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Introduction

In 1958 Nash published his fundamental work on the local Holder continuity

of solutions of second order parabolic equations with non-smooth coefficients

([7]). The primary purpose of that work was to study the properties of the

fundamental solution corresponding to the parabolic operator and to derive from

these properties the regularity for a general solution. Though the work is

often cited in the literature about weak solutions of elliptic and parabolic

equations, one feels that Nash's ideas were never fully understood (and maybe

still are not) and that because of this the more understandable and seemingly

more fruitful ideas of DeGiorgi ([3]) and Moser ([5], [6]) were subsequently

adopted.

In the present article, we return to Nash's ideas. In particular, by

modifying and persuing his arguments, we establish directly what we feel is the

logical goal of this line of reasoning, namely: the estiamtes for the fundamen-

tal solution first proved by D.G. Aronson ([1]). From Aronson's estimates the

parabolic Harnack inequality of Moser ([6]) and, consequently (as was shown by

Moser [6, p. 108]), Nash's local H6lder continuity of weak solutions to parabolic

equations follow. That is, our approach reverses the chronological order in

*which these results were derived originally.

To make the above statements mathematically precise we introduce the basic

notations and definitions to be used throughout this work. We will be studying

parabolic operators of the form

n
L : 1 Dx (a4j(t,x)Dx )- Dt

i ,j=l1 i ' j

where t is a real number and x = (x1,...,xn) e Rn. Our basic assumptions on

the matrix a(t,x) (aij(t,x)) are symmetry, (ie. aij = aj4), and the

existence of a number X c (0,1] such that for all (t,x) e Rn+l and all
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Rn

X~1i 2 · a(tx)) ai (tx)aitj ·I '1& 2

i ,j=l

We may and do make the qualitative assumption that the matrix a(t,x) is

smooth; however, we emphasize that all quantitative estimates are only allowed

to depend on the dimension and the number X. Besides x, the letters y and

X will be used to denote points in Rn and the letters t,s, and r will be

reserved for real numbers.

We let r(t,x;s,y) = ra(t,x;s,y) denote the fundamental solution of the

parabolic operator L. As stated above the purpose of this paper is to use the

ideas of Nash to obtain the following estimates: for s < t

exp{-C -I -I ) C exp{-R )
exp{-C t - 51 r(t,x;s,y) < 
C(t - 5 )n/2 (t s) n/2

where C depends only on X and n. The inequalities * were first obtained by

Aronson in [1]. His proof, however, relied on Moser's parabolic Harnack ine-

quality ([6]). Our point here is to first establish the estimates (*) and then

derive the Harnack inequality as an easy consequence. The outline of the paper

is simple; the upper bound is obtained in Section 1, the lower bound in Section

2, and Harnack's inequality in Section 3.
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Section 1: The upper bound

Our proof of the upper bound for the fundamental solution is essentially

due to Nash. In particular, Nash used the same proof to derive the right side

of (*) without the exponential factor. There are various ways of passing from

his result to the one including the exponential factor. The one which we have

adopted is based on a method which was introduced in this context by E.B. Davies

([23).

(We wish to point out that Aronson's original proof ([11) of the upper

bound in (*), like the one given here, does not depend on Harnack's inequality.

Our reasons for presenting a proof here are completeness and unification of the

arguments. At the same time, it should be emphasized that the upper bound

itself is an important tool for our understanding and simplification of those

ideas of Nash needed to obtain the lower bound in Section 2.)
n

Fix an element a c Rn and set +(x) = ' X ajxi. Let
n i=l

At = i D (a. (tX)Dxj) and A =exp(-)A exp(-)At exp. If f c S(Rnitj=1 x~, ,~ At exp(~4')At ;(0,=))

(i.e. f is a positive function from the Schwartz test function space)

(Af ,f 2 p- 1) f A'f(x)f2p-l(x)dx

= f(a(a)~.)f 2P (x)dx - 2(1 - I ) j a(VpfP)-V(fP)dx.

