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Abstract

Control architectures and methodologies are developed for the reduction of radiated noise from
a thick-walled cylindrical shell using external piezoelectric panels. The proposed approach is to
cover the shell's outer surface with curved active composite panels, and to reduce the radiated
noise by controlling the motion of each panel's outer surface (i.e., the radiating surface), instead
of the shell's outer surface. The use of external piezoelectric panels proposed in this thesis has
significant advantages over the conventional approach of directly controlling the structure in
reducing radiated noise from stiff structures. The reason is that the proposed approach needs
much less control authority, and allows the control system to be significantly less dependent on
the dynamic characteristics of the structure, than the conventional approach.

The control architecture is composed of local controllers, which are implemented for each
panel to reduce its vibration level, and a global controller, which makes the shell a weak radiator
by coordinating all of the panels simultaneously. For each local control, two different feedback
controllers are implemented simultaneously. The first feedback controller takes the acceleration
of the outer surface of each panel and uses high gain to minimize its motion. The other
feedback loop, which is denoted as the feedforward controller in this thesis, takes acceleration
on the inside surface of the panel and aims at canceling the motion of radiating surface. Several
controller configurations were designed, implemented and compared, in order to find the one
that is the simplest to implement, while achieving the required closed-loop performance and

stability margins. After covering the surface of the cylindrical shell with active composite
panels, the panel-level tonal controllers were designed and implemented on the shell vibrating
in water. The controllers yielded more than 20 dB of attenuation at the target frequency in
the acceleration over the radiating surface, although the actual noise level was increased under
closed-loop control due to the flaws in the internal accelerometers in the panels.

For global control, a new wavenumber domain sensing method has been developed and
applied to feedback controller design for active structural acoustic control. The approach is
to minimize the total acoustic power radiated from vibrating structures in the wavenumber
domain. We found that the method greatly simplifies the design of MIMO LQG controllers for
active structural acoustic control, by reducing the effort to model the acoustic radiation from

the structure, and by reducing significantly the number of transfer functions that should be

identified to get a plant model. The new sensing method was numerically validated on a beam
structure and a cylindrical shell with active composite panels mounted.

Thesis Supervisor: Steven R. Hall
Title: Professor of Aeronautics and Astronautics
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PS Density of the shell material

25



ax, o-y, o-z

o-Xy, -yz, o-zx

Xx, Xy, Xxy

w
Wb

WT

wp, p

Superscripts

He

Tr

Abbrevi

ASAC
DSP
IIR
LQG
MIMO
MSI
NGC
OLCL
PVDF
PZT
SISO

Normal stresses
Shear stresses
Rotations at the mid-surface in a cylindrical shell
Change of curvature, and twist of the mid-surface
Angular frequency
1. Control bandwidth of the tonal feedback controller
2. Disturbance bandwidth (or, bandwidth of interest)
Target frequency of the tonal feedback controller
Resonant frequency and damping ratio of the panel

rmitian transpose (complex conjugate transpose)
anspose

ations

Active Structural Acoustic Control
Digital Signal Processing
Infinite Impulse Response
Linear Quadratic Gaussian
Multiple-Input Multiple-Output
Material Systems Inc.
Northrop Grumman Corp.
Open-loop and Closed-loop
Polyvinylidene Fluoride Polymer
Lead Zirconate Titanate
Single-Input Single-Output

26



Chapter 1

Introduction

Sound radiation from vibrating structures has been an important problem in many engineering

applications. Some representative examples related to structurally-radiated noise include naval

vessel and weapon radiation, sound transmission through aircraft fuselage panels, and noise

generated by transformers, etc. Much research has been carried out on the development of

efficient methods to reduce the noise radiated from structural vibrations. Generally, those

methods can be divided into two subgroups. The first is passive methods, which try to make

a quiet structure by mounting additional mass or damping treatments through mechanical

redesign. The second subgroup is active methods, which reduce the structurally-radiated noise

by using actuators, sensors, and control algorithms. It is widely accepted that passive techniques

are not effective for the control of low-frequency sound, due to the increased weight of the passive

treatments. Considerable effort has been devoted to the development of the active control

techniques. Most of the structures investigated to date are flat panels and long cylinders in the

case of sound radiation, and boxes and closed-cylinders in the case of interior sound control.

The idea is to control structural motion that couples well with the acoustic field surrounding

the structure [Fuller, 1990].

Most of the existing literature on active structural acoustic control focuses on the minimiza-

tion of the radiated sound by directly controlling the dynamic behavior of the structure. This

strategy is desirable when the actuators have sufficient authority over the structural behavior.

This is not the case for very rigid and stiff structures, such as thick-walled metallic cylinders,
which are the structures considered in this thesis. In this thesis, a method is proposed to

control the radiated noise from a thick-walled stiff structure by actively isolating the motion

of the structure's outer surface from the outer surface of a conformal coating mounted over

the structure. The surface of the structure is covered with curved 1-3 active composite panels

that contain several accelerometers attached to their outer and inner surfaces. The embedded

accelerometers provide the information required for closed-loop control, while the panel's active

layer provides the actuator authority. Local controllers, which consist of feedback controllers

implemented as analog, digital and hybrid analog/digital circuits, etc., combined with an analog

and digital feedforward controller, have been designed to attenuate the outer surface's vibration

for each panel. A global controller is designed to perform the high-level coordination of the

local controllers.
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Figure 1-1: Block diagram of adaptive feedforward control algorithm.

1.1 Background and Previous Research

1.1.1 Control Algorithms

Adaptive feedforward control algorithms

Since Fuller introduced the technique of reducing the acoustic pressure radiated from vibrating

structures by applying mechanical inputs directly to the structures, which is referred to as

Active Structural Acoustic Control (ASAC) [Fuller, 1990], many researchers have developed the

control algorithms to attenuate the structurally-radiated noise. Specifically, most effort has been

focused on the development of efficient adaptive feedforward control algorithm. The concept

can be explained using a block diagram in Figure 1-1, showing a structural system in an infinite

baffle, the adaptive controller, and the disturbance signal that causes the structure to vibrate.

The figure also shows the actuator, which applies the control input to the system, and the error

microphone in the far field. Since the feedforward controller needs the disturbance signal as its

input, we should be able to measure the disturbance signal directly, or a related signal, in order

to apply the feedforward controller. In adaptive feedforward algorithms, the control inputs are

computed by passing a signal which is coherent to the disturbance input through an adaptive

filter, before being applied to the structure. The coefficients of the adaptive filter are updated

in such a way as to minimize a quadratic cost function created from a measurable variable of the

system [Vipperman, 1993]. The sum of the mean-square values of the output of sensors, such

as the error microphone in Figure 1-1, is commonly used as the cost function. Representative

research on the adaptive feedforward control algorithms include [Elliott, 1987], [Metcalf, 1992],
[Burdisso, 1992], and [Vipperman, 1993].

Elliott et al. presented a generalization of the filtered x-LMS algorithm which minimizes the

sum of the mean square outputs of a number of errors, each linearly related to the outputs of a

number of adaptive filters [Elliott, 1987]. They showed that the algorithm can be applied to ac-
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tive sound and vibration control, by using secondary sources that are suitably driven to reduce

the levels of acoustic or vibrational fields. Metcalf et al. applied the adaptive feedforward con-

trol algorithm to reduce the sound transmitted through an elastic circular plate [Metcalf, 1992].

They used point force vibration inputs as the control input, and both the microphone in the

far field and accelerometers mounted on the structure as the error sensors. After comparing

the performance obtained using the microphone and the accelerometers, they concluded that

the microphone resulted in much better performance than the accelerometer. Burdisso et al.

investigated the dynamic behavior of feedforward controlled finite systems [Burdisso, 1992].

They showed that the eigenproperties of the feedforward controlled system are functions of the

applied control force and error sensor locations, but are independent of the input disturbance.

While Elliott et al. and Metcalf et al. considered only single and multiple sinusoidal excita-

tions, Vipperman et al. developed the adaptive single-input single-output (SISO) feedforward

control configurations for the active control of broadband vibration of a supported structure

[Vipperman, 1993]. They modified the conventional filtered-x LMS control configuration such

that the transfer function between the control input and the error output is represented by

an infinite impulse response (11R) filter. They demonstrated experimentally the attenuation of

broadband structural vibration using adaptive feedforward control algorithm.

Radiation mode approach

Another important concept for active structural acoustic control approaches is radiation mode

approach, introduced by Elliott et al. [Elliott, 1993]. The basic concept of the radiation mode

approach is briefly reviewed. The sound power radiated by vibrating structures can be written

as
H = VH Rv, (1.1)

where H is the radiated sound power, v is the velocity distribution, H denotes the Hermitian

transpose (complex conjugate transpose), and R is a real symmetric positive definite matrix,
which is proportional to the radiation resistance matrix [Elliott, 1993]. Since R is real sym-

metric positive definite, it has a real eigenvalue and real eigenvector decomposition of the form,
given as

R = QAQT, (1.2)

in which Q is an orthogonal matrix of eigenvectors, and A is a diagonal matrix of eigenvalues Ai.

Elliott et al. termed the eigenvectors in Q, which are the eigenvectors of radiation resistance

matrix, as "radiation modes" [Elliott, 1993]. The sound power H can thus be written by

substituting Equation 1.2 in Equation 1.1, to obtain

H = VHQAQTV (1.3)
N

= YH Ay = Ai lyi|2

i=1

Here, y = [y1 Y2 - yN]T is defined as y = QTv, which is the vector of radiation modes in

terms of the velocity distribution. What Equation 1.3 implies is that the radiation modes radiate

acoustic power independently, i.e., they are uncoupled in terms of their radiation [Elliott, 1993].

Therefore, radiation modes are velocity distributions whose radiated acoustic power is indepen-
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dent of the amplitudes of the other velocity distributions. Naghshineh et al. proposed the same

concept as the radiation mode, independently of Elliott et al. [Naghshineh, 1993. They referred

to the eigenvectors of the radiation impedance matrix, which was termed as the radiation mode

by Elliott et al., as "basis functions", and they stated that the basis functions act as "surface

velocity filter". Also, they showed that the minimization of the radiated acoustic power results

in a structural surface velocity filter that couples poorly to those acoustic basis functions that

account for high-efficiency sound radiation.

Using this concept, Johnson et al. showed that when the excitation frequency is sufficiently
low so that the size of structures is small compared with the acoustic wavelength, only one

radiation mode has a significant radiation efficiency [Johnson, 1995]. For panels, the velocity
distribution corresponding to this radiation mode is uniform across the surface of the panel, and
its amplitude is proportional to the volume velocity of the structure. Specifically, they showed

that volume velocity cancellation gives similar reductions in the transmitted sound power to
the minimization of sound power radiation up to frequencies at which the size of the panel is

about half an acoustic wavelength. Pan et al. demonstrated that the transmission of the sound

power through a double panel partition can be reduced by the cancellation of volume velocity

on either panel at low frequencies [Pan, 1998]. Cazzolato et al. applied this approach to the

minimization of the total acoustic potential energy within a longitudinally stiffened cylinder by
minimization of the amplitudes of the radiation modes [Cazzolato, 1998]. They showed that

it is possible to decompose a large number of discrete surface vibration measurements into a

small number of high quality error signals for an active noise control system.

Wavenumber domain approach

Since Fuller et al. introduced the concept of a wavenumber domain approach to the active

control of radiated noise [Fuller, 1991A], there has been much research into active structural

acoustic control approaches in wavenumber domain. The wavenumber domain approach is

based on the fact that the acoustic pressure in the far field is entirely dependent on the cor-

responding wavenumber component for planar structures in an infinite baffle [Junger, 1986].
The important advantage of the wavenumber domain approach is that it eliminates the use
of an error microphone in the radiation far field, which is impractical in most engineering
applications, and it enables the structurally-mounted sensors to be used for active structural
acoustic control. Maillard et al. proposed a new time domain structural sensing technique
for predicting wavenumber information and applied it to a simply supported plate in order to
minimize the sound radiation [Maillard, 1994A], [Maillard, 1994B]. They proposed the use of
filters with an artificial time delay, to estimate the wavenumber components for the broad-

band disturbance. Clark et al. demonstrated analytically that structural acoustic control is

achieved when the supersonic wavenumber components are reduced, and they investigated the

possibility of implementing a cost function in the wavenumber domain [Clark, 1992A]. Scott et

al. presented a technique to obtain the far-field radiated power from a one-dimensional struc-

ture using polyvinylidene fluoride film, which are shaped to act as low-pass wavenumber filters

[Scott, 1997]. Wang presented a wavenumber domain sensing approach which applies PVDF
films on a beam and defined a cost function for feedforward control as the sum of mean square
values of the supersonic wavenumber components [Wang, 1998].

The research on the wavenumber domain approach mentioned in the previous paragraph
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Figure 1-2: One possible way of implementing feedback control for ASAC. However, due to
large phase delay in the plant transfer function, this is not easy to implement.

focused on application to feedforward control design. As will be explained in detail in Chap-
ter 4, there has been no successful effort using the wavenumber domain approach for feedback
controller design for broadband disturbance, because adding an artificial time delay, proposed
by Maillard et al. to solve the noncausality of the filters, imposes a fundamental limitation
on the achievable closed-loop performance using feedback control. Song et al. proposed a new
wavenumber sensing method that applies the wavenumber domain approach to feedback con-
troller design [Song, 2001]. They used the total acoustic power from a vibrating structure as the
performance metric, rather than the acoustic pressure in the specific radiation direction. They
showed that a state-space model can be found to estimate the magnitude of the wavenumber
components that radiate the acoustic power in the controller bandwidth.

Feedback control algorithms - radiation filter

As mentioned earlier, most efforts to develop efficient control algorithms for active structural
acoustic control (ASAC) have been focused on the feedforward control approaches. The pref-
erence for the feedforward control for ASAC, rather than feedback control, can be explained
using Figure 1-2, which shows a block diagram of feedback control for radiation problem. Since
the acoustic pressure is what we want to minimize in order to reduce structurally-radiated
noise, we need a plant transfer function G., from the actuator (u) to the error microphone (y)
for the feedback controller design. However, GYU has a large phase delay in general, due to
the traveling time of the acoustic wave from the structure to the error microphone. The time
delay is proportional to the distance between the structure and the error microphone. This
feature of the plant transfer function i.e., the large phase delay, explains the preference for the
feedforward control for ASAC. However, we know that feedforward control approach cannot be
applied if we cannot measure the disturbance directly, because it needs the disturbance signal
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as a control input. In that case, feedback control should be implemented.

Since the use of far-field acoustic pressure results in the large phase delay in the plant transfer
functions, we should use measurements on the structure in order to implement feedback control

for ASAC. One possible way to apply feedback control is to estimate the acoustic pressure
using structural sensors. Griffin et al. presented a way to generate a state-space model to

estimate the acoustic pressure using structural actuators and sensors, and applied it to suppress

radiated sound in an acoustic cavity surrounded by a flexible structure [Griffin, 1999]. However,
the method most widely used to design feedback control for ASAC is radiation filter method,
proposed by Baumann et al. [Baumann, 1991]. The basic concept of the radiation filter method

is briefly reviewed. We know that the sound power 1 (w) radiated by vibrating structures can

be written as
11 (w) = vH (jw) R (w) v (jw) , (1.4)

where v (jw) is the velocity distribution, and R (w) is the radiation resistance matrix. Although

R (w) is not a rational matrix in general, we can approximate it to any desired accuracy by

a rational matrix R (w), while preserving its symmetric positive definiteness [Baumann, 1991].
Now, we can spectrally factorize R (s) as (R (w) is obtained by substituting s = jW in R (s))

R (s) = G T (-s) G (s) , (1.5)

where G (s) is a real, rational matrix that is analytic in Re(s) > 0, which is referred to as

radiation filter [Baumann, 1991]. Using this concept, the acoustic power can be approximated

as

11 (w) ~ v (jw) GT (-jw) G (jw) v (jw) (1.6)

zH(jw) Z(jW)

Since G (s) is a stable rational matrix, we can represent it as a state-space model. Therefore,
we can use the approximated acoustic power, zR (jw) z (jw), as a cost function for the feedback

controller design. The block diagram of feedback control using the radiation filter is shown in

Figure 1-3. Baumann et al. used this concept to design the linear quadratic gaussian (LQG) con-
troller to minimize the acoustic power radiated from clamped beams [Baumann, 1992]. Bingham

et al. implemented the LQG controller including the radiation filter on the flat composite panel

with embedded piezoelectric actuators and strain gauge sensors [Bingham, 1998]. Vipperman et

al. demonstrated active structural acoustic control using multiple input/output adaptive senso-

riactuators combined with radiation filters and a feedback control paradigm [Vipperman, 1999].
Gibbs et al. introduced a new method of reduced order modeling/design of radiation filters,
termed radiation modal expansion [Gibbs, 2000].

As shown above, we should obtain the radiation resistance matrix R (w), analytically or

experimentally, in order to apply the radiation filter method. This implies that the method

is not easy to apply for a complex system, for which R (w) is difficult to obtain, although it

can be easily applied to a simple structural system, such as beam or plate structures. Even if

we can obtain R (w) from an analytic expression (when the structure is simple), or numerical

method, such as finite element method or boundary element method (when the structure is

complex), it is highly model-dependent, which means that it is not straightforward to implement

experimentally the radiation filter method.
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Figure 1-3: Block diagram of feedback control using the radiation filter G(s).

1.1.2 Actuators and Sensors

When the concept of active structural acoustic control (ASAC) was introduced in early 90's,
the actuator used to implement the controller was a point force, such as a shaker [Fuller, 1990],
[Mandic, 1991]. However, since Crawley et al. introduced the use of piezoelectric materials
for active control of structures [Crawley, 1987], many techniques have been developed to per-
form active structural acoustic control using these materials. Dimitriadis et al. investigated
theoretically the potential of actively controlling sound radiation from a vibrating plate using
piezoelectric elements bonded to the plate surface as actuators [Dimitriadis, 1991]. Fuller et
al. demonstrated experimentally the use of a piezoceramic actuator to control sound radiation
from a vibrating rectangular thin panel [Fuller, 1991B]. Also, the possibility of using multiple
piezoelectric actuators to reduce structurally-radiated noise from vibrating structures was inves-
tigated analytically [Wang, 1991] and experimentally [Clark, 1992B]. Recently, there has been
much research into the use of more sophisticated actuators than simple piezoceramic patches.
Johnson et al. investigated the use of arrays of discrete actuators, or "tiles" as they referred to
them, which cancel local volume velocity by acting on local information such as local velocity
or pressure, and producing a purely local reaction [Johnson, 1997]. Lane et al. proposed a
device of collocated pressure sensors and constant volume velocity actuators, by compensating
loudspeakers in order to approximate constant volume velocity behavior [Lane, 1998]. Song et
al. used "active composite panels" that contain PZT rods embedded in a stiff polymer matrix
and eight injection-molded piezoceramic accelerometers, for active structural acoustic control
of a thick-walled cylindrical shell [Song, 2000]. Johnson et al. demonstrated the potential of
an "active skin," which is a continuous covering of the vibrating portions of the structure with
active, independently controllable piezoelectric, double-amplifier elements and is designed to
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alter the continuous structural radiation impedance [Johnson, 2000).

As for sensors needed to design ASAC system, most research in early 90's is related to
using discrete microphones located in the radiated acoustic field [Fuller, 1992], because they
can directly measure the acoustic pressure, which is the performance metric to be reduced
in order to control the structurally-radiated noise. However, since the use of microphones
in the far field is impractical for most engineering applications, many researchers have tried
to develop the way to use structurally-mounted sensors, such as piezoelectric material and
accelerometers, for ASAC. Clark et al. have demonstrated the use of PVDF film as modal
sensors in active structural acoustic control approaches applied to a simply supported plate
under single frequency excitation [Clark, 1992C]. Also, they used the optimization method to
determine the placement of piezoelectric actuators and PVDF sensors [Clark, 1992D]. Maillard
et al. used accelerometers mounted on the structure and applied a time domain structural
sensing technique to reduce the broadband structure-borne noise [Maillard, 1995]. Bingham
et al. designed a flat composite panel with embedded piezoelectric actuators and strain gauge
sensors to minimize the structurally radiated noise from the panel [Bingham, 1998]. Kim et al.
designed the optimal placement of PZT actuators and the optimal electrode pattern of PVDF
sensors for the control of sound field from vibrating plates in flow [Kim, 1999].

1.1.3 Experimental Work on 3-D Structures

Most of the work on ASAC systems has dealt with planar structures, such as beam or plate
structures in an infinite baffle, although a few reports of experimental work on three dimensional
structures can be found in the literature. Clark et al. achieved narrow-band active structural
acoustic control on a long, thin aluminum cylinder with two rigid end-caps using piezoceramic
actuators and PVDF sensors [Clark, 1994]. Maillard experimentally demonstrated broadband
radiation control from a finite cylinder using piezoelectric actuators and structural acoustic
sensing [Maillard, 1997]. Lane et al. experimentally implemented a feedback controller using
spatial weighting of an array of collocated pressure sensors and constant volume velocity actua-
tors, to attenuate the response of low frequency modes in the three dimensional aircraft fuselage
section [Lane, 2000]. Savran et al. performed active structural acoustic control experiments on
a model fuselage testbed, using collocated piezoelectric sensors and actuators [Savran, 2000].

1.2 Thesis Objectives and Overviews

The primary goal of this thesis is to develop the control architecture and methodology for
the reduction of radiated noise from stiff structures by actively isolating the motion of the
radiator's outer surface. The proposed approach is to cover the structure's outer surface with
curved active composite panels and to reduce the radiated noise by controlling the motion of
panel's outer surface. Each panel contains several embedded accelerometers mounted to the
panel's outer and inner surface, allowing its use as an almost collocated sensor-actuator pair.
The embedded accelerometers can sense both the motion of the panel's base and the panel's
outer surface, which provide necessary information for the controller design.

The use of external piezoelectric panels proposed in this thesis has significant advantages
for stiff structures over the conventional approach of directly controlling the structure. One of
the important advantages is that the former needs much less control authority than the latter,
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because controlling panels requires less actuation power than controlling the stiff structure.

Furthermore, the approach allows the control system to be significantly less dependent on the

dynamics and characteristics of the structure than directly controlling the structure, so that

the control systems become robust.

The control architecture proposed in this thesis has two different levels. The first one is a

local control, which is implemented for each panel to reduce its vibration level. On the other

hand, the second one, which is a global controller, makes the structure a weak radiator by

coordinating the large number of sensor-actuator pairs. For each local control, two different

feedback controllers are designed and implemented simultaneously. The first feedback controller

takes the acceleration of the outer surface of each panel and uses high gain to minimize its mo-

tion. The other feedback loop, which is denoted as the "feedforward controller" in this thesis,
takes acceleration on the inside surface of the panel and commands equal and opposite panel

displacement to cancel the motion of radiating surface. In order to find the local controller

configuration that satisfies two conflicting requirements (good performance and easy imple-

mentation) simultaneously, several controllers, such as analog, digital, hybrid analog-digital,
etc., are designed, implemented and compared.

For global control, a new wavenumber sensing method is proposed and the way to apply

the method to feedback controller design for active structural acoustic control is explored. The

basic approach is that instead of measuring or determining the acoustic pressure at a particular

radiation angle, the total acoustic power radiated from a vibrating structure is minimized in

the wavenumber domain. If the required control bandwidth is finite, as all the physical prob-

lems, the target wavenumbers in the supersonic domain can be determined. Since the radiated

acoustic power can be expressed as integral of the square value of wavenumber components

in the supersonic region, weighted by some other factors, the wavenumber components in the

supersonic domain are good candidates for the performance measure. Generally, wavenumber

components are complex numbers, which makes it difficult to find directly a state-space model

for estimating them. However, because it is the magnitude and not the phase of the wavenum-

ber components that contributes to the radiated noise into the far field, it is shown that a

state-space model can be found to estimate the magnitude of wavenumber components. Once

we have a state-space model that can be used for active structural acoustic control, a mod-

ern controller design paradigm can be applied to minimize the acoustic power radiated from

vibrating structures. The new approach enables us to systematically find a state-space model

for wavenumber components in the supersonic region, and therefore makes it easy to design

an optimal LQG controller. Furthermore, it is shown that the new approach can be used to

reduce radiated noise from general complex structures. Several examples are used to show the

effectiveness of the new wavenumber domain sensing method.

The thesis outline is organized as follows.

Chapter 2 introduces the experimental hardware, including the cylindrical shell, the active

composite panels, and the signal conditioners. The geometric and dynamic characteristics of

the cylindrical shell, and the features of the active composite panels are presented. The dynamic

characteristics of the active composite panel are identified, and the result of testing panels is

reported. Also, the modeling process of the testbed structure using the finite element method

is explored.
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Chapter 3 considers the local controller architecture used for each panel, which consists
of two different feedback control approaches. The design methods for those controllers are
presented using the numerical simulation and the experimental data. The undesirable dynamics
of the active composite panel are investigated, along with their effects on the controller design
and achievable closed-loop performance. Then, ways to resolve these difficulties caused by the
undesirable panel dynamics are explored.

Chapter 4 is devoted to the development of a new wavenumber sensing method and its
application to feedback controller design for active structural acoustic control. The theoretical
basis for structural acoustics is presented, and the well-known results from radiation problem
are summarized. The formulation for the new wavenumber domain sensing method and its
application to the feedback controller design for ASAC is described. For mathematical conve-
nience, the motivation and the formulation for the new wavenumber sensing method will be first
explained for a beam structure, and then, the formulation for the cylindrical shell is developed.
Finally, the application of the new sensing method for the general three-dimensional structures
is discussed.

Chapter 5 demonstrates the wavenumber domain sensing method developed in Chapter 4
on several structural systems. The purpose of this is to numerically validate the method on
the numerical model with the same order of complexity, before it is tested on a real testbed. A
cantilever beam in an infinite baffle is considered first to help understand how the method is
implemented on a structural system, and what the design issues are. Then, the new method is
numerically validated on the main testbed in this thesis, which is the cylindrical shell with 55
active composite panels mounted.

Chapter 6 reports the results of several closed-loop experiments obtained with the local
controller. The objective of this chapter is to investigate several controller configurations, such
as a completely analog controller, an analog controller with digital notch, a hybrid analog/digital
controller, etc., and find the one for the local controller architecture that will be eventually
implemented on the shell with multiple panels. The final configuration, which will be selected for
the local controller architecture, should be simple and easy to implement, while its closed-loop
performance is satisfactory. The basic design concepts, the motivation, the design procedure,
and the implementation issues are explained for each configuration.

Chapter 7 presents the results of closed-loop experiments obtained with multiple panel-
level controllers, which were designed and implemented on the cylindrical shell with 55 active
composite panels mounted. The experimental setup for testing the controllers are described,
and the results of identification and analysis of plant transfer functions are discussed. Then, the
design process for local controllers and the corresponding closed-loop performance are reported.
The results of investigating panel dynamics are presented and their effects on the closed-loop
performance are explored.

Finally, Chapter 8 summarizes the results of this research. The contributions of this thesis
and recommendations for future work are discussed.
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Chapter 2

Testbed Description and Modeling

2.1 Introduction and Objective

The objective of this study is to develop a method of reducing the noise radiated from a

thick-walled cylindrical shell in water by using an active conformal array. In this chapter, the

experimental hardware, including the cylindrical shell, the active composite panels, and the

signal conditioners are described. The geometric and dynamic characteristics of the cylindrical

shell, and the features of the active composite panels are also discussed. The cylindrical shell

with the panels mounted on its surface is used as the testbed structure in this study. Also,
the signal conditioners for the panels (pre-amplifiers and power amplifiers) will be described.

The dynamic characteristics of the active composite panel will be identified, and the result of

testing panels will be reported. Finally, the modeling process of the testbed structure using the

finite element method will be explored.

2.2 Experimental Hardware

2.2.1 Cylindrical Shell

A picture of the thick-walled cylindrical shell is shown in Figure 2-1. The shell is made of

an aluminum alloy, and measures 20 inches in diameter, 32 inches in length, and 0.3 inches

in thickness. It has three circumferential ribs inside the shell to add stiffness. Two circular

end-caps, also made of aluminum alloy, measuring 2.25 inches in thickness, close off the end of

the cylinder. The disturbance source is simulated by a shaker (Model F3/Z602WA, Wilcoxon

Research, Gaithersburg, MD, USA) mounted on the inside of the shell. Figure 2-2 shows a

schematic picture of the cylindrical shell showing two end caps, three ribs and the shaker inside

of the shell.
In order to investigate the dynamic characteristics of the cylindrical shell, the frequency

response and the structural vibration modes of the cylindrical shell were experimentally identi-

fied. Figure 2-3 shows the frequency response of the cylindrical shell obtained using the shaker

inside the shell as the disturbance source. The structural response was measured with an ex-

ternal accelerometer (Model #352B22, PCB Piezotronics, Depew, NY) mounted on the outer

surface of the shell. We see that the shell is quite stiff-the first structural resonant frequency

is above 500 Hz.
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Figure 2-1: The thick-walled cylindrical shell.

Identification of the structural vibration modes of the cylindrical shell was performed with a

scanning laser vibrometer. A scanning laser vibrometer measures the out-of-plane displacements

at discrete points on a structure using a laser. Figure 2-4 shows the mode shape of the cylindrical

shell at some resonant frequencies.

2.2.2 Active Composite Panel

The proposed approach to reduce the radiated noise from the shell employs 1-3 active composite

panels manufactured by MSI (Material Systems Inc., Littleton, MA, USA) mounted on the

shell's surface as a conformal array. The picture of the active composite panel is shown in

Figure 2-5. The panel was designed to have the same radius of curvature as the cylindrical shell,
so that it can be mounted on the surface of the shell without bending. The panel measures

6 inches on each side, so that 55 panels are needed to cover the outer surface of the cylindrical

shell (5 in the axial direction, and 11 in the circumferential direction).

The active composite panels contain Lead Zirconate Titanate (PZT) rods embedded in a stiff

polymer matrix, and eight injection-molded piezoceramic accelerometers attached to outer and

inner circuit boards. The displacement of the panel in its thickness direction is proportional

to the voltage applied to the panel actuator layer. Two groups of four accelerometers are

wired in parallel, resulting in measurements of the average acceleration of each surface. This

configuration results in an almost collocated sensor-actuator pair. Collocation is desirable, since

it leads to well-behaved plant transfer functions that are more easily compensated than non-

collocated transfer functions. Figure 2-6 shows a schematic drawing of the active composite

panel, showing the embedded PZT rods and the accelerometers.
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Figure 2-2: Schematic of the cylindrical shell showing two end caps, three ribs, and the shaker.
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Figure 2-3: Transfer function from the shaker input to the external accelerometer mounted on
the outer surface of the shell.

2.2.3 Signal Conditioners

The accelerometers and the PZT actuator layer, which are embedded in the active compos-
ite panel, need signal conditioners for proper operation. These are denoted as accelerometer
pre-amplifiers and panel power amplifiers, respectively, in this study. The signal from each
embedded accelerometers is conditioned and filtered by a pre-amplifier before it enters the con-
troller, while each control signal generated at the controller is amplified further by a power
amplifier so that high voltage input can be applied to the panel actuator layer. The transfer
functions of both types of amplifiers are selected such that they make controller design and
implementation easier. Figure 2-7 and 2-8 show the frequency responses of the pre-amplifier
and the power amplifier, respectively. The pre-amplifier was chosen to be a pure gain amplifier
with a gain of 34 dB, while the power amplifier was chosen to be an inverting low-pass filter
with corner frequency at 188 Hz, and a DC gain of 34 dB. The gains were designed so that the
saturation doesn't occur at either amplifiers, and so that the input and output voltage of the
digital controller maintains a reasonable value, to minimize the quantization effect.

2.2.4 Identifying the Dynamics of the Active Composite Panel

The active composite panel plays a critical role in the control algorithms proposed in this study.
Therefore, its dynamic characteristics should be identified thoroughly. In order to do so, the
frequency response of the plant transfer function was measured from the voltage input of the

40



Laser vibrometer

/ shw
Cylindrical shell

(a) (b)

(c) (d)

Figure 2-4: Structural mode shapes of the cylindrical shell. (a) 527 Hz, (b) 958 Hz, (c) 1368 Hz,
and (d) 1960 Hz.
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Figure 2-5: The active composite panel. (Photo courtesy of MSI)
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Figure 2-6: Schematic drawing of the active composite panel.
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Figure 2-7: Frequency response of the pre-amplifier.

power amplifier to the output signal from the pre-amplifier, after the panel was mounted on

the surface of the cylindrical shell. The power amplifier was connected to the panel actuator

layer, while the pre-amplifier was connected to the accelerometer mounted on the outer surface

of the panel. The result is shown in Figure 2-9. Also, the frequency response of the transfer

function ks
2  is shown in Figure 2-9, where k is a constant gain. The measured plants±188x27ir

transfer function should look like the transfer function s+8ks2  neglecting the shell modes,
because

" The displacement of the panel is proportional to the voltage applied to the panel actuator

layer,

* The mass of the panel is much less than that of the shell, and

* The power amplifier has a low-pass filter with corner frequency at 188 Hz.

However, Figure 2-9 shows that the two transfer functions have some differences. At low

frequencies, the measured transfer function approaches a non-zero constant, rather than s2,
due to direct electrical or electromechanical feedthrough of the panel input voltage to the

accelerometer. Also, at high frequencies, the resonant peak due to panel dynamics is observed.

As will be shown in later chapters, these two undesirable panel dynamics make the controller

design and implementation much harder. A way to compensate for those undesirable dynamics

will be discussed in Chapter 3 and 6.
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Figure 2-8: Frequency response of the power amplifier.

2.2.5 Evaluating the 55 Active Composite Panels

As mentioned earlier, 55 active composite panels were mounted on the surface of the cylin-

drical shell. Each panel was tested before it was rigidly mounted on the shell. In order to

do that, each panel was mounted temporarily on the surface of the shell, and the frequency
response of its transfer function was measured. Then, the undesirable panel dynamics (low-
frequency feedthrough and high-frequency panel dynamics) were recorded for each panel. The

low-frequency feedthrough was measured as a DC gain of the measured transfer function. Since
the transfer function should approach s2 at low frequencies in the ideal case, lower values of
the low-frequency feedthrough are better. On the other hand, the high-frequency panel dynam-
ics was characterized by the dominant panel resonant frequencies. Since the resonances limit

the controller bandwidth, higher resonant frequencies are better. As mentioned in the previ-

ous section, these undesirable dynamics of the panel make the controller design significantly

more difficult. Ideally, it would be best if all the 55 panels had the same degree of undesir-

able dynamic characteristics, so that the amount of the additional work needed to compensate

for the undesirable dynamics would be minimized. The result of the test given in Table 2.1,
however, is contradictory to the expectation. As can be seen from the table, each panel has

different low-frequency feedthrough and dominant panel resonant frequency. The low-frequency

feedthrough varies from -65.0 dB (panel 47) to -38.0 dB (panel 14), while the dominant panel

resonant frequency varies from 7.2 kHz (panel 17, 18) to 15.6 kHz (panel 39, 48). Furthermore,
some panels have more than 2 resonant frequencies. This result makes the controller design
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and implementation much more involved than expected, because the controller variables must

be tuned differently for each panel. The variation in panel dynamics requires the use of a digi-
tal control system, so that the controller variables can be adjusted in software, rather than in

hardware.

The result of testing the panels can be used to determine where each panel should be located
when they are rigidly mounted on the surface of the shell. Since the two end-caps are stiffer

than the shell, the vibration level of the shell near the end-caps will be lower than the center

of the shell. Therefore, better panels should be mounted on the center of the shell away from

the end-caps, where most radiation occurs, while worse panels should be mounted near two
end-caps, so that their effect on the closed-loop performance can be minimized.

2.3 Testbed Modeling

In this section, a process used to model the testbed is presented. The goal of the modeling is

not to correlate the simulation result with the experimental result exactly, nor to generate the

plant model needed for the synthesis of the model-based controller. Indeed, it is not feasible

to model the testbed that accurately. Instead, the objective of the modeling performed in this

study is to generate the mathematical model that captures the important dynamics of the real

testbed, with the same order of the complexity, so that the proposed control algorithms can

be validated on the model before they are experimentally implemented. The model developed

in this chapter will be used to test the multi-input multi-output (MIMO) wavenumber LQG
controller (Chapter 5), and the local controller architecture (Chapter 6). When the MIMO

wavenumber LQG controller is numerically validated in Chapter 5, the plant model needed

for the controller synthesis will be obtained using the system identification of the simulated

frequency responses of the plant model developed in this chapter, not using the model directly.

This approach is more realistic, because the same method of getting the plant model is applied

to the LQG controller design for the real testbed.

This section is organized as follows: In Section 2.3.1, the formulation for the structural

response of a finite cylindrical shell is described. The finite element method is applied for the

finite cylindrical shell in Section 2.3.2. In Section 2.3.3, the modeling process for the active
composite panel is described, and the coupled dynamics of the cylindrical shell and the active

composite panel is derived in Section 2.3.4.

2.3.1 Structural Response of a Finite Cylindrical Shell

Basic assumptions and the geometry

A finite cylindrical shell is a sheet of elastic material which conforms to a curved surface, the

mid-surface of the shell, which is closed like a hollow cylinder. The assumptions employed in

the analysis of the cylindrical shell in this section are described below [Blevins, 1979.

1. The thickness of the shell is small compared to other dimensions.

2. The shell is composed of a linear, elastic, homogeneous isotropic material.

3. The deformations of the shell are small in comparison with the radius of the shell.
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Table 2.1: Summary of panel characterization.

Panel Low-frequency Dominant Panel Low-frequency Dominant
No. feedthrough (dB) dynamics (kHz) No. feedthrough (dB) dynamics (kHz)

1 -51.0 12.0 29 -39.1 14.5
2 -62.0 12.0 30 -45.5 13.7
3 -43.1 12.0 31 -52.0 7.3
4 -42.7 10.2, 12.9 32 -47.4 12.6
5 -60.6 14.1 33 -45.0 11.5, 13.8
6 -55.2 14.2 34 -42.4 13.7
7 -56.9 9.1 35 -41.6 15.0
8 -52.2 12.1, 14.7 36 -39.1 11.2, 14.8
9 -46.1 15.1 37 -49.3 7.7, 14.8
10 -41.8 11.2, 14.1 38 -44.7 8.8
11 -46.0 10.8, 14.1 39 -43.2 7.7, 15.6
12 -48.8 15.0 40 -40.9 8.7, 11.9
13 -45.6 11.1, 14.2 41 -41.6 11.8, 15.0
14 -38.0 11.3, 14.1 42 -43.4 11.7, 14.2

15 -45.7 11.2, 14.1 43 -46.3 11.2, 14.8

16 -46.5 8.0, 13.9 44 -56.2 14.1
17 -43.8 7.2, 10.3, 14.5 45 -47.0 14.0
18 -49.8 7.2, 11.8 46 -41.1 15.0
19 -43.0 11.8 47 -65.0 14.7
20 -40.4 14.2 48 -44.0 7.9, 15.6
21 -43.2 15.1 49 -47.3 14.7
22 -43.6 14.4 50 -47.1 12.9
23 -48.0 10.4 51 -44.5 14.5
24 -43.0 11.7 52 -44.0 13.0
25 -46.7 11.8, 14.1 53 -40.4 15.0
26 -47.2 11.8, 15.1 54 -38.1 11.5, 15.1
27 -46.2 11.1, 13.6 55 -42.0 14.5
28 -38.8 14.8
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Figure 2-10: Geometry of a finite cylindrical shell.

4. Straight lines perpendicular to the mid-surface of the shell remain straight and perpen-
dicular to the mid-surface during deformation.

5. Rotary inertia and shear deformation are neglected.

6. The transverse normal stress and the out-of-plane shear stresses are negligible.

Figure 2-10 shows the geometry of the finite cylindrical shell of length L, radius a and
thickness t. The radius is measured from the center to the mid-surface of the shell. Figure 2-
10 also shows the local coordinate system, (x, y, z), the global rectangular coordinate system,
(X, Y, Z), and the global cylindrical coordinate system, (Z, 0). The local coordinates (x, y, z)
represent the axial, circumferential, and radial directions, respectively. The displacement field
is defined as (u, v, w), where u, v, and w denote the translation displacement along the axial,
circumferential, and radial directions, respectively. Note that the local coordinates (x, y, z)
and the global coordinates (X, Y, Z) are in different directions. The notation for the local

coordinates, (x, y, z), has been conventionally adopted in the shell theory [Timoshenko, 1959],
[Ashwell, 1972], and therefore it is used in this thesis.

