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ABSTRACT

This paper describes a smoothing algorithm that involves the parallel processing of the data in

subintervals with little communication among the processors. Data in the subintervals are first

processed in parallel starting from subinterval centers and processing outward to the subinterval

boundaries. After an exchange of information among processors, a final set of parallel

recursions, proceeding inward in each subinterval, yields the desired estimates. The proposed

procedure is found in general to have a total on-line computational complexity slightly higher

than that of the non-parallel implementations. However, since several processors are used in

parallel, the running time of this algorithm is much smaller than that of a single smoother

solution. Furthermore when the process to be estimated is reversible, an even-odd

decomposition of the process yields a block diagonalization that yields a further, considerable

reduction in the required computations.

1This work was performed at MIT and was supported in part by the National Science
Foundation under Grant ECS-8700903 and in part by the Army Research Office under Grant
DAAL03-86-K-0171.
2Department of Electrical Engineering, Univ. of Minnesota, Minneapolis, MN 55455.
3Laboratory for Information and Decision Systems and Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.
4Department of Electrical Engineering, Univ. of California, Davis, CA 95616.

1



L Introduction

The advent of cheap and powerful processors in the past few years, together with the relatively

high cost of communication has made decentralized estimation schemes extremely attractive and

has led to the development of a number of parallel processing algorithms for optimal smoothing

for linear state variable models. In this paper we present a new algorithm of this type which is

highly parallel in nature and requires minimal communication among processors. As in [1]-[4],

our algorithm involves the partitioning of the data interval of interest into subintervals,

processing all data segments in parallel and then combining the results of these local processing

steps. However, the approach we present is a significantly different alternative to these earlier

methods. To understand our approach conceptually, it is useful to review two of the standard

approaches to smoothing illustrated in Figure 1. One of these is the Mayne-Fraser two-filter

smoother [5] in which the smoothed estimate is computed by a forward-filtered estimate and a

reverse-filtered estimate. These two estimates can be computed in parallel, resulting in a total

run time proportional to twice the length of the entire data interval (once for the filter

computations, the other for their combination) and requiring the storage of these two

intermediate estimates over the entire interval. Note also that both processors must have access

to all of the data. A second approach, the Rauch-Tung-Striebel algorithm [5], begins with the

forward filtered estimate. At the end of this processing step we have the full smoothed estimate

at the terminal point, and we then proceed with a reverse recursion for the smoothed estimate,

using the forward filtered estimate as input. Because of its serial nature the total run time of

this algorithm is proportional to twice the data interval length but requires the storage of only

one intermediate estimate over the entire interval.

It is relatively straightforward to devise an algorithm that represents a modest

improvement to the computational demands of these two algorithms. Specifically, as illustrated

in Figure l(a), we divide the data interval in half. The first processing step then consists of the

parallel implementation of a forward and reverse filter each of which operates over only one

half of the data interval. At the point at which these computations meet, we can combine the

estimates as in the Mayne-Fraser smoother to obtain the smoothed estimate at that point, which
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can then be used to initialize parallel Rauch-Tung-Striebel recursions on each subinterval. In

this case the total processing time is proportional to the overall data interval (we have two

parallel Rauch-Tung-Striebel algorithms over half the interval length) plus one addithonal

calculation at the centerpoint. Data storage consists of two filtered estimates, but each over only

half of the data interval. Note also that each of the processors needs to access only half of the

data and the communications between processors is limited to the very simple trading of filtered

estimates at the common interval endpoint.

In this paper we present the generalization of this simple algorithm to finer subdivisions

of the data interval. As we will see, this can lead to significant reductions in processing time

and data accessing requirements, with minimal interprocessor communication. When we divide

the interval into three or more pieces, the question arises as to directions in which recursions

should proceed in each subinterval. The algorithm we describe in Section III involves

recursions that propagate radially outward toward and inward from the boundary points of each

subinterval. The key to developing these recursions is the use of a joint dynamic model,

described in the next section, for a stochastic process x(t) and its time-reversed version x(-t).

