dim(A) — dim(A N B) = dim(A/AN B) ()

As this argument is reversible, we can use (x) as a criterion for modularity, and

in fact we can even reduce (*) to the following easier condition given by the lemma

Lemma 2. (S,cl) is modular iff whenever a,b € S, B C S, dim{ab) = 2 and
dim(ab/B) < 1, then there is ¢ € cl(ab) N cl(B) with ¢ ¢ cl(B) (**)

Proof. Clearly () implies (x+). To prove the converse, first note that applying ()
t0 (apt1z) and el(ay .. .a,)) gives us that if z € cl(ay ... ann41) \ cl{any1), then
T € kcl(an.Hb) with b € cl(a;...a,), call this condition (* * ). Now use induc-
tion on dim(A). So suppose that dim(A) = n + 1, and let ai,...a,41 be a basis
for A. Let B C § with dim(A4/B) = m < n+ 1. We may suppose that m > 0
and an41 ¢ cl(B) otherwise the result is trivial. Then by additivity we must have
that dim(a; .. a,/an41B) = m — 1. By the induction hypothesis, we have that
dim(cl{ay ...an) Ncl(@ni1B)) = n — (m —1). Call this intersection C and consider
cl(Cany1) C cl(Bapy). If m > 2, we may apply the induction hypothesis to calculate
dim(cl{Cant1)NB) = dim(cl(Cany)) —dim(cl(Cany,)/B) = ((n=(m-1))+1)-1=
n—(m—1) (as clearly a,,; ¢ C). However, c(Can1)NB = cla; ... ap41)NB, (using
(***) to verify the right to left direction). This gives us that dim(cl{ay ... a,11)NB) =
dim(cl(ar ... ani1)) — dim(cl(a; ... @np1/B)) = n+ 1 — m as required. The case
when m = 1 can be handled seperately, the simplest method is as follows; given
@1...ap4 With dim(a;...an41/B) = 1, we may assume that a, ¢ B and then for
t 2 2 we have a; € cl(a;B). Using (x * x) we pick up points ¢; € cl(a1a;) N B,

and one casily sees that the ¢; are independent points in ¢l(ay ... a,;). This proves

17



dim(cl{ey . .. ant1) N B) = n which is clearly sufficient.

(]

We can use modularity to find simpler conditions to decide when (S, cl) is trivial.

We have the following lemma.

Lemma 3. If (S,cl) is a modular geometry, and for any 2 distinct points clab) =

{a,b}, then (S, cl) is trivial,

Proof. We first note that as (S, cl) is modular then if A C 5, z € cl(Ay), we can
find z € cl(A) such that z € cl(zy) (this is (***) above). Now suppose inductively
that we have verified triviality for closed sets of dimension < n. Let B C S closed
have dimension 7 + 1 with basis aj . ..ani1. If 2 € B, then I can find z € cl(a; .. Q)
with 2 € cl(zan41). By the induction hypothesis, z € cl{a; U... U c(ay)), so z €
cl(ay U ... Ucl{any1)), which proves triviality for B

1

3. Locally Modular Case.

The classical example of a locally modular, non modular pregeometry is affine
spane over a field F' denoted by Aff(F) where cl is defined by taking cd(A) ={v €
span(a)} and span(a) denotes the affine plane spanned by a. Modularity fails by
considering 2 parallel lines generated by (ab) and (cd) respectively. In this case, we
have dim(ab) = 2, dim(ab/ed) = 1 but cl(ab) N cl(cd) = @, violating the condition
(xx). If we localise Af fr at a point, we obtain a vector space V(F), which is of course

a modular pregeometry.

Again the example is in a sense canonical due to the following theorem of Hrushowski,

which makes essential use of the group configuration for stable theories. I quote the

18



result for complete minimal types in stable theories ,as in [30], but an analogous result

holds for minimal types;

Theorem 4. Let p € S(0) be a complete non trivial minimal locally modular type
inside a stable theory. Then p is modular or the geometry associated to p is affine

geometry over a division ring.

One would naturally expect this to hold in simple theories, but this turns out to

be false! We will see why in the next section.

Finally, we need to mention the following classical result due to Doyen and Hubaut

and found in [11];

Fact 5. If (S, cl) is a non trivial locally modular, locally finite geometry of dimension
> 4, wn which all closed sets of dimension 2 have the same size, then (S, cl) 1s affine

or projective geometry over a finite field.

19



Chapter 3

Linearity and 1-Basedness

We now want to undertake a more thorough analysis of minimal types inside simple
theories. For this we will require two new notions, 1-basedness and linearity. See [4]

and [30] for more details

Definition 3. We say that a simple theory T with elimination of hyperimaginaries

is 1-based if the following condition holds in a big model M,

For any sets A and B, A loa(aynecs) B, where acl 1s taken inside M*

Lemma 6. The following are equivalent for sumple T';
1.7 is 1-based.
2. For any B C M and tuple a, Cb(Lstp(a/B)) C acl(a).

3. If I =< a; : 0 < i <w > is an indiscernible sequence, then I\ {Go} is a Morley

Sequence over Qg

Proof. 1 = 2;

20



We clearly have that a daci(@nael( B) acl (B). By properties of canonical bases, given
in Section 1, we have Cb(a/B) C acl(a) N acl(B), in particular Cb(a/B) C acl(a).
O

Proof. 2 = 1;

Again by facts on canonical bases, we must have that & lac@)nacysy B for finite

tuples @ and B C M*?. Now 1 follows by the finite character of forking.

Proof. 1 = 3;

Let < @ : 0 < ¢ < w > be an indiscernible sequence. Then by 1-basedness
Qo acl(io)nacl(@,...an) 01 ---Gn for n > 1. The sequence < @; : 1 < i < w > is indis-
cernible over ay, hence tp(a . . . Gn/acl(8o)) = tp(as . . . @ny1/acl(ao)), therefore, by au-
tomorphism, @y sci(ae)raci(a,...sn) @2 - - - @nr1 and in particular ag Loy, an Gnt1(*¥). Now
a straightforward SU rank calculation, using indiscernibility to give SU (éin JGo...0n_1) =
SU(@n11/ay - . . @), shows that we can swap @y and @, in (*) to give that @, lz,. 4.,
Gn+1- This shows directly that < @; > is a Morley sequence over ag.

O

Proof. 3 = 2.

Choose a Morley sequence (dgay - - . @, ... ) for Lstp(a/B) such that ¢ € acl(@ody - . . apyy).
We can assume the sequence is indiscernibile, hence based on ag. Continuing the se-
quence, we have that @,11 14, @ - .. @, and therefore Un+1 dao €. Clearly @,41 J. G as
part of a Morley sequence, which gives that ¢ € acl(@g) by facts on canonical bases.

0J

We now work inside the solution set D of a minimal type over §). The notion of
1-basedness still makes sense for D by considering D as a structure in its owm right

and working in D9,
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Definition 4. We say that D is lineor if for all parameter sets A C D and pairs
ab € D with SU{ab/A) = 1, then SU(c) < 1 where ¢ = Cb(Lstp(ab/A)).

We can easily show the following connecting 1-basedness, linearity and local mod-

ularity of D.

Theorem 7. If D is the solution set of a minimal type, then;

1.D locally modular = 2.D is 1-based = 3.D 1s linear.

Proof. 1 =2

To show the first part of the implication, we first prove the rather strong result
that if ¢ € D%, then c is interalgebraic with a tuple @ in D over a fixed d € D.
To see this, observe trivially that if d; # dy are in D, then by automorphism the
localised pregeometries Dy, and Dy, are isomorphic. Hence we can assume that D
is modular after adding any d € D. Now fix points ¢ € D*? and d € D. Assume
for convenience that ¢ | d. Then we can find an independent sequence a;...an such
that ¢ € acl(a; . .. a,) and we may assume that a; ... aq led,sod ) ay...a, Now let

by ...b, realise tp(ay . . . a,/cd) such that by ... by Lo day. .. ay. By a rank calculation,

SU(bl . ..bnd/al...and) = SU(bl bn/aland)

— SU(by...baJar . .. andc)

= SU(by...b,/c)

= SU(by...by) — SU(c) = n— SU(c)(*) (as c € acl(by .. b))

Now as D is modular after adding d, we have that,
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dimg(cl(by .. .by) Nel(ay ... ay))
= dimg(cl(by .. .b,)) — dimg(cl(b, ... bufcl(ar ... a,))
=n—(n-SU(c)) = SU(c)

using (x). Let ¢;...¢; be a basis for this intersection over d, so SU(c) = k.
Then 1 claim that ¢ € acl(de; .. .¢x). If not, then clearly b, ...b,.d \LCL_.deC and so
bi...b,d j/cl NPLIRES and contradicting local modularity. Now by straightforward

rank calculation
SU(ey .. .exfed) = SU(c/c; . . cxd) + SU(cy ... ¢ /d) — SU(c/d) =0
S0 ¢1...¢, and c are interalgebraic over d as required.

It follows easily that (D, d) is 1-based for any d € D. To see that D itself must be
1-based, we just need to check condition 2 above. So let @ be a tuple and B ¢ D,
Without loss of generality assume B is algebraically closed. Let B’ realise tp(B) with
B’ | d and @' be the conjugate of G over B'. Let ¢ — Cb(Lstp(@'/B")), so ¢ | d, and "
realise Lstp(a’/B') with @” |z d. By elementary properties, ¢ is interalgebraic with
the canonical base of Lstp(a”/B'd). Then as (D,d) is 1-based, ¢ € acl(a"d). However,
d | cand d|.a" soin particular ¢ dar d, 50 in fact ¢ € acl (@"). By automorphisms,
it follows that ¢ € acl(@') and then that ¢ = Cb(Lstp(a/B)) € acl(a) as required.

0

Alternatively, one can check this using criteria 3 in Lemma 13; in practise, this

seems to be the most effective method for testing 1-basedness of a given theory.

Remark 1. In the stable case, the above argument can be reversed to show that for

D the solution set of a minimal type, if D is 1-based then D is in fact locally modular.
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This relies on the fact that it is always possible to find a set of parameters I C D
such that any element ¢ € D is interalgebraic with a tuple @ in D over I. In the
case of simple theories, this fails completely; a counterezample is given by adding a
generic predicate P(z) to a vector space over a finite field and taking the reduct P(V),

see Theorem 22.

Proof. 2 =3

We still need to prove the last implication, that if D is 1-based then in fact D is
linear. This is a trivial rank calculation. Let (ab) € D, A C D, with SU(ab/A) =1
and ¢ = Cb(Lstp(ab/A)), then

SU(abe) = SU(ab/c) + SU(c) =1+ SU(c)

= SU(c/ab) + SU(ab) = SU(ab) < 2

so SU(c) <1 as required.

O

The rest of this section will be devoted to recovering an analogue of the converse
implications which hold only with the assumption of stability. It is rather extraordi-

nary that such an analogue exists in the simple case.

Definition 5. We set G(D) = {c € D*: SU(c) = 1}

G(D) is not in general a definable object but being the union of complete rank
1-types forms a pregeometry under the obvious closure operation. We have that
D C G(D) and all the above notions of (local) modularity, 1-basedness and linearity

make sense in G (D). We will be busy proving the following theorem;
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Theorem 8. If D is the solution set of a minimal type, then

1.D linear=> 2.G(D) linear = 3.G(D) modular = 4.D 1-based.

Proof. 1 =2

So assume that D is linear. Let (zy) € G(D) be a pair and A C G(D) with
SU(zy/A) = 1. We may as well assume that (zy) is independent as if SU(zy) =1,
then letting ¢ = Cb(Lstp(zy/A)), we have zy | ¢, so ¢ € acl(0). Suppose (zy) € acl(a)
with @ an independent tuple from D. Let F be a basis for ¢l (@) in the localised pre-
geometry D), then F' | xy and moreover if we complete F to a basis Fab of cl(a)
in D, then (ab) and (zy) are interalgebraic over . Let F” realise tp(F /xy) with
F' |y abAF, so

F' |p zyabAF. (1)

Then by automorphism we can find a further pair (a'¥') such that (a’s') and (zy)

are interalgebraic over F’. Now we have that;

SU(xy/A) = SU(zy/F'A) = SU(V JF'A) = 1 (2)

using the facts that £’ |4 zy and (zy), (a'’) are interalgebraic over F’A.

Using linearity of D, we have that

SU(a't' /acl(F'A) N acl(a'd')) = 1

As acl(F'A) Nacl(a'V') C acl(F'A) Nacl(F'a't') and clearly (a'b') ¢ acl(F'A), we

must then have;
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SU(a't Jacl(F'A) N acl(F'a’) = 1 (3)

Then, using the fact that ' C acl(F'A) Nacl(F'a'd') and again that (a't'), (zy)
are interalgebraic over F”, we can replace both occurrences of (a'd') by (zy) in (3) to

give;

SU(zy/acl(F'A) Nac(F'zy)) =1 (4)

For convenience, let W denote acl(F'A) Nacl(F'zy). 1 claim that xy Lw c. If not,
then (zy) € acl(Wc) C acl(F'Ac). Hence, using (1), (zy) € acl(A) which is not the
case. It follows by elementary properties of canonical bases that ¢ € acl(W) and so
¢ € acl(F'zy). Using (1) again gives ¢ € acl(zy). This proves that G(D) is linear.

(I

Proof. 2=3

To show that G(D) linear implies that G(D) is modular, we use the criterion (%)
given in Lemma 2. So let (ab) € G(D) be an independent pair and A C G(D) with
SU(ab/A) = 1. We already know that ¢ = Cb(Lstp(ab/A)) C acl{ab) N acl(A) and
SU(c/®) = 1. By facts on canonical bases, see Section 1,we may assume that ¢ is a
single element in D up to interalgebraicity, hence ¢ may be taken inside G(D).

O

Proof. 3 =4

Finally, we want to show that G(D) modular implies that I is 1-based. The first
step of the proof is almost exactly the same as above. Namely one uses modularity of
G(D) to show that any A C D is interalgebraic with A" ¢ G(D). For variety, we can
show this using a different method which will be used repeatedly later. Let AC D%
be a closed set and choose By C D closed such that A C del(Bp). Let Iy realise
tp(By/A) with Fy La By and C = Cb(Lstp(Fo/Bo), then I claim that C is interalge-
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braic with A. By facts on canonical bases, we clearly have that C' C acl(A4). For the
converse, suppose that A C acl(C) and let {B; : ¢ < w} be a Morley sequence realising
tp(Bo/C). Then the corresponding {4; : i < w} is a Morley sequence for the non-
algebraic tp(4/C). The congugate types p; = Lstp(F;/B;) to py = Lstp(Fy/By) are
all in the same parellelism class and morever as the B; are independent over C I can
find a single F' such that tp(FB;) = tp(F;B;) By automorphism, A; C dcl(F) and this
is witnessed by a fixed set of formulae. As tp(A/C) is non algebraic, I can clearly find
infinite a; distinct tuples in A; witnessing a single algebraic formula , this is a contra-
diction. Now as G(D) is modular I have that Fj Vacl(Fo)nact(Bo) Bo, where acl is taken
inside G(D); by the same argument, ,replacing A above with acl(Fy)Nacl (Bqg) and not-
ing the change from acl to dcl effects nothing, I have acl(Fy N By) = acl(C) = acl(A)
as required.

Now suppose that A, B C D7 are algebraically closed and A L B. Let A", B/

ANB
and C' be corresponding interalgebraic closed sets in G(D) to A, B and AN B respec-
tively. As A'NB' C ANBNG(D), we must have that A'NB’ C C, hence as A’ \LC B

by transitivity of forking we must have A’ B', contradicting modularity. This
g g \

A'NB
proves that D is 1 based

Theorem 14 and Theorem 15 combine to give the following result

Theorem 9. The following are equivalent;

1. D is 1-based. 2. D is linear. 8. G(D) is linear. 4. G(D) is modular.

The proof that D linear implies that D is 1-based was also proved using a generic

pair argument by Vassiliev in [35].
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Chapter 4

Reducibility Questions

Having introduced the non-definable object G(D), we now turn to the question of
how G(D) is related to D. Throughout this section, we assume that D is a 1-based

minimal Lstp.

Definition 6. We say that G(D) is reducible into D* if for any c € G(D), there is

a k-tuple b from D such that a € acl(b).

Definition 7. We say that G(D) is strongly 2-reducible if it 15 reducible into D? and
satisfies the right hand side of Lemma 17.

Lemma 10. D is locally modular iff for any ¢ € G(D) any any d € D, there exists
b€ D such that ¢ € acl(db).

Proof. The proof of left to right is similar to the above. Suppose D is locally modular,
let ¢ € G(D) and d € D. Assume that ¢ ¢ acl(d) otherwises we are done. Now repeat
the argument in Theorem 14 to find b with ¢ € acl(db).

For the converse, we use the criterion (+x) from Lemma 2. So let d € D, (ab) a

pair with dimg(ab) = 2 and A C D with dimg(ab/A) = 1. As D is linear, letting
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¢ = Cb(Lstp(ab/Ad)), we have that SU(c) = 1 and ¢ € acl(ab) N acl(Ad). Then
as ¢ lies in G(D), I can find e € D such that ¢ ¢ acl{de). As c | d, we must
have that e ¢ acl(d). Finally, e € acl(dc) and hence e € acl{abd) N acl(Ad), that is
e € clg(abn A). This shows that D, is modular.

We also have the following results connecting the geometries of D and G (D).

Lemma 11. If D is locally modular and d € D, then the geometry of Dy and the

geometry of G(D) are 1somorphic as projective geometries.

Proof. We first show that given A C D®, the pregeometries D, and G(D)q localised
at A are non weakly orthogonal. Suppose ¢ € D\ acl(d4)N D, then clearly c € G(D),
as D C G(D). If ¢ € G(D) \ acl(Ad) N G(D), then by strong 2-reducibility I can find
e € D with ¢ € acl(de) and clearly e ¢ acl(dA) as well. Then clearly, taking A = 0,
the above property determines a bijection f between the geometries Dy and G(D),.
To see that f is in fact an isomorphism it is sufficient to check that f preserves lines,
which is trivial by interalgebraicity.

g

We can use the above result on strong 2- reducibility to prove the following posi-

tive result. Here we take cl to be closure inside G(D)’

Lemma 12. Suppose D is locally modular and the geometry G(D)' is projective over

o field F with card(F) < 3, then D' the geometry of D is modular or affine.

Proof. We first prove the result for Card(F) = 3. We have D' ¢ G(D)". Let
m = min{card cl(ab) : a,b € D'}. If m = 4, then by Fact 5, we have D' is pro-

Jective over finite field F with Card(F) = 3, as D’ cannot be affine otherwise we
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would have lines in G(D)' of length at least 5. Hence, we assume that m < 3.

Claim 1

There is no independent (ab) in D’ such that Card(cl(ab) N D') =2

If so, then amalgamating types, we can find ¢ € D’ such that Card(cl{ab)ND') =
Card(cl(ac)ND") = Card(cl(bc)nD') = 2. Let ¥ € cl(bc)NG(D)'\ D', then by strong
9-reducibility we can find o’ € D' such that ¥’ € cl(aa’). Now dim(ac/a'd) =1 as a' ¢
cl(bc). Hence, as G(D)' is modular, we can find ¢ € cl(ac)Nel(a'd) and clearly ¢’ # a, ¢
as otherwise b € cl(aa') or @' € cl(bc). Now using the fact that lines in G(D)' have size
4, let ¢" € cl(ac) with ¢ # a,c, ¢, s0 ¢ ¢ D'. Then dim(c"a’ Jbc) = dim(c"a’[ab) =1
and moreover a, b, ¢ ¢ cl(a'c") as otherwise o’ € cl(ac) or a’ € cl(c"b). It follows that
cl(a'¢’) Nel(be) ¢ D' and cl(a'¢") Nel(ab) ¢ D'. Hence Card(cl(a'c")N D') = 1 which

contradicts strong 2—reducibility.

Claim 2

There is no independent (ab) in D' such that Card(cl(ab) N D) =4

If so, again by amalgamating types we can find (abc) such that Card(cl(ab)ND") =
4, Card(cl(ac) N D') = 3 and Card(cl(bc) N D') = 3. Let e € G(D)' \ cl(ac) and
f € G(D) \ cl(bc). Then as G(D) is modular and dim(ef/ab) = 1 we can find
g € cllef)N D', so Card(cl(ef) N D') = 1. By strong 2 reducibility of D', we have in
fact that Card(cl(ef) N D') = 2 which is impossible by Claim 1.

We conclude that Card(cl(ab) N D) = 3 for all independent pairs ab in D'. By
Fact 5, D' is affine over F with Card(F) = 3 or projective over F with Card(F) = 2.
Clearly the latter case cannot happen as by the above lemma we would have an iso-

morphism between projective geometries over fields F of size 2 and 3.
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The case when G/(D)’ is projective over a field F with Card(F) = 2 is similar and
easier.

