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Roles of Knowledge in Motor Learning
her

Christopher Granger Atkeson
Submitted to the Department of Brain and Cognitive Sciences on September 1,

1986 in partial fulfillment of the requirements for the degree of PhD.

Abstract

The goal of this thesis is to apply the computational approach to motor learning,
‘.e., describe the constraints that enable performance improvement with experience
and also the constraints that must be satisfied by a motor learning system, describe
what is being computed in order to achieve learning, and why it is being computed.
The particular tasks used to assess motor learning are loaded and unloaded free

arm movement, and the thesis includes work on rigid body load estimation, arm
model estimation, optimal filtering for model parameter estimation, and trajectory
learning from practice. Learning algorithms have been developed and implemented
in the context of robot arm control.

The thesis demonstrates some of the roles of knowledge in learning. Powerful
generalizations can be made on the basis of knowledge of system structure, as is
demonstrated in the load and arm model estimation algorithms. Improving the
performance of parameter estimation algorithms used in learning involves knowledge
of the measurement noise characteristics, as is shown in the derivation of optimal
filters. Using trajectory errors to correct commands requires knowledge of how
command errors are transformed into performance errors, i.e., an accurate model of

the dynamics of the controlled system, as is demonstrated in the trajectory learning
work. The performance demonstrated by the algorithms developed in this thesis
should be compared with algorithms that use less knowledge, such as table based
schemes to learn arm dynamics, previous single trajectory learning algorithms, and
much of traditional adaptive control.

Thesis Supervisor: Dr. Emilio Bizzi
Eugene McDermott Professor in the Brain Sciences
and Human Behavior

Director, Whitaker College
Chairman, Department of Brain &amp; Cognitive Sciences
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Chapter 1

Introduction

Learning is currently an important distinguishing characteristic between biological

systems and machines. Humans and animals tend to improve their motor perfor-

mance with experience, while machines often repeat the same errors, day in and day

out. An important step towards understanding ourselves, and also building more

useful machines, is to begin to understand how learning is achieved.

The goal of this thesis is to apply the computational approach (Marr, 1977; Marr,

1982; Hildreth and Hollerbach, 1985) to motor learning. The point of view taken is

that learning is an information processing problem: a learning algorithm modifies

commands using information from previous experience so as to improve performance.

A proposed methodology for computational neuroscience and artificial intelligence

includes the following steps: (Marr, 1977; Winston, 1984)

1. Identify a particular information processing problem or task.

2. Formulate a computational theory: Expose constraints that enable (or restrict)

performance, describe what is being computed and why, select or devise ap-

propriate representations. define procedures to solve problem.

3. Devise and implement actual algorithms to solve problem.
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4. Verify and evaluate the performance of the implementation via experiments.

The particular tasks used to assess motor learning are loaded and unloaded free

arm movement. The computational theory developed applies model based feedfor-

ward control to the arm control problem, and involves elements of control theory and

system identification. In order to effectively use model based control one must have

an accurate model, and the first half of the thesis describes how to build models of

particular types of loads and arms. One constraint that is heavily relied upon is that

the arms and loads described in this thesis can be adequately modelled using rigid

body dynamics. This allows us to use models with small numbers of parameters and

to make powerful generalizations between dissimilar movements.

The implementation of the model building procedures reveals that good models

can be identified quickly and are useful for control. However, the models used to

represent the arm and load dynamics have limited degrees of freedom, and cannot

represent the full complexity of the true dynamics. The second half of the thesis

describes how a command can be refined for a particular movement on the basis of

practice, allowing representation of fine details of the dynamics. The computational

theory for the learning from practice described here involves making explicit what

the learning operator that maps performance errors to command corrections should

be. The implementation reveals fast and effective trajectory learning.

A major contribution of this thesis is to demonstrate some of the roles of knowl-

edge in learning. Powerful generalizations can be made on the basis of knowledge

of system structure, as is demonstrated in the load and arm model estimation al-

gorithms. Improving the performance of parameter estimation algorithms used in

learning involves knowledge of the measurement noise characteristics, as is shown

in the derivation of optimal filters. Using trajectory errors to efficiently correct

commands requires knowledge of how command errors are transformed into perfor-

mance errors, ie. an accurate model of the dynamics of the controlled system, as



is demonstrated in the trajectory learning work. The performance demonstrated by

the algorithms developed in this thesis should be compared with algorithms that use

less knowledge, such as table based schemes to learn arm dynamics, previous based

trajectory learning algorithms, and much of traditional adaptive control.

In order to evaluate the computational theory developed in this thesis learning

algorithms have been developed and implemented in the context of robot arm con-

trol. Although the experimental work in this thesis is restricted to work with robots,

the insights gained have a much broader relevance. The adaptive mechanisms used

to implement learning may differ in different domains, but at a computational level

the issues and principles remain the same.

1.1 Choices and assumptions

1.1.1 Working definition of learning

The working definition of learning for the purposes of this thesis is improvement of

performance with experience. Since the experimental work involves only machines,

motivational levels, development, and other factors that make analysing biological

performance improvement difficult are not an issue.

Two kinds of learning are studied. The first involves building and refining internal

models of one’s self and the external world, and using those models to generate

the appropriate actuator commands, and to guide processing of sensory data. The

second involves using internal models to transform performance errors into command

corrections.

1.1.2 Focus on arm trajectory control

The effector system we will focus on will be a mechanical robot arm, and we will

mainly be concerned with improving execution of free arm trajectories, either with or

3



without a load. The types of learning appropriate for this sort of task are probably

different from the types of learning involved in riding a bicycle or juggling. The

ideas in this thesis will hopefully generalize and be useful in studying these other

tasks, however.

To provide a framework for what follows let us examine a typical robot control

architecture. We can divide the robot control problem into deciding what to do

(planning) and doing it (ezecution). For current robots planning is usually accom-

plished by a human programmer, although a goal of this and much other research is

to incrementally automate robot programming.

Since we are concerned with robot trajectory execution, a plan is a complete

specification of the motion of the robot in some coordinate system. Often the plan

is expressed in task coordinates, and in order to execute this plan we convert task

coordinates to arm coordinates. This process is referred to as inverse kinematics.

The next step in making the robot follow the desired trajectory is supplying

appropriate commands to the actuators. The simplest approach to this is to generate

these commands by measuring the difference between where the arm is and where

it is supposed to be at any instant in time and using some function (usually a linear

function) of this error as the drive signal to the actuators. This is what is known

as feedback control. This type of control is useful in compensating for unpredicted

disturbances.

One problem with pure feedback control is that it requires errors in order to

generate any drive signals. We can avoid this problem by calculating our best guess

as to the appropriate command signals to apply to the actuators to follow the desired

trajectory exactly. This precalculated command is added to the feedback command

during execution of the motion. I will refer to applying a precalculated actuator

command as command feedforward control or simply feedforward control. The process

of calculating the appropriate actuator command from a specification of the desired

robot motion is referred to as inverse dynamics.

2



At this level of detail the same problems of coordinate transformation, predic-

tion of appropriate actuator (muscle) commands, and compensating for unpredicted

disturbances must be addressed by biological systems.

As a starting point for our discussion of learning, let us ask the question, “How

might we go about building learning into this performance architecture?” or equiv-

alently (from the point of view of this thesis) “What information can be extracted

from past experience to improve present and future robot performance?”

Making better plans: Planning can be improved in several ways: the world

models used in planning can be refined, better methods for solving the given task

can be generated, and the planning methods themselves can be changed. These

processes are assumed to be independent of improving execution of a given plan,

and will not be addressed in what follows. We will take the plan as fixed.

Improving execution of fixed plans: The thesis will focus on execution

and making the effector system obey a given plan more closely. All components

of execution can be improved using experience. One way of improving the various

coordinate transformations involved in robot control is to refine the kinematic model

of the robot using measurements from redundant sensing such as vision of the robot

tip and joint angle sensing. To improve feedforward control we could refine the

dynamic model of the robot. We could also design a better feedback controller using

the past history of controller actions.

Assume kinematics is essentially perfect: We will assume our kinematic

model of the robot is essentially perfect, as there is already much research going on

in the area of kinematic calibration.

Assume a fixed feedback controller: As there is currently much research in

adaptive feedback control we will also take our feedback controller to be fixed.

In a complete robot learning system plan learning, kinematic learning, adaptive

feedback control, and the types of learning discussed in this thesis will all occur

simultaneously. An important point to keep in mind is that they can be handled by

10



essentially independent modules.

Focus on dynamics and control: In this thesis we will discuss how to build

and refine a model of robot dynamics to be used for predicting the appropriate

actuator commands to drive the robot (feedforward control). We will discuss how to

handle certain types of loads. We will also discuss how to build a model of noise in

sensory data, and how to optimally filter that noise in the model building process.

In addition we will show the role of the robot model as the learning operator during

movement practice, ie. the robot model transforms trajectory following errors into

feedforward command corrections.

1.2 Outline of thesis

1.2.1 Format of thesis

Many of the chapters are designed to be independent papers. The price of trying

to write a thesis whose chapters are publishable is some repetition and seeming

multiplicity of goals.

1.2.2 Introduction and Previous Work

This chapter attempts to give the reader an idea of where he is going, why, and some

of the landmarks to look for. Chapter 2, Previous Work, reviews some of the related

research. Other related research is reviewed in the appropriate chapters.

1.2.3 Arm and Load Identification

Chapters 3, 4, and 5 describe building models for one’s own arm and any rigid

body load. Appendix A describes the use of an identified model for the control of a

particular robot arm.

11



This work demonstrates the power of knowing the system structure for learning.

[n this case the knowledge of the rigid body dynamics structure dramatically reduces

the number of parameters to be learned and increases the learning rate compared

to tabular learning schemes (Albus, 1975a, 1975b, Raibert, 1977, 1978, Raibert and

Horn, 1978). More importantly, knowing the system structure allows much more

powerful generalizations to be made. There are two constraints that can be used as

sources of generalization. The first is smoothness of the input/output transforma-

tion. This constraint can be used to generalize between similar movements and is

relied on heavily by tabular learning approaches. The constraint used in this work,

system structure, is more powerful in that information gained from one movement

can be used to guide quite dissimilar movements.

The crucial insight of these chapters is that systems dominated by rigid body

dynamics can be described by a relatively small set of inertial parameters that appear

linearly in the dynamics equations. Estimating these parameters turns out to be

simple, as the theory and implementations show. We start with load identification

(Chapter 3) because that is the simplest version of the story, and with very little

additional work we apply the same ideas to arm identification (Chapter 4).

The reliance on system structure to achieve generalization does have a price,

however. The models do not represent well deviations from the assumed structure,

which are always present to some degree. Thus, on any particular trajectory ex-

ecution a rigid body dynamics model will have small errors. Changing the model

parameters to fit this trajectory more exactly will degrade performance on other

trajectories. What is required is an additional level of modelling that allows repre-

sentation of fine details of the dynamics. This correction model and how it is learned

is described in Chapter 6, Single Trajectory Learning.

Chapter 5, Optimal Filtering For Parameter Estimation, discusses the practi-

cal issues of handling noisy measurements. How to optimally process the incoming

sensory data is determined by models of the measurement noise. Improving the per-
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formance of parameter estimation algorithms used in learning involves knowledge of

the measurement noise characteristics, which are estimated from redundant sensing.

Thus, the learning elements themselves learn, in this case by building better models

of the sensors and their interaction with the world.

An insight that simplifies system identification is to use sensing to decouple dif-

(erent system identification problems. We use a wrist force/torque sensor that might

allow us to estimate load parameters independently of the arm dynamics, for exam-

ple. More generally, covering an arm or any effector system with a sensory barrier

such as a tactile sensing skin allows us to separate identifying internal system dynam-

ics and identifying external system dynamics and disturbances. Without a Sensory

barrier the combined system of arm plus external world may be too complex to

identify robustly. Decoupling system identification problems allows different identi-

fication procedures to be applied to the different subsystems. In the case of an arm

with variable loads, we expect the arm dynamics to be only slowly varying, while

load dynamics change rapidly as loads are picked up or put down. Widely different

rates and types of system change call for different system identification algorithms

to track the changes. Another reason for decoupling arm and load identification is

that the arm structure is relatively constant while the dynamics of different loads

can have quite different structures. Arm identification can be based on a fixed model

structure, while a complete load identification system must handle many different

model structures.