Strain-displacement relationships

In this section, the strain-displacement relationships of the finite cylindrical shell are pre-

sented using the notation and derivation of Timoshenko [Timoshenko, 1959]. Assume an arbi-
trary point (x, y, z) on the cylindrical shell before deformation is displaced into the new point
(x + u, y + v, z + w) after the deformation. Using assumptions 4 and 5 defined in Section 2.3.1,
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the displacement field (u, v, w) can be written as

u (x, y, z) = uo (x, y) + z#2 (x, y) (2.1)

v (x, y, z) = vo (x, y) + z#, (x, y)

w (x, y, z) = wo (x, y) ,

where (u, v, w) is the displacement field at (x, y, z), in the directions as defined in Section 2.3.1,
and (uo, vo, wo) is the displacement at the mid-surface in the axial, circumferential, and radial
directions, respectively. #x and #Y are rotations at the mid-surface about x and y, given by

X- (2.2)OX
Vo Owo
a Dy

Combining Equation 2.1 and 2.2, the displacement field (u, v, w) at (x, y, z) can be expressed
in terms of the mid-surface displacement field (uo, vo, wo) as

Dww 0((, y)U (x, y, z) = O (X, y) - o z (2.3)OX

V(, y, z) = 1 + - vo (x, y) - W z X Y

w (x, y, z) = wo (x, y)

The strain field of the finite cylindrical shell can be expressed using assumptions 4 and 5, given
as

eX= - O (2.4)
OX
Dv w

Dy a
Ou Dv

ay DX
6z =YXz = 7Yz = 0

where e and y represent normal and shear strain, respectively. Also, the changes of curvature
can be written as

o2 W
xx = D 2  (2.5)

XYDx21 Ov D2 W

XXY = _x -

in which x, and Xy are changes of curvature, and Xxy is the twist of the mid-surface.
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Stress-strain relationships

Assumption 6 in Section 2.3.1 leads to

o0z = o-xz = o-yz = 0 . (2.6)

Using assumption 2 in Section 2.3.1, the non-zero stresses in the finite cylindrical shell are given
by the isotropic stress-strain relationships

E
x = 2 (6X + VEY )

E
oy= 1- v2 (EY + VEX) (2.7)

E
Xy = 2 (1 + v) 'Y

where E is the modulus of elasticity, and v is Poisson's ratio. o-x, oY, and oz are normal stresses
acting on the x, y, and z faces of the shell element, respectively, while Oyz, -, and o2 are
shear stresses acting on the x, y, and z faces of the shell element, respectively. Equation 2.7
can be also written in a matrix form as

- = Ce , (2.8)

where

c- =[ 0-y ,E = ey17x Fy

~E vE

1- v 2 _V 2

E
1 _ 2

C vE

0

2.3.2 Finite Element Formulation

0

0

E
2(1+ v)

In this section, the finite element formulation
begins with the equilibrium equation, given by

for the finite cylindrical shell is presented.

12u (2.10)
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Figure 2-11: An element of the cylindrical shell.

where p, is the density of the shell material, o is the stress field, f is applied force, and u is
the displacement field, defined as

U no + z#5:
u= = 1. (2.11)

Applying the principle of virtual displacements and the divergence theorem to Equation 2.10,
we obtain [Bathe, 1996]

Ps (u)T dV + (6e)T odV = (6u) T fBdV + (u)T f, dS (2.12)

where E is the strain field, fB is body force (force per volume), fs is surface force (force per
area). V and S represent the volume and the surface of the cylindrical shell, respectively.
Equation 2.8 can be used to eliminate o from Equation 2.12, so that

P4 (6 u)T O2 dV + (6E)TC EdV = (6u) T fBdV + jGu)TfsdS. (2.13)

Equation 2.13 is discretized spatially using a cylindrical shell element developed by Ashwell
and Sabir [Ashwell, 1972]. The element is a four-node rectangular element having five de-
grees of freedom per node (three linear displacements and two rotations). Since it uses only
external geometrical nodal displacements, it can be readily assembled with other structural
members, and avoids the difficulties associated with internal degrees of freedom and internal
nodes [Ashwell, 1972]. Figure 2-11 shows the geometry of the cylindrical shell element of a ra-
dius of curvature a, and lengths d and b in the axial and circumferential directions, respectively.
Since the element has four nodes and each node has five degrees of freedom, (u, v, w, #x #O), the
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shape function of the element contains 20 constants c1 , c2, .. , C20 to be determined. Using these
constants, the displacement (uo, vo, wo) at the mid-surface can be written as [Ashwell, 1972]

uo = ac2 cos p + ac4 sin V + c5 + c7x + (ac11 + a3 cig - a2c20) P (2.14)

- a3 C17p2 + c8xSP - a3 C1p3
2 6

vo= (ci + c2 x) sin p - (c 3 + c 4 x) cos P + c 6 + (-a 2c1 9 + ac 2 o) x

+a c16 + a 2c17xW + a 2c182 + a 2cigx2

WO = - (ci + c2x) cos V - (c 3 + c 4x) sin o + (ac9 - a 2 c16 ) + (ac10 - a 2c17) x

-a2clMO - a12c1xP - C12X2 _ C13X3 _ C14X2 - c15X3-alsp-c~xp c2x 6 2 6~~1 5 ~

Therefore, the displacement field at the mid-surface, uo = [u0 vo wo]T, can be expressed in
terms of the constants c 1 , c 2 ,..., c 20 , as

NU
uo = N c N, c (2.15)

NW

where c = [ci c2 ... c2 0]T, and No, N, and Nw are 1 x 20 row vectors that represent the rela-
tionships between c and uo, vo, and wo, respectively. Note that Nu, Nv and N, are functions of
x and p. This displacement field includes all rigid body displacements exactly, and satisfies the
constant strain condition insofar as that condition applies to cylindrical shells [Ashwell, 1972].
The expressions for Ns, N, and N, are given in Appendix A.

The next step is to express c in terms of the nodal displacements. Let (Uk, k, ink, #ok, ,k)
(k = 1, 2, 3,4) be the nodal displacements at the kth node in the element. Using the definition
of #_, and #Y in Equation 2.2, and the coordinate at the kth nodal point defined in Figure 2-11,
the nodal displacement U= [ui vi Wi #4,1 #, U4 V4 W4 #4,4 #,4]T can be written in terms

of c and the matrix of transformation from c to U, denoted as Tc,, as

U T e c. (2.16)

Then, the displacement field at the mid-surface, uo, can be represented in terms of the nodal
displacements U, and the transformation matrix T, as

uo = Nec = NcT2U . (2.17)uc

Then, using Equation 2.3 and 2.4, the displacement and strain field at (x, y, z) can be written
in terms of the nodal displacements U as

u = HU (2.18)

e=BUI

where H and B are the displacement interpolation matrix, and the strain-displacement matrix
[Bathe, 1996], respectively. The procedure to derive Tc, H, and B are explained in detail in
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Appendix A.

Now, substituting Equation 2.18 into Equation 2.13, and assembling all the elements, we
obtain

Ne Ne

J pHEHm dVm Os + B CBm dVm U, (2.19)
m=1 m=1 fVm

Ne Ne fsdSm

= (HifBdVm Tmf E~ ,s'
m=1Vm m=1S

where Ne is the number of elements used in the finite element analysis, the subscript m rep-
resents mth element, U, is the nodal displacements of the shell in the global coordinate, and
Hm and Bm are the displacement interpolation matrix, and the strain-displacement matrix
evaluated at the mth element, respectively. Equation 2.19 can be expressed in a matrix form
as

Msis + KsUs = FB + Fs , (2.20)

where M, and K, are the global mass and stiffness matrix for the cylindrical shell, given by

Ne

Ms = ( pHTHm dVm (2.21)
m=1 Vm

Ne

KS = BTCBmdVm,
m=1 Vm

and FB and FS are the body and surface force vectors, given as

Ne

FB TmfBdVm (2.22)
m=1

Ne

FS = ( HTmfsdSn
m=1 S""

Figure 2-12 shows the finite element mesh of the cylindrical shell used in this study. Con-
sidering the fact that 55 panels will be mounted on the shell (5 in the axial direction and 11 in
the circumferential direction), 10 and 22 elements were chosen in the axial and circumferential
directions, respectively. Therefore, the finite element model of the shell has 220 elements, and
1100 degrees of freedom. Figure 2-12 also shows the locations of the panels to be mounted,
marked as "e".

The two end-caps were not considered in the finite element model of the cylindrical shell
developed here. Strictly speaking, the two end-caps are circular plate structures, and therefore,
plate elements should be used if they are to be modeled. However, since the two end-caps
are much stiffer than the cylindrical shell, the radial displacements at the two end-caps are
much smaller than others, and can be neglected. Therefore, the effect of the two end-caps
can be properly modeled using the simply-supported or clamped boundary conditions at the
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Figure 2-12: Finite elements used for the analysis of the finite cylindrical shell in this study. 10
elements in the axial direction and 22 elements in the circumferential direction are used.
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Table 2.2: Boundary conditions applied to the cylindrical shell.

Node no. Boundary condition 7Node no.J Boundary condition

1 Clamped 221 Clamped
2 Clamped 222 Clamped
3 Clamped 223 Clamped
4 Clamped 224 Clamped
5 Simply-supported 225 Clamped

6 Simply-supported 226 Clamped

7 Simply-supported 227 Clamped

8 Simply-supported 228 Clamped

9 Simply-supported 229 Clamped
10 Simply-supported 230 Simply-supported
11 Simply-supported 231 Simply-supported
12 Simply-supported 232 Simply-supported

13 Simply-supported 233 Simply-supported
14 Simply-supported 234 Simply-supported
15 Simply-supported 235 Clamped

16 Simply-supported 236 Clamped
17 Simply-supported 237 Clamped

18 Simply-supported 238 Clamped

19 Simply-supported 239 Clamped
20 Simply-supported 240 Clamped
21 Simply-supported 241 Clamped
22 Simply-supported 242 Clamped

boundaries of the shell, given by

Simply-supported:
Clamped:

U = V = W = 0

U V = W = = 0.

Table 2.2 shows the boundary conditions applied to the cylindrical shell. The node numbers
at the boundary of the shell are given in Figure 2-12. The reason for the irregular application
of the boundary conditions, instead of applying the same boundary condition at each boundary
of the shell, is to make the model more realistic. That is, if the same boundary conditions
were applied at each boundary, the modeled shell structure would be exactly symmetric with
respect to the axial direction, which would make the model over-simplified. In that case, the
wavenumber sensing method developed in Chapter 4 would be equivalent to the implementation
of modal sensor [Lee, 1990], which would be unrealistic. In order to avoid this ideal over-
simplified case and generate the realistic model, two boundary conditions (simply-supported
and clamped) were irregularly applied.

The frequency response of the cylindrical shell modeled using the finite elements in Figure 2-
12, with the boundary condition in Table 2.2, is shown in Figure 2-13. It is the counterpart of
the frequency response of the real cylindrical shell obtained experimentally in Figure 2-3. The
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Figure 2-13: Frequency response of the cylindrical shell modeled using the finite element
method.

shaker was modeled as a point force acting at the same location as the shaker. The masses of
the shaker and the accelerometer were neglected. We see that the model captures the important
dynamics of the real cylindrical shell, with the same order of the complexity.

2.3.3 Modeling of an Active Composite Panel

The active composite panel is a very complex structure itself: it is a curved shell structure
with PZT rods embedded in a stiff polymer matrix and eight injection-molded piezoceramic
accelerometers attached to outer and inner surfaces of the panel. It would be very hard to
model the panel in detail. As mentioned earlier, the motivation for the modeling in this study
is not to correlate the simulation result with the experimental result exactly, but to generate
the mathematical model that captures representative dynamics of the real testbed, with the
same order of the complexity, such that the proposed control algorithms can be validated on
the model before they are experimentally implemented. Therefore, the modeling of the panel
in detail, which considers the effect of the curved structure, PZT rods, a stiff polymer matrix,
injection-molded piezoceramic accelerometers, circuit boards, etc., will not be pursued in this
thesis. Instead, only the representative dynamics of the panel will be considered.

The function of the active composite panel is to measure the accelerations of its top and
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Figure 2-14: The schematic picture of the active composite panel (a) and its simplified model
(b).

bottom surfaces, and to generate the displacement proportional to the applied voltage in its
thickness direction. Since the panel is rigidly mounted on the cylindrical shell, which is much
stiffer than the panel, its bending or torsion modes can be neglected. The only dominant
mode of the panel is the extension mode in its thickness direction. Therefore, the panel can
be modeled as a system with two masses connected with a spring and a damper, as shown in
Figure 2-14. The mass of the panel, my, is chosen to be that of the real panel, while the stiffness
of the panel, kp, is selected such that the natural frequency of the panel model is similar to the
measured value.

2.3.4 Coupled Dynamics of the Shell and the Panel

Once we have completed the modeling of the cylindrical shell and the active composite panels,
the coupled dynamics of the shell and the panels should be considered when the panels are
rigidly mounted on the shell. Figure 2-15 shows the force diagram of the shell and the kth
panel. It also shows the disturbance f, control input to the kth panel, Uk, the displacement
of the kth panel, Wp,k, the radial displacement of the shell on which the kth panel is mounted,
Ws,k, the internal force between the shell and the lower part of the panel, ek, and the internal
force between the lower and upper part of the panel, dk. Note that the upper and lower parts
make one active composite panel (Figure 2-14). As shown in Figure 2-15, we can consider the
dynamics of the shell and the panel independently, if the internal forces dk and ek are considered.

Using the force diagram in Figure 2-15, the dynamics of the kth panel can be written as

Upper part: jmp1p,k = Uk + dk
(2.24)

Lower part: 2mi mps,k = -Uk - dk + ek,
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where my is the mass of the panel. Since dk is produced by the force at the spring and the
damper of the panel, it is given by

dk = kp (ws,k - Wp,k) + cp (tbs,k - Wp,k) - (2.25)

Substituting Equation 2.25 into Equation 2.24, we obtain the dynamics of the kth panel as

Upper part: {m4pp,k + cptbp,k + kpWp,k = Cps,k + kpWs,k + Uk

Lower part: {m~ps,k + cGlis,k + kpws,k = Cpp,k + kpwp,k - Uk + ek

(2.26)

Considering all the panels mounted on the shell (assuming N, panels are used), the dynamics
of the panels can be written in a matrix form as

Upper part:

Lower part:

1
Mpp + Cypp + Kpwp = Cpns + Kw, + U

1
MPs + Cp*, + K w = Cynp + Kwp - u + e,

2T

where wp = [wp,1 Wp,2 - Wp,N, is a column vector of the N, panel displacements, w, =

[Ws,1 Ws,2 Ws,NP] T is a column vector of the radial displacement of the shell on which panels

are mounted, u = [ui U2  UNp ]T is a column vector of the control input to the panels, and
iT .

e~ =.e - [el e2 ... eNp ]is a column vector of the internal force between the shell and
part of the panels. Also, Mp, CP, and K, are Np x N, matrices of the panel's mass,
and stiffness, respectively, defined as

m
0

0

0
0

k
0

0

0
0

0

M

0

0
0

0

k

0

0
0

0
0

0
0

0
0

m

0
0

. 0
0 kp
0 0

0 0
0 0

0 0

, 0
0 mP

0
0

0
0

kp

, C =

c
0

0

0
0

0

c

0

0
0

0
0

0
- - 0

~ . 0

0 c,
0 0

0
0

0
0

cp-

the lower
damping,

(2.28)

Now, the dynamics of the cylindrical shell is described using the finite element model de-
veloped in Section 2.3.2. Let U, be a N x 1 column vector of the nodal displacements of the
shell in the global coordinate, defined in Equation 2.19, where N, is the number of degrees of
freedom in the finite element model. Note that U, contains not only w8 , the radial displace-
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ment of the shell on which panels are mounted, but also other degrees of freedom, such as linear
displacements in the axial and circumferential directions, and rotations for each node. Given
Us, w, can be extracted from Us using

ws = TwuU', (2.29)

where Two is a N, x N, matrix that picks up the degrees of freedom corresponding to w, from
Us, defined as

Twu (m, n) = t w U = U =1, 2,..., N, , n = 1, 2,..., N. (2.30)
L0, otherwise

Therefore, using the matrix Twu and the finite element method developed in Section 2.3.2, the
dynamic equation of the cylindrical shell can be written as

MsUs + CsUs + KsUs = Bf f - T e, (2.31)

where M. and K, are the global mass and stiffness matrix for the cylindrical shell defined in
Equation 2.21, C. is the damping matrix for the cylindrical shell, which was obtained using the
modal damping here, and Bf is a column vector representing the location where the disturbance
acts. Using Equation 2.27, e is given by

e = I MpTs + Cp*s + Kpw, - Cyn, - Kpwp + u . (2.32)

Also, using the relationships between ws and Us in Equation 2.29, e can be written as

e = 2MpTWUUS + CpTwoUs + KpTwuUs - Cnr - Kpwp + u. (2.33)

Substituting e in Equation 2.33 into Equation 2.31, we obtain the dynamic equation of the
cylindrical shell as

(M + 1T~ uMpTwu) Qs + (Cs + TwuCpTwu) Us + (Ks + TwuK Twn) Us
(2.34)

= Bf f - T u u + Tvu (KPwp + CP*y) .

Combining Equation 2.27 and Equation 2.34, we obtain the coupled dynamic equation of the
shell and the panels, given by

(MS + ITTM Twu) 0 s+[ (Cs + TTCpTwu) -T TuCP U
M, -Cp Two C,

(2.35)

(K, + TWTuKTwu) -T TK, Us B-TTwu u.+[(Ks+u BfT +~~~ L J [ p uI -KTwu K, p 0 IN,

Here, IN, is an N, x N, identity matrix. The model developed in this section will be used to test
the wavenumber domain feedback control algorithms in Chapter 4-5, and the local controller
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Figure 2-15: Force diagram of the cylindrical shell with the active composite panels mounted.

architecture in Chapter 6.

2.4 Summary

In this chapter, the experimental hardware used in this study, including the thick-walled cylin-

drical shell, and the active composite panels, was presented. They constitute the testbed

structure, where the proposed control algorithms will be implemented in later chapters. The

signal conditioners for the panels, which are the pre-amplifier and the power amplifier, were

also described.
Furthermore, the modeling process for the cylindrical shell and the active composite panels

was explored. The objective of the modeling performed in this chapter is to generate a math-

ematical model of the plant that captures the representative dynamics of the real testbed, not

to correlate exactly the experimental data with the simulation. The finite element method was

used to model the dynamics of the cylindrical shell. Simply-supported and clamped boundary
conditions were irregularly applied to produce an effect similar to that produced by the end-

caps, given the fact that they are much stiffer than the shell. The active composite panel was

modeled as a mass-spring-damper system, noting that only the extension mode in its thick-

ness direction is important in this study. Finally, their coupled dynamics were found after

completing the modeling of the shell and the panel.
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Chapter 3

Local Control Architecture

3.1 Introduction and Objective

This chapter considers the local controller architecture used for each panel. The goal of the

local controllers is to reduce the vibration level of each panel's outer surface (the radiating

surface) by actively isolating the panel motion from the cylinder's surface. In the chapter, two

different feedback control approaches are discussed. The design methods for those controllers are

presented using the model developed in Chapter 2, and the experimental data. The undesirable

dynamics of the active composite panel are shown, and the implication in the feedback controller

design will be examined. Finally, methods to resolve the difficulties caused by the undesirable

panel dynamics will be explored.

3.2 Local Controller Architecture

Figure 3-1 shows the cylindrical shell with one active composite panel mounted on its surface.

The shell has two end-caps, three ribs, and one shaker mounted inside of the shell. The shaker

is used to produce a broadband disturbance. More information about the shell and the active

composite panel can be found in Chapter 2.

The standard control system representation is shown in Figure 3-2, showing the disturbances

w, performance z, input u, and measurement y. The (matrix) transfer function of the system
is G, and the feedback control law is K. For the problem discussed in this chapter, the distur-

bance w is the voltage input to the shaker installed inside the shell. The performance variable

z is the acceleration of the outer surface of the active composite panel mounted directly above

the shaker, and the control input u is the voltage input to the panel actuator layer. There are

two possible measurements y for the problem considered in this chapter: the top accelerome-

ter measurement, which measures the performance z directly; and the bottom accelerometer

measurement, which measures the effect of the disturbance on the panel.

Two possible approaches for reducing the performance variable are investigated. In the

feedback control approach (Figure 3-3), the top accelerometer measurement is fed back to the

actuator layer of the panel. Because the measurement y directly senses the performance z in

the feedback approach, the disturbance attenuation at frequency w is directly proportional to
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Shaker-
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Figure 3-1: The cylindrical shell with one active composite panel mounted on its surface.

the sensitivity transfer function, given by

1S (jW) = . .K
1 + G (3w) K (jw)

(3.1)

Thus, the performance of the system is improved by large controller gains.
The other approach considered is to measure the acceleration of the inner surface of the

panel (i.e., the outer surface of the shell), and feed that signal back to the panel. Since the
panel is mounted on the outer surface of the shell, this approach is equivalent to feeding back
the acceleration of the outer surface of the shell back to the panel. Because the mass of each
panel is small compared to that of the shell, the control signal has little effect on the dynamics
of the shell, and therefore GYU(s) is small. However, the control signal directly affects the

w

U

z

y

Figure 3-2: Standard control system representation.
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Disturbance

Figure 3-3: Generic feedback control block digram.

Disturbance

Figure 3-4: Generic feedforward control block diagram.
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Active composite panel
, z
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Cylindrical shell

Real plant Simplified model

Figure 3-5: The cylindrical shell with one active panel mounted on its surface and its simplified

model for feedback control design.

panel displacement, so the transfer function Gz, is significant. As a result, high controller gains

don't guarantee high performance - indeed, a high-gain controller would be counterproductive.

Instead, the best performance is achieved by choosing the feedback gain K(s) to produce a

displacement equal and opposite to the shell displacement. This is denoted as "feedforward"

control in this thesis, because the measurement depends strongly on the disturbance, although

it is not a true feedforward controller in a conventional sense. The block diagram representing

feedforward controller is shown in Figure 3-4.

In fact, these two approaches (feedback and feedforward) are complementary, and can be

applied simultaneously. Because there is little interaction between the two controllers, the net

attenuation is approximately equal to the product of the attenuations of the two controllers.

(If expressed in decibels, the attenuation is the sum of the attenuations of the two controllers.)

3.3 Design of Compensators

3.3.1 Feedback Compensation

In this section, the design of the feedback control loop shape is described. As mentioned in Sec-

tion 3.2, the basic approach of feedback control is to apply large control gain, while maintaining

the closed-loop stability, such that the sensitivity transfer function defined in Equation 3.1 is

as small as possible in the control bandwidth. The displacement of the active composite panel

is directly proportional to the voltage applied to the panel, at least below the first resonance of

the panel, which is near 12 kHz. Furthermore, because the mass of the panel is much smaller

than that of the shell (< 1%), most of the panel displacement occurs at the outer surface.

Therefore, the transfer functions from panel excitation (u) to acceleration of the outer surface
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Figure 3-6: Frequency response of G2, (s) obtained using the model developed in Chapter 2.

of the panel (z) should be proportional to s 2 . Then, as mentioned in Chapter 2, the active

composite panel can be modeled as a mass-spring-damper system with a natural frequency of

12 kHz. Figure 3-5 shows the shell with one active panel mounted on its surface, and its simpli-

fied model for feedback control design. It also shows the disturbance (w), control input (u), and

sensor output (y). The shaker is modeled as a point force acting on the shell. The mass of the

shaker is neglected, because it is much smaller than that of the shell. If the active composite

panel doesn't have its own dynamics, the sensor output (y) is the same as the performance

output (z) in feedback control design setup.

Figure 3-6 and 3-7 show the frequency responses of Gz,(s) and Gzu(s) obtained using the

model developed in Chapter 2, respectively. We can see that the transfer function G22(s)

has a slope of 40 dB/decade below 188 Hz, and 20 dB/decade above 188 Hz. Recalling that

the plant has a low-pass filter at 188 Hz in the power amplifier, this behavior is as expected.

Also, note that Gzu(s) in Figure 3-7 is typical of a collocated structural transfer function.

This results in plant transfer functions that are more easily compensated than non-collocated

transfer functions.

The proposed feedback controller to achieve this goal is shown in Figure 3-8. It has two

low-pass filters at 200 Hz and 20,000 Hz, with a reasonable gain. The low-pass filter at 200 Hz

behaves as an integrator, while the one at 20,000 Hz provides roll-off at high frequency. Re-

membering that the power-amplifier has a low-pass filter at 188 Hz, the feedback controller

basically integrates the signal from the accelerometer twice to get a displacement, multiplies it

by the gain to reduce the sensitivity transfer function, and provides roll-off at high frequency

to avoid the effect of high-frequency noise or unmodeled dynamics. The resulting loop transfer
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Figure 3-7: Frequency response of Gzu (s) obtained using the model developed in Chapter 2.

function using this controller is shown in Figure 3-9. The loop transfer function has a gain of

around 10-20 dB below 2 kHz, and good phase margin.

The result of simulating models looks promising, and seems to imply that the feedback

controller design is straightforward and easy to apply. The experimental data, however, shows

that it is not so easy as expected, primarily due to undesirable panel dynamics. The features

of the undesirable panel dynamics were briefly mentioned in Chapter 2. In this chapter, they

are investigated more thoroughly. Figure 3-10 shows the plant transfer functions Gy.(s), as

measured experimentally by the accelerometers embedded in the active panel; and Gz.(s),
as measured by an external accelerometer (Model #352B22, PCB Piezotronics, Depew, NY).

The transfer function Gzu(s) behaves as expected. From about 50 Hz to 100 Hz, the transfer

function has a slope of about 40 dB/decade, corresponding to a transfer function Gz.(s) ~ s 2 .
Below 50 Hz, the acceleration signal is very small, and the low signal-to-noise ratio prevents an

accurate identification of the transfer function. Above 188 Hz, the slope of the transfer function

decreases to about 20 dB/decade, because the plant includes a power amplifier for the panel

actuator with a low-pass filter at 188 Hz. In the frequency range 500-10,000 Hz, there are also

numerous small peaks, due to shell modes. The peaks are small, because each resonant pole

in the transfer function is nearly cancelled by a zero, due to the low controllability of the shell

modes by the panel actuator. Finally, at 12 kHz, a significant resonant peak is seen, which is

due to the panel dynamics.

Also in Figure 3-10 is the transfer function Gys. Ideally, the transfer function Gy. would

be identical to Gz, indicating that the embedded accelerometers are accurately measuring
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Figure 3-9: The loop transfer function for feedback control.
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Figure 3-10: Plant transfer function for feedback control.

the acceleration of the radiating surface. Unfortunately, the two transfer functions show some

discrepancies. At high frequencies (above 12 kHz), the two transfer functions are significantly

different, most likely due to participation of the embedded accelerometers in the modal behavior

of the panel. This discrepancy is not too serious, since the bandwidth of the controller will

be well below 12 kHz anyway. The more serious problem is the discrepancy below 500 Hz,
which is inside the bandwidth interest. This discrepancy appears to be due to direct electrical

or electromechanical feedthrough of the panel input voltage to the accelerometer. The low-

frequency feedthrough critically limits the achievable closed-loop performance. In order to

achieve satisfactory performance, it is necessary to compensate for the feedthrough effect.

The low frequency feedthrough can be cancelled, at least approximately, by adding a low-

pass filter to the plant. The transfer function Gzu can be approximated below the resonant

frequency of the panel as a double differentiator s2 times a low-pass filter at 188 Hz, given as

2

G2S = k , (3.2)
s + 27r x 188

where k is a constant gain, and small peaks due to shell modes are neglected. On the other

hand, the transfer function Gyu can be approximated as

k 2 -2 , (3.3)G =ks + 27r x 188(3)

68



-30

-40

-50 -

-60-

C

-70

-80 -
- Difference of external and embedded accelerometers
- Low-pass filter

-90 02'
10 10 1

Frequency (Hz)

Figure 3-11: Difference in the transfer functions of the embedded and external accelerometers.
The low-pass filter transfer function is an approximate fit to the actual difference.

where c2 corresponds to the low-frequency feedthrough. The negative sign is needed before
c2 , because imaginary zeros are not found in the low-frequency in Gys. Therefore, in order
to extract G-. from the measurement of GY , a low-pass filter C (s) should be designed and
implemented, given by

C (s) = k (3.4)
s + 27r x 188

Then, Gzu can be obtained by adding C (s) to Gyu. Figure 3-11 shows the difference between
the acceleration measured by the external accelerometer and the embedded ones (Gzu - GYU),
and the low-pass filter that (approximately) matches the difference (C(s)). The result of adding
the low-pass filter to the plant is shown in Figure 3-12. It can be seen that the low frequency
feedthrough is significantly reduced, and the compensated plant transfer function is a much
better match to the performance transfer function. This will significantly improve the closed-
loop performance in the frequency range below 500 Hz.

The feedback control law can be determined from the requirements on the attenuation of
radiated noise. For example, in order to achieve better than 10 dB of reduction in the range
250-2000 Hz, the loop gain must be greater than 10 dB over this range. In order for the system
to be stable, the loop must roll off at high frequencies, with a slope of about -20 dB/decade. It
is also necessary for the loop shape to roll off at low frequencies. If it did not, the control loop
would try to control the large, low-frequency motion of the shell that occurs in the laboratory
when the shell swings or bounces on its suspension. Therefore, in addition to the low-pass
filter associated with the power amplifier, two additional low-pass filters are needed to give the
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Figure 3-13: Feedback controller frequency response function.

correct roll-off at high frequencies. Also, a high-pass filter is required to ensure that the loop

rolls off at low frequencies with a slope of 20 dB/decade. Finally, there must be compensation

for the high-frequency panel dynamics, which can cause instability. The way to compensate for

the high-frequency panel dynamics will be explored in detail in Chapter 6.

Figure 3-13 shows the basic feedback controller transfer function used in this study. The

feedback compensator has a low-pass filter with a pole at 600 Hz, another low-pass filter at

1000 Hz, and a high-pass filter at 14 Hz. The controller transfer function in Figure 3-13 doesn't

have a low-pass filter at 188 Hz, which is included in the plant. In addition, there is a notch

filter at about 12 kHz, which is tuned to the panel resonance. Figure 3-14 and 3-15 show the

frequency response and Nyquist plot of the resulting loop transfer function. As can be seen

from the figures, the loop shape achieves the desired goals. The loop gain is greater than 10 dB

between 250 Hz and 2000 Hz. At the lower crossover frequency of 70 Hz, the phase margin is

close to 90 deg. (Note that for a low-frequency crossover, the phase margin is the difference

between the loop phase and +180 deg). At the higher frequency, the phase margin is lower, but

adequate. For some of the implementations described in Chapter 6, it was necessary to reduce

the loop gain somewhat, in order to keep the phase margin at acceptable levels, and prevent

instabilities.
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Figure 3-16: The cylindrical shell with one active panel mounted on its surface and its simplified
model for feedforward control design.

3.3.2 Feedforward Compensation

In some ways, the problem of feedforward compensation is more straightforward than feedback
compensation. When the bottom accelerometer is used as the measurement, the coupling
between the applied control and the measurement, GYU, is small, so that for moderate control
signals, there is no risk of instability. Figure 3-16 shows the cylindrical shell with one active
composite panel mounted on its surface, and its simplified model for feedforward control design.
It also shows the disturbance (w), control input (u), and sensor output (y), and performance
output (z).

Figure 3-17 shows the frequency response of Gze(s) and Gyw(s), while Figure 3-18 shows
the frequency response of Gzu(s) and Gyu(s). They are obtained using the model developed
in Chapter 2. It can be seen that Gw.(s) and Gyw(s) are indistinguishable below the resonant
peak at 12 kHz of the panel (the resonance is not shown in the Figure 3-17). This implies
that the inner surface of the panel moves about the same as the outer surface of the shell,
under the influence of a disturbance, below the resonance of the panel. Figure 3-18 says that
GYU(s) is smaller than Gzu(s), below 2 kHz, primarily because the mass of the active composite
panel is much smaller than that of the shell. These two features of the plant transfer functions
(GYm GzW, and GYU is small) have critical advantages in feedforward controller design, as
shown below.

In contrast to feedback control, the goal of feedforward control is to choose the control gain so
that the performance output (z) is cancelled. From the standard control system representation
in Figure 3-2, the performance output (z) and the sensor output (y) can be written as

z = Gzww + Gzuu (3.5)

y = Gyww + GYUn .
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The feedforward controller Kf (s) can be implemented as

U = Kf y. (3.6)

Using this controller, the closed-loop performance output (z) can be written as

z = Gzww + Gzu K y (3.7)

Gzw + Kf (GzuGyw - GzwGyu)
1 1 - Kf Gyu

Therefore, we can see that z is exactly cancelled when Kf (s) is selected such that

K = _ zw (3.8)S GzuGyw - GzwGyu

provided that the closed-loop system is stable.

The desired control law Kf (s) in Equation 3.8 can be simplified further using the fact that

Gvu is small, and Gy ~ Gzw. Therefore,

1
K ~ (3.9)

But Gzu ~ s2 . So, the appropriate control law is for Kf (s) to be a double integrator with

appropriate gain. Figure 3-19 shows the frequency response function of the feedforward con-

troller Kf (s) obtained using Equation 3.8 and 3.9 in the same figure. They are so similar that

it is not possible to see the difference. The frequency response function shown in Figure 3-19

is not a double integrator (1/s 2 ), but a double integrator multiplied by a polynomial function

(s + 188 x 27r), which comes from the inverse of the low-pass filter in the power amplifier. The

resulting loop transfer function Kf (s) Gyu (s) for feedforward controller is shown in Figure 3-
20. In contrast to feedback control, the loop gain for feedforward control is small, as expected.

Most resonant peaks are around the 0 dB line, although some peaks cross the 10 dB line. Also,
from Figure 3-20, we can see that the closed-loop system using the feedforward controller Kf (s)

from Equation 3.9 is stable. Therefore, the feedforward controller shown in Figure 3-19 exactly

cancels the performance output (z). However, this cannot happen in a real world, because

Gym is not exactly equal to Gw, and there is no guarantee that feedforward controller obtained

using Equation 3.8 will stabilize the closed-loop system. Also, as a practical matter, it is better

for Kf (s) to be a low-pass filter with two poles, instead of a double integrator, since the match

is important only above 250 Hz, and indeed there is not enough control authority to cancel

low-frequency motion. Therefore, the design approach to feedforward controller is to find a

stabilizing Kf (s) such that it is as close as possible to the one defined in Equation 3.8.

Figure 3-21 and 3-22 show the frequency response of Gw(s), Gyw(s) and Gzu(s), Gy,(s),
respectively, as measured experimentally by the accelerometers embedded in the active com-

posite panel. We can see that Gzw(s) and Gyw(s) are very similar below 2 kHz, although they

begin to diverge from each other above 3 kHz. Also, Figure 3-22 says that Gy"(s) is very

small, compared to GZL(s), below 2 kHz. Since the two features of plant transfer functions for

feedforward control, which were assumed before, are valid below 2kHz, it is expected that the

feedforward controller will achieve reasonable closed-loop performance below this frequency.
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Figure 3-23 shows the frequency response of the ideal feedforward controller, as defined in

Equation 3.8, and its best fit Kf (s), which is denoted as "practical feedforward controller" in

the figure. K 1 (s) has one pole at 150 Hz, which functions as a double integrator, combined

with the low-pass filter in the power amplifier. In addition, one low-pass filter pole was added

at 6000 Hz to add roll-off, which prevents instability due to high-frequency modes of the shell.

Finally, Kf (s) has a high-pass filter at 11 Hz to avoid DC saturation. Because of the pole

location of Kf (s), the best matching of transfer functions (and therefore the best attenuation)
will occur between 500 Hz and 2000 Hz. The resulting loop transfer function is shown in

Figure 3-24 (frequency response), and 3-25 (Nyquist plot), respectively. We can see that the

closed-loop system is almost gain-stabilized, because most resonant peaks are below 0 dB,
although a few peaks cross the 0 dB line.

3.3.3 Low-frequency Feedthrough Compensator

In Section 3.3.1, we saw that the low-frequency feedthrough can be approximately cancelled by
adding a low-pass filter to the plant. Feedback and feedforward controllers were designed on

the plant improved by adding the low-pass filter. The block diagram for the closed-loop system

with both feedback and feedforward controller is shown in Figure 3-26. In the block diagram

shown in the figure, the "accelerometer compensator," which is the low-pass filter added to

the plant, is considered as a part of the plant. However, we can incorporate the accelerometer

78



0

E20
CU

-40 -
101

9rn

-90
C -
&-180

-27
101

102 103

10 (
Frequency (Hz)

3

Figure 3-24: Frequency response of loop transfer function for feedforward control.

C

E-0.5

-1

-1.5

-2 L
-2 -1 0 1

Real

Figure 3-25: Nyquist plot of loop transfer function for feedforward control. "*" represents the

critical point -1.

79

|



Figure 3-26: Block diagram for the closed-loop system.

compensator into the feedback and feedforward controller as follows.
In the block diagram shown in Figure 3-27, Kb (s), Kf (s), and C(s) are the feedback

controller, feedforward controller, and accelerometer compensator, respectively. In addition, u,
yt, and Yb are the controller input, top accelerometer measurement, and bottom accelerometer
measurement, respectively. The performance output z is also shown in the figure. Using the
first block diagram in Figure 3-27, the relation between u, yt, and Yb can be written as

U - Kf (s) Yb + Kb (s) [yt + C(s)u] . (3.10)

Therefore, u can be expressed in terms of yt, and Yb, given by

K (s) Kb (S) Yt
1 - C (s) Kb (s) 1 - C (s) Kb (s) (3.11)

Also, using the second block diagram in Figure 3-27, u can be expressed in terms of yt, and Yb
as

U = K (s) Yb + K' (s) Yt , (3.12)

where K (s), and K' (s) are the equivalent feedback and feedforward controllers that incor-
porate the accelerometer compensator, respectively. Using Equation 3.11 and 3.12, we can find
the expression for Kb (s), and K' (s) as

K = Kf(s)(313)
1-C(s) Kb (s)

K' Kb (S)

b 1 - C (s) Kb (s)

Figure 3-28 shows the block diagram for feedback controller K (s) and feedforward controller
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Figure 3-27: Equivalent block diagram for the closed-loop system.

81



Figure 3-28: Block diagram for feedback and feedforward controller.

Kf (s). It also shows the relation between (Kb (s), Kf (s)) and (Kb (s) , Kf (s)); Kb (s) is

a feedback connection of Kb (s) and C (s), while Kf (s) is Kf (s) multiplied by the feedback
connection of Kb (s) and C (s). Let Nb, Nf, and Nc be the number of states needed to implement
Kb (s), Kf (s), and C (s), respectively. Then, Nj and Nj. , which are the numbers of states
needed to implement Kb (s), and Kf (s), respectively, can be written as

N = Nb+Nc (3.14)

Nf = Nb + Nc + Nf.

Therefore, because of the accelerometer compensation to compensate for the undesirable low-
frequency dynamics of the active composite panel, the total number of states needed to imple-
ment the feedback and feedforward controller is increased by Nb + 2Nc for each panel. If Np
panels are used to cover the surface of the cylindrical shell, the increased number of states is
N, (Nb + 2Nc). For example, if N, = 55 (55 panels will be mounted on the shell, eventually),
Ne = 1, and Nb = 3 (typical numbers of states to implement C (s), and Kb (s)), then the
increased number of states becomes 275. This fact shows how the undesirable panel dynamics
makes controller implementation harder, although it can be efficiently compensated for.

It should be remembered that the real performance z to be reduced is not yt, but yt+C(s) u.
Therefore, it is better to design Kb (s) and K (s) first, based on the plant modified by adding
C (s), rather than designing K (s) and K' (s) directly. After designing Kb (s) and Kf (s),
K1 (s) and K' (s) can be found using Equation 3.13. This approach will be used in Chapter 6,
where several feedback and feedforward controllers will be designed and implemented. The
controller transfer functions shown in Figure 3-13 and 3-23 are Kb (s) and K1 (s), respectively,
not Kb (s) and K' (s). Also, the loop transfer function shown in Figure 3-14 for feedback
controller, and the loop transfer function shown in Figure 3-24 for feedforward controller are
(G±Ui (s) + C (s)) Kb (s) and Gybu (s) K 1 (s), which are obtained by cutting the loop at "1"
in the first block diagram in Figure 3-27, respectively. Here, G,,, (s) and GybU (s) are plant
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transfer functions from u to yt and Yb, with power and pre-amplifier included. Figure 3-
29 shows the frequency response of Kb (s), overplotted with Kb (s), while Figure 3-30 shows

the frequency response of K' (s), overplotted with Kf (s). The resulting loop transfer function

K (s) Gy,, (s) for feedback control, which is obtained by cutting the loop at "2" in the first block

diagram in Figure 3-27, is shown in Figure 3-31, overplotted with (Gyu (s) + C (s)) Kb (s). The

feedforward controller K' (s) should not be used without the feedback controller Kb (s), because

K' (s) was derived based on the assumption that the feedback controller is closed. Therefore,
the loop transfer function for feedforward control Gybu (s) K' (s) doesn't give any meaningful

information about the closed-loop system.

3.4 Summary

In this chapter, the design method for local controller architecture was described. The goal

of local controller was introduced, and two different feedback control approaches to implement

local controllers were explained. The first feedback control approach takes the output of the

accelerometers embedded on the outer surface of the panel, which makes the measurement y
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directly sense the performance output z, and feeds it back to the panel actuator layer such that

the motion of the radiating surface is reduced. On the other hand, the second feedback control

approach measures the motion of the surface of the shell, and feeds it back to the panel actuator

layer. This approach was denoted as "feedforward," because the measurement strongly depends

on the disturbance, although it is not a true feedforward controller.