O

In fact we can use some combinatorial arguments to describe closure fairly ex-
plicitly in the case when D is locally modular. The following fact, usually know as

Ramsey’s colouring theorem, was proved in [12]

Fact 13. If Af fr is affine space over a finite field with ¢ elements and an m-colouring
on Affr is given, then there ezists an integer (the Ramsey number) R(m, q,n) such
that for any affine space of dimension R inside Af fr, there exists an affine subspace

of dimension n having all 1 colour.

There is also a corresponding version with Af fx replaced by P(F), projective

space over a finite field.

We now use this result to prove the following;

Theorem 14. If D is locally modular and G(D)' is projective geometry over a finite
field F of size q, then, for all n, there ezist (a; ... az) € D' such that cl(ay, ... ,a,) N
D' =g,

Proof. 'To see this, pick any point d € D'. Strong 2-reducibility, using the fact that D
is locally modular, implies that for any line [ from G(D)’ passing through d, I can find
d'# din D'Nl. Now let P(N) and P(N —1) be projective planes of dimension N and
N —1 passing through d. P(N)\ P(N —1) is then isomorphic to affine space Af f(N)
of dimension N, and on each line [ in Aff(N), I can find d' € D. Now consider
a projection m : Aff(N) — Aff(N — 1) onto an affine subspace of codimension
1. If I fix coordinates on the 1 dimensional fibre, there can be at most 27 possible

distinct ways of arranging elements from D', and I colour the base of the rojection
gg proj
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Aff(N — 1) according to these possibilities. Now if I pick N —1 > R(249,q,n), by
the above fact T am guaranteed to find a monochramatic subspace M of dimension n
inside Af f(N —1). Now, I have at least 1 point from D' on the fibres of 7 restricted
to M and the coordinates of IV’ are the same. It then trivially follows that I can find
a linear section o of 7 such that o(M) C D', and so D' contains an affine space of

dimension n.

[l

Remark 2. Considering Lemma 17, one might expect that in fact only 2 reducibility
of G(D) is needed to characterise local modularity of D. However, this is not the
case as we can see from considering the case of the generic predicate. Explicitly, let
D be a non-trivial locally modular Lstp over 0. As D is 1-based, it follows by [16]
that D admits elimination of 3%°. We can therefore add a predicate P to D satisfying
the azioms of Pillay/Chadzidakis given in [7]. Now the new structure (D, P) still
has SU-rank 1 and is non-trivial locally modular as algebraic closure for Tp and
Tip,p) coincide. Consider the reduct PDy={z€D: P(x)} Suppose that I is an
indescernible sequence in P(D), then clearly I is indiscernible in (D, P) and hence
is a Morley sequence over the first point inside (D, P). As independence 1s preserved
passing to the reduct P(D), I is still Morley over the first point inside P(D). By the
criterion in Lemma 13, P(D) must be 1- based. We want to show that P(D) has 2
reducibility. As P(D) a reduct of (D, P), we can freely consider elements of P(D)*
as living inside (D, P)4. By strong 2-reducibility of (D, P), if ¢ € G(P(D))), I can
find a pair a € P(D) and b ¢ D, with ¢ € acl(ab). As (D, P) is not trivial, I can
also suppose that ¢ ¢ acl(a) U acl(b). Now let (ef) realise tp(ab/c) with ef . ab.
Then if ¢ = Cb(Lstp(ab/ef)), as we saw above g is interalgebraic with ¢. Now
considering tp~(ab/ef) in the language without P, I still have that acl=(ef)Nab =
0. By compactness, and using the azioms for genericity, I can find (a'b') realising
tp~(ab/ef) such that (a'b') € D(P). Finally, 1f g = Cb(Lstp (d'V'/ef)), then clearly
g’ € dcl(g), so ¢} g and therefore g, g’ are interalgebraic. Hence, g € acl(a't’) and
s0 ¢ € acl(a't) as required. We also need to check that P(D) is not locally modular.

Let d € P(D) and pick elements arazazaq from D such that (ayaz) is parallel to
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(azas). Now consider the following formulae in the language of (D, P) saying that
tp~ (Y1y2y3y1) = tp (01020304), (V192y304) C P and aclp(dy1yz) N aclp (dysya) N P C
aclp(d). By compactness and using the genericity azioms, it follows easily that this is
in fact a partial type with respect to I(p,p)- Now taking realisations a;azazaq in P(D),
one easily checks that dimg(aaa/azay) = 1 but dimg(araz/clg(aiaz) N clg(azaq)) = 2
inside the localised pregeometry P(D)q. This contradicts the criteria for modularity

in Lemma 2.

So we have that

Theorem 15. If P(D} is a generic subset of a non trivial minimal Lstp type D,
then P(D) is 1-based, but not locally modular. If D is locally modular, then moreover
G(P(D)) is 2-reducible.

We now consider the question of reducibility for arbitrary 1-based D. We will

prove the following theorem;

Theorem 16. If D is a 1-based minimal Lstp and ¢ € G(D). Then,

1. ¢ has a reduction in D3

2. If (zy) s a fived independent pair from D, c € acl(z'y'z) with z',y',z € D and

tp(zy) = tp(z'y’).

3. Guwen fired d € D, there exists a a pair ef € D such that ¢ € acl(def).

4. There exists u € G(D) with u and ¢ interalgebraic such that u = a/E, where @

is a tuple from D® and E is a definable equivalence relation.

Proof. 1, we use induction on n, where ¢ € G(D) has a reduction in D" Suppose ¢ €

acl{a; ... ant1) with n > 3. We have SU(a,c/ay ... ap41) = 1, hence ,using linearity
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of G(D) and the assumption that ¢ ¢ acl(ar), if f = Cb(Lstp(aic/az. .. an41)),
then f € G(D) Nac(ay...an1) N acl(arc) and ¢ € acl(arf). By the induction
hypothesis, as f is captured by n elements in D, we can suppose that f is captured
by 3 elements in D, so we can assume that f € acl(azazas). We now find a “parallel
plane” passing through a; capturing f. We have that S U(fas/azas) = 1 and we may
assume that f ¢ acl{as) otherwise ¢ € acl(a,a4) and we are done. Therefore, again by
linearity of G(D), if g = Cb(Lstp(fas/azas) then g € acl(fas) Nacl(azas)NG(D) and
f € acl(gas). Now I may suppose that f ¢ acl(g) and g ¢ acl (az), otherwise again f
is captured by 2 elements from D. Let ¢’ be a congugate to g by an automorphism
sending a, to aj, then I can assume g and ¢’ realise the same Lstp and applying the
independence theorem I can find ¢” amalgamating tp(¢'/a1) and tp(g/f). Now let as
be the image of as by an automorphism taking (a2g) to (a19") and ag the image of a4
by an automorphism taking (fg) to (fg”). Then f € acl(ayasa6) and as ¢ € acl(a:f),
we have ¢ € acl{a;asag) as well. This proves 1.

O

Proof. 2, suppose ¢ € G(D), then we can find (a1aza3) € D? such that c € acl(ayaqas)
by 1. We may suppose that ¢ ¢ acl(aia2) U acl(aias) U acl(azas) otherwise the result
is trivial. Then, let f = Cb(Lstp(aic/azas)), so f € G(D) and (a1aza3f) are pairwise
independent. Now choose a; € D such that tp(aias) = tp(zy). Applying the indepen-
dence theorem, we can amalgamate tp(as/a;) and tp(as/f) and find asas such that
f € acl(asae) and tp(ayas) = tp(zy). Then ¢ € acl(a, f) and so ¢ € acl(a1asae) with
tp(aras) = tp(zy) as required.

The proof of 3 is implicit in the proof of 1

Proof. 4, let ¢ € G(D) and choose (a,aza3)) € D? with ¢ € acl(ajazas). Let (as0s06)
realise tp(aiazaz) with asasas de 01a2a3. Then letting u = Cb(Lstp(aqasas/ara203)),

we have that u is interalgebraic with c. Now suppose that an automorphism « fixes

34



(aazazaqasag). If we have that p = Lstp((asasag/aiasas), then clearly (agaszag)
amalgamates p and a(p), hence u is fixed. Therefore, u € del{a;a2a3a1a5a4). Clearly

this allows us to define an equivalence relation £ on D° such that u = @/ F as required.

O

Let us now examine the consequences of 4 when D is w-categorical. In this case,
there exists finitely many definable equivalence relations on D¢, Enumerate the equiv-
alence relations for which there exists ¢ € G(D) and a tuple @ € D® such that ¢ and
a/E are interalgebraic as elements of D*?. Let I'(D) denote the finite union of sorts
corresponding to these equivalence relations, so I'(D) is a definable subset of D®,
Clearly I'(D) is a union of rank 1 complete types over dom(D) so I'(D) C G(D).
Moreover, by 4, every element of G(D) is interalgebraic with an element from ['(D)
so the geometries of I'(D) and G(D) coincide. As we saw before, the geometry
I'(D)Y = G(DY is then definable as a subset of D®. If D is non-trivial, then closure
on G(D) is that of projective geometry over a finite field F', hence G(D) as a de-
finable object has a non-trivial strongly minimal stable reduct. Again by the group
configuration for stable theories, it follows that a vector space over a finite field F is

definable in D7 over a finite parameter.

The result can be summarised in the following theorem which was conjectured
by Vassiliev in [35] and also shown by Wagner and Tomasic in [34], using the group

configuration theorem for simple theories.

Theorem 17. If D is 1-based, w-categorical, non-trivial minimal Lstp, then the ge-
ometry G(D)' is definable over dom(D) and has a non-trivial strongly minimal stable
reduct preserving projective geometry over o finite field F'. Then over a finite param-

eter in DY, a vector space over a finite field F' is interpretable.
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Chapter 5

Non-Trivial Theories

In [35], Vassiliev also conjectures that in any non-trivial 1-based w-categorical theory
T', a vector space V over a finite field is interpretable. Using results so far proved, we

are able to show this.

Definition 8. We say that a theory T is trivial if for a,b,c, A C M*®1, if {a,b,c} is

pairuise independent over A, then {a,b,c} is independent over A,

We now aim to prove the following lemma

Lemma 18. If T is 1-based, then T is trivial if and only if all SU-rank 1 types are

trivial.

One direction is obvious, we will be concerned with showing right to left.

Proof. Suppose not, then there exist a, b, c and A such that a, b, c are pairwise indepen-
dent over A and a, b, ¢ are dependent over A. Letting d = Cb(Lstp(a/bc, A)),then, as
T 1—based, d € acl(a). Therefore, asa J 4 b, we have that d | 4 b and similarily, d | 4 c.
Moreover, as a [, , b, ¢, we must have that d ¢ acl(A). Let e = Cb(Lstp(b/caA)),
then again e € acl(b), so e |4 a and hence e |4 d. Similarily, e | 4 c. Finally, e Jacqs a

as @ Jacq b implies @ | 4.4 €, which gives us that e € acl(Acd) as ¢ € acl(Aac) by
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1-basedness. Let f = Cb(Lstp(c/abA)). Repeating the above arguments, we find
dye, f such that d € acl(efA), e € acl(dfA) and f € acl(deA). Moreover, d, e, f
are pairwise independent over A and d,e, f ¢ acl(A). For, notational convenience,

assume the above properties hold for our original a, b, ¢, and that A = §§

As a ¢ acl(D) there exists a set C such that SU(a/C) = 1. Replacing C by
d = Cb(Lstp(a/C)) gives SU(a/d) = 1 and d € acl(a) by 1-basedness. Now again
by 1—basedness, we have that bd Laci(bd)naci(cd) ¢d and so in particular b |p ¢ where
F = acl(bd) Nacl(cd). We must have that SU(a/F) = 1, otherwise a € acl(bd) which
is ridiculous as ad | b. We also must have that a | b, otherwise a € acl (bd) again.
Similarily, ¢ | r ¢. Finally, we have that SU(b/cF) < SU(a/cF) =1, asb € acl(acF).
Hence, as b |r c and b ¢ acl(F'), we have SU(b/F) = 1. Similarily, SU(c/F) = 1. So
we have found a, b, ¢, F such that SU(a/F) = SU(b/F) = SU(c¢/F) = 1, a,b, ¢ are

pairwise independent over F' and in the algebraic closure of the other two.

Now as ¢ |r b we can find d realising Lstp(c/bF) such that d |r abc. As
b € acl(Fac), by an automorphism we can find ¥ realising Lstp(a/F) such that b
and b’ are interalgebraic over Fd. As b | ¢ we can find e realising Lstp(b/ cF') such
that e |r abed. Again, as ¢ € acl(Fab), we find ¢ realising Lstp(a/F) such that ¢

and ¢ are interalgebraic over Fe. Moreover, we have that de | abe.

We now want to show that a,¥', ¢’ are pairwise independent over Fde. I will just
show that &' |p4 ¢/, the other cases follow similarily. We have & Jr ¢ and hence
b lrie ¢ as de Lp abc, so b’ lpge ¢ as b'c is interalgebraic with be over Fde. As
a € acl(Fbede), we must have that a € acl(Fb'c'de). So a,b', ¢ are algebraic with the

other two over Fde.

Now let f = Cb(stp(abl'c'/Fde)), so f € acl(ab'c) N acl(Fde) by 1-basedness.
As f € acl(Fde), we still have pairwise independence of a, ¥ ,¢ over F'f, and as

SU(ab'c'/Ff) = SU(ab'c’/Fde) = 2, we have still preserved the conditions above
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except now f is internal to Lstp(a/F). Choose a"b" realising Lstp(ab'/F f) such that
a"b" |p ab'c’f. Then we find ¢” realising Lstp(a/F) such that f & acl(a"b"c") and
f is interalgebraic with ¢’ over Fa"b’. We want to show that a, b, c are pairwise
independent over Fa"b"¢", again [ will just show that Y Lpauprer €. As b gy ¢ and
a"b" Lp b f, we have b |p @b f and so V' [p a"b'c"c f which gives b Lparyrer c.

Finally SU(ab'c'/Fa"b"c") = 2 iff SU(ab'd /Fa/"b" f) = 2 which is clearly the case.

So if we denote the triple a”b"¢" by I C Lstp(a/F), we have that a, b, ¢’ realising
Lstp(a/F) are pairwise independent and dependent over F'I. This means precisely
that the localisation of Lstp(a/F') to FI is non trivial as a pregeometry which implies
that Lstp(a/F) is non trivial as pregeometry.

(|

As is well known, if T is simple and w-categorical then T has finite SU-rank.

Lemma 25 and Theorem 24 in the last section combine to give the following theorem;

Theorem 19. If T is a non-trivial, 1-based, w-categorical simple theory, then an
infinite dimensional vector space over a finite field is definable in M® gver a finite

parameter.

38



Chapter 6

Extension to Regular types

We would like to generalise some of the previous results to the case of regular types.
We first need to generalise some of the basic notions around regularity to simple the-
ories. As always we assume that T is supersimple and so has e.h.i. Let 71 and py be
2 Lstps over possibly different sets. We say that p, is hereditarily orthogonal to p,
if every extension of p, is orthogonal to p;. We now fix a regular complete Lstp p
over a domain A, and set pg to be the localisation of p at # > 4 and D to be the
solution set of p. We say that a Lstp q over a domain B is p-simple if there exists F
with AU B C F and sets I, C pg for each nonforking extension q, of ¢ over F such
that the extensions of ¢, to FI, are all hereditarily orthogonal to the non forking

extensions of p to FI,

It seems plausible that one can choose I to be a single set, independently of «,
or at least that if such F,I, exist then we can rechoose I, such that dim(l,), in
the sense of the localised pregeometry pg, is independent of o In this case, we can
define wy(q) = min{x: there is F' > AU B and I depending on F as above such that
dim(I) =  in pp}. If T is supersimple, then w, is always finite. We assume the
following properties of w, which can be found in [30]. As w, is always defined relative

to A we assume that all our sets contain A

1. Additivity: If Lstp(a/B) and Lstp(b/B) are p-simple, then so is Lstp(ab/B)
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and wy(ab/B) = wy(a/Bb) + w,(b/B).

2. Extension: w, is invariant under non forking extension, and if Lstp(a/B) is

p-simple and B  C then Lstp(a/C) is p-simple and wy(a/C) < wp(a/B)

3. Algebraicity: If Lstp(a/B) is p simple and b € acl(aB) then Lstp(b/B) is
p-simple and w,{(b/B) < wy{a/B)

4. Finite Character: If Lstp(a/B) is p-simple and B C C' then there exists a finite
¢ C C such that w,(a/C) = w,(a/BE)

By a Morley sequence argument and using 3, we have that if Lstp(a/B) is p-
simple, B C C and ¢ = Cb(Lstp(a/C)), then Lstp(c/B) is also p-simple.

Now we want to define a suitable notion notion of linearity for D. TFor this we
require one more notion. We say that Lstp(a/B) is p-semi regular if for every B C C,

wy(a/B) = wy(a/C) iff a | C. The fundamental result on p semi-regular types is

the following in [30], which I assume generalises to simple theories;

Lemma 20. Suppose Lstp(a/B) is p-simple and wy(a/B) = n.

Let B9 = {b € acl(aB) : w,(b/B) = 0}, so B C B, then Lstp(a/B"*%) is

p-semi regular and wy(a/B™) =n

Definition 9. We will say that D is linear if the following holds;

Ifab is a pair in D and B D A with Lstp(ab/B) semi-regular and p-weight 1, then
wy(c/A) < 1 where ¢ = Cb(Lstp(ab/B)).
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We also introduce the following 2 objects.

Definition 10. G(D) = {c: Lstp(c/A) is p-simple of p-weight 1}

and

G(D)erse = {c : Lstp(c/A) is p-simple of finite p-weight}

The closure operator cl, on G(D)"%* is given by cl,(B) = {c € G(D) : w,(c/A U

B) = 0 and we have a corresponding operator by restriction to G(D).

We have the following desirable properties for cly.

1. cl, is transitive for G(D) and G(D)'erse,

For suppose that @ € cl,(b) and b € cl,,() then w,(abé/A) = w,(c/A) by additivity
and wy(bac/A) = wy(ae/A) = wy(a/EA) + wy(e/A), s0 @ € cl, ().

2. clp is finite for G(D) and G(D)'9e,

For suppose B C G(D)"*%°or G(D) and @ € cl,(B) then ,by property 4 of Wy,
there is a finite & C acl(B) such that @ € cly(b). By transitivity of clp and the fact

that algebraic types have p-weight 0, we can assume that b € B.

3. cl, satisfies exchange on G(D).

For suppose that a € cl,(Bc)\ cl,(B). Replacing B by B9, and using transitivity
of p-closure we may assume that w,(a/B"™) = 1 and Lstp(c/B"*9) is p-semi regular.

Then, as w,(a/B"*c) = 0, by the extension property we must have that ¢ 4 grey @ and
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so as ¢ € G(D) then wy,(c/B™%) = 0, that is ¢ € cl,(B"¥a) and then by transitivity
¢ € cly(Ba).

The above shows that in fact G(D) forms a pregeometry under p-closure, but of

course exchange fails in general for G(D)"9°.

We will say that G(D) is linear if (ab) is a pair from G(D) and B C G(D)
such that Lstp(ab/B) is p-semi regular with w,(ab/B) = 1, then wp(c) < 1 where
¢ = Cb(Lstp(ab/B)).

We now aim to prove the following lemma;

Lemma 21. If D is linear then G(D) is linear.

Proof. We will proceed by following the steps for the finite rank case. For ease of
notation assume that acl(A) = 0. Now let (ab) be a pair from G(D) with w,(ab) =2,
the case for wy(ab) = 1 is easier, and suppose that B C G (D) with wp(ab/B) = 1.
Then by definition of w, we can find a set F' as above such that every non forking
extension of Lstp(ab) to F can be reduced in pr. We may choose F such that F' | ab
and by automorphism we can find cd in pr such that wy(ab/ Fed) = 0. By definition
of weight wy(cd/F) = 2 Repeating this argument we can rechoose F' with F' |4 B,
so F' | abB, and by automorphism find cd as above with the same properties. As
F | ab, and w, is invariant under nonforking extension we have wy(ab/F') = 2. Then

by additivity of p-weight we must have wj,(cd/ abF) = 0 as well.

Claim 1: wy(cd/FB) = 1.

As wy(ab/B) = 1, F |p ab and wy is invariant under non forking extension then

wy(ab/FB) = 1. Then
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wy(abed/F B) = wy(ab/cdF B) + wy(ed/FB) = wy(cd/FB) =

wp(cd/abF B) + w,(ab/FB)=0+1=1

giving the claim.