2- ( 1 )f a(VfP) . VfP dx.
p p 2

Hence, setting uftp ( f IflP) 1/p

Rn

(Ajff fp1) < _ I Pi + f 2P p ' 1,
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where a = Ia. (This observation is the key to Davies's analysis.) At the

same time, (2 )n Ifl2 4 C[Rn If12 + R-2 I Vf ] for all R > 0; and so2 1 2

If2+B Cn( i jVf2 )(f Ifi)B

with B = 4/n. (This inequality is the one from which Nash's upper bound

comes.) Combining these, we arrive at

2p+SBp

(1.1) m(A f,f2p-) p + If12P p > 1t (- ff 2 ) p 1 fp 2p
P

for some c > 0 which depends only on n and X. Finally, let

f c S(Rn; (0,-)) and define ft by

ft(x) = exp(-,(x))f f(y)r(t,x;O,y)exp(*(y))dy,

where r = ra. Then t E CO,-) + ft c S(Rn;(O,_)) is smooth and, for p > 1:

d If l2p = 2p(Atft f2p-1l).af t 2p tt't

Hence, by (1.1), for p c [1,-):

(1.2) d iftep <- £ mftl+BP iftmpBP +- ftW2p , t t

In particular,

2t/.
(1.3) oftB2 < ea t/ If 2 , t > O.

(1.4) Lemma: Let w: [0,c) + 0O,w) be a continuous non-decreasing func-

tion and suppose that u c C1(C0,=)) is a positive function which satisfies

u (t) - ( (P-2)/ ) ul+P (t) + -p- u(t), t > O.
u'!tT) ( X
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where p c [2,-). Then, for each 6 > 0 there is a K = K(c,6) < - such that

u(t) c (Kp2)l/SPw(t)e 6 a 2t/X p t (1 - p )/B p t · O.

Proof: Set v = ea2pt/ u. Then

(v-eP) ' > _ exp( Sm2p2t/X)tP-2/wBP

and so

exp(8a2p2t/X) t
exp(Bpt/) > exp(Ba2p2s/x)sP-2 ds.

u(t)B P 2w(t)OP 0

Note that

t 22
f exp(8a 2 p2 s/x)sP-2ds = ( t )P etsP /2ds
0 Ba p 0

> ( t )P- exp[(Sp a -2a Ba2)t/] 2 2 2 sP' 2ds
BaP B8a p (1-a/p )/x

p -[1 - (1 - a/p2 )p-l]exp[( Sp2 a - a2)t/X].