Design methods for feedback and feedforward controllers, to guarantee high performance and

stability, and to compensate for undesirable plant dynamics, were also investigated. The two

approaches were first validated on the model developed in Chapter 2. The result of simulating

the approaches looks promising and straightforward to implement. However, it turned out that

two undesirable panel dynamics, which are low-frequency feedthrough below 500 Hz and high-
frequency panel resonance at 12 kHz, critically limit the achievable closed-loop performance.

A way to compensate for the undesirable panel dynamics was explored. Modified feedback
and feedforward control approaches that efficiently eliminate the effect of panel dynamics were

introduced.
In the next chapter, the wavenumber domain feedback controller design methodology, which

will be used as a global control architecture, will be presented.
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Chapter 4

Global Control Architecture

4.1 Introduction and Objective

During last decade, considerable effort has been devoted to the development and use of structure-

mounted sensors, such as accelerometers and piezoelectric ceramics and polymers, for active

structural acoustic control (ASAC) [Clark, 1992C], [Maillard, 1997]. Structure-mounted sen-

sors are attractive because they replace error microphones placed in the radiated far field, which

is an impractical approach in many applications [Fuller, 1991A].
One of the challenges in using structure-mounted sensors for ASAC is how to extract infor-

mation about the acoustic response (i.e., acoustic pressure) from the measurement of structural

response (i.e., acceleration or strain). Wavenumber domain approaches have been proposed to

address this problem [Fuller, 1991A], [Maillard, 1997]. The wavenumber domain approaches are

based on the fact that the acoustic pressure in the far field can be entirely described by the cor-

responding wavenumber components for simple structures such as beams and plates in a infinite

baffles [Fahy, 1985]. The first wavenumber-based approach was developed by Fuller and Bur-

disso [Fuller, 1991A]. They applied this approach numerically to a 2-D baffled simply-supported

beam excited by a disturbance at a tonal frequency. By designing a feedforward controller that

reduces the target wavenumber component, they showed that the acoustic pressure at the

corresponding radiation angle can be reduced. Maillard proposed a new time domain struc-

tural sensing technique for predicting wavenumber information and applied it to infinite baffled

structural systems in order to reduce the acoustic pressure in the far field [Maillard, 1997].
Scott et al. presented a technique to obtain the far-field acoustic power radiated from a one-

dimensional structure using PVDF film sensors as low-pass wavenumber filters [Scott, 1997].

Wang presented a wavenumber domain sensing approach using polyvinylidene fluoride (PVDF)

films on a beam, and designed feedforward control by defining a cost function as the sum of

mean square values of the supersonic wavenumber components [Wang, 1998].
Wavenumber domain approaches can be easily implemented to control a tonal noise dis-

turbance at a single frequency because the target wavenumber is constant. For a broadband

disturbance, however, this is not so straightforward, because the target wavenumbers are not

constant, but a function of the characteristics of the disturbance spectrum. Filters can be

implemented to estimate wavenumber components in the case of broadband disturbance. Mail-

lard proposed the use of filters with an artificial time delay in order to overcome a noncausality

problem, so that the wavenumber components for the broadband disturbance can be estimated
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[Maillard, 1997]. He showed that, when used in a feedforward control approach, a filter with
an artificial time delay yields the same control performance as the filter without delay. How-
ever, time delays impose a fundamental limitation on the achievable closed-loop performance
using feedback control. So far there has been no successful effort using the wavenumber domain
approach for feedback controller design.

Another critical issue in using structure-mounted sensors for ASAC is the selection of con-
trol algorithms. Most effort on the control algorithms for ASAC has been focused on the
development of efficient feedforward control methods, primarily because the acoustic pressure
in general cannot be used as feedback control input, due to the large phase delay in the plant
transfer functions. However, the use of structure-mounted sensors has allowed the applica-
tion of feedback control approach for broadband ASAC. One of the methods used most widely
to design feedback control for ASAC is the radiation filter method, proposed by Baumann et
al. [Baumann, 1991]. They approximated the radiation resistance matrix using a rational matrix
(radiation filter), which can be implemented by a state-space model, and used the radiation filter
as a cost function for a model-based feedback controller. Baumann et al. used this concept to
design the linear quadratic gaussian (LQG) controller to minimize the acoustic power radiated
from clamped beams [Baumann, 1992]. Bingham et al. implemented the LQG controller to re-
duce the sound radiation from a flat composite panel using the radiation filter [Bingham, 1998].
Gibbs et al. proposed a method of reduced order modeling/design of radiation filters, termed
radiation modal expansion [Gibbs, 2000].

The success of applying this method depends on the accuracy of the radiation resistance
matrix that can be achieved for the plant, analytically or experimentally. This implies that
the method may not be easy to apply for a complex system, for which the radiation resistance
matrix is difficult to obtain, although it can be easily applied to a simple structural system,
such as beam or plate structures. Even if we can obtain the matrix from an analytic expression
(when the structure is simple), or numerical method, such as finite element method or boundary
element method (when the structure is complex), it is highly model-dependent, which means
that it is not straightforward to implement the radiation filter method experimentally.

In this chapter, a new wavenumber sensing method and its application to feedback controller
design for active structural acoustic control is proposed. The approach taken is to minimize
the total acoustic power radiated from a vibrating structure in the wavenumber domain, in-
stead of measuring or determining the acoustic pressure at a particular radiation angle. The
radiated acoustic power can be expressed as an weighted integral of the square value of the
wavenumber components in the supersonic region, in which the structural wavenumber is less
than the acoustic wavenumber, so the wavenumber components in the supersonic domain are
good candidates for the performance measure. The target wavenumbers in the supersonic do-
main can be determined when the bandwidth of the disturbance spectrum is known. In general,
wavenumber components are complex numbers, complicating their estimation by means of a
state-space model. However, because it is the magnitude and not the phase of the wavenumber
components that contributes to the radiated noise into the far field, it is shown that a state-
space model that estimates the magnitudes of wavenumber components can be found. Once
such a state-space model is available, a modern controller design paradigm can be applied to
minimize the acoustic power radiated from vibrating structures. This new approach enables the
systematic development of state-space models for wavenumber components in the supersonic
region, and therefore enables the design of optimal LQG controllers for radiated noise control.
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This chapter is organized as follows: Section 4.2 presents the theoretical basis for structural

acoustics. Well-known results from the structural acoustic radiation problem will be sum-

marized for later reference. In Section 4.3, the formulation for the new wavenumber domain

sensing method and its application to the feedback controller design for ASAC is described. For

mathematical convenience, the motivation and the formulation for the new wavenumber sensing

method will be first explained for a beam structure in Section 4.3.1. Then, in Section 4.3.2, the

formulation for the cylindrical shell is developed. The process of LQG controller design using

the new sensing method is also described. Finally, in Section 4.3.3, the application of the new

sensing method for the general three-dimensional structures will be discussed.

4.2 Basic Theory of Sound Radiation

In this section, the basic steps to formulate the structural acoustic problem used throughout

this chapter are presented. First, the Helmholtz integral equation will be introduced to obtain

a representation of the arbitrary acoustic field in terms of surface accelerations and surface

pressures. Then, the procedure of reducing it to Rayleigh's formula for planar radiators, as

well as the formulation of the acoustic pressure for the infinite baffled cylindrical shell will be

described. Finally, the radiated acoustic power, which is used as performance metric in this

new approach, will be derived.

4.2.1 The Helmholtz Integral Equation

Figure 4-1 shows the geometry of a generic three-dimensional structure excited by a harmonic

force e-i" inside a volume V bounded by surfaces So and Si, where the inner surface So

coincides with the geometry of the structure. The normal displacement and acceleration of the

structure are denoted as w and 6i in the figure, respectively. In the interior of the volume V,
the acoustic pressure p (r, t) at field point r satisfies the wave Equation [Pierce, 1981]

V 2 p = a 2 (4.1)

where V 2 is the Laplace operator and c is speed of sound in the fluid. For steady-state conditions

with a harmonic disturbance e--"t, the acoustic pressure p (r, t) can be represented as

p (r, t) = p (r)e-wt . (4.2)

Substituting Equation 4.2 into Equation 4.1 yields the Helmholtz equation [Junger, 1986

(V 2 + k2 ) p = 0 , (4.3)

where k is the acoustic wavenumber, defined by k w/c, and w is the excitation frequency.

The solution of Equation 4.3 is subject to the boundary conditions over the radiating surface

so
(Vp) - n = -pw, (4.4)

in which n is the outward normal unit vector at ro, 7,D is the normal acceleration of the radiator

at So, and p is the density of the fluid. Equation 4.4 is obtained by applying Euler's equation
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Vp = -pvT at So, where v is the velocity field, and states that the pressure gradient normal to

the radiating surface must be equal to the normal acceleration of the radiator times the fluid
density.

The solution of Equation 4.3 is also subject to the boundary condition over the surface S 1 .
Assuming the outer boundary surface Si is located at infinity (|R 1 I -+ oo), the acoustic field p
should satisfy the Sommerfeld radiation condition [Junger, 1986], given by

lim IRiI jkp (R1 ) - (RI) 0. (4.5)
IRil-+oo [9IRi1

The Sommerfeld radiation condition (Equation 4.5) assumes that the medium surrounding the

radiator is unbounded, and that no reflection occurs on the surface S1. Using the two boundary

conditions given in Equations 4.4 and 4.5, the acoustic pressure p (r) at field point r can be

expressed in terms of the surface pressure p (ro) and the out-of-plane acceleration field i) (ro),

p (r) = -F [p (ro) (Vg (Ir - rol)) n + pd)(ro) g (Ir - rol) dSo , (4.6)

where e is defined as
0 for r not in V

= 1 for r in V , (4.7)
2 for r on So or S1

and g (Ir - rol) is the free-space Green's function, given by

g (Jr - rol) eklrro (48)
47r Ir - rol

The free-space Green's function satisfies the inhomogeneous Helmholtz equation,

(V 2 + k2 ) g (Ir - rol) = 6 (r - ro) , (4.9)

subject to the Sommerfeld radiation condition [Junger, 1986],

g (r - ro 1)
lim Ir - rol kg (|r - rl) - = 0, (4.10)

Ir-ro--oo 8|r-ro|

which is used to ensure that the wave is traveling outward. Here, 6 (r - ro) is the three-

dimensional Dirac delta function. Physically, the free-space Green's function g (Ir - rol) repre-

sents the acoustic pressure at r generated by a unit point source at ro.

The resulting expression in Equation 4.6 is known as the Helmholtz Integral Equation, and is

used to construct a pressure field in space from the information on the acceleration and pressure

field over a surface of the structure.

4.2.2 Rayleigh's Formula for Planar Radiators

As mentioned in Section 4.2.1, both the acceleration and pressure field over the surface of a
structure are needed to obtain the acoustic pressure in the medium. Only the acceleration
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Figure 4-1: Geometry of radiation problem of the general 3-D structure.

Figure 4-2: Infinite baffled beam structure.
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field would be needed if a Green's function G (r, ro) satisfying Neumann's boundary conditions,
given by

(VG (r, ro)) -n =0, (4.11)

could be found. Then, the Helmholtz integral equation in Equation 4.6 would be reduced to a

simple integral representation

p (r) = -p G (r, ro)' i(ro) dSo . (4.12)

An infinite planar radiator (Figure 4-2) is one of the problems in which a Green's function

that satisfies Neumann's boundary conditions in Equation 4.11 can be found. The desired

Green's function for an infinite planar radiator is given by [Junger, 1986]

G (r, ro) = 2g (Ir - ro l) = - eklrrol (4.13)
27r|r-rol

Therefore, for an infinite planar radiator, the Helmholtz integral equation reduces to

pf eikfr-rolI
p (r) = --- ' (ro) dSo . (4.14)

27r So r -- rol

Equation 4.14 states that for planar radiators the acoustic pressure p (r) at field point r can be

solely determined in terms of the out-of-plane acceleration field 'b (ro); the acoustic pressure at

the radiating surface is not needed to calculate p (r). Equation 4.14 can be further simplified if

IrI > Irol. In that case, the resulting equation is called Rayleigh's formula for planar radiators,
and is given by [Junger, 1986]

p (r) - ejkir-rol i (ro) dSo . (4.15)
27r |r l JSo

Physically, Rayleigh's formula means that a planar source located in an infinite baffle is equiv-

alent to a distribution of point sources.

4.2.3 Cylindrical Radiator

An infinite baffled cylindrical shell is another case in which a Green's function that satisfies

the Neumann boundary conditions in Equation 4.11 can be found. Figure 4-3 shows a finite

cylindrical shell of length L and radius a in an infinite baffle. Using the simplified Helmholtz

integral in Equation 4.12, the acoustic pressure p (r, <, z) in the cylindrical coordinate can be

written as

/ L/2 
2r

p (r,<p, z) = -p2 G (r,<p, z ; a,<po, zo)t (<po, zo) a dpodzo, (4.16)
-L/2 Jo

where (a, po, zo) is the cylindrical coordinate on the surface of the cylindrical shell, iD (<p, zo)

is the acceleration field at the surface on the radial direction, and G (r, <, z; a, po zo) is the

Green's function that satisfies the Neumann boundary conditions for the infinite baffled cylin-
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Figure 4-3: Infinite baffled cylindrical shell.

drical shell. The desired Green's function for an infinite baffled cylindrical shell
[Maillard, 1997]

is given by

G (r,<o, z; a,<po, zo)
= 4 Sr2 - cos [n (< - <p j qn (/) e--y(z-zo)ty,

n=O

where

q (/3) - Hn (or) ; #-=
OaH (Oa)

/ _ {2, n=0
V 'V -72) En 1, n >

Here, the functions Hn2 ) (x) and H( 2 )' (x) denote the nth Hankel function of the second kind and
its first derivative, respectively. For far-field radiation, this expression can be further simplified
to [Maillard, 1997]

e-sk(R-zo cos O) cO gn+1 cos [n (<p - WO)]
G (R, 0,<p ; a,<po, zo) ~ikR s csc2 akRsin9 nO H12 (kasin9)

(4.19)

The next step is to write the acoustic pressure in the far field for the infinite baffled cylin-
drical shell by substituting Equation 4.19 into Equation 4.16, to yield [Junger, 1986]

p (R, 0, ) =
pe-jkR 00 n+1

7r2 kR sin 1 enH 2 ' (ka sin0)

X (<po, zo) cos [n (<p - <po) ejkzo cos dpodzO
0 J -L/2
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4.2.4 Acoustic Power

In general, two acoustic variables are used as performance metrics for active structural acoustic
control (ASAC). The first one is the acoustic pressure, which can be obtained by means of
the Helmholtz integral equation for the generic three-dimensional structure (Equation 4.6),
or the Rayleigh's formula for planar radiators (Equation 4.15) and cylindrical shell structures
(Equation 4.20). The other acoustic variable used as the performance metric for ASAC is the
radiated acoustic power. The radiated acoustic power H is defined as [Pierce, 1981]

11 = jI -ndS = (pv) -ndS, (4.21)

where I = pv is the acoustic intensity, S is a surface enclosing the acoustic source, p and v are
the acoustic pressure and velocity on the surface S, and n is the unit normal vector pointing
out of the volume containing the source. Note that the radiated acoustic power averaged over
all time is independent of the surface S over which integration is performed, as long as S
encloses the acoustic source, due to the energy conservation in an inviscid acoustic medium.
The acoustic intensity over a large sphere of radius R concentric with the source is given by

2p(R,cO,t) and, consequently, the acoustic power can be described by

j 2  p(R )1 R2 sin d d , kR >> 1. (4.22)
o o 2pc

Here, the acoustic pressure p is expressed in terms of spherical coordinates (R, p,4). Through-
out this chapter, the acoustic power H will be used as the performance metric for ASAC.

4.3 Wavenumber Domain Feedback Controller Design

In this section, the formulation for the new wavenumber domain sensing method and its appli-
cation to the feedback controller design for ASAC is described using an infinite baffled beam
and an infinite baffled cylinder as examples.

4.3.1 Beam Structures

Figure 4-2 shows an infinite baffled beam structure of length L and width b, excited by a
harmonic force of angular frequency w. The acoustic pressure p (R, V, 4) = 0, t) in the far-field
in Figure 4-2 can be found by substituting Irl = R, Ir - rol R - xsin p, and f - dSo

bfL .. dx in Rayleigh's formula for planar radiators (Equation 4.15). The result is

2 L/2Ip(Rp,@0,t [2rR J/2 ejk(R-xsino) --jdx]

Note that the structural waves travel solely along the x direction, because the beam structure
in Figure 4-2 assumes a constant response along the y direction.

The acoustic pressure in the far-field can also be described as a function of the wavenumber
transform of the beam's surface motion. The wavenumber transform in the continuous domain
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Figure 4-4: Location of evenly distributed sensors mounted on an infinite baffled beam.

of a quantity, in this case the beam's out-of-plane acceleration, is the spatial Fourier transform
of that quantity, given by

J-L/2W (kx) = ]L, f6 (x) e-jkxjx dx. (4.24)

In the expression above, kx is the structural wavenumber along the beam (x direction) and

W (kx) is the wavenumber component corresponding to the acceleration field TD (x). Using the

wavenumber transform, p (R, o, 7P = 0, t) in Equation 4.23 can be written as

pbekR Wk
p(R,'.p,'= 0,t) = W (k sin W) e-3' (4.25)

where W (k sin W) is the wavenumber component obtained by substituting kx = k sin p in Equa-

tion 4.24.
For the practical implementation, the discrete wavenumber transform would be preferred to

the continuous one because the continuous acceleration field 1D (x) is often not available. The

discrete wavenumber transform corresponding to Equation 4.24 is defined using the discrete

Fourier transform,
N.

Wd (kx) = Ax E ) (x,) e-kxxn, (4.26)
n=1

where x is the location of the nth measurement point, Ax is the spacing between measurement

points, N, is the number of measurement points, and Wd (km) is the wavenumber component

corresponding to the acceleration field f6 (xz), n = 1...N, (Figure 4-4). Also, Ax and x are

defined as

Ax = (4.27)
Ns'

L Ax
zn = + Ax(2n -1) , n =1, 2, ..., N, .

2 2

Using the discrete wavenumber transform, the acoustic pressure p (R, W, V) = 0, t) is approxi-

mated as
pbejk Rp (R,<p, = 0, t) :::::: Wd (k sin p) e-j0't (4.28)
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Figure 4-5: Estimating wavenumber components using H,, (jw).

Equations 4.25 and 4.28 imply that the far field acoustic pressure in the direction (p, 4 = 0)
is completely determined by the corresponding wavenumber component W (k sin W). It enables

structure-mounted sensors, such as accelerometers or piezoelectric ceramics, to be used for

ASAC, since one can extract information about the acoustic pressure p (R, o, 4 = 0, t) from the

structural response W (k sin o). Fuller and Burdisso showed numerically that this method can

be used for the design of feedforward controllers to reject the noise due to tonal disturbances

[Fuller, 1991A]. Also, this approach can be implemented without any difficulty for feedback

controller design to reject a tonal disturbance, since the target wavenumber k, = (w/c) sin p is

constant, and one can weight each sensor output signal such that the weighted sum approximates

the target wavenumber component Wd (k sin p).

However, it is difficult to apply this method to the rejection of broadband disturbances,
because the target wavenumber k, = (w/c) sin y' is no longer a constant, but a function of the

disturbance spectrum. Therefore, the set of wavenumber component to be minimized is written

as

N, N,

Wd (km) = Ax1 9 (x,,) e-jk.n = Ax LI (X7 ) e-jxn(w/c)sin W (4.29)
n=1 n=1

N,

A f& (xn) H (jW)
n=1

where Hn (jw) is a filter that is implemented to obtain the wavenumber component Wd (k2)

from sensor measurements. The filter Hn (jw) is given by

Hn (jw) = Ax eijXn(w/c)sin , (4.30)
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and the procedure to estimate the wavenumber component Wd (kr) using a filter H,, (jw) is
shown in Figure 4-5. We see that H,, (jw) cannot be implemented if x,, sin tp is less than 0,
because it becomes noncausal. Mailard modified H, (jw) by adding a time delay to render it
causal [Maillard, 1997]. He showed that the modified filter yields the same control performance
as the original filter without delay, when used in a feedforward control approach. However, this
technique cannot be applied for feedback control design since time delays impose a fundamental
limitation on the achievable closed-loop performance of feedback controllers.

The new wavenumber domain sensing method proposed in this chapter combines the wavenum-
ber domain approach with a feedback control architecture. The basic idea is to use the radiated
acoustic power as the performance metric, instead of the acoustic pressure in a specific radiation
angle. The radiated acoustic power H from a vibrating beam structure can be written in terms
of the wavenumber transform as [Fahy, 1985]

nkckl.. 2

pkc_ W (kx)
H (W) = dk . (4.31)

47rw2 -k /k k

The physical meaning of Equation 4.31 is presented through an example of an infinitely
baffled, simply-supported beam of length L. Assume that the acceleration distribution iD (X) is

.T sin () ewt, 0 < x < L, n is an integer1 0, otherwise (4.32)

The wavenumber transform of 'i (x, t) , computed by using Equation 4.24, is given by [Fahy, 1985]

n7r)
-Ljk [(Le-k

(km) = f (x) e-[( d- 2 e L- ] (4.33)

Jo[2 _ (nr2]\ L

The magnitude squared of W (k2), W (kx) , is plotted in Figure 4-6 for the case n = 8. As
.. 2

expected, W (kx) reaches its maximum when kx is equal to the dominant structural wavenum-
n7r

ber, which is L . If the beam were infinitely long without any boundary, the wavenumber trans-
n7r

form would be zero everywhere, except at kx = . Since the beam structure considered in

this example is bounded, its wavenumber spectrum has non-zero values almost everywhere,
although its maximum value occurs at kx = L

L
Figure 4-6 also shows the acoustic wavenumber k = w/c for an arbitrarily given frequency

w. What Equation 4.31 implies is that, at this given frequency, only supersonic wavenum-
ber components satisfying the condition kx ; k can radiate sound energy, and that subsonic
wavenumber components (k, > k) simply create near field disturbance of the fluid and don't
contribute to the radiated sound power [Fahy, 1985]. This result means that in order to re-
duce the radiated noise from vibrating beam structures, the supersonic wavenumber components
should be reduced. This represents the fundamental difference between vibration control, which
tries to reduce all the wavenumber components, and structural acoustic control, which tries to
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reduce only supersonic wavenumber components.

As mentioned earlier, the discrete wavenumber transform Wd (k.) would be preferred for

the practical implementation over the continuous wavenumber transform. In that case, the

acoustic power H (w) can be approximated using the discrete wavenumber transform, given by

2 2
11(w) ~~ fk 2 - 2 dko . (4.34)

41sw2 -k Vk2 - kx

Equation 4.34 is obtained by replacing W (kx) in Equation 4.31 by its discrete counterpart,
Wd (kx). The next step is to implement the integration operation in a real-time. One obvious
way is to approximate the integration by a summation, resulting in

2

pkc Nw Wd (km)
ld (w) = Akm , (4.35)

4ww 2 m=1 m k2 
_ k,2n

where each km is a discrete wavenumber that can be obtained from Equation 4.26 using N,
sensors, and Akm is the spacing of the discrete wavenumbers (or wavenumber resolution),
respectively. They are written as

km = ( )M (m = 1, 2, ..., Nw) , (4.36)
(Ax) N,
27r 27r

N, Ax L

Also, em is defined as

Em = . (4.37)

-7 M > 1

The discrete wavenumber km is selected such that Wd (km) and in (x,) represent a discrete
wavenumber transform pair (neglecting a normalization constant). Also, N is the maximum
integer that satisfies

kN (27T) N 1 < - . (4.38)

Note that N, is a function of the excitation frequency w. The magnitude squared of Wd (km),
.. 2 .. 2

W, (km) , is overplotted with W (km) in Figure 4-7 when the length L is 30 inches, the

number of sensors N, is 20, and n is 8 for the acceleration field in Equation 4.32.
.. 2

As shown in Figure 4-6, the continuous wavenumber magnitude squared, W (k2) , is non-
n7r

zero almost everywhere, although its main peak occurs at k', ±-. Therefore, no matter
L

how many sensors are used, spatial aliasing cannot be avoided. However, its effect will be
reduced significantly if the spatial sampling wavenumber, k, = 27rN 8 /L, is greater than twice
the dominant structural wavenumber of interest in the control bandwidth. This condition can
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Figure 4-6: The squared wavenumber magnitude of the acceleration field, highlighting the

radiating wavenumber components [Fahy, 1985].

be applied to the acceleration field in Equation 4.32, given as

27rN, n7r
ks = > 2 x-. (4.39)

L L

This condition is equivalent to the Sampling Theorem in the time domain [Oppenheim, 1997].

The condition in Equation 4.39 can be simplified to

Ns > n, (4.40)

where n is the index of the highest mode of interest in the control bandwidth. Therefore, in

order to minimize the effect of the spatial aliasing, the number of sensors, N, should be greater

than the index of the highest mode of interest in the control bandwidth.

As mentioned earlier, Equation 4.31 states that only supersonic wavenumber components

contribute to sound power radiation. Therefore, the goal of reducing structurally-radiated noise

can be achieved by developing a control system that minimizes the supersonic wavenumber

components. However, the approximate acoustic power in Equation 4.35 cannot be used as

the performance metric for feedback control in a real-time implementation because the number

of wavenumber components to be considered, No, is a function of the excitation frequency w.

This difficulty can be overcome when the control bandwidth is finite, which is the case for all

the physical problems. Let the control bandwidth be wb, that is, the controller is intended to

reduce the radiated noise below the frequency wb. Then, the estimated radiated acoustic power
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fi (w) is defined as

pkc Nm

47rw 2 E
m=

Wd (km) 2 N,

m Akm = F (km)
IEM Vk2 _2~

where km is the discrete wavenumber obtained from Equation 4.26 using N, sensors, given as

(4.42)km = 27r m-1 (m = 1, 2,..., Nm),
(AX) Ns

and Nm is the maximum integer that satisfies

kNm (27r Nm - <Wb

AxJ N, - c
(4.43)

Note that II (w) is obtained from Hd (w) by replacing No, which is

frequency w, by Nm, which is constant. In Equation 4.41, F (kin)

the wavenumber component Wd (km), defined as

kc Akin
2  k 2

rw~mfkk2

a function of the excitation
is a weighting function for

km ;>_k =

c

(4.44)

From Equation 4.35 and Equation 4.41, we can see that Hd (w) < ft (w) in the control

bandwidth (w Wb), since a larger number of wavenumber components are considered in

II (w). Therefore, if a control system is developed to minimize II (w), then Hd (w) will also

be minimized in the control bandwidth. Since H1 d (w) is the best approximate measure of

the acoustic power when using N, sensors, the goal of reducing structurally-radiated noise

will be achieved if we minimize H (w). Furthermore, the feedback control system minimizing

ft (w) can be implemented in real-time without any difficulty because Nm, which is the number

of wavenumber components to be considered, is constant and independent of the excitation

frequency w.

As shown above, F (km) is a function of the excitation frequency w. However, an optimal

constant weight F (km) can be computed such that the difference between H (w), the actual

acoustic power, and H (w), the estimated acoustic power, is minimized. The performance metric

to be minimized in order to obtain the optimal constant weight, Jr, is defined as

N 2 N

Jn = EH(wi)-fI(wi) = 11 (wi)-
i=1 (=1

Nm

3F (km)
m=1

2

SWd(km) 2

Here, wi is the frequency at which the acoustic power is computed, and N is the total number

of frequency points. Also, Jr can be written in matrix form as

Jr = (b - Ax)T (b - Ax) , (4.46)
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47r

F (km) 
0
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where b, A, and x are defined as

H(wi) 1 [ F(ki) 1
11 (W2) F (k2)

(WN) . _(kNm).

2

2

2
Wd (k2 , wi)

. W ( 2
Wd (k2,w2)

Wd

i d ..

2
(kNm, Wl)

2
(kNm,w2)

... 2
-- WatkNm,WN)

The solution x that minimizes Jr in Equation 4.46,

x = (ATA) ATb, (4.48)

represents the set of constant optimal weights F (kmn) [Strang, 1986].
Generally, the acoustic power is an increasing function of the excitation frequency w, because

the acoustic pressure is proportional to w 2 . Therefore, the optimization in Equation 4.45 may
achieve its goal by reducing Jn in the high frequency beyond the bandwidth of interest, where
H (w) is dominant. In order to avoid this effect, a frequency weighting function for Jr can be
used so that the difference between the actual and the estimated acoustic power is minimized
in the bandwidth of interest. The new frequency weighted performance metric, Jn, is written

as
IN 

I H (jo)| 2 H (wi) - II (w?) = (Wb - WAx)T (Wb - WAx),
i=1

(4.49)

where H (jw) is the frequency weighting function for the performance metric, and W is a
diagonal matrix of IH(jw) I evaluated at discrete frequencies, given by

IH (joi)1 0
0 |H (jw2)|

0 0

0

IH(iWN)I

(4.50)

The optimal constant weights for the wavenumber components, F (km), that minimizes Jn in

Equation 4.49 can be expressed in matrix form as

F (ki)

F (k2)

F (kNm) .

= (ATWTWA)~- ATWTWb. (4.51)
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7
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Once the set of optimal constant weights is found, one can estimate the acoustic power from

a vibrating structure and use it as the performance metric in an optimal LQG controller design.

It should be noted that one should obtain the actual acoustic power, H (w), by measurements or

simulation, to find the optimal constant weight; the optimal constant weights cannot be found

with insufficient information on H (w). This may occur for complex structures, or when few

measurements of the acoustic pressure in the far field are available. In those cases, the weights

can be used as design knobs, so that the resulting closed-loop response is satisfactory.

Next, the procedure to estimate Wd (kmn) from sensor measurements w (xv) is presented.

From Equation 4.26, Wd (kin) can be written as

NXC

Wd (km) = Ax Z (xn) e-jk"xn - [#1 #2 ... O#,]
n=1

7.b (xi)

f6 (X2)

. J

~mW,

where

@mn = [# .. #--- ] ; #m = AX e-ikmXn; ={w (X 1 ) t ( 2 ) - -- (XN. ) IT

(4.52)

(4.53)

In general, (Pm is a complex vector, which cannot be used in a state-space formulation. However,
from Equation 4.41, it can be observed that it is the magnitude of the wavenumber component

that is needed in order to estimate the acoustic power. Using this fact, Wd (km) can be computed

such that Wd (km) = Wd (km) , yielding

Re (# )
Im (#%)M

[0 02mW

Re (#2 )
Im (#i)

mN {

--. Re (# ") 1-
-. - 1 m (# ").

tD (x2)

7D) (X2~) } {2) (zi)
tZ(x 2 )

i'(XN,) }if #0m is complex

(4.54)

if n/9, is real

Now, assume
experimental

a state-space model for the plant is available either by finite element modeling or

system identification, given by

x = Ax + Bif + B 2u (4.55)

y = Cx

where x is the state vector, f is the disturbance, and u is the control input. Also, y is the
sensor output, defined as

y * = {'6 (x1) 7i (x 2 ) - - (XN,) IT . (4.56)
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Using Equation 4.55, the performance metric z can be defined as

qi 0 ... 0
qiWd (ki) 0 q2 1
q2Wd (k2) q2 .2

z... y =Q (D Cx ,(4.57)

qNm, 0
qN, d (kNm) 0 N, .

where qm is the weight for Wd (kin), and Q and 1 are defined as

qi 0 -.. 0
0 q2 1

q2 42
Qq= . . , = . .(4.58)

qNm 0 L SNmJ
0 ... 0 qN. _

Note that oD is in general a 2Nm - 1 by N, matrix, because P1 is a real row vector (k1 = 0),
while 4)m (m -, 1) is a 2 by 1 matrix. From Equation 4.57, we see that

N, 2

IzIlI2 S q Wd (km) (4.59)
m=1

is the estimated acoustic power H if qn = F (km) is used. Since a state-space model to esti-
mate the acoustic power is now available, one can use a modern control design paradigm, such
as H 2 , Ho, LQG, etc., to minimize the acoustic power radiated from vibrating structures. If we

cannot find the optimal constant weight F (km), primarily due to the insufficient information
on the actual acoustic power 17, we can use q. as design knobs, as mentioned earlier, so that
the resulting closed-loop performance is satisfactory.

Figure 4-8 shows the block diagram of a wavenumber domain LQG controller. The sensor
output y is processed at the discrete wavenumber transform matrix, 4, followed by the per-
formance weighting matrix, Q. The performance variable in the LQG controller is z = Q 1 y,
whose magnitude square is the estimated acoustic power H. Minimizing radiated acoustic power

is achieved by minimizing the performance variable.

As shown above, by using the new wavenumber domain sensing method, we can generate a
state-space model to estimate the radiated acoustic power, and we can apply a modern control
design method to the model such that the acoustic power is minimized. One of the advantages of

the new sensing method is that it doesn't require additional modeling process to determine the
acoustic power from sensor measurements. Thus, there is a significant difference between this

approach and the radiation filter method [Baumann, 1991], which needs the radiation filter to

be modeled from an analytic expression (when the structure is simple), or a numerical method
such as finite element or boundary element methods (when the structure is complex). Another
important advantage of the new sensing method is that the number of transfer functions needed
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Figure 4-8: Block diagram of the wavenumber LQG controller implementation.

to be identified to get a plant model for controller design is much reduced. When Nm (the
number of supersonic wavenumber components in the control bandwidth) is less than N, (the
number of sensors), one needs only to perform the system identification on the transfer matrix
from v to e ((2Nm - 1) x (2Nm - 1) matrix), not from u to y (N, x N, matrix) in Figure 4-8,
using the wavenumber sensing method. By doing that, the number of transfer functions that
should be identified is significantly reduced from N, (from u to y) to (2Nm - 1)2 (from v to
e). In the next chapter, numerical examples of a beam structure with 10 sensor-actuator pairs
are presented (N, = 10). As shown in the next chapter, it was found that considering three
wavenumber components was enough to reduce the radiated noise from the vibrating beam
structure in the examples (Nm = 3). Therefore, in this case, the number of transfer functions

that should be identified is significantly reduced from 100 (= N2) to 25 (= (2Nm - 1)2).

4.3.2 Cylindrical Shell

In this section, the formulation of the new wavenumber domain sensing method is developed
for a cylindrical shell, such as the finite cylindrical shell of length L and radius a in an infinite
baffle shown in Figure 4-3. The continuous wavenumber transform of the acceleration is written
as a two-dimensional Fourier transform

W (ky, kz) = -- j I ( , z) ejkwe-jkzz dyo dz, (4.60)
27r -L/2 JO

where ?i (p, z) is the acceleration field of the cylindrical shell in the radial direction, W (kw, kz)
is the wavenumber component corresponding to the acceleration field ?D (p, z), and k. and kz
are the circumferential and axial wavenumbers, respectively. Note that k, is an integer, since
,6) (p, z) = fi (p + 27r, z), and therefore k, = n will be used from this point forward. As
in Section 4.3.1, using the discrete Fourier transform, the discrete wavenumber transform is
written as

1 Ne Na
Wd (n, kz) = A/Az Z -D (pI,z)e--i"e e-kzz , (4.61)

1=1 s=1

where z8, Az, and Na are the sth location, the spacing, and the number of measurement
points in the axial direction, while V1, Ap, and Nc, are the lth location, the spacing, and the
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number of measurement points in the circumferential direction, respectively. These are shown

in Figure 4-9, and are written as

= L L AzAz = L, zs = + -- (2s -- 1) (4.62)Na 2 2
27r 7T

Ne Ne

Using the wavenumber transform W (n, kz), the acoustic pressure in the far field for the

baffled cylindrical shell can be rewritten as [Song, 2001]

pe-jkR 00 -|n|+1
p(R,9,Wp) = -0 E (2)' W (n, -k cos 9) em"l , (4.63)

7rkR sin 9 n=_o Hn? (ka sin 9)

where H ( 2) (x) denotes the first derivative of the nth Hankel function of the second kind, and

W (n, -k cos 0) is wavenumber component obtained by substituting kz = -k cos 0 in Equa-

tion 4.60. As in Section 4.3.1, the discrete wavenumber transform in Equation 4.61 would be

preferred for the practical implementation, and to that end the acoustic pressure p (R, 0, p) is

approximated using the discrete wavenumber transform,

-j kR 00 -|n|+1

p (sR, 0, HP) ~ - Wd (n, -k cos 0) esnw (4.64)
1rkRn=,-_o Hin ( ka sin 0)

It can be observed from Equations 4.63 and 4.64 that the far field acoustic pressure in

the direction (9, W) is determined by the corresponding wavenumber component in the axial

direction kz = -k cos 9, and by all the circumferential wavenumber components. This indicates

that, compared to the planar radiator, it is less clear which wavenumber components to be
controlled in order to reduce the structurally-radiated noise for the cylindrical radiator. How-

ever, as shown in Figure 4-10, the weighting function jn+1/H) (ka sin9) of the wavenumber

component W (n, -k cos 9) decreases very fast as n increases. Therefore, the fact that all the

circumferential wavenumber components contribute to the sound power radiation will not cause

any difficulty for real implementation, since only a small number is responsible for most of the

acoustic power.

As mentioned earlier, it is difficult to use the acoustic pressure as the performance metric for
feedback control of a broad-band disturbance. The new wavenumber domain sensing method

proposed in this chapter combines the wavenumber domain approach with a feedback control

architecture, by using the radiated acoustic power as the performance metric, instead of the

acoustic pressure in the specific radiation angle. Using the wavenumber transform, the radiated

acoustic power H from a vibrating cylindrical shell can be written as [Song, 2001]

.. 2

pck k W(n,kcos0) dk
S(w)__=_ 2_dkzk. (4.65)

n=-x- ( 2)' (a /k2--k (k 2 _ k?)

Following the same procedure used in Section 4.3.1, the acoustic power in Equation 4.65 can
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be approximated using the discrete wavenumber transform,

2

2pck Nn-1 N Wd (n, km)
H(w) = Z '2 a2 Akm. (4.66)

n=0 m=1 En Em Hn2 )' (ak -km (k 2 - k2)

In Equation 4.66, km is discrete wavenumber in the axial direction, which can be obtained from

Equation 4.61 using Na sensors in the axial direction, and Akin is the spacing of the discrete
wavenumbers (or wavenumber resolution), respectively. These quantities are written as

Ak= 27r _27ir (27r rn-i1
Akm = 2 = -- km = (2J N (m= 1, 2, ... , N) . (4.67)

NaAz L Az Na

Also, N, is the maximum integer satisfying

27r No - 1 (468)
( Az) Na -c'

and N, is the number of circumferential wavenumber components considered in the approx-

imation of H (w). Equation 4.65 says that all the circumferential wavenumber components

contribute to the sound power radiation, while only supersonic axial wavenumber components

do. As pointed in Section 4.3.1, the approximate acoustic power in Equation 4.66 cannot be

used as the performance metric for feedback control in a real-time implementation, because

the number of wavenumber components to be considered, No, is a function of the excitation

frequency w. Therefore, the new sensing method proposed in this chapter uses the estimated

acoustic power (Equation 4.69), as the performance metric for feedback control implementation,
given by

2

2 pck N -I N- Wd (n, km) k
H2(w) 0, mi2 Akm (4.69)

n=0 m=1 eEm H( a m2J_ k (k 2 - k2)

Nn-1 Nm 2

-S F (n, km)I Td (n km)
n=O m=i

In the expression above, km is discrete wavenumber in the axial direction, which can be obtained

from Equation 4.61 using Na sensors in the axial direction, as

km = (m = 1, 2, ..., N) , (4.70)
Az Na

and N, is the maximum integer that satisfies

n N 1 obe fo d 1 b r
(Az) Na c

Here, ob is the bandwidth of interest. Note that II(w) is obtained from Hd (w) by replacing No,
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which is a function of the excitation frequency w, by Nm, which is constant. In Equation 4.69,
F (n, km) is a weighting function for the wavenumber component Wd (n, km), defined as

2pck

F (n, km) =

0,

Aki
n2  ~ (a 2  k2  - k2

EnEM Hn() (a k2- km (k2_k )

Although F (n, km) is a function of excitation frequency w, we can

weight F (n, km), as shown earlier, such that the difference between

power, and 1I (w), the estimated acoustic power, is minimized.

find the optimal constant
H (w), the actual acoustic

The next step is to generate a state-space model to estimate the supersonic wavenumber

components and the radiated acoustic power in the control bandwidth, to augment a state

space model for the acceleration field. Basically, the approach similar to the one in the previous

section is adopted here. A state-space model for the plant is given by

x = Ax + Bif + B 2u (4.73)

y = Cx.