Letting F'B7*9 = {b € acl(cdFB) : w,(b/FB) = 0}

By the above, Lstp(cd/F B"*9) is p-semi regular with weight 1 and by linearity of
D, wy(C) <1 where C' = Cb(Lstp(cd/FB9)). Then

Claim 2: wy(cd/cl,(ed) Nacl(FB™9)) =1

We have that cd |¢ FB, hence wy(cd/C) = 1. Then by additivity and linear-
ity of D we calculate w,(Cfcd) = wy(C) —1 = 0. Therefore C € cly(cd) and as
C € cly(cd) Nacl(FB™9) and cly(cd) N acl(FB™9) C acl(FB"™9) the claim is shown.

Claim 3: wy(ab/W) = 1, where W = cl,(Fab) N acl{F B"9)

We clearly still have that wy(cd/cly(Fed) Nacl(FB™)) = 1. As F C cl,(Fed),
using additivity, w,(ab/cly(Fed) N acl{FB™9)) = 1. By transitivity of p-closure we
must have that cl,(Fed) = cl,(Fab), hence w,(ab/W) = 1 as required.

Now let C" = Cb(Lstp(ab/B)). Then

Claim 4: w,(ab/WC") =1

If not, then as C' € acl(B), ab € cl,(FBT™). Again by transitivity of p closure and

the definition of B¢ we must have ab € cl,(FB). Then as ab |g F, ab € cl,(B),
contradicting the fact w,(ab/B) = 1 and giving the claim.

43



Now ab Lo B so still w,(ab/C') = 1 and moreover Lstp(ab/C') is still semi-
regular. Then by definition of p-semi regularity we must have that ab | W and so
C' € acl(W) Then C' € el,(Fab) and as C' |4 F, we must have C' € cly(ab). Now

by a simple weight calculation we have that wy(C’) = 1 as required

O

Even though G(D)"% is not a pregeometry it still makes sense to talk of the
dimension of a closed set. Given X, Y C G(D)""% closed we define

dim(X/Y) = maz{w,(a/Y) :a € X}

Definition 11. We will say that G(D)"9¢ is modular if the following holds ;

For finite dimensional closed X,Y C G(D)"9% dim(X/Y) = dim(X/X NY).

We first aim to prove the following lemma;

Lemma 22. If G(D) is linear then G(D) is modular.

Proof. As G(D) forms a pregeometry, it is sufficient to check the criterion (x) in
Lemma 2. So choose 717y with w,(z122) = 2 and Y closed such that wp{Z122/Y) = 1.
By finiteness, we can find § C Y such that w,(z122/7) = 1 and cl,(§) = Y. Replacing
§ by 77 we can even assume that Lstp(z122/¢) is p semi regular. By linearity of
G(D), we have that ¢ = Cb{(Lstp(z122/7)) € clp(z122) Nelp(F). As wy(c) = 1, then
in fact ¢ € G(D) as required. O

The 2 lemmas combine to give the following theorem.
Theorem 23. If D is linear then G(D) is modular.

We now aim to prove the following;
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Theorem 24. If D is linear then G(D)" is modular

Here the problem is made more difficuly by the fact that G(D) is not a pregeom-
etry.

Proof. We first reduce the problem to a finite one, as in in general cl,(X) will be
a very large set! Suppose G(D)"% is not modular, then there exists closed sets X
and Y such that dim(X/Y) < dim(X/X NY). Taking Z € X so that w,(z/Y) is
maximal, by definition we have that w,(2/X NY) < w,(z/Y). By finiteness, I can
find e C XNY and § C Y such that wy(Z/€) < w,(Z/§) and moreover as weight
1s preserved on both sides I can take ¢ and 7 such cl,(¢c) = X NY and cly(5) = V.

Therefore, it is sufficient to prove that

wp(Z/§) = wp(Z/€) where clp(€) = clp(Z) N clp(f) (*)
We show (x) by induction on w,(Z/y) for Z and § finite tuples from G(D)l"se.
Base Case. w,(z/y) = 1.

Suppose w,(Z) = n, then I can find F | 7 and z; ...z, € pr such that # and
Z1 ...z, are weight equivalent over F'. As before, one checks that wp(2z1 ... 2,/Fg) = 1.
Without loss of generality, we can assume that w,(z;/Fg) = 1 for each 1. Now adding
parameters e, ...e, C cl;(0) we may assume that Lstp(z;/e; .. .€n) 18 semi regular
for all ¢ and all the conditions are preseved with Fe; .. .e, replacing F'y. We must
have that wy(212:/Fge;...e,) = 1 for all 4, hence by linearity of D, we can find
¢; € G(D) for i > 2 with cly(c;) = ely(z12;) Nelp(Fyey ... ey). Clearly, e, C cly(c;), so
without loss of generality e; C ¢;. Now w,(c;/22;) = 0 and wp(ci/z1) = 1, otherwise
21 L, ciand 21 C clp(FYy). Hence z J’sz Ci- As wp(z/e;21) = 1 and Lstp(z;/e,z)
is semi regular we have that wy(z;/21¢;) = 050 2 C clp(z1¢;). We want to show
that wp(cz...¢,) = n — 1 from which, taking ¢ = Cy...Cy, we clearly have that

Wp(21 ... 2n/C) = wy(z1 ... 2n/Fy) and clp(€) = clp(zy ... 2,) N clp(Fy). Suppose not,
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say ¢, C clp(ca...cq1), then as z, C clp(z16a) and ¢a...ca1 C clplz1. . 2n-1),
we have that z, C cl,(z1...2,-1) contradicting the fact that z; ...z, are inde-
pendent realisations of pp. Now it follows that we can find a tuple ¢ such that
wy(21 -+ 2nf€) = wp(21 ... 20/ FT) and clp(T') = clp(Fz1 .. . zn)Nelp(Fy). By the usual
arguments we have that w,(Z/¢) = 1 and cly(¢') = clp(FZ) N clp(Fy). Finally, we
can assume that Lstp(Z/7) is semi regular and one checks that w,(Z/¢C) = 1, where
C € G(D)erse is Cb(Lstp(3/§)). As in the previous lemma, this forces C' € clp(Z)

and then C € ¢l,(Z), which gives the result.
Induction Step.

We now inductively assume the result for Z and y with w,(Z/§) = m and suppose
that w,(Z/§) = m + 1. Now again we can find F' | Zj and z,...2, € pr such that
21 ... 2y is weight equivalent to Z over F. Then still w,(Z/Fy) = m + 1 and we may
assume z; ¢ cl,(Fg) for some 4, otherwise Z € ¢l,(F'g) which is not the case. Using the
fact that w,(2z1/F§) = 1 say, then by a weight calculation we have that wy(Z/ 21 Fg) =
m. We now temporarily add F to the language, and take p-closure to include F.
Then, working in G(D)™%°, we have that wy(Z/§) = m + 1 and w,(Z/z19) = m.
Applying the induction hypothesis to G (D)%%, we can find ¢ in G(D)%" such that
clp(c) = clp(z) Nely(z1F). Then wp(cz1/y) = 1 as ¢ € cly(z1y) and z1 ¢ clp(y).
Therefore we can find d € G(D)% such that cl,(d) = clp(cz1) Nelp(F) and moreover
wy(d) = wy(ez) —1 = wylc) — 1 = wy() —m—1. As cly(cz) Nelp(y) = cl(Z) Nely (),
this tells us exactly that wy(Z/F7) = wy(Z/d) where clp(Fd) = clpy(Fz) N clp(F).
Now letting C" = Ch(Lstp(Z /) and assuming as usual that Lstp(z/7) is semi regular,
we have that w,(Z/FdC") = m otherwise as C' € acl(g) then w,(Z/Fy) < m which
is not the case. Hence, by semi regularity we have that C' € cl,(Fz) and then as
F |z C", C" € cl,(Z). This proves the result.

(I

So we have,
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Theorem 25. If D is linear then G(D) and G(D)""%¢ are both modular.

Naturally one would also expect further generalisations from [9] to the case of

regular types. Namely, one conjectures the 2 following propositions

1. If G(D) or G(D)%¢¢ is modular then D is linear

We will say that ¢ € G(D) has a reduction in D* if there exists a tuple (a;...q;) €
DF such that c € cl,(ay . .. ar). Then;

2. If G(D) is modular, every element in G(D) has a reduction in D3
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Chapter 7

Non-Finite Axiomatisability

In this section we give some results towards the conjectured non-finite axiomatisabil-

ity of a complete, 1-based, w-categorical simple theory T'.

{
The proof of the above when M |= T is itself the solution set of a minimal trivial

Lstp p is given in [10]

Working in a saturated M | T, we will for convenience assume that M is the
solution set of a complete type, though this is not essential. We must have that M

has finite SU rank n.

Definition 12. We call a finite tuple a, . ..am € M ascending if SU(a;) > 1 and

SU(aiy1/ai...a1) > 1 for1 <i<m—1.

As is easily checked, any tuple &, after reordering, may be written in the form

4@, with @, ascending and a, algebraic over d,.

Let A/ C M. be a substructure
Definition 13. We say that N is k-generic if
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1. N is algebraically closed

9 For all ascending tuples & € N with SU(a) < k, every type p € SY(a) 1s realised
in N

First we show that condition 2. is first order definable by a sentence Geng.

Proof. An ascending tuple aj . ..am has SU _rank at least m, and hence ascending
tuples @ with SU(@) < k have length at most k. Enumerate the finite number of
types p1,--- » Py realised by ascending tuples @ with SU(a) < k, and for each p; let
pg for 1 < j < r; enumerate the possible extensions to a type of length(p;) +1. Then

Geng, will be the sentence;

Geng, = YG(Vicicn PilT) = /\151’9@-393?3 (z,9))
O

Secondly, we show that if o is a sentence in T with quantifier length m and N is
an nm + N(m) generic substructure of M with N(m) a constant depending on m t0

be determined then A satisfies o.

Proof. For this it is sufficient to find N(m) such that if ay ...ag is a tuple in N with
k < m then all 1-types over aj...a; ar€ realised in N. Reorder ay ...a; 80 it 13 of
the form @,d with @ ascending and a, algebraic over @;. As length(a;) < k < m,
SU(@,) < nm. Consider the number of congugates of @z over a; and choose N (m)
larger than any number which could appear here. By the technique in [10], any 1-type
over a . ..ax can be realised inside N.

0

We now have the following lemma.

Lemma 26. Suppose that for any k, we can findl withl >> k and N' C M k-generic

but not l-generic, then T cannot be finitely aziomatisable.
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Proof. Suppose for contradiction that o = T'. If o has quantifier length m, then taking
k = nm + N(m), any k-generic structure A will satisfy ¢ and therefore N |= T
However, clearly the sentence Gen; € T for any ! and in particular for such [ >> k

as given in the hypothesis of the lemma.

g

By the lemma, we just need to find a way of building such structures N inside M.

In order to do this, we first need the following coordinatisation lemma

Lemma 27. For any a € M we can find a set of coordinates e; .. .e,—1 C M™ with

SU(afer...enc1)=1,€1...6n1 C del(a) and SU(eiy1/e1...6:) = 1.

Proof. Let a € M with SU(a/@) = n. By definition of SU rank we can find an
extension ¢ O p = Lstp(a) over A C M such that SU(q) = n — 1, that is SU(a/A) =
n — 1. We may take A to be a model of T and hence assume that ¢ is still a Lstp.
Let e; = Cb(Lstp(a/A)), then e; € acl{a)NA by 1—basedness and SU(a/er) =n—1.
By straightforward rank calculation SU(a/e1) + SU(er) = SU(ei/a) + SU(a), so
SU(e;) =0 +n— (n—1) =1, and realises a minimal type in M. Replacing e, by
its conjugates over @ we may even assume that e, € dcl (a). Now we fix the type p; of
e, and repeat the argument for tp(a/e;). Again we find e, such that SU(ez/e1) = 1,
SU(aj/eies) = n— 2 and ey € del(a). Continuing in this way, we find ey, ...en1
such that SU(a/e1...en—1) = 1, SU(eir1/eie; 1. .ep)=1forl1 <i<n-—2and
ey ...eq1 € del(a).

U

We now fix the minimal types p; = tp(ei/e;—1...€1) for 1 <i <n—1. We have a
canonical choice of coordinates € ...¢/,_, for any a’ € M, namely take the image of
€y...en—1 under an automorphism taking a to a'. This is well defined as e; ...e,_;

was assumed to be in dcl(a).

 We say that a theory T is unidimensional if in M any 2 Lstps are non orthogonal.
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We now split the proof into 2 cases;

Case 1. T is trivial and unidimensional ;

Proof. Let p; be the type of SU-rank las found above. After replacing p; by some
extension over acl(()) we may suppose that p, is Lstp. Now I claim that every
a € M is interalgebraic with a tuple a; ...a, realising p,. We work with the ele-
ments ey,...e,_1 above. As SU(ey/e1) =1, and Lstp(ey/e;) is non orthogonal to a
non forking extension p, ., of p; to e;, we can find a parameter ¢, €5 = P1er, €5 le, €
and e; |= tp(ey/e1), €5 le, € such that e} € acl,, (Ge,). By triviality, we must have in
fact that €3 € acle, (e5). By automorphism we may freely suppose thet e, € acl,, (eh).
Then the pair eje; realises p; and we still have that SU(a/eje}) = n — 2. Repeat-
ing the process, we can replace the e;...e,_; with eje, .. .e,_qrealising p; such that
SU(a/e1...e,_;) = 1. Finally using the fact that the minimal type tp(a/e; . . e 1)
is non orthogonal to p; gives a tuple e; ...e], in p; interalgebraic with a as required.
As T is trivial, the pregeometry of p, is trivial. Replace p; by its geometry Py in pie,
so again p) is trivial and a Lstp. Clearly, every element a is then interalgebraic with

elements a .. .a,, realising p

Now by results in [10] we can build C a k + M-generic but not [-generic structure
for I >> k + M inside p;. We consider the set ' C M given by acl(C) N M and
proceed to show that for M to be determined A is k-generic but not m-generic for
m >> k. This is almost exactly as in the proof from [10]. So let 2 € A be an
ascending tuple with SU(a) < k. Then there exists a corresponding tuple @ inside P}
such that @ and @' are interalgebraic. As C is algebraically closed, we must have that
a € C. Let a,...a, with a; = @ be the conjugates of @ over @’. As our construction
can be carried out uniformly for ascending tuples of bounded rank k, we have a bound
for t(k) for s independent of the particular tuple @ and we need to choose M > t(k)n.
Let p € S'(@) be a 1-type which we want to realise in N'. As AV is algebraically closed,

we can assume that SU(p) > 1. Then if b is a realisation of p in M, we can find
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by = b, by, ...b, independent over @ such that tp(aba') = tp(abia’) for 1 <4 < s.
Replace the b; by interalgebraic tuples b} in p; and using k + t(k)n genericity, we can
find 87 ...b7 .../ = b" € C such that tp(b" /@) = tp(b'/a’). Finally, we can find ¢ € N
such that tp(eb’a’) = tp(bb'@’) as N is algebraically closed and b, b are interalgebraic.
We must then pick up some ¢; such that tp(c;a) = tp(ba). This shows that N is
k-generic. As C is algebraically closed and using unidimensionality, for any ascending
& C C with SU(€) <l we can find d C NV interalgebraic with an ascending ¢’ > ¢in C
and SU(d) < nl. Letting ¢'(I) be a uniform bound on the conjugates of such d over @,

by the same argument one shows that if A" is nl + nt'(l) generic then C is [—generic.

Setting m = nl + nt'(l) gives the following theorem. O

Theorem 28. If T is a trivial unidimensional 1-based w-categorical simple theory,

then T s not finitely aziomatisable.

Case 2. T is Non-Trivial, Unidimensional with a Stably Embedded Minimal Type.

Proof We assume that we can show non-finite axiomatisability for minimal modular

types with the amalgamation property. (*)

. Let T be a non-trivial w-categorical 1-based simple theory. By Lemma 25, and
unidimensionality ,we can find a non-trivial minimal Lstp p defined over 0 inside M.
Working inside p*? and using w-categoricity we can even find a modular non triv-
ial partial type p’, and we can assume the solution set of p' forms a geometry. We
cannot immediately conclude that p' has the amalgamation property, that is there
exists non-trivial bounded equivalence relations on the completions of p'. However,
we have that each completion p! is 6-reducible from a fixed complete type ¢; C p°.
Any bounded equivalence relation on p; induces a bounded equivalence relation on
q;, and by w-categoricity there can only be finitely many such distinct equivalence
relations. Hence, we can decompose each p} into a union of finitely many Lstps, and
so p’ decomposes into a finite union of Lstps as well. By hypothesis we can find a

stably embedded minimal type ¢ and easily the modular partial type ¢ O g must be
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stably embedded as well. Now using unidimensionality and modularity arguments,

we may also assume that p’ is stably embedded.

By hypothesis, we can construct C C p’ which is k-generic but not [-generic for
| >> k. Let N C M® be maximal with the property that acl®*(N)Nnp' C C, by
Zorn’s Lemma such a A exists. We claim that for a constant n(k) to be determined,
if C'is n(k)-generic then A restricted to M is k-generic. So let @ be an ascending
tuple in A of rank < k and ¢q € §'(a). As N is algebraically closed, we can suppose
that ¢ is not algebraic. Let b realise ¢ so SU(b/a) > 1. I claim that if all ¢ of rank 1
over ascending tuples of rank < k+mn —1 are realised then all g over ascending tuples
of rank < k are realised in V. Let ¢ be such realised by b in M, so SU(b/a) < n. As-
sume SU(b/@) = 2, then we can find e; such that SU(b/de;) =1 and SU(ey/a) =1,
note that e; needn’t live inside M. By assumption we may assume that e; € N,
after automorphism fixing @. Then @e; has SU-rank < k + 1, hence we can realise
tp(b/de,) inside N. In general if SU(b/a) = n, repeating this process m times, I
find eje, ... e, such that SU(b/en ...e1a) =n — m and SU(en/em—1-..€1a)=1. As
SU(em—1---€16 = SU(a) + m — 1, so I can suppose that e,, € A. Finally, I find
b € N realising tp(b/ey—1 ... e1a) as SU(em—i ... €1a) < k+(n—1), and in particular
b realises tp(/a). So I need only prove the result for SU-rank 1 types over ascending

tuples of rank < n + k.

So suppose SU(g) = 1 and is defined over an ascending tuple @ in A'. Then
as there are only finitely many 2 types over @, there can only be finitely many dis-
tinct finite equivalence relations on ¢, so after adding a finite parameter @’ to a with
a' C acl(a), we can decompose ¢ into Lstps. As N is algebraically closed, we can
suppose that @ subset A. Let m be the bound on the number of distinct 2 types
over ascending tuples of rank < n 4k, and s the bound on the number of conjugates
of such tuples then if A/ realises all minimal Lstps over tuples of the form @@, with
a; ascending and of rank < n + k and a; having < s conjugates over @, then clearly

it must realise all minimal types of rank < n + k and we have an explicit bound s on
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the number of conjugates.

So let ¢ be a minimal Lstp over an ascending tuple a. By unidimensionality the
geometry of ¢ is non trivial, and ¢ embeds into a modular partial type ¢', ¢’ may
also be defined over the parameters for . Now let b realise q If b € NV then we are
done. Otherwise, by definition of the envelope, we can find # € NV, and ¢ € p’ such
that ¢ € acl(bn) \ acl(ii). As N is algebraically closed, we may suppose that ¢ and
b are interalgebraic over an. By 1-basedness or modularity of ¢’, we can reduce the
parameter 7. Namely, let f = Cb(Lstp(ab/an)), then still we have interalgebraicity
of ¢,b over fa and we can assume that SU(f/a) = 1. (By arguments using non
orthogonality of modular types, it is in fact possible to remove f altogether, but in
this case b may no longer realise ¢ only ¢’.) So we need to find a realisation p' inside
C having the same type as ¢ over fd and we are done. Note that we can bound the
dimension of fa but we cannot assume that fa lies inside p’. As p' is stably embedded,
it is sufficient to find a realisation inside C of tp(c/acl(fa) Np'). As acl(fa) C C and
we can bound the rank of fa, we have this by suflicient genericity of C. Finally, we
need to show that A is not I-generic for { >> k. As the envelope N covers C, that is

C = acl®(N)Np', we can use similar arguments to the above.
2, g

Summarisng we have;

Theorem 29. Under the assumption (%), if T' is a non-trivial, unidimensional 1-
based w-categorical simple theory with a stably embedded minimal type, then T is not

finitely aziomatisable.
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Chapter 8

Differentials in Algebraic

Geometry

In this section, we collect some basic results in algebraic geometry needed for sections

10,11,12 and 15. The main references are [19],[15] and [28].