Combining these, we get

e 8 a 2p 2t/x tp - 1 2 2
u(t)BP Kp2w(t)OP

where

K1 - - inf {p[1 - (1 - 6/p2 )1 > 0.
p 2

~~~~~~~k ~(Pk-2)/BPk
Now set Pk ='2 Uk(t) = IftaP k and Wk(t) = max{s Uk(s): Os4t}.

By (1.3), if Ifl2 = 1, ul(t) < exp{a 2t/X}, and by (1.2) and the lemma,
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Wk+l(t) kk+(t) (4kK) 1/82 exp(6a 2t /2kA).

Hence, there is a C < w, depending only on n,X and 6 > O, such that

(1.5) sup wk(t) ( C expC[( + 6)o2t/xl.
k

(1.6) Theorem: There is a C < w, depending only on n and A, such that

ra(t,x;s,y) < n/2 exp(-ly - xl2/Ct)

for all 0 c s < t < = and x,y £ Rn.

Proof: Since ra(tx;s,y) = ra (t - s,x;O,y) where aS(r,E) = a(s + r g)aS
we may and will take s = 0. Now define

Ptf(x) = exp(-p(x))f f(Y)ra(tx;O,y)exp(.-(y))dy (i.e. = ft). Then, from the
preceeding, (with 6 = 1)

Ptiflm t/47 exp(2a2t/X)Ifm2

for each t > O. At the same time, it is clear that the adjoint (Pt*)* of Pt
is given by

(Pt)* f(y) = exp(,(y))f ra(ty;O,x)exp(-.(x))f(x)dx,

where aF(r,E) = a(t - r,). Hence,

I (P*)*fl m · tn _ exp(2a2t/x)Ifl2;

and so, by duality,

tIPf'2 < exp(2a t/X)Ifim ~t~f m2 · tn-~-7-N 1'
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Finally, note that P2t = o P, where

Qt'f(x) = exp(-*(x)) f (y) ra (t,x;O,y)exp(4(y))dy,

and at (.,.) = a(. + t,.). Hence,

Ptflp t-- exp(*a2t/x)Ifil,

which is equivalent to

ra(2t,x;O,y) < exp(4a 2t/) +a · (X - y)).

We now get our estimate upon taking a: = > IY - X

It is clear that we have not fully utilized the estimate (1.6) since we

simply took 6 = 1. Had we carried 6 through the proof of Theorem (1.6), we

would have arrived at

r C(t,x;s,y) (62 exp(-Iy - x 2/( 6 + 6) At)

for each 6 > 0, where At - max{n * a(r,&)n: (r,C) e [O,t] x Rn and n e Sn- 1 }.

It is the power of his method to get such precise exponential estimates that

justifies the word "explicit" in the title of Davies's article [2].



Section 2. The Lower Bound

In this section we will establish the lower bound for the fundamental solu-

tion (i.e. the left hand side of (*)). Our procedure is, once again, basically

due to Nash. However, the upper bound just established allows us to simplify

his argument and to carry it to completion.

Lemma (2.1) (Nash's Lower Bound)

There is a constant B < - depending only on X such that for all

Ixl ( 1

e I-l2 /2 log ra(1,x;O,y)dy > -B.

Proof.

Observe that

ra(t,x;t-s,y) = ra (s,y;O,x)

where a a~ t - -,-). In particular

ra(t,x;O,y) = ra (1,y;O,x).

Set u(s,y) = ra (s,y;O,x) and G(s) = Je-Y 2log u(s,y)dy.a1

Since f u(s,y)dy = 1, G(s) < 0 and our goal is to estimate G(1) from

below. We will obtain this from a differential inequality satisfied by G.

Namely:
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G'(T) :-f Vy( e'lyI2/2
~~G (U-T)u(TyT ) - alVyU (T.y))dy

= / e'lY 2/2y-al(Vylogu(T,y))dy + f e-lYI /2vy log u * al(vylog u)dy

: -- 2y -a(y)dy + 1 f e ly1 2/2r7y-2/2 V2 y + y log u).al(y + V log u)dy

+ ½ J e'ly l/2' (y log u)- al(Vylog u)dy.

Hence

(2.2) G'(s) >-A + fI e-lY'1/2 IV log uI2dy.

In particular G(s) + As is nondecreasing on [ ,1]. Also since

f eIYI2/2(10o g u(s,y) - G(s))2dy ¢ c eI-lY 2/21v log ul2dy