As we will also see in Section II, considerable simplifications arise for the case of a stationary,

time-reversible process if we transform the joint x(t), x(-t) dynamics into a form yielding the

even-odd decomposition of the process. A second question concerns the generalization of the

Mayne-Fraser combining step when we need to merge information at several boundary points.

As we describe in Section III, this generalization consists of a discrete two-filter-like

computation involving only the interval end points. The result is a parallel procedure which has

several attractive features and which is especially efficient for time-reversible processes.

II. Outward Dynamic Models and Even-Odd Decompositions

Consider the following, n-dimensional dynamic model defined for -T/2 < t < T/2

x(t) = F(t)x(t) + G(t)u(t) (2.1)

y(t) = H(t)x(t) + v(t) (2.2)
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where u(t) and v(t) are independent, zero-mean white noise processes with unit intensity,

independent of the initial condition x(-T/2). From [6] we have that the reversed-time

Markovian model for x(t) is given by

-x(t) = -{F(t)+G(t)GT(t)I- 1 (t)]x(t) - G(t)u(t) (2.3)

where fI(t) is the covariance of x(t) satisfying

rI(t) = F(t)fI(t) + fI(t)FT(t) + G(t)GT(t) (2.4)

and u(t) is a unit intensity white noise independent of the future of x(t). If we define

z(t) = I - l (- t )x ( - t ) , w(t) = U(-t) (2.5)

some algebra yields

z(t) = FT(-t)z(t) - 1-1 (-t)G(--t)w(t) (2.6)

and combining this with (2.1), (2.2) yields the following 2n-dimensional dynamic model

defined for 0 < t < T/2:

t(Ft) F((t)] + G(t) -1 [u(t) (2.7)[z(t)J 0 0 FT(-t)J Lz(t)J 0 -1 1 (-t)G(-t)J Lw(t)J

y(t) 1 = [H(t) 0 ][x(t)] + [v(t) (2.8)
y(-t)J 0 H(t)rl(-t) [z(t)J Lv(-t)J

where, by construction, [uT(t) , w(t)]T and [vT(t) , vT(-t)]T are independent, unit intensity

white noise processes. Note that (2.7), (2.8) describes a dynamic system for the joint evolution

of x(t) and x(-t), propagating outward from 0 to ±T/2. Note also that while (2.7), (2.8) appear

to describe decoupled evolution for the two parts of the state, statistical coupling exists, thanks

to the initial condition [x(O), z(0)] which has as its (singular covariance)

(o) I
I n-l(0)

To carry our analysis further, we focus on the time invariant stationary case, i.e. when

F,G, and H are constant and x(t) is a stationary process. We also assume that (F,G,H) is a
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minimal realization so that, in particular, the constant state covariance matrix II is the unique

positive definite solution of the Lyapunov equation

FnI + lT + GGT = 0 (2.9)

Also, without loss of generality, we can assume that G has full column rank and, thanks

to the following result, that n is diagonal and that there exists a signature matrix

S = diag (In-In ) n + n2 = n, such that

SF = FTS (2.10)

Proposition: A minimal model of the form (2.1)-(2.2) with F,G,H constant and n satisfying

(2.9) can be transformed into another minimal realization {IF G, I, IT) such that there exists a

signature matrix S obeying

SF= FTS,

and such that II is diagonal.

Proof: First, use the transformation

=(t) n-1/2x(t)

to obtain a new realization (F, G, H, I} in which the variance of the state process is

identity. Next, find a symmetric nonsingular P such that5

PF = FTP (2.11)

Decompose P as

P = VA1/ 2 SA1/2 VT

where V is a nonsingular orthogonal matrix, A1/ 2 is diagonal, and S is a signature

matrix. Note that A 1/ 2 SA1/ 2 = SA has the eigenvalues of P on its diagonal. Apply

the transformation

5The existence of a possibly nonsymmetric P (satisfying (2.11)) follows from the similarity of F

and FT. However in this case, pT has the same property, as does the symmetric matrix (p+pT)
(see also [11]).
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X(t) = Al/ 2VTx(t)

to obtain a new minimal realization {F, Z, I, A}. It is a simple matter to check that

the state variance

-T
E[x(t)x (t)] = A

is diagonal, and that

SF = FTs.