We begin with the “naive” definition of the tangent space to an affine variety

X C A" Geometrically, the tangent space Tang(X) consists of
{t € A df,(v) =0: f € I(X)}
where the differential df,; at x € X is given by
df,(7) = B3L (z)v;

An element of the Zariski tangent space Tang x can then be reconsidered as
a derivation of the germs of functions at that point under a map §. Namely, if
v € Tang x, then év.g = dg,(v), for g € k[z], and by definition this descends to a
derivation of the quotient ring R(X). Using the chain rule, this extends uniquely to
a derivation of the local ring O, x. In fact, letting m, be the maximal ideal of germs

vanishing at z, and m? the ideal of germs “vanishing to second order” the differential
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map d dualising ¢ is in fact an isomorphism from the vector space T8 to T'ang y;
s — Tang
d(f +m2)(9) = dfz(v)

As d is a derivation, one sees easily that this is well defined, and the rest is a

straightforward algebraic check.

When we pass to arbitrary varieties X by patching together affine varieties, we
keep track of our local rings by introducing a structure streaf Ox on X, and so we
can make sense of the tangent space at a point purely algebraically. However, we do
not lose track of what is going on geometrically as we have the following result for

affine varieties;

If X and Y are irreducible affine varieties with function rings R(X) and R(Y),
then a ring map f* : R(Y) — R(X) determines a unique morphism f : X — Y in the
Zariski toplogy and maps f* : Oy(U) — Ox(f~*(U)), and conversely a morphism in
the Zariski topology determines a unique ring map R(Y) — R(X).

Now suppose we have a set of affine varieties U; and glueing morphisms f;; from
U;; to Uj;, which are compatible in the sense that f;;f;x = fir as maps in the Zariski
topology from U,; N Uj, to Ug; NUk;. We obtain X as a topological space from the f;
using the quotient and disjoint union topolgies and take as our structure sheaf Ox (U)
on an open set U to consist of functions g; € Oy, (UNU;) which are compatible in the
sense that f(g;) = gi. On each U; we still preserve our original affine sheaf, as given
a function g; in Oy, (U), we obtain a bunch of functions f};¢; which are automatically
compatible by the uniqueness result above, so passing to the germ at a point z € X
is equivalent to taking the corresponding local ring in any affine variety U; containing

its representative z;. The maps
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f:y : O.’I?j,UJ' - Oli,Ui

identifying these local rings, then induce isomorphisms

o
dfy; : Det oy Do
) m g m_g !

and on the level of affine varieties we recover our original “chart definition” of a

tangent vector as
dfi;(60.9) = 60(f};9) = dgs, (dfi;0)(chainrule) = &(df;;7).g
so the tangent space is just a collection of vectors @; in T ang y; with dfy;v; = v;.
When we pass to schemes, we lose this geometric picture as our structure sheaves

may not be reduced and therefore each tangent space may be “fatter” than the un-

derlying geometric object, however there is still some geometric sense in this notion

as we will see.

For an arbitrary scheme, our geometric intuition is recovered primarily through a

generalised notion of vector bundle and base change.
Suppose that we have ring maps
ff:C—4
g:C— B

making A and B into C-modules, then we can form the tensor product 4 ®¢ B,

which is still naturally a C'— module, and carries a natural ring structure, giving the
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commutative diagram,

C—*>A

e

B -2, AguB

which ,passing to schemes, becomes

Spec(A®c B) 2+ Spec(A)

o

Spec(B)  —2— Spec(C)

The tensor product has the universal property that if we are given ring maps
wiA—=D

7 :B—=D

such that A*f* = 7g*, then we have a unique extension

(h,j)*:A®cB—> D

Ta; ® by — Lhia;)7(b:)

giving the commuting diagram
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Spec(D)

l(h,j)
Spec(A ®¢ B) £ Spec(A)
J'PTZ lf

Spec(B)  —2— Spec(C)

Using this universal property, it is a relatively straightforward matter to prove
that given schemes X and Y over Z, that the fibre product X xz Y exists uniquely

as a scheme over 7, to give the following diagram for arbitrary schemes

Xx, ¥ 2Ly x

SR

y -2,z

The scheme X x; Y considered as a scheme over Y is usually referred to as the
base change of X from Z to Y. The intuition behind the construction is that the
fibres of X over Z are pulled back to a set of fibres over Y using the map g, while
retaining both the algebraic structure of the ambient scheme as well as branching
properties of the map (see Section 10). To see this more clearly, consider the case
of a curve C; in A? cut out by irreducible polynomial f (zy) and the non-reduced
scheme consisting of C'y with multiplicity n, that is Spec(if@;—yl). The projection map
of C; onto A'! is the canonical map S pec(%) — Spec(A[z]), and topologically the

fibre over a point o just consists of the finite set of points {y : f(a,y) = 0, however

applying base change gives us the scheme

Spec(k ®aja) ) = Spec(Alz]/(z — o) ® ap 224) = Spec(7iag)
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which not only consists of the right points («,y) over a, but also counts them

with the correct multiplicity n.mults(a,y).

Our other main tool in understanding schemes geometrically is the use of vector
bundles. Recall that a coherent module F' on a scheme X is just an Ox module with
an open covering by affines U; such that F|U; 2 M for M a finitely generated Ox (U;)

module. Again, we can carry out the base change construction for modules as follows.

Suppose that Spec(B) and Spec(C) are affine schemes with ¢g* : €' — B, and M
is a coherent module on Spec(C), so M is just an Oc-module. Then we can form the
tensor product B®¢ M to give an Og-module, which corresponds to pulling back the

module over Spee(B);

BeocM ¥ M

! l

Spec(B) —L— Spec(C)

Again this construction is easy to globalise for arbitrary schemes Y, Z and g :
'Y — Z. Formally, we define the pullpack of a coherent module F' on Y to be the

sheafification of
g°F =0z @410y g 'F

where g~ F(U) = lim_, yancv (V). This allows us to define a map locally, on
affine sets Spec(B) mapping into affines Spec(C), from B&c M to g*F|Spec(B), and
it is straightforward to see on the stalks that this is an isomorphism, the stalk just
being the base change of I to the corresponding local ring; O,z ®o,,,, , I, 50 We can

get an isomorphism on any affine in Z.
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One important case of this construction is when we take the field k(y) associated
to a point y € Y. This gives a map Spec(k(y)) — Y and the base change of F' over
k(y) given by k(y) ®o, , F is then just a vector space over k(y) corresponding to the
fibre of the module at y.

A locally free module £ is a coherent module with the additional property that,over
any affine, M is freely generated by fi,... f,. At least working over k, a locally free
module of rank n corresponds exactly to a vector bundle of dimension n. In order
to see this, use the fact that over a set of affines U; for Y, we have, by definition,
trivialising sections for F|U;. On the intersections U;, these determine an invertible
Oy module map from Oy (U;)" to itself which is just given by an invertible n x n
matrix M;; with coeflicients in Oy(U;). On triple overlaps Ujjx, we must have that
M;; M, = M, which is exactly the patching data required to define a vector bundle
on Y; in the case of algebraic varieties over k, the M,; determine the glueing mor-

phisms between U; x, A™ and U; x; A™.

We now want to use the machinery above to develop a notion of tangent spaces
for arbitrary schemes. This is done using the sheaf of differentials. For arbitrary
rings S C R, we can form the R—module Qg/s, as the free module generated by the

elements {dr : r € R} quotiented by the following relations
d(ryre) = ridry + radry
d(ry +r2) = dry + drs
ds=0:5€ 8 (%)

If we are given a morphism f : X — Y between arbitrary schemes, then on the

level of affines U; € X with f(U;) C U; C Y, we have a map f* : R(U;) — R(U;)
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which allows us to form the local modules QR(Ui)/R(Uj) on X and we want to patch
this modules together to get the sheaf of relative differentials Q) x/v on X.

In the special case of algebraic varieties Y over k, this is easy to globalise, namely
we can take the function field k(Y") of ¥ and form the module of meromorphic dif-
ferentials on Y given by Q%(vy/5- At the level of local rings, Qoy,y /E sconsisting of
meromorphic differentials without poles at Y, is then just an O,y submodule of

Q)5 We can then define
Qy(U) = NyevQo, 4 /2
which clearly gives and Oy module on Y. The dual of this module
v/ = Hom(Qyz, Oy)

can then be interpreted as the sheaf of meromorphic vector fields on Y and Qj-;(y) 7k

is then Derp(k(Y")), the derivations of k(Y) over k.

Alternatively, we can use the patching interpretation of varieties given above and

observe that the f;; allow us to identify Qy,/5(Us;) and Qu x(Us) via;
fid9 = d(f59) .9 € Oy, (Uys)

For arbitrary schemes X and Y, there is a remarkable map which allows us to

globalise the construction (*). Namely the map
QR/S - R ®g R
dr—=r@l—-1&r ()

gives an isomorphism between Qlp/s and J/ J? where J is the kernel of the canon-
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ical map

f:R®sR— R

f : Egi ® hi —r Egz'hi (***)

Geometrically, if X is a closed subscheme of Y with ideal sheaf given by .J, then
J/J? has the natural structure of an Ox-module, as locally over an affine U; C X,
Ox(Ui) = Oy(U;)/J(Ui). By analogy with the definition of the tangent space, J/.J2
is the normal sheaf N,y of X in Y. The map (x*+) then identifies J/J? locally with
the normal bundle on A(X) considered as a subscheme of X xy X via the diagonal

morphism;

A: X 5 X xvy X

The pullback of J/J? on X is a bundle on X which by (%) is locally isomorphic

to QR(U,-)/R(UJ-)) as required.

We can now see how the sheaf Q2 x/% 18 related to the tangent space of a closed

point z for a scheme over k. This is again given by the map d:
d: g — Qxp ® k(z)
d(f +mi) = df
d is well defined as if f = g,¢, with g1, g» € m,, then

df = d(g192) = 91dg2 + gadgr (in Qx/k)

= g1(z)dgs + g2(z)dgy (in Qx/p ®k(x)) =0
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Tt is rather straightforward now to see that d is in fact an isomorphism, as there

is an obvious inverse to d given by;
d-l . Qx/E — %
df — f — f(=)

which descends to €x/z ® k(x) as it kills elements in the submodule M2 x k-

This proves that for all closed points x, 0y /; ® k(z) = 1%, and recovers our intu-

ition of the cotangent space to an arbitrary scheme X over k as a fibre of the sheaf

of differentials.

One of the main reasons for using the sheaf of differentials Q0x,y to encode prop-
erties of tangent spces for arbitrary schemes X over Y , is that there is a strong
relationship between the behavior of a coherent module base changed at a point and
its behavior in an open neighborhood of that point. This is provided by the geometric

form of Nakayma’s Lemma;

Lemma 30. Let F be a coherent sheaf on a scheme X such that F' ®o, , k(z) =0,

then there exists an open neighborhood U around x such that F|U = 0.

Proof. In order to see this, as F' is coherent, we can find fi,... fn generating F,. By
hypothesis, fi = fo =,...  fn = 0in F, ®o, x k(z), and hence fi,--- fn € myFy.
This just means that F, = m,F;, whcih by the normal form of Nakayama’s Lemma
implies we can find g € O, x \m, annhilating F,. As g is a unit, this gives #5 =0 and
hence ,taking the intersection of neighborhoods Uy N ... U, on which the f; vanish,
gives a neighborhood U such that F|U = 0.

O
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We can now use this lemma to prove a number of important properties for the

sheaf of differentials. The most important of these are the following results;

Theorem 31. If X is an algebraic variety over k of dimension n, then there exists
an open dense subset U of X such that X is nonsingular and Qx/5|U is a locally free

module of rank n.

Proof. On an affine open set, X is isomorphic to a variety X; in A™ cut ouy by
polynomials of the form fi,... f,,. Then the singular locus is just the {z € X, :
mnk((gz%)lsiim,lggn) < n which is a proper closed set of X;, so we may assume
that X is non singular. At z € X, we can choose a basis gy, ... g, for Qx5 @ k(z)
and use the gi,... g, to define a map from Ox(U)” to Qx/5|U. Taking the quotient
sheal I of Qx/g|U by Ox(U)" on U gives that F, ® k(z) = 0, hence by Lemma 37,
we may assume that F|U = 0, this shows at least that the fi,... f, generate F on
some open U containing z. To prove freeness, let K be the kernel of the map from

Ox(U)" to Qxz|U, then as X is reduced and K # 0, we can find a section s of K
and a point y € U such that s, # 0. Applying ®k(y) to the exact sequence

0= Ky = 0%, = Qx/py 0

and noting that s, ® k(y) # o, gives dim,Qxz, ® k(y) > n+ 1, contradicting the
hypothesis. So we conclude that x/k 1s a free module on the non singular locus of

X.
O

By previous remarks, we recover the intuition of the cotangent space as a vector
bundle on the nonsingular locus. We call elements g, ..., gn trivialising Q4 £ |U a

set of uniformizing parameters for X over U.

Theorem 32. If X is a non-singular algebraic variety of dimension n, and Y, Z are
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irreducible closed subsets. Then if W 1s a component of Y N Z, we have,
dim(W) > dim(Y) + dim(Z} —n
or equivalently

codim(W) < codim(Y) + codim(Z)

Proof. We have that Y N Z 2 Y x Z N A(X) inside X xz X. Let g1,...,9, be
uniformizers on an open subset U inside X. Then we saw above that {2y is just
the pullback of the conormal sheaf J/J? for the inclusion of A(X) inside X xj X.
As Qyxz is locally free, so is J /J?, and in particular generated freely on A(U) by the
functions ¢; ® 1 —1®g1,...,9. ® 1 — 1® g,,. At a point z € A(U), we have that
1 ®1-1®¢g,...,.®1—1® g, generate Jy/J? and therefore form a basis for
the vector space J;/m,J, as clearly any function belonging to J; lies in m, the ideal
of functions in Oxxx, vanishing at x. Then, as Jz/myJ; 1s just the base change
J ® k(z) of the ideal sheaf J at the point z, it follows by Nakayama’s lemma that
these functions generate J on an open neighborhood U containing z (not freely!). It
follows that ¥ x Z N A(X) is cut out by exactly n equations inside Y x Z, so by

standard dimension theory we have the result.

O

This theorem is the basis for the pre-smoothness axiom PS in both the Hrushovski

and Zilber formulation of Zariski structures. (see below)

The “piece de resistance” of these uniformity arguments is the following, which

generalises the obvious result for subvarieties of A™;

Theorem 33. Suppose X is a nonsingular algebraic variety over k, and fi,...fx €
O, x have the property that the differentials dfy, ... dfx are independent in Qx @k (),

then on some open subset U containing x, the ideal J generated by f1,... fi defines
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a nonsingular subscheme Y, and we get an ezact splitting of locally free modules on

Y NU gwen by,
0— J/JZ _>1’*QX/E __>‘QY/E — 0 (*)

Conversely, if Y is a nonsingular subscheme of X, then the ezact sequence (%)

holds on'Y, and all all the modules are locally free.

Proof. As the differentials fy,... f, are independent in Qxp® k(z), we may complete
them to a set of uniformisers for x/k ON an open subset U containing z. Let Y be
the subscheme of U defined by the ideal J generated by fi,... f,. Then we have the

exact sequence on the right given by;
J/J2 —d Z*QX/I:: — QY/,‘_C —0 (**)

However, by construction, the map from J/J? given by d must be injective on
U, as the differentials dfs, ... df remain independent at each point of U, hence, we
have the exact splitting given by (). It only remains to see that ¥ is nonsingular.
By dimension theory, we must have that dim(Y) > n — k, on the other hand, the
splitting () becames an exact sequence of vector spaces when we base change to a
point y € Y MU, and hence dim(Tyy) = dim(Qyz ® k(y)) = n — k, which forces ¥
to be non-singular as a subscheme of U, and in particular irreducible and reduced.

Finally, Qy/z is locally free on Y N U.

For the converse, we again have the exact sequence on the right given by (#:£).
We know the the kernel of the central mapping is a locally free module generated
by uniformisers dgi,...dgy on a neighborhood U of a fixed y € Y. Now take the
subscheme Y defined by the ideal J' generated by these uniformisers, and repeat the
first part of the argument to show that Y is nonsingular in U. However ¥ C Y and

their dimensions agree, so being both non singular on U. we must have that ¥ = ¥’
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on U and the sequence (x) is therefore exact on U. Repeating the argument for any
point in ¥, the sequence is exact everywhere.

O

Note that the above arguments do not show that Y is a complete intersection,
as even if we can find fi,... fr vanishing on ¥ with independent differentials, there
may still be an “excess intersection”, though the argument shows that this must be

disjoint from Y.

These arguments fail completely for non-reduced schemes over k. To take the
example given earlier of the curve Cy of multiplicity n, we have by the axioms for
differentials that d(f*) = nf™" *df = 0, so df is a torsion point for {2y everywhere,

in particular Qi is nowhere locally free! ( and C; is singular everywhere!!).

As an example of the use of differentials for arbitrary schemes X over Y, consider
an extension K C L of number fields. Then Ok and Op carry the structure of
Dedekind domains which may be considered as schemes over Z. The inclusion Ok C
O, corresponds to a finite cover f : Spec(Oy) — Spec(Ok), so we consider Spec(Or)
as a scheme over Spec(Ok). If P is a prime in Ok, then by general theory P splits
as a product P, ..., P™ of primes in Op. If m; > 2, we say that P, is ramified

over P.

Theorem 34. An extension of number fields 1s ramified at finitely many primes or

at all primes.

We need to compute the sheaf of differentials o, /0, As is easily checked, the
localisation (Qo, /0, )p: is just the sheaf of differentials Qo, , jo,, of the local ring

OL,'Pi over OK’p.
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Chapter 9

Etale Morphisms

Etale morphisms are central to the development of more advanced notions in alge-
braic geometry such as deformation theory and form the basis for etale cohomology.
In the next section, I will show a strong link exists between such morphisms and the
Zariski notion of unramified cover. This not only means that Zariski structures might
be interesting for algebraic geometers but also opens up the possibility of developing
algebraic geometry in a wider context. Much of the material in this section can be

found in [28],[27],[15] and [13]

Definition 14. A morphism of finite type f between schemes X and Y is said to be
etale if for all x € X there are open affine neighborhoods U of x and V' of f(x) with
f(V) C U such that restricted to these neighborhoods the pull back on functions is

guwen by the inclusion;
fFR(V)—> R(V)[—l‘“"“’z"

frifn

and det(ng;)(fL‘) #0, (%)

- A straightforward example is the projection pr of y = 22 onto the z— axis which is

etale at the origin, as pr* : k[z] — k[z][-%5] and d/dy(y—=?)(0) = 1. The correspond-

y—a?
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ing calculation for the y—axis gives pr* : kfy] — klyll; %] and d/dz(y — 2?)(0) = 0

proving that it is not etale at the origin.

At first sight, it seems that the definition should depend on the choice of affine
cover we take to verify the condition (%), however we can soon see that this is not the
case. The condition on partial derivatives tells us exactly that the sheaf of relative
differentials €y /v vanishes on X. Locally, on an affine set U/ mapping into V', we have
Qx/v|U = Qrw)/rev), which is the free module over R(V) generated by dz,,...dz,
subject to the relations df;, = E%dxj = 0. By assumption, the function det(g—i'_) is
a unit in the local ring O, x, which implies that the dz; vanish in Q X/v,z> hence on
some open set containing z as required. Now, for any choice of affine cover, we must
still have (*), as base changing to the point z € X the fibre of x/v can only be zero
if the kernel of the matrix (%(m)) vanishes.

We first want to see how the notion of an etale morphism simplifies when we

assume that X and Y are non-singular algebraic varieties over k. We have

Theorem 35. If X andY are non-singular algebraic varieties overk and f : X — Y
18 a morphism, then f is etole iff df : (m./m?)* — (M) /M3y)" is an isomorphism

everywhere.

Proof. We have the exact sequence,
8y = 0y — -Qx/y — 0

where the map on the left is just given by pulling back differentials onto X.