It is important to keep in mind the broad relevance of the model building ap-

proach suggested here. It is true that other sources of dynamics such as friction

and actuator dynamics play an important role in the dynamics of many current

robot arms. However, 1) rigid body dynamics is often a source of coupling dynam-

ics between the joints, 2) Since friction and actuator dynamics are usually isolated

at particular joints their identification reduces to a single input single output mod-

elling problem rather than the more difficult multiple input multiple output problem

13



solved here, and 3) the same process of hypothesizing a model structure and esti-

mating parameters can be used to identify friction and actuator dynamics and can

even be added to the linear parameter estimation algorithms used in this work.

1.2.4 Single Trajectory Learning

Chapter 6, Single Trajectory Learning, addresses the issue of using practice to im-

prove the execution of a particular trajectory. The crucial insight of this chapter is

that one must use an accurate model of the controlled system to make sense of trajec-

tory errors, ie. convert the errors into corrections to feedforward commands. With-

out an accurate model attempts to improve trajectory performance will most likely

degrade performance. This work demonstrates the role of knowledge in analysing

past behavior and correcting previous mistakes, and should be compared to the

proliferation of ad hoc trajectory learning schemes.

We are able to mathematically analyse the effect of various proposed single tra-

jectory learning algorithms, which tells us why one learning operator works better

than another. The most important result is that the convergence rates of the algo-

rithms are determined by the quality of the models used. We can put mathematical

bounds on acceptable modelling error for the linear case.

The model used in the trajectory learning work is the identified arm model pre-

sented in Chapter 4. Thus, starting with only knowledge of system structure, we

have demonstrated a system that can build a general model of itself after only three

or four movements, and then can learn to execute any particular trajectory to almost

the limits of the system repeatability in an additional three or four movements.

1.2.5 Future research

The final chapter discusses what to do next. This work suggests a program of

research on the quantitative psychophysics of motor learning. Rigid body load iden-

14



tification is a first step towards general force perception. The extension of the

trajectory learning algorithm to improve performance on a group of similar trajecto-

ries is discussed. Also included is a discussion of performance simplification, which

reduces the need for detailed internal dynamic models by restricting possible motor

performance.
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Chapter 2

Previous Work

This chapter spells out the theoretical background and philosophy of our approach,

and surveys the relevant engineering literature. This thesis addresses the following

questions:

1. How can we generate appropriate actuator command signals to drive a con-

trolled system along some desired trajectory?

2. How can we modify the actuator command signals to improve trajectory execu-

tion on the same and similar trajectories, given data from previous movements?

This chapter describes the general approach taken and contrasts it with approaches

taken by others. In summary, we

1. Describe three basic types of controllers:

(a) Feedback

(b) Disturbance Feedforward

(¢) Command Feedforward

and their roles,

16



2. Describe why we have chosen to pursue command feedforward control, and

specifically adaptive command feedforward control, and

3. Describe previous work on adaptive command feedforward control.

2.1 Introduction: Three types of control and adap-

tive control

The motivating control problem: The areas of control theory that one is in-

terested in are often shaped by the systems one desires to control. The emphasis

here is on the control of biological and robotic arms during the execution of free

trajectories.

Focusing on execution: We are taking a modular approach to motor learning,

and have split learning into two parts: making better plans and following plans more

closely. In this chapter we assume there is a given plan or desired trajectory and our

goal is to execute it as accurately as possible. Thus we focus on the controller, the

element which transforms plans into actuator commands, and how we might refine

the controller with experience. Following plans more closely is the goal of adaptive

control, the branch of control theory that addresses how to improve controllers based

on experience.

Three types of control: A control system can be divided into three parts:

the feedback controller and two feedforward controllers (Ogata, 1970; Takahashi,

Rabins, and Auslander, 1970; Astrom and Wittenmark, 1984). Figure 2.1 shows the

general form of such a system.

Feedback control is any control action based on the actual state history of the

controlled system, and feedforward control is all other control actions (D’Azzo and

Houpis, 1966; Astrom and Wittenmark, 1984). We can distinguish two types of

feedforward control: feedforward commands may be based on measurements of other

17
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variables that affect the controlled system but are not affected by it (disturbance

feedforward) or the commands may be based on predictions of the control signals

necessary to drive the controlled system along some desired trajectory (command

feedforward).

Three types of adaptive control: Corresponding to the different parts of the

controller there are different types of adaptive control. Adaptive feedback control

involves adjusting the feedback controller. Adaptive feedforward control may involve

adjusting gains from measured signals (adaptive disturbance feedforward control) or

improving the models used for control signal prediction (adaptive command feedfor-

ward control). We will focus on improving the models used for command feedforward

control.

2.1.1 Questions that have come up

Generality of approach: Each component of the control system (plant, feed-

back controller, disturbance feedforward, command feedforward) may be a complex

non-linear transformation. We will initially use simple examples (typically linear

systems) to present concepts clearly, but the reader should keep in mind that much

of what is said applies to more general systems.

Reference and feedforward signals: Note that there are many equivalent

ways to think about the command feedforward part of the control system, especially

if the system components are linear (Horowitz, 1963). We can think of a reference

signal to the feedback controller as another feedforward signal. For conceptual clar-

ity, we want to separate modifiable feedforward actuator commands from reference

signals to the feedback controller. The reference signals will always be the desired

trajectory.

Terminology: Although the control terminology is not completely standardized

the term “feedforward” is used quite often in the literature: for example, feedfor-

19



ward control for measured disturbances ( Grabbe, Ramo, and Wooldridge, 1961:

Peschon, 1965; Savas, 1965; Weyrick, 1975; Marshall, 1978; Owens, 1978; Anand,

1984; Schwarzenbach and Gill, 1984; Leigh, 1985 ), feedforward control for com-

mand inputs ( Tou, 1959; Webb, 1964; Eveleigh, 1972 ), feedforward control for

disturbances and commands ( Macmillan, 1951; Doebelin, 1962; Shinskey, 1963;

Woolverton and Murrill, 1967). In the Russian literature the ” Theory of Invari-

ance” is often invoked to show how and why feedforward control should be used to

make the system error independent of commands and disturbances. This has also

been referred to as “Poncelet’s principle” (Preminger and Rootenberg, 1964). Com-

mand feedforward is often referred to as an input or reference prefilter, especially if

this signal is used as the reference to the feedback controller. Combined feedback

and feedforward control has been referred to as a “two degree of freedom control

system” (Horowitz, 1963). There is occasionally some confusion in the use of the

term feedforward. “Feedforward controller” has been used to refer to any element

in the forward path of the closed loop controller (Raven, 1978; Saridis, 1977). These

elements are clearly part of the feedback controller.

2.2 The Feedback Controller

Feedback control is the only way to handle unmeasured or unpredicted disturbances,

modelling errors, and to stabilize unstable plants, and thus plays a critical role in

control in general and in robotics in particular. Much effort is going into robot

feedback controller design, sometimes to the exclusion of considering other types of

control. However, there are limits to what can be done with feedback control, and

feedforward control can usefully augment a feedback controller. It should be noted

that the feedback controller can be designed to a large extent independently of any

feedforward control, separating issues of robustness to disturbances and modelling

errors, and command tracking (Horowitz, 1963).
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2.2.1 Limits on feedback controller

Control of terminal compliance or, more generally, impedance has been proposed as

a goal for robotic control. Such control may require limiting feedback gains, if the

desired compliance is implemented as a low gain position servo. For non-redundant

robots with no terminal force/torque sensing choosing an impedance specifies the

feedback controller completely.

The use of a force sensors at the interface between the robot and its load or

environment may allow differential rejection of modelling errors and external forces.

In practice, however, this has not yet been shown to work well.

In biological systems there are additional limits on the possible feedback gains

due to transmission delays. In general, non minimum phase elements such as delays

(which also occur in machines) and right half plane zeros set limits on maximum

feedback gains as do modelling error, ignorance of plant dynamics, parameter vari-

ations, and measurement or command noise. (Astrom and Wittenmark, 1984)

2.2.2 Plenty of work going on in adaptive feedback control

Approaches to adaptive control have been almost exclusively focused on modifying

the feedback controller (W. D. T. Davies, 1970; Tsypkin, 1971; Wittenmark, 1975;

Saridis, 1977; Landau, 1979; Harris and Billings, 1981; Isermann, 1982; Astrom,

1983; Landau, Tomizuka, and Auslander, 1983; Astrom and Wittenmark, 1984;

Goodwin and Sin, 1984; Voronov and Rutkovsky, 1984; Yale, 1985).

There has also been great interest in adaptive feedback control in robotics. The

added complexity of an adaptive controller is typically justified on the basis of the

complexity of the robot dynamics, the belief that the parameters in robot models are

difficult to estimate, that loads will be unknown, and that there will be significant

modelling errors caused by friction (static and dynamic), joint compliance, actuator

modelling errors, and link flexibility. Many of the justifications for adaptive con-
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trol are not valid, and it is not clear that adaptive feedback controllers have any

advantage over well designed non-adaptive controllers. Furthermore, the limitations

on feedback control discussed previously limit the performance of adaptive feedback

controllers just as they limit fixed gain controller performance.

2.3 Feedforward Control

Feedforward control is any control action that is independent of the previous actual

state history of the plant, and is used to improve command following and counteract

predictable or measurable disturbances. Feedforward control has been used for a

long time (Graham, 1946; Moore, 1951; Preminger and Rootenberg, 1963), and in

fact many control systems use feedforward control exclusively and thus are pure

open loop controllers.

Aerospace applications: Feedforward control is used extensively in aerospace

applications and is related to the use of optimal control there. Typically a rocket

trajectory is planned according to some cost criterion and the thrust history neces-

sarily to follow that trajectory is pre-calculated. The feedback controller counteracts

deviations from the planned trajectory by modifying the nominal thrusts. Adaptive

feedforward control has not been emphasized in these applications as the same rocket

1s rarely used twice.

Process control applications: Feedforward control has also been used in pro-

cess control systems (Macmillan, 1951; Shinskey, 1963; Savas, 1965; Weyrick, 1975;

Marshall, 1978; Shinskey, 1979). These applications tend to focus on counteracting

measured disturbances since desired outputs tend to be constant for long periods of

time and outputs during transients or changes in production are usually discarded.

Also, process control is characterized by long delays, large time constants (slow

processes), and measurable disturbances.
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Robotics applications: Feedforward control is an important part of robot

control (Orin et al., 1979; Liegeois, Fournier, and Aldon, 1980; Paul, 1981; Brady

et al., 1982; Asada, Kanade, and Takeyama, 1983; Gerstenberger, 1985; Hollars and

Cannon, 1985; Liegeois, 1985), although there is some variation in the terminology:

“Inverse problem” (Paul, 1972); “Computed torque” (Markiewicz, 1973; Bejczy,

1974); “Two stage” control (Vukobratovié¢ and Potkonjak, 1982; Vukobratovié and

Stokié, 1982).

There are several reasons for the emphasis on feedforward control in robotics:

1) Often the task or movement trajectory is specified in advance, and 2) the forces

necessary to drive the robot along the specified trajectory are usually dominated by

the forces necessary to drive the robot itself, and not the load, and thus are to a

large extent predictable. 3) Most robots must interact compliantly (i.e. with low

stiffness) with the environment and thus feedback gains are limited. 4) Often the

task or trajectory is repetitive and the disturbances are the same on each execu-

tion. 5) Computers are typically available for the generation of complex feedforward

commands. The goal of robot trajectory control is to minimize deviations from an

arbitrary desired trajectory, which with a limited gain feedback controller requires

accurate models for the generation of feedforward commands and the ability to refine

those feedforward commands on repeated executions of the same trajectory.

Biological applications: Biologists have used the concept of feedforward con-

trol to understand commands based on measured signals and commands based on

predicted forces (Szentdgothai and Arbib, 1975). The vestibular ocular reflex is

an example of both disturbance feedforward control and adaptive disturbance feed-

forward control. Fast limb movement is hypothesized to be driven by command

feedforward control, as the delays in feedback control in biological systems limit

possible gains and feedback effectiveness.

Technological limitations: To a certain extent the use of feedforward control

has been limited in the past by the available technology (Peschon, 1965; Savas,
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1965; Isermann, 1981; Isermann, 1982; Astrom and Wittenmark, 1984). The cost of

analog electrical, mechanical, pneumatic, fluidic, or hydraulic controller circuits is

proportional to their complexity, and implementing derivative operators, nonlinear

operations, time delays, or functions such as sin(f) is relatively difficult. These

circuits are restricted to be causal processors, and thus derivatives of the command

must either be provided to the controller or approximated (An interesting mechanical

differentiator is presented in Doebelin, 1962, p.286). These derivatives are typically

useful in feedforward control. Furthermore, the reliability of analog circuitry is

inversely proportional to its complexity, and this has encouraged the use of simple

controllers. Some mechanism for information storage and retrieval is useful for

feedforward control, as we shall later demonstrate, and in the past this was restricted

to such technology as mechanical cam following. The introduction of computer

control and the dramatic drop in the cost of computer hardware has greatly expanded

the range of possible controller designs.