In the state-space model above x is a state vector, f is the disturbance vector, and u is control

input vector. Also, y is a vector of sensor outputs, defined as

(4.74)y= = (W1<P, zi) 7- (<P2, zi) -. -f-& (<pNc, Z1) ' (CPNc, ZN"' I

The discrete wavenumber transform Wd (n, km) can be obtained from sensor

zD (pI, z,) using Equation 4.61,

Wd(nkm)

Nc Na

= ArpAz [ [ D (<p, z') e-jn"pe ejkmz,

2=1 s=1

_ 0(1,1) 0(2,1) ... O(Nc,1) ... 4(Nc,N)-- n'm n,m n,m n,m

measurements

(4.75)

?D 2, zi)

(PjNc, Z1

where

n,m = ,) 021) ... (N ,1) ... Nc,N)1~ ~ ~ ~ (4.76)

0(,5) - I-ApAz e-inWce -jkmz.
n,m gnr

Since <D)njm is a complex vector in general, it cannot be easily used in a state-space formulation
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meant for real-time implementation. However, observing from Equation 4.69 that it is the

magnitude of the wavenumber component that determines the acoustic power, Wd (kin) can be

computed such that Wd (n, km) = Wd (n, km) is satisfied. The solution to this problem is

given as

((2,1)~
Re #i m

(2,1)
Im #n,m

Re

Im

#(Nc,Na)

(Nc,Na)#n,m
~- Re #nn')

-.-. Im n,m

ID (01, z1)

fb (V2, z1)

X f ( Nc , Z1)

71 ( Nc , Z Na.

if #I,) is complex

(4.77)

. (l s) .
,If #nm is real

ii) (Wi, zi)
(W2, Zi)

( PNc , Z1)

lj ( Nc, ZNa

#n (1,1) 0(2,1) (Nc1) (Nc,Na)]

= 4n,m*.

Now, the
defined as

performance metric to be minimized in the wavenumber LQG controller can be

go,lWd (0, k1 )

go,2Wd(0,k2)

qo,N Wd (0, kNm)

qNn-1,Nm Wd (Nn - 1, kNm ) -

qo,1 0 ---

0 qo,2
qo,2

0

= Q4 Cx,
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[Re , (11)

Im #n,m)

Wd (n, km) -

z = (4.78)

0 2o,1
0D,2

4O,Nm

N-1,Nm

qNn-1,Nm 0
0 qNn--1,Nm _

y



10-5

+ 100

X

0

10-2 10 100 10
ka sin 0

Figure 4-10: Magnitude of jf+1 / H(2) (ka sin 0).

where qam is the weight for Wd (n, kin), and Q and 4) are defined as

qo,1
0

00
qo,2

qo,2

qN.-1,Nm 0
0 qNn -1,Nm0

Here, D is in general a 2NNm-1 by NcNa matrix because So,1 is a real row vector (ki = 0),

while 4),n,m (n = 0, or m = 1) is a 2 by 1 matrix. It is simple to verify that ||zI2| is the estimated

acoustic power II when qnm = F (n, km) is used. The existence of a state-space model that

estimates the acoustic power in the control bandwidth allows the use of modern control design

methods such that the acoustic power radiated from vibrating structures can be controlled and

minimized. As mentioned earlier, when the optimal F (n, kn) cannot be easily computed, qn,m

can be used as a design knob so that the resulting closed-loop response is satisfactory.

111

DO,2

Nm
(4.79)

10 2



4.3.3 Application to the General 3-D Structures

In this chapter, the formulation of the new wavenumber domain sensing method for active struc-
tural acoustic control has been developed for the infinite baffled beam structure (Section 4.3.1),
and the infinite baffled cylindrical shell (Section 4.3.2). For those structures, we can find a
state-space model to estimate the supersonic wavenumber components, and therefore the ra-
diated acoustic power, such that the structurally-radiated noise is reduced. The formulation
is based on the fact that only supersonic wavenumber components contribute to the radiated
sound power for the infinite baffled planar structures and the infinite baffled cylindrical shell.

However, for general three-dimensional structures, there are no simple relationships between
the supersonic wavenumber components and the radiated acoustic power. For example, for
spherical structures, all the wavenumber components radiate acoustic power in the far field, as
will be shown later in this section. Therefore, it may appear that the new wavenumber domain
sensing method developed in this chapter does not apply to those structures.

Still, the wavenumber sensing method has significant advantages for active structural acous-
tic control of the complex structures, because the weights for the wavenumber components in
general decrease very rapidly as the wavenumber increases. In this section, the application of
the new wavenumber sensing method to the complex structures will be discussed. First, the
principle of wave superposition will be introduced. Using this principle, we can compute the
acoustic fields of arbitrarily shaped radiator by replacing it with an array of simple acoustic
sources, such as spherical radiators and unbaffled planar structures. Then, the relationships
between the wavenumber transform and the acoustic pressure radiated from spherical radiators
and unbaffled planar structures will be investigated. Finally, it will be discussed how those
results can be used to apply the new wavenumber sensing method to the complex structures.

The principle of wave superposition

The principle of wave superposition is based on the idea that the acoustic field of a complex
radiator can be constructed as a superposition of fields generated by an array of simple acoustic
sources enclosed within the radiator [Koopmann, 19893. The basic concept can be explained
using the diagram in Figure 4-11, which shows a complex radiator So. We want to compute
the acoustic field p (r), given the acceleration field iD (ro) over the radiating surface So. The
acoustic pressure p (r) can be obtained using the Helmholtz integral equation, given by

p (r) = - p(ro) (Vg (Ir - rol) no + pzD (ro) g (Ir - rol)] dS , (4.80)

where g (Ir - rol) is the free-space Green's function defined in Equation 4.8, p is fluid density,
and no is the outward normal unit vector at ro. Koopmann et al. [Koopmann, 1989] showed
that p (r) can also be computed using a continuous source distribution that produces the same
acoustic field, given by

p (r) = -jPWj q (ri) g (r - ri1) dV , (4.81)

where w is the angular frequency of the harmonic vibration of the radiating surface So enclosing
the volume V of the radiator, and q (ri) is the strength of the source distribution evaluated at r1
inside V. They showed that the principle of wave superposition in Equation 4.81 is equivalent
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q(r,)

Figure 4-11: The diagram of the fictitious source sphere Si inside of a complex radiator So.

to the Helmholtz integral equation in Equation 4.80, if q (ri) is selected so that

ib (ro) = wj q (ri) (Vg (Iro-ri)) no dV (4.82)

is satisfied.

Since there is no restriction on the location of q (ri), it can be placed anywhere inside of

the radiating surface So [Koopmann, 1989). Therefore, for convenience, we can assume that the
source distribution has the form of a spherical shell for general thick radiators, and a planar shell

for general thin radiators. Here, "thick radiators" mean radiators in which all three dimensions

have the same order of magnitude, while "thin radiators" mean radiators in which one of the
dimension is much smaller than the other two. In any case, the sources can be assumed to be
distributed over the surface, which results in

ib (ro) = jw q (ri) (Vg (Iro-ri|)) -no h dS . (4.83)

Here, Si is the surface over which the sources q (ri) are distributed, and h is the thickness of
the surface. If the acceleration field tD (ro) on So is given, the strength of sources q (ri) can be

obtained using Equation 4.83.

Now, the relationships between the acoustic pressure and the wavenumber transform are

investigated. The wavenumber transforms of q (ri) and , (ro) are given by

Q (k 1,, kq1 ) = j q(( 1,,7 1 ) e-jkhC1e kji 11 d~id?1  (4.84)

iV (kgo, k70) = j ii) ( o,qo) e-kCOaoe-jknno7o diod7,0
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where ( O, go) and (1,, 1) are tangential orthogonal coordinates on the surface of So and S1,
respectively, and kX is the wavenumber in the x direction (x = o, 7o, (1, qj). The integration

- * - djij means that it is performed for ((1,q1) E S1. Note that r1 = r1 (i, 771), and ro =
ro (to, 77o). Using the inverse Fourier transform, q ((1, 11) and z (cO, ?o) can be represented in
terms of Q (kg,, k h) and W (kg0 , k), given by

q (11) = 2 J f Q (kt1, k71) ejklk ejk,717 dI dk 1dk71  (4.85)
(27r)2 _o o

- (,)2oj J W (klo, kno) eike toejknan'o dklodko-
(27r) -oo0 _oo

Substituting Equation 4.83 in Equation 4.84, and using Equation 4.85, W (kG0 , k %) can be
expressed in terms of Q (kg , k,71), given by

(klo, kqo) = jjG 0 G (ko, ko; k,, kq) Q (kg,, k1 ) dkC1dk 1 , (4.86)

in which G (kg0 , kno; k,, k71 ) is defined as

o (kg , k770 ; kg , kq1) = (2 j [ (V9g (|ro-ri)) - no e-keoCOeikonO eike11ek 1 I dS] d da0

(4.87)
Here, we can evaluate (Vg (Iro-ril)) - no using the definition of a free space Green's function
in Equation 4.8, given by

(Vg(ro-ri))- no ekrorl (jk |ro - ri - 1) cos #0 , (4.88)
47) ro - ri I

where #0 is the angle between ro - ri and no. Also, we can write dodqe as Ao ( O, no) dS (ro),
for a function Ao ( o, qo) that depends on the chosen orthogonal coordinate. Using these results,
G (kgo, kno ; ke1 , k,7,) in Equation 4.87 can be rewritten as

G (kg0 , kq.;klI kq,) = -1w fJ (jk |ro-ri| - 1) cos oAo ( o, 7o) (4.89)

x e-_kColoe-ikno no eik1 1eik,111 dS1dSo .
|ro -ri l

Now, the acoustic pressure p (r) can be written in terms of the wavenumber components
Q (k1,, kmh), by substituting q ((1,qj) given in Equation 4.85 into Equation 4.81, so that

p (r) =F (r, kg,,7 kn) Q (kk, kq) dkg1 dk, , (4.90)

where F (r, kg,, k,71) is the weighting function for the wavenumber component Q (kg,, k. 1 ), given
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F (r, k j, w) = 3 j k1  r elk7 1 t k 1ejkoil1 dS . (4.91)
71 1670 s, r - ril

Here, the free space Green's function g (jr - ril) = -jklrri defined in Equation 4.8 was
used.

Equation 4.90 has an important meaning. It implies that the acoustic pressure from any

complex three-dimensional structure can be computed from the wavenumber components of a

fictitious source distribution, such as sphere radiators or planar radiators. If it turns out that

IF (r, kgl, kn )I decreases very rapidly as kg, and k., increase for those simple source distribu-

tions, we need only to consider a few wavenumber components to estimate the acoustic pressure

or acoustic power, although it is generally true that all the wavenumber components contribute

to sound radiation for complex three-dimensional structures. Then, the wavenumber domain

sensing method developed in this chapter can be applied for any complex three-dimensional

structures. It will be shown later in this section that the proposed assumption, which is that

F (r, kg., kn )I decreases very rapidly as kt, and k,,, increase for the sphere radiators or planar

radiators, is generally true.

It remains to find how to relate the acoustic pressure p (r) with the wavenumber transform of

the surface acceleration f6 (ro), because what we can measure directly is TD (ro), not q (ri), and

we can apply the wavenumber transform to fb (ro) in real-time. From the Helmholtz integral

equation given in Equation 4.6, we know that the acoustic pressure at any point p (r) in the

medium can be expressed in terms of the acceleration and pressure field over a surface of the

structure, f6 (ro) and p (ro), respectively. Since it implies that the acoustic pressure on the

surface of the structure can be written in terms of the acceleration field on the surface (r = ro),
we can conclude that the acoustic pressure at any point p (r) can be represented in terms of

the surface acceleration field only. This becomes possible by substituting the surface pressure

expressed in terms of the surface acceleration into the Helmholtz integral equation, although

the closed-form solution will not be easy to obtain. Using these facts, we see that p (r) can be

represented in terms of 1 (kg0 , kqo) defined in Equation 4.84, as

p (r) =H (r, kto, ko) W(kge , k7 0 ) dkodk,0 , (4.92)

where H (r, kg0 , kjo) is the weighting function for the wavenumber component W (kg0 , kO) of

the general structures, yet to be determined. We hope that |H (r, kg0 , kqo) I decreases rapidly

as kgo and k,70 increase, so that the wavenumber domain sensing method can be applied. Sub-

stituting Equation 4.86 into Equation 4.92, we can find the relation between F (r, kg,, kh) and

H (r, kg0 , kno), given as

F (r,k,k k 1 ) =G (kgoIk17; kt,,kq) H (r,jkjo,Gko) dkedkq . (4.93)

This expression has the form of a two-dimensional convolution. We can see that |H (r, kge, kqo)|

decreases rapidly as kto and k, 0 increase, if IF (r, kt,, kn)I and IG (kg0 , kno; ke, kn)I decrease

rapidly as ke0 , k, 0 and kg1 , k, 1 increase. As mentioned earlier, it will be shown later that

F (r, kg,, k, 1 ) behaves as we want, for the spherical or planar radiators. Furthermore, comparing
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I p(R,0, p)

R

Spherical radiator

Figure 4-12: A spherical radiator with a radius a.

F (r,kg,,k 7 1 ) in Equation 4.91 with G (kg0 ,k, 0 ;ke1 ,k,7) in Equation 4.89, we can see that

G (kg0 , kno; kl,, k..) decrease rapidly as kg0 , kno and kg,, k, 1 increase, if F (r, kg,, k..) does,
because they have the same dependence on the wavenumbers kg0 , k70 and kg,, k.,1 . Therefore,
we can conclude that |H (r, kg0 , ko) I decreases rapidly as kg, and k, 0 increase for general three-

dimensional structures, and that we can apply the new wavenumber sensing method for those

structures, in addition to the infinite baffled planar structures or cylindrical shell.

In the next sections, the relationships between the wavenumber transform and the acoustic

pressure radiated from spherical radiators and unbaffled planar structures will be investigated.

Spherical radiators

Figure 4-12 shows a spherical radiator with a radius a. For the sphere, the acceleration TD (0, V)

is represented as a double series in Legendre functions of the polar angle (or latitude) 0, and in

cosines of the circumferential angle (or longitude) p, given by [Junger, 19861

E WmnPn (cos 0) cos mp,
n=o m=o

(4.94)

where, Pn' (,q) is defined as

Pm () = {Pn (77)
2 m/2 dm Pn (g)(1 -n) d 77

m=O

M> 1 (4.95)

Here, Pn (7) is the Legendre polynomial, and Pn' (q) (m > 1) are the associated Legendre

functions. Using the orthogonality relations of Pnm (,q) and cos mcp, Wmn can be computed from
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ti (0, po), given by [Junger, 1986]

Wmn = Pn j" [jr T (cos 0) fi (0, so) sin 9 dO cos mo dso, (4.96)
Nmn 0 0

where Nmn is the normalization factor, given as

47r (n + m)!

2n +1 (n - m)! ' =O
Nmn = (4.97)

27r (n + m)!
2n + 1 (n - m)!' -

Using Wmn, the acoustic pressure p (R, 0, y) in the far field can be written as [Junger, 1986]

p (R, 0, so) = 3kR ( a) n mnPn (cos 0) cos my, kR > n 2 + 1, (4.98)
n=o m=on

where h' (x) denotes the first derivative of the spherical Hankel function of the first kind.
Note that Equation 4.98 doesn't show the relation between the wavenumber transform and the
acoustic pressure; Wmn is not the wavenumber transform of 7i (0, so) adopted in this thesis. The
wavenumber transform of f6 (0, so) can be defined as

W (r, s) = I j f 27r _, (0, so) e-jroe-jsdd . (4.99)

Since f6 (0, sp) = t (0, cp + 27r) and fb (0, so) = f6 (9 + 27r, W), 7i (0, so) can be represented using
W(r, s), given by

00 00

f6 (0,y) (r, s) e raes. (4.100)
r=-oo s=-oo

Substituting Equation 4.100 in Equation 4.96, we can express Wmn in terms of W (r, s), as

00 00

Wmn AmnrsW (r, s) , (4.101)
r=-oo s=-oo

where

Amnrs = m J Pn" (cos 0) sin 0 cos my ejrOejs d~d y . (4.102)
Nm n 1o 1o

Now, substituting Equation 4.101 in Equation 4.98, we can represent the acoustic pressure

p (R, 0, s) in terms of the wavenumber transform of tD (0, V), as

jkRi00 oo

p (R, 0, V) - k2R E 1 F (r, s) W (r, s) , (4.103)
r=-oo s=-oo
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Figure 4-13: Magnitude of the weighting function F (r, s) for 0=45' and <p=60'.

where F (r, s) is the weighting function for the wavenumber components W (r, s),

F (r, s) = n (_h'3-k A) "sPn" (cos 0) cosm p. (4.104)
n=O m=O

The magnitudes of F (r, s) for 0=45' and <p=60' are shown in Figure 4-13. As can be seen

from Equation 4.103, all the wavenumber components radiate acoustic power for a spherical

radiator. However, Figure 4-13 shows that the magnitudes of F (r, s) decrease very fast as r and

s increase, and that only a few wavenumber components dominate the radiated acoustic power

for ka < 1. Therefore, we can still apply the wavenumber sensing method proposed in this

chapter for the spherical radiators, by considering a few dominant wavenumber components.

Unbaffled planar radiators

An unbaffled planar radiator excited by a harmonic driving force of angular frequency w is

shown in Figure 4-14. The plate has length of a in the X direction, and b in the Y direction.

The mass per unit area of the plate is denoted as pp, and its thickness as h. Assuming the plate

is orthotropic and the out-of-plane displacement has the form of w (x, y, t)=w (x, y) e-", the
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Figure 4-14: Geometry of an unbaffled planar radiator.

equation of motion is given by

04 w (x y) +4w (X, y) D 4w (X, y)
D X +2 2DD 2 2 +D D 94 2w ) f (x, ) + A (x, )

(4.105)
where Dx and DY are the bending stiffnesses in the two orthogonal directions, X and Y,
respectively, and f (x, y) is the disturbance. Ap (x, y) is the difference of the acoustic surface

pressure (pressure jump over the plate), given by

Ap (x, y) = p- (x, y) - p+ (x, y) , (4.106)

where p- (x, y) and p+ (x, y) are the surface pressures on the negative and positive side of the

plate, respectively.

For an unbaffled planar radiator, the acoustic pressure p (R, 0, tp) is governed by [Atalla, 1996]

p(R, 0, <p) = - Ap (x, y) (Vg (|r - ro|)) -no dxdy, (4.107)
-b/2 -a/2

where no is the outward unit normal vector to the plate, r = (R sin 0 cos <p,R sin 0 sin tp, R cos 0),
and ro = (Ro cos <p,Ro sin sp, 0). Note that the acoustic pressure p (R, 0, <p) is represented in

spherical coordinates, while the surface pressure and the out-of-plane displacement are repre-

sented in rectangular coordinates, because it helps show the relationship between the wavenum-

ber transform and the acoustic field.
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In Equation 4.107, (Vg (Ir - ro1)) - no is given by

eklr-rol
(Vg (|r - rol)) -no = -- ro(jk|r - ro| - 1)cos#, (4.108)

4,7r I r - rolI

where # is angle between r - ro and no. Using the inner product of r - ro and no, cos can be
expressed as

R cos 0
cos # ro. (4.109)

Since we are interested in the far field acoustic power, |r - roI and cos # reduce to

Ir - rol R - xsinO cosV - y sinOsin o (4.110)

cos cos 0 ,

for R > a, b. Then, the acoustic pressure p (R, 0, p) in Equation 4.107 reduces to using the far
field approximation, given by

p (R0,) (jkR -1) os0 Ap(XY) e-jkx sin cos We-iky sin sin dxdy .
47rR _b/2 -a/2

(4.111)
Substituting Equation 4.105 in Equation 4.111, the far field acoustic pressure p (R, 0, a) can be
represented in terms of the out-of-plane displacement of the plate, so that

eikR ±b/2 f+a/2
p (R, 0, R) (jkR - 1) cos 0 Jb/2 J-a/2 (4.112)

47sR -b/2 -a/2

"[,,0w (x, y) + 2 DxDy 04W(xy) D 4w (Xy) _
x Dx 2

xDy± Dp2 D W (X, y) f (X, 1

" e-jkx sinG cos e -jky sin 0 sin Wdxdy

Now, the relationships between the acoustic pressure and the wavenumber transform are
investigated. The wavenumber transforms of w (x, y) and f (x, y) are defined as

W (kx,ky) = +b/2 +a/2 w (xy) e-kxxe-ikydxdy (4.113)
J -b/2 J -a/ 2

pb/ ~a/2

F (kx,ky) +b/2 +a/2 f (, y) e-ikxe-jkyydxdy
J-b/2 J-a/2

Using the property of the wavenumber transform,

+b/ 2 p+a/2 - _____ +24 D 4w cy 4 w(,

b/2 -a/2 [D 4  2+ 2DDyxD 2  + DX e-ikxxe-ikyydxdy

= (VD k 2+ VDVk2) 2 W (kx,ky) ,
(4.114)

the far field acoustic pressure p (R, 9, V) can be represented using the wavenumber component
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W (k2, ky) by substituting k. = k sin 0 cos o, and ky = k sin 0 sin p, so that

p(R,0, V)

= e (jkR- 1)cos9 6 /Dx(ksin6cos p)2 + fDy (k sin 0 sin P)2 -pW

eikR
xW (k sin 0 cos o, k sin 0 sin p) - F (k sin 0 cos o, k sin 0 sin o) , (jkR - 1) cos .

47rR (k
(4.115)

Therefore, p (R, 9, V) is given by

p(R,9,p) = CIW(ksin cosV,ksin sinV) - C2 F(ksin6cosV,ksin6sinWp) , (4.116)

where

C1 = (jkR - 1) cos{ [V (ksinO cos 0)2 + Dy (k sin 0 sin p)2

C2 = ekR (jkR -1) cos .
47rR

_PPW2} (4.117)

What Equation 4.116 implies is that the far field acoustic pressure in the direction (9, p) is com-

pletely determined by the corresponding wavenumber component W (k sin 9 cos V, k sin 9 sin 0)
for the unbaffled planar radiator, as for the infinite baffled planar radiator. The difference

between the two cases is that for the unbaffled planar radiator, the wavenumber transform of

the disturbance, F (k sin 9 cos V, k sin 9 sin V), appears in the expression for the far field acous-

tic pressure. However, it doesn't matter, because we don't have the authority to change the

disturbance, anyway. What is important in Equation 4.116 is that the acoustic pressure, and

therefore acoustic power, from the unbaffled planar radiator can be reduced by controlling the

corresponding wavenumber components.

Application of the wavenumber sensing method to the general 3-D structures

In this section, we have shown the following:

1. Any complex radiator can be replaced by a simple acoustic source distribution, such as a

spherical radiator, or an unbaffled planar radiator.

2. The wavenumber sensing method proposed in this chapter can be applied to the general

complex structures, if it can be applied to the spherical or planar radiators.

3. For the spherical radiator, only a few dominant wavenumber components dominate in the

radiation of acoustic power. Therefore, we can apply the wavenumber sensing method for

the spherical radiators, by considering a few dominant wavenumber components.

4. For the unbaffled planar radiators, the far field acoustic pressure in the radiation direction

is completely determined by the corresponding wavenumber component. Therefore, all

the results in Section 4.3.1 can be applied to this structure. We can apply the wavenumber

sensing method for the unbaffled planar radiators by considering the supersonic wavenum-
ber components.
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Combining the results 1-4, we can conclude that the new wavenumber domain sensing
method and its use as feedback controller design can be applied for any complex structures.

4.4 Summary

In this chapter, a new wavenumber domain sensing method and its application to the LQG
feedback ASAC problem has been reported. In this new sensing method, the total acoustic
power radiated from vibrating structures is minimized in the wavenumber domain. Given the
control bandwidth, a state-space model can be found to estimate the magnitude of supersonic
wavenumber components. An LQG controller is designed on the state-space model to minimize
the estimated acoustic power.

One of the significant advantages of the method proposed in this chapter is that it doesn't
need any modeling process to estimate the acoustic power from sensor measurements, once
we have a state-space model for those measurements. As shown in the previous sections,
the discrete wavenumber transform matrix, <1, where sensor measurements are processed, is
obtained from the definition of wavenumber transform, not from the structural acoustic models.
As for the performance weights in matrix Q, we can select them such that the difference
between the actual and estimated acoustic power is minimized, if we have enough information
on the actual acoustic power. If we cannot get the actual acoustic power due to the insufficient
measurements or complexity of the plant, we can still use the performance weights in matrix
Q as design knobs for optimal controller design. The results of numerical examples in the next
chapter show that the closed-loop performance is not very sensitive to the performance weights,
so an accurate acoustic model is not required to achieve the acceptable performance.

Another significant advantage of the new sensing method is that it makes the controller
design easier by reducing the number of transfer functions that need to be identified. As
shown in Section 4.3.1, the method reduces the size of transfer function matrix to be identified
from (the number of sensors) 2 to the order of (the number of wavenumber components to be
considered) 2 . These advantages are critical when the structure is complex enough that we may
not be able to apply, say, the finite element method and, therefore, we need to perform system
identification to get a plant model.

In the next chapter, the new sensing method will be numerically validated on a beam
structure with 10 active composite panels, and a thick-walled cylindrical shell with 55 active
composite panels mounted on its surface.
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Chapter 5

Numerical Examples of Wavenumber
Domain Feedback Control

5.1 Introduction and Objective

This chapter demonstrates the wavenumber domain sensing method developed in the previous

chapter on structural systems. The purpose of this is to numerically validate the method on the

numerical model with the same order of complexity, before it is tested on a real testbed. The
theoretical basis for the wavenumber domain sensing method is briefly reviewed for completeness

in Section 5.2. In Section 5.3, a cantilever beam in an infinite baffle is considered first as a

numerical example for its simplicity. Finally, in Section 5.4, the method will be numerically

validated on the main testbed in this thesis, which is the cylindrical shell.

5.2 Wavenumber Domain Feedback Controller Design

In the wavenumber domain feedback control approach, the acoustic power from vibrating struc-

tures is chosen as a performance metric, and control systems are designed to estimate and min-

imize the acoustic power expressed in the wavenumber domain. This approach is based on the

fact that only supersonic wavenumber components radiate acoustic power for infinitely baffled

planar or cylindrical structures [Junger, 1986], and the acoustic power can be estimated in real

time with good accuracy within a certain bandwidth of interest. A block diagram showing how

the approach is implemented is shown in Figure 5-1. The output signal, y, of sensors mounted

on structures, such as accelerometers, is multiplied by the discrete wavenumber transform ma-

trix P, which is derived from the definition of the discrete wavenumber transform, i.e., discrete

Fourier transform in the spatial domain, not from material properties or dynamic character-

istics of the structure. Therefore, no process of structural acoustic modeling is required to

compute <D. The output of the multiplication of y by <D, which is denoted as e in Figure 5-1, is

then multiplied by a diagonal weighting matrix Q to generate the performance metric z. Each

diagonal element in Q is a weight for the corresponding wavenumber component, selected such

that the 2-norm of z squared, IIzI1 , approximates the actual acoustic power radiated from the
vibrating structure. One way to compute the diagonal elements in Q is by calculating optimal
weights that minimize the difference between the actual acoustic power II and the estimated
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Figure 5-1: Block diagram of the wavenumber feedback controller implementation.

acoustic power H. In other words, the optimal weights minimize

N N

in = Z H (joi)| 2 II(wi) -fi(Le) = |H (joi)12 II(wi) - ||z(w2) . (5.1)
i=1 i=1

Here, H (jw) is a frequency weighting function for the performance metric, Wi is the frequency
at which the acoustic power is computed, and N is the total number of frequency points. The
expression above assumes the availability of the actual acoustic power H through simulation or
measurements. If the actual acoustic power is not available, the diagonal weighting matrix Q
can be used as design knobs in the controller design process, as in the linear quadratic regulator

(LQR) controller design. The iterative procedure of finding Q, which occurs when the actual
acoustic power cannot be obtained, is not an unstructured blind trial-and-error approach, but
rather is a structured and systematic one. The rationale is that the acoustic power is dominated
by only a few wavenumber components in most engineering applications, and one only needs
to find the weights for those radiating wavenumber components (determined by 4) during the
controller design.

It should be noted that the wavenumber domain feedback control approach significantly sim-
plifies the feedback controller design for active structural acoustic control, because the approach
reduces the effort required to model the acoustic radiation from the structure. As mentioned
earlier, no modeling process is required to find D, and Q can be obtained by a structured itera-
tive procedure. Therefore, if one has a model from u to y, i.e., a model for the structure, then
the acoustic power can be estimated using 1 and Q, which can be obtained without detailed
acoustic modeling. Furthermore, the approach simplifies the controller design by reducing the
number of transfer functions that need to be computed or identified. Figure 5-1 indicates that
transfer functions from v to z, not from u to y, are needed in order to design controllers.
Generally, the size of vectors v or z, i.e., the number of wavenumber components considered,
is much smaller than that of vectors u or y, i.e., the number of sensors or actuators. These
advantages make the approach a useful tool to design feedback control systems to reduce the
radiated noise from vibrating structures.
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5.3 Beam Structures

5.3.1 Problem Statement

The new wavenumber domain sensing method is tested numerically on an infinite baffled
cantilever beam with ten active composite panels. The schematic of the beam structure
with panels is shown in Figure 5-2, showing the disturbance and the sensor measurements
ip = [ID1 f2 -. - - ioT]. The disturbance was modeled as a point force acting at the point shown
in Figure 5-2, with a bandwidth below 1000 Hz. It is assumed that the beam is vibrating in air.
The beam has a length of 1 m, a width of 0.05 m, and a thickness of 0.05 m, with a Young's
modulus of 70 GPa, and density of 2700 kg/m 3. The beam structure was modeled using the
finite element method, while the active composite panel was modeled as a mass-spring-damper
system, as described in Chapter 2. The equation of motion for the beam structure with panels
is written as

(M + ITT Twu) 0 F (C, + TTuCTu) -TT C u s
0 + *UPS -CTwu C, J , J

(5.2)

(Ks + TTuKTwu) -TTuK, U } B, f +-T[wu u.
I -KTwo K, wp 0 IN,

Equation 5.2 has the same form as given in Equation 2.35 in Chapter 2 for the cylindrical shell
with panels, except that the global mass, damping, and stiffness matrix, M8, C8, K8 , should
be computed on the beam structure. The procedure to obtain those matrices is described in
detail in most textbooks on finite element methods, such as [Bathe, 1996].

Once we have the acceleration measurements, W, = [u)1 12 ... jo]T, we can compute the
radiated acoustic power H (w) from the vibrating beam as

H (w) = (jw) R (OW) W, (jw) , (5.3)

where *, (jw) is a 10 x1 vector of velocity, obtained by integrating *p, and R (jw) is a 10 x 10
radiation resistance matrix for the beam structure, given by [Elliott, 1993]

sin (kri,2) sin (kr 1,10)
kri,2  kri,10

sin (kr 2,1)

R (jw) - pg 2 2  kr 2 ,1  sin (kr 9 o) . (5.4)
47rc :_-._m_(k _,10

kr 9,10
sin (krio,) sin (krio,9 ) 1

krio,1  krio,9

Here, w is the excitation frequency, p is the density of air, S is the area of the discretized
radiator on which each measurement is taken, c is the speed of sound in air, k is the acoustic
wavenumber, and rm,n is the distance between the center of mth and nth velocity locations.
Equation 5.3 and Equation 5.4 are used to compute the open-loop and closed-loop acoustic
power for the beam structure.
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L

Figure 5-2: An infinite baffled cantilever beam with 10 panels mounted. The thickness of each
panel is exaggerated.

In this example, the model in Equation 5.2 is used only for evaluating the open-loop and
closed-loop frequency responses. The model needed for controller synthesis is obtained using
system identification. By doing that, we can assume the frequency responses from the model
are the measured data from the real structures. This approach makes the controller design
more realistic, because it is very often the case that we should identify the plant model from
measured transfer functions, especially for complex structures.

5.3.2 Design Issues

In order to design LQG controller using the new wavenumber sensing approach, two design
issues should be considered. The first one is how many wavenumber components to be used;
the other is how to select the weight for each wavenumber component. In this section, these
two design issues will be discussed.

Number of wavenumber components

First, we determine how many wavenumber components are needed. Recall that only supersonic
wavenumber components contribute to the sound power radiation for the beam structures in
an infinite baffle, so we can determine Nm, the number of wavenumber components needed in
the controller design. Using the information

Wb = control bandwidth = 27r x 1000 (rad/s)

c = speed of sound in air = 343 m/s

N, number of sensors = 10

L = length of the beam = 1 m

Ax = the spacing of the sensors = 0.1 m (= L/N,)

and the condition of the supersonic wavenumber components,

(27r rn-i Wbo
km = <; - (m = 1,2, ..., Nm) , (5.5)

AX N, c
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we can see that Nm = 3 should be enough.

Weighting functions

As shown in the previous chapter, the estimated acoustic power from vibrating beams can be

written as
N, 2

II (w) = F(km, W) (km,W) , (5.6)
m=1

where Wd (km, w) is the discrete wavenumber transform of the acceleration field *, = [61 f2 --- 1]T7
given as

10

Wd (km, W) = Ax Zf' (jo) ejkmxn" (5.7)
n=1

The frequency weighting function, F (kmn, w), which is defined in Equation 5.6, is a function
of excitation frequency, w. However, as mentioned in Chapter 4, we can find the optimal

constant weight, F (km), such that the difference between H (w), the actual acoustic power, and
I (w), the estimated acoustic power, is minimized. Once we find the optimal constant weight,
we can estimate the acoustic power from vibrating structures and use it as the performance

metric in the optimal LQG controller design. Here, it should be noted that we should know

the actual acoustic power, H (w), by measurements or simulation, to find the optimal weights.

If we don't have enough information on I (w), we cannot find the optimal weights. This may
occur, especially for the general complex structures, if we don't have enough measurements for

acoustic pressure in the far field. In that case, the weight can be used as a design knob, as

mentioned in Chapter 4, so that the resulting closed-loop response is satisfactory.

5.3.3 Estimation of the Acoustic Power

In this section, the effect of the number of wavenumber components and the weighting functions

on the accuracy of estimated acoustic power is discussed. First, the results of estimating the

acoustic power are presented, with the optimal weights obtained using the method in Chapter 4.

Then, the effects of non-optimal weights on the estimation of the acoustic power are investigated.

Case 1 : Optimal weights

Figure 5-3 through 5-6 show the actual acoustic power, H (w), and the estimated acoustic

power, H (w), as the number of wavenumber components increases. Two butterworth filters,
with corner frequency at 100 Hz, are used as a frequency-weighting function for the performance

metric Jr. Here, it is assumed that we have enough measurements of the acoustic pressure in

the far field, so that the actual acoustic power can be computed. In that case, we can find the

optimal weights using the method given in Chapter 4. The optimal weights for each wavenumber

components are given in Table 5.1, showing Nm, the number of wavenumber components, and

F (kin), the optimal weights. Note that the weights in Table 5.1 are normalized with respect to

F (ki), the weight for the first wavenumber component.

Figure 5-3 shows that the first wavenumber component (Wd (ki)) can capture the actual
acoustic power up to the second mode (~400 Hz); it begins to diverge from the actual acoustic

127



-40

-60

-80

0
CL

.- 100
CD

0

-- 120

ca-

E-140

-160

10 1 102 103
Frequency (Hz)

104

Figure 5-3: Actual and estimated acoustic power obtained using one wavenumber component.
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Figure 5-4: Actual and estimated acoustic power obtained using two wavenumber components

with optimal weights.
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Figure 5-5: Actual and estimated acoustic power obtained using three wavenumber components

with optimal weights.
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Figure 5-6: Actual and estimated acoustic power obtained using four wavenumber components
with optimal weights.
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Table 5.1: The optimal weights.

Nm F (ki) F(k 2 ) F(k 3 ) F(k 4 )
1 1.0000
2 1.0000 0.2628
3 1.0000 0.2227 0.7140
4 1.0000 0.1717 0.5177 0.2191

power above that frequency. Since ki = 0, using the first wavenumber component only (i.e., the
zero wavenumber component only) to estimate and reduce the acoustic power is equivalent to the
volume velocity cancellation method [Johnson, 1995]. Figure 5-3 implies that if the required
bandwidth of the system were around 400 Hz, it would be enough to sense and reduce the
first wavenumber component, i.e., the zero wavenumber component, to reduce the structurally-
radiated noise. On the other hand, it can be seen from Figure 5-4 that the first two wavenumber
components (Wd (ki), Wd (k2 )) are needed to estimate the acoustic power with enough accuracy
up to the third mode (-800 Hz).

Figure 5-5 shows the actual acoustic power and its estimated acoustic power obtained using
three wavenumber components. We concluded in Section 5.3.2 that three wavenumber compo-
nents are required in order to estimate the acoustic power up to 1 kHz. Figure 5-5 supports
this conclusion. Furthermore, we can see that the first three wavenumber components can ap-
proximate the actual acoustic power up to 2 kHz, not just 1 kHz, in Figure 5-5. Since the LQG
controller tries to minimize the estimated acoustic power obtained using a state-space model
below 2 kHz, and since the estimated acoustic power is similar to the actual acoustic power in
the same frequency range, it is expected that the LQG controller considering three wavenumber
components will reduce the actual acoustic power below 2 kHz.

Finally, the result of estimating the acoustic power with four wavenumber components is
shown in Figure 5-5. It is true that they can approximate the actual acoustic power with enough
accuracy up to 3-4 kHz. However, it is a waste of control energy to use four wavenumber com-
ponents when the required control bandwidth is 1 kHz, because three wavenumber components
turned out to be enough to estimate the acoustic power up to 1 kHz. Using more wavenumber
components than required doesn't guarantee a good closed-loop performance, especially when
the control energy is finite, because the control energy is wasted unnecessarily.

Figure 5-7 shows the effect of the number of wavenumber components on the performance
metric Jr, which was defined in Equation 5.1. Here, Jr was calculated up to 1 kHz for each
case, which is the required control bandwidth. It is observed that there is not much difference
between Nm = 3, and Nm = 4, compared with other cases. Again, this supports the conclusion
that Nm = 3 is enough to reduce the structurally-radiated noise up to 1 kHz.

Case 2 : Non-optimal weights

In this case, it is assumed that we don't have enough measurements of the acoustic pressure in
the far field, so that the actual acoustic power cannot be computed. Since we cannot find the
optimal weights in that case, we should select the weights in an ad hoc manner. As mentioned
earlier, we can use the weights as a design knob in the LQG controller design.
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Figure 5-9: Actual and estimated acoustic power obtained using three wavenumber components

with non-optimal weights.
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Table 5.2: The weights selected in an ad-hoc manner.

Nm F (ki) F(k 2 ) F(k 3 ) F(k 4 )
1 1.0000
2 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000

Figure 5-11: Block diagram of the LQG controller implementation for the
10 panels mounted.

cantilever beam with

Figure 5-8 through 5-10 show the actual acoustic power, H (w), and the estimated acous-

tic power, H (w), as the number of wavenumber components increases. The weights for each

wavenumber components are given in Table 5.2, which shows that the same weights are used

for each wavenumber component in all cases. This is a good initial guess to determine the

weights, when we don't know what acoustic power looks like in advance. From the figures, it

can be seen that the weights selected in an ad hoc manner produce very similar results to the

optimally-selected weights. Therefore, it is expected that the closed-loop performance using the

weights selected in an ad hoc manner will be comparable with that obtained using the optimal

weights. The insensitiveness of the achievable closed-loop performance to the availability of the

acoustic power is an important advantage of the wavenumber domain sensing method, because

it means that the method can be applied even when we cannot measure or compute the acoustic

power, which is the case for most complex structural systems.

5.3.4 LQG Controller Design

As mentioned earlier, the model for the plant obtained using finite elements is used only for

evaluating the open-loop and closed-loop frequency responses. The model needed for controller

synthesis is obtained using system identification. Figure 5-11 shows the block diagram of the

LQG controller designed in the wavenumber domain. The output measurements from the

accelerometers embedded in the panels, collected in a single vector as y = *p=[w1I2 - -2 o] ,

are multiplied by the discrete wavenumber transform matrix SIT = ([ (P2 .. T , defined
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in Equation 4.57, such that the output of the matrix becomes

Wd(k1)

Wd(k2)e = <by =.(5.8)

_Wd(kNm) _

Also, the weighting matrix Q in Figure 5-11 is defined as

F(ki) 0 0

F ((k2 )

Q = (k2) (5.9)

F(kN) 0

0 --- 0 F(kNm) _

so that the 2-norm of its output, denoted as z in Figure 5-11,

F (ki)Wd (k1)

F (k 2) Wd (k2 )
z = (5.10)

F (kN)Wd (kN,)

becomes the estimated acoustic power H (w), given as

N1 2

II1(w) = ||zI| = ZF (km) d(km) . (5.11)
m=1

Using the wavenumber sensing method developed in this thesis, we need only to do the system
identification on the transfer matrix from v to e or z, not from u to y. By doing that, the
number of transfer functions that should be identified is significantly reduced from 100 (from
u to y) to (2Nm - 1)2 (from v to e or z), if Nm is less than 10. In the previous section, it
was shown that Nm = 3 would be enough to estimate the acoustic power within the required
bandwidth, and therefore, the number of transfer functions that should be identified is reduced
to 25 in this case.

Once we have a state-space model, we can design the LQG controller to minimize the
estimated acoustic power.
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5.3.5 Closed-loop Results

In this section, the results of several closed-loop simulations are reported. Both the effects of

the number of wavenumber components, Nm, and the weights for each wavenumber component,
F (kin), on the closed-loop performance are discussed.