we have

(2.3) G'(s) > -A + B f e-ly12/2 (log u(s,y) - G(s))2dy

for constants A and B depending only on X.

ext observe that ( log u - G(s) )2 is nonincreasing as a function of u
in [e2+G(s ) -). Also from Theorem 1.9 sup u(s,y) c K, an absolute constant.

1/2 s (1Combined with (2.3), this implies

(2.4) G'(s) > -A + B( log K- G(s) )2 f e IY12 /u(s,y)dy

for s £ [E ,1]. At the same time u(s,y)e 2+G(s)

/2u(sy)dy > f e-YI/2u(s,y)dy - (21 )n/2e2+G(s)u(s,y) e2+G(s)

> eR f u(s,y)dy - (2) 2 e 2+s)

: e -R2I2[1 - (2,r)n/ 2 e2+G(s)
{y,>{ e
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Note that, by Theorem (1.4) there exists RX, depending only on X such

sup f u(s,y)dy < .
1/2 4s <1 Iyf>R A

Applying these last remarks to (2.3) and also remembering that G(s) + As

is nondecreasing on H[ ,1], we can conclude that there exists 6x and MA,

both depending only on X, such that

(2.5) G'(s) > 6 G(s)2 for s C r[ ,1]

provided G(1) ¢ -MA. But if (2.5) holds then G(1) > - That is we have

proved

G(1) > - max( 2 ,MA).

Lemma (2.6). There exists C, depending only on X such that

ra(t,x;s,y) > 1
C(t -s)n/2

for all x and y satisfying Ix - Yl ( ¢t - s.

Proof.

By rescaling, we may take s = 0 and t = 2. We write

ra(2,x;O,y) = f ra(1,C;O,y)r8F(1,x;O,~)d&

where a = a(. + 1,.). Clearly, this leads to

ra(2,x;O,y) > y ra(1,;O,y)r(l1,x;O,)e-11 /2dJ

and by Jensen's inequality



log[(2)-n/2ra(2,x;O,y)] (2)- n/2C[e' 12 og r(1,x;20,)d

+ f e'I1 2/21og r a(1,E;O,y)df]

> -CA be Lemma (2.1).

(Remember ra(1,E;O,y) = ra (l1,y;O,) where a a(l -,).)

We are now ready to prove the lower bound estimate for the fundamental

solution.

Theorem (2.7) (Aronson). There exists C, depending only on X and n, such

that

a(tx;sy) > Sn/2 exp(- Clx - y12/(t - s)).
C(t s)n/ 2

Proof.

Again we may assume s = 0, t = 1, and this time we also assume, as we may,

that y = 0. That is, we wish to show that ra(!,x;O,O) > 1 exp(-Clx 2).

Because of Lemma (2.6), we may also assume Ixl > 1.

Given x e Rn with IxI > 1, let k be the smallest integer dominating
~2 ~ k-1 1

41xl2 and set S = n B( X ,1 )(B(y,r) = { Rn: J - yj < r}). Then,
-=l1 k 2/k

for (' c S: (1& < 1 , max - .1 <- - , and
Ik 1< <k Hk

Ix- k-1 < < . Hence, by Lemma (2.6):
/k
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k-i k-1 k-2r(l,x;0,0) = f ... f r(i,x; k-1) r k-; 'Sk-2 )

... r ( , ,l1;O,O)dj 1 ... d k-l

f | r(lx; k-1 k-2
T k &k-1; k 'k-2)

S

... r( , l;O,O)d 1 *... dEk-1

k /2 2 k-1 k/ ) ((2k)- /2)
C (nk

n k

kn/ 2 2 n/2C

Clearly the required estimate is immediate from this.
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Section 3:

In this section we show how to derive both Nash's continuity result as well

as Moser's Harnack principle from (*). Actually, there are a variety of ways in

which this can be done. Our choice has been dictated by our desire to show that

(*), and nothing more, suggices. The proof here is modelled on the argument

given by Krylov ([8]) in (cf. [4] for a similar derivation of the Harnack prin-

ciple for solutions to certain degenerate equations).

In what follows, r(E,R)(t,x;s,y) denotes the fundamental solution ot