2.3.1 Feedforward Controller Design

[t is well known that the ideal feedforward controller incorporates a model of the in-

verse of the plant (Graham, 1946; Moore, 1951; Tou, 1959; Shinskey, 1963; Eveleigh,

1972; Weyrick, 1975; Owens, 1978; Shinskey, 1979; Isermann, 1981; Isermann, 1982;

Astrom and Wittenmark, 1984). One implication of this is that adaptive feedforward

control involves building better models of the plant.

The need to invert the plant immediately raises the question of what to do when

the inverse does not exist or is not realizable. This occurs when the plant has any

of the following features:

|. Time delays: The inverse of a time delav is a time advance. which is not

realizable.

2. Right half plane zeros: A causal inverse of a right half plane zero is unstable,
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and a stable inverse is not realizable since it requires control actions in the

infinite past.

3. Many to one mappings: A plant may map many sets of inputs into the

same outputs, and thus formally the plant inverse does not exist. This is not

typically a real problem, as additional constraints can be added to resolve the

many to one mapping, or a particular inverse can be chosen.

4. Singularities: Points or sets of points at which a nonlinear or time varying

linear plant mapping changes dimension may complicate inverting the plant.

We will rely on the planning stage to avoid this problem, at least for now.

We see that realizability of the plant inverse is a critical issue in feedforward

command design. This leads us to distinguish disturbance feedforward and command

feedforward.

1. Future commands are known: A disturbance is assumed to be unpre-

dictable, or at least to have an unpredictable component, while we assume that

commands are known as far into the future as necessary. Of course, the fu-

ture command may change, and this must be accommodated by the command

feedforward controller. Some amount of acausality in command feedforward

generation is acceptable. The disturbance feedforward controller, however,

must be a causal processor.

2. Commands have negligible noise: In addition, disturbance measurements

may be corrupted by noise, while commands, being internal to the controller,

are assumed to be have negligible noise. Thus, derivative operators can accu-

rately take derivatives of the command.

The goal of disturbance feedforward controller design is to design a causal and

stable system whose input is disturbance measurements and whose output is ap-

25



propriate control actions. Approaches to designing such a system are discussed in

(Isermann, 1981).
It is possible to treat command feedforward control as a type of disturbance

feedforward control and attempt to design a causal command filter. This is not

necessary the best approach, however. The goal of command feedforward control is

to design the particular actuator command signal for a particular desired trajectory.

This processing need not be causal. To handle a plant delay it is possible simply to

shift the command backwards in time. To handle a right half plane zero it is possible

to design commands that do not grow to infinity. This typically requires that the

command starts in the infinite past. Since this is clearly not possible this type of

command must be truncated, leading to unavoidable trajectory following errors.

2.4 Previous Approaches To Adaptive Feedforward

Control

2.4.1 Self Tuning Adaptive Feedforward Control

A straightforward approach to adaptive feedforward control is to treat command

and disturbance feedforward control identically and simply automate existing feed-

forward controller design procedures. Initially the plant and any disturbance effects

must be identified, and then a controller is designed from that. There are typi-

cally two steps to identification: choosing a model structure and then estimating the

free parameters in that structure. By making different choices in model structures,

parameter estimation procedures, and feedforward controller design many different

adaptive feedforward control schemes can be derived. This approach is analogous to

“Self Tuning” adaptive feedback control (Isermann, 1981; Isermann, 1982; Astrom,

1983; Astrom and Wittenmark, 1984). The perils of right half plane zeros are typi-

cally avoided by using a model structure that cannot contain right half plane zeros.
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This may lead to an approximation of the true plant, but the inverse of the model

will always be stable.

Woolverton and Murrill (1967) suggest choosing initial parameters for a second

order feedforward controller from experiments on the controlled process and then

a trial and error exploration of the nearby parameter space to find the optimum

parameter set.

Bristol (1967) chooses a simple linear model structure for a heat exchanger,

V =a-L +b, and closes an integrating feedback loop around the free parameters a

and b to continuously update this model. The model is concurrently used to generate

feedforward commands, V, from load measurements, L. An objective of this scheme

is to only include operations easily implementable in analog hardware and the final

controller was pneumatic.

Bernard and Lefkowitz (1962) chose a more complicated process model

Ke Ds
P(s) = ——(s) Ls+1 (2.1)

where P(s) is the process transfer function, K is the gain, D is the delay, and L

is a time constant. Initially K, D, and L are estimated from previously collected

data, and then D and L are continuously updated. This model is used to generate

bang-bang control responses to step changes in measured disturbances.

Wittenmark (1973) derives a self-tuning minimum variance feedforward con-

troller.

Schumann and Christ (1979) present the most extensive exploration of self tuning

adaptive feedforward controllers. They make explicit three steps:

1. Choose structural parameters of process and disturbance models: model order,

time delays, sampling interval, etc.

2. Use some recursive parameter estimation scheme to identify the model param-

eters. Typically recursive least squares is used although if there is significant
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process noise an unbiased scheme such as recursive maximum likelihood is

more appropriate.

3. Design a feedforward controller based on the identified model. Here we assume

the certainty equivalence principle is valid.

The process and disturbances are modelled by separate ARMA models. Since their

model structure allowed right half plane zeros they needed feedforward design pro-

cedures that handled this problem. They explored seven feedforward control design

procedures.

Elicabe and Meira (1983) extend the adaptive model following control approach

(Landau, 1979) to adapt a feedforward controller to handle measurable disturbances.

Widrow and colleagues (Widrow, Walach, and Shaffer, 1983; Widrow and Walach,

1983; Widrow et al., 1981; Anderson and Johnstone, 1981; Widrow, McCool, and

Medoff, 1978) model the plant as an all pole process, thus avoiding the right half

plane zero problem. They use an LMS (least mean square) algorithm to continuously

model the plant. They approximate the true plant in a least squares sense, and are

able to drive the plant approximately along a trajectory after a certain delay.

Adaptive feedforward control in robotics

2.4.2 Adaptive Global Models

One approach to adaptive command feedforward control is to attempt to identify a

model of the robot dynamics, and invert the model, or to directly identify an inverse

model of the plant. In this section we will outline approaches which attempt to

model the robot dynamics under all conditions with one model. We refer to this

approach as the global modelling approach.

One approach for such global modeling is to derive a rigid body dynamics model

of the arm and identify the parameters of that model. Examples of such work are
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discussed in Chapter 4 and include Mayeda, Osuka, and Kangawa (1984), Mukerjee

(1984), Mukerjee and Ballard (1985), Olsen and Bekey (1985), Neuman and Khosla

(1985), An, Atkeson, and Hollerbach (1985), Khosla and Kanade (1985).

Goor (1985a, 1985b) emphasized the actuator dynamics and claimed a decoupled

third order model of each joint of the robot was more appropriate. He incorporated

a third order command feedforward filter and developed an algorithm that esti-

mated the coefficients of that filter in real time. He also emphasized the necessity

of commanded trajectories to be executable, i.e. not require infinite inputs.

A key issue in adaptive global modeling is that the identified model should be

constant or at least independent of the state of the plant, even during large motions

of the robot. If this is not the case then it is not clear that there is enough data

during the movement of the robot to identify a new model at each significantly

different state.

Another key issue is to insure that the data used to estimate the robot model

cover a wide range of states and inputs. Otherwise structural modelling errors

may drive the parameter estimation procedure to seriously distort the estimated

parameters to fit a small range of data. This can cause predictions for other ranges

of data not used in the estimation to deteriorate, and the advantage of global models,

generalization, is lost.

2.4.3 Lookup Table Based Approaches: Local models

Lookup table based approaches have been suggested in the past as a solution to the

model evaluation problem: given an existing model can we compute the necessary

inputs to achieve the desired outputs fast enough? (Albus, 1975a, 1975b; Raibert,

1977, 1978; Raibert and Horn, 1978) One way to fill the tables is using some form of

learning. Tables do provide an easily modifiable representation of a transformation.

However, a straightforward implementation leads to huge table sizes. and consider-
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able effort must be expended in designing how data is actually stored, and how it is

put in and taken out of the table. A major flaw of tabular approaches is that it is

difficult to take advantage of the structure of the arm dynamics, so much more data

has to be collected to learn to the same level of performance as the algorithms de-

scribed in this thesis, and generalizations between dissimilar movements are difficult

to make.

We will eventually be suggesting table based approaches to form a middle level

of models: local models. Global models help us achieve generalization, and single

trajectory models allow us to follow a single trajectory with zero error after practice.

Lookup table based local models can help us modify commands for a particular

trajectory to achieve similar trajectories. An important distinction between our

approach and previous approaches is that we propose using a hierarchy of several

different types of models to gain the benefits of each and the drawbacks of none.

2.4.4 Iterative Trajectory Learning: Single trajectory mod-

els

At the opposite extreme of global modeling is the modeling of the feedforward com-

mand for a single trajectory. Through repeated attempts to follow a single specified

trajectory the feedforward command is refined, and ultimately the trajectory is fol-

lowed with zero error. The key issues here are the stability and convergence rate of

the iterative process, and how to design the learning operator. One drawback of this

approach is that it only produces the appropriate command for a single trajectory.

There is little guidance as to how to modify that command for similar trajectories.

This approach is discussed in Chapter 6, Single Trajectory Learning.
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Chapter 3

Rigid Body Load Inertial

Parameter Estimation

3.1 Abstract

A method for estimating the mass, the center of mass, and the moments of inertia of

a rigid body load during general manipulator movement is presented. The algorithm

is derived from the Newton-Euler equations and incorporates measurements of the

force and torque from a wrist force-torque sensor and of the arm kinematics. The

identification equations are linear in the desired unknown parameters, which are

estimated by least squares. We have implemented this identification procedure on a

PUMA 600 robot equipped with an RTI FS-B wrist force-torque sensor, and on the

MIT Serial Link Direct Drive Arm equipped with a Barry Wright Company Astek

wrist force-torque sensor. Good estimates were obtained for load mass and center

of mass, and the forces and torques due to movement of the load could be predicted

accurately. The load moments of inertia were more difficult to estimate.

1 This chapter is a revised version of (Atkeson, An, and Hollerbach, 1985a)
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3.2 Introduction

This chapter presents a method of estimating all of the inertial parameters of a rigid

body load using a wrist force-torque sensor: the mass, the moments of inertia, the

location of its center of mass, and the object’s orientation relative to a force sensing

coordinate system. The procedure has three steps:

l. A Newton-Euler formulation for the rigid body load yields dynamics equations

linear in the unknown inertial parameters, when the moment of inertia tensor

is expressed about the wrist sensing force coordinate system origin.

2. These inertial parameters are then estimated using a least squares estimation

algorithm.

3. The location of the load’s center of mass, its orientation, and its principal

moments of inertia can be recovered from the sensor referenced estimated

parameters.

In principle, there are no restrictions on the movements used to do this load identifi-

cation, except that if accurate estimation of all the parameters is desired the motion

must be sufficiently rich (ie., occupy more than one orientation with respect to grav-

ity and contain angular accelerations in several different directions). In practice,

however, special test movements must sometimes be used to get accurate estimates

of moment of inertia parameters.

There are several applications for this load identification procedure. The accu-

racy of path following and general control quality of manipulators moving external

loads can be improved by incorporating a model of the load into the controller, as

the effective inertial parameters of the last link of the manipulator change with the

load. The mass, the center of mass, and the moments of inertia constitute a com-

plete set of inertial parameters for an object; in most cases, these parameters form a

good description of the object, although they do not uniquely define it. The object
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may be completely unknown at first and an inertial description of the object may be

generated as the robot picks up and moves the object. The robot may also be used

in a verification process, in which the desired specification of the object is known and

the manipulator examines the object to verify if it is within the tolerances. Recog-

nition, finding the best match of a manipulated object to one among a set of known

objects, may also be desired. Finally, the estimated location of the center of mass

and the orientation of the principal axis can be used to verify that the manipulator

has grasped the object in the desired manner.

A key feature of our approach is that it requires no special test or identification

movements and therefore can continuously interpret wrist force and torque sensory

data during any desired manipulation. Previous methods of load identification were

restricted in their application. Paul (1981) described two methods of determining

the mass of a load when the manipulator is at rest, one requiring the knowledge of

joint torques and the other forces and torques at the wrist. The center of mass and

the load moments of inertia were not identified.