If f is etale, this becomes
f*Qy —* QX — 0

and hence, tensoring with k(z)
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is an isomorphism of vector spaces. Identifying Qx ® k(z) with T x gives that
df : {(mg/m2)* — (mf(m)/m?(z))* is an isomorphism of tangent spaces, or dually
f*(my)) generates m,. In fact this holds in general for arbitrary schemes as we

clearly didn’t use non singularity

Conversely, assume that df is an isomorphism on tangent spaces, then if we take
local uniformisers fy,...,f, at f(z) € Y, the f*df, form a basis for Qx(z). By
Nakayama’s lemma, they generate {2x on an open set U containing z. We have
that f*{2y is locally free, just by the non singularity of Y, and so f*Qy and Qx are
isomorphic on some U containing z. Repeating for all z and using the exact sequence
gives Qx;y = 0. We still need to find a local presentaion of the form required in
(%), which is acheived by the following trick; namely we may suppose that X and
Y are affine and choose an embedding of X into A™ for some n, then X may be
considered as a smooth subvariety of the smooth variety ¥ x A™ with the originsl
[ corresponding to the projection (7]|X). As X is smooth, we can use Theorem 40
to present X locally as a subvariety of the form Spec(R(Y)[z1,...z.|/(f1, fa--- fn))
with the f; € R(Y)[z1,...z,]) Then, repeating the argument above gives that the
condition (*) has to be satisfied.

1

This gives us a convenient test for etaleness given an arbitrary morphism of finite
type between X and Y. If we take local uniformisers g1, ... g, at z € X, the dg; gener-
ate (0x freely on an open U’ of z. If we pull back a set of uniformisers f*fi,..., f*fn

on Y to X, we can locally define the Jacobian Jac_{,_ to be;

det(%)

which means write the 1-forms f*df; = ¥;a,,dg; and take det(a;;)
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If fisetaleina neighborhood of z, the f*df; also generate (2x freely on an open
7" of z. Taking the intersection 7" = UNU', gives us that the Jacobian J acg \U" # 0.
Conversely, if J acf; (z) # 0, then it is non zero on an open neighborhood U" of z and
by the above theorem we have that [ is etale on this neighborhood. We conclude that
etaleness is an open condition on X and we can describe the ramification locus of f as
the closed set defined locally by the vanishing of J acg - if this is a non empty proper
subset, then by dimension theory we have that the ramification locus has codimension

1in X.

We should check that this does not depend on our choice of uniformizers, in other
words give a coordinate free description of the ramification locus. Let Kx and Ky

be the canonical line bundles on X and Y. Then f induces 2 natural map;
df - [*Ky — Kx
dfll\.../\dfn»-—>df*f1/\.../\df*fn
Using the rules for alternating products, we have;
df*fi Ao Ndf fn = (Zja15)dgs A - A (Z;an;)dgn = det(ai;)dgi A - .- N dgn

9o the ramification locus is given exaétly by the degeneracy of the map df, that is
¢ € X : rankg(df) < n. Asdf determines a section of the bundle Hom(f Kv,Kx)=
Kx®(f*Ky)*, we can just write this as chy (Kx ® (f*Ky)") = chi(Kx)— chi (f*Ky),

by the rules for Chern classes.

The above formulation is especially useful when we consider the more general
question of how to describle the “higher order” ramification of a morphism f between

nonsingular varieties X and Y of dimension 7. Namely, we want to describe the loct
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Lk = 5 € X rrank.df <k for 0 < k < n— 1 where this time df is considered as
a map between the vector bundles f*{2y and Qx on X, henceforth denoted by E
and F. For k = n — 1, we get the usual ramification locus, and we have a sequence
Yo C ¥y... € % C X, of higher ramification. Locally df gives us a map from X
into GL(n) and the degeneracy locus I; is mapped into M, C GL(n) given by the
set of matrices of rank < k. Hence ,by usual dimension theory, the codimension of
Yx (if non empty) is at most (n — k)2. In case this is the codimension, the ramifi-
cation loci ¥ are locally complete intersections and we can compute them using the
Thom-Porteous formula. The proof is so instructive that it is worth including. We
first linearise the problem on X by considering the Grassmannian associated to E

given by,
Grass(n — k, E) ={(z,A) : 1 € X, An_y C E}

where A, _; is an n — & dimensional subspace of the vector space E,. We pull
back the bundle E on X, via the natural projection map = : Grass(n — k, F)— X,
to get a bundle 7*E on Grass(n—k, E). Then we have the following canonical exact

sequence of vector bundles on Grass(n — k, E) given by,
0= 1 —>mFE—>Q,—0

where S,, x and Q) are the canonical bundles of dimension n—% and k ,associating
the spaces A and EZ’- respectively to a point (z, A) in Grass(n —k, F). This sequence

allows us to compute the Chow ring of G = Grass(n — k, F) as follows;

Namely if s; = chy(Q4) for 1 < i < k, then s; is determined by a generic map
of the trivial bundle of rank k£ — i 4+ 1 to @y or equivalently by the zero locus of

k — ¢+ 1 independent sections. Given such sections oy, ...04_;41 of E on X , We can

o

extend them canonically to sections of Qi on G by setting o;(z, 4) = 1'4(%). Then the

common zero locus will just be (z, A) : A D span{o,(z),...,0%_;.1(z)). Restricting
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to a generic fibre 7~ '(z) of G over X, this is the class s; in Grass(n, k) represented
by the set of k-planes containing £ — ¢ + 1 fixed independent vectors. As is easily
seen, these classes generate Grass(n, k) and so we have that A*(G) is generated over
A*(X) by the chern classes sy, ...s; of Qy considered as a bundle on (G. The exact
sequence above gives us the one relation ch(m*E) = ch(Qx)ch(Sn—4) on G which gives

us that

A*(G) = A*(X) ch(ggl’ ] 2] "
1+~"1+ Sk I>n—k

Now we have the sequence
Speg > T H > F

on G lifting the map df on X. The degeneracy ¥y on X will then be given by the
proper pushforward of the degeneracy on G

%y = {(z, A) : dfz] A = 0}

Denoting the composite map for the sequence above by ¢, this will be {(z,A) :
(rank¢),,a = 0, which is just the zero locus of ¢ considered as a section of Hom(S,m*F) =
S*®@7*F. Our assumptions on the codimension of ¥ allow us to compute this as the

top Chern class chin—g)n (S*@7" F) and fortunately there is a formula for this given by
det(cij)1<ij<n—k: Cij = Cat(j—i)r b S J
= Cnt(i—j),J S 1

where 1+ ¢; + ...+ Cog(nk) %@ Now by the first exact sequence, we have

that ch(S) = T(—Q]% s01+ci+...+ Crrpnor) = ch(@)m* (iZEE)) Now we just have

to push this forward to a cycle on X, which we do by writing the above determinant
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in the form;
det(eij)1<i j<n—kdet(Sp)1<ki<n—k
: €ij = En—(n—k)+(j-i)1 1 < J
= €n—(n—k)+(i—j)> J S
Skl = Sn—k+(1-k), K < 1
= Sn—kitk-pl <K

where the s; are as above and 1 +e; +ey+ ... = ZZEQ Now the cycles si; push

forward to trivial cycles on X, and we get the formula for the degeneracy locus ;

Yk = det(ei;)1<ij<n—k

€ij = En_ky(j—i)t < J

= En—kt(ig)d St

Note that the codimension of each element in the determinantal formula is (n— k)2
s0 this makes sense! Unfortunately, things get considerably more difficult if the degen-
eracy locus fails to be a locally complete intersection. The general idea is to blow up
the variety X along the excess intersection, prove a Porteous formula for the blowup,

then push the resulting formula back down to X

In Section 12, we will find that Zariski structure techniques lead naturally to the
notion of local isomorphisms between definable sets, which are used essentially in

defining tangency. The rest of this section will be devoted to finding an algebraic
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interpretation in Theorem 43 and 48. We will also use the results of Theorems 45

and 47 in Section 12.

The result of Theorem 42 leads to the following important result, which is an

analytic version of the inverse function theorem.

Theorem 36. If f : X — Y is an etale cover of non-singular algebraic varieties over

C, then f is a covering map of topological spaces in the complez topology.

Proof. Choose y € Y and let f~*(y) = {x1,...7.}. Choose local uniformisers
fi,... fofory € Y and gi,... g} for z; € X. These define etale maps from some
open neighborhoods U, of Y and Uy, of z; to A", and isomorphisms in the complex
topology from neighborhoods V,, C U, and V,, C U,, to open balls B" C C". Tak-
ing the 7* and f as local coordinates around x; and y and 6 = g 'ff: B" - B,

the functions a;; correspond to 6*df;.0g; = df;.0..09; = ng,
Kl

which is just the usual
Jacobian of #. Hence, by the inverse function theorem, © is a local isomorphism,
and hence so is f. Now, taking our neighborhoods sufficiently small gives that
fHU,) =Viu... V;U...V, for disjoint V; and it follows that YU = f~Hy) x Uy,
that is X is a covering space of Y.

d

This theorem can in fact be shown even if X is just assumed to be of finite type
over k , which gives the extraodinary result that the category of covering spaces and
covering maps over X an analytic space (essentialy any scheme of finite type over C
considered in the complex topology)) is equivalent to the set of etale covers of X. For
an arbitrary etale morphism, repeating the above argument for Im(f), a dense open

subset of Y, gives that X is “generically” a covering space of Y.

The strength of the above result leads naturally to the question of what should
be the algebraic analogue of the inverse function theorem for arbitrary varieties over

algebraically closed fields k in arbitrary characteristic. If we just work in the Zariski
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topology, the result clearly fails, for example the morphism f: A'\ 0 — A'\ 0 given
by z +» 2" is an etale cover of A'\ 0 in the Zariski topology, but doesn’t split as a

product locally around any point A € k \ 0.

The problem is resolved by taking a finer etale toplogy on Y in which the local
rings O;\’Y resemble a completion of the original local rings rings O, y. Namely, we
consider a category Y. whose objects are etale morphisms U — Y and whose ar-
rows are Y-morphisms from U — V. This category has the following 2 desirable
properties. First given y € Y, the set of objects of the form (U,z) — (V,y) form a
directed system, namely (U,xz) C (U’,z') if there exists a morphism U — U’ taking
z to z'. Secondly, we can take “intersections” of open sets U; and U; by considering
Us;; = U; xy Uj; the projection maps are easily show to be etale and the composition
of etale maps is etale, so U;; — Y still lies in Y, (this allows us to formulate Cech
cohomology exactly as for arbitrary schemes in the Zariski topology). Note that if
Y is an irreducible variety over k, then all etale morphisms into ¥ must come from
reduced schemes of finite type over &, though they may well fail to be irreducible
considered as algebraic varieties, so we do not need to consider arbitrary schemes.

Now we can define the local ring of Y in the etale toplogy to be;

O;\,y = lim_,,yeUOU(U)

As any open set U of Y clearly induces an etale morphism U —; Y of inclusion,
we have that O,y C Ofy. We want to prove that Oy is a Henselian ring and in
fact the smallest Henselian ring containing O, y. We need the following lemma about

Henselian rings;

Lemma 37. Let R be a local ring with residue field k. Suppose that R satisfies the

following condition;

If fi,... fo € Rlz1,...2,) and fi... fo have a common root @ in k", for which
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Jac(f)(a) = (gfq{;)ij(d) # 0, then @ lifts to a common root in R™ (¥).

Then R is Henselian.

Proof. One checks that R is Henselian directly, namely suppose f € R[z] is a monic
polynomial such that f = gh splits as a product of monic coprime polynomials of de-
greer and s in k. Writing f as a product (" +y12" 4. . 4y ) (2 + 412 Y ps)

sets up a system of r + s equations in Ry, ... ¥r¥rs1- .- Urys) Of the form;
Y1+ Y1 =11 (1)

Yo+ Y1Yr+1 + Yra2 =72 (2)

Yr¥r+s = Tras (I+S)

where the r; are the coefficients of f considered as a polynomial of degree r + s.
The factorisation of f in & gives a solution @ to this system when the r; are reduced to
k, and the Jacobian (%)1Si,jST+S has non zero determinant at @ as det(Jac) is given
by the product of the resultants of (" +y 2" ' +.. .+ y,) and (Z°+ Y12 +. . Yrps),
which is non zero as § and h are coprime. So the result is a consequence of ().

O

The condition (x) is usually known as Hensel’s Lemma and is true for any complete
local ring, so all complete local rings are Henselian.

It remains to show that O, satisfies (+).

Proof. Given f; ... f, satisfying the condition of (), we can assume the coefficients

may even assume the coefficients define functions on a single etale cover U of Y. By
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the remarks above we can consider U as an algebraic variety over k, and even an
affine algebraic variety after taking the corresponding inclusion. We then consider
the variety V C U x A" defined by Spec(%). Letting v € U denote the
point in U lying over y € Y, the residue of the coefficients of the f; at © corresponds
to the residue in the local ring R, which tells us exactly that the point (u,a) lies in
V. By the Jacobian condition, we have that the projection 7 : V — U is etale at
the point (u,a), and hence on some open neighborhood of (u,a), using Nakayama’s
Lemma applied to £y,y. Therefore, replacing V' by the open subset U’ C V gives an
etale cover of U and therefore of Y, lying over y. Now clearly the coordinate functions

T1,... Ty restricted to U’ lie in Oy and lift the root @ to a root in O,y

O

We define the Henselization of a local ring K to be the smallest Henselian ring

R O R, with R’ C Frac(R)¥9. By the above, we have that
Theorem 38. Given an algebraic variety Y, Oﬁly is the Henselization of Oy y

The following fact is due to Artin,

Fact 39. The Henselization of

k[-rly s xn](ml,---wn)
18

k[za, .. 2] N k(T . . Tq)™0

This gives Ot'/l\, 4 for affine space A™ by Theorem 45.

Now given an etale map f : X — Y between algebraic varieties, f induces an

isomorphism between Oy, and OF x for all z € X.
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Proof. To see this, suppose g € OA )y» then g belongs to Oz(Z) for some Z with Z
etale over Y. Then the product Z xy X is etale over Z and X, so pulling back ¢ to
Z xy X give an element of O y, clearly the map is injective as all etale maps are
dominant morphisms and surjectivity from the fact that an etale cover of X is then

an ectale cover of Y. ]

The converse is also true, for arbitrary algebraic varieties X and Y, if f induces an
isomorphism between the Henselizations O}\(z),y and O x, then f is etale, see [28].

This gives,

Theorem 40. A morphism f : X — Y is etale iff f* : }\(z),y — Op x 18 an

1somorphism for every x € X.

We now have an extraordinary generalisation of the analytic version of the inverse

function theoren;

Theorem 41. Let f: X —+ Y be an etale cover of algebraic varieties over k, then f

18 a covering map in the etale topology.

Proof. Choose y € Y, and consider the fibre product X xj Oy which is etale over

oy- Then we may write this locally in the form Spec(oy—}’l[,_f—]) with det( 6fl) #0
at each closed point in the fibre over y. This means exactly that the f; have common
roots in the residue field &™ corresponding to the points over y and satisfying the
condition of the Lemma. Hence they lift to roots ¢; € OQY and we now have a map

" [’}11 f‘: — O v given by sending z; to ¢; Such a map is a section of the original
morphism passing through the given point in the fibre. Using these sections and the
fact that sections are uniquely determined, gives a splitting of X xj O;\,Y as a product
0%y x f~'(y) as required.

a
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Chapter 10

Zariski Structure Axioms and

Examples

For T stable, we let p denote a minimal type inside a saturated model M, see section
1 for definitions. In the next section, where we consider the simple case, we will
demand that p is a Lascar strong type with SU (p) = 1. For this section, we assume

stability.

Fact 42. If T is stable, , the trace of T on p* is definable with parameters from p.

Proof. Suppose ¢(Z,b) N p* defines a subset of p*. Then
i = ¢(3,b) N p* = ¢(a,9) € tp(b/p) < do(a)

where d¢, the defining schema for stp(b/p), is over ¢ € acl® (p). By a straighfor-
ward dimension argument, we can find a sequence 1, ... ax in pwith ¢ € del(ay, . .. a;)

50, by automorphism, we see that d¢ is defined over ay, .. .ay.

|

In the simple case, this may not occur; if so, we say that p is stably embedded.
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We now consider the universe of p with induced structure inherited from 7". Given
some subcollection {C'} of the induced definable sets, which we will call closed sets,
we say that p is Zariski with respect to {C} if the following axioms, which may be

found in [?], hold;
1. (L) Basic relations are closed:

Conjunction and disjunction of closed sets are closed.
Graph of = is closed.
Singletons are closed and p is closed.

Cartesian products of closed sets are closed.

2. (P) The projections pr : p"*' — p™ are proper and continous maps.

That is if ¢ C p"*! and ' C p* are closed then 3zC C p*, and p~*(C') C ptt

are also closed.

3. (DCC) The topology given by the closed sets on p” is Noetherian and p is

irreducible.

The condition (DCC) implies that every closed set C can be written essentially

uniquely as a union of irreducibles;

C=CiU...UGC,

It is also straightforward to verify by induction that p™ is irreducible forn > 1.
4, (DIM) We define a dimension notion on closed sets as follows;

dim(C) is the maximum value of m for which there exists a chain {C;} of irre-

ducible closed sets such that Cy C ... C Cr. We then require that dim(p™) < n.
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The following properties are then easy to verify;

dim(Ch U C3) = maz dim(C;) for Cy, Cy closed.
dim(pt) =0
dim(C1) < dim(Cy) if C; is irreducible and C) C C,
dim(p™) > n

5. (PS) For all closed irreducible closed sets X1, X C p", dim(S,NS5™) > dim(S,)+
dim(Sz) — dim(p")

Examples.

1. A smooth projective algebraic curve C definable in AC'F, the theory of alge-
braically closed fields.
The product C™ has the natural structure of an algebraic variety with the closed sets

given by the Zariski topology. We will verify the axioms;

(L) follows by properties of the Zariski topology and the fact that on an affine
cover of C", the diagonals are cut out by linear polynomial equations.
(P). We say that an algebraic variety X is complete if for all varieties Y, the projec-

tion morphism

pz:XXY——)Y

is closed. Clearly, for such a variety X, this implies that that the projection maps
pr: X™1 — X™ are closed, taking ¥ to be X" in the above definition. If Z X is
a closed subvariety of X and X is complete, then so is Z , as 1s easily checked from
the definition. Our example C' is a closed subvariety of P™(k) for some n, therefore

to verify (P), we need to know that P"(k) is complete. This is a classical theorem
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due to Grothendieck, see [19] for a proof.

(DCC) Suppose that {X; : i < w} is an infinite descending chain of closed subsets
of C™. As C™ may be covered by finitely many affine open subvarieties 7 ...Y,, this
implies that {¥; N X; : ¢ < w} defines a descending chain of closed subvarieties of
each Y;. Then by the Nullstellensatz and the fact that the coordinate ring k[z; . .. z,)
is Noetherian, each such chain stabilises inside Y;. Then clearly the chain stabilises

inside C™.

(DIM) The notion of dimension {dim) as given above corresponds to the notion of
dimension (dim’) in algebraic geometry, which for an irreducible subvariety X of C™ is
defined as tr.deg(k(X)/k) for k(X) the function field of X. To see this, suppose that
dim(X) > n + 1, and X is irreducible, then by definition one can find an irreducible
closed subvariety X’ C X with dim(X') > n and so inductively dim’(X') > n. Taking
an affine open of X intersecting X', we can assume that X and X' are affine as the
function field is unchanged. Then by straightforward commutative algebra, it follows
that dim’(X') < dim/(X) and so dim/(X) > n + 1. Conversely, if dim/(X) 2 n + 1,
then again assuming X is irreducible affine, if we take f € R(X) to be a non-unit,
then each irreducible component of V(f) C X has codimension 1 in X, see [19], .
Therefore, dim'(V(f)) > n and inductively dim(V(f)) > n. As each component of
V(f) is a proper closed subset of X, dim(X) > ﬁ—i— 1. Now clearly we have that dim

corresponds to dim’ and so in particular we know that dim(C™) = n.

(PS) Onme checks that the for (z1.. .z,) € C™, the maximal ideal m; C Oz is

isomorphic to X, O04, 4, 2, ® My Then by a simple calculation Tanz(C™)

v Tan,,(C), so C™ is smooth. Now the result follows from Theorem 39 in Section 9.

In this case, dim corresponds to M R calculated in ACF'. To see this note that it is
sufficient, to assume that X C C™ is irreducible affine and is definable in the home sort

k. Choose G in X with @ generic over k. Then MR(X) = MR(a/k) = t.deg(k(a)/k).
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However, there is a map frorﬁ R(X) to k(@) given by sending f to f(@). The map
must be injective as if f(@) = 0, then as g is generic over k, we must have f1X =0and
therefore f = 0, Then clearly the map extends to an isomorphism between Frac(X)
and k(a)/k. In fact, as we show below, this correspondence between dim and the

model theoretic rank will follow in general from the axioms.

2. Strongly minimal sets or minimal types C in DCF, the theory of differentially
closed fields.

This time we equip C™ with the topology generated by the closed sets given by

positive boolean combinations of differential formulae.
Again (L) is straightforward to verify.