Lu = 0 with zero boundary data on aB(&,R). That is, if

(s,y) e (0,) x B(E,r) and u(t,x) = r('R)(t,x;s,y) then Lu = 0 in

(s,-) x B(E,R), u = 0 on Is,-) x aBB(,R), and u(s,x) ='6(x - y).

(5.1) Lemma: For each 6,y · (0,1) there is an £ = e(n,X,6,y) > 0 such

that

r(E,R)(t,x;s,y) >B )
IB( , 6R) I

for all x,y e B(&,6R) and s < t satisfying yR2 t - s R2 .

Proof: By rescaling and translation, we may and will assume that E = 0 and

R = 1. For convenience, we use r to denote r(0,l). Clearly we need only

treat the case when s = 0.

Note that

r(t,x;O,y) = r(t,x;O,y) - f r(t,x;r, )u (d~ x d
[o,t) xaB(O,1) ty

where "O,y is a non-negative measure with total mass less than or equal to

one. Hence, by (*):
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r(t,x;0,y) · 1 exp[-Cly - x12/t] -C sup I exp[-(1 - 6)2/CT]
Ctn/2 0<r<t Tn/ 2

for x e B(0,6), t > 0, and y c B(0,1). In particular, there is an

r e (0,1-6) depending only on C and 6, such that

r(t,x;0,y) 1 expE-Cly - x2/t
2ctn/22CtnI 2

for all x £ B(0,6), t e (O,r2], and y with Iy - xl < r.

Finally, we use the reproducing property of r to conclude from the above

that

r(tx;0,y) ; a exp[-Kiy - xj2/t]
tn/2

for some a > 0 and K < -, depending only on r and C, for all t c (0,1]

and x,y e B(0,6) (cf. the argument used in Section 2 to pass from the lower

bound of r(t,x;s,y) for Iy - xl2/(t - s) small to the general result.)

Obviously, our estimate follows immediately from here.

In the following we use the notation Osc(u;s, ,R) to denote

2sup{lu(t,x) - u(t',x')I: s - R2 c t,t' ¢ s and x,x' E B(F,R)}.

(5.2) Lemma. For each 6 E (0,1) there is a p = p(n,X,6) c (0,1) such

that for all (s, ) e x RN and R > O:

Osc(u;s,&,6R) c p Osc(u;s,E,R)

whenever u c C'([s - R2,s] xl (,R)) satisfies Lu = 0 in

(s - R2 ,s) x B(S,R).

Proof: Let m(r) and M(r) denote, respectively, the minimum and maximum

values of u on Cs - r2,s] x B(&,r).
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Set S = {x £ B(&,6R): u(s - R2,x) > (M(R) + m(R))/2}, and assume that

ISI/IB( , R)lI > . Then, for (t,x) c [s - 62R2,s] xB(E,6R):

u(t,x) - m(R) > | (u(s - R2 ,y) - m(R)) r(E,R)(t,x;s - R2,y)dy

M(R) - m(R) j r((,R)( t,x;s - R2,y)dy
S a

> c(M(R) - m(R))/4 ;

and so m(SR) > dM(R)/4 + (1 - e/4)m(R). Hence

M(6R) - m(6R) ¢ M(R) - m(6R) < (1 - c/4)(M(R) - m(R)).

In other words, we can take p = 1 -'

(5.3) Theorem (Nash): For each 6 e (0,1) there exist C = C(u,X,6) < "c

and a = B(nX,6) e (0,1) such that for all (s, ) e R and R > 0:

Iu(t,x) - u(t',x')l < Clul /Zvx -x'l ) 
Cb([s - R2,R23 x( ,R)) R

for (t,x), (t',x') E Es - (1 - 62)R2,s] x B( ,(1 - 6)R) whenever

u E C'([s - R2,s] x B(,R)) satisfies Lu = 0 in (s - R2,s) x B(E,R).

Proof: Let (t,x), (t',x') E [s - (1 - 62 )R2,s] x B(S,(1 - 6)R) with

t' c t be given, and set t = (t - t')l/2vlx - x'|. If £ > 6R, then there is

nothing to do. If £ < 6R, choose k E Z so that 6k+1 < /R ¢ 6k. Then

tt - (c6'k+1)2,t] x B(x, 6-k+l£) [s - R2,s] x (j,R) and

(t,x') e It - z,t] x B(x,Q). Hence:

ju(t,x) u(t',x')| < Osc(u;t,x,) < pk-1 Osc(u;t,x,6-k+l t)

k-l
¢ 21ui P

Cb(Ts - R 2,s] x B(,R))
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Finally, define B by p = 60. Then