The closed-loop responses obtained using optimal weights and non-optimal weights are

shown in Figure 5-12 through Figure 5-18, as Nm increases, with ratios of open-loop response

to closed-loop response for each case. Note that negative and positive ratios indicate attenuation

and amplification of the disturbance, respectively. The optimal weights are obtained such that

they minimize the performance metric J~ defined in Equation 5.1, while the non-optimal weights

are selected such that the resulting closed-loop response is acceptable. The same weights as

used in the previous section are adopted here in both cases; they are given in Table 5.1 and

Table 5.2, respectively. Also, in order to compare the performance of each control loop, two

performance indices J1 and J 2 are defined as

/21r x1000 (rad/s)

J1l=r H 11(w) dw , (5.12)

27r x 2000 (rad/s)

J2 = O 1 (w) do .

Here, J1 and J2 represent the integration of the acoustic power below 1000 Hz and 2000 Hz, re-

spectively. The two performance indices are summarized in Table 5.3 for each control loop. The

performance in the table represents the ratio of the open-loop to the closed-loop performance

index. Figure 5-19 and Figure 5-20 show the effect of Nm and F (kin) on the performance index

Ji and J2 of the closed-loop system.

If we compare the results in Figure 5-12 through Figure 5-15, we can see how the number

of wavenumber components Nm affects the closed-loop performance. From Figure 5-12, we

see that 25 dB of attenuation is achieved at 29 Hz (first mode), and 15 dB of reduction is

achieved at 184 Hz (second mode) by minimizing the first wavenumber component Wd (ki).

This was expected from the result of comparing the actual acoustic power with the estimated

one in Figure 5-3. Using the first two wavenumber components (Wd (ki), Wd (k 2 )), the effective

control bandwidth increases up to around 800 Hz; more than 20 dB of reduction at the first

two modes (29 Hz and 184 Hz), and 10 dB of reduction at the third mode (516 Hz) is achieved.

This trend continues when Nm = 3 and Nm = 4. For both cases, almost 20 dB of attenuation

is achieved at each mode up to 2 kHz.

The initial conclusion we might get from the figures is that the closed-loop performance

improves as Nm increases. However, Table 5.3 and Figure 5-19 imply that higher Nm doesn't

guarantee better performance, if the control energy is finite and Nm is unnecessarily higher

than needed. For example, if the required control bandwidth is 1 kHz, Nm = 3 gives better

performance than Nm = 4. N. = 3 was chosen in Section 5.3.2 as the number of wavenumber

components to be considered in order to reduce the structurally-radiated noise up to 1 kHz. If

Nm = 4 is chosen, the finite control energy is consumed unnecessarily to reduce the wavenumber

component Wd (k 4 ), which doesn't radiate acoustic power below 1 kHz. Note that the struc-

tural wavenumber k 4 is greater than the acoustic wavenumber below 1 kHz (Equation 5.5). If

the required bandwidth is set to be 2 kHz, however, it is natural that Nm = 4 gives better
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Figure 5-14: Closed-loop performance obtained using three wavenumber components with op-
timal weights.
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Figure 5-15: Closed-loop performance obtained using four wavenumber components with opti-
mal weights.
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Figure 5-16: Closed-loop performance obtained using two wavenumber components with non-

optimal weights.

performance than Nm = 3 (Figure 5-20), because Wd (k4 ) becomes a radiating wavenumber

component above 1 kHz. This fact shows how important the choice of Nm is to yield the satis-

factory closed-loop performance, given the required bandwidth and the finite control energy.

The effect of the weights for each wavenumber component, F (km), can be found by com-

paring the closed-loop performance in Figure 5-13 with Figure 5-16, Figure 5-14 with 5-17, and

Figure 5-15 with 5-18, respectively. Also, each closed-loop performance can be compared easily

using Figure 5-19 and Figure 5-20. It is observed that the closed-loop performance obtained

using the optimal weights is a little better than that obtained using the non-optimal weights,
but their difference is not significant. This shows that non-optimal weights selected in an ad hoc

manner result in the closed-loop performance that is very similar to the performance obtained

using optimal weights. Therefore, the new wavenumber domain sensing method can be used

without any difficulty, even when the acoustic power cannot be obtained during the controller

design.

5.4 Cylindrical Shell

5.4.1 Problem Statement

In this section, the result of applying the new wavenumber domain sensing method on an infinite

baffled cylindrical shell is reported. The shell is covered with 55 active composite panels, five

in the axial direction and eleven in the circumferential direction (Figure 5-21). It is assumed

that the shell is vibrating in water, thereby radiating acoustic power. The shell has a length of
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Table 5.3: The performance index for each control loop.

Open loop
- Optimal weights

Non-optimal weights

1 2 3
Number of wavenumber components

4

Figure 5-19: The performance index J1 of the open-loop and closed-loop system.
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1I1 Ji Performance J2 Performance

Open loop 2.12 x 10-6 1.00 (0.0 dB) 2.28 x 10-5 1.00 (0.0 dB)

Optimal weights, Nm = 1 1.72 X 10-6 1.23 (0.9 dB) 2.30 x 107- 0.99 (-0.0 dB)
Optimal weights, Nm = 2 1.14 X 10-6 1.87 (2.7 dB) 2.08 X 10- 5  1.09 (0.4 dB)
Non-optimal weights, Nm = 2 1.27 X 10-6 1.67 (2.2 dB) 2.12 X 10-5 1.08 (0.3 dB)
Optimal weights, Nm = 3 6.71 x 10- 7  3.16 (5.0 dB) 4.91 X 10-6 4.63 (6.7 dB)
Non-optimal weights, Nm = 3 7.53 X 10-7 2.82 (4.5 dB) 6.91 X 10-6 3.29 (5.2 dB)
Optimal weights, Nm = 4 7.30 X 10-7 2.91 (4.6 dB) 4.77 X 10-6 4.77 (6.8 dB)
Non-optimal weights, Nm = 4 8.21 X 10-7 2.59 (4.1 dB) 6.87 X 10-6 3.31 (5.2 dB)
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Figure 5-20: The performance index J2 of the open-loop and closed-loop system.

32 inches, a diameter of 20 inches, a thickness of 0.3 inches, with a Young's modulus of 70 GPa,
and density of 2700 kg/m 3 . The geometry of the shell modeled in this section is the same as
that of the real testbed cylindrical shell.

The disturbance was modeled as a point force acting at the point shown in Figure 5-21,
with a bandwidth below 1200 Hz. The shell was modeled using the finite element method,
while the panel was modeled as a mass-spring-damper system. The modeling procedure for the
shell and the panel is given in detail in Chapter 2. Finally, the acoustic responses, such as the
acoustic pressure and the acoustic power, were obtained by using the analytic expressions in
Equation 4.20 and Equation 4.22 in Chapter 4.

As in the previous section, the model developed for the shell and the panels is not used to
get a plant model for controller synthesis. The model is used only for computing the open-loop
and closed-loop frequency responses.

5.4.2 Design Issues

Two main design issues for applying the new wavenumber sensing method, which are to de-
termine the number of wavenumber components and select the weights for each wavenumber
component, are discussed in this section.

Number of wavenumber components

For an infinite baffled cylindrical shell, only supersonic wavenumber components contribute to
the sound power radiation in the axial direction, while all the wavenumber components radiate
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Figure 5-22: Weighting function F (n, 0) for the circumferential wavenumber components

Wd (n, 0). The axial wavenumber, kin, is set to be 0 (the first wavenumber component).

the acoustic power in the circumferential direction. Therefore, we should determine the number
of wavenumber components to be considered in both directions based on different criterion. In
the axial direction, we can determine Nm, the number of axial wavenumber components needed
in the controller design, using the fact that only supersonic axial wavenumber components
radiate acoustic power. Given the information,

Wb = control bandwidth = 27r x 1200 (rad/s)

c = speed of sound in water = 1500 m/s

Na = number of sensors in the axial direction = 5

L = length of cylindrical shell = 32 inches

Az = the spacing of the sensors in the axial direction = 6.4 inches ( L/Na)

and the condition of the supersonic wavenumber components,

27r M -1
km = ( (5.13)

Az) N

< ; (m = 1, 2, ... Nm) ,
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we see that Nm = 1 should be enough. On the other hand, since all the circumferential
wavenumber components contribute to the sound power radiation, there is no decisive way to
determine Ns, the number of circumferential wavenumber components needed in the controller
design. N, is determined in an ad hoc way, based on the mode shape in the control bandwidth
and the weighting function for the radiating wavenumber components. As shown in the previous
chapter, the estimated acoustic power from a vibrating cylindrical shell in an infinite baffle can
be written as

Nn-1 Nm

II(w) = F (nI, km) Wd (n, km) , (5.14)
n=o m=1

where Wd (n, km) is the discrete wavenumber transform of the acceleration field fb (p'i, z,), given
as

11 5 
-k,,

Wd (n, kz) = -AspAz E ii (p1 , z.) e-i" ejkzz. (5.15)
1=1 s=1

The expressions for Ao, Az, p, and z, are given in Equation 4.62 in Chapter 4. Also, the
frequency weighting function F (n, km) in Equation 5.14 is given by

2pck Akm m
7TW2 , k2 <;2 k = -Mw

F (n, km) = enm H )'ak 2 - k) (k2 - k ) c (5.16)

0, km>k=
c

Figure 5-22 shows the weighting function F (n, km) when km is set to be 0, which is the first
wavenumber in the axial direction. It can be seen that the first three or four wavenumber com-
ponents in the circumferential direction (n = 0-2 or 3) will be enough to estimate the acoustic
power within the required bandwidth of 1.2 kHz, and therefore, an LQG controller minimiz-
ing the first three or four circumferential wavenumber components will reduce the estimated
acoustic power within that frequency range.

Weighting functions

As shown in Figure 5-22, the frequency weighting function F (n, km) is a function of excitation
frequency w. However, using the method in Chapter 4, we can find the optimal constant
weight, F (n, kin), such that the difference between the actual and the estimated acoustic power
is minimized, if we have information about the actual acoustic power from measurements or
simulation. If we cannot compute the optimal weights, primarily because we don't have enough
measurements to compute the acoustic power, we can use the weights as a design knob in the
controller design process.

5.4.3 Estimation of the Acoustic Power

The results of estimating the acoustic power radiated from the cylindrical shell using the new
wavenumber domain sensing method are presented in this section. Figure 5-23 through 5-26
show the actual acoustic power, H (w), and the estimated acoustic power, H (w), obtained using
the optimal weights as the number of circumferential wavenumber components N, increases.
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Table 5.4: The optimal weights.

N,,f (0, 0) (1, 0) (2, 0) (3, 0)

1 1.00x100
2 1.00x100  1.42x100

3 1.00 x 100  1.42x10 0  7.62x10-2
4 1.00x100 1.42 x107 7.62 x10-2 1.24 x10~4

Here, the number of axial wavenumber component, Nm, is set to be 1. Two butterworth
filters with corner frequency at 10 Hz are used as a frequency function to compute the optimal
weights and the performance metric Jr. The optimal weights for each wavenumber components
are given in Table 5.4, showing Na, the number of circumferential wavenumber components,
and F (n, 0), the optimal weight. Note that the weights in Table 5.4 are normalized with respect
to F (0, 0), the weight for the first wavenumber component. Also, the axial wavenumber km is
set to be 0, because only the first axial wavenumber component is considered.

Figure 5-23 shows that estimating the acoustic power using the first wavenumber component
only is not a good approach in this application. The first wavenumber component alone cannot
capture the actual acoustic power within the required control bandwidth. Therefore, reducing
the first wavenumber component, or the volume velocity cancellation method, will not help
reduce the acoustic power radiated from the cylindrical shell considered in this example.

Figure 5-24 indicates that the most dominant peak around 1100 Hz within the control
bandwidth can be estimated using the first two wavenumber components in the circumferential
direction. However, they cannot estimate the acoustic power at other frequency ranges. On
the other hand, it can be seen from Figure 5-25 and Figure 5-26 that the acoustic power can
be estimated with enough accuracy up to 1.2 kHz using the first three or four wavenumber
components. This observation supports the conclusion in Section 5.4.2. Since LQG controller
minimizes the estimated acoustic power, and since it can be made similar to the actual acoustic
power in the required bandwidth, it is expected that LQG controller will reduce the actual
acoustic power using three wavenumber components in the circumferential direction. It is
difficult to see the difference between Figure 5-25 (N, = 3) and Figure 5-26 (N, = 4). This
observation implies that there is no reason to use four wavenumber components. As will be
shown in the next section, considering three wavenumber components gives a little better closed-
loop performance in terms of the total acoustic power in the control bandwidth than considering
four wavenumber components.

Figure 5-27 shows the performance metric Jn used to select the optimal weights. Jr was
computed up to the required control bandwidth, which is 1.2 kHz. It can be seen from the
figure that the performance metric for N, = 3 is a little smaller than for N" = 4, although
their difference is negligible.

If we cannot compute the optimal weights for each wavenumber component, we should
select the weights in an ad hoc manner, such that the resulting closed-loop performance is
acceptable. Figure 5-28 through 5-30 show the actual and estimated acoustic power obtained
using the weights selected in an ad hoc manner. The weights for each wavenumber components
are given in Table 5.5. As in the case for the optimal weights, the number of axial wavenumber
component, Nm, is set to be 1. From the figures, we can see that the resulting estimated
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Figure 5-27: The
formance metric.

effect of the number of circumferential wavenumber components on the per-

Table 5.5: The weights selected in an ad-hoc manner.

N, i (0, 0) I P(1, 0) I P(2, 0) I P(3, 0)
1 1.0000
2 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 0.25 0.0225

acoustic power obtained using the non-optimal weights are very similar to those obtained using
the optimally-selected weights. This observation implies that non-optimal weights, if properly
selected by iteration, will result in the closed-loop performance that is comparable with the
performance obtained using optimal weights. This is one of the important advantages of the
new wavenumber domain sensing method developed in this study.

5.4.4 Closed-loop Results

This section presents the results of applying the wavenumber domain LQG controller design to
the cylindrical shell. The closed-loop responses obtained using optimal weights and non-optimal
weights are shown from Figure 5-31 to Figure 5-37, as N, varies from 1 to 4, with ratios of
open-loop response to closed-loop response for each case. In all cases, Nm = 1 is considered.
Note that negative and positive ratios indicate attenuation and amplification of the disturbance,
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Figure 5-28: Actual and estimated acoustic power obtained using two circumferential wavenum-
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Figure 5-29: Actual and estimated acoustic power obtained using three circumferential
wavenumber components with non-optimal weights.
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Figure 5-30: Actual and estimated acoustic power obtained using four circumferential wavenum-

ber components with non-optimal weights.

respectively. The optimal and non-optimal weights used to estimate the acoustic power and

design LQG controller are given in Table 5.4 and Table 5.5, respectively. The performance

metric J is defined as the integration of the acoustic power in the control bandwidth, to measure

the closed-loop performance and to compare the performance of each control loop, given as

/27r x 1200 (rad/s) I()d
II H(w)do. (5.17)

The performance index is summarized in Table 5.6 for each control loop. The performance in

the table represents the ratio of the open-loop to the closed-loop performance index. Figure 5-38
shows the effect of N, and F (n, 0) on the performance index J of the closed-loop system.

As expected in the previous section, using only the zero wavenumber component doesn't

yield any closed-loop performance at all (Figure 5-31). The volume velocity cancellation

method, which is equivalent to reducing the zero wavenumber component to reduce structurally-

radiated noise, doesn't work in this example, because the dominant resonant frequencies are too

high for the method to be applied. Considering the first two circumferential wavenumbers (n

= 0 and 1) results in better closed-loop performance (Figure 5-32). We can reduce the acoustic

power at the most dominant peak around 1100 Hz, although we cannot reduce the acoustic

power at other frequency ranges, using the first two circumferential wavenumber components.

Figure 5-33 and Figure 5-34 show that most dominant peaks in the acoustic power are

reduced by considering three or four wavenumber components (Nn = 3 or 4) with optimal

weights. In both cases, we see that 20 dB of attenuation is achieved at 600 and 1100 Hz, and
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Figure 5-31: Closed-loop performance obtained using one circumferential wavenumber compo-
nent with optimal weight.
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Figure 5-32: Closed-loop performance obtained using two circumferential wavenumber compo-
nents with optimal weights.
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Figure 5-33: Closed-loop performance obtained using three circumferential wavenumber com-

ponents with optimal weights.
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Figure 5-34: Closed-loop performance obtained using four circumferential wavenumber compo-

nents with optimal weights.
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Table 5.6: The performance index for each control loop.

___J Performance

Open loop 1.0122

Optimal weights, Nn = 1 1.0122 1.00 (0.0 dB)
Optimal weights, Nn = 2 0.14373 7.04 (8.5 dB)
Non-optimal weights, Nn = 2 0.14373 7.04 (8.5 dB)
Optimal weights, Nn = 3 0.12287 8.24 (9.2 dB)
Non-optimal weights, N, = 3 0.29473 3.43 (5.4 dB)
Optimal weights, Nn = 4 0.12296 8.23 (9.2 dB)
Non-optimal weights, Nn = 4 0.18623 5.43 (7.3 dB)

better performance than optimal weights. However, Table 5.6 indicates that the closed-loop

performance obtained using optimal weights is better than that obtained using non-optimal

weights, in terms of the performance metric J (J = 0.12296 for optimal weights, and J =
0.18623 for non-optimal weights). The rationale used in the previous paragraph applies to this

case in the same way. LQG controller using optimal weights tries to minimize the H 2 norm of

the system by putting more weight on the peak at 1100 Hz, while the LQG controller using

non-optimal weights achieves its goal by putting more weight on the peak at 400 Hz. Note

that the peak at 1100 Hz is much more dominant than the peak at 400 Hz in the bandwidth of

interest.
However, as in the example of beam structures, this example also shows that non-optimal

weights selected in an ad hoc manner result in the closed-loop performance that is comparable

with the performance obtained using optimal weights. Note that the iterative procedure of

finding weights is very common in any optimal controller design. Also, it should be stressed

that finding weights by iteration in the new wavenumber domain sensing method can be done

in a systematic way, because the acoustic power depends on only a first few wavenumber

components in most engineering applications. Therefore, the new wavenumber domain sensing

method developed in this study can be applied without any difficulty, even when the acoustic

power is not available during the feedback controller design.

5.4.5 Effect of Time-delay in the Digital Control System

This section investigates the effect of time delay in the digital control system on the achievable

closed-loop performance, and explores the way to compensate for it. The motivation for this is

that the wavenumber domain LQG control algorithm should be implemented digitally, due to its

multi-input multi-output (MIMO) features, although the simulation results shown throughout

this chapter assume that it is implemented in analog.

One of the problems in implementing digital control system is the effective time delay.

Assuming the zero-order-hold method is used during the sampling process, and the latency of

the digital control system can be as large as the sampling time, the effective time delay T in

the digital control system is given by

3
T = - s,(5.18)2
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Figure 5-38: The performance metric J of the open-loop and closed-loop system.

where T is the sampling time of the digital control system. Therefore, if controllers are designed

in the continuous domain without considering the effective time delay, and then implemented

digitally, the achievable closed-loop performance would be worse than the expected performance.

In an extreme case, the closed-loop system may be unstable if the effective time delay is large

enough.

In order to see how the effective time delay degrades the closed-loop performance, the

same wavenumber domain LQG controller as in the previous section (which considers four

circumferential wavenumber components with optimal weights) was applied to the plant with

the effective time delay, and its performance was compared with the case without time delay.

Figure 5-39 shows the block diagram of the LQG controller designed on the plant without

considering the effective time delay. The sampling frequency (sampling time) of the digital

control system was assumed to be 20 kHz (50 ps). The effective time delay e-T* is approximated

using the first order Pade approximation [Lewis, 1992], given as

T
1 - -s

-Ts .2
1+ -s

2

(5.19)

As mentioned above, the LQG controller in Figure 5-39 is the same one as in the previous
section. It considers one axial wavenumber component and four circumferential wavenumber
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Table 5.7: The performance index for each control loop.

J Performance

Open loop 1.0122
Case I 0.12296 8.23 (9.2 dB)
Case II 0.17373 5.83 (7.7 dB)
Case III 0.14812 6.83 (8.3 dB)

components, with the optimal weights given in Table 5.4. The difference between the current
setup in Figure 5-39 and the one in the previous section is that the LQG controller is ap-
plied to the plant with the time delay. Figure 5-40 and 5-41 compare the characteristic loci
[Maciejowski, 1989] of two cases. The first case in Figure 5-40, where the LQG controller is

applied to the system without time delay, shows the typical feature of LQG control system;
most of dominant dynamics are bounded in phase between -90' and 900, with small peaks inside

the unit circle centered at the critical point -1 due to spill-over. On the other hand, the second
case in Figure 5-41, where the same LQG controller is applied to the system with time delay,
shows that there is a phase shift in the clockwise direction, i.e. phase delay, due to the effective

time delay. The effect of time delay is not so serious in this example; most dominant peaks are

still away from the unit circle at -1, and their phase margins are large enough. Nevertheless,
the closed-loop performance of the second case is a little worse than that of the first case, as

can be observed from Figure 5-42 and 5-43, which show the closed-loop performances of two

cases. They are very similar to each other below 1 kHz, but the closed-loop performance of

the second case begins to degrade above that frequency. The performance metrics J defined in

Equation 5.17 for both cases are given in Table 5.7. In the table, Case I represents the system

on which the LQG controller is applied without time delay, while Case II represents the system

on which the LQG controller is applied with time delay.

In the third case, denoted as Case III in Table 5.7, LQG controller is designed on the plant

assuming it has a time-delay. A block diagram in Figure 5-44 shows its design setup. Since the

plant on which LQG controller is designed includes the time delay (it is represented as the first

Pade approximation in Figure 5-44), the LQG controller knows how to compensate for it. The

resulting characteristic loci and closed-loop performance are given in Figure 5-45 and Figure 5-

46, respectively. It can be seen that the phase delay in the plant is effectively recovered by the

LQG controller for most dominant peaks. Also, the closed-loop performance in Figure 5-46 is

very similar to that in Figure 5-42. Table 5.7 indicates that the performance metric J of Case

III is a little larger than that of Case I, but lower than Case II. This shows that if it is not too

significant, the effective time delay in the digital control system can be compensated for by the

LQG controller.

5.5 Summary

In this chapter, the new wavenumber domain sensing method proposed in the previous chapter

was numerically validated on finite beams and cylinders in an infinite baffle. The finite element
method and analytic expressions were used to model the structural and acoustic responses,
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Figure 5-39: Block diagram of wavenumber domain LQG controller designed on the plant
without considering the effective time delay.

respectively, and to compute the open-loop and closed-loop behavior of the system. Once
frequency responses were computed for the structural system from the model, the plant model
needed to design LQG controller was obtained by doing system identification on those computed
frequency responses. No acoustic model was included in the LQG controller designed to reduce
the acoustic power from vibrating structures.

The results show that only first a few wavenumber components were enough to estimate and
reduce the acoustic power in the reasonable bandwidth of interest, while considering only the
first wavenumber component, i.e. volume velocity cancellation, couldn't yield a good closed-
loop performance in the case of a finite cylinder considered in this paper. Also, the examples
demonstrate that the closed-loop performance is still satisfactory in spite of the unavailability
of the acoustic power for the controller design. In other words, the weights selected in an ad-hoc
way, not using the actual acoustic power, yielded the closed-loop performance similar to the
weights selected optimally using the actual acoustic power. This has a critical implication in the
control system design for active structural acoustic control, because it is not easy to compute or
measure the acoustic power for most engineering systems, and therefore use it in the controller
design.

In addition to making the acoustic modeling unnecessary to design controllers, the new
wavenumber domain sensing method significantly simplifies the controller design by reducing

the transfer functions to be considered from 100 (=102) to 25 (=(2Nm - 1)2, N.-3) in the case
of beam structures, and from 3025 (=552) to 25 (=(2N, -1)2, N,=3) in the case of cylindrical
shells. Note that designing LQG controllers for 55 inputs and 55 outputs is probably not

feasible, although it is for 5 inputs and 5 outputs. This advantage again makes the method a
useful tool to design feedback controllers for reducing the radiated noise from structures.
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Figure 5-42: Closed-loop performance obtained using four circumferential wavenumber compo-
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Figure 5-43: Closed-loop performance obtained using LQG controller designed on the plant
without time delay, but with time delay present.
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Figure 5-44: Block diagram of wavenumber domain LQG controller designed on the plant
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Chapter 6

Local Controller Closed-loop

Experimental Results

6.1 Introduction and Objective

In this chapter, the results of several closed-loop experiments obtained with local controllers are

reported. Ultimately, much of the control functions for the multi-input multi-output (MIMO)
controller will be implemented digitally. Digital control systems have many advantages, such

as flexibility of use, ease of programming, and high reliability. However, it is not feasible to

implement the MIMO controllers completely with digital electronics, because at the bandwidth

required (up to 10 kHz), the effective time delays are too large. Nevertheless, it is obvious

that a digital controller is required for MIMO control, to allow changes in the control law to

be implemented in software, rather than hardware. One way to solve this problem may be to

design a hybrid analog/digital controller, with the digital controller used to control the global

behavior of the conformal array, and a hybrid analog/digital controller used for local, panel-

level control. In this configuration, a hybrid analog/digital subsystem is acted on frequencies

above 1 kHz, where the added phase lag from the digital controller becomes large, and a digital

subsystem is acted on frequencies below 1 kHz, coordinating all the panels that cover the outer

surface of the shell.

The objective of this chapter is to investigate the controller configurations, and find the one

that will be used eventually for the local controller architecture. All of the control configurations

considered in this chapter have the form of the feedback and feedforward controllers proposed

in Chapter 3. Different configurations are distinguished by the relative amount of analog and

digital components used to implement each configuration. Requirements that controllers should

satisfy include acceptable closed-loop performance, enough stability margins, and the easiness

in implementation. The one selected for the local controller architecture should be the simplest

to implement, while achieving the required closed-loop performance and stability margins.

In the sections below, eight controllers are discussed, and the experimental results for those

controllers are shown. The eight controllers are (1) A completely analog controller; (2) An

analog controller with the notch filter implemented digitally; (3) A hybrid digital/analog feed-

back and analog feedforward controller; (4) A hybrid analog/digital feedback with digital notch

filter; (5) A hybrid digital/analog feedback and digital feedforward controller; (6) A digital
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Active composite panel

r

Figure 6-1: Block diagram for feedback and feedforward controller on the model of the cylin-
drical shell with one active composite panel. "1" represents the point which is cut to find the
loop transfer function in Figures 6-9 and 6-10.

feedback and digital feedforward controller; (7) A digital tonal feedback controller; and (8) A
hybrid analog/digital feedback and digital linear quadratic gaussian (LQG) controller. The
analog controller establishes a benchmark against which the other controllers can be compared.
Before presenting the experimental results, the feedback and feedforward controller, which were
explored in Chapter 3, will be designed and implemented on the model developed in Chapter 2,
and the closed-loop results will be presented.

6.2 Simulating Controllers on the Model

Figure 6-1 shows the block diagram for the feedback and feedforward controller on the model
of the cylindrical shell with one active composite panel, which was developed in Chapter 2.
It also shows the disturbance w, control input u, the acceleration of the panel yt, and the
acceleration of the shell Yb. The performance output z is the same as yt in this example. The
cylindrical shell was modeled using the finite element method, while the active composite panel
was modeled using a mass-spring-damper system. The pre-amplifier and power amplifier were
modeled as a gain of unity and a low-pass filter at 188 Hz, respectively. The open-loop plant
transfer functions from (w, u) to (yt, Yb) are shown in Figure 6-2.
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Figure 6-2: Plant transfer functions from (w,u) to (yt, Yb) using the model.

The feedback controller for this plant was proposed as two low-pass filters at 200 Hz and
20,000 Hz in Chapter 3. The low-pass filter at 200 Hz, combined with the low-pass filter in
the power amplifier, functions as a double integrator, while the filter at 20,000 Hz provides
a roll-off at high frequency. The frequency responses of the feedback controller and its loop
transfer function are shown in Figure 6-3.

The closed-loop performance using feedback controller is shown in Figure 6-4, with a ratio
of open-loop transfer function to closed-loop transfer function. It can be seen that more than
15 dB of attenuation is achieved between 200-2000 Hz. This result is as expected, because the
loop gain shown in Figure 6-3 is more than 15 dB in this frequency range.

Figure 6-5 shows the frequency response of the feedforward controller proposed in Chap-
ter 3, and its loop transfer function. It should be noted that the loop transfer function of the
feedforward controller doesn't give any information on the closed-loop performance, because
the feedforward controller measures the acceleration of the shell (Yb), not the acceleration of
the panel (z). It was shown in Chapter 3 that the feedforward controller shown in Figure 6-5
exactly cancels the performance output z, because the controller in the figure is almost the same
as the one that cancels the performance output z perfectly, which was given in Equation 3.8.
Since this cannot happen in a real world, it is assumed in this section that there is uncertainty
in the feedforward loop, as shown in Figure 6-6. In Figure 6-6, k and O represent gain and
phase uncertainty in the feedforward loop, respectively. For example, k = 0.7 corresponds to
a 30% gain mismatch, and p = 10' corresponds to additional phase delay of 10' in the loop.
Figure 6-7 shows the closed-loop performance using the feedforward controller when there is
gain uncertainty (V = 0'). It can be seen that the achievable closed-loop performance using
the feedforward controller is about 10 dB of reduction, when the loop has 30% of gain uncer-
tainty. It becomes worse, as expected, when the gain uncertainty is increased; the achievable
closed-loop performance is reduced to about 5 dB of reduction when the loop has 50% of gain
uncertainty. However, the gain uncertainty is not a serious problem in the controller implemen-
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Figure 6-3: Frequency response of (a) the feedback controller, and (b) the loop transfer function.

tation, because we can reduce it to less than 10% in the controller bandwidth, in general, by
careful design of the feedforward controller. The more serious problem is phase uncertainty in
the loop. Figure 6-8 shows the closed-loop performance using the feedforward controller when
there is phase uncertainty (k = 1). It can be seen that the achievable closed-loop performance
using the feedforward controller is about 15 dB of reduction when the loop has phase delay
of 100, with the amplification of disturbance about 20 dB at some frequencies. When there is
an additional phase delay of 20' in the loop, the performance becomes much worse; at most
resonant peaks, the disturbance is amplified by more than 10 dB. Recalling that a phase delay
of 10-20' can easily happen in the real implementation, especially in the digital control loop,
this fact implies that we should try to reduce the phase delay within the control bandwidth
when designing feedforward controller. If the phase delay is inevitable in the feedforward loop,
the gain should be reduced in that region, so that its effect on the closed-loop performance is
minimized. It is true that we should try to reduce the phase delay in feedback controller design,
too. However, the feedback control is not as sensitive to phase delay, in contrast to feedforward
control, as long as the closed loop is stable.

In fact, as mentioned in Chapter 3, the feedback and feedforward approaches are comple-
mentary, and they can be applied simultaneously, because there is little interaction between
the two controllers. From the block diagram in Figure 6-1, the performance output z, and the
acceleration of the shell yA can be written as

Z = yt = Gytww + Gytu (6.1)

b GwW + Gybuu .

The feedback control Kb (s) and the feedforward control Kf (s) can be applied simultaneously,
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so that the control law is
u = Kb yt + Kf Yb.

Using this controller, the closed-loop performance output z can be written as

(6.2)

(6.3)

Substituting Yb = GybwW + GYbU (Kb yt + Kf Yb) into Equation 6.3 yields

Z = Yt =
GYtw + Kf (GytUGYbW - GYbuGytw )

1 - KfGYbU - KbGytu
(6.4)

The corresponding loop transfer function is - KfGybu - KbGyu,, which is obtained by cutting
the loop at "1" in Figure 6-1. The frequency response and Nyquist plot of the loop transfer
function are shown in Figure 6-9, and 6-10, respectively. Here, the feedback controller Kb (s)
is defined in Figure 6-3, while the feedforward controller Kf (s) is 0.8 e- 2 00 (20% gain uncer-
tainty, and 20' phase delay) times the ideal feedforward controller shown in Figure 6-5. The
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Figure 6-12: Block diagram of the analog-only controller implementation.

corresponding closed-loop performance is shown in Figure 6-11. Using the feedback and feed-

forward controller at the same time, more than 20 dB of attenuation is achieved over most of

the range of interest (200-2000 Hz). This attenuation is approximately equal to the product of

the attenuations of the feedback and feedforward controllers. In the following sections, it will

be seen that the promising results of simulating controllers on the model will be applied to the

experimental implementation.

6.3 Analog Controller

The first controller implemented is an analog-only controller; both feedback and feedforward

controllers, including the low-frequency feedthrough compensator, are implemented using the

analog circuits. It is true that it is unfeasible to implement all the controllers needed with

analog electronics. The motivation for the analog-only approach is to evaluate the proposed

feedback and feedforward control approaches on the real system. Also, the analog controller

establishes a benchmark against which the other controllers can be compared.

Figure 6-12 shows the block diagram of the analog-only control approach. It has the cylin-

drical shell with one active composite panel mounted on its surface, which is used as the testbed.

The Siglab analyzer connected to the personal computer makes up the data acquisition sys-

tem; the open-loop and closed-loop frequency response functions are measured using Siglab

analyzer. It is also used to generate the broadband disturbance to the testbed. The signals
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Figure 6-13: Frequency response function of plant transfer functions.

from the accelerometers mounted on the top and bottom surface of the active composite panel
are processed at the pre-amplifier, which is a pure gain amplifier. The control input is further
amplified at the power amplifier, which has a low-pass filter at 188 Hz. The characteristics of
both pre-amplifier and power amplifier are explained in Chapter 2. The broadband disturbance
is applied to the testbed using a shaker mounted inside the shell.

Figure 6-12 also shows the signals from the top and bottom accelerometers mounted on the
panel that are processed at the pre-amplifier (yt and Yb, respectively), output from the feedback
and feedforward controllers (ub and uf, respectively), disturbance w, and control input u. The
plant transfer functions from u to (Yt, Yb) are shown in Figure 6-13.

As mentioned in Chapter 3, there are two undesirable features in the plant transfer functions,
which are related with the dynamics of the active composite panel. The first source of concern
is the low-frequency feedthrough below 500 Hz, due to direct electrical or electromechanical
problem in the panel. The second problem is the resonant peak with large phase delay at

12 kHz, due to participation of the embedded accelerometers in the modal behavior of the
panel. It was proposed in Chapter 3 that the low-frequency feedthrough can be efficiently
cancelled by adding a low-pass filter to the plant transfer function. In this chapter, the way to

compensate for the high-frequency panel dynamics problem will be explored.

In Chapter 3, the transfer function Gt from u to yt was approximated below the resonant
frequency of the panel as a double differentiation with low-frequency feedthrough times a low-
pass filter at 188 Hz. If the resonant peak of the panel dynamics at 12 kHz is also considered,
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G,,t can be approximated as

S 2 - c 2 2

(s + 27r x 188) S2 + 2(pwps + wo (6.5)

where k is a constant gain, c2 is the low-frequency feedthrough, wp is the resonant frequency at
12 kHz, and (P is the corresponding damping ratio. Figure 6-14 shows the frequency response
function of the measured GYtU (s), and its approximation defined in Equation 6.5, when wp is
27r x 12,000 (rad/sec), and (P is 0.1. It can be seen that the approximate Gyu (s) is a good
match to the measured GYtU (s), at least up to about 10 kHz. The difference in phase between
the approximate and the measured Gytu (s) around 10 kHz will not cause any problem, because
the resonant pole around that frequency in the measured GYtU (s) will be canceled out by notch
filter, and therefore, will not affect the control system. Now, the proposed feedback controller
Kb (s) is given by

s 1 s 2 + 2(pops + w 2Kb (s) s=1 g±2ow *w (6.6)s + 27r x 14 (s+27r x 600) (s + 27r x 1000) W6
p

Kb (s) KNotch (s)

where

Kb (S) = b g1 (6.7)sK+b27r x 14 (s + 27r x 600) (s + 27r x 1000) '
s2 +2pwPs+w 2

KNotch (s) =U2 *
P

It should be noted that Kb (s) is feedback controller for Gyt, with the low-frequency feedthrough
compensator C(s) added, i.e., [GYtU (s) + C(s)], not for Gytu itself. As can be seen from
Equation 6.6, Kb (s) has a high-pass filter at 14 Hz to avoid DC saturation, and two low-pass
filters at 600 and 1000 Hz to make a good loop shape, with a gain gb. It also has a notch
filter KNotch (s) at the frequency wp. KNotch (S) cannot be implemented alone because it is
not proper. However, it can be implemented with Kb (s), since Kb (s) = Kb (s) KNotch (s) is
proper. If the values of wp and (p determined in Equation 6.5 are used in the notch filter,
KNotch (s) cancels the resonant peak due to panel dynamics at 12 kHz, so that the loop trans-
fer function Kb (s) [GytU (s) + C (s)] doesn't have the resonant peak at 12 kHz. Figure 6-15
shows the frequency response of the feedback controller Kb (s) and the loop transfer function
Kb (s) [Gytu (s) + C (s)]. We can see that the resonant peak at 12 kHz is effectively cancelled
by the notch filter in the loop transfer function.

The feedforward controller Kf (s) has a high-pass filter at 11 Hz to eliminate DC saturation
at the analog circuit, and two low-pass filters at 150 Hz and 6000 Hz with a gain gf , given by

s 1
Kf (s) = g .1 (6.8)

s + 27r x 11 (s + 27r x 150) (s + 27r x 6000)

Kf (s) is selected so that it is stabilizing, and it is as close as possible to the frequency response
that cancels the performance output exactly shown in Equation 3.8. Also, it is better for
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Figure 6-14: Frequency response of measured Gytu(s) and its approximation.

Kf (s) to be a low-pass filter, rather than a pure integrator, because there is not enough control
authority to cancel the low-frequency motion of the shell. Figure 6-16 shows the frequency
response of the feedforward controller Kf (s) and the loop transfer function Kf (s) Gyu (s).

After designing Kb (s) and Kf (s) based on the modified plant transfer functions by adding
the low-frequency feedthrough compensator C(s), the equivalent controllers K (s) and K' (s)
are given by

Kf(s)
K1s(s) K b(s) (6.9)K -s- C (s) Kb (s)

Kb' (S)Kb (S)
1 - C (s) Kb (s)

Here, K' (s) can be simplified by replacing Kb (s) with Kb (s), so that

K ) -Cs K, (6.10)f 1 - C (s) Kb (S)

because Kb (s) Kb (s) below the resonant frequency at 12 kHz, and the effect of C(s) is
important only at low frequency range. This has a significant advantage in the implementation
of the feedforward controller, because the notch filter is the most difficult component to build
in the analog electronics. Also, the number of states needed to implement the feedforward
controller is reduced by 2 for each panel, if it is implemented digitally.
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Figure 6-17: Block diagram for the analog feedback and feedforward controller.

The block diagram for the analog feedback and feedforward controller is shown in Figure 6-
17. The resulting closed-loop performance using this controller is shown in Figure 6-18, with
and without the feedforward control. The disturbance spectrum is broadband up to 5 kHz.
With only feedback control, more than 10 dB of attenuation is achieved over most of the
range of interest, 200-2000 Hz. The few spots where the attenuation is less than 10 dB occur at
frequencies where there is a zero in the disturbance to performance transfer function, so that the
performance there is less critical. With feedforward control added, more than 15 dB reduction
is achieved between 250 Hz and 1800 Hz. In the narrower frequency range 500-1000 Hz (where
the performance is most important), more than 20 dB of reduction is obtained, with attenuation
as high as 30 dB for the peaks of the performance transfer function.

The analog circuits for both feedback and feedforward controller are shown in Appendix C.

6.4 Analog Controller with Digital Notch Filter

6.4.1 The Concept of a Digital Notch Filter

The implementation of the analog notch filter is critical to the closed-loop performance of the
system; without the notch, the loop gain or controller bandwidth must be reduced considerably
to guarantee stability, and the resulting performance is unacceptable. Of course, to succeed, the
notch must be carefully tuned to the resonance of the panel. However, as shown in Chapter 2,
each panel has different resonant frequency. It is impractical to design and implement different
analog notch filters with different target frequencies for all the panels. Therefore, it is desirable
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to implement the notch filter digitally, so that the tuning is more easily accomplished in software.

However, the digital notch filter cannot be implemented directly, because the frequency to be

notched out is relatively high (12 kHz), compared with the maximum achievable sampling

frequency (40 kHz) of the DSP system used in this study (DS2003, DS2103, DS1003, dSPACE
Inc., Northville, MI). The resulting phase delay would be unacceptable.

The basic idea of implementing digital notch filter is described as follows. It is observed

that the notch filter to be designed Hi (s) is decomposed as

Hi (s) = 1 - H 2 (s) , (6.11)

where H 2 (s) is a narrow bandpass filter, with peak resonance H 2 (wp) = 1 at the desired notch

frequency wp. The filter H 2 (s) is implemented digitally; however, the feedthrough term (the

"1" in Equation 6.11) is implemented as an analog circuit. Because the magnitude and phase

of H 2 (s) are important only in a narrow frequency range around wp, the effect of delay in the

digital controller is less important. More precisely, the implementation of H 2 (s) is designed so

that the phase delay at wp is taken into account. The transfer function implemented in H 2 (s)

is [Song, 2000]

H2ss)=d -.D(s) , (6.12)
s2 + 2(wps + wP

where D (s) represents the DSP system dynamics (mostly time delay), ( is the damping ratio of

the resonant bandpass, and c and d are chosen so that the best match with the desired analog

notch filter is achieved.