(P) in general fails. By quantifier elimination for DCF, if X ¢ ¢gn+! g closed
then 3zX = UL, Fi/E; with F, and E; closed. In the case when C is a strongly
minimal, this is enough to satisfy the axioms for Zariski structures given in [16]that

the projection of a closed set should be constructible.

(DCC) If {X, : i < w} is a descending chain of closed sets inside X™ then if we let
X)) ={fe K{zi,...2,}: fIX; = 0}, I*(X;) is an ascending chain of differentia]
ideals in the differential coordinate ring of K. By Ritt’s basis theorem, such a chain

terminates, hence so does X;.

(DIM) This time it is considerably more difficult to verify that dim(C™) < n. The
simplest way is to show directly that for any closed X CC", MR(X) = dim(X), and
use the fact that MR is additive for strongly minimal sets. Ope direction is obvious,
suppose X is irreducible and MR(X)>m+ 1, then we can write X as Ui X; With
X; disjoint definable setsand MR(X;) > m. By quantifier elimination we can suppose
that each X, = Fi/E; with F; and E; closed irreducible. If some F; ¢ X, then as
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inductively dim(F;) > m, we have that dim(X) > m + 1 and we are done. Other-
wise F; = X for each i < w, which forces F; = E; U E; for any j # ¢ contradicting
irreducibility. For the other direction, suppose X is irreducible and dim(X) > m+1,
then we can find a proper irreducible closed X' C X such that dim(X') > m. It
will be sufficient to show that MR(X') < MR(X). This is done by showing the
intermediate step that for X C C" closed, Krull(X) = eM R(X)(x) where Krull(X)
is defined to be the t.deg(Frac(X)/K) and Frac(X) is the differential fuction field
of X. By a straightforward algebra calculation, Krull(X') < Krull(X) from which
the result follows. The proof of (x) can be found in [3], and relies crucially on the
following characterisation of forking in DCF, that for tuples a and band k C K, such
that t.degk < @ > is finite

a1y biff t.degk < @> [k =t.deghk <ab> [k <b> (x*)

(PS) The above fact (x) give a direct method of relating dimension theory for
strongly minimal sets in DCF and dimension theory for algebraic varieties. If C* is
the corresponding algebraic variety to C, see [31] for the geometrical interpretation,
then one can find an open smooth subvariety U* C C*. Then U* will correspond to

a cofinite open subset U of C for which (PS) holds.

3. Strongly minimal sets C' in LDCF, the theory of Lie differentially closed fields.
By analogy with DCF, the verification of the axioms will be almost identical. The

main technical obstacle lies in proving ().

4. Compact riemann surfaces, these may be defined inside a many sorted stable
structure introduced by Pillay/Moosa. The Riemann existence theorem essentially

reduces the structure of these objects to Example 1 above.

5. Np"C in Tscr, ,the theory of a seperably closed field K of characteristic p and

finite degree of imperfection, where C is a smooth projective curve defined over Fp,
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the finite field with p elements. Here, we have no notion of M R, but the correspond-
ing type is minimal in the sense of stable structures. In [17], Hrushowski uses a more
sophisticated version of (P), which allows him to use Zariski structure techniques for

arbitrary minimal sets.

In all the above cases, the dimension corresponds to the model theoretic rank, this

is a general phenomenon.

Definition 15. For X C p", let

U(X) =maz{U(a):a € X}

For the simple case, we can similarily define the SU-rank of a definable sub-
set. Moreover, observe that if the ambient theory T is w-stable, then by the fact
that Zariski structures are unidimensional, we must have that U-rank corresponds
to Morley rank MR, so the rank U is very suggestive. We now aim to prove the

following lemma

Lemma 43. If X C p" is closed then U(X) = dim(X).

Proof. We may clearly assume that X is irreducible, and proceed by induction on
dim(X) = k. Now we need the following lemma which generalises Noether normali-

sation for affine algebraic varieties, and can be found in [18].
Fact 44. X is irreducible with dim(X) = k iff there ezists a generically finite map

pr of X onto p* for some k.

(This fact uses 2.3-2.5 of [18))
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Now given the above, let E C p* be the proper closed set admitting infinite fibres.
Then dim(E) < dim(p*) = k and by induction we have that U(E) < k. By property
of U—rank we have that U (p*\E) = k and pr : XNpr~!(p"\ E) — p*\E is finite to one.
However, U-rank is preseved by finite maps, so we have that U{X Npr~Y(pF\ E) = k.
Now clearly the complement of X Npr=(p* \ F) has lower dimension than X as X
is irreducible so has U — rank < k. Therefore, we have that U(X) = k.

O

We now deduce the following, which is given as an axiom for Zilber’s formulation of

Zariski structures in [29)].

(DF) If X C p™*™ is closed. Then,

F(X,k) ={a€p": dim(X Nnpr-'(a)) > k}

is closed.

Proof. By the above lemma, it is sufficient to show that

{a:U(X(a) > k+1)}

is closed. By additivity of U-rank, this occurs iff we can find independent elements

by,...bxs1 C b in p such that X (ba) holds. However, this holds iff

3$a(k+2) - afﬂg(n)X(LEl, N v a)

has maximal U-rank for some o € S, iff

d(3To(k42) - - - ZTo(n) X (T, 7)) (@)
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holds for the defining schema of p**!, the generic type of k + 1-elements of D.
Finally, using stability, the above is a positive Boolean combination of

ng(k+2) ce Hl'g(n)X(bz, g)
for b; € p. Clearly, this set is closed.

O

We now formulate a notion of generics and loci for this topology. If @ ¢ ok, we
define loc(@/A) to be the intersection of all closed sets defined over A containing
a. By Noetherianity, such a set clearly exists and is the smallest closed set over A
containing a. We say that @ is generic in X closed if locus(a/A) = X. We now claim

the following.

Lemma 45. If X C p"™ is closed and irreducible, then @b is generic tn X iff a is

generic in pr(X) and b is generic in X (a).

Proof. One direction is fairly straighforward. Suppose @ is not generic in pr(X), then
a€ECpr(X)andabe pr-{(E)NX ¢ X. If b is not generic in X(a), then there
exists L such that b € L(@) ¢ X(@). Thenabe LN X C X. In both cases, we get a

contradiction.

For the other direction, suppose that @b is not generic in X , then there exists D
such that ab € D C X. Then a € pr(D), but pr(D) is closed so pr(D) = pr(X).
Similarily, as b € D(@), we must have that dim(D(a)) = dim(X (a)) Now, U(D(a)) =
U(X(@)) = k say. We have that

{a: U(D(a) = k}

is open in pr(X) and definable over acl(). Now let @’ be generic in pr(D) in the

sense of U-rank, and &' generic in D(a') in the sense of U~rank. Then, we have that
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U(D) > U@, p) =U{/a) +U(@) = dimD(a@') + dimpr(D) = k + dimpr(X)

as @ must lie on every open set defined over acl(@) in pr(D). Then, if a’t’ is

generic in X in the sense of U—rank, we have that
U(X) =U@"") =U(}"/a") + U@") < k+ dimpr(X)
as d@" is generic in pr(X) in the weaker sense. Hence,

U(D) > k + dimpr(X) > U(X)
so dim(D) > dim(X) which contradicts the fact that D ¢ X is proper.

We now want to show the following generic fibres lemma;

Lemma 46. (GF) If X C p™*™ is closed irreducible, then if @ 1s generic inside pr(X)
we have that dim(X) = dim(pr(X)) + minacpr(xydimX (@) = dimpr(X) + dimX (a)

for @ generic in pr(X).

Proof. Let X be irreducible, with X C p"*™. Let a € pr(X) C p™ be generic in the
weak sense. Then X (@) is a generic fibre, possibly not irreducible, of dimension k say.

We first need the following generalising a result in [18];

Lemma 47. If C is any closed set of dimension k, then C admits a generically finite

map onto p*.

Write C as a union of irreducibles,

C:Clu...UCk
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We may suppose that dim(C) = dim(C) and dim(C;) < k for ¢ > 2. Now C;
admits a generically finite map onto p*, so has infinite fibres over a proper closed set
E C p* and we consider the map pr : G, — p* for i > 2. If pr(C;) = E; C p*, then
the map on C'is finite outside £ U E*, so we may as well assume that pr(C;) = p* for
some 1 > 2. Now suppose that @ € p* is generic in the sense of U-rank, then if C;(a)

is infinite we can find a pair @b in C; such that;
U(ab) = U(b/a) + U(a) > k+1

which contradicts the fact that dim(C;) < k. Hence we may assume that C;(a) is
finite. Now the result follows by the fact that infinite fibres must occur on a proper

closed set E;.

Now let m : X (@) — p* be a generically finite reduction and b € X (a) be a generic.
Then, by a previous lemma we have that ab is generic inside X, and m(b) is generic
in p*/acl(@). Let X' = locus(w(b),a)) C p™t*. Then we claim that X maps gener-
ically finitely onto X’. We have that (r(b,a)) € del(b,a) using the closed relation

z=aAg=nr(b). Now consider,

12 e X' AIHecX(z=t)ATH € X(§==()))

This is a closed set containing (7 (b,a)), so equals X’. Moreover, the fibre over
(b, &) is of the form {(z,a) : 7(Z) = 7(b}), which is clearly finite. We therefore have
that dim(X) = dim(X’). We clearly have that pr(X’) = pr(X) as @ is generic in
pr(X) and X'(a) = locus(w(b/a)) = p* by construction. Now

{7:C(9) =p"}

is closed and contains a. It follows that X' = pr(X) x p*, and so we have that
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dim(X) = dim(X') = dim(pr(X)xp*) = U(pr(X)xp*) = dim(pr(X))+dim X (a)
0

Remark 3. The above results also combine to give us the additivity of dim, namely

for a set of parameters A, and a pair @, b, we have that

dim(ab/A) = dim(a/bA) + dim(b/A)

We now work in the restricted universe M given by the closed sets. In order to
apply the technique of specialisations, it is necessary to pass to an elementary exten-

sion M, of M. For such an extension, we define a closed set to be of the form;

C(z,a) for C closed in M and a a tuple in M,

We need to check the axioms are preserved. The conditions (L) and (P) are easy

to check, (DCC) requires (EU) in [29], namely let;

Cl(C_lq,M*) D CQ(&/Q,M*) D...

be a sequence of closed sets. Then using (EU) which gives wi-compactness, it is

possible to pull the parameters back to M.

The condition (PS) is checked in [29], for completeness I will check the condition
for (GF).

Proof. So suppose that S C M,™* irreducible is of the form C(b) where b € M,F
and C C M, Assume C is irreducible and b is generic in pr(C)=pr; o pri(C)

where
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pri: MR M R

pry: M, AMLF

Then we have that,

dim(C) = dim pr(C) + dim C(b) (1)

dim pri(C) = dim pry o pri(C) + dim pr,(C)(b) (2)

Now let @ be generic in pri(C)(b), then it follows that @b is generic in pri{C).
Hence,

dim(C) = dim pri(C) + dim C(ab) (3)

We therefore have that,

dim C(b) = dim(C) — dim pr(C) by (1)

= dim pri(C) + dim C(b)(@) — dim pr(C) by (3)

= dim pry o pri(C) + dim pri(C)(b) + dim C(b)(a) — dim pry o pr,(C) by (2)

= dim pr1(C)(b) + dim C(b)(a)
0

Definition 16. We say that D is presmooth if for all relatively closed irreducible

C1,Ca C D* x M*, and S an wrreducible component of Cy N Cy, we have;

dim(S) > dim(C) + dim(C) — dim(D* x M*)
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So, in particular, by the (PS) axiom, the universe M is pre-smooth. Pre-smooth
sets of dimension 1 behave well with respect to covers, that is if, § € D* x M! is

relatively closed and pr is the projection onto D*, then not only do we have that

dim(8) = dim(pr(9)) + diMacpr(s)genericS (@)

but also, if  is the dimension of a minimal fibre, then every component of S (M, a)

for any @ in pr(S) has dimension at least r.

In order to see this, using the fact that D has dimension 1, by a sequence of
generically finite maps , we may assume that S projects onto D*. Then for @ in Dk,
we have that

S(a) =S n(@x M

Hence, every irreducible component of S(@), has dimension at least

dim(S) +dim(M?Y) — dim(D* x M) = dim(S) —dim(D*) = dim(S) —dimpr(5) =

dimaEpr(S)genericS(a) =T
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Chapter 11

Zariski Structures and Algebraic

Geometry

The interesting link with algebraic geometry i1s made possible through the use of
specialisations. Let A, = M and A CM,.. Wecallm: M, = M 3 specialisation
on A if for all closed n-sets C’ defined over M and n-tuples @ € A we have that if S (@),
then S(m(a)). Note that such a specialisation must fix M. We have the following

lemma, which relies on (P), that the projection of closed sets is closed.
Lemma 48, If M, = M, then there extsts a specialisation 7 - M, = M on M.

Proof. Suppose we have consructed a partial specialisation 7 on a subset 4 C M,.

Let 0" € M,, then we Just need to extend 7 to A U¥. For this, consider
{C(z,7(d)) : C is M — closed, d € A™ C(¥, d)}

We have that d satisfies JzC(z, M,) but this set is closed, hence so does n(d)
in M. This gives us a realisation b of (7 (#,7(d)) in M, and hence the above set is
finitely realised. By (DCC), we can find a realisation b for the full set. One checks

immediately that extending 7 by setting m(¥') = b gives a specialisation.
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The following is one concrete way of extending a specialisation in P(ACFy).

Lemma 49. Let k be an algebraically closed field and k[[t]] the ring of formal power
series in t with fraction field k((t)) the field of formal Laurent series. Then there
ezists o unique specialisation m : P (k((t))*9) — PY(k) extending the residue map

res : k[[t]] = k.

Proof. The map 7 : P*(k((t))) — P'(k) is given by sending (f,9) to (res(t"f),res(t"g))
where n € Z is chosen such that {*f, "¢} C k[[t]] and not both have residue 0.
Clearly this is well defined. To see that this is indeed a specialisation, we will just
check it for closed 2-sets C defined over k. The Segre embedding is defined by

PY(k) x PY(k) - P*(k)
((zo, 1), (W0, ¥1)) + (ToYo, Toyr, T1¥o, T1Y1) =

We can similarily define a specialisation  : P3(k((t)) — P*(k)) and the following

diagram is easily checked to commute;

PLUR(() x PLR(@)) —=5 PP(k((£))

I "

PUR) x PYE) 2% PYR)

Therefore it is suflicient to check that m defined on P3(k((t))) gives a specialisation.
This is trivial to check using the fact that 7 is a ring homomorphism on E[[t]] and
fixes the residue field. By the previous lemma, we know that « must extend to a
specialisation on k(())*9. To see that it is unique, use the fact that as k[[t]) is
Henselian, every integral extension is ramified, so the algebraic closuré k(1) =

Unsok((tV/")). Then the full specialisation is determined on each root tY/" which
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must be taken to zero.

(I

Definition 17. Let (M,, ) be a specialisation. For a € M", we define the infintes-

imal neighborhood of @ to be;

V(l = 7T_1 ((_1)

The first property of infintesimal neighborhoods is that we can move inside closed

sets.

Lemma 50. If D(§) is an irreducible set defined in M, b € D and dim(D) = r, then
there ezists a ' € V3 N D, such that dim(b'/M) =r

Proof. Consider

D(y) U{~C(g,d) : d € M,dim(D(g) N C(5,d) <r)}

Clearly, this set is consistent as D is irreducible of dimension r. Hence, we can
find a realisation ¥’ in M, such that dim{(b'/M,) = r. Tt then follows that we can
define a partial specialisation on M, by setting = (b') = b, for if C(5,d) is a closed
set such that —C(b, d), then we must have that dim(D(g) N C(y,d)) < d otherwise,
D being irreducible, D(f) C C(g,d), so by construction =C(¥, d) also holds. Such a
partial specialisation extends to a total specialisation on M,.

J

For what follows, it is convenient to work with the notion of a A existentially
closed specialisation, which has the universal property that specialisations over M
factor through it. The full force of the importance of using pre-smooth sets is con-

tained in the following theorem;
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Theorem 51. Suppose that F' C D x MF* is an irreducible cover of D with D
presmooth, such that F(a,b) and a € D s a regular point for F. Then for every
a € Vo N D,, we can find ¥ € V, such that (¢',V') € F and dim(¥//a' M) = r, the

dimension of a generic fibre of F'.

Proof. 'There are three stages. Iirst, we check for the consistency of the following

partial type over M,, where &' € V, N D is generic over M;

{F(ay)} U{=C(d,y) : d € M,,~C(x(d),0)}

Clearly, a realisation &' of this type gives a specialisation for b such that F(a', )
holds. 1If this fails to be consistent, we get a closed set Q C M™* such that
F(d',y) C Q(d,y) whereas -Q(n(d),b). The point of pre-smoothness is to show

that the space

L(z,z) CDx M™ ={(z,2): F(z,y) C Q(z,v)}

which in general is not relatively closed in D x M™ at least corresponds to a closed

set over a dense open subset of D.

Then applying a specialisation gives L(a, w(d)) which means that Q(n(d), b) holds,

a contradiction

The second stage replaces @’ € V, generic in D with an arbitrary o” and follows
easily by properties of specialisations. Finally, in the third stage, we take care of the

dimensions by moving inside the corresponding fibre.

O

We now let F' C D x M* be an irreducible generically finite cover of D, that is the
dimension of the generic fibre over D is 0. Replacing D by the set of regular points

in D for F' and using the fact that open subsets of presmooth sets are presmooth, we
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may assume that the cover £ of D is finite everywhere.

Definition 18. Zariski multiplicity

Given (a,b) € F, let

multy(a, /D) = Card(F(a', M.) NVy) for a’ € V,N D generic over M

We want to show this is well defined.

Proof. Suppose a” € V, with Card(F(a", M,)) NV, = n. Consider the relation
N(z,y1,-.. ,yn) C D x M7 given by

N(z,y1,-- yyn) = F(z,y0) Ao A Fz,up)

Then we have that NV is a finite cover of D and moreover by presmoothness of D,

each irreducible component of V has dimension at least

n(dim(F)+ (n—1)k) — (n—1)(dim(D) +nk) = dim(D) +n(n— 1)k —n(n— 1)k =
dim(D)

so clearly each component is a finite cover of D. Now, choose an irreducible com-
ponent NV; containing (a”,bY,...,b), so by specialisation also contains (a, b, ... ,b)

and consider the open set I/ C V; given by

U(Iaylu-" :yn):Ni(mayla"' :yn)/\yl#yZ##yﬂ,

Then, for any o’ € V, generic in D, it follows we can find a tuple (&,..., b))

such that N;(a’,b},... b)), and (b],... b)) € Vi,.. - As, is easily checked the tuple
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(a',b,,...,b,) is generic inside N;, hence must lie inside U. This proves that the

by, ..., b, are distinct.

O

Definition 19. We say that o point (ab) € F is ramified in the sense of Zarisks
structures if multy(a, F/D) > 2.

Now suppose F' C D x M™ is an irreducible finite cover of D with D presmooth,

then we have the following easily checked lemma

Lemma 52. mult(a, F/D) = Syep(omrymults(a, £/ D) does not depend on the choice

of a € D, and is equal to the size of a generic fibre over D

This bears a striking similarity with the concept of flatness from algebraic geome-
try. If f : X — Y is a finite morphism between algebraic varieties and Y isirreducible
then f is flat iff

dimay) (f.(Ox) ®o, k(y))

is independent of y, see [28]. We will make this analogy more precise below

That multiplicity is definable is the content of the following lemma;

Lemma 53. The sets
jx(F/D) = {(a,b) € F : mult,p(F/D) > k}

are relatively closed inside F.
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Proof. Again consider the closed relation N (z,1,. .. » ¥x) introduced above. Let N’

be the union of a]] irreducible components meeting the open set I/ , then we claim that

#(F/D)(a,b) iff N'(a,b, ... b

Je(F/D)(a, b) ( k )

Left to right follows by the fact that we can find o/ VoND and distict b,..., by, €
V; such that U(a ¥, . . | ,by). Taking an irreducible component through such a tuple
and applying a specialisation gives the result. Right to left follows by taking an
irreducible component through (a, b, . .. ,b) and using Theorem 57 to find a generic
tuple (a’,01,... ,8,) € Viap,... n)- As such a component meets U, this tuple lies inside

U as required.
We need the following simple lemma;

Lemma 54. If @' ¢ D, then F(@') contains q point of ramification in the sense of

Zariski structures ff |F(@')| < |F(a)| where g is generic in D.

Proof. We have seen that |[F(a)] = EgeF(a,,Mn)mu!ta,,g(F/D). If |F@)| < F(a)|,
then there must exist b ¢ F(@') with mult i 5 (F/D) > 2 so the result follws by the
definition of ramification in Zariski structures. The converse is similar.