Iu(t,x) - u(t',x')l ¢ 2p -2lu l (6k + l)

Cb (s - R2,s] x B((,R))

4 2p-2mUI f
Cb([s - R2,s] x ( (,R)

We can now prove the following statement of the Harnack principle for the

operator L. Although our statement is not precisely the one given by Moser, it

can be used to easily prove his Theorem (2) in [63.

(5.4) Theorem: Let 0 < a < B < 1 and y c (0,1) be given. Then there

is an M = M(n,X,a,8,y) < - such that for all (s,x) c R x RN, all R > 0, and

all non-negative u e C'(Cs - R2,s] x T(x,R)) satisfying Lu = 0, one has that

u(t,y) c Mu(s,x)

for all (t,y) e Es - sR2,s - aR2] x (x,6R).

Proof: By translation and rescalng we may and will assume that

(s,x) = (0,0) and R = 1. Also, we assume that u(O,O) = 1.

From Lemma (5.1) we know that there is an E = c(n,x,a) > 0 such that for

all r c [-1,a] and X > 0:

1 = u(O,O) > J r(,' 1 )(O,O;rn)u(rn)dn

> cxlS(r,A) j

where S(r,X) -n C B(O, 1-4 ): u(r,n) X A}.

Next, let p = p(n,X,1l2) be the constant in Lemma (5.2) and set

= (1 - p)/2 and K = (1 + 1/p)/2. Also define r(X) = (2/ nCax)1/n for

X > O, where fn = IB(0,1)1. Now suppose that (t,y) c (-1,-a) x B(O,1- )

n 2~~.-- - -
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and X > 0 have the property that u(t,y) > X and [t - 4r(X)2,t] x B(y,2r(X))C-

C-1,) ' X(Q, -.--- ). Since for r £ [-1,a] IS(r,xa){ < 1/eaX and IB(y,r(X))I = 2/¢

there exists an n c B(y,r(X)) such that u(r,n) < aX. Hence, Osc(u;t,y,r(X)) >

u(t,y) - u(r,n) > (1 - a)X; and so, by Lemma (5.2), Osc(u;t,y,2r(X)) >

1 (1 - a)X = KA. In particular, there exists a
p

(t',y') c It - 4r(X)2,t] x B(y,2r(X)) such that u(t',y') > KA.

Finally, define M by the relation

(1 8) (1 - 6) )(1 - 1/K/n);

and suppose that there were a (t,y) £ [-s,-a] x B(0,6) such that u(t,y) > M.

Then, by the preceding paragraph, we could inductively find (tm,ym), m > 0, so

that (to,Yo) = (t,y), (tm+l,ym+1) c [t m - 4r(KmM),tm] x B(ym,r(KmM))C (-1,-a) x

B(O, 1 ), and u(tm ) KmM. But this would mean that u is unbounded in

[-8,-a] xB(O, 1 +6 ) and so no such (t,y) exists.



-18-

References

1. D.G. Aronson, Bounds for the fundamental solution of a parabolic equation,
Bulletin of the AMS 73 (1967), 890-896.

2. E.B. Davis, Explicit constants for Gaussian upper bounds on heat kernels,
to appear.

3. E. De Giorgi, Sulle differentiabilita e l'analiticita degli integrali
multipli regolari, Mem. Accad. Sci. Torino CL, Sci. Fis. Mat. Natur. S III
(1957), 25-43.

4. S. Kusuoka, D.W. Stroock, Applications of the Malliavin Calculus, Part III,
to appear.

5. J. Moser, On Harnack's theorem for elliptic differential equations, Comm.
Pure. Appl. Math. 14 (1961), 47-79.

6. Ibid, A Harnack inequality for parabolic differential equations, Comm. Pure
Appl. Math. 17 (1964), 101-134, and also Correction to "A Harnack ine-
quality for parabolic differential equations", Comm. Pure Appl. Math. 20
(1967), 232-;236.

7. J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer.
J. math. 80 (1958), 931-954.

8. M.N. Safanov, Harnack's inequality for elliptic equations and the Holder
property of their solutions, J. Soviet Mathematics 21 (1983), 851-863.