Coiffet (1983) utilized joint torque sensing to estimate the mass and center of

mass of a load for a robot at rest. Moments of inertia were estimated with special

test motions, moving only one axis at a time or applying test torques. Because of

the intervening link masses and domination of inertia by the mass moments, joint

torque sensing is less accurate than wrist force-torque sensing.

Olsen and Bekey (1985) assumed full force-torque sensing at the wrist to identify

the load without special test motions. Mukerjee (1984), and Mukerjee &amp; Ballard

(1985) developed an approach similar to ours, again allowing general motion during

load identification. Nevertheless, neither paper simulatéd or experimentally imple-

mented their procedures to verify the correctness of the equations or to determine

the accuracy of estimation in the presence of noise and imperfect measurements.

Our algorithm requires measurements of the force and torque due to a load and

measurements or estimates of the position, velocity, acceleration, orientation, angu-
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lar velocity, and angular acceleration of the force sensing coordinate system. The

algorithm can handle incomplete force and torque measurement by simply elimi-

nating the equations containing missing measurements. The necessary kinematic

data can be obtained from the joint angles and, if available, the joint velocities of

the manipulator. The inertial parameters of a robot hand can be identified using

this algorithm and then the predicted forces and torques due to the hand can be

subtracted from the sensed forces and torques.

This inertial parameter estimation algorithm was implemented using a PUMA

600 robot equipped with an RTI FS-B wrist force-torque sensor, and on the MIT

Serial Link Direct Drive Arm (DDA) equipped with a Barry Wright Company Astek

FS6-120A-200 6-axis wrist force-torque sensor.

3.5 The Newton-Euler Approach To The Load

Identification Problem

3.3.1 Deriving The Parameter Equation

To derive equations for estimating the unknown inertial parameters, the coordinate

systems in Figure 3.1 are used to relate different coordinate frames and vectors. O

is an inertial or base coordinate system, which is fixed in space with gravity pointing

along the —z axis. P is the force reference coordinate system of a wrist force-torque

sensor rigidly attached to the load. Q represents the principal axis of the rigid body

load located at the center of mass. The x axis of Q is along the largest principal

moment of inertia, and the z axis along the smallest. Q is unique up to a reflection

in bodies with 3 distinct principal moments of inertia. In the derivation that follows

all vectors are initially expressed in the base coordinate system O.

The mass, moments of inertia, location of the center of mass, and orientation of

the body (a rotation ,,R from the principal axes to the force reference system) are
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Pp: position vector from the origin of the base coordinate frame
to the origin of the wrist sensor coordinate frame.

q: position vector from the origin of the base coordinate frame
to the center of the mass of the load.

c: position vector from the origin of the wrist sensor coordinate
frame to the center of the mass of the load.

Figure 3.1: Coordinate Frames.
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related to the motion of the load and the forces and torques exerted on it by the

Newton-Euler equations. The net force ,f and the net torque ,n acting on the load

at the center of mass are:

11iRo

F

m

g =

q =

n —

r

 Jd =

J =F +mg=mq

m=n-cXxf=,Iv+wx(Iw)

the force exerted by the wrist sensor on the load at the

point p,

the mass of the load,

the gravity vector (g = [0, 0, —9.8 meters/sec?]),

the acceleration of the center of mass of the load,

the torque exerted by the wrist sensor on the load at the

point p,

the unknown location of the center of mass relative to the

force sensing wrist origin P,

the moment of inertia tensor about the center of mass,

(3.1)

(3.2)

w = the angular velocity vector, and

w = the angular acceleration vector.

We need to express the force and torque measured by the wrist sensor in terms of

the product of known geometric parameters and the unknown inertial parameters.

Although the location of the center of mass and hence its acceleration § are unknown,

q is related to the the acceleration of the force reference frame Pp by

q=D+wxc+wX(w¥c) (37.40%)

Substituting (3) into (3.1),

f=mp-mg+wxmec+wx(wxmc) ‘3...'
 EE ——_Se—

?Equation numbers in brackets refer to equations in Symon, 1971.
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Substituting (3.4) into (3.2),

 Nn Iw + w X (Jw) + me x (0 x ¢) + me X (w X (w X ¢))

+mexp-—mexg (5)

Although the terms ¢ x (wx ¢) and ¢ x (w X (wx ¢)) are quadratic in the unknown

location of the center of mass c, these quadratic terms are eliminated by expressing

the moment of inertia tensor about the force sensor coordinate origin (,I) instead of

about the center of mass (,I). Rewriting (5) as:

Aw + w X (Iw) + m[(cTe)1 — (ccT)]w

+ w x (m[(c’e)1 — (ceT)|w) + mec xp —mec x g (6)

and using the three dimensional version of the parallel axis theorem

d= I+ m[(cTc)1 — (ccT)] (710.147).

to simplify it results in:

n=, Juv+wx ((Iw)+mexp-—mexg \-
+ 8)

(1 is the 3 dimensional identity matrix). We now express all the vectors in the

wrist sensor coordinate system P, since then the quantities ¢ and pI are constant.

Moreover, the wrist force-torque sensor measures forces and torques directly in the

P coordinate frame.

In order to formulate the above equations as a system of linear equations, the

following notation is used:

 Ww KK C=

0 —w, wy

W, 0 —w,

—Wy Wy 0 |

Cou

Cy

I ¢,

2 [wx]c rq J)
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nn
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i Is In3 I33

(2.11)

Using these expressions, Eqs. (3.4) and (3.8) can be written as a single matrix

equation in the wrist sensor coordinate frame:

 mm

me,

fe
1

fy
f.

n,.

|n,

on,|

[ 5—g [wx]+[wx]|[wx][EE»

0  gZ p)x| [ew] + [wx][ew]

1

me,

mec,

111

Ii,

Ii

[59

2 72). Lb

I23

Iq

or more compactly,

w= Ad (3.13)

where w is a 6 element wrench vector combining both the force and torque vectors,

A is a 6 x 10 matrix, and ¢ is the vector of the 10 unknown inertial parameters.

Note that the center of mass cannot be determined directly, but only as the mass
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moment mc. But since the mass m is separately determined, its contribution can

be factored from the mass moment later.

3.3.2 Estimating The Parameters

The quantities inside the A matrix are computed by direct kinematics computation

(Luh, Walker, and Paul, 1980b) from the measured joint angles. The elements of

the w vector are measured directly by the wrist force sensor. Since (3.13) represents

6 equations and 10 unknowns, at least two data points are necessary to solve for the

$ vector, i.e. the force and the position data sampled at two different configurations

of the manipulator. For robust estimates in the presence of noise, we actually need

to use a larger number of data points. Each data point adds 6 more equations, while

the number of unknowns, the elements of ¢, remain constant. w and A can be

augmented with n data points:

A=

All]

Aln] |

 WwW

wil]

| win BN

ffv.14)

where each A[:] and wfi] are matrix and vector quantities described in (3.12). For-

mulated this way, any linear estimation algorithm can be used to identify the ¢

vector. A simple and popular method is the least squares method. The estimate for

® is given bv:

¢= (ATA) Aw (3.15)

F.quation (3.15) can also be formulated in a recursive form (Ljung and Soderstrom,

1983) for on-line estimation.

3.3.3 Recovering Object And Grip Parameters

The estimated inertial parameters (m, mc, ,I) are adequate for control, but for

object recognition and verification we also require the principal moments of inertia
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I,, I, Is, the location of the center of mass ¢, and the orientation orR of Q with

respect to P.

The parallel axis theorem is used to compute the inertia terms transiated to the

center of mass of the load.

¢
——

mc

m

I =,1-m[&amp;Te)1— (&amp;&amp;7)]

(3.16)

(3.17)

The principal moments are obtained by diagonalizing .L

A
A

— or R

I 0

o 1,

0

0 QF
ar

.
1
|

)

ba IR)
o 0 I

LL

This diagonalization can always be achieved since I is symmetric, but when two or

more principal moments are equal the rotation matrix, ,,R, is no longer unique.

3.4 Experimental Results

3.4.1 Estimation on the PUMA Robot

The inertial parameter estimation algorithm was originally implemented on a PUMA

600 robot equipped with an RTI FS-B wrist force-torque sensor (Figure 3.2), which

measures all six forces and torques. The PUMA 600 has encoders at each joint to

measure joint angles, but no tachometers. Thus, to obtain the joint velocities and ac-

celerations, the joint angles are differentiated and double-differentiated, respectively,

by a digital differentiating filter (Figure 3.3). The cutoff frequency of 33 Hz for the

filter was determined empirically to produce the best results. Both the encoder data

and the wrist sensor data were initially sampled at 1000 Hz. It was later determined

that a sampling rate of 200 Hz was sufficient, and the data were resampled at the

lower rate to reduce processing time. A least squares identification algorithm was
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Figure 3.2: Puma with a test load.

implemented as an off-line computation, but an on-line implementation would have

been straightforward.

Static Estimation Using The PUMA

To test the calibration of the force sensor and the kinematics of the PUMA arm a

static identification was performed. The forces and torques are now due only to the

gravity acting on the load, and equations (3.4) and (3.8) simplify to

f — mg

n= -—-mc:Cc 2

(3.19)

(3.20)

As seen in (3.19) and (3.20), only the mass and the center of mass can be identified

while the manipulator is stationary.

To avoid needing to determine the gripper geometric parameters, the center

of mass estimates are evaluated by the estimates of the changes in the center of
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Parameters

Mass (kg)

Change in ¢,(m)

Mass (kg)

Change in ¢y(m) |
Mass (kg) |

Change in ¢,(m) !

Mass (kg) |

Change in ¢,(m)

Actual Static

Values Estimates

1.106 1.103

0.037

1.107|
-0.043

1.106 | 1.100 |
-0.021 -0.020 |

1.106 |
0.043

1.106 | 1.099 |

0.018 0.018

Dynamic

Estimates

1.067

0.039

1.084

-0.042

1.073

-0.021

1.074

0.020

Table 3.1: Mass and the center of mass estimates

mass as the load is moved along the y-axis from the reference position by known

amounts. The results of estimation are shown in the second column of Table 3.1

for an aluminum block (2 X 2 x 6/n.) with a mass of 1.106Kg. Only the changes in

cy are shown in Table 3.1; the estimates of ¢, and ¢, remained within 1mm of the

reference values (c; = 1mm and ¢, = 47mm). Each set of estimates were computed

from 6 sets of data, i.e. data taken at 6 different positions and orientations of the

manipulator, where each data point is averaged over 1000 samples to minimize the

effects of noise. The results show that in the static case the mass of the load can be

estimated to within 10g of the actual mass. The center of mass can be estimated to

within 1mm of the actual values for this load.

Static load estimation only tests the force sensor calibration and the position

measurement capabilities of the robot the sensor is mounted on. In order to assess

the effects of the dynamic capabilities of the robot on load estimation and to be able

to estimate the moments of inertia of the load we must assess parameter estimation
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during general movement.

Dynamic Estimation Using The PUMA

In the dynamic case, the joint position encoder and the wrist sensor data are sampled

while the manipulator is in motion. A fifth order polynomial trajectory (a minimum-

jerk time function) in joint space was used to minimize the mechanical vibrations at

the beginning and the end of the movement, and to improve the signal to noise ratio

(SNR) in the acceleration data (Figure 3.3). For more popular bang-coast-bang type

trajectories, the joint accelerations are zero except at the beginning and the end of

the movements, resulting in a poor signal to noise ratio in the acceleration data for

most of the movement.

We found that the PUMA robot lacked the acceleration capacity necessary to

estimate the moments of inertia of the load. It also lacked true velocity sensors

at the joints, which made estimation of the acceleration of the load difficult. The

dynamic estimates of mass and center of mass for the previous load are shown in

the last column of Table 3.1. The data used in these estimates were sampled while

the manipulator was moving from [0, 0,0, —90, 0,0] to [90, —60, 90, 90, 90, 90] degrees

on a straight line in joint space in 2 seconds. Joint 4 of the PUMA has a higher

maximum acceleration than the other joints, and thus, a longer path was given for it.

This movement was the fastest the PUMA can execute using the fifth order trajec-

tory without reaching the maximum acceleration for any of its joints. The estimates

used all 400 data points sampled during the 2 second movement. The results show

slight deterioration in these estimates when compared to the static estimates; but

they are still within 40g and 2mm of the actual mass and displacement, respectively.

However, the signal to noise ratios in the acceleration and the force-torque data were

too low for accurate estimates of the moments of inertia for this load (0.00238Kg-m?

in the largest principal moment). In this case, the torque due to gravity is approxi-

mately 40 times greater than the torque due to the maximum angular acceleration
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Parameters

(kg - m?)