O

We now show the following theorem;

Theorem 55. Ifpr . F - Disan wrreducible finite cover with F relatively closed in-
side Dx M™, M is P(ACF,) and F, D smooth, then the notions of Zariski unramified

and etale coincide.

Proof. Now we assume that F and D are both smooth considered as algebraic va-
rieties. As we are working inside projective Space, pr is a proper morphism. By

Chevalley’s criteria, we can also assume that pr is a finite morphism in the sense
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of algebraic geometry, that is given an affine open U C D, pr~1(U) is affine and
R(pr~(U)) is an integral ring extension of R(U). Now, suppose that pr is etale, then
as is shown in Mumford, pr is flat and so dimy) (f«(OF) ®o, k(¥)) is locally constant
on D. As pr is etale, we have seen that pr, : Ty p — Tpr(z),p 15 2N isomorphism, and

therefore as is easily checked

dimagyy (£+(OF) ®o, k() = |F()] for y € D

This shows that |F(y)| is independent of y € D which by the above lemma shows

that pr is unramified in the sense of Zariski structures.

For the converse, we may assume that pr : F' — D is a finite morphism, and
show that for generic @ € D, that |F(a)| = deg(pr) = deglk(F) : k(D)]. As
char(k(F)) = 0, the extension is seperable so we can find a primitive element g € k(F)
such that k(F) = k(D)(g). Clearly the minimum polynomial p of g over k(D) has
degree n = deg[k(F) : k(D)). Let hy,...hn_y € k(D) be the coefficients of p, then
R(DY(hy...hn_y) determines the function ring of a Zariski open subset U of D.
Clearly R(U)[g] is an integral extension of R(U) and corresponds to the projection
restricted to U’ = pr~}(U) N g # 0. By dimension theory, the zero set Z(g) C D
cannot intersect with a generic fibre of the original map pr : I' — D. Now we con-
sider the discriminant D(p) of the polynomial p as a regular function on U and we
have that for generic @ € U that D(p)(@) # 0. This implies that for generic @ € U
|pr=*(@)| = n = deg[k(F) : k(D)]. Now we are in a position to apply Theorem 5, p145,
of [32] which requires that D should be smooth, namely that pr. : Ty p = Tpr(2),D
is an isomorphism for z € F. As F and D were assumed to be nonsingular, this is
sufficient to show that pr is etale by Theorem 42

]

Remark 4. It is worth remarking that the above proof depends heavily on the fact
that the considered morphism is proper. If we consider the problem of adapting the

proof for arbitrary varieties, then ,using the fact that F 1s smooth, we can by Theorem
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40 (see also Theorem 42) find a locally finite presentation of pr but in doing so we
may lose points in some of the fibres. The problem depends on a deeper consideration

of the geometry of the varieties.

We now consider the case of a projective model of ACF,. This time the analogy
fails. If we consider the Frobenius map Fr : P! — P!, then Graph(Fr) C P! x P!
is a finite cover of P! and both Graph(f) and P! are smooth. The projection map
pr onto the second coordinate is unramified in the sense of Zariski structures as pr
is a bijection. However pr fails to be etale in the sense of algebraic geometry as
Pry : T Grapu(Fry = Tpr(z),pt 18 Zero everywhere. We aim to show that this is the only

bad example, more precisely we have the following;

Theorem 56. In P(ACE,), the notions of Zariski unramified and etale correspond
for a finite cover F — D with F' and D smooth. In P(ACF,), with the same hypothe-
ses on F and D, any Zariski unramified cover pr factors generically as g o h with h

etale and g s locally of the form Fr™ x ... x Fry_

Proof. Suppose first that F¥ — D is a finite morphism ‘With F and D affine. We
first find a field L such that k(F)/L is a purely inseperable extension and L/k(D) is
seperable. Let R’ be the integral closure of R(D) in L and R” the integral closure of
R(D) in k(F). As R(F) is integral over R(D) we have that R(F) C R", but F was
assumed to be smooth so R(F) is integrally closed in k(F') and therefore R = R(F).

Now corresponding to the ring inclusions
R(D) - R — R(F)
we have the sequence of finite morphisms

F —pp Spec(R') —p, D
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We first consider the cover F' —,,, Spec(R'). Let gq,. .. gm generate R(F) over R'.
As the extension k(F')/L is purely inseperable, we can write the minimum polynomials
p; of g; in the form 7"1-,191’“1 —71;2 = 0 where r;; and 7, , are in R'. Let U C Spec(R') be
the open subvariety determined by NU,, , where U, = {z € Spec(R) : r,,(z) # 0}.
Then pri*(U) has coordinate ring Ry s.lg1...gm] and is easily checked to be a
bijection on points with U, in fact can only be a map of the form (Fr™, ... Frm)
for an embedding of Spec(R) in A™. Now restricting pra to U, we may suppose that
pra(U) is open in D and therefore smooth. Now using the fact that U is unramified in
the sense of Zariski structures over pry(U), and applying the previous result, we have
that pro|U is etale. Note that on the complement C' = Spec(R’) \ U, we can apply
induction on dimension to factor this generically; we just need the following easily
checked lemma, the restriction of a Zariski unramified cover is unramified even if the
restriction is not irreducible. For the general case of a finite morphims pr : F' — D,
enumerate the affine pieces U; such that pry|U; is etale. The aim is now to patch the
U, to form an etale cover V of an open set W C D. The patching data is given by the
integral closure of R(pr(U;) Npr(U;)) in L. By facts on integral closure, it is easily
verified the patching data agrees on triple overlaps.
O

When F' and D are smooth, pr : FF — D is a finite cover as above, this result in
fact shows that, for P(ACFy), pr(j2) = pr(X.-1) where jo is the ramification locus
for Zariski structures and ¥,_; is the degeneracy locus introduced in Section 10. In
fact, using part of the next result, it is possible to show that 75 = %,,_;. The natural

question is then the following;

For P(ACFy), (F'/D) a cover of dimension 7 as above, is there an explicit formula

relating j; and X,_; for 7,1 > 27 (*)

The answer to (x) will clearly invoke the methods used in proving the Thom-

Porteous formula in Section 10.
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Without the smoothness assumption, strange things can happen. For example,
consider the conic given by the equation 2* = 2% + y2, which is singular at (0,0, 0).
‘Then the projection onto the zy—axis is etale everywhere except at the origin which
is a closed set of codimension 2. Then j, = {(0,0,0)} for Zariski structures but

En—l = @

Intuitively, if ' is a cover of D, then Mult,,(F/D) should count the number of
branches of F' over D. We shall make this more precise in the case of curves. We first
need the following simple lemma that the Zariski notion of multiplicity is multiplica-

tive, namely;

Lemma 57. Suppose that Fy, Fy and Fy are presmooth, irreducible, with Iy C Fy x
M* and F3 C Fy x M finite covers. Let (abc) € Fy C Fy x M* x M!. Then
mU[tabc(Fg/Fl) = m‘uztab(Fz/Fl)mUltbc(Fg/Fz).

Proof. To see this, let m = multe,(Fo/Fy) and n = multy(F3/F;). Choose o' €
Va N Fy generic over M. By definition, we can find distinct b;...5, in M* NV,
such that Fy(a',b;) holds. As F} is a finite cover of Fy, we have that dim(a'b;/ M) =
dim(a’'/ M) = dim(F1) = dim(F3), so each (ab;) € Vuy N Fy is generic over M. Again
by definition, we can find distinct ¢;; ... ¢, in ML NV, such that F3(a'b;ci;) holds.
Then the mn distinct elements (a'b;c;;) are in V., so by definition of multiplicity

multe:(F5/F1) = mn as required.

Now we work inside a projective model P(ACK,).

Definition 20. Given smooth projective curves (', and Cy and a finite morphism
[+ Cy — Cs, the indez of ramification or branching number at a is ord,(f*h) where

h is a local uniformiser for Cs at f(a).

This is independent of the choice of h, as the quotient of 2 uniformisers h/H

is a unit in Of). Given finite morphisms f : C3 — C, and ¢ : C, — Cy, if
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ord, £()(C3/C2) = m and ordy () o(a)(C2/C1) = n, then taking a local uniformiser
h at gf(a), we have that g*h = h}u locally at f(a) for a unit u and uniformiser
hy in Oy g). Similarily f*g*h = h3™u' for a unit »' and uniformiserh, in O,. This
shows that ord, ,7(s)(Cs/C1) = mn, so the branching number is also multiplicative

for smooth projective curves.

We aim to show the following;

Theorem 58. In P(ACF,), the notions of Zariski multiplicity and branching number

coincide for a finite morphism f : Cy — C4 between smooth projective curves.

Proof. As Cy has a non-constant meromorphic function, we can write C'; as a finite
cover of P(k). As we have checked both the branching number and Zariski multi-
plicity are multiplicative over composition, it is straightforward to see that we need
only check the notions agree for the cover m : C; — PY(k). Now considering this
cover restricted to A', let z be the canonical cooordinate with ord,(7*(z)) = m,
so we have that m*z = h™u, for v a unit in O, and h a uniformiser at a. We can
solve the equation z™ = u in some finite extension of F'rac(C}), which determines an

etale map ¢ near a of a new curve C} onto C;. The following fact may be found in [27];

Fact 59. Any etale morphism can be locally presented in the form

vV — Spec((A[T]/f(T))a)

e l

U —=5 Spec(A)

where f(T) is a monic polynomial in A[T] and f'(T) is invertible in (A[T]/f(T))a-

This is enough to show that €Y is unramified over a € C, in the sense of Zariski

structures. For suppose not and f has degree n. Let o;...0, be the elementary

106



symmetric functions in n variables T1,...7T,. Consider the equations

o(Th,..., T) =

on(Th, ..., 1) = an (%)

where ai,...a, are the coefficients of f with appropriate sign. These cut out
a closed subscheme of C C Spec(A[T:...Tn]). Suppose (ab) € Spec(A[T]/f(1))
is ramified in the sense of Zariski structures, then I can find (a'bibs) € Vg with
(a'b1),(a'by) € Spec(A(T)/f(T)) and by, by distinct. Then complete (b1bz) to an n-
tuple (b1byc) . . . ¢}, _,) corresponding to the roots of f over a’. The tuple (a’bibac] ... ¢, _5)
satisfies C, hence so does the specialisation (abbc, . . . ¢,_2). Then the tuple (bbe; . .. ¢, 2)
satisfies (x) with the coefficients evaluated at . However such a solution is unique
up to permutation and corresponds to the roots of f over a. 'This shows that f has a
double root at (ab) and therefore f/(T)|s = 0, which implies that C7 is ramified over
C; at {ab).

We may therefore assume that 7"z = h™ for A a local uniformiser at a. Now we

have the sequence of ring inclusions given by

k[z] = klz, yl/(y™ —2) = R

where R is the coordinate ring of C} in some affine neighborhood of a. It follows
that we can factor our original map such that C; is etale near a over the projective
closure of ¥y™ — z = (. Again, repeating the above argument, we just need to check
that the projective closure of ™ — z has multiplicity m at 0 considered as a cover

of P'(k). This is trival, let € € V, be generic over M,then as we are working in

characteristic 0 we can find distinct €, . . . €, in M, solving y™ = €. By specialisation,
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each ¢; € V. |

Finally, we can use unramified Zariski covers to define the notion of a local func-

tion, which we will later generalise to the notion of a germ.

Definition 21. Given a finite covering F C D x M*, we say that F defines a local
function on D at (ab) if F|(V, x V) is the graph of a function from V, N D into V.

It is a rather straightforward now to see that if F" is a finite covering of D with D
pre-smooth, then F' is unramified at a point (ab) € F iff F' defines a local function
at (ab). Hence, we have the following result which is the inverse function theorem for

zariski structures.

Theorem 60. If F' is an irreducible finite covering of D, then there is an open subset

Dy of D such that F' defines a local function on D;.

To see this, simply take an open subset to ensure D is pre smooth, and a further
open subset to remove the ramification locus. The result generalises easily to the case

of reducible finite covers.

Comparing this with Theorem 43 and Theorem 48 strongly suggests that one can
show the equivalence of etale morphisms and unramified Zariski covers for P{AC Fy)
without the restrictive assumption of smoothness, that is for the wider class of pre-
smooth sets. The idea is this, suppose a morphism f : X — Y fails to be etale,
then by Theorem 47, we must have that f* : O}\(a:),Y — Og x is non-surjective for
some z € X, that is O}\(m_),y C Of x is a proper inclusion of Henselian rings, using
Theorem 45. By general facts on Henselian rings, we can present this inclusion in a
straightforward way corresponding to a morphism f%/? lifting f to a new pair of etale

covers. This sets up a diagram of the form;
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tal
Vixy X 225 x

Jflift lf

vy etale Yy

where the horizontal arrows are etale, and therefore by adapting Theorem 62
should be Zariski unramified. By similar methods to Theorem 64 again, f%/t should
be ramified in the sense of Zariski structures and therefore ,using Lemma 62, we can

see that the original morphism f should be Zariski ramified.
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Chapter 12

Defining Tangency of Curves

Having developed the basic machinery of Zariski structures, we turn to the problem
of interpreting a field inside M. The extra assumption that we need is that M Is
non-locally modular, at least for the stable case. In the simple case, we require a
stronger condition, namely that M should not be 1—based. As has been shown in
[9], this turns out to be equivalent to the notion of non-linearity for such structures,
namely there exists p € Ss(M) such that U(Cb(p)) > 2. In the case where M is a
stable minimal type with the property that acl(@) is infinite, the last condition being
automatic for Zariski structures, it is a known result that M has weak elimination
of imaginaries. In the case that M is simple, it is again possible to adapt this result

under some assumptions. Namely, assume that

¢ = Cb(stp(p)) and c =ay,...,0,/E

where is a () definable equivalence relation on M. Then, without loss of generality
we can choose ay, ... ,an such that aj,...,a; € acl(c) and j is maximal with this
property. Consider the statement;

E]SEj+2, v ,39’)”(6 = A1, 1 QG T4, Tj2s - - LEn/E)

then under the assumption that this formula is stable and by hypothesis non-
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algebraic, it follows easily that it must be realised inside aci(#) which is an elemen-
tary substructure in the zariski set up. This contradicts the maximality of j unless
J = n in which case the tuple a4, ... ,a, is interalgebraic with ¢. A simple argument

then shows that E can be chosen to be the equivalence relation of permutation on AM™.

It now follows that we can obtain a rank 2 family of curves on M. Namely choose
@ € M™ such that a is interalgebraic with c. Then let b5, realise a non forking ex-
tension of p to @c. As @ and c are interalgebraic, we still have that U(b,b,/a) = 1 and
moreover we can assume that mult(b,b;/a) = 1 in the sense of the Zariski closed sets,
taking irreducible components of the locus(biby/a@). Now let L = locus(bybya/acl(®)),

then this gives a 2 dimensional family of curves, with generically irreducible fibre.
Let L represent a 2 dimensional family of curves in M? which are finite to finite

and such that the family is generically irreducible. Let I C L x M?2 be the incidence

relation defining this family. Let

L CLF x M¥Y = {(g,..., 01,0, . .. VTk) - (ToT1) € g AL (Tko12) € gy}

Then I is closed in L* x C**'. Now suppose that (7,Z) € I is generic, then we
have that dim(g, Z) = dim(z1,... , zx/gze) + dim(gro). As gzois generic in pr(ly) =
L¥ x M and each g, is a finite relation, we must have that dim(gz) = kdim(L) + 1
and so dimly = kdim(L) + 1.

By pre smoothness of L, we know if I{ is an irreducible component, then

dim Iy > k(dim(I x LF~ x MF=1)) — (k — 1)dim(LF x M*+!)

= k(dim(L) + 1+ (k — 1)(dim(L) + 1)) — (k — 1)(kdim(L) + k + 1)

= kdim(L) +1
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Consider also the family N* C L* where N is the subfamily of L consisting of
curves passing through ab with ab generic in M?. Again N* is closed in LF and

definable over ab. We set J C L¥ x LF x M*1 x M ! 10 be

J:{(gk,...gl,g;c,...g’l,xo,...:):k,yo,...yk) (G- g1y 05 - > T) € T A
(QL,---!}i,yo---yk) €It Axo=yo ATk = Yr}

In short, we have that J(§1, g2, 27) iff Ix(G1, T) A Ix(G2, 7) N Y € Hg,, where Hg, is
the hyperplane associated to g using the projection pr : M*HL 5 M? onto the first

and last coordinates. Observe that go C Hg,.

Now suppose that (7:7279) € J with (3152) generic in L* x L*. Then we have
2y € J(5132) iff (zozi) € G1 N Go. Now using the facts that independent generic
curves intersect at finitely many points and trajectories are determined up to finite

possibilities by the initial coordinate, we have that

dim(Z5/G152) = dim(zy . . . Tk—1/TeTkG1G2) Hdim(y: - Yk 1/YoYrG102) +dim(zox /G1G2) =

Hence dim(J) < dim{L* x L¥), as if some component had dimension bigger than
this, the above result implies it could not project onto L* x L* which would give that
the dimension of a generic fibre should be at least 2 which is ridiculous.

Moreover, by pre smoothness the dimension of each component dim(J¢) 2> dim/(LF x
L¥)

We have the following lemmma,

Lemma 61. If §1,52 € N* are independent generics then J(g132) 15 finite.

Proof. 1t is sufficient to show that g N g» is finite.
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First, carry out the following reduction on K ¢ N* x A2 given by K(g,ab) iff
ab € g to make the generic fibre irreducible. Let § € N* be generic and ¢ = Cb(K (g)°).
Then we have ¢ € acl(g). Let a'b’ be generic in K ()¢ over ab and

L = locus(gec, a't’ facl(ab)) C locus(gc)/acl(ab) x M?

Then we have first a generically finite map

pr : locus(gc)/acl(ab) — N*

and second

L(gc) = K(g)°

so the generic fibre of L is an irreducible curve.

Third, we have a generically finite map

pr:L —- K

extending the map pr, generically injective on fibres and with dense image

It follows that on some U C locus(gc)/acl(ab), U defines a dim(c/ab) > 1 family

of curves. Now suppose that dim(g; N g;) > 1. Let pr(gic) = g1 and pr(g.d) = g,. It

follows as

pr(L(g10)) = pr(L(gzd)) = K(g)°
that L(gic) = L(g2d).
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Now let % be the equivalence relation on [/ x U given by

E(gic, §od) iff L(gc) = L(g.d)

As gic and g,d are independent generics in U, it follows that the equivalence class
of gic is open in U. If 3d is also generic, choose an automorphism between gic and
gd. This takes the equivalence class of 7 g1¢ to gd which must therefore also be open in
U so the equivalence classes intersect. Hence, for all gd generic in U, L(gd) = K(g)°.
This is a contradiction as if dim(c/ab) = k > 1, choose /b in K(g)° generic over abe,
then if dim(a't /abc) = dim{a't’ /ab) = 1, we must have that ¢ € gel (ab) which is not,
the case, hence we have that ab and o'd are independent generics in M2. Choose
another a"b" generic over ab with o"p" ¢ K(g)° Then, again by automorphism we can
find a generic element gd passing through ab, a”b", which is a contradiction.

O

It follows that J is a generically finite cover of N* x N k though not necessarily

irreducible. Let

U= {(5:9:) € N*¥ x N* . dimJ (§1g2) = 0}

Then U is open in N* x N*. and pr : J — U is a finite reducible cover. Moreover,
we may assume that U is presmooth as removing a finite set of curves from N, gives

that N* x N* is presmooth.

Definition 22. g5, s ramified at aba . . . a if taking the union J' of components of J
passing through gigsab. . . a,ab . .. g with finite fibre over §,3,, gives that mult“ba > 2

in the sense of reducible covers.

For ease of notation denote the concatenated tuple ab...a,ab.. . a by aba ... a2
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Definition 23. We will say §1 Topa...a02 tff G152 1s ramified at aba . .. a® or dimJ(G152) >

1 unth the infinite component passing through aba .. .a‘?.

By properties of multiplicities outlined above, the first part of the tangency re-
lation is definable on (N* x N*) with parameters ab. In order to see this, take all
possible unions J; of irreducible components of J, and take the union of the jacobians
782 for each J;. As adding components to a finite cover can only increase the size of
multiplicity, we get the result. The second part follows by definability of dimension
and presmoothness of each component of J, namely if we find an infinite component
of a fibre containing aba...a®, then we may assume that the infinite component

passes through ab. .. a9,

The following definition of tangency 7 is given in [29]

Definition 24. ¢,7'g, iff Va' € Vo (Y3 € (V;, N N*)3g, € (V,, N N¥)gi(a') = g3(a’))

Given this, we will show that

Theorem 62. The new definition of tangency T is equivalent to the old definition
T

Proof. Case 1. Left to right.