An example of designing a digital notch filter is given to illuminate its concept. Assume we

want to implement a notch filter Hi (s), given as

s2 + 2( 1wps + w2
Hi (s) = (6.13)

s2 + 2(2wps + P

where wp is the frequency to be notched out, and (1 and ( 2 are damping ratios of the notch filter.

The frequency response of Hi (s) is shown in Figure 6-19(a), when Wp = 27r x 10,000 (rad/s), (I

= 0.03, and ( 2 = 0.3, respectively. Now, as shown in Equation 6.11, H1 (s) can be decomposed

as

H1 (s) = (6.14)
s2 + 2(2wps +

as + b

s2 + 2(2wps + W
= I H2 (s),

where

as + b
H2(s) = + W (6.15)

a = 2(2WP - 2( 1wp
b = 0.
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Figure 6-19 shows the relation between Hi (s) and H 2 (s). As mentioned above, the narrow
bandpass filter H 2 (s) is implemented digitally, while the feedthrough term "1" is implemented
in analog. It is not feasible to implement directly H1 (s) digitally for a high notch frequency
Wp, due to the phase delay in the digital control system. However, it is feasible to implement
H 2 (s) digitally, because the effect of H 2 (s) is negligible, compared with the feedthrough term
"1",, except around the notch frequency wp; H 2 (s) is important only around wp. Therefore,
if the width of the frequency range to be notched out (Aw, in Figure 6-19) is reasonably
small compared to the sampling frequency, regardless of wp itself, H 2 (s) can be efficiently
implemented digitally so that the resulting H1 (s) is similar to what it is supposed to be. The
digital implementation of H 2 (s) (defined as H 2 (s) above) is given by

H2 (s)=CS + d( + s) = -D(s) (6.16)H2 (S) s2 + 2(2Wps + WoP

Generally, the dynamics of the DSP system D(s) can be replaced with the time delay transfer
function e-Ts with effective time delay T. Let T, and T be the sampling time and the latency
(time required to perform the digital calculation) of the DSP system, respectively. Then,
assuming the zero-order-hold method is used during the sampling process, the effective time
delay T in D (s) is given by

T = -± + T. (6.17)
2

Very frequently, the latency T can be as large as the sampling time T, depending on the
required digital calculation. In that case, the effective time delay is

T = 1.5 T, . (6.18)

Therefore, given the sampling time T, H2 (s) can be written as

cs + d 3T.
H2 (S) =S + 2 *e 2 (6.19)s2 + 2(2Wps +

The real constants c and d are selected so that they satisfy the following relation

H2 (jw) = H 2 (jw) at w = wp . (6.20)

The resulting digital implementation of the notch filter H1 (s), which is denoted as H1 (s), is
given by

H1 (s) = 1 - H2 (s) . (6.21)

Note that only s2 +2I 2 s+w, should be actually implemented for 12 (s). The time delay

component e- 2' is necessary only to compute the parameters c and d using Equation 6.20.
Figures 6-20 through 6-23 show the frequency response of H 2 (s), H 2 (s), Hi (s), and Hi (s)

with various sampling times. It can be seen that even the sampling frequency of 12.5 kHz

(sampling time of 80 ps) produces a reasonably good notch filter at 10 kHz, although the width
of the frequency range to be notched out is reduced, and a difference in the gain at low-frequency
is observed. These discrepancies can be improved by tuning the damping ratio and the notch
frequency, as shown in the next section.
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Figure 6-19: Frequency response of (a) H1(s), and (b) H 2 (s). Note HI(s) = 1 - H2(s).
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Figure 6-20: Frequency response of (a) H 2 (s) and H 2 (s), and (b) Hi(s) and Hi(s), when the

sampling time T, = 10 ps. (The sampling frequency is 100 kHz.)
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Figure 6-22: Frequency response of (a) H 2 (s) and H 2 (s), and (b) Hi(s) and H 1 (s), when the
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sampling time T, = 80 ps. (The sampling frequency is 12.5 kHz.)
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6.4.2 Design of the Digital Notch Filter

In this section, the design process for the digital notch filter is presented. The feedback controller
Kb(s) to be implemented is shown in Equation 6.22, given by

S
Kb (s) = gb- s 27r x 14

- 2 + +1

(s + 27r x 600) (s + 27r x 1000)

We can decompose Kb (s) as

s + 1)2

s + 27r x 14 (s + 27 x 600) (s + 27r x 1000)

(s\2 + 2(ps +1
-WP 

(6.23)

(P

- + 12

s + 27r x 14 (s + 27 x 600) (s + 27r x 1000)

S)2 2Cos +1

= 1+- 1)2

+1I

Here, w' is a design variable for digital notch filter. The natural choice for W' would be
W' = WP, so that K 2 (s) has zero magnitude at DC and infinitely high frequency. However,
this may cause a difference in the gain at low-frequency, as shown in Section 6.4.1. Now, the
digital implementation of K 2 (s), denoted as K 2 (s), can be written as

2S cs + d 2 3
+1 e

(6.25)

As in Section 6.4.1, the real constants c and d are selected such that they satisfy

K2 (jWp) = K 2 (jWp) . (6.26)

Also, the resulting digital implementation of the feedback controller Kb (s), which is denoted
as Kb (s), is given by

Kb (s) = Ki (s) 1 - $2(s)]

The block diagram of Kb (s) is shown in Figure 6-24.

(6.27)
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Kb (S)

(6.22)

= Ki (s) [1 - K 2 (s)] ,

where

K 1 (s)

K 2 (s)

(6.24)



'K,(s) : Analog feedback with digital notch filter

Figure 6-24: Block diagram of the analog feedback controller with a digital notch filter.

The design process for the digital notch filter can be summarized as follows:

1. Assume w (o = w, may be a good initial guess).

2. Determine c and d such that Equation 6.26 is satisfied.

3. Implement R 2 (s) digitally without expected time delay component e- 2 ". Here, the
Tustin method [Franklin, 1998] may be used to transform the controller designed in the
continuous domain into the digital controller.

4. Measure the frequency response of Rb (s) and compare it with that of Kb (s).

Generally, the resulting Rb (s) is a good match to Kb (s) around the notch frequency wp.
However, there may be a discrepancy of the gain at low frequency. This can be reduced by
changing the total gain of Kb (s). If that is not acceptable, W should be adjusted until the
acceptable digital notch filter is acquired. Therefore, the design process becomes iterative in

that case.
Figure 6-25 shows the frequency response of feedback controller using analog and digital

notch filter (Kb (s), and Kb (s), respectively), with a sampling frequency of 40 kHz. It can be
seen that Kb (s) has a notch filter at 12 kHz, as expected, although it has higher gain than Kb (s)
at low frequency. If this is not acceptable, w should be adjusted (sometimes, the damping ratio
(P and the real constants c and d selected using the condition in Equation 6.26 may need to

be adjusted, too) until the resulting Kb (s) is similar enough to Kb (s). Figure 6-26 shows the

frequency response of a new Kb (s) with w = 27r x15,000 (rad/sec), after a few iterations, with

a sampling frequency of 40 kHz. We can see that Rb (s) is exactly the same as Kb (s) below
5 kHz, and it also has a notch filter at 12 kHz that is very similar to Kb (s). The resulting loop
transfer function is shown in Figure 6-27 (frequency response), and 6-28 (Nyquist plot).

Next, our approach for incorporating the low-frequency feedthrough compensator C(s) in
the controller is described. Figure 6-29 shows block diagrams of two possible ways to combine
C(s) in the feedback controller. The configuration in (a) is what should be implemented to
generate the equivalent feedback controller. However, the configuration in (b) may be preferred
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Figure 6-25: Frequency response of the feedback controller with analog and digital notch filters

using initial guess of w' = w = 27r x 12,000 (rad/sec).

because it is easier to implement than (a). In order for both of them to generate the same

control output Ub, C'(s) should be selected so that

C'(s) = C(s) 1 - K2(8)] (6.28)

is satisfied. However, since the effect of $2(s) is important only around the notch frequency

Wp, where C(s) is negligible, C'(s) can be replaced with C(s) without causing any problem.

Figure 6-30 shows the block diagram of the analog controller with digital notch filter. The

basic set-up is the same as shown in Figure 6-12. It has the cylindrical shell with one active

composite panel mounted on its surface, the pre-amplifier and power amplifier to process the

signal of the panel. There is a shaker mounted inside the shell, which applies the broadband

disturbance to the testbed. The Siglab analyzer is used to measure the open-loop and closed-

loop frequency response functions, and to generate the broadband disturbance up to 5 kHz.

The digital notch filter algorithm is implemented in a dSpace digital controller with a sampling

frequency of 40 kHz.

The block diagram of the equivalent feedback and feedforward controller Kl (s) and K (s)

is shown in Figure 6-31. For K (s), the same feedforward controller Kf (s) is used as the one

designed in Section 6.3., with the feedback controller K 1 (s) defined in Equation 6.24. Also,
instead of Ki(s), the feedback controller Kb (s) defined in Equation 6.7 can be used in the
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Figure 6-26: Frequency response of the feedback controller with analog and digital notch filters.
W = 27rxl5,000 (rad/sec).

feedforward block diagram, because their difference is negligible in the control bandwidth. For
K (s), the configuration of (b) in Figure 6-29 is used. The resulting closed-loop performance
using this controller is shown in Figure 6-32, with and without the feedforward control. The
disturbance spectrum is broadband up to 5 kHz. The result is almost indistinguishable from
that obtained using the analog controller. However, this controller configuration enables us to
change the frequency to be notched out easily, so that it is now feasible to implement notch
filters with different target frequencies for each panel.

The circuits for analog components used in this controller configuration are shown in Ap-
pendix D.

6.5 Hybrid Analog/Digital Feedback and Analog Feedforward
Controller

In this section, a hybrid analog/digital feedback and analog feedforward controller is imple-
mented. In the hybrid analog/digital feedback configuration, part of the feedback control law is
implemented digitally. Figure 6-33 shows the block diagram of the hybrid feedback and analog
feedforward controller. The main new features of this configuration are the complementary
high-pass and low-pass filters, which control the bands in which the analog and digital control
laws act. The low-pass filter consists of a second order Butterworth low-pass filter with a corner
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Digital implementation.

Analog implementation
(a) (b)

Figure 6-29: Two possible ways to incorporate the low-frequency feedthrough compensator C(s)

in the feedback controller.

frequency of 1 kHz [Ghausi, 1981]. On the other hand, the high-pass filter is implemented such
that it is complementary to the low-pass filter, so that its sum with the low-pass filter becomes

unity. Of necessity, the complementary filters are implemented in analog. Figures 6-34 and

6-35 show the frequency response of the complementary filters. The analog circuits for these

filters are shown in Appendix E.

The block diagram of the hybrid feedback controller without the low-frequency feedthrough

compensator C(s) is shown in Figure 6-36. The digital control law K D (s) implements the

low-pass filters at 600 Hz and 1000 Hz, and the high-pass filter at 14 Hz, which were previously

implemented in analog. However, the notch filter was not implemented digitally, since its main

effect is well above 1 kHz. The analog controller KA (s) was the same as implemented in the

analog controller in Section 6.3, including the notch filter. More specifically, they are given by

s 1

b(S) = 9b s + 27r x 14 (s + 27r x 600) (s + 27r x 1000) (6.29)

() + 2 s

Kb (s) = gb-
(s + 27r x 600) (s + 27r x 1000)

The analog controller K A (s) doesn't have the high-pass filter at 14 Hz, because its input is

already processed by the complementary high-pass filter. The second-order Butterworth low-

pass filter L(s) and its complementary high-pass filter H(s) can be written as (for Butterworth

filter at 1 kHz, ( = 0.707, w = 27r x1000 (rad/sec))

W2
L(s) = 2 (6.30)

s2 + 2(iwis + of

H(s) = 1 - L(s)

s2 + 2(lwls

s2 + 2(iwis + wo

Using K D (s), K A (s), L(s), and H(s) in Figure 6-36, the hybrid feedback controller K/H (s) is
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Figure 6-30: Block diagram of the analog controller with the digital notch filter.

KXs)

Figure 6-31: Block diagram for the analog controller with the digital notch filter.
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Figure 6-33: Block diagram of the hybrid feedback and analog feedforward controller.

194



0-

'0-20 -

-40 -

-60
101

-180 '1
101

03 10

102 10 10
Frequency (Hz)

Figure 6-34: Frequency response of a second order Butterworth low-pass filter at 1 kHz.

102 10 10

10 2 310 
Frequency (Hz)

10

Figure 6-35: Frequency response of the complementary high-pass filter.

195

(D

U)
Ca

-90

O
-0 -

C

M-40

-60 T
101

135

'6 90

0

-45
10

I i I i I i i i i i I - |

10 2

I



: Analog implementation

Digital implementation

Figure 6-36: Block diagram of the hybrid feedback controller without the low-frequency
feedthrough compensator.

given by
Kg (s) = Kg (s) L(s) + Kb (s) H(s). (6.31)

Figure 6-37 compares the hybrid feedback controller Kg (s) with its counterpart analog feed-
back controller Kb(s). The digital controller Kg (s) is implemented with a sampling frequency
of 40 kHz. They are very similar, although a small discrepancy is observed around 1 kHz, where
the complementary filters act. The effect of the time delay in the digital component on the
controller transfer function is negligible, especially at high frequency, due to the complementary
low-pass filter.

After designing Kg (s) and Kf (s) based on the plant transfer function that has been mod-
ified by adding C(s) (the same feedforward controller Kf(s) is used as the one in Section 6.3),
the feedback and feedforward controller that incorporate C(s) can be obtained using the block
diagram in Figure 6-38. The relation between u, yt, and yA can be written using the first block
diagram (a) in Figure 6-38 as

u = Kf(s)yb + [Kg (s) L(s) + Kj (s) H(s)] [yt + C(s)u] . (6.32)

Therefore, u can be written in terms of yt and yb as

U = Kf(s) Y (6.33)
1 - C(s) [Kg (s) L(s) + Kb (s) H(s)]

Kg (s) L(s) + K (s) H(s) Y
1 - C(s) [Kg (s) L(s) + Kb (s) H(s)]

Since u = K' (s) yA + [KbD (s) L(s) + KbA (s) H(s)] yt from the second block diagram (b) in
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Figure 6-38, the controllers incorporating C(s) can be written as

K (s)

KLA (s)

(6.34)
Kf (s)

1 - C(s) [Kg (s) L(s) + KA (s) H(s)]

K (s)
1 - C(s) [Kg (s) L(s) + Kb (s) H(s)]

Kb (s)
1 - C(s) [Kg (s) L(s) + Kb (s) H(s)]

However, using the fact that KA (s) ~ [Kg (s) L(s) + KbA (s) H(s)], C(s) is important only
at low frequency, Kj' (s) H(s) is negligible at low frequency, and L(s) is unity at low frequency,
the controllers in Equation 6.34 can be simplified further as

(6.35)K' (s) = Kf (s)
1 - C(s)Kg (s) '

Kf (s)
KfD(S) = 1 - C(s)Kg (s) '

KbA (s) = Kb (s)

1 - C(s)KD (s)
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(a)

(b)

Figure 6-38: Equivalent block diagram of the closed-loop system using the hybrid feedback
and analog feedforward controller. (a) C(s) is considered as a part of the plant. (b) C(s) is
incorporated into the controllers.
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K'(s)

Figure 6-39: Block diagram of the hybrid feedback and analog feedforward controller.

199



The resulting controller configuration is shown in Figure 6-39. This approximation significantly
reduces the analog components and the size of the digital computation. The closed-loop perfor-
mance using this controller is shown in Figure 6-40, with and without the feedforward control.
The disturbance spectrum is broadband up to 5 kHz. The digital feedback controller is imple-
mented in a dSpace digital controller with a sampling frequency of 40 kHz. It was necessary
to reduce the feedback control gain slightly (by 1.4 dB), in order to maintain a stable feedback
loop. The result is very similar to that obtained using the analog controller. The performance
is slightly worse, reflecting the slightly lower feedback gain, as well as a slightly lower signal-to-
noise ratio, due to digital quantization. In any event, we are still achieving better than 10 dB
of attenuation over the band 200-2000 Hz.

The circuits for analog components used in this controller configuration are shown in Ap-
pendix E.

6.6 Hybrid Analog/Digital Feedback and Digital Notch Filter

In this section, the concept of the hybrid analog/digital feedback control and the digital notch
filter approach are combined. Figure 6-41 shows the block diagram of this controller configu-
ration. As in the hybrid feedback and analog feedforward control approach in Section 6.5, the
complementary filters are used to control the bands in which the analog and digital control laws
act. The new feature of this configuration is that the analog feedback controller is decomposed
again as the analog and digital component, so that the frequency to be notched out can be
adjusted in software, as in Section 6.4. The design processes of the digital feedback control law
and the digital notch filter are the same as in Section 6.5, and 6.4, respectively. The resulting
controller configuration is shown in Figure 6-42. The same L(s), H(s), Kb (s), K 1 (s), K2(s),
K'D (s), and K'A (s) are implemented as in Section 6.5, and 6.4. The closed-loop performance
using this controller is shown in Figure 6-43. The disturbance spectrum is broadband up to
5 kHz. The digital feedback controller and the digital notch filter are implemented in a dSpace
digital controller with a sampling frequency of 33 kHz. It was necessary to reduce the sampling
frequency due to the increased amount of calculation in the DSP system. Using the feedback
controller, we achieve 10 dB of attenuation below 1 kHz, and 5 dB of attenuation up to 3 kHz
in this configuration.

6.7 Hybrid Analog/Digital Feedback and Digital Feedforward
Controller

A hybrid analog/digital feedback and digital feedforward controller is implemented in this
section. The hybrid feedback controller implemented here is the same as the one shown in
Section 6.5. In this configuration, the feedforward controller is implemented digitally. Fig-
ure 6-44 shows the block diagram of the hybrid analog/digital feedback and digital feedforward
controller. The new feature of this configuration is that the feedforward controller, which has
been implemented in analog until now, is decomposed into analog and digital parts in series.
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Figure 6-41: Block diagram of the hybrid feedback control and digital notch filter approach.

dSpace controller

Figure 6-42: Block diagram of the hybrid feedback controller and the digital notch filter.
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Figure 6-44: Block diagram of the hybrid feedback and digital feedforward control approach.
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The analog feedforward controller Kf (s) implemented in Section 6.3 is given by

s 1 1
Kf (s) = gf (6.36)

s + 27r x 11 (s + 2r x 150) (s + 27r x 4000)
= Kf, 1 (s) Kf,2 (s)

where

s 1
Kf i (s) = gf i1 (6.37)

'(s ' + 2r x 11 (s + 27 x 150)
1

Kf,2 (S) = 9f,2 (s + 2r x 4000)

Here, the feedforward gain g1 is decomposed into g1 ,1 and gf,2, which are the constant gains of

Kf,1 (s), and Kf,2 (s) (9f,19f,2 = gf )- 9f,1 and 9f,2 are chosen such that the quantization effect
is minimized, and the signal is not saturated at each block. The resulting equivalent analog

feedforward controller K' (s), which combines the low-frequency feedthrough compensator C(s),
is given by

Kf (s)
f (8 ) =1 - C(s)KD (s) (6.38)

The block diagram of the analog feedforward controller configuration is shown in Figure 6-45.

Now, the feedforward controller Kf (s) is decomposed as

K 1 (s) K, 2 (s)
K1 (s) = (6.39)

1 - C(s)KD (s)

Kf,2 (s)
1 - C(s)K? (s) '

= KjD (s) Kf,1 (s)

where

K D Kf,2 (s)
1 - C(s)Kg (s)

The idea of digital feedforward approach is that KD (s) is implemented digitally, while Kf,1 (s)

is implemented in analog (Figure 6-46). By doing so, the analog component Kf,1 (s), which

has a high-pass filter at 11 Hz and a low-pass filter at 150 Hz, can be combined within the

pre-amplifier, and the design variable for the feedforward controller, such as a corner frequency

in Kf, 2 (s), can be adjusted in software. Furthermore, C(s) and Kg (s), which should be

implemented in analog for analog feedforward control approach, can be implemented digitally.

This reduces considerably the amount of work needed to implement the feedforward controller.

The configuration for the hybrid feedback control and digital feedforward control approach is

shown in Figure 6-47. In order to implement this controller, we need two input channels and one

output channel of the DSP board for each panel. The resulting closed-loop performance using

this controller configuration is shown in Figure 6-48. The disturbance spectrum is broadband

up to 5 kHz. The digital feedback and feedforward controller are implemented in a dSpace
digital controller with a sampling frequency of 30 kHz. The sampling frequency is reduced,
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K'(s)

Figure 6-45: Block diagram of the analog feedforward controller.

compared with the case of hybrid feedback and analog feedforward control (40 kHz), due to

the increased amount of calculation in the DSP system. The closed-loop performance obtained

using this controller is very similar to that obtained using the analog feedback/feedforward

controller. The performance is slightly worse, however, likely due to slightly lower signal-to-

noise ratio caused by quantization. Nevertheless, we are still achieving better than 10 dB of

attenuation over the band 200-2000 Hz.

6.8 Digital Feedback and Digital Feedforward Controller

In this section, the feedback controller is also implemented digitally. Figure 6-49 shows the block

diagram of digital feedback and digital feedforward controller. For the feedforward controller,
the same analog electronics (a high-pass filter at 11 Hz and a low-pass filter at 150 Hz) are

used as the ones shown in Section 6.7. For the feedback control, however, the complementary

filters implemented in Section 6.7 are not needed in this configuration, because the analog

feedback control is not used. A low-pass filter for the digital feedback controller is a second-

order Butterworth low-pass filter with corner frequency at 2 kHz, instead of 1 kHz used for the

hybrid feedback configuration. The block diagram of the digital feedback controller without

the low-frequency feedthrough compensator C(s) is shown in Figure 6-50. The digital control

law KD (s) implements the low-pass filter at 500 Hz, and the high-pass filter at 20 Hz, given as

Kb (s) = g + ±2r x 20 s + 2 x (6.41)

It is different from the digital feedback controller implemented in Section 6.7, which has the

low-pass filters at 600 Hz and 1000 Hz, and the high-pass filter at 14 Hz. Also, a notch filter to

cancel the undesirable dynamics of the panel around 12 kHz is not needed in this configuration,
because the second-order Butterworth low-pass filter at 2 kHz, which is denoted as L(s) in

Figure 6-50, given as
L2

L (s) = ~2+2 1w ± w? (6.42)
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Digital implementation

K(s)

Figure 6-46: Block diagram of the digital feedforward controller.

Digital implementation
K'(s)

Figure 6-47: Block diagram of the hybrid feedback and digital feedforward control approach.
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Figure 6-48: Closed-loop performance obtained with the hybrid feedback and digital feedforward

controller. "Ratio" represents the ratio of the open-loop response to the closed-loop response.

Negative ratios indicate attenuation; positive ratios indicate amplification.

208



Figure 6-49: Block diagram of the digital feedback and feedforward control approach.
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KUs) + - - L (s) 1

Digital feedback Low-pass filter

Figure 6-50: Block diagram of the digital feedback controller without the low-frequency
feedthrough compensator..

gives enough roll-off at high frequency. However, since the complementary analog feedback con-
troller is not used simultaneously, the phase delay caused by digital component is not recovered
in this configuration. Therefore, the feedback controller gain had to be reduced by 50% to avoid
instability, compared with the hybrid feedback controller gain.

Figure 6-51 compares the digital feedback controller KD (s) L(s) with its counterpart analog
feedback controller Kb(s). The digital feedback controller is implemented with a sampling
frequency of 33 kHz. It has a similar shape to the analog feedback up to 1 kHz; they have almost
the same phase, with different gains due to the reduced gain in the digital feedback control, in
this frequency range. However, above 1 kHz, the phase delay in the digital feedback control
is significant, compared with the analog feedback control, because the complementary analog
feedback controller is not used simultaneously. The phase delay caused by digital component
is not recovered in this configuration. The time delay in the digital component critically limits
the achievable closed-loop performance using the digital feedback control. The resulting loop
transfer function is shown in Figure 6-52 (frequency response), and 6-53 (Nyquist plot).

After designing KD (s) and Kf (s) based on the plant transfer function modified by adding
C(s) (the same feedforward controller Kf(s) is used as the one in Section 6.3), the feedback
and feedforward controller that incorporate C(s), which are denoted as KbD (s) and K (s),
respectively, can be obtained using the same way in Section 6.5 from the block diagram in
Figure 6-54, given as

Kf ()
1 1(8) 1 - C(s)Kg (s) L(s) (6.43)

K= K (s)1 - C(s)KD (s) L(s)

Since C(s) is important only at low frequency, and L(s) is unity at low frequency, the controllers
in Equation 6.43 can be simplified further as

I Kf (s)
Kf (8) = 1 - C(s)K (s) (6.44)

IDKO (s)
KL (S) =b()D(S1 - C(s)Kg (s)

Now, using the same approach as in Section 6.7, the feedforward controller K(s) can be

210



40

20-
)

C0

-20 4
10 102 103  10

90

0

E -90 -

Z-180 -

S-270
Analog feedback

.- 360 Digital feedback
-450 -

-540
10 102 10 3  10

Frequency (Hz)

Figure 6-51: Frequency response of the analog feedback and digital feedback controller.

decomposed as

Kf,1 (s) Kf,2 (s)Kf (8) 1 - C(s)KD(s)

Kf,2 (s)
1 -- C(s)K' (s) '

= Kf D(s) Kf, (s)

where

KiD _ Kf,2 (S)
1 - C(s)K (s) (6.46)

As in Section 6.7, KD (s) is implemented digitally, while Kf,1 (s) is implemented in analog.
Figure 6-55 shows the resulting block diagram of the digital feedback and digital feedforward
control approach. The closed-loop performance obtained with this controller is shown in Fig-
ure 6-56, with and without the feedforward control. The disturbance spectrum is broadband up
to 5 kHz. The digital feedback and feedforward controller are implemented in a dSpace digital
controller with a sampling frequency of 33 kHz. As expected, the performance is much worse
than that obtained using the analog feedback or the hybrid feedback controller, reflecting the
much lower feedback gain. Furthermore, the effect of disturbance is amplified above 2 kHz,
likely due to unrecoverable phase delay caused by the sampling effect. It is found that if we
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want better performance (attenuation) below 2 kHz, we have to accept worse performance (am-

plification) above 2 kHz. The digital feedforward controller provided additional improvement

of performance, especially between 500 and 1300 Hz. However, the effect of disturbance is still

amplified above 2 kHz.

As mentioned above, it is true that the performance of digital feedback and digital feedfor-

ward controller is much worse than other configurations given in the previous sections. However,
if the disturbance doesn't have much energy above 2 kHz, this configuration may be a good solu-

tion, since controller variables can be adjusted in software, and more than 10 dB of attenuation
is achieved between 200 and 2000 Hz anyway.

6.9 Digital Tonal Feedback Controller

6.9.1 The Concept of Tonal Feedback Controller

The digital tonal feedback control approach is introduced in this section. It can be very effi-

ciently used to reduce several discrete harmonics in the disturbance spectrum. The important
advantage of this approach is that it can be used for the reduction of harmonics at high fre-

quencies, provided that the width of the frequency range to be controlled is small enough. It is

the width of the frequency range, not the frequency itself, that limits the achievable closed-loop

performance using this control approach. Therefore, the tonal feedback controller can be easily

implemented digitally, no matter how high the target frequency may be, if the width of the
frequency range to be reduced is relatively small compared to the sampling frequency.

Figure 6-57 shows the disturbance spectrum used in this section. Most of the disturbance

energy is concentrated below 1 kHz. It also has three discrete harmonics at 300, 600, and

900 Hz. The objective of the digital tonal feedback control implemented in this section is to

reduce these three harmonics.

Figure 6-58 shows a block diagram for the tonal feedback controller. Assuming we can

measure the performance variable to be reduced directly, the loop transfer function using the

feedback controller KT(s), which is given by Gyu(s)KT(s), gives information about the achiev-

able closed-loop performance. Define the tonal feedback controller KT(s) as

2 as +&.bw
KT(s) - Tb 2 ,s + W (6.47)

Tb s2 + W2

where wT is the target frequency, i.e., the frequency of discrete harmonics in the disturbance

to be reduced. The parameters in the controller are determined such that the control system

has enough stability margins and controller bandwidth of Wb at the target frequency s = jWT.
The controller parameters are given as [Hall, 1989]

a = Re 1 (6.48)

b = -Im
GYU (jor)

1
Tb ~ -

Wb
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(a)

(b)

Figure 6-54: Equivalent block diagram of the closed-loop system using the digital feedback

and digital feedforward controller. (a) C(s) is considered as a part of the plant. (b) C(s) is
incorporated into the controllers.

214

- Kfs) +



- a K(s) 11H

High-pass filter at 11 Hz
Low-pass filter at 150 Hz

Digital implementation Analog implementation

Figure 6-55: Block diagram of the digital feedback and digital feedforward control approach.

The amplification or attenuation of the disturbance by the closed-loop system is determined by
the sensitivity transfer function S(s), given as

z 1
S(s) = d = (6.49)d 1 + GYU (s)KTr(s)

If the tonal feedback controller KT(s) in Equation 6.48 is used, S(s) has a zero magnitude at
the frequency s = jwT, and therefore the controller should completely eliminate vibration at
that frequency. Figure 6-59 shows one example of the typical loop transfer function obtained
with the tonal feedback controller. It can be seen that the loop transfer function has a high
gain at the target frequency of 300 Hz, and enough phase margins (~ 90').

If the tonal feedback controller is implemented digitally, the effect of time delay in the digital
control systems should be considered when determining a and b. This can be done by including
the time delay e-Td, where Td is the time delay in the digital control systems, in the plant and
computing a and b by replacing GYU(s) with Gyu(s)e-"Td in Equation 6.48.

We can also implement several tonal feedback controllers simultaneously, given as

KT (s) = (T 2 ans + bnwT, (6.50)KT(S) -=
2 vTbn, 82 + 2(.0
n=1 + WT,n

where WT,n is the nth target frequency, NT is the number of controllers to be designed, and
an, bn and Tb,n are design variables for nth tonal feedback controller. Theoretically, controllers
should be designed by closing the loop sequentially to ensure that each control loop satisfies the
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design requirements. However, we may design each controller independently and close all the
loops simultaneously, if the difference between the adjacent target frequencies IWT,n±1 - WT,n

is large, compared to the bandwidth of the nth tonal feedback controller. The rationale is that
the nth tonal feedback controller, 2 "", 2" ", is dominant only around w = WT,n, and is'TflS2+ WT~n

negligible elsewhere in that case.

6.9.2 Implementation of the Digital Tonal Feedback Controller

In this section, three digital tonal feedback controllers are designed and implemented on the
cylindrical shell with one active composite panel mounted, to reduce the three discrete harmon-
ics in the disturbance spectrum (Figure 6-57). The block diagram of this approach is shown
in Figure 6-60. It can be seen that no analog electronics is used, except the pre-amplifier and
power amplifier. The output from the accelerometer mounted on the top surface of the panel,
which is denoted as y in the figure, is processed first by T(s). It modifies the plant transfer
function GYU(s), so that it becomes easier to design the tonal feedback controller by yielding a
good loop shape. Figure 6-61 shows the frequency response of Gy"(s) in (a), and Gy"(s)T(s)
in (b). Here, T(s) has a high-pass filter at 100 Hz, and low-pass filters at 100 Hz, 3 kHz, and
5 kHz. Before adding T(s), the plant transfer function GYU(s) rolls up in the high frequency
and shows a resonant peak around 10 kHz, which will limit the closed-loop performance by
limiting the gain of the controller. However, by augmenting the plant by T(s), the transfer
function yields a better loop shape, so that the tonal feedback controllers can produce better
closed-loop performance.

Three tonal feedback controllers at 300, 600, and 900 Hz were designed by closing the loop
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Tonal feedback controller

Figure 6-58: Block diagram of the tonal feedback controller.

sequentially to improve the stability and performance of the control system. It should be noted
that GYU(s) in Equation 6.48 should be replaced by Gyu(s)T(s) when computing the controller
parameters. The resulting controller is shown in Figure 6-62. It is implemented digitally with
a sampling frequency of 25 kHz. The effect of time delay in the digital component is considered
in the design of the controllers. The loop transfer function using this controller is shown in
Figure 6-63 (frequency response), and 6-64 (Nyquist plot). It can be seen that the closed-
loop system is stable, and the loop transfer function has high gains at 300, 600, and 900 Hz,
and enough phase margins. The closed-loop performance is shown in Figure 6-65. The same
disturbance spectrum in Figure 6-57 is used to compare the open-loop and the closed-loop
autospectrum. We can see that better than 20 dB of attenuation is achieved at 600 and 900 Hz.
Also, 15 dB of reduction is achieved at 300 Hz.

6.9.3 Effect of the Low-frequency Feedthrough

Throughout this chapter, we have seen that the low-frequency feedthrough in the plant transfer
function makes controller implementation much harder and more complicated, although solu-
tions for these problems have been proposed and the resulting closed-loop performance has
been very promising. The digital tonal feedback control approach is also affected by the low-
frequency feedthrough. The basic condition for applying the tonal feedback controller is that
the sensor used in the control system should be able to measure the performance variable z to
be reduced. However, this condition is not satisfied here, because the signal from the embed-
ded accelerometers in the panel is corrupted by the low-frequency feedthrough. If the target
frequency is away from the range corrupted by the low-frequency feedthrough, its effect can
be neglected, and we can design the tonal feedback controller as described earlier. However,
if the bandwidth of interest is inside the range affected by the low-frequency feedthrough, it
should be compensated before the controller is designed. In this section, it will be shown how
the low-frequency feedthrough degrades the closed-loop performance, and what we can do to
compensate for it.

Figure 6-66 shows the frequency response of plant transfer functions G, (s) and GY (s).
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Figure 6-59: Frequency response of loop transfer function using the tonal feedback controller.

The discrepancy between those two transfer functions, which corresponds to the low-frequency
feedthrough effect, can be observed in the figure. As shown in Chapter 3, Gzs(s) may be
obtained from the measurement of Gys(s) by adding the low-frequency feedthrough compen-
sator C(s). Now, the tonal feedback controller will be designed and implemented to reduce
the discrete harmonics at 300 Hz. First, the effect of the low-frequency feedthrough will be
neglected, and the controller will be designed based on Gys(s), not on G22(s), using the condi-
tion in Equation 6.48. The corresponding loop transfer function GY(s)T(s)KT (s) is shown in
Figure 6-67. Note that the loop transfer function Gyu(s)T(s)KT (s) provides the information
about the closed-loop response in terms of the sensor output y. As expected, it has a high gain
at 300 Hz and enough phase margins. The closed-loop autospectrum Syy (s) obtained using
this controller is shown in Figure 6-68. The disturbance spectrum in Figure 6-57 is used to
compare the open-loop and the closed-loop autospectrum. We can see that better than 30 dB
of attenuation is achieved at 300 Hz in the sensor output y. However, this result may be mis-
leading, because what we want to reduce is the performance output z, not the sensor output
y. We have to find the loop transfer function that gives the information about the closed-loop
performance in terms of z, since the loop transfer function Gys(s)T(s)Kr (s) doesn't provide
that information. Using the block diagram in Figure 6-69, we can see that the loop transfer
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Figure 6-60: Block diagram of the digital tonal feedback control approach.

function related with z is written as [Gyu(s) + C(s)] T(s)K+ (s), where KT (s) is given by

KT' (s) =_K s (6.51)
1 + C(s)T(s)KT (s)

The frequency response of the loop transfer function [Gyu(s) + C(s)] T(s)K+ (s) is shown in

Figure 6-70. Surprisingly, the loop gain is always less than 0 dB, even at the target frequency

300 Hz. The resulting closed-loop autospectrum Szz (s), which is what we want to reduce, is

shown in Figure 6-71. As expected from the loop transfer function, the attenuation achieved

using this controller is less than 5 dB at 300 Hz. This result is significantly different from Syy (s)

in Figure 6-68, and cannot be predicted from the loop transfer function Gy,(s)T(s)KT (s).

One solution for this problem may be to design the tonal feedback controller KT (s) based

on GYU(s) + C(s), not on Gyu(s), and implement the equivalent controller KT (s), given as

KG (s)
KT (s) = 1 Ts (s) (6.52)

1 - C(s)T(s)KT' (s)

220



'a-20

C
cc -40

-60

270

180

E. 90

0

-90

-180
10 1 102 103

Frequency (Hz)

(a)

104

10 102 103 104

10 102 103 104
Frequency (Hz)

(b)

Figure 6-61: Frequency response of (a) Gy,(s), and (b) Gy,(s)T(s).

221

10 102 103 104

10- - - - - - ----. . . . . - r

-40

-60

-80

E
~0

U,
-o

C
0)
CU

-100

270
180
90

CU
-90

a. -180
-270

-360



100

C
60 --

40 --

u20 --

0 -

101 102 103  10 4

180

a>
:a-180 -

c-360 -

E-540 -

-720

-900 '
10 102 10 10

Frequency (Hz)

Figure 6-62: Frequency response of the tonal feedback controller. The target frequencies are

300, 600, and 900 Hz.

Unfortunately, this approach will significantly increase the order of the controller KT (s), es-
pecially if other controllers are also implemented, such as feedback or feedforward control,
simultaneously with the tonal feedback control. It may not be feasible to implement 55 tonal
feedback controllers with this structure for 55 panels that will cover the cylindrical shell. How-
ever, KT (s) can be simplified using the fact that two complex poles are dominant in KT (s),
given as

c c* (c + c*) s + (cp* + c*p)
KT (s) ~+ ,(6.53)s+p s + p s 2 + (p + p*) s + pp*

where p and p* are the dominant complex conjugate poles of KT (s), and c and c* are the
corresponding residues of those poles. Frequently, p + p* is less than 0, which means that the
simplified KT (s) is unstable. However, this instability will not cause any problem, or destabilize
the closed-loop system, if KT (s) is well-designed such that the closed-loop system is stable.

Figure 6-72 shows the loop transfer function [Gyu(s) + C(s)] T(s) KT(s), where KT(s) is
the tonal feedback controller designed based on [GYU(s) + C(s)]. Since [Gyu(s) + C(s)] T(s) K+(s)
is the loop transfer function related with the performance output z, it can help predict the
closed-loop performance. It has a gain of about 30 dB at 300 Hz, and a phase margin of 90',
which implies that about 30 dB of attenuation will be achieved at 300 Hz in the closed-loop
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response. The result is as expected. The closed-loop autospectrum Szz in Figure 6-73 shows

that Szz is reduced by more than 30 dB at 300 Hz. Once K'r(s) is determined, the equivalent

tonal feedback controller KT (s) that considers C(s) can be obtained using Equation 6.52. Also,
KT (s) can be simplified by retaining only the dominant complex poles, as in Equation 6.53.

Both of exact and simplified KT (s) are simulated, plotted and compared in Figure 6-74. It

can be seen that they are unstable transfer functions, because the phase goes up by 180' above

the resonant frequency at 300 Hz. Therefore, they cannot be measured experimentally. The

result of the simulation in Figure 6-74 implies that the exact and the simplified KT (s) are very

similar to each other, at least above 10 Hz. Furthermore, it is much easier to implement the

simplified KT (s) than the exact one, because the exact KT (s) in Equation 6.52 needs nine

states, while the simplified one in Equation 6.53 needs only two states to implement. This is a

very important advantage of simplifying KT (s), considering the fact that we need to implement

KT (s) for each panel.

The Nyquist plot of the loop transfer function GV,(s)T(s)KT(s) is shown in Figure 6-

75. Here, KT(s) is the simplified one defined in Equation 6.53. We can see that the closed-

loop system is stable, because there are two encirclements about the critical point -1, and the

loop transfer function has two unstable complex conjugate poles. The resulting closed-loop

performance is shown in Figure 6-76. It can be seen that better than 30 dB of attenuation is
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(a)

(b)

Figure 6-69: Equivalent block diagram of the closed-loop system using the tonal feedback

controller. (a) C(s) is considered as a part of the plant. (b) C(s) is incorporated into the

controller.
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achieved at 300 Hz in the closed-loop autospectrum Szz(s).

6.10 Digital Feedback, Feedforward, and Tonal Feedback Con-
troller

In this section, the digital feedback controller, the digital feedforward controller, and the digital

tonal feedback controller are implemented simultaneously on the cylindrical shell with one active

composite panel mounted. The block diagram for this control approach is shown in Figure 6-77.
This control configuration is the most complicated and complete one considered as local control

architecture for each panel in this study. The design procedure for this control configuration

can be summarized as follows:

1. Measure the plant transfer functions Gytw(s), GybW(s), Gytu(s), GybU(s)-

2. Measure the performance transfer function Gau(s) using an external accelerometer.

3. Estimate the low-frequency feedthrough compensator C(s). It is a low-pass filter that

best fits G2u(s) - Gy,,(s).