[14

I»

[is

[55

lh3

[33

| Actual

Values

0.0244

0

0

0.0007

0

0.0242

PUMA

Estimates

0.0192
-0.0048

0.0019 |
0.0021 |

-0.0016

0.0176

PUMA?

Estimates

0.0246

0.0006 |

0.0008 |
0.0036

_0.0004 i
0.0199

DDA'

Fstimates

0.0230

0.0006

0.0005

-0.0002

-0.0002

0.0241

Table 3.2: Actual and estimated moments of inertia, either for all joints moving! or

special test motions?.

of the load. Thus, even slight noise in the data would result in poor estimates of I.

Therefore, experiments with a larger rotational load were performed for the es-

timates of the moments of inertia. The new experimental load is shown in Figure

3.2. This load has large masses at the two ends of the aluminum bar, resulting in

large moments of inertia in two directions (~ 0.024kg - m?) and a small moment in

the other. A typical set of estimates of the moments of inertia at the center of mass

frame for the load with the gripper subtracted out are shown in Table 3.2 for the

above all-joints-moving trajectory. They contain some errors but are fairly close to

the actual values.

Special Test Movements Using The PUMA

In order to improve the estimates by maximizing the rotational accelerations in the

trajectories, a series of special test movements were generated. The data was sampled

while the robot was following three separate 2-second rotational trajectories around

the principal axes of the load. Such trajectories used joints 4 and 6 only. and resulted
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in higher acceleration data than the previous trajectory, thus improving the signal to

noise ratio in both the acceleration and the force-torque data. Typical estimates for

these special movements show improvements over the estimates with the previous

trajectory (Table 3.2). Although the estimate of I, is slightly worse than before, all

the other terms have improved; the cross terms, especially, are much smaller than

before. However, these estimates of I are not as accurate as the estimates of the

mass and the center of mass shown in Table 3.1.

Figure 3.4 shows the comparison of the measured forces and torques, and the

computed forces and torques from the estimated parameters and the measured joint

data using the simulator for the original trajectory. The two sets of figures match

very well even in the mechanical vibrations, verifying qualitatively the accuracy

of the estimates. This suggests that for control purposes even poor estimation of

moment of inertia parameters will allow good estimates of the total force and torque

necessary to achieve a trajectory. This makes good sense in that the load forces with

the PUMA are dominated by gravitational components, and angular accelerations

experienced by the load are small relative to those components.

The effect of the errors causing poor estimates of moment of inertia parameters

could be alleviated by increasing the angular acceleration experienced by the load.

Since we had reached the sustained acceleration capacity of even an unloaded PUMA

robot, we decided to explore this issue using the MIT Serial Link Direct Drive

Arm. This robot can achieve higher sustained accelerations than the PUMA and

in addition is also equipped with tachometers at the joints, making estimation of

acceleration much easier.

3.4.2 The MIT Serial Link Direct Drive Arm

The inertial parameter estimation algorithm was next implemented on the MIT

Serial Link Direct Drive Arm (DDA), equipped with a Barry Wright Company
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Astek FS6-120A-200 6-axis force-torque sensor which again measures all three forces

and three torques about a point. The DDA is described in An, Atkeson, Hollerbach

(1985), and is capable of higher tip velocities and accelerations than the PUMA. The

DDA has tachometers on each of its three joints so that numerical differentiation of

positions is unnecessary, but we still had to digitally differentiate the velocities to

find the accelerations using a cutoff frequency of 30Hz. The positions and velocities

of the robot were initially sampled at 1kHz but were later down-sampled to match

the sampling frequency of the force-torque sensor of 240 Hz. The identification

procedure was again implemented off-line.

Dynamic Estimation Using The Direct Drive Arm

The data used for estimating the inertial parameters of the load were sampled while

the manipulator was moving from (280,269.1,—30) to (80,19.1,220) in one second.

Again a fifth order polynomial straight line trajectory in joint space was used. The

resulting estimates for the moment of inertia parameters are shown in the last column

of Table 3.2. The estimates for the mass and the location of the center of mass were

as good as the PUMA results and are not shown. We see that the moment of inertia

parameters estimated are on the whole better than the PUMA results.

Parameters estimated for a set of special test movements using the Direct Drive

Arm were not substantially different. Our special test movements for the DDA were

not substantially faster than the movement of all joints, and thus probably contained

the same amount of information.

Finally, Figure 3.5 shows the comparison of typical measured forces and torques

with computed forces and torques from the estimated parameters and the measured

joint data using the simulator for the original trajectory. Once again we have a

very good match between the measured and predicted forces and torques. Thus we

see that the combination of higher angular accelerations and good velocity sensing

results in better parameter estimates, as hoped.
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3.5 Discussion

3.5.1 Did The Algorithm Work?

This chapter describes an attempt to characterize the usefulness of wrist force-torque

sensing for estimating the inertial parameters of rigid body loads for control and

recognition /verification/grasping. Our conclusion is that prediction of forces for

control can be good and seems to work well in our implementations. Identifying

parameters well enough for recognition of the object may require large accelerations

or special test movements in order to accurately identify the moment of inertia

parameters.

It is important to realize that there are two distinct uses of an identified model.

For control what matters is matching the input-output behavior of the model (in

this case the relationship of load trajectory to load forces and torques) to reality,

while for recognition/verification what matters is matching estimated parameters to

a set of parameters postulated for reality. We find that both of our implementations

of load inertial parameter estimation successfully match the input output behavior

of the load (see Figures 3.4 and 3.5), although we have not yet used this information

in a control scheme. However, we find that the limited acceleration capacity of the

PUMA robot and its limited sensing do not permit us to estimate the moments of

inertia of the load accurately without the use of special test motions. In all cases

the mass and the location of the center of mass could be accurately estimated from

both a series of static measurements, and measurements taken during movements.

This work is preliminary in that an adequate statistical characterization of the

errors of the estimated parameters or the predicted forces has not been attempted.

Nevertheless, we have gained insight into the sources of such errors.
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3.5.2 Sources of Error

The ultimate source of error is the random noise inherent in the sensing process

itself. The noise levels on the position and velocity sensing are probably negligible,

and could be further reduced by appropriate filtering using a model based filter such

as the Extended Kalman Filter (Gelb, 1974). The force and torque measurement

process involve measuring the strains of structure members in the sensor with strain

gages. The random noise involved in such measurements is also probably negligible.

Bias Errors

However, strain gages are notoriously prone to drift. We feel that periodic recali-

bration of the offsets (very often) and the strain to force calibration matrix (often)

may be necessary to reduce load parameter estimation errors further. Before using

the force sensors we allowed the system to warm up and we recalibrated the offsets

before each data collection session and checked for a change in the calibrated offsets

afterward.

Unmodelled Dynamics

A further source of noise is unmodelled structural dynamics. Neither the robot

links nor the load itself are perfectly rigid bodies. A greater source of concern is

the compliance of the force sensor itself. In order to generate structural strains

large enough to be reliably measured with strain gages, a good deal of compliance

is introduced into the force sensor. The load rigidly attached to the force sensor

becomes a relatively undamped spring mass system. The response of the Astek force

sensor to a tap on an attached load is shown in the “undamped impulse response”

record of Figure 3.6.

‘ : “The effect of robot movement on this spring mass system is shown in the “un-

damped movement response” record.
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There are several approaches to deal with this problem of unmodelled dynamics.

One approach is to attempt to identify the additional dynamics. This greatly in-

creases the complexity of the identification process, and greatly increases the amount

of data that needs to be collected to get reliable estimates of any parameter. We

feel such an approach should only be taken as a last resort.

Another approach is to try to avoid exciting the unmodelled dynamics by choos-

ing robot trajectories that are as smooth as possible. This is one reason why we

chose 5th order polynomial trajectories, so that we could maintain continuity of

velocities and accelerations. Using higher order polynomials would result in even

greater smoothness. However, we found that with the PUMA a smooth commanded

trajectory did not result in a smooth actual trajectory, in that the control methods

used and the actual hardware of the robot still introduced substantial vibration.

One way to tell if the PUMA is turned on is to touch it and feel if it is vibrating.

Vibrations were less of a problem with the Direct Drive Arm, although still present.

The most successful approach is to mechanically damp out the vibrations by

introducing some form of energy dissipation into the structure. We added hard

rubber washers between the force sensor and the load, and the “damped impulse

response” of Figure 3.6 illustrates the response of the force sensor to a tap on the load.

We see that the oscillations decay much faster. The “damped movement response”

indicates that this mechanical damping greatly reduces the effect of movement on

the resonant modes of the force sensor plus load. The conclusion we draw is that

appropriate damping should be built into force sensors, just as accelerometers are

filled with oil to provide a critically damped response for a specified measurement

bandwidth. Failing that, energy dissipation must be ‘introduced either into the

structural components of the robot or into the gripper either structurally or as a

viscous skin. Appropriate mechanical damping may also be useful when using a

force sensor in closed loop force control.
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Optimal Filtering

The need to numerically differentiate the velocity to find the acceleration, or worse

yet, double differentiate positions, greatly amplifies whatever noise is present. One

can avoid the need to explicitly calculate accelerations by symbolically integrating

equations (3.4) and (3.8). One approach to integrating the equations is presented in

the appendix, and we can express the resulting estimation equations in matrix form

1S’

 ™m

mc,

mc,

[*
»

[n
L Je |

[a

{

mec,

I;

[2

Is

Is,

[53
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(« 21)ry

where the first row of JHA dr| is

| [T t+T t+T )b + w X pdr — / Rdr)°g
t ¢ t

(+) «| [7 xx dr of (22)
and the second row is

0 (-s” _ [Ta x pdr + [=ar) ’6) «|

- («[)] + wx [ow] ar] (23)
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However, we feel that an effort to characterize the various noise sources and

an attempt to “optimally” filter and differentiate/integrate the data will result in

better estimates. If there is substantial low frequency noise or bias in the data the

integration will amplify that noise relative to the signal frequencies of the data.

What is needed is a problem formulation that gives us guidance as to how to design

data processing filters for estimation and how to handle the need to differentiate

or integrate some of the data to supply missing measurements. We are presently

investigating such an approach.

3.5.3 Kinematic Errors

Part of the error may be due to inaccuracies in the current kinematic parameters of

the manipulator. Experiments have shown that the actual orientation of the robot

can be up to 4° off from the orientation computed from the encoder data.

3.5.4 Why Estimating Moment of Inertia Parameters is Hard

One of the factors that makes it difficult to accurately identify moments of inertia is

the typically large contribution of gravitational torque, which depends only on the

mass and the relative location of the center of mass to the force sensing coordinate

origin. A point mass rotated at a radius of 5¢m from a horizontal axis must complete

a full 360° rotation in 425 milliseconds for the torque due to angular acceleration to

be equal to the gravitational torque, if a 5th order polynomial trajectory is used. A

way to avoid gravitational torques is to rotate the load about a vertical axis, or to

have the point of force-torque sensing close to the center of mass.

A simple example will illustrate the difficulty of recovering principle moments

of inertia, given the moment of inertia tensor about the force sensing origin. The

principle moment of inertia of a uniform sphere is only 2/7 of the total moment of

inertia when it is rotated about an axis tangent to its surface, so that the effects of
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any errors in estimating the mass, the location of the center of mass, and the grip

moments of inertia are amplified when the principle moment of inertia is calculated.

This problem can be reduced by having the point of force sensing as close to the

center of mass as possible.

It still may be difficult to find the orientation of the principle moments of inertia

even when the moment of inertia tensor about the center of mass has been estimated

fairly accurately. This occurs when two or more principle moments of inertia are

approximately equal. Finding the orientation of the principle axis is equivalent to

diagonalizing a symmetric matrix, which becomes ill-conditioned when some of the

eigenvalues are almost equal. A two dimensional example illustrates the problem:

Consider the diagonalized matrix

cos(f) —sin(6) | b 0 cos(f) sin(6)
sin(d) cos(9) 0 A; —sin(0) cos(9)| &amp; 4)

with eigenvalues {A;, A,} and whose first principle axis is oriented at an angle § with

respect to the z axis. By substituting A; — A; = € into the matrix (3.24),

Az + €cos?(8) ecos(8) sin(6) |ecos(f) sin(f) A; + esin’®(9)L

(2.25) &lt;4

we see that when the two eigenvalues are almost equal, the terms of the matrix de-

pendent on the angle, 8, become very small. All terms that contain angle information

are multiplied by the difference of the principle moments of inertia, e. With a fixed

amount of noise in each of the entries of the identified moment of inertia matrix, the

orientation of the principle axis, 8, will become more and more difficult to recover as

the principle moments of inertia approach equality and therefore € approaches zero.
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"6 Open Questionsr

3.6.1 Data Processing Issues

Many of the issues discussed below will be addressed in conjuction with the contin-

uation of optimal filtering research described in Chapter 5.