Assume now that HI is dagonal and that S and F satisfy (2.10), and consider the

following change of variables, yielding the even and odd state processes respectively:

Xe(t) = x(t) + Sz(t) (2.13)

xo(t) = x(t) - Sz(t) (2.14)

and the even and odd observations ye(t) and Yo(t) as

y,(t) = y(t) + y(-t) (2.15)

yO(t) = y(t) - y(-t) (2.16)

From (2.7), (2.8), specialized to the stationary case, and (2.10) we find that

k-O=t' (t)'l> ( >(t)I F -n- SG u (t)u
1= + I I I + (2.17)

[ 0(t) J [ F] [Xo(t) G nl SGJ [w(t)
with

x(O)- [ (I+(01 1S)(n+S) ln-n-l
E [XeT(0) x0T(0)] =

xo(O) L n- -1' I-n-s)(r-s)

(2.18)

and

y(t) 1 [H(I+nS) H(I-IS) [(t) I I v(t) 1 (2.19)e - e t~j = Z I i ~o~t)(t)]· G -II I + (2.19)
Ye(t) H(I-rIS) H(I+HS)J [(t)J I -I v(-t)J

In general there is no particular reason to prefer the model (2.17)-(2.19) over the model

(2.7), (2.8). However, we do obtain a considerable simplification if the process y(t) is
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statistically time reversible [7], i.e. if E[y(t)yT(0)] is symmetric for all t (note that this is always

true if y(t) is scalar). In this case the results of [7] imply that

II=I , HS=H , SG=GQ (2.20)

where Q is an orthogonal matrix. From this we find that (2.17) reduces to

[e(t)] - IF O]Xe(t) 0 1 e+ VS21 0 [ 1[l(t)1 (2.21)
x e(t) 0 = 0 xe(t)J 0o Gj [912(t)J

where gll(t) and I22(t) are independent white noise processes of unit intensity. Also the initial

covariance for (2.21) is

4 diag (I n, 0, In)
2

so that Xe(t) and xo(t) are independent processes (note that the initial uncertainty in x(0) is

distributed between Xe(0) and xo(0) according to the structure of S). Furthermore (2.19)

becomes

W t)( = [H 0 [xe(t)] + V[Y(t)] (2.22)
HYo(t) Xo(t)J [ ~2(t)]

where 41(t) and 42 (t) are independent white noise processes with unit intensity, so that the even

and odd measurements are decoupled as well.

HI The Parallel Smoothing Algorithm

In this section we describe a parallel algorithm for computing the optimal estimate of x(t)

satisfyingy (2.1) for To < t1 < TN given the measurements (2.2) over the same interval. The

procedure we describe involves three steps. To begin, we divide [T0 , TN] into N equal intervals

[Ti_1, Ti], i = 1,..., N, each of length T.

Step 1: As illustrated in Figure 2(a) this step consists of the parallel computation of outward

filtered estimates on each subinterval. Specifically, consider one of these intervals, say the ith,

and let -T/2 < t < T/2 denote the independent variable measured relative to the center of this

interval, namely Ti_1 + T/2. Over this interval, we recursively compute x(t I-t,t) and x(-t I-t,t)
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and their error covariances for 0 < t < T/2, where x(s I-t,t) denotes the estimate of x(s) based on

{y(t) [ 1 I < t). Using the similarity transformations as described in the preceding section, we

see that this is a standard Kalman filtering computation using, for example, the model (2.7),

(2.8) for a general, time varying model or (2.21), (2.22) for stationary models with

time-reversible outputs.

Step 2: Let us now revert back to the original time reference. From the endpoints of the
A A

subinterval computations of Step 1 we now have computed x(Ti_1 Ti_1,T i) and x(Ti ITi_ 1, Ti ),

i.e. the estimates of the endpoints given local data, and their corresponding error covariances

P(Ti_1 I Ti_l,Ti) and P(Ti ITi_l,Ti ). What we accomplish during the second step of the
A

computation is to use these local estimates to compute x(Ti I To,TN), i.e. that full smoothed

estimate at each of the endpoints based on all of the data. The form of the required

calculations, which, can be deduced from the smoothing results of [8], [9], consists of a

Mayne-Fraser-like two-filter computation involving the endpoints only, as illustrated in Figure

2(b). In particular the forward recursion computes the estimates x(T_ 1 I To,Ti) and x(T i I ToTi)

and the corresponding error covariances as i increases, starting with initial conditions

x(To I ToT1) and x(Tj1 To,Tl ) . The processing involves communication from processor to

processor as i increases, using only the endpoint filtered estimates computed in Step 1.