4. Design the digital feedback controller. First, design the controller based on [Gytu(s) + C(s)],
and then find the equivalent controller that has C(s). (See Section 6.8.)
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Figure 6-75: Nyquist plot of the loop transfer function Gys(s)T(s)KT(s), where KT(s) is the

simplified one.

5. Design the digital feedforward controller. First, find a stabilizing controller such that it

fits the frequency response that cancels the performance output. Then, find the equivalent

controller that considers the effect of C(s). (See Section 6.8.)

6. Estimate or measure the closed-loop plant transfer function Ty,"(s), with both digital

feedback and feedforward controllers acting.

7. Determine T(s) that modifies the plant transfer function Ty,.(s), such that it becomes

easier to design the tonal feedback controller by yielding a good loop shape.

8. Design the digital tonal feedback controller based on [Ty,"(s) + C(s)) T(s). Then, simplify

the controller using the method in Section 6.9.3.

These control algorithms are implemented in dSpace controller with a sampling frequency of

25 kHz. The sampling frequency has to be reduced, compared with the case of hybrid feedback

and analog feedforward control or digital feedback and feedforward control approach, due to

the increased amount of calculation in the DSP system. The sampling frequency is another

design constraint on the digital controller design and implementation, because it produces a

time delay of roughly one and half times the sampling time (Equation 6.18). It should be

selected as high as possible, which is limited by the amount of the computation required in the

DSP system. Therefore, the control algorithms should be as simple as possible, so that they

can be performed in the DSP system with a small sampling time, while at the same time they
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can have the desired frequency response. It explains why we have been trying to reduce the
order of the controller by approximating it throughout this chapter.

The resulting closed-loop performance using this control architecture is shown in Figure 6-78.
The disturbance spectrum in Figure 6-57 is used to compare the open-loop and the closed-loop
autospectrum. With only feedback control, 10 dB of attenuation is achieved between 300 and
1300 Hz. With feedforward control added, an additional 10 dB of reduction is achieved be-
tween 500 and 1000 Hz. Finally, tonal feedback control, which has been designed to reduce
three discrete harmonics at 300, 600, and 900 Hz, behaves as expected, and reduces the distur-
bance at those discrete frequencies by more than 10 dB. The disturbance is amplified, i.e., the
performance is degraded, between 1500 and 2500 Hz. This effect may not be serious, because
the disturbance doesn't have enough energy above 1 kHz anyway. As mentioned in Section 6.8,
if we want better performance below 1.5 kHz, we have to accept the some amplification above
1.5 kHz. Also, the degraded performance is inevitable, because the effect of the phase delay
in the digital component becomes severe above that frequency. The effect can be negligible at
higher frequencies (above 3 kHz), because the control gain is low there. Considering all these
facts, it can be concluded that this control configuration is a good solution as a local control
architecture for each panel, since the controller variables can be adjusted in software, and more
than 20 dB of attenuation is achieved between 400 and 1400 Hz, and more than 30 dB of
reduction is achieved at the target discrete frequencies.

6.11 Hybrid Analog/Digital Feedback and Digital LQG Con-
troller

Throughout this chapter, several control algorithms have been designed and implemented on
the cylindrical shell with one active composite panel. These algorithms are distinguished by
which signal is taken as input (feedback vs. feedforward control), and how they are implemented

(analog vs. digital vs. analog-digital hybrid approach). However, there is one thing that is
the same for all of those control algorithms- none of them are model-based controllers. The
control design is based on the measured frequency responses of the plant transfer functions, and
the closed-loop stability and performance are predicted by using the measured loop transfer
function.

In this section, the results of closed-loop experiments obtained with a model-based controller
are presented. In particular, a linear quadratic gaussian (LQG) controller is designed and im-
plemented on the cylindrical shell with one panel mounted. The motivation for this section is
to test the concept of the model-based controller in a single-input single-output (SISO) config-
uration using one panel, before designing multi-input multi-output (MIMO) LQG controllers
using several panels, and eventually 55 panels. The block diagram of the setup for SISO LQG
controller, showing the disturbances w, inputs u', and outputs y is shown in Figure 6-79. In
this section, the disturbance w represents the input to a shaker installed inside the shell. The
performance z is the acceleration of the outer surface of the composite panel mounted directly
above the shaker (not shown in the figure), and the control input u' is the voltage input to the
panel actuator layer. The sensor output y (or controller input) is the measurement from the
complementary low-pass filter. The SISO LQG controller will be designed and implemented on
the plant with the hybrid analog/digital controllers closed.
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Figure 6-78: Closed-loop performance obtained with the digital feedback, feedforward, and tonal
feedback controller. "Ratio" represents the ratio of the open-loop response to the closed-loop
response. Negative ratios indicate attenuation; positive ratios indicate amplification.
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Figure 6-79: Block diagram of the SISO LQG controller design.

In order to synthesize the LQG controller, a state-space model that accurately captures the
dynamic behavior of the system (at least below controller bandwidth) is necessary. The model
is obtained by identifying the measured transfer functions from (w,u') to (z,y). The system
identification method used here is Frequency domain Observability Range Space Extraction
(FORSE) method [Jacques, 1994]. The resulting state-space model has thirty states, and the
state-space representation is given by

dx
- = Ax + Biw + B 2u' (6.54)
dt

z = C 1 x + D 11w + D12u'

y = C 2x + D 2 1W + D 22 U'-

The results of the system identification are shown in Figures 6-80 and 6-81. The identified
transfer function G2 (s) matches quite well with the measured transfer function Gz"(s) below
2 kHz in both magnitude and phase. The good match is critical for the closed-loop performance
using model-based controllers, such as LQG controller. Above 2 kHz, the two transfer functions
show some discrepancies. However, the discrepancies are not serious, because the expected
bandwidth of LQG controller is around 1 kHz, reflecting the fact that the input to the LQG
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Figure 6-80: Frequency response of measured and identified transfer function Gz"(s).

controller is filtered by the complementary second order Butterworth low-pass filter at I kHz.

Figure 6-81 shows that the identified transfer function GYU, (s) is also almost identical to the

measured transfer function up to 5 kHz.

Two different approaches are possible in LQG controller design in order to account for the

low-frequency feedthrough. The first approach is to use the state-space equation in Equa-

tion 6.54 directly, which means that z is defined as the performance output to be minimized,
and y is defined as the sensor output (or input to the controller) in LQG design. Then, we

don't need to consider the low-frequency feedthrough effect, because it is already reflected in

z. The second approach is to consider z as both performance output and sensor output, and

design the LQG controller based on the modified plant model. Then, using the same techniques

introduced in Section 3.3.3, the low-frequency feedthrough compensator C(s) can be incorpo-

rated into the LQG controller. This approach is the same one as used throughout this chapter,
which is first to design the feedback controller based on the modified plant transfer function by
adding C(s) to it, and then to combine C(s) into the designed controller. In this section, the

second approach will be used.

Although the identified state-space model is accurate enough in the bandwidth interest,
frequency weighting functions should be used to get satisfactory performance. Otherwise, the

controller might try to minimize the H 2 norm of the system by reducing G,.(s) in the high

frequency region, because the performance z is an acceleration measurement, making Gzw(s) roll
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Figure 6-81: Frequency response of measured and identified transfer function Gy.' (s).

up with a slope of 40 dB/decade. The frequency weighting function used for the performance

(z) and sensor output (y) is a second order Butterworth low-pass filter at 1 kHz, while that

for the disturbance (w) is a first order low-pass filter at 1 kHz. Ideally, the given disturbance

spectrum (Figure 6-57) should be used as a frequency weighting function for the disturbance.

However, the size of the state-space model for the spectrum turned out to be quite large. Since

the order of the LQG controller is that of the plant model, plus the order of frequency weighting

functions, the model for frequency weighting should be as simple as possible. Therefore, this

model was discarded and a simple first order low-pass filter was selected as a frequency weighting

function for the disturbance.

The identified plant model, combined with the frequency weighting functions, results in

LQG controller with 37 states. However, the order of the original LQG controller had to be

reduced, because it was found that the DSP system used in this study cannot implement this

size in a real-time. Balanced model-order reduction was used to reduce the order of the LQG

controller into 26 states [Zhou, 1995].

The resulting closed-loop performance using this controller configuration is shown in Fig-

ure 6-82. The result is very promising- nearly 40 dB of attenuation is achieved at resonant

frequencies up to 1.5 kHz. The few spots where the attenuation is less than 0 dB (i.e. the

disturbance is amplified) occur at frequencies where there is a zero in the disturbance to perfor-
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mance transfer function, so that the performance there is less critical. Because the attenuation

at resonant frequencies is most important for the reduction of broadband disturbance, we can

conclude that the closed-loop performance using this controller configuration is satisfactory.

6.12 Summary

In this chapter, the control algorithms proposed in Chapter 3 were validated on the model of
the testbed developed in Chapter 2, and several controller architecture with different configu-

rations were designed and experimentally implemented on the cylindrical shell with one active

composite panel. First, a completely analog controller (both feedback and feedforward) was
implemented to evaluate the proposed feedback and feedforward control approaches on the real
system, and to establish a benchmark against which the other controllers can be compared. This

controller gave the best performance, nearly 15-30 dB of attenuation in the bandwidth interest

(250 - 2000 Hz), although the other controllers showed very similar results. After verifying that

the proposed control algorithms work well, some parts of the controller were discretized. The

first part to be discretized was a notch filter. The result of closed-loop performance using a

digital notch filter was almost indistinguishable from that obtained with the analog controller.

Furthermore, this controller configuration enables us to change the frequency to be notched out

easily in software, not in hardware as in the analog notch filter. Then, the feedback controller

was decomposed into analog and digital sections in parallel using complementary high-pass

and low-pass filters. This configuration was denoted as a hybrid approach, and its result was

also very similar to that obtained using the analog controller. The feedforward controller was

also implemented digitally. (strictly speaking, the feedforward controller was decomposed into

analog and digital sections in series.) The performance of the digital feedforward controller

was slightly worse than, but very similar to, that obtained using analog feedforward controller.

Also, both feedback and feedforward controllers were implemented digitally. The result showed

that this configuration may be a good solution if the disturbance doesn't have much energy

at high frequencies, although the performance was worse than the analog controller or hybrid

controller. To reduce the discrete harmonics in the disturbance spectrum, a tonal feedback con-

trol approach was introduced, and more than 20 dB of attenuation was achieved at the target

frequencies. Finally, an LQG controller, which is model-based, was designed and implemented

on the testbed on which hybrid feedback controller is acting.
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Table 6.1: Summary of the controller configuration implemented in this chapter

Controller Features Achievable closed-loop
configuration performance

Analog-only Everything in analog 15-30 dB between

controller - Best performance 200 and 2500 Hz
- Unfeasible to implement
- Notch filter is implemented

Analog controller digitally - 15-30 dB between

with digital notch filter - Notch frequency can be 200 and 2500 Hz
adjusted in software

- Feedback controller is

Hybrid feedback and decomposed as analog and - 15-25 dB between

analog feedforward digital part in parallel 200 and 2500 Hz
- Complementary filters are

used

Hybrid feedback and Combines hybrid feedback 10-15 dB between

digital notch filter and digital notch filter 200 and 2500 Hz
approach

- Feedback is implemented

Hybrid feedback and in hybrid - 15-25 dB between
digital feedforward - Feedforward is implemented 200 and 2500 Hz

digitally
- Feedback is implemented - 10-20 dB between

Digital feedback and digitally 200 and 1500 Hz
digital feedforward - Feedforward is implemented - Amplification

digitally above 2 kHz

Digital tonal feedback - Reduces discrete harmonics - 20-30 dB at
in the disturbance spectrum target frequencies

- Feedback is implemented - 15-20 dB between

Hybrid feedback and in hybrid 200 and 2500 Hz
digital LQG - LQG is implemented - 40 dB at resonant

digitally frequencies

241



242



Chapter 7

Closed-loop Experimental Results
for Testbed

7.1 Introduction and Objective

In this chapter, the results of closed-loop experiments obtained with multiple panel-level con-

trollers are reported. The panel-level local controllers were designed and implemented on the

cylindrical shell with 55 active composite panels mounted. The experimental setup for testing

the controllers, including the cylindrical shell with panels, a water tank, and the signal con-

ditioners are described. The results of identification and analysis of plant transfer functions

are explained, and their implications for controller design are discussed. Then, the design pro-

cess for local controllers and the corresponding closed-loop performance are reported. Finally,
the results of investigating panel dynamics are presented and their effects on the closed-loop

performance are addressed.

7.2 Experimental Setup

Figure 7-1 shows the cylindrical shell on the surface of which 55 active composite panels are

mounted. As shown in the figure, each panel is labeled from "1" to "5" in the axial direction,
while from "A" to "K" in the circumferential direction. A shaker, which is used as a disturbance

source, is mounted inside the shell below panel F3. The cylindrical shell was installed in a water

tank (Northrop Grumman Corp., Annapolis, MD) to measure open-loop transfer functions,
design controllers, and evaluate their closed-loop performance. Figure 7-2 shows a schematic

view of the water tank with a diameter of 50 ft, which contains the cylindrical shell and six

hydrophones. The depth of the water is about 28 ft, and the cylindrical shell and hydrophones

are located at mid-depth. The shell is 12.5 ft from the tank wall, and hydrophones 1-5 are 10 ft

from the shell, while hydrophone 6 is located at 12.5 ft from the far wall.

As mentioned in Chapter 2, the PZT actuator layer and accelerometers in each panel need

signal conditioners to process their input and output signals. Each panel has a power amplifier

for the actuator layer, and a pre-amplifier with a receiver board for the accelerometers. The

pre-amplifiers are installed inside the shell, while the power amplifiers and receiver boards are

installed outside the shell. Each pre-amplifier has a constant gain of 40 dB, while each power
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Figure 7-1: The cylindrical shell with 55 active composite panels mounted. (Photo courtesy of

NGC)

amplifier has a low-pass filter at 190 Hz with a DC gain of 34 dB, and each receiver board has
a high-pass filter at 14 Hz and low-pass filter at 2200 Hz, with five selectable gains (26, 30, 32,
34, or 36 dB). Their frequency responses are shown in Figure 7-3 and 7-4, respectively. The
block diagram of the plant, analog electronics for signal conditioners, and digital control system
is shown in Figure 7-5.

We expect that the plant transfer function matrix from 55 panel actuator layer inputs to

55 panel accelerometer outputs will be diagonally dominant, although it is a structural modal
system. In other words, when driving the actuator layer in panel A2, the signal output from
the embedded accelerometers in panel A2 should be much higher than those from other panels,
because the weight of the panel is supposed to be much smaller than that of the shell. Therefore,
the effect of panel motion on the shell would be negligible, which would make off-diagonal terms
in the plant transfer function matrix much smaller than the diagonal terms.

7.3 Identification and Analysis of Plant Transfer Functions

Before designing controllers for each panel, all the open-loop transfer functions from the distur-

bance input (w) and 55 panel actuator inputs (u) to 55 panel accelerometer outputs (y) and six

hydrophone outputs (z) were measured and analyzed. Specifically, in order to design feedback

controllers that will be implemented digitally, transfer functions from D/A input (u) to A/D
output (y) are required (Figure 7-6). All the transfer functions were measured by injecting a

swept sine signal into the proper D/A input channel, and measuring the corresponding A/D
output channel. The sampling frequency for the digital system is 20 kHz.
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Figure 7-2: Schematic view of the water tank with the cylindrical shell and six hydrophones.
(Figure courtesy of NGC)
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Cylinder assembly

/A contl Receiver

Digital hardware assembly High-pass filter at 14 Hz
Low-pass filter at 2200 Hz
5 selectable gain

Figure 7-5: Block diagram of the experimental setup, including plant, analog electronics, and
digital control system.

7.3.1 Transfer Functions of Multiple Panels

As mentioned earlier, we expect that the plant transfer function matrix will be diagonally
dominant. In order to see whether it is true, diagonal and off-diagonal transfer functions
are compared. Figure 7-7 shows the transfer functions of panels in a row in the axial direction
obtained by driving a panel in that row (panel A3), while Figure 7-8 shows the transfer functions
of panels in a circumferential ring obtained by driving a panel in that ring (panel A2). We can
see that diagonal transfer functions (from panel A3 to panel A3 in Figure 7-7, and from panel
A2 to panel A2 in Figure 7-8) have much higher magnitudes than those of the other panels,
i.e., the off-diagonal transfer functions, below 100 Hz, by more than 30 dB. Above 100 Hz,
the magnitudes of the diagonal transfer functions are still higher than those of the off-diagonal
transfer functions, but the differences are not as great. In some frequency ranges, the off-
diagonal transfer functions have the same order of magnitude as that of the diagonal transfer
functions. Considering that the bandwidth of interest for controller design is between 150-
1000 Hz, the observations indicate that the plant is weakly diagonally dominant, in contrast to
the initial expectation.

There are two possible explanations for the weak diagonal dominance in the plant. The first
one is that the weight of each panel has been increased significantly since its first prototype
design. As mentioned in Chapters 3 and 6, the panels show resonant peaks around 10 kHz,
primarily due to participation of the embedded accelerometers in the modal behavior of the
panel. In order to suppress the undesirable dynamics in the panel, its manufacturer (Materials

Systems Inc., Littleton, MA) mounted an aluminum plate on the upper surface of the panel.
This and other modifications increased the weight of the panels, although they helped reduce
the resonant peak of the accelerometer dynamics. Therefore, the effect of panel motion on the
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Figure 7-6: Block diagram of the plant and digital control system.

shell dynamics is no longer negligible, as was initially expected. The second reason is related to
the cavity in the panel where the accelerometers are embedded, which will be addressed later
in this chapter.

7.3.2 Transfer Function of a Single Panel

One of 55 panels was selected and its transfer function was analyzed in detail to investigate the
characteristics of the plant and determine which controller configurations can be implemented.
Figure 7-9 shows four frequency responses related with the dynamics of panel G3. The light
thin transfer function corresponds to the measured transfer function of panel G3, while the
light thick transfer function corresponds to the simplified transfer function that the light thin
transfer function is supposed to follow, neglecting shell modes, which is ks 2 Gpower (s)Gpre (s)
Here, Gpower(s) and Gpre(s) represent the transfer functions of a power amplifier and a pre-
amplifier with a receiver board, respectively, and k is a constant gain. Note that the light thick
transfer function has the same magnitude as the dark thick transfer function, which is obtained
by multiplying the light thick transfer function by e--(3 5 ), which represents a time delay of
3.5T. Here, T is a sampling period, which is set to be 50 pas.

As can be seen from the figure, the light thin transfer function and the light thick transfer
function show a significant difference below 500 Hz, due to the low-frequency feedthrough effect
in the panel. As mentioned in Chapter 3, a compensator should be designed and included
in the controller such that this effect can be minimized. The dark thin transfer function in
Figure 7-9 represents the compensated transfer function, which was obtained by subtracting
a low-frequency feedthrough compensator from the measured transfer function. In contrast to
the measured transfer function, the compensated transfer function matches well with the light
thick transfer function above 100 Hz.

Another important observation is that the transfer function has a phase delay of 3.5 times the
sampling period. We can see that the phase of the light thin transfer function, i.e., the measured
transfer function, follows that of the dark thick transfer function, i.e., the simplified transfer
function with an apparent time delay of 3.5T. In order to figure out where the phase delay
comes from, several transfer functions were measured and analyzed. First, transfer functions
of a power amplifier and a pre-amplifier with a receiver board were measured, and they showed
the expected behavior, as shown in Figure 7-3 and 7-4. Then, an external frequency analyzer
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was used to take transfer functions from D/A output to A/D input in Figure 7-6, i.e., including
the shell with 55 panels (plant) and analog electronics only, to see if the phase delay is caused
by the plant or by the digital control system. The results are shown in Figure 7-10, where
the same methods are used as in Figure 7-9 to represent each transfer function. Figure 7-10
indicates that the transfer function measured using an external frequency analyzer has a phase
delay of 100 ps (=2T). Since the effective time delay in a digital control system is generally
1.5T, assuming that the computation takes a full cycle, the result implies that the phase delay
comes from the plant with analog electronics, not from the digital control system.

Once we determined that the phase delay does not originate from the DSP system, the
transfer function of the panel was measured in air and compared with that measured in water,
to see if the phase delay comes from the effect of water. Both transfer functions measured in air
and in water are given in Figure 7-11. It is observed that they have very similar phase delay,
which means that the effect of water does not cause the phase delay.

Finally, the transfer function of panel G3 was measured in air using an external accelerometer
attached on the surface of the panel, to see if the phase delay is still there. In this case, the
same power amplifier was used as the previous cases for the panel actuator layer. However, a
different signal conditioner, not a pre-amplifier with a receiver board, was used for the external
accelerometer in order to condition the output signal. The result is given in Figure 7-12, which
shows that the phase delay still exists, but its amount is 2.5T, not 3.5T. Considering the time
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Tonal feedback controller

Figure 7-13: Block diagram of the tonal feedback controller.

delay of 1.5T in the digital system, we can conclude that the phase delay of 50 pts (=T) occurs

in the power amplifier and the plant, while another 50 is phase delay occurs in the plant and

the pre-amplifier with a receiver board, due to unexplained reason.

7.4 Design and Implementation of Tonal Feedback Controllers

Based on the observations so far, it turned out that the implementation of 55 broadband

feedback controllers was unfeasible. It is difficult to design multiple single-input single-output

(SISO) controllers for a weakly diagonally dominant plant, even using sequential loop closure.

Furthermore, a phase delay in the plant makes it almost impossible to design 55 SISO broadband

feedback controllers. For example, the time delay of 2T in the plant causes an additional

phase delay of 36' at 1 kHz, so the resulting phase margin would be unacceptable. Therefore,
instead of broadband feedback controllers, multiple tonal feedback controllers were designed

and implemented to reduce the vibration level of each panel at a selected target frequency.

A tonal feedback controller rejects a disturbance at selected target frequencies using high

controller gains at those frequencies. A block diagram for the tonal feedback controller is shown

in Figure 7-13. The constants in the controller are determined such that the control system has

enough stability margins and controller bandwidth of Wb at the target frequency s = j. The

controller parameters are given as [Hall, 1989]

a = Re G(jQ) (7.1){ 1

b = -Im{G.)

1
Tb b

The amplification or attenuation of the disturbance by the closed-loop system is determined by
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K'(s) : Controller to be implemented

Figure 7-14: Design setup for the tonal feedback controller.

the sensitivity transfer function S(s), given as

z 1
S(s) = (7.2)

d 1+ G(s)K(s)

Since the controller K(s) in Figure 7-13 has an infinite gain at the frequency s = j2, S(s)

has a zero magnitude at that frequency. Therefore, the controller should completely eliminate

vibration at the frequency s = jQ.
In order to apply the tonal feedback controller, the sensor used in the control system should

be able to measure the performance variable z, which is what we want to reduce. The signal

from the embedded accelerometers in the panel, however, is corrupted by the low-frequency

feedthrough. If the target frequency is away from the range corrupted by the low-frequency

feedthrough, its effect can be neglected, and we can design the tonal feedback controller as

described above. However, if the bandwidth of interest is inside the range affected by the low-

frequency feedthrough, it should be compensated before the controller is designed. Considering

this fact, the design setup for the tonal feedback controller used in this chapter is given in

Figure 7-14. Before designing the controller, a low-frequency feedthrough compensator C(s) is

designed and subtracted from the measured transfer function Gy (s), so that we can get the

compensated transfer function Gz2(s). Based on Gz,(s), the tonal feedback controller K(s) is

designed such that the performance variable z is significantly reduced at the target frequency.

However, since what we can measure directly is y, not z, the actual controller that should be

implemented is not K(s), but K'(s), given as

K'(s) = .s) (7.3)
1 - C(s)K(s)

Note that the low-frequency feedthrough effect not only complicates the controller design,
but also makes the actual controller K'(s) unstable. This can be explained using the simplified

model for the plant in Figure 7-15. The actual transfer function Gyu(s) can be modeled as
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G(s)=1

Controller K'(s)

Figure 7-15: Simplified model for the plant showing that the actual controller K'(s) is always
unstable.

s2 - c2 , where s 2 and c2 correspond to the double differentiation (i.e., acceleration) and the
low-frequency feedthrough, respectively. We can compensate the plant by adding c2 to GYU(s),
so that we get pure acceleration s2. After integrating twice to get displacement, we design a
tonal feedback controller based on the plant G(s) = 1. Using Equation 7.1, we can compute a
and b as

a = Re = 1 (7.4){G (jQ) '

b = -Im{= 0.{ (jQ) 0

So, the tonal feedback controller K(s) for Gzu(s), including double integrators, can be written
as

2 1 s
K(s) = .1 8 (7.5)

Tb s2 82 + Q2

The actual controller K'(s) to be implemented for the plant GYU(s) = s2 - c2 is given as

K'(s) = -K(s) (7.6)
1 + c2K(s)

2 1

Tbs3+ 2s + c2
Tb

We can easily check that K'(s) is unstable. Although an unstable controller is used, the closed-
loop system should be stabilized by the plant dynamics, if the controller is properly designed.

Now, the design process for tonal feedback controllers implemented on the shell with 55
panels is presented. The target frequency of the controllers was set to be 400 Hz. As mentioned
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earlier, a low-frequency feedthrough compensator was designed for each panel, so that we can get
the compensated transfer function and design the controller for each panel. Before using directly
Equation 7.1 to design tonal feedback controllers, the plant transfer function was augmented
by a high-pass filter at 200 Hz and two low-pass filters at 250 and 350 Hz, to make controller
design easier by yielding a good loop shape. Figure 7-16 shows the effect of adding those filters
on the resulting plant transfer function. Note that the transfer function in Figure 7-16(a) is
Gz,(s), not Gy,(s). Before adding filters, the transfer function rolls up in the high frequency
and shows a peak resonance around 9 kHz, which will consequently limit the achievable closed-
loop performance by limiting the gain of the controller. However, by adding those filters to the
plant, the transfer function will have a better loop shape, so that the tonal feedback controller at
400 Hz will yield better closed-loop performance. It should be noted that "G(s)" in Equation 7.1
represents the plant augmented with filters (Figure 7-16(b)), not the plant itself (Figure 7-
16(a)).

The design procedure described above was iterated for 52 out of 55 panels, since the embed-
ded accelerometers in three panels were faulty. Instead of designing a controller for each panel
independently and closing all the loops simultaneously, controllers were designed by closing
the loop sequentially to improve the stability and performance of the control system. In other
words, after the first controller was implemented, the second controller was designed on the
plant with the first controller closed. This procedure was iterated until the last controller was
designed, so that the effect of closing the other loops on the plant could be considered when
designing each controller.

In order to check the stability margin of the system before its implementation, the loop
transfer function is examined in the frequency domain. Figures 7-17 and 7-18 show a Bode
plot and a Nichols plot, respectively, of the loop transfer function for panel E3. Note that the
loop transfer function in both figures is Gzu(s)K(s), not Gyu(s)K'(s). Also, the loop transfer
function was obtained by closing the other 51 loops, and multiplying the resulting transfer
function from UE3 to ZE3 [GZE 3UE 3 (s)] by K(s) designed on GzE 3UE 3 (s).

Although Bode plots and Nichols plots contain the same information about the control
system, stability margins, such as gain margin and phase margin, can be more easily identified
from Nichols plots. For example, the gain margin can be identified by measuring the distance of
the contour to the critical point (-1800, 0 dB) when the phase is -180 , while the phase margin
is the distance of the contour to the critical point when the magnitude is unity. As shown in
Figures 7-17 and 7-18, the magnitude of the loop transfer function crosses the 0 dB line twice,
which results in two different phase margins. Since the controller should assume the worst
case, smaller phase margin should be considered as a proper stability margin. In this section,
"the phase margin" represents the smaller phase margin among two different values. The gain
margin and phase margin for the controller in Figure 7-18 are 30 dB and 900, respectively.
These stability margins may look too high, and we may want to increase the controller gain
to improve the performance. However, these margins were selected considering the stability
margins of other loops. Actually, increasing the gain for this controller may reduce the stability
margins significantly for the other 51 loops. So, we should consider the stability margins for all
the loops in the control system, not just one loop there. Gain and phase margins of the tonal
feedback controllers for other panels are given in Table 7.1. We can see that the other 51 loops
show the same order of gain margin and phase margin.

In addition to the stability margin, Nichols plot gives information about the level of atten-
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Table 7.1: Gain and phase margins of the tonal feedback controllers at each panel. The phase
margin in this table represents the smaller phase margin among two different values. "x"
represents the faulty accelerometers.

Panel GM (dB) PM (deg) Panel GM (dB) PM (deg) Panel GM (dB) PM (deg)
Al 29 81 El 29 83 Il 29 80
A2 29 78 E2 29 78 12 30 79
A3 29 87 E3 30 88 13 28 87
A4 28 77 E4 28 76 14 28 77
A5 30 80 E5 30 82 15 29 85
B1 29 80 F1 29 80 J1 30 82
B2 30 73 F2 29 77 J2 29 79
B3 29 88 F3 x x J3 29 86
B4 28 76 F4 25 74 J4 29 80
B5 28 82 F5 30 85 J5 30 87
C1 30 82 G1 25 75 K1 29 85
C2 30 78 G2 28 70 K2 29 78
C3 28 87 G3 27 86 K3 28 87
C4 28 75 G4 29 85 K4 23 83
C5 30 85 G5 29 80 K5 x x
D1 30 78 H1 29 82
D2 30 79 H2 24 78
D3 29 87 H3 29 87
D4 30 83 H4 22 77
D5 30 80 H5 x x
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Figure 7-19: Open and closed-loop responses of compensated acceleration of panel E3 for the
tonal feedback controller at 400 Hz. "Ratio" represents the ratio of the open-loop response to the
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Figure 7-20: Open and closed-loop response of hydrophone 4 for the tonal feedback controller
at 400 Hz. Negative ratios indicate attenuation; positive ratios indicate amplification.

uation or amplification of the disturbance. In Figure 7-18, contours of constant disturbance
attenuation or amplification, which is the sensitivity transfer function S(s) in Equation 7.2,
are also plotted. Positive and negative values in the contours represent the amplification and
attenuation of disturbance, respectively. Figure 7-18 indicates that the system also has a good
closed-loop performance at the target frequency 400 Hz, with at least 20 dB of reduction. The
actual closed-loop response, which was obtained using the controller in Figure 7-17 and 7-18,
was measured, and is shown in Figure 7-19. The upper plot in Figure 7-19 shows both open-loop
and closed-loop compensated acceleration for panel E3, and the lower one shows their ratio.
Note that the negative and positive ratio mean the attenuation and the amplification of the
disturbance, respectively. Figure 7-19 demonstrates that an attenuation of more than 20 dB
is achieved at 400 Hz. The level of performance achieved using the tonal feedback controllers
for other panels is given in Table 7.2. Controllers for other panels show the similar closed-loop
performance, i.e., about 20 dB of reduction at 400 Hz. Considering that all the 52 controllers
implemented are unstable, the implementation of control systems and its performance is a
remarkable success.

Since the compensated acceleration is reduced by 20 dB for most panels (52 out of 55) at
400 Hz, it is natural that we can expect the similar level of reduction for the hydrophone signal.
Figure 7-20 shows both open-loop and closed-loop responses measured by the hydrophone 4.
In contrast to the expectations, the actual closed-loop signal for hydrophone 4 was amplified
by 15 dB at 400 Hz. The level of amplification for other hydrophones is given in Table 7.3.
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Table 7.2: The level of performance achieved using the tonal feedback controllers at 400 Hz. "x"
represents the faulty accelerometers. Note that positive performance ratios indicate attenuation.

Panel Performance (dB) Panel Performance (dB) Panel Performance (dB)

Al 28.5 El 25.9 Il 15.5
A2 23.8 E2 21.2 12 17.8
A3 22.9 E3 23.7 13 14.6
A4 24.6 E4 22.9 14 19.0
A5 32.7 E5 30.9 15 20.8
B1 18.4 F1 26.6 J1 21.7

B2 21.5 F2 16.6 J2 22.6
B3 21.5 F3 x J3 22.9
B4 22.2 F4 17.3 J4 21.6

B5 20.5 F5 20.3 J5 21.2

C1 19.5 G1 28.9 K1 27.8

C2 17.1 G2 20.2 K2 20.5

C3 17.6 G3 20.2 K3 20.1
C4 17.5 G4 21.7 K4 17.3
C5 14.0 G5 21.8 K5 x
Dl 20.6 H1 18.5
D2 18.4 H2 26.8
D3 18.1 H3 22.3
D4 19.7 H4 19.8
D5 19.0 H5 x
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Table 7.3: The level of amplification for each hydrophone.

Hydrophone No. J Amplification level (dB)

1 12.9
2 10.5
3 8.9
4 18.4
5 6.2
6 14.8

The other five hydrophones show similar amplification level (6-20 dB). Obviously, this result

is unexpected, and unacceptable. In the next section, we investigate the cause for this result.

7.5 Investigation of Panel Dynamics

Using the tonal feedback controllers implemented in the previous section, we could reduce the

compensated acceleration over the surface of the shell by 20 dB at 400 Hz. However, the

comparison between open-loop and closed-loop hydrophone signal indicates that the actual

noise is increased at that frequency. Several tests were performed to figure out what causes

the unexpected result. In this section, the results of testing and investigating panel dynamics

are reported. As will be shown, the main problem is that the internal accelerometers do not

accurately measure the motion of the panel's outer surface, which is what they are supposed to

measure.

7.5.1 Acceleration Survey of a Panel Using Four External Accelerometers

As discussed in Chapter 2, there are four internal accelerometers embedded on the top surface

of each active composite panel, and the output from each accelerometer is summed to yield

the averaged acceleration of the panel's outer surface. In order to investigate whether the

internal accelerometers measure the surface motion, four external accelerometers were attached

on top of the internal accelerometers, and the output of the two different accelerometers were

compared (Figure 7-21). Signals from four external accelerometers were averaged, as in the

case for internal accelerometers. The results are shown in Figure 7-22. First, the shaker inside

the shell was driven to take transfer functions for internal and external accelerometers, and

their sensitivities were adjusted such that they could be overplotted (Figure 7-22(a)). Then,
the actuator layer in the panel was driven and transfer functions for both accelerometers were

compared (Figure 7-22(b)).
Figure 7-22(a) shows that the internal accelerometers yield very similar transfer functions as

the external accelerometers when the shaker was driven. In this case, the panel moves as a rigid

body, so both accelerometers would yield the same measurement below the resonant frequency

for the internal accelerometer mode. However, Figure 7-22(b) indicates that there is about

10 dB difference between transfer functions measured by internal and external accelerometers

for panel excitation, although the same sensitivities are used for both accelerometers as in the

case of shaker excitation. What this result implies is that the internal accelerometers measure
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Figure 7-21: Acceleration survey using four external accelerometers.

only about 30% of the actual motion of the panel's outer surface when the panel excitation

causes the motion. What causes this problem, and how it affects the closed-loop performance,
will be addressed in the following sections.

7.5.2 Laser Scanning Vibrometer Test of a Suspended Panel

In order to investigate the panel dynamics in detail, a laser scanning vibrometer was used to

measure a panel's deformed shape due to self-excitation. The experimental setup is shown in

Figure 7-23. An active composite panel is suspended from two sticks and the velocity field

on both top and bottom surfaces of the panel is measured by driving the actuator layer in

the panel and scanning the velocity over its surfaces. The results of laser scanning vibrometer

test of a panel are shown in Figure 7-24. Note that the velocity field measured by the laser

scanning vibrometer is different on the top and bottom surfaces, because an aluminum plate

was mounted only on the top surface.

Figure 7-24 indicates that the panel is deformed irregularly when its actuator layer is driven.

This could be partly because the piezoelectric constant in the actuator layer is not uniform over

the surface. Also, the bending that occurred during panel's self-excitation could be another

reason for its irregular deformed shape. Although it would be best if the panel moves in a

piston-mode for self-excitation, it would still be feasible to design control system for reducing

radiated noise with this panel if the internal accelerometers would provide information about

the panel's net volume change. However, Figure 7-24 shows that there are dimples inside the

panel where the internal accelerometers are mounted. The dimples can be seen more easily from

the bottom surface than from the top surface, because those on the top surface are hidden by
the aluminum plate. The dimples may explain why the internal accelerometers measure only
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Figure 7-25: Possible panel deformed shape.

about 30% of the actual motion of the panel's outer surface for panel excitation. The dimples
don't appear for external excitation, i.e., shaker excitation, because the whole panel moves as
a rigid body. However, for panel excitation, the panel is deformed due to the actuator layer
and the dimples prevent the internal accelerometers from measuring the panel's outer surface
motion.

The dimples also explain why the measured plant transfer function matrix is weakly diag-
onally dominant. As mentioned in Section 7.3.1, increased panel weight makes the interaction
between panels significant, which is one reason for weakly diagonally dominant plant. How-
ever, if the internal accelerometers could measure panel's outer surface motion accurately, the
diagonal terms in the plant transfer function matrix would be increased by 10 dB, which would
make design of multiple SISO feedback controllers much easier.

7.5.3 Hypotheses to Explain the Panel Dynamics

Although we found that there are dimples inside the panel where the internal accelerometers
are mounted and they cause the measured acceleration different from the actual acceleration
by 10 dB for self-excitation, it still remains to explain why they occur. There is no decisive way
to answer that question without further investigation. However, two hypotheses are proposed
here that can explain physically how they occur for self-excitation. The basic concept of the
first hypothesis is shown in Figure 7-25. As shown in the figure, copper shielding was inserted
between internal accelerometers and PZT actuator layer to reduce the electric coupling between
them. The hypothesis is that the copper shielding would be stiff enough to produce restraint
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on motion near the internal accelerometers for self-excitation. Also, when PZT actuator layer
is driven for self-excitation, the electric field could be lowered by the shielding near internal
accelerometers compared with other regions, which would reduce the displacement near them.

A second possibility that may explain how the dimples occur is the hoop stress. When
the actuator layer in the panel is driven, the panel is extended in its thickness direction. The
extension in the panel's thickness direction produces the hoop stress in the accelerometer circuit
board, due to the curvature of the panel. The hoop stress may cause the dimples around the
cavity near the internal accelerometers, which are mounted on the circuit board, because the
circuit board is more compliant than the aluminum plate. The effect of the hoop stress becomes
significant if the panel is rigidly mounted on the surface of the shell.

As mentioned earlier, there is no clear answer to explain why the dimples occur before
the panel is taken apart and examined in detail. However, it is believed that the hypothesis
proposed above makes physical senses and can explain how they are produced.

7.5.4 Effect of Dimples on Closed-loop Performance

A simplified model of the shell with the panel was proposed to explain how the dimples in the
panel affect the closed-loop performance. Figure 7-26 shows a shell with mass of M, and a
panel with mass of M,, which are excited by a disturbance force f. The acceleration of the
shell's outer surface and the panel's outer surface are denoted as a and z, respectively, while
the relative acceleration due to the panel actuation is denoted by u.

Before the control input is applied, i.e., u = 0, z and a can be written as

z = (7.7)

fa =.a Ms + M,

After the controller is turned on (u 0 0), the system equation can be expressed as

f (Ms+Mp) a + M u (7.8)

z = a + u.

Now, we assume that the internal accelerometer embedded in the panel gives an output y as

y = a + au. (7.9)

Here, a is a factor that accounts for the difference between the measured acceleration y and the
actual acceleration z. If a = 1, the internal accelerometers measure the actual acceleration for
self-excitation. On the other hand, if there are dimples inside the panel, a would be less than 1.
Specifically, if there is about a 10 dB difference between the measured and actual acceleration
for self-excitation as in Figure 7-22, a would be about 13.

If the controller is designed such that the measured acceleration y is exactly cancelled, i.e.,
u is chosen as

au = ,_ (7.10)
a
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Figure 7-26: Simplified model for the shell with the panel.

then the closed-loop responses a and z can be computed using Equation 7.8, which yields

fa = + ( - (7.11)
Ms +(1--21)Mp

z = 1---a

a1

1- (M.,+ M,)
f a I)

M 8 +M 1Ms+M Ms + (1- 2aMP

Comparing Equation 7.7 with Equation 7.11, we can find the ratio of open-loop (OL) and
closed-loop (CL) a and z as

1 + My
aCL Ms
aOL + 1

(7.12)
1 M,

zCL _a Ms
ZCL 'I ZCL M___

zOL

Figure 7-27 shows the magnitude of ratio - and - as a varies from 0 to 1 for - = 1.
aOL ZOL a

Note that My represents the total mass of 55 panels mounted on the shell, which is similar to
the mass of the shell. For a = 1, the closed-loop z is exactly cancelled as expected, while the
closed-loop a is increased by j (= 2.5 dB). However, for a = }, i.e., the internal accelerometers33
measure only 30% of the actual acceleration for self-excitation, the closed-loop z is increased by
18 dB, and the closed-loop a is increased by 12 dB. What this result implies is that the actual
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Figure 7-27: Ratio of open-loop and closed-loop a and z. (a) 19 1 (b) .

acceleration may be increased if there are dimples inside the panel and we design controllers
reducing the measured acceleration with an objective of attenuating the actual acceleration.
Also, note that the closed-loop response zCL becomes out of phase with the open-loop response

ZOL, if a is greater than (, which is 0.25 in this case ( - = 1).