Statistical Characterization of Errors

What is the variance of our force and torque predictions? Does this level of error

correspond to the variability of force and torque measurements? What is the variance

of the estimated parameters, for a given amount of data? What measurement noise

does this correspond to? How close are the estimated measurement noise to the

specifications for the force sensor? Linear least squares estimation is based on a

particular statistical model which includes formulas for estimated parameter variance

and predictor variances. However, it is not clear that the assumed statistical model

is valid in this application.

Most Efficient Movement

Find the most efficient movement (or just a good movement) to improve the load

parameter estimates given what is already known about the load and which estimates

are to be improved. This is part of a general problem in quantifying the “richness” of

the input. The statistical model assumed for linear least squares estimation provides

a good starting point for answering this question.

Quantify desirable sensor properties

What is the stiffness of the wrist sensor? The Aztec wrist force-torque sensor has

an internal samping rate of 480Hz., a 120Hz. analog low-pass filter, and a 120 Hz
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digital low-pass filter also, for an output sampling rate of 240Hz. What are more

desirable sensor filtering properties?

Role of Velocity Sensing

We claim that tachometers helped with the Asada Arm. We could repeat the load

identification without using the tachometer measurements, and see how much dif-

ference the tachometers made.

Wrist sensing vs. joint sensing

We could compare the load estimation with a wrist sensor with load estimation using

joint sensors, and see if there is a substantial difference in accuracy.

Separate Control and Recognition Modules

Since the goals of identification for control (predict input/output behavior) and

recognition (get good object parameter estimates) are different there should probably

be different modules with different filtering and data handling properties.

Effect of kinematic errors

How robust is the load parameter estimation procedure to kinematic errors caused

by joint measurement error and unmeasured link deflection?

3.6.2 A Complete Load Handling System

Use rigid body load inertial parameter estimation as a single module in a more

complete load identification system. Handle other model structures: What are useful

structures? What are useful parameter estimation procedures? Provide a test or

measure for verifying that a load is actually a rigid body. What does this mean?

More a rigid body than anything else?
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Note that the prediction errors (residuals) of the estimated model provide a

natural measure for whether the body is rigid or not.

3.6.3 Real-Time Implementation

Implement load parameter estimation as on-line estimation procedure. It is appro-

priate to address here the use of apriori load estimates.

‘3
-

Bo.
i Appendix: Integrating The Forces And Torques

In The Force Sensor Frame

In this appendix we will show how to integrate the load identification equations (3.4)

and (3.8). Throughout this derivation we will use the superscript notation ° and ?

to indicate what coordinate frame a vector is expressed in, if there is any confusion.

[f there is no such superscript, the vector is expressed in the load frame.

The term P is integrated using equation 7.22 of (Symon, 1971):

RE(°D) = (RB) + R(°w x °D)—_— Ce i—— - Wwdt PT gp p \ 3.26)

were R is the rotation matrix representing the rotation from an inertial coordinate

system to the force sensing coordinate system that continuously moves with the load.

To get an integral form of this equation we simply integrate it:

[rR pdr = (R- °p) + [Rew xX °p) dr
t

and performing the indicated rotations leaves us with

Pt+T t+T t+T

"bdr = 7p) +f Pw x Pp dr

Similarly
rt+T t+T t+T t+T

Pirdr = "uw + Pu x Pw dr =Pu
' ¢

(3.28)

(3 29);
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since w X w = 0. We also remember that

(eT t+T
gdp = / Rdr| °g \~ 30)

Each of the matrices [Pwx| and [ew] can be integrated element by element to

show that
t+T

[7 Pox]dr =
t (ow) |= (7)
[waar =o ([Trasr)] = [s(n] 53)

The matrix [(g — P) x] can be integrated element by element in the same way. Each

matrix element of the terms [Pwx][Pwx] and [Pwx][e?w| are numerically integrated

by adding values at each time step. The result of this integration is given in Equa-

tion (3.21).
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Chapter 4

Manipulator Link Inertial

Parameter Estimation

4.1 Abstract

A method of estimating the mass, the location of center of mass, and the moments

of inertia of each rigid body link of a robot during general manipulator movement

is presented. The algorithm is derived from the Newton-Euler equations, and uses

measurements of the joint torques as well as the measurement and calculation of the

kinematics of the manipulator while it is moving. The identification equations are

linear in the desired unknown parameters, and a modified least squares algorithm

is used to obtain estimates of these parameters. Some of the parameters, however,

are not identifiable due to the restricted motion of proximal links and the lack of

full force/torque sensing. The algorithm was implemented on the MIT Serial Link

Direct Drive Arm. A good match was obtained between joint torques predicted from

the estimated parameters and the joint torques computed from motor currents.

1 This chapter is a revised version of (An, Atkeson, and Hollerbach, 1985a)
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4.2 Introduction

This chapter presents a method of estimating all of the inertial parameters, the

mass, the center of mass, and the moments of inertia of each rigid body link of a

robot manipulator using joint torque sensing. Determining these parameters from

measurements or computer models is generally difficult and involves some approxi-

mations to handle the complex shapes of the arm components. Typically, even the

manufacturers of manipulators do not know accurate values of these parameters.

The degree of uncertainty in inertial parameters is an important factor in judging

the robustness of model-based control strategies. A common objection to the com-

puted torque methods, which involve full dynamics computation (e.g., Luh, Walker,

and Paul, 1980b), is their sensitivity to modelling errors, and a variety of alternative

robust controllers have been suggested (Samson, 1983; Slotine, 1985; Spong, Thorp,

and Kleinwaks; 1984, Gilbert and Ha, 1984). Typically these robust controllers ex-

press modelling errors as a differential inertia matrix and coriolis and gravity vectors,

but in so doing, no rational basis is provided for the source of errors or the bounds on

errors. The error matrices and vectors combine kinematic and dynamic parameter

errors, but kinematic calibration is sufficiently developed so that very little error can

be expected in the kinematic parameters (Whitney, Lozinski, and Rourke, 1984).

One aim of this work is to place similar bounds on inertial parameter errors by

explicitly identifying the inertial parameters of each link that go into the making of

the inertia matrix and coriolis and gravity vectors. Our work in load identification

(Atkeson, An, and Hollerbach, 1985a) suggests, for example, that mass can be accu-

rately identified to within 1%. Therefore, an assumption of 50% error in link mass

in verifying a robust control formulation (Spong, Thorp, and Kleinwaks, 1984) is an

unreasonable basis for argument. Slotine (1985) suggests that errors of only a few

percent in inertial parameters make his robust controller superior to the computed

torque method, but it may well be that these parameters can be identified more
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accurately than his assumptions.

As an alternative approach we propose estimating the inertial parameters on the

basis of direct dynamic measurements. The same algorithms used to identify load

inertial parameters (Atkeson, An, and Hollerbach, 1985a) can be modified to find

link inertial parameters of a robot arm made up of rigid parts. The Newton-Euler

dynamic equations are used to express the measured forces and torques at each

joint in terms of the product of the measured movements of the rigid body links

and the unknown link inertial parameters. These equations are linear in the inertial

parameters. However, unlike load estimation, the only sensing is one component

of joint torque, inferred from motor current. Coupled with restricted movement

near the base, it is, therefore, not possible to find all the inertial parameters of the

proximal links. As will be seen, these missing parameters have no effect on the

control of the arm.

In this chapter, manipulators with only revolute joints are discussed since han-

dling prismatic joints requires only trivial modifications to the algorithm. The pro-

posed algorithm was verified by implementation on the MIT Serial Link Direct Drive

Arm.

4.2.1 Previous Work

Mayeda, Osuka, and Kangawa (1984) required three sets of special test motions to

estimate the coefficients of a closed-form Lagrangian dynamics formulation. The 10

inertial parameters of each link are lumped into these numerous coefficients, which

are redundant and susceptible to numerical problems in estimation. On the other

hand, every coefficient is identifiable since these coefficients represent the actual

degrees of freedom of the robot. By sensing torque from only one joint at a time,

their algorithm is more susceptible to noise from transmission of dynamic effects of

distant links to the proximal measuring joints. For efficient dynamics computation,
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the recursive dynamics algorithms require the link parameters explicitly. Though

recoverable from the Lagrangian coefficients, it is better to estimate the inertial

parameters directly. Though this algorithm was implemented on a PUMA robot,

it is difficult to interpret the results because of dominance of the dynamics by the

rotor inertia and friction.

Mukerjee and Ballard (1985) directly applied their load identification method to

link identification, by requiring full force-torque sensing at each joint. Instrumenting

each robot link with full force-torque sensing seems impractical, and is actually

unnecessary given joint torque sensing about the rotation axis. Partially as a result,

he does not address the issue of unidentifiability of some inertial parameters. Also,

he did not verify his algorithm by simulation or by implementation.

Olsen and Bekey (1985) presented a link identification procedure using joint

torque sensing and special test motions with single joints. The unidentifiability

of certain inertial parameters was not resolved, and the least squares estimation

procedure written as a generalized inverse would fail because of linear dependence of

some of the inertial parameters. Again, their procedure was not tested by simulation

or by actual implementation on a robot arm.

Neuman and Khosla (1985) developed a hybrid estimation procedure combining a

Newton-Euler and a Lagrange-Euler formulation of dynamics. Simulation results for

a three degree-of-freedom cylindrical robot were presented, and the unidentifiability

of certain inertial components was addressed. For some reason they state link mass

must be known for a linear estimation procedure, but such a restriction does not

exist with our method. Though planning to work with the CMU DDArm II, they

have not yet presented experimental results.
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Figure 4.1: Coordinate origins and location vectors for link identification.

4.3 Estimation Procedur

4.3.1 Formulation of Newton-Euler Equations

In our work in load identification (Atkeson, An, and Hollerbach, 1985a), the Newton-

Euler equations for a rigid body load were formulated to be linear in the unknown

inertial parameters. Then the simple linear least squares method was used to es-

timate those parameters. By treating each link of a manipulator as a load, this

formulation can be extended to the link estimation problem. The differences in the

equations are that only one component of force or torque is sensed and that the

forces and torques from distal links are summed and transmitted to the proximal

joints.

Consider a manipulator with n joints (Figure 4.1). Each link ¢ has its own local

AR



coordinate system P; fixed in the link with its origin at joint 7. The joint force and

torque due to the movement of its own link can be expressed by simply treating the

link as a load and applying the previously developed equations for load identification

(Atkeson, An, and Hollerbach, 1985a):

mm; |

|mac.,
|mc,,

1;
ny

Bi — g [ix]+[wix][wsx]

D [(g Dix] [edn] + [wix][ew:],

mic,

Tea,
I, Ys

I,

L,.

1s,
L I, |

or more compactly,

Wii = Ad; (4.1)

where w;; is the wrench (vector of forces and torques) at joint 7 due to movement of

link 7 alone. A; is the kinematic matrix that describes the motion of link ¢ and @; is

the vector of unknown link inertial parameters. All of the quantities are expressed

in the local joint ¢ coordinate system. The formulation of the above Newton-Euler

equations were already presented in the load identification paper (Atkeson, An, and

Hollerbach, 1985a).

The total wrench w; at joint ¢ is the sum of the wrenches w;; for all links j distal

;0 joint -

 Ww, —
2
2 Wij
1=¢

(4.2)

Each wrench w;; at joint 7 is determined by transmitting the distal wrench w;; across

intermediate joints. This is a function of the geometry of the linkage only. The forces
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and torques at neighboring joints are related by

fiiv1 | R;
 Nii [six] -R; Ry |

3

fii 1,i+1

{ Dit1i+1
4. &lt; A

)

or more compactly

1,
Wiis re

Wiie1 = Ti Wip1it1 (4. 4

R;= the rotation matrix rotating the link 7 + 1 coordinate system to the link 3

coordinate system,

8;— a vector from the origin of the link 7 coordinate system to the link : + 1 coor-

dinate system, and

T.= a wrench transmission matrix.