Specifically using the results of [8] and [9], we obtain the following recursions:

X(Ti_l To,Ti) = P(Ti_l T0,Ti) [P- (Ti-1 I TOTi_) x(T il T0,T i

+ P (Ti-1 ITil,Ti) x(Ti_1 ITi_l,T)] (3.1)

X(Ti TOT i) = X(Ti Ti_-lTi) + ()(-T/2,T/2)[x(Ti_ T 0 ,Ti) - x(Ti_1 Ti 1,Ti)l

(3.2)

The covariances P(Ti_1 Ti_1 ,Ti) is one of the endpoint covariances computed in Step 1. The

other covariances and quantities required in (3.1), (3.2) are computed recursively as follows
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(again based on [8], [9]):

P- 1(TiTi I TOT) = P-(Ti_ ITO Ti _ ) + P-1(TiTi_ I ,T) - i- 1

(3.3)

P(T i I TOTi) = P(Ti I Ti-lTi)

+<O(-T/2,T/2) [P(Ti_1 I T,Ti)-P(Ti_1 Ti-l,Ti)]DTO(-T/2,T/2)

(3.4)

where the transition matrix (D for each interval is calculated as follows, where we again revert

to the locally centered variable t:

(-T/2,t) = (F(t)- P(t) HT(t)H(t))1D'(-T/2,t) (3.5)

d 0(-T/2,-T/2) = I (3.6)

Where PO(t) is computed from

Pp(t) = F(t)PO(t) + PO(t)FT(t) + G(t)GT(t) - P(t)HT(t)H(t)P(t)

(3.7)

P0(-T/2) = 0 (3.8)

Alternatively, 0o(-T/2,T/2) can be obtained as

4O(-T/2,T/2) = P(Ti_lTi) P (Ti 1 ITi_,T) (3.9)

(c.f [9]), where P(Ti_l,Ti ) is the cross-covariance of the step 1 filtering errors at t = Ti_1 and

t = Ti, and is readily obtained from the step 1 covariance calculations. The term 1-l 1 is

subtracted in eq. (3.3) to account for the fact that the a priori information on x(*) was used
A A

twice, in computing both x(Ti_1 I TO,Ti_ 1) and x(Ti_1 ITi_lTi)

In parallel with this forward recursion, there is also an analogous backward recursion.
A

Specifically, a set of equations for computing x(Ti Ti,TN) and P(Ti I Ti,TN), given
A
x(Ti+1 I Ti+l,TN) and P(Ti+l I Ti+l,TN) can easily be derived from [8], [9], and in fact, this set

of equations is very similar to the set of equations (3.3) - (3.6).

Note that, at the end of this calculation, x(Ti I T,Ti), x(T i ITi,TN) and their respective

covariances P(Ti I TO,Ti) and P(Ti |Ti,TN) for all i are available, and can be used to compute the
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optimal smoothed estimates of x(t) at all of the endpoints, using standard smoothed results:

x(Ti j T,TN) P(T TTN) (Ps (Ti T0 ,TN ) x(T T Ti ))

+ P- (T i T Ti TiTN)) (3.10)

Ps-1 (Til TO,TN) -= P- (T i TO,Ti) + P(Ti I TiI,TN) - -1 (3.11)

Step 3: In this last step, the data is processed in parallel in a radially inward direction toward

the center of each interval, to yield the optimal smoothed estimate of x(t) for all t. Let us again

revert to the locally centered time index for the ith interval. The computation (3.10), (3.11) then

provides us with the optimal smoothed estimate of x(-) at the endpoints. As illustrated in

Figure 2(c), we can then use the Rauch-Tung-Striebel algorithm (based, for example, on the

model (2.7), (2.8) or (2.21), (2.22)) starting from these endpoints in order to reprocess the

filtered estimate in an inward direction in order to compute the optimal smoothed estimate.