In order to see whether the bottom acceleration level was increased due to controllers, which
should be true if there are dimples in the panel, the open-loop and closed-loop bottom accel-
eration was compared. Figure 7-28 shows both open-loop and closed-loop bottom acceleration
(upper plot) and their ratio (lower plot) for panel H3. It demonstrates that the closed-loop
bottom acceleration is amplified by 15 dB at 400 Hz, which is similar to the results in Figure 7-
27. The level of amplification using the tonal feedback controllers for other panels are given
in Table 7.4. Most panels show the level of amplification 10-20 dB, except for panels E2 and
E3. This implies that the internal accelerometers in most panels do not measure the actual
acceleration over their surfaces for self-excitation.

7.5.5 Simulated Closed-loop Responses Using Tonal Feedback Controller

The closed-loop acceleration was simulated using eight external accelerometers attached on a
panel, to see how the actual acceleration over the surface of the panel behaves when the con-
troller is operating. Figure 7-29 shows the location and number of eight external accelerometers
mounted on the surface of the panel. The tonal feedback controller was designed in the same
way as in Section 7.4, such that the closed-loop response measured by internal accelerometer
was reduced by more than 20 dB at 400 Hz. Then, the closed-loop responses measured by eight
external accelerometers on the top surface of the panel were simulated. Figure 7-30(a) and (b)
show open-loop and closed-loop responses over the surface of the panel at 400 Hz, respectively,
while Figure 7-30(c) shows their ratio in dB scale. Note that the positive ratio represents the
amplification of the disturbance. As expected from the results in Section 7.5.4, the actual accel-
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Table 7.4: The level of amplification for
trollers at 400 Hz.

bottom accelerations using the tonal feedback con-

Panel Amplification Panel Amplification Panel Amplification
level(dB) level(dB) level(dB)

Al 9.9 El 5.4 Il 10.4
A2 12.0 E2 1.9 12 12.0
A3 14.5 E3 1.4 13 11.4
A4 11.6 E4 4.4 14 9.1
A5 10.4 E5 6.6 15 15.6
B1 12.8 F1 8.3 J1 13.7
B2 12.2 F2 12.2 J2 8.5
B3 9.2 F3 24.0 J3 9.0
B4 11.5 F4 11.0 J4 9.9
B5 14.6 F5 7.4 J5 10.9
C1 10.9 G1 6.2 Ki 13.6
C2 12.7 G2 8.7 K2 17.3
C3 11.6 G3 10.4 K3 20.4
C4 11.8 G4 7.1 K4 16.1
C5 17.0 G5 12.3 K5 11.1
Dl 12.0 H1 10.7
D2 11.3 H2 10.0
D3 10.0 H3 11.3
D4 12.9 H4 8.5
D5 9.7 H5 11.4
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Figure 7-31: Acceleration survey using 100 external accelerometers.

eration over the surface of panel was increased by 10-20 dB due to the controller, although the

internal acceleration, which is what the controller was asked to reduce, was reduced by more

than 20 dB. This simulation result may explain why the actual noise was amplified, although

the compensated acceleration over the surface of the shell was reduced using the tonal feedback

controllers.

7.5.6 Acceleration Survey of a Panel Using 100 External Accelerometers

In Section 7.5.2, a laser scanning vibrometer was used to measure the deformed shape of a

suspended panel due to self-excitation. However, it was necessary to investigate the dynamics

of panels mounted on the shell in order to see how panels behave for self-excitation on the shell.

Unfortunately, the laser scanning vibrometer couldn't be used in this case, because it could

not be transported to the NGC facility. Instead, 100 external accelerometers were attached on

the top surface of panel E3 on the shell (Figure 7-31), and its deformed shape was measured

by driving the actuator layer in the panel. The result is shown in Figure 7-32. As mentioned

in Section 7.5.2, the dimples are not clear, due to the aluminum plate on the panel. However,
Figure 7-32 indicates that there is another serious problem in the panels. For self-excitation,
the upper-left part and upper-middle part of panel E3 move out of phase with other parts in

the panel. The result implies that some bristle blocks in the panel actuator layer were poled

backwards. The effect of the incorrectly-poled bristle blocks in the panels on the closed-loop

performance has not been explored in this study; it would depend on how many panels have

those bristle blocks and how many backward bristle blocks those panels have. However, it

is clear that they would make the closed-loop performance worse in terms of the hydrophone

signal.
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Figure 7-32: Deformed shape of Panel E3 at 400 Hz.

7.6 Summary

In this chapter, the results of closed-loop experiments obtained with multiple SISO controllers
were reported. Tonal feedback controllers were chosen as SISO controller scheme, rather than
broadband feedback controllers, due to the excessive time delay and significant interaction be-
tween panels. The low-frequency feedthrough effect was compensated for during the controller
design, resulting in unstable controllers. 52 tonal feedback controllers, all of which were un-
stable themselves, were successfully designed and implemented. The compensated acceleration
measured by internal accelerometers was reduced by 20 dB at 400 Hz over the surface of the
shell. However, the actual noise level measured by six hydrophones was found to be increased.
After performing several tests to figure out why, it turned out that there are several serious
problems in the panels, including irregular deformed shape for self-excitation and backwards
bristle blocks. The main problem, however, is that the internal accelerometers embedded in the
panel cannot measure the actual acceleration, primarily due to the dimples that occur during
self-excitation. The effect on the closed-loop performance was explored, and the result is that it
seriously deteriorates the closed-loop performance. For example, when the internal accelerom-
eter measures 30% of the actual acceleration for self-excitation and controllers are designed
to cancel the measured acceleration, the simple model indicates that the actual acceleration
is increased by 18 dB. This result was verified by the control simulation on a panel on which
eight external accelerometers were attached. Through the investigation, it is believed that the
main reason for the increased noise level is the dimpling that occur during self-excitation, which
prevents the internal accelerometers from measuring the actual acceleration. However, it still
remains to determine definitively why the dimpling occurs.
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Chapter 8

Conclusions and Recommendations

8.1 Summary and Conclusions

This thesis presents the development of control architectures and methodologies for reducing
noise radiated from a thick-walled cylindrical shell. One of the challenges in this problem is that
directly controlling the shell dynamics is unfeasible because the shell is very stiff due to its large
thickness. Also, feedback control schemes should be adopted as a control architecture, rather
than feedforward control, because the source of disturbance is not available during the control
action. In contrast to feedforward control, feedback control has had much less attention in the
area of active structural acoustic control, primarily due to its difficulty of implementation for
acoustic control system. Finally, the large number of sensor-actuator pairs mounted on the shell
should be handled efficiently in order to achieve the goal of reducing the radiated noise. Design
and implementation of controllers with large number of sensors and actuators is a challenging
problem.

In order to overcome the first difficulty, which is to reduce the radiated noise from stiff
structures, the use of external piezoelectric panels was proposed in this thesis. The approach
is to cover the shell's outer surface with those panels and to control the motion of the panel's
outer surface, not the motion of the shell. The piezoelectric panel contains several embedded
accelerometers mounted to its outer and inner surfaces, which can sense both the motion of the
panel base (i.e., outer motion of the shell) and the motion of the panel's outer surface (i.e.,
the radiating surface). Also, the panel contains PZT rods embedded in a stiff polymer matrix.
This configuration results in an almost collocated sensor-actuator pair, which is desirable for
controlling modally-dense systems, such as structural systems.

The use of external piezoelectric panels proposed in this thesis has significant advantages for
stiff structures over the conventional way of directly controlling the structure. One of the im-
portant advantages is that the former needs much less control authority than the latter, because
controlling panels requires less actuation power than controlling the stiff shell. Furthermore,
the approach allows the control system to be significantly less dependent on the dynamics and
characteristics of the structure than directly controlling the structure. The rationale is that the
controller is designed on the transfer function of the panel, which can be simply approximated
as a double differentiation (s2), not the transfer function of the shell, which is a complex modal
system. Therefore, we can expect that the approach will result in robust control systems.

Two different feedback control architectures have been proposed in this thesis to efficiently
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reduce the radiated noise, which are denoted as "local" and "global" controllers, respectively.
The local controllers are designed and implemented for each panel, with an objective of reducing
the motion of panel's outer surface, i.e., the radiating surface. Since the length of each panel is
much less than the acoustic wavelength of interest, the noise radiated from each panel will be
reduced if the averaged motion of panel's outer surface is reduced. Because internal accelerom-
eters in each panel can measure both the motion of the shell and the radiating surface, two
different feedback control configurations have been proposed for panel-level local controllers.
The first one takes as its input the output of the accelerometers mounted to the outer surface of
the panel and aims at reducing the output signal, which provides information about the aver-
aged motion of each panel's outer surface. On the other hand, the second feedback loop, which
is denoted as "feedforward" loop in this thesis due to its strong dependence on the disturbance
source, measures the motion of the surface of the shell and feeds it back to the panel actuator
layer.

Two undesirable panel dynamics, which are low-frequency feedthrough due to electrome-
chanical coupling and high-frequency resonance due to accelerometer dynamics, were identi-
fied and found to limit the achievable closed-loop performance significantly. Low-frequency
feedthrough compensator and high-frequency notch filter have been devised to compensate
for those undesirable panel dynamics during the controller design procedure. Several control
algorithms were investigated, including analog-only, hybrid analog-digital, and digital-only con-
trollers, in order to find the control configuration that satisfies good performance and stability,
low cost, and easy implementation. Each configuration has its own advantages and disadvan-
tages, e.g., those which yield good performance and stability require high cost and vice versa.
Experimental results show that 15-30 dB of attenuation can be achieved between 200 and
2000 Hz in most local control configurations. However, among the configurations considered in
this thesis, the hybrid analog-digital control scheme, with its digital and analog sub-controller
used to control the low and high frequency behavior of the system, respectively, is believed to
be the best control configuration given the constraint of the problem. The rationale is that the
hybrid control scheme contains the advantages of both analog and digital controllers, and yields
excellent performance similar to the analog-only controller, which produces the best closed-loop
performance.

In contrast to the local controller, the "global" controller considers the dynamics of all
the panels simultaneously and aims at making the shell a weak radiator. Since 55 panels are
mounted on the shell, the global controller should be able to coordinate those large number
of sensors and actuators efficiently. In order to satisfy these requirements, a new wavenumber
domain sensing method has been developed and applied to feedback control design for reducing
the radiated noise. The proposed approach is to minimize the total acoustic power radiated
from vibrating structures using a formulation based on the wavenumber domain. The target
wavenumbers in the supersonic domain (i.e., the radiating wavenumbers) can be determined
when the bandwidth of the disturbance spectrum is known, and a state-space model can be
found to estimate the magnitude of these supersonic wavenumber components. Once a state-
space model of the structure that can be used for active structural acoustic control is developed,
a modern control design paradigm, such as H 2 or Hoo controllers, can be applied to minimize
the acoustic power radiated from vibrating structures.

One of the significant advantages of the new wavenumber domain sensing method is that
it greatly reduces the effort to model the acoustic radiation from the structure. The discrete
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wavenumber transform matrix, where sensor measurements are processed, is obtained from the
definition of wavenumber transform, not from the structural acoustic models. Furthermore, the
performance weights, which are required for model-based controller design, can be selected such
that the difference between the actual and estimated acoustic power is minimized, if we have
enough information on the actual acoustic power. If we cannot get the actual acoustic power
due to the insufficient measurements or complexity of the plant, we can still use the performance
weights as design knobs for optimal controller design. The new wavenumber domain sensing
method enables the closed-loop performance to be insensitive to the availability of the actual
acoustic power.

Another significant advantage of the new sensing method is that it simplifies the design of
MIMO LQG controllers for active structural acoustic control by reducing the number of transfer
functions that need to be identified. The method reduces the size of transfer function matrix
to be identified from (the number of sensors) 2 to the order of (the number of wavenumber
components to be considered) 2 . These advantages are critical when the structure is complex
enough that we may not be able to get an accurate model for the plant and, therefore, we need
to perform the system identification to get a plant model.

The new sensing method has been numerically validated on a beam structure with 10 active
composite panels, and a thick-walled cylindrical shell with 55 active composite panels mounted
on its surface. Finite element method and analytic expressions were used to model the structural
and acoustic responses, respectively, and to compute the open-loop and closed-loop behavior of
the system. Once frequency responses were computed for the structural system from the model,
the plant model needed to design LQG controller was obtained by doing system identification
on those computed frequency responses. No acoustic model was included in the LQG controller
designed to reduce the acoustic power from vibrating structures. The results of computer
simulation show that the method greatly simplifies the design of MIMO LQG controllers for
active structural acoustic control, by reducing the effort to model the acoustic radiation from
the structure and allowing the systematic development of state-space models for wavenumber
components in the supersonic region. Also, the numerical examples demonstrate that the closed-
loop performance is still satisfactory in spite of the unavailability of the acoustic power for the
controller design. In other words, the weights selected in an ad-hoc way, not using the actual
acoustic power, yielded the closed-loop performance similar to the weights selected optimally

using the actual acoustic power. This has a critical implication in the control system design
for active structural acoustic control, because it is not easy to compute or measure the acoustic
power for most engineering systems, and therefore use it in the controller design. In addition to
making the acoustic modeling unnecessary to design controllers, the new wavenumber domain
sensing method significantly simplifies the controller design by reducing the transfer functions
to be considered from 100 to 25 in the case of beam structures, and from 3025 to 25 in the case
of cylindrical shells. This advantage again makes the method a useful tool to design feedback
controllers for reducing the radiated noise from structures.

After mounting 55 active composite panels on the cylindrical shell, panel-level local con-
trollers were designed and experimentally implemented on the shell vibrating in water. Due

to the unexplained excessive time delay and significant interaction between panels, tonal feed-

back controllers were chosen using a SISO controller scheme, rather than broadband feedback

controllers. 52 tonal feedback controllers, all of which ended up with open-loop unstable con-
trollers due to the compensation for low-frequency feedthrough, were successfully designed and
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implemented. More than 20 dB of attenuation in the compensated acceleration, which was

measured by internal accelerometers, was achieved over the radiating surface at 400 Hz using

the tonal feedback controllers. However, the actual noise level measured by six hydrophones

turned out to be increased despite the reduced acceleration over the radiating surface, so sev-

eral tests were performed to investigate what causes this contradictory-looking results. The

test results indicate that there are several serious problems in the panels, which prevent the

internal accelerometers embedded in the panel from measuring the actual acceleration. Specif-

ically, a laser scanning vibrometer test verified that dimples occur during self-excitation on

the locations where internal accelerometers are mounted. Simulation results using eight ex-

ternal accelerometers showed that the actual acceleration over the radiating surface can be

significantly increased if the internal accelerometers cannot measure the actual acceleration

and controllers are designed to cancel those inaccurate measurements. Although it still remains

to figure out why dimples occur during self-excitation, it is believed that the main reason for

the increased noise level, despite the attenuation of measured acceleration, is the dimpling that

occurs during self-excitation, which prevents the internal accelerometers from measuring the

actual acceleration.

8.2 Contributions

The principle contributions from this thesis are in the development of control design techniques

to reduce the radiated noise from stiff structures. These contributions are:

1. The use of external piezoelectric panels has been proposed to develop active acoustic

control systems for stiff structures. Its main philosophy is to minimize the coupling

between the structure and the control system. It is the opposite of the conventional

method of directly controlling the structure, which tries to maximize that coupling. The

approach proposed in this thesis ends up with robust control systems, by making the

controllers insensitive to the shell dynamics.

2. A method of compensating for undesirable dynamics in active composite panels has been

developed. The low-frequency feedthrough, which occurs due to mechanical coupling

between internal accelerometers and the shell, and electrical coupling between panel ac-

tuator layer and accelerometers, could be compensated efficiently by designing the low-

frequency feedthrough compensator and subtracting it from the plant transfer function.

On the other hand, the high-frequency resonance, which occurs due to the participation

of accelerometer dynamics into the system bandwidth, could be cancelled using notch

filters.

3. Several panel-level local controllers have been designed, implemented, and compared, with

an objective of finding the local control configuration that will be eventually incorporated

in the shell in order to reduce the motion of panel's outer surface. They include analog-

only controller, hybrid analog-digital controller, digital-only controller, and tonal feedback

controller, etc. Most configurations yielded 15-30 dB of attenuation between 200 and

2000 Hz, although the analog-only controller showed the best closed-loop performance.
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4. The concept of digital notch filters has been proposed. Digital filters may be preferred to
analog filters due to their easiness in tuning the frequency to be notched out. However,
the digital notch filters cannot be implemented directly in this problem because the target
frequency is relatively high, compared with the sampling frequency. A novel method of
designing digital notch filters resolved this difficulty, and the notch filters were successfully
implemented to cancel out the high-frequency resonance due to accelerometers dynamics.

5. A new wavenumber domain sensing method has been developed and used to design active
control systems for reducing the radiated noise from vibrating structures. The method
aims at minimizing the acoustic power using the formulation in the wavenumber domain.
The method allows the design of active acoustic control systems to be much easier, because
it doesn't require the acoustic modeling process to design active structural acoustic control
systems, and reduces the number of inputs and outputs of controllers from (the number
of sensors) 2 to the order of (the number of wavenumber components to be considered) 2 .

6. Three dimensional finite element model has been developed to simulate the structural
responses of a finite cylindrical shell with active composite panels. The motivation for
the modeling is not to correlate the simulation result with the experimental result, nor
to generate the plant model needed for the synthesis of the model-based controller. The
main objective of the modeling performed in this study is to generate the mathematical
model that captures the important dynamics of the real test-bed, with the same order
of the complexity, such that the proposed control algorithms can be tested on the model
before they are experimentally implemented.

7. The wavenumber domain feedback control method developed in this thesis was numeri-
cally validated on the 3D finite element model. In order to mimic the controller design and
implementation procedure for the real systems, the model was used only to obtain open-
loop and closed-loop responses, and not used to get a plant model for controller synthesis.
The results of numerical studies showed that the method greatly simplifies the design of
MIMO LQG controllers for active structural acoustic control, by mitigating the effort to
model the acoustic radiation from the structure, allowing the systematic development of
state-space models for radiating wavenumber components, and reducing significantly the
number of transfer functions to be identified. Furthermore, it was found that the closed-
loop performance is not very sensitive to whether we have enough information about the
acoustic power in advance.

8. The wavenumber domain feedback control method has been extended to reduce the radi-
ated noise from general three-dimensional structures. It was shown that only first a few
wavenumber components are enough to estimate and reduce the acoustic power in the
reasonable bandwidth of interest.

9. Fifty-two tonal feedback controllers, which had to be unstable to compensate for the
low-frequency feedthrough, were successfully implemented on the cylindrical shell with 55
panels mounted. More than 20 dB of attenuation was achieved at the target frequency in
terms of compensated acceleration measured by the internal accelerometers.

10. Several tests were performed to investigate the problems in panels, and showed that the
dimples that occur during self-excitation are the main reasons for the increased noise level
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under closed-loop control. This information is important for any future redesign of the
panels.

8.3 Recommendations

Based on the results described in this thesis, the following recommendations for further research
are made:

1. The active composite panels should be redesigned. In particular, it is necessary for the in-
ternal accelerometers to be redesigned, considering the problems that originate from them,
such as low-frequency feedthrough, high-frequency resonance, dimples, etc. Furthermore,
an aluminum plate mounted on the panel to reduce the high-frequency accelerometer
dynamics increased its weight, which made interaction between panels significant. One
possible way of redesigning panels is to use two layers of panels as a single sensor-actuator
pair. In other words, the lower panel, which is mounted on the shell, contains only ac-
tuator layer without any holes, while the upper panel, which is mounted on top of lower
panels, contains internal accelerometers. By doing that, the electrical coupling between
actuator layer and internal accelerometers can be avoided and the dimples will not appear.

2. The current panel contains injection-molded piezoceramic accelerometers, which are big
and have large mass. As a result, they can yield output signals with high signal-to-noise
ratio, but may cause a significant resonance near the bandwidth of interest. Therefore, in
the future, other type of accelerometers should be considered, such as small MEMS-type
accelerometers. Furthermore, simultaneous use of large and small accelerometers may be
considered so that the advantages of each accelerometer can be preserved.

3. The PZT actuator layer in the current panels works as expected, in the sense that the
displacement of panels is proportional to the voltage input to the actuator layer. However,
it turned out that the PZT actuator layer in the current panels is unnecessarily thick,
given the displacement required to cancel the shell motion. Considering this fact, future
panels should be thinner than the current ones, which will reduce the mass of the panels,
and allow the use of two layers of panels as a single set.

4. Although it turned out that the hybrid analog-digital control scheme has many of the
advantages of both analog and digital controllers, it couldn't be implemented for 55 panels
mounted on the shell due to the cost of building analog electronics. However, it should
be pursued in the future in order to improve the closed-loop performance. The difficulty
of tuning the target frequency for notch filters, which was proposed to cancel the high-
frequency resonance due to accelerometer dynamics, may be lessened by using analog-
programmable filters or digital notch filters proposed in this thesis.

5. The concept of the wavenumber domain feedback control was validated numerically in
this thesis. However, the controller should be implemented experimentally in the future
to verify that it works for real systems.
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6. The active acoustic control systems for the cylindrical shell should be able to work as
well, even when the shell's characteristics are changing. This can happen when the shell's
speed or depth in water is changing. Therefore, the control systems should be developed
in the future that are robust enough to deal with the uncertainty in the plant, or adaptive
enough to modify their functions to maintain the control performance for time-varying
plants. Although the use of external piezoelectric panels enables the control systems
to be insensitive to the shell's characteristics to some extent, it would be better if the
control systems can be robust and adaptive enough to handle the unexpected change in
the environment.
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Appendix A

Finite Element Formulation of the
Cylindrical Shell

In Chapter 2, the finite element formulation for the cylindrical shell was presented. This ap-

pendix presents the expressions for the matrices used in Chapter 2. Recall that the displacement

at the mid-surface of the cylindrical shell can be written as [Ashwell, 1972]

uo = ac2 cos P + ac4 sin y + C5 + C7X + (acii + ascio - a 2c2) P (A.1)

- a C17P2 + c8xS0 - a3cig 3
26

vo = (ci + c2x) sin p - (c3 + C4X) cos 'p + c6 + (-a 2 cig ± ac20 ) x

+ a 2c16p + a2 C17X(P + a2 C18W 2 + a2 clxso2

wo = - (Cl + c 2 x) cos p - (c3 + c4x) sin W + (ac9 - a 2c 16 ) + (acio - a 2c 17 ) X

-a 2 c18 -- a 2ci9X - C12X2 - C13X3 - C14X2P - Ci5z3-alsp-~~xp-C2 6 26

where (uo, vo, wo) is the displacement at the mid-surface in the axial, circumferential, and radial

directions, respectively, a is the radius of the cylindrical shell, (x,p) is the coordinate of the

shell element (Figure A-1), and Ci, c2, ..., C20 are constants used to define the displacement field,
which should be determined by the nodal displacements. Equation A.1 can also be written in

matrix form as
NU

uo = Nec = N c, (A.2)

N.1_
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where uo = [uo vo wo]T, c = [c1 c 2 ... c 20 ]T , and No, Nv and N, are 1 x 20 row vectors that
represent the relationships between c and uo, vo, and wo, respectively. They are written as

= [ 0 a cos o 0 asin p 1 0

-ja 3 P 2 0 (as -1as 3)

x xo 0 0 ao 0 0 0 0 0 (A.3)
-a 2so]

= [ sin9 x sin P - cos P -xcos P 0 1 0 0 0 0 0 0 0 0
0 a 2 a 2 xp 1 a 2 P 2 (-a 2 X2 - a2x) ax ]

= [ - cos p -x cos p -sin p -xsin p 0 0 0 0 a ax
-12 -1z3 _1 z2 13 -a 2 _a 2 x-~x -x -~ 'P ~x 6 -a2p -a2xp 0 ] .

The next step is to express c in terms of the nodal displacements. Let (u, V, Wk, k,,, #,k)
(k = 1, 2,3,4) be the nodal displacements at the kth node in the element. The nodal num-
bers are defined in Figure A-1. Using the definition of Ox and #y in Equation 2.2, the nodal
displacements at the kth node can be written as (k = 1, 2, 3,4)

(A.4)Uk = Nu(xk, Oc) c

Vk = Nv (xk, O) c

Wk = Nw(xk, SO/) C

Ox,k
oNw (x, P/c)

1 x
=- a[Nc (z, A)

Nw (zk, OP/)]
- cI

where (xk, Wk) is the coordinate at the kth nodal point, defined as

xk =

d
-k = 1,4

, k = 2,3
2

, Pk =
- , k = 1,2

- ff, k = 3,4
2a

(A.5)

Therefore, the nodal displacement U = [ii i # ,1 #y,1 - U4 v4 W4 #f, 4 #$,4] can be written
as

U = Tge c,

where the matrix of transformation from c to U, Te, is expressed as

(A.6)

Nu (X/, 'Pc)
Nv (xk, 'P)

N Nv(z , N P)
O8N (zk, pOk)

[Nv (zk, Pk) --- Xk I
, k = 1, 2,3,4.
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Nu (x, P)

Nv (x, P)

Nw (x, P) 0

1
-a

(A.7)



Using T, the displacement field at the mid-surface, uo, can be represented in terms of the

nodal displacements, U, as
uo = Nec = NcT U . (A.8)

Also, using Equation 2.3 and 2.4, the displacement and strain field at (x, y, z) can be written

in terms of the nodal displacements, U, as

u = HU (A.9)
e = BU,

where H and B are the displacement interpolation matrix, and the strain-displacement matrix
[Bathe, 1996], respectively, defined as (note that y = a9)

BN. (x, 9p)
N. (x, p) - zx

ax

H z [N(x, w) T i (A.10)N, (x, p) -Nv (x, (.1
a B Y I

N, (x, 9)

ONu (x, )
Ox

1 Nv (x, P) Nw (x, P)
- ' +
a

1 oNU (x, (p)
a 099

a

+Nv (x, 9p)
ax

-z
1 2Nw (x, p)

a2 a02

2 8 2Nw (x, y)

a OxO9

1 0Nv (x, 9 )
a2 099

2 oN, (x, 9)
a Ox

= o - zX}T .

Here, Eo and x are the strains and the change of curvature defined in Equation 2.4 and 2.5,
evaluated at the mid-surface. They are written as

ONu (x, W)
ax

1 ON, (x, 9)
a 09

1 ONu (x, 99)

a 099

+ N (x, p)
a

+N, (x, 9p)
Ox

1 0 2Nw (x, 9 )

a2 OW2

2 8 2Nw (x, 99)
a Ox9p9

1 BNv (x, 9)
a2 099

2 ONv (x, 9)
a OX

Substituting Equation A.9 into Equation 2.13, and assembling all the elements, we obtain the

equation of motion for the cylindrical shell.
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B =

O2 Nw (x, p)
0X 2

T-1uc

a 2 Nw (x, 99)
Ox

2

. (A.11)
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Figure A-1: An element of the cylindrical shell.
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Appendix B

Basic Op-Amp Circuits for
Controller Implementation

This appendix presents basic analog circuits consisting of operational amplifiers (Op-amp) for
the feedback and feedforward controllers implemented in Chapter 6. The circuits introduced
in this appendix will be extensively used to build the circuits for analog feedback, analog feed-
forward, hybrid analog/digital feedback controllers, etc., as shown in the following appendices.
Only the circuit diagram and its transfer function are shown here for brevity. More information
on the detailed derivation of the transfer function and the characteristics of the circuit can be
found in [Ghausi, 1981] and [Coughlin, 1991]. It should also be noted that the transfer functions
given here are derived for the ideal infinite gain op-amps.

An Inverting Amplifier

Figure B-1 shows a schematic of the inverting amplifier, which is one of the most widely used
op-amp circuits. It consists of two resistors, R 1 and R 2 . The transfer function of the circuit

Vin

vout

Figure B-1: An inverting amplifier.
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V1

V2

R vout

Figure B-2: An inverting adder.

can be written as
Vut (s) R2(B1
Vi (s) R1

Ideally, the circuit should not show any phase delay, because its transfer function is just a
constant gain. However, the actual circuit has a phase delay, although it is not significant in low-
frequency range, because an op-amp has a gain-bandwidth product that limits its performance.
The phase delay may become significant in high-frequency range, especially when the gain of
the circuit, -, is very high. Since the controllers designed in this study generally need high-
gain amplifiers, it is better to build several inverting amplifiers with reasonable gains in series,
rather than one amplifier with a high gain.

An Inverting Adder

The circuit of an inverting adder is shown in Figure B-2 . Its basic characteristics are the same
as the inverting amplifier shown in Figure B-1. The relationship between input and output
voltages can be written as

Vt (s) R1 V (s) + R3V2 (S . (B.2)

If the same resistor is used for three resistors in the figure, i.e., R 1 = = R 3 , the relationship
in Equation B.2 is simplified to

Vout (s) = - [V1 (s) + V2 (s)] . (B.3)

In this thesis, this circuit is generally used to add two signals from feedback and feedforward
controllers, in order to produce the control input to the power amplifier, which is connected to
the embedded actuator in the active composite panel.
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C

in

vout

Figure B-3: An inverting low-pass filter.

The Inverting Low-pass Filter

Figure B-3 shows the circuit of an inverting low-pass filter with two resistors R 1 , R 2 and one
capacitor C. Its transfer function is given by

Vut (s) R2 1

Vin (s) R1 1 + R 2 Cs

Equation B.4 indicates that the DC gain and the cut-off frequency, w, (rad/sec), are given by

R2 1
DC gain = R 2  C . (B.5)

R1 'w R2C

This circuit has two applications in this thesis. The first usage of this circuit is to approxi-
mate an integrator. Since we measure the accelerations using the embedded accelerometers in
the active composite panels, we need integrators to get velocity or displacement from accelera-

tion. However, a pure integrator with an infinite DC gain cannot be implemented in practice,
because a small DC offset in the input voltage will saturate the circuit. An alternative to the
pure integrator is a low-pass filter with a low cut-off frequency, as shown in Figure B-3. The
frequency responses of a pure integrator and a low-pass filter are compared in Figure B-4. The

low-pass filter has a cut-off frequency of 5 Hz. As shown in the figure, the low-pass filter con-

verges to the pure integrator above 10 Hz. If the bandwidth of interest is well above 10 Hz, the
low-pass filter shown in the figure is a good approximation to the pure integrator.

The other application of the circuit in the thesis is to add a roll-off to loop-transfer functions.
Since the active composite panel has its own significant dynamics in high frequency range, the

closed-loop system may be destabilized if those effects are not considered in the controller
design. Therefore, in addition to the low-pass filters for integrating accelerations, we need
additional low-pass filters to add a roll-off at high frequency, such that the instability can be
avoided. A notch filter, which will be introduced later in this appendix, can also be used to
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Figure B-4: Comparison between a pure integrator and a low-pass filter.
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R

C-
vout

Vin+

R

Figure B-5: A high-pass filter.

reduce the effect of the panel's undesirable dynamics.

A High-Pass Filter

Figure B-5 shows a circuit of a high-pass filter used in this study. Its transfer function is given
as

Vut (S) RCs 136______ R~s(B.6)
in (s) 1 + RCs

The cut-off frequency wc of the filter is expressed as

1
WC =RC (B.7)

In this study, the high-pass filter is generally used with a high-gain amplifier to eliminate the
DC saturation, which happens when there is a small DC offset at the input to the amplifier.

A Notch Filter

The analog or hybrid analog/digital feedback controller designed in this study needs a notch
filter to cancel the undesirable dynamics of the active composite panel at high frequency. A
notch filter can be implemented as a biquadratic filter (second-order numerator and second-
order denominator), given as

G (s) = b1 s2 + b2 s + b3
ais2 + a2s + a3

Figure B-6 shows a circuit of a notch filter used in this study. It is a universal building block

for the general biquad circuit proposed by Akerbeg and Mossberg [Ghausi, 1981]. The transfer

299



__ vout

Vin +

.... rs C3

Figure B-6: A notch filter.

function for the circuit is given by

1 1+ R2 ) + R2

Vut (s) _ C3 C r4 rR3 r1R1R3C1C3 (B.9)
ia(s) C 2_+1 8+ - R2

r3 C 2  r 2R 1 R 3 C1C 2

Typically, one chooses
Ri= R 2 = R 3 =r 1 =r 2 =R (B.1)
Ci = C2 = C.

Under these conditions, the transfer function given in Equation B.9 is simplified to

s2 + (I - - -S+
Vut (s) C3 Cs r4 rs R 2 CC3

Va (s) C s2 + 1 S 1 (B.11)
r3 C R2C2

After determining the constants ai - a3, and b1 - b3 in Equation B.8 based on the controller
design requirement, and matching them with those in Equation B.11, we can determine the
values for resistors and capacitors in the circuit.

This concludes the introduction of basic op-amp circuits needed for controller implemen-
tation. In the following appendices, it will be shown how those circuits introduced in this
appendix will be used to build analog circuits for feedback and feedforward controllers designed
in Chapter 6.
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Appendix C

Analog Circuit for Analog Control
Approach

This appendix presents the analog circuit for analog control approach, i.e., analog feedback and

analog feedforward controller, which was introduced in Chapter 6. Both controllers include the

low-frequency feedthrough compensator. As mentioned in Chapter 6, the motivation for the

analog-only approach is to evaluate the proposed feedback and feedforward control approaches
on the real system, and to provide a benchmark against which the other controllers can be

compared.
Figure C-1 shows the block diagram of the analog-only control approach. Before the signals

from the accelerometers mounted on the top and bottom surface of the active composite panel

enter the feedback and feedforward controller, they are processed at the pre-amplifier, which

is a pure gain amplifier. Also, the control input is further amplified at the power amplifier, so

that high voltage input can be applied to the panel actuator layer. The power amplifier consists

of a low-pass filter at 188 Hz.
The analog circuits corresponding to the blocks "Analog feedforward" and "Analog feed-

back" in Figure C-1 are shown in Figure C-2. In the figure are also shown the signals from the

top and bottom accelerometers mounted on the panel that are processed at the pre-amplifier (yt

and Yb, respectively), and the control input u to the power amplifier. The circuit for the analog

feedback controller contain several gain amplifiers, a high-pass filter, a notch filter, and the

low-frequency feedthrough compensator. On the other hand, the circuit for the analog feedfor-

ward controller has several low-pass filters, a gain amplifier, and the low-frequency feedthrough

compensator. As mentioned in Chapter 6, a notch filter is not needed in the feedforward control

loop, because its effect is negligible well above the control bandwidth in the feedforward loop.

The circuits for both controllers consist of the basic op-amp circuits introduced in Appendix B.

The values for resistors and capacitors used in the circuit are shown in Table C.1. Since the

dynamic characteristics of the active composite panels, such as the low-frequency feedthrough

and high-frequency resonance, are different from panel to panel, those values in Table C.1 may

be subject to change, depending on which panel is used.
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Table C.1: The values of resistors and capacitors used in the circuit for analog control approach.

302

Resistor Value (kQ) Capacitor Value (nF)

R 1  15 C1 34

R 2  33 C2 24
R3 82 C3 0.1
R4 330 C4 1000
R5 330 C5 3.9
R 6  8.5 C6 0.2
R 7  1000 C7 470
R 8  400 C8 0.49
R9 4.1 C9 0.8
Rio 22 CIO 54
R11 330
R12 22
R13 1000
R 14  12
Ri5 22
R 16  13.5
R1 7  270
Ris 18
Rig 180
R 2 0 33



Figure C-1: The block diagram of the analog-only control approach.
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Appendix D

Analog Circuits for the Analog
Controller with Digital Notch Filter

This appendix presents the analog circuit for the analog controller with digital notch filter that

was introduced in Chapter 6. As mentioned in the chapter, the implementation of the notch

filters is critical to the closed-loop performance of the system, because the loop gain or controller

bandwidth must be reduced considerably to guarantee stability without the notch. The success

of using the notch significantly depends on whether the notch is tuned to the resonance of the

panel with enough accuracy. However, as shown in Chapter 2, each panel has different resonant

frequency, which makes it impractical to design and implement different analog notch filters

with different target frequencies for all the panels. The implementation of the digital notch

filter enables us to modify the frequency to be notched out in software, rather in hardware, so

that it becomes much easier to implement notch filters with different target frequencies for each

panel.
Figure D-1 shows the block diagram of the analog feedback/feedforward controller with

digital notch filter. The analog circuits corresponding to the blocks "Analog feedforward" and

"Analog feedback" in Figure D-1 are shown in Figure D-2. Both controllers include the low-

frequency feedthrough compensator. The circuit for the analog feedforward controller in the

figure is the same as that given in Appendix C. On the other hand, the circuit for the analog

feedback controller in Figure D-1 is different from its counterpart in the previous appendix in

that it doesn't have an analog notch filter. It is replaced by a digital notch filter, in which the

analog feedthrough term ("1") and the digital bandpass filter K 2 (s) are connected in parallel.

The way to design K 2 (s) is described in Chapter 6. The values for resistors and capacitors used

in the circuit are given in Table D.1.
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Figure D-1: Block diagram of the analog controller with digital notch filter.
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Table D.1: The values of resistors and capacitors used in the circuit for analog controller with

digital notch filter.

308

Resistor Value (kQ) Capacitor Value (nF)

R1  15 Ci 22
R 2  33 C2 1
R 3  82 C3 20
R 4  330 C4 1
R 5  330 C5 12.2
R 6  13.2 06 54
R 7  22 C7 1000
R 8  22 C8 3.9
R9 330 C9 0.2
Rio 22 Cio 0.49
R11 13.5 Cn 0.8
R 12  270 C12 470
R 13  18
R 14  180
R 15  33

R16  1000
R 17 12



Appendix E

Analog Circuits for Hybrid Feedback
and Analog Feedforward Control
Approach

This appendix presents the analog circuits used for a hybrid analog/digital feedback and analog

feedforward control approach. Figure E-1 shows the block diagram of the hybrid feedback and
analog feedforward controller. As mentioned in Chapter 6, the main new features of this

configuration are the complementary high-pass and low-pass filters, which control the bands in

which the analog and digital control laws act. The low-pass filter consists of a second-order
Butterworth low-pass filter with a corner frequency of 1 kHz [Ghausi, 1981]. The analog circuit

for the low-pass filter is shown in Figure E-2. Its transfer function is given by

Vut (s) _ __(E._1)

Viao (s) s2 + 2(cwcs + w2 (

where the corner frequency we and the damping ratio Ce are expressed in terms of the values

of resistors and capacitors in the circuit as

1
oc = (E.2)

4R1 R 2C 1

Typically, one chooses R1 = R 2 and C1 = 2C2 to build a second-order Butterworth low-pass

filter, so that the damping ratio (c becomes (c = 1/v2. Figure E-3 shows the frequency
response of the low-pass filter for R, = R2 = 100 kQ and C1 = 2C2 = 2.2 nF, which results in

the second-order Butterworth low-pass filter at 1 kHz.

On the other hand, the high-pass filter is implemented such that it is complementary to the

low-pass filter, so that its sum with the low-pass filter becomes unity. The analog circuit for

the complementary high-pass filter is shown in Figure E-4. As shown in the figure, it consists of
two op-amp circuits. The first one is the second-order Butterworth low-pass filter, which is the
same one as shown in Figure E-2, and the other one is the differential amplifier. The transfer

309



Figure E-1: Block diagram of the hybrid feedback and analog feedforward controller.

function of the circuit is given by

Vo ut(s) W(E3)
Vi (s) s1- 2 + 2(cws + W2

s 2 + 2(cwes

s 2 + 2(cwcs + W2

The same expressions for the corner frequency we and the damping ratio (c are used as in

Equation E.2. The resulting frequency response of the circuit for R 1 = R2 = 100 kQ, C1 = 2C2
- 2.2 nF and R 3 = 10 kQ is shown in Figure E-5.

The analog circuit for the hybrid feedback and analog feedforward control approach is shown

in Figure E-6. The circuit for the analog feedforward controller in the figure is the same as

that given in Appendix C. Also, the same notch filter as in Appendix C is used for the analog

feedback control in the hybrid feedback controller. The way to design K'D(s) in the digital

feedback control is described in Chapter 6. The values for resistors and capacitors used in the

circuit are given in Table E.1.
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Figure E-2: Analog circuit for the complementary low-pass filter.
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Figure E-3: Frequency response of a second order Butterworth low-pass filter at 1 kHz.
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Figure E-4: Analog circuit for the complementary high-pass filter.
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Figure E-5: Frequency response of the complementary high-pass filter.
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Table E.1: The values of resistors and capacitors used in the circuit for hybrid feedback and
analog feedforward control.
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Resistor Value (kQ) Capacitor Value (nF)

R1  100 C1 2.2
R2 10 C2 1.1
R3 15 C3 0.1
R4 33 C4 24
R5  56 C5 54
R 6  8.5 C6 1000
R7  1000 C7 3.9
R8  400 C8 0.2
R9 4.1 C9 0.49

Rio 22 CIO 0.8
Rn1  330 Cii 470
R 12  22
R 13  1000

R 14  12
Ri5  22
R 16  13.5
R 17  270
R18  18
Rig 180

R 2 0 33