To obtain the forces and torques at the :** joint due to the movements of the jt»

link, these matrices can be cascaded:

Weer T:T; 1 . we T,;wjj

4.1J

=U; 0.

where U,;; = T;T,;,--- T;A,; and Uy; = A;. A simple matrix expression for a serial

kinematic chain (in this case a six joint arm) can be derived from (4.2) and (4.5):

a

Wq
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Ws |Wg
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This equation is linear in the unknown parameters, but the left side is composed

of a full force-torque vector at each joint. Since only the torque about the joint

axis can usually be measured, each joint wrench must be projected onto the joint

rotation axis (typically [0,0,1] in internal coordinates), reducing (4.6) to

KJ (4.7)

where 7; = [0,0,0,0,0, 1]-w; is the joint torque of the i** link, = [¢,, ,, Ps, J, bs, Ps)”,

and K;; = [0,0,0,0,0,1] - U;; when the corresponding entry in (4.6) is nonzero. For

an n-link manipulator, 7 is a n x 1 vector, 9 is a 10n x 1 vector, and K is a n x 10n

matrix.

4.3.2 Estimating the Link Parameters

Equation (4.7) represents the dynamics of the manipulator for one sample point.

For extra data, (4.7) is augmented as:

i”yr

K(1)

" K(N) |

r(1)

T

| rv)

N = number of data points

Unfortunately, one cannot apply simple least squares estimate:

Y., 3 =timate — (KTK)'KTr {
1

.3)

because KTK is not invertible due to loss of rank from restricted degrees of freedom

at the proximal links and the lack of full force-torque sensing.

There are several ways to resolve this problem. One way to resolve this problem is

to use the pseudo inverse to get a solution v to 7 = Kv. But since K is a potentially

large nN x 10n matrix, the pseudo-inverse is computationally inefficient. Another

simple method similar to the pseudo inverse is to use ridge regression (Marquardt
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and Snee, 1975). Ridge regression makes KTK invertible by adding a small number

to the diagonal elements:

b= (KTK + dlp.) Kr LA 2
' 7)

a.

The estimates are nearly optimal if d &lt;&lt; Apin(KTK), where Anin is the smallest

non-zero eigenvalue of KTK. Other methods of solution, fundamentally different

from the above two, are presented in the discussion section.

4.4 Experimental Results

Link estimation was implemented on the MIT Serial Link Direct Drive Arm (Figure

4.2), a three link serial manipulator with no transmission mechanism between the

motors and the links. The ideal rigid body dynamics is a good model for this arm,

ancomplicated by joint friction or backlash typical of other manipulators. Hence the

fidelity of this manipulator’s dynamic model suits estimation well. The coordinate

system for this arm is defined in Figure 4.3. A set of inertial parameters is available

for the arm (Table 4.1 ), determined by modeling with a CAD/CAM database (Lee,

1983). These values can serve as a point of comparison for our method, but they

may not be accurate because of modeling errors.

The motors are rated at 660 Nm peak torque for joint 1 and 230 Nm for joints

2 and 3 (Asada and Youcef-Toumi, 1984). Joint 1 is presently capable of an an-

gular acceleration of 1150 deg/sec?, joints 2 and 3 in excess of 6000 deg/sec?. In

comparision, joint 1 of the PUMA 600 has a peak acceleration of 130 deg/sec? and

joint 4 at the wrist 260 deg/sec®. Joint position is measured by a resolver and joint

velocity by a tachometer. The tachometer output is of high quality and leads to

good acceleration estimates after differentiation. The accuracy of the acceleration

estimates plus high angular accelerations greatly improves inertia estimation.

The joint torques are computed by measuring the currents of the 3 phase windings
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Figure 4.2: The MIT Serial Link Direct Drive Arm
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Figure 4.3: The link coordinate system.
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Parameters

m(Kg) | 67.13
mez (Kg-m) 0.0

mec, 2.432

me, 35.8257

I, (Kg-m?) 23.1568

Ly 0.0

I, -0.3145

I, 20.4472

-1.2948Is
Le: 0.7418

Link 2

53.01

0.0

3.4081

16.6505

7.9088

0.0

0.0

7.6766

-1.5036

0.6807

Link 3

10.67
0.3108

0.0

0.3268

0.1825

0.0

-0.0166

0.4560

0.0

0.3900

Table 4.1: CAD-modeled inertial parameters.

of each motor (Asada, Youcef-Toumi, and Lim, 1984). For the three phase brushless

permanent magnet motors of the direct drive arm, the output torque is related to

the currents in the windings by:

T= Kr(I,sin8 + I,sin(f + 120) + I, sin(6 + 240)) (4.10)

The torque constant Kz for each motor is calibrated statically by measuring the

force produced by the motor torque at the end of a known lever arm. The force

is measured using a BarryWright Company Astek FS6-10A-200 6-axis force/torque

sensor. Asada, Youcef-Toumi, and Lim (1984) have found that for a motor similar

to the motors of our manipulator, the torque versus current relationship was non-

linear, especially for small magnitudes of torques, and also varied as a function of

the rotor position. However, for the results presented in this paper, the nonlinear

effects were ignored since substantial portions of the movements in the experiments

required large magnitudes of torques. Since the least squares algorithm minimizes
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the square of the error, torque errors for torques of small magnitudes do not affect

the estimates very much.

For the estimation results presented, 600 data points were sampled while the

manipulator was executing 3 sets of fifth order polynomial trajectories in joint space.

The specifications of the trajectories were:

1. (330, 289.1, 230) to (80, 39.1, -10) degrees in 1.3s,

2. (330, 269.1, -30) to (80, 19.1, 220) degrees in 1.3s,

3. (80, 269.1, -30) to (330, 19.1, 220) degrees in 1.3s.

Since KTK in (4.9) is singular, estimates for the 30 unknowns are computed by

adding a small number (d = 10.0 &lt;&lt; Apin(KTK) = 3395.0) to the diagonal elements

of KTK.

Typical results, obtained using the ridge regression method, are shown in Table

4.2. Parameters that cannot be identified because of constrained motion near the

base are denoted by 0.0%. The first nine parameters of the first link are not identi-

fiable because this link has only one degree of freedom about its z axis. These nine

parameters do not matter at all for the movement of the manipulator and thus can

be arbitrarily set to 0.0.

Other parameters marked by (1) can only be identified in linear combinations,

indicated explicitly in Table 4.3. The ridge regression automatically resolves the

linear combinations in a least squares sense. It can be seen that the estimated sums

roughly match the corresponding sums inferred from the CAD-modeled parameters,

but the sizeable discrepancy indicates that one parameter set may be more accurate

than the other.

To verify the accuracy of the estimated and the modeled parameters, the mea-

sured joint torques are compared to the torques computed from the above two sets

of parameters using the measured joint kinematic data. As shown in Figure 4.4, the
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estimated torques match the measured torques very closely. The torques computed

from the CAD/CAM modeled parameters do not match the measured torques as

closely. This comparison verifies qualitatively that for control purposes the esti-

mated parameters are in fact more accurate than the modeled parameters.

4.5 Discussica

Good estimates of the link inertial parameters were obtained, as determined from

the match of predicted torques to measured torques. The potential advantage of

this movement-based estimation procedure for increased accuracy as well as con-

venience was demonstrated by the less accurately predicted torques based on the

CAD-modeled inertial parameters.

There are three groups of inertial parameters: fully identifiable, completely

unidentifiable, and identifiable in linear combinations. Membership of a parame-

ter in a group depends on the manipulator’s particular geometry. Some link inertial

parameters are unidentifiable because of restricted motion near the base and the

lack of full force-torque sensing at each joint. For the first link, rotation is only

possible about its z axis. Suppose full force-torque sensing is available at joint 1. It

can be seen from (4.1) that I;, I,,,, and I,,, are unidentifiable because they have

no effect on joint torque. Since the gravity vector is parallel to the z axis, cz, is also

anidentifiable. If it is now supposed that only torque about the z axis can be sensed,

then all inertial parameters for link 1 become unidentifiable except I,,,.

In a multi-link robot a new phenomenon arises. Some parameters can only be

identified in linear combinations, because proximal joints must provide the torque

sensing to identify fully the parameters of each link. Certain parameters from distal

links are carried down to proximal links until a link appears with a rotation axis ori-

ented appropriately for completing the identification. In between, these parameters

appear in linear combinations with other parameters. This partial identifiability and
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the difficulty of analysis become worse as the number of links are increased.

The ridge regression automatically resolves the linear combinations in a least

squares sense, which make these inertial parameters appear superficially different

from those derived by CAD modeling. An alternative method is generation and

examination of the closed-form dynamics, which is a complex procedure for more

than two degrees of freedom.

A second alternative is a numerical analysis via singular value decomposition of

K in (4.8), yielding (Golub and Van Loan, 1983)

K=1u&gt;vT

where 3X = diag{o;} and U and V7 are orthogonal matrices. For each column

of V there corresponds a singular value o; which if not zero indicates that linear

combination of parameters, v7, is identifiable. Since K is a function only of the

geometry of the arm and the commanded movement, it can be generated exactly

by simulation rather than by actually moving the real arm and recording data with

inevitable noise.

The above two procedures isolate several sets of parameters whose linear com-

binations within each set are identifiable. Then we can arbitrarily set all but one

of the parameters of each set to zero and apply the estimation algorithm for the

reduced set of fully identifiable parameters. As shown in Table 4.2, for our 3 link

manipulator, these two procedures result in grouping the 30 inertial parameters into

the following categories:

1. fully identifiable: m3Cz., m3cCy,, Leyes Lots Joins Liss s mMaCz,, Log, s Los,

2. completely unidentifiable: mga, mac,,, mi, mic,,. micy,, Mica, Isr s Loy, I,

Lous A,

3. identifiable in linear combinations: ms, mac.;, Luz, Lyyss M2Cyss Liza Lyyas Lyzas

Il,.. /
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Parameters

m(Kg)
me, (Kg-m)

mc,

mec,

I..(Kg-m?)
I,
[. 2

Low

Voz

Link 1

0.0*

0.0"

0.0*

0.0*

0.0"

0.0*

0.0*

0.0

0.0*

Q.33598+

Link 2 |

0.0"

0.1591 |

0.6776+

0.0*

4.15621

0.3894

0.0118

5.2120+

-0.6050t

-0.8194%

Link 3

1.89204
0.4676

0.0315

-1.0087+

1.5276%

-0.0256

0.0143

1.8067+

E

-0.0160

0.3568

Table 4.2: Estimated inertial parameters.

The completely unidentifiable parameters can be arbitrary set to zero. For the

linear combination parameters, the combinations of these parameters that can be

identified together are shown in Table 4.3. To obtain a particular solution for these

parameters, one can set ms, msc,,, I;z,, and I,,, to zero. Then, the remaining 6

parameters of this category can be treated as fully identifiable parameters along

with the 9 parameters in the first category. Those columns of K which correspond

to the 15 zeroed parameters are taken out, reducing KTK to a 15 x 15 full rank

matrix. Now, simple least squares can be applied to estimate the 15 identifiable

parameters. For our implementation experiments, the results of this method agreed

with the results of ridge regression presented in the previous section.

Although not as simple as the ridge regression method, these methods are attrac-

tive since it allows us to reformulate the dynamics in terms of only the identifiable

parameters. This then can increase the efficiency of the corresponding inverse dy-
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Linear Combinations

msC,yls+1,
liz, - Ly,

IL. + I,

I. + Lz, + Ipy + mle

Lpzy + Toy — I,

— MyCy,mgcCy, 2Cy

Estimated

-1.0589

-0.3691

0.7082

15.7029

0.4709

~-1.6863

| CAD-Modeled

1.3565

0.2702

n

0.8632

12.8169

0.4147

-3.0814

Table 4.3: Parameters in linear combinations (I, = 0.45m.)

namics computation for controller implementations (Hollerbach and Sahar, 1983).

We are still investigating these issues with eventual goals of studying the effective-

ness of different control algorithms using the estimated dynamic model and analyzing

their robustness with modelling errors.

4.6 Open Questions

Statistical characterization of the errors, finding “rich” movements, quantifying de-

sirable sensor properties and the importance of velocity sensing are important issues,

just as in the rigid body load parameter estimation work.