Specifically let xeo(t) denote the state of our outward model (i.e. as in (2.7) or (2.21)). Then the

optimal smoothed estimate of X e(t), xeo(t), for 0 < t < T/2 is obtained as the solution of the

backwards equation

AS
dXeo(t) -1 T 1 A

>dt = e (t)+ Jxeo(t) -Peo(t))x- P (t) e o(3.12)

with the initial condition xSo(T/2) obtained from Step 2. Here, the matrices 9and j are the

dynamic matrices of the outward model (from (2.7) or (2.21)) and xeo(t) and Peo(t) are the

filtered estimate and error covariance calculated in Step 1.

IV Computational Complexity

Let us first focus on the on-line complexity, both in terms of total computations required and

the efficiencies due to parallelization. A careful examination of Steps 1 and 3 of our algorithm

reveals that the total computational load, in the worst case, is roughly 4/3 times the total load of
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the standard Rauch-Tung-Striebel algorithm. Since the actual run time of these two steps is

proportional to 1/N times this load, we see that substantial savings in run time are achievable if

a number of processors are used. Furthermore, in the reversible case the total load of Steps 1

and 3 equals that of Rauch-Tung-Striebel, yielding a further savings. Of course these savings

are somewhat countered by the on-line computations involved in Step 2. Note that Step 2 only

involves updating estimates at the interval endpoints, which, unless N is quite large, are quite

few in comparison to the total number of data points. Thus the on-line load of Step 2 is

typically negligible compared to that of Steps 1 and 3. It is worth noting, however, that the

total run time for our algorithm is the sum of a term proportional to 1/N (Steps 1 and 3) and a

term proportional to N (Step 2), so that there is an optimum number of processors in terms of

minimizing run time. Note also that our algorithm offers advantages in data accessing, as each

processor needs to use only a small part of the data, and the cost of this is the communication of

n numbers (the forward and backward recursions of Step 2) to each of its neighbors. Note also

that the total computational complexity of our procedure is lower than that of other parallel

algorithms.

Finally, let us briefly comment on the off-line complexity. In general the off-line

computational requirements for Steps 1 and 3 are roughly twice those for the

Rauch-Tung-Striebel algorithm, while in the reversible case the complexity for these steps is

the same as for the standard algorithm. The off-line computations involved in Step 2 (given by

(3.3), (3.4), (3.9), and (3.11)) are comparatively expensive per point, but again there are usually

relatively few such endpoints. Furthermore for stationary processes (3.9) need only be

calculated once.

V. Conclusion

In this paper we presented a new parallel smoothing algorithm based on a partitioning of the

data interval and the use of outward dynamic models in each subinterval, leading to parallel

outward-recursive processing in each interval, followed by the propagation of information

concerning interval endpoints and then parallel inward-recursive processing. The total on-line



computational complexity of this procedure is at worst only marginally higher than that of

non-parallel implementations. However, since a number of parallel processors are used, the

running time of this algorithm is much smaller than that of single smoother procedures. A

natural extension of this work is to consider parallel algorithms for smoothing for

boundary-value processes-i.e. processes described locally by a model of the form (2.1) - (2.2)

but with noncausal boundary conditions (c.f. [10]). An interesting issue is the interpretation of

information contained in data outside a particular interval as a boundary measurement. With

such an interpretation, we should be able to use the results of Adams et al. [10] to derive

another class of parallel smoothing algorithms. Furthermore it should also be possible to extend

these ideas to estimation for two-dimensional fields, and in this case the savings in run time and

in data accessing should be even more dramatic.
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Figure Captions

Fig. 1 Illustrating Three Processing Structures for Optimal Smoothing

(a) Mayne-Fraser Processing Structure
(b) Rauch-Tung-Striebel Processing Structure
(c) A Simple Parallel Algorithm

Fig. 2 Parallel processing algorithm:

(a) Step 1: Outward filter propagation
(b) Step 2: Communication among processors to estimate endpoints
(c) Step 3: Inward computation of smoothed estimate
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