Suppose that we have §;7 350 052 in the old sense. That is given o’ € V,, and
1 € Vg N N*, we can find g} € V;, N N* such that g (a) = g4(a).

We may assume that J(g192) is finite. Otherwise there exists a component of the
fibre with dimension > 1, and not passing through ab . ..a®. By presmoothness, this
belongs to a component J' of J not passing through §;g.ab...a®. Removing this

component doesn’t effect the following calculation as J' cannot contain any elements
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in an infintesimal neighborhood of §1g2ab. .. a®.

Let o € V, be generic over a, 5o o' # a and ggh € V5 X Vy, N NF x N* as
above. Now 7,7, € U by properties of infintesimals and J (gighab. ..a?) holds. More-
over, if ('t ...a"),(a'b"...a" are the trajectories associated to g;, g, then clearly
Ie(g),d ...a") and moreover (b’ ...a") € Hy,. Hence we have that

J(.g,, 't .. .a", b’ ... a") holds as well. Now by definition of multiplicities for re-

ducible covers, we have that multgi’g'z"a > 2 as required.
Case 2. Right to left

Suppose that multgll’g'z"“ > 2 and let j; be the Jacobian witnessing this, so j» C J.

Now let jao.o = {5172 : (51, 82,0, --- ,0P) € ja}. Let N be the union of components
of J(§12%1%) A J(§192T3T4) Witnessing tangency of §1g; at (aba. .. a)®. Then by
specialisation, we have

N(j1gaab...a®,ab...a?)

and moreover

N(G1§20b .. .a® ab...a?)iff multgf'g';‘ > 2, that is 78*(3192)

Now fix g},ab...a,a'b' ... a" such that

I.(3},a...a) N x(g},a .. .a")

with g} € V5, N N* generic and a’a” generic over a

We have,
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dim(gy, € N* : J(g,ghab...aD) A 3y, .. ye J(G,55a'% .. .a",a'y, . .. Yg-10") =
dimN* — 1

as we may assume that a’a” is independent from aa and clearly dim(a’a" /g,aa) = 1

as g, is a curve. Hence, by forking symmetry, and the fact that g, © NF gives

dim(gy/aa’a”) < k — 1. Conversely if g, is a generic element of N* passing through

a'a”, we have that dim(g,a’'a”/aa) = dim(g./a'a"aa) + 2 = dim(a'a"gafaa) = 1 +

dimN*. Hence,

dim(gy € N* : 3y, ... ys 1 N(gighab...a® 'V .. .a",d'y; ... ye_10")) = dimN* —

However, dim(g; € N*: N(g1g4ab...a¥,ab...a®)} = dim(g, € N* : jeb-e(g,g0)) <

dimN* — 1 by properties of multiplicities, and hence

dim{gh € N*: 3y, ... us_ 1 N(g1ghab . . .a ay, .. JYp10)} < dimNF — 1,

as removing a finite subset of points from M we may assume that there is no

point (cd) distinct from (ab) such that every element of N passes through (cd)

So g1,ab...a,aa is regular for the cover

Jy1 ... Jyp_a N(ab...a@) = N* x MFT1 x A2

It follows if we choose gi,a't’...a", a'a"specialising to g1, ab. . .a, aa that we can
find gy € Vg, such that Iy, ...y, N(gigha...a®,a'V ... 0", a'y, ... yr_1a") and hence

that

N(gigha...a®,ab ...a" a'b".. . a"),
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where we may assume that @’d”...a" € V. o as N is finite over y; ...y,

Now suppose we choose a' € V, and g; € V; N N* inducing @'t ...a" € V. 4
Then by the above we may find g € V;, N N* with the property that
N(ggha...a® d'b...d,a'b"...a') holds, that is gy € N*NV;, and a'b”...a" € V.
is a trajectory induced by g} such that gj(a’) = gi(a’). This is precisely the old defi-

nition.

The case of infinite intersections can be handled more easily. Note that the set Inf
of 17, satisfying this property defines an equivalence relation on N* x N*. Taking
the quotient by this equivalence relation, and choosing a smooth set of representatives
for our curves we can reduce to the case where distinct parameters in N*/Inf define

curves with finite intersection near ab...a. Now the case where g; = g» is trivial.

O

This shows easily that 7~ defines an equivalence relation on N* x A*

After defining tangency, one proceeds by finding a definable group inside M*®,
using a similar technique to the 1-based case. We have the incidence relation R C

N? x M3 given by

R(g1gazyz) iff (zy) € g1, (y2) € 93"

In the stable case, the tangency relarion 7 defines an equivalence relation on N 2
and we take G(M) to be the quotient N?/7. Then we can define composition on
G(M)? by

m(a, b, €) iff 3919293 € N3(g192Ta A 929:Tb A 91957 ¢)

If g, and b are fixed and independent, then in the stable case one can always find

g3 such that 92937 b from which it follows that m is defined for independent generic
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realisations of G(M). Moreover, tangency preserves composition from which it fol-
lows that m is single valued. Finally, one checks associativity on mdependent generic
realisations of G(M). By the Hrushowski-Weil Theorem, the generic type p of G(M)
generates a l-dimensional group in M®? which by general facts on minimal groups

must be abelian.

It is worth speculating on what could happen in the simple case. First, if we have
a notion of specialisation, then it is unlikely we can show anything as strong as The-
orem 58, rather we might have to weaken the conclusion to assert only the existence
of a’ € V, generic over a. In this case, the definition of tangency ¢;7"g, as given in
[29] can be weakened to a purely existential statement requiring that the witnesses
(a’g1g5) for tangency are generic over (ag,gs). Unfortunately, the new relation 77 is
no longer an equivalence relation. One can take the transitive closure of completions
T"; of such a relation and show it is definable using methods as in [14], unfortunately
without rather strong assumptions this seems to lead to multi-valuedness of m. Alter-
natively, one can hope for sufficiently generic behaviour to show that the completions

in fact coincide.

In the stable case, the next step is to transfer the (multiplicative) group G(M)
back to U C M and define a notion of addition to give a ring structure on U. This
is sufficient to define a non-nilpotent matrix group M of rank 2 inside U. It is then
possible to find a mimimal subgroup M’ on which M acts non trivially by conguga-
tion. The field is then recovered inside M as Endpy M’, see [8] for the general idea
behind this construction, and section 15 for some progress towards carrying out this

step for simple theories.
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Chapter 13

Zariski Structures and Simple

Theories

saturated mode] (F,P),if G and are tuples and 4 (F, P), then tp(a/A) = tp(b/A)
iff there is an Isomorphism of L1yer» Structures taking acl (4(a)) to acl yop (A(B)).
Then clearly any 5, type p(z) is determined by formulae of the form Jg(z, ¥) with
o(z, ¥) quantifier free in Ly, Fp Enumerating the n-types containing given formyla

0(2), it follows by compactnesg that
95) = vz, 3.z, )

where ¢,(z, ) is of the form C(z, ) A Pr=(z ¥) with ¢ 4 constructible set ip

ACF and p+- Some assignment of p or =P to the variables zj.
g

our closed sets x P(F)™ to be of the form C(z) A P(Z) where C(z) is a Zarisk;
closed set inside fn or the complement of (C(z, §) A P(Z,%)) where C(Z,9) is con-
structible and g finite cover of HQC(:E,y") in F™ The need for taking botp forms of
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closed set will be apparent soon. Now we consider the Zariski structure axioms;

(L) is clear.

(P) This is problematic and the introduction of the second form of closed set is
one possible solution. Let C(Z,y) A P(Z,y) C P(F)"! be a quantifier free closed
set, the other case will be similar. Let pr : P(F)"*! — P(F)" be a projection. We
have that {a@ : C(a@) = F'} is Zariski closed and definable by a formula D(z). By the
axioms for the generic predicate, using the fact that the fibres over I} are infinite, the
quantifier free formula D(Z) A P(z) is equivalent to pr(C(z,y) A D(Z) A P(z,v)).
Let U(Z) be the complement to D(Z) in FyC(Z,y), then U(Z) A C(z,y) is con-
structible and a finite cover of U(Z) in F™*!'. Then pr(U(z) A C(Z,y) A P(%,y))
is just Jy(U(Z) A C{Z,y) A P(Z,y)) which is an open set of the second form. Then
pr(C(Z,y) A P(Z,y)) is constructible.

(DCC) This completely fails. Consider the family of curves {Cyr(z,y) : n > 2}
inside F'? given by y = z". Let ¢,(z,ya¥3 . .. yn) be the formula Cy(xyz) A Cs(zys) A
... AN Cp(xy,). Then clearly I can find a tuple xys ...y, satisfying ¢, with zy, ...y,
distinct and disjoint from acl cr(). By the axioms for generic predicate, I can find
such a tuple with the assignment P to z, -P to ys...y,_1 and P to y,. Now con-
sider the closed sets of the second form given by X, (z) = —-3y(C.(zy) A P(zy)).
Then by construction we have that the sequence {XoN...N X, : n < w} forms an
strictly decreasing chain of closed sets inside P(F'). Note that if we restrict ourselves
to quantifier free definable sets then the DCC holds trivially, but we then have no
analogue of P. If a closed set X is definable over @ and we consider only closed sets
defined over aclscp (@), then clearly X can have at most countably many irreducible
components. We also have that if @ is a tuple in P(F)" and A C P(F)", then in

general locus(@/A) will now only be type definable.

(DIM) If we allow for possibly type definable closed sets, which the above seems
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to require, then for X closed irreducible over @, one can hope to define dim(X) to
be the length of the maximal chain of irreducible closed subsets of X over acl cr(a),
such a chain will consist of type definable sets! In the case of DCF, one generally
needs to pass outside aclpcr(@) to count the dimension of a closed set defined over
a, it would then be useful to consider what happens in the example of DCF with a

generic predicate.

(PS) Again, this seems likely to fail, but by analogy with what happens in the
case of a vector space with generic predicate, one hopes to recover intersections by

finding “parallel” curves.

In the case of (F, P), one expects that the right version of these axioms will be
enough to prove the following version of Noether normalisation. Namely, X is an ir-
reducible (type definable) closed set of dimension & iff there exists a generically finite
map of X onto P(F)*. That is a map pr : X — P(F)* such that pr(X) = P(F)*
and {z € P(F)* : 3=°§(X (%, 7)) has dimension strictly less then k. This would be

enough to equate dem with SU-rank.

Clearly, P(F') has type definable independence which would be sufficient to re-

cover an analogue of (DF).

Ultimately, one hopes to obtain (GF), the generic fibres lemma and show the

notion of dimn 1s additive.
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Chapter 14

Interpreting a field in T'qp F,

In this section, we show a partial result towards interpreting a field inside any simple
non abelian group defined in Tscr, using only the group language. An analogous
question holds for simple non abelian group definable in pseudofinite fields. In [29],
Zilber is able to find a non-nilpotent group after defining tangency. Therefore, pos-
itive answers to these questions provide further support for carrying out the Zariski

construction for simple theories.

Let G(L) be a simple, non abelian group definable in a seperably closed field L
of characteristic p, we aim to show that G(L) interprets the field L in the group
language. By results already proved in [26] we know that G(L) may be considered as
the L-rational points of an algebraic group G defined over the original field L. We
congider a series of reductions of G to a semisimple linear algebraic group defined over

the prime subfield F},, and use some standard facts aboui the structure of such groups.

First, by Chevalley’s theorem, we can find a maximal normal subgroup N of G,

such that the following sequence;
e—+N—->G—=>G/N—e

is exact, IV is linear algebraic, and G/N is an abelian variety. We claim first that
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N is defined over L. Otherwise, working in a large algebraically closed field K D L,
we can find o0 € Gal(K/L) such that N # N and clearly N° C G. Consider the
group I =< N, N° > containing N. We will show that H is linear algebraic, which

clearly gives the result.

First choose an affine embedding & of N into GL(n, K) for some n. Then extend
8 to N U N by setting 8(z”) = 6(z)” for z € N, clearly this map is well defined.
Moreover, if w(zy,...%,) is a word of length n belonging to N U N7, then I claim
that #(w(zy,...,Ts)) = w(f(z1),...,0(zn)). This is seen by induction on n, so let
w(x1, ... ,Zns1) be a word of length n + 1, then without loss of generality we may
assume that w(zy,... ,Zny1) € N and some z; € N. Now using the fact that both N

and N? are normal subgroups of GG, we can replace w(zy,... ,Zni1) by

.’137;(53;110(5131)Ii) v (x;lfw(xi_1)xi)w(mi+1)w(:ﬁi+1, Ca Slin+1).

This gives a word of the same length and equal to the original word, so we may
assume that z;7 € N. Then it follows that w(zs,...,%s+1) is also in V. Now
using the fact that @ is a homomorphism on N, we obtain O(w(zy,... ,Tnq1) =

w(0(z,))0(w(za, . .. ,Tos1) = w(0(z1),... ,8(z,)) by the induction hypothesis.

Now let H' =< 8(N),0(N)” >, we want to extend 0 from H to H'. First, as N and
N? are connected groups, it follows by Zilber’s indecomposability theorem that ele-
ments of the group H may be written as words of bounded length n in elements from
NUN?. We therefore extend 8 by setting 8(w(x1, ... ,Za)) = w(0(z1),...,0(z,)). We
show that this is well defined. So suppose that w(zy,...,z,) = W' (y1,-.. ,Yn), then
concatenating w and w', we have a longer word w"(z1,...%n,¥1,.+.,¥a) = €. Now
applying 6 and using the above result gives w”(8(z1),...0(zn),8(11), ... 0(yn)) = €,

which gives the result

We have shown how to extend # to an abstract isomorphism between H and H',
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1t remains to show that is an algebraic isomorphism.

In order to see this, note that we can use 6 to pull back the Zariski topology
on H' to H, so it only remains to check that this topology is compatible with the
original multiplication . on H. So let [Y C H? be the graph of ', the pullback of
multiplication on H' and let (a,b, '(a,b)) be generic in I’ over the field F of defi-
nition of 1'. We clearly have that (a,b, p'(a,b)) is in the graph I' which is defined
over L C F. Hence, it follows that I" C I'. Moreover, as I' and T’ are irreducible,
if strict inequality holds, we must have that dim(I") < dim(T'). Using the fact that
the domains agree, taking a generic fibre this implies that p is multivalued which is

absurd...(this argument is not essentiall)

The above shows that H is defined over L. We now consider the subgroup HNG(L)
of G(L) and claim this is definable inside G(L), no proof is given. As G(L) was as-
sumed simple, this forces G(L) N H to be e or G(L).

Now consider the canonical map,

7:G>G/H

By elimination of imaginaries, it is straightforward to see this map is also defined
over L. If G(L) N H = e, then 7 gives a definable embedding of G(L) into the L-
rational points G/H(L) of an abelian variety. This implies that G (L) is abelian which
is not the case. Hence, we may assume that G/(L) consists of the L-rational points

H (L) of a linear algebraic group H defined over L.

We now assume that H is definable over L in the stronger algebraic sense, that is
the ideal I(H) of H is generated by polynomials with coefficients in L. Let N be the
maximal normal solvable subgroup of H. Again we can observe that NV is definable

over L in the weaker sense, as if not we can find a ¢ € Gal(K/L) such that N° # N
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1l

and N° ¢ H. We have the group < N, N? > is also solvable, as;

< N,N° > /N=N/NNN°

The right hand side is clearly solvable as the quotient of a solvable group, hence

as N is solvable, so is the left hand side.

We cannot deduce that N is strongly definable over L. However, we may apply
the Frobenius map Fr" to the coefficients of polynomials defining I(N). This defines
a bijective morphism (not an isomorphism!) between H and H™" which is strongly
definable over LP" and whose maximal normal solvable subgroup N7 is strongly de-

finable over L. This map also sets up an isomorphism between H(L) and HF™" (L?")

We now work with the L rational points of H¥™". Again, assume that H"" (L) N

N¥™ = e and let

7 be the canonical map

m: HF™ — HF™ INF™,

Let f1,...,fm be local uniformisers at e for H'™" /N, As m is dominant,
it follows that 7 fi,...,n*fm are algebraically independent in the ring of func-
tions R(GF™) of GF™". Then, as they clearly vanish on N, it follows that Rad(<
7 f1, ... T fm >) = I(N). We want to show more generally that the 7*f; generate
the normal bundle J/J? for N¥™". Suppose not, then taking a uniformisers g at
z € N, we can find integers n > 2 such that ¢* = n* f,for some m. Then, as 7* fy, is
N invariant, it follows that so is g. Now as fi,... fn are local uniformisers, we can
find h integral over K[fi,... f] such that fi,..., fm, h generate the ring of functions
R(HF™ /NF™), hence " f1,... ,m* fm, n*h generates the ring of N invariants. This

gives us a relation of the form
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g= p(ﬂ-*fl’ R aﬂ*.fTTHW*h)

and hence

W*fm =g" =p(7r*f1: - aﬂ*fmrﬂ-*h)n

which gives an algebraic dependence between the f;’s contrary to hypothesis. It
follows that the 7*f; generate the ideal sheaf J and in particular as NF™ is affine,
generate I(N'™"). By hypothesis, we can take the f; to have coefficients in L, and

similarilily for ~ being integral over the f;,
Now as NF™ is smooth, the map
d . J/J2 — QH X ONFT'"

is injective, see Theorem 40, and in particular the differentials dr* f; are non zero.
Hence, we have that the map 7 defined by the polynomials f;, ... , fm, I is seperable
and in particular the polynomials fi,..., f.., h are seperable over L. It follows that
7 defines an isomorphism between the I rational points G¥™" (L) and GF™" /HF™" (L)

using the fact that L is seperably closed.

We have now reduced to the case of considering L rational points for a semisimple
algebraic group G defined over L. We first aim
to descend the field of definition of G to F29. So let the tuple I define G and let

a be a generic point of G over F%9 Ul. Then consider
V= locus(t‘zf/F;lg)

As multiplication y on G is defined over F,, the statement ¢(z) C pr(V) given by
p defines a multiplication on the fibre V(Z) is algebraic, defined over F? and holds
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for the generic point [ of pr(V) over F29. Hence, the fibres of V' are linear algebraic
groups almost everywhere. It can also be shown using Zilber’s indecomposability
theorem, and definabilty of the dimension of fibres that the statement ¢'(Z) given by
“the fibre V'(Z) is a semisimple algebraic group of dimension n” is also definable over
F,. Again, it follows thfs holds almost everywhere on pr(V). Now using the fact that

FM9 < L9, we can find a parameter f € ¢/(F29), and hence the fibre V(f) defines

a semisimple algebraic group.

It remains to show that V() and V(f) are biregularly isomorphic as algebraic
groups over L#9. However, this follows from the fact that ¢(z") defines a continously
varying family of semisimple algebraic groups of given dimension. Using the isomor-
phism theorem for such groups, there can only be finitely many isomorphism types

for the fibres over L9 and hence the isomorphism type is constant.

Now let # be an isomorphism defined over L9 between G and G’ where the latter
is defined over F;lg. Again, we alter § by Frobenius to get rid of the inseperability in

the coeflicients defining ;

0: G—=G

oF" L GFT = G

Then similarily to before Fr™ defines an isomorphism between G(L) and GF"" (L*"),

and one easily shows that 67" defines an isomorpism between G*" (L) and G'(L).

We now finally descend the field of definition of G’ from F;’g to F,. As the field of
definition is a finite extension of F}, its normal closure is finite and hence seperable

over F,, (the Frobenius is onto). Therefore we may assume the field of definition to be
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Galois over F},. Now the result is classical, see [33], we obtain a biregular isomorphism

between G’ and " defined over F;}’g . This clearly preserves L-rational points.

We are now in the situaion of considering the L rational points of a semisimple
group G" defined over F,. Using the theory of Borel subgroups and the Frobenius
which fixes G, it looks fairly straightforward to interpret the field L inside G"(L)

We still have to prove the following result though;

If G(L) and G(LP") are the sets of L and L*" rational points for an algebraic group
defined over L*", then if G(L) interprets the field L in the group language, then so
does G(LP").

This seems very plausible given that the fields L and LP" are elementarily equiv-
alent.
Alternatively, the proof goes through if the following, for which I know no coun-

terexample, is true for linear algebraic groups.
Given a linear algebraic group defined over L a seperably closed field, Rad(G), the
maximal normal solvable group is defined over L in the sense of algebraic geometry

(We know it must be defined over some purely inseperable extension L™ ".) (*)

Given (x), we have tentatively,

Theorem 63. Any simple, non-abelian group G defined in Tscr, interprets a field

using only the group language.
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