The effect of deviations from rigid body dynamics caused by kinematic mod-

elling errors, link flexibility, and unmodelled joint or actuator dynamics needs to be

examined. For the direct drive arm we have verified experimentally the usefulness

of the rigid body dynamics model, however. By identifying the inertial parameters

directly rather than estimating them from a CAD /CAM model or the properties of

the individual links we inadvertently compensate for some model structural error.
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Chapter 5

Optimal Filtering For Parameter

Estimation

5.1 Introduction

Often in parameter estimation there is a substantial amount of noise contaminating

all of the sources of data. Furthermore, in many estimation situations there are vari-

ables in the parameter estimation equations that are not measured directly, but are

known transformations of other measured data. These factors present problems for

many parameter estimation approaches, such as least squares. This chapter presents

a three step approach to these problems. The first step makes use of redundancy in

the sensing to characterize the noise sources. The second step makes use of the noise

characterization to design optimal filters for the different data sources. Finally, an

eigenvalue /eigenvector based estimation procedure is used to produce the parameter

estimates.
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5.1.1 Problem Statement

The typical linear parameter estimation problem is of the following form:

X1Z1 + QZs + +++ + QpT,, 0 .5.1 ]

or equivalently in vector form

A
 rn

ca=24J (5.2)

with r; being measurements from various data sources and the ¢; being the un-

known parameters. Measurements from the data sources are each contaminated

with statistically stationary zero mean random noise with variance o;.

The parameter set, {a;,as,...,a,}, is actually redundant, as it can be scaled

without changing the problem, so typically either the length of the parameter vector

is constrained or one of the parameters is set to some arbitrarily chosen value. We

will require that the length of the parameter vector is 1, ie..

n

dao? =1
g=~1

(5. 3)

Many data points consisting of sets of observations {z,,z,,...,z,} can be col-

lected. The goal here is to find a set of parameters, {a;, az, ...,@,}, that obey any

constraints such as a fixed parameter vector length, and also in some optimal sense

provide a best fit to the data. We will discuss what we mean by optimal in what

follows.

5.1.2 The Least Squares Approach

One approach that is widely used is known as least squares (Silvey, 1975). A crucial

feature of this approach is that all but one of the data sources are assumed to be

noise free, such that the problem is restated as follows: The constraining problem

structure is now:

Y 3 +r + 0p 1Tp-1 = In (5.4
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where a,, is arbitrarily set to —1 and

Tp, = I,—€ H 5)

I, is the true value of z, and ¢ is the measurement error. The variance of the

contamination noise, o;, is zero for all 1 &lt; n. All of the noise is assumed to come

from the variable ¢, which is a zero mean random variable with variance o,. The

equivalent vector form for Equation (5.4) is

JT. a+e=1, =* 6)

if all of the p data points collected are used to build a data matrix, A, and an

measurement vector, y, the following matrix equation can be written:

A a+ e€= A¥ (5.in1]

with the data matrix A being the p x (rn — 1) matrix

A

(
Z(n-1)1Ia,

” °c T(n-1),
Iz,

(5.8¥

\ z1, I2, °° ZT(n-1),)

and the measurement vector y being a vector of length p.

\/

/
Tn,

Tp,

\ In,

\

(5.4 J

The criteria to be minimized by the chosen set of parameters, {a, as,..., an-1},

is the length of the error vector. e. ie.

p

2.6
fy

5.1.1)
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The estimate that minimizes this criteria is given by the normal equations:

d= (ATA) 'ATy (5.11)

This approach works well on many estimation problems, even though in the real

world no measurements are perfect. For some problems, however, the contaminating

noise on the different data sources is substantial, and cannot be ignored. In this case,

a different approach is necessary.

5.1.3 Motivation For A Different Approach: A Typical Es-

timation Problem

Recently, we have addressed the problem of estimating the inertial parameters of a

rigid body load being manipulated by a robot equipped with a wrist force/torque

sensor (Atkeson, An and Hollerbach, 1985a, 1985b). We were able to formulate the

rigid body dynamics in the following form:

 mm

me,

f.

fo
f,

nn.

n,

, Ny

| pg [e+ [wlio J

U fp Pp) x] [ow] + [wx [ow]
-

mec,

mec,

l 1

I»

lq

I22

(5 12)

[54

L
lag

The derivation of this equation and a definition of the notation is provided in the

Appendix. The important point is that this problem can be formulated as a linear

parameter estimation problem, in that known parameters enter non-linearly, but

RY



the unknown parameters only enter linearly in the determination of the forces and

torques on the load. Equation (5.12) can be more compactly written as

Wg (5.13)

where w is a wrench vector, a vector of three forces and three torques, M is a

matrix describing the movement of the load, and ¢ is the vector of unknown inertial

parameters.

We noted that the unknown parameters appeared linearly in the problem, and

therefore we thought that the least squares approach to estimating the parameters

could be used. In order to apply the least squares approach to this problem we had

to measure the robot position, velocity, and acceleration, and the forces and torques

on the wrist sensor. Furthermore, the position, velocity, and acceleration must

be measured perfectly. Unfortunately, this was not a reasonable model of reality.

The robot was only equipped with position sensors, and we had to numerically

differentiate the position data to find the velocity and acceleration. To do this we

used a discrete differentiating filter convolved with a low pass filter (Hamming, 1977).

A typical sample of the data is shown in Figure 5.1. The differentiation process

amplified whatever noise was in the position record, leaving the derived acceleration

record greatly contaminated with noise. The force and torque data was also clearly

contaminated with noise (Figure 5.2).

Thus, this problem did not easily fit into the standard least squares framework,

because all of the data sources have substantial contaminating noise.

One possible approach to handling the noise is to filter the data. However.

whatever filter that is applied must preserve the relationship between the different

data sources, and we need to know which filter gives us the best parameter estimates.

The standard least squares parameter estimation approach gave us no guidance as

to how to filter the data to achieve these goals.

Another approach to this problem is to symbolically integrate the load param-
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eter estimation equation, Equation (5.12), so as to avoid differentiating velocity to

find accelerations. One approach to integrating the equations is presented in the

appendix to this chapter, and we can express the resulting estimation equations in

matrix form as:

 MN

mec.

me,

f+ T
Cf, B

rf Tr

= | | "Mar
me,

Li;

[2

[a

(5 4)

[ry * |

[oe
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where the first row of JHT™ dr] is

t+T t+T t+T

N 3 / wxpir— | Rar) °g: ‘ t
-

(of) ] + [7 wx llwx) dr o| (15)
and the second row is

t+T t+T t+T

0 (-9 - ox part Rdr|°g «|
t t t

- («)] + [" fax]ow a (16)
It is not clear, however, that this is the right thing to do. If there is substantial

low frequency noise or bias in the data the integration will amplify that noise relative

to the signal frequencies of the data. What is needed is a problem formulation that

gives us guidance as to how to design data processing filters for estimation and how

to handle the need to differentiate or integrate some of the data to supply missing

measurements.

5.1.4 Prototype Problem To Be Discussed As Example Of

Procedure

The problem we are going to focus on in what follows is the load inertial parameter

estimation problem stripped down to its bare essentials. We have a one-dimensional

system and its dynamics are given by:

f =  mm --a \v
fe37)

which is simply force = mass - acceleration.

Our goal is to estimate the mass of the object as accurately as possible, given a

fixed amount of data. Unfortunately, we only measure the force and the velocity

RA



of the object. We wish to determine the data processing procedure to that produces

the best estimates, in some sense. We have several choices:

Differentiate velocity to estimate acceleration, and use the equation

F(t) = mo(t) (2 18)

to produce the estimates.

b {integrate the force, and use the equation

™ F(t)dt = m(v(ty) — v(t) ‘5.11)

to produce the estimates.

Differentiate velocity to estimate acceleration, but then apply a filter of some

sort to “clean up” the data. The estimates are produced from an equation of

the form

Lx f(t) =m(l*2) * v(t) ‘5 ot
® |0)

where [ is some filter and * is the convolution operator.

The goal of this chapter is to show which of these choices is the best choice to

make, and show what factors affect the choice of data processing procedure. To do

this, we will start by explaining how an estimation procedure that can handle noise

in all the data works. We will first show how standard least squares is applied, and

we want to look carefully at what criteria it optimizes and how it handles colored

noise. Next we shall examine an eigenvalue/eigenvector estimation procedure, how

it applies to noise on all data case, and how it handles colored noise. We will explain

how the colored noise estimator can be partitioned into a white noise estimator

preceded by appropriate data filters. Then we will ask what data processing produces

the best estimates from this estimation procedure, and then we will show how to

generate the information about the data and the noise that allows us to design the

appropriate data processing procedures.
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5.2 The Estimation Procedure

We will now discuss application of the estimation procedure to the prototype prob-

lem, estimating the mass of a one-dimensional load. First, we must describe notation

for all the quantities we need to keep track of. f(t), a(t), and v(t) are measured or

estimated forces, accelerations, and velocities. f(t), @(t), and v(t) are the underly-

ing true values for these quantities. m is the true mass of the object, and 7: is the

estimated mass. Note that

f(t) = m- a(t) = m- =5(2) l,£4

holds for the true values of the data, but since

f(t) = £2) + ny(2)

a(t) = a(t) + na(t)

v(t) = 9(t) + ny(2)

 22)Ie.

(5.23)

(5.24)

where n;(t), no(t), and n,(t) are the noise contaminating the data, the corresponding

equalities for the measured data do not hold:

5.2.1

F(t) £ m-a(t)£m-
a

—v(1) |-595)

Application Of Standard Least Squares To Prototype

Problem

What is presented in this section is well known (Silvey, 1975, for example) and is

presented so as to make what follows more comprehensible.

To show how to apply standard least squares to this problem, we must assume

we have a perfect acceleration measurement, a(t) = @(t), but a noise contaminated

force measurement, f(t) = ma(t) — n,(t). We will model the noise, n 7(t), as zero
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mean, gaussian random noise. ng(t) is not necessarily “white” noise, however, but

can have any power spectrum, denoted by Sn, (w).

We can estimate rn using standard least squares in the following way. In the

white noise case, S,,(w) = 1, the appropriate criteria to minimize is

A
I
Jere

ye
Lt

Cb (t)

(t) = m-a(t)—f(t)

5)®
1

ld
-

gC 7)\

We express the data in matrix/vector form A¢ =f + -

a(1) \ ( fw) [dw

1@ |,| «@

\

a(p) |
1(2) (m)=

|
\ \ 7(p) \ e(p) J

 7)5.9

and the solution is given by the normal equations

p= (ATA) 'ATf (5
\ 23)

The standard least squares approach minimizes errors along only one coordinate

direction (Figure 5.3A). This should be contrasted with the eigenvalue/eigenvector

approach

Effect Of Colored Noise

The effect of colored noise (the noise spectrum S, . is not constant) is to lead us

to weight the errors in our criteria for an optimal estimate. To show this we must

analyse how our parameter estimation schemes work in the frequency domain.

Since

"y J) =m-a(t) — f(t) = nyt), (5.2 ~~

1)
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the power spectrum of the noise, S,, is simply the power spectrum of the noise

contaminating the force measurements, S,,. In the white noise case (the noise

spectrum S,, is constant) we wanted to minimize the criteria

Y(t) =D (m-a(t) ~ f(t)’ “1)"7 :4)

and by Parseval’s Theorem (Oppenheim and Wilsky, 1983)

2 et) = 2 [EW (0.32)

where E(w) is the Fourier transform of €(t). Since the expected spectrum of the noise

was flat, it was reasonable to weight the error components at different frequencies

equally.

In the colored noise case weighting the errors equally at different frequencies no

longer makes sense. Since the power spectrum of the noise is S, ;(w) and is not

constant, we should weight the error components at different frequencies according

to the expected amount of error at that frequency. Our optimal estimation criteria

to minimize becomes (in the frequency domain):

5 EG _ sm Aw)-Fo)
w Shp, (w) w Sn, (w)

This is equivalent to prefiltering the data with the frequency domain filter

\/ Sn; (w)
(© 4)

or convolving the data with the inverse fourier transform of this filter.

5.2.2 Handling Noise On All Measurements

The eigenvalue/eigenvector parameter estimation procedure presented in this section

was originally developed by (Koopmans, 1937), and (Levin, 1964) made use of it in

pulse transfer function estimation. Many others have extended it in various ways:
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(Smith, 1968, Bonivento and Guidorzi, 1971, Grosjean and Foulard, 1978, Kotta,

1979, Tian-Zing, et. al., 1982, Kotta, 1982)

Now let us assume there is noise on both the force, ns, and the acceleration, ng,

measurement:

F(t) = f(t) = ns(2)

a(t) = a(t) — nal?)

(5.35)

(5.36)

Both noise sources are zero mean, gaussian, and with power spectra Sn, and Sp,

respectively. The noise sources are independent of each other, also. Initially, let us

assume that variance of n, and the variance of n, are equal, and the noise sources

are both white.

Now we need to reexamine what the error is that we are minimizing. We see in

Figure 5.3B that the error we now want to minimize is in the direction of the vector

 yy
and for a data point (a(t), f(¢t)), the error is given by

a(t) — f(t)
1/2

m

—1(=) (7)

(57)2.

TBo8)

This is the component of the “true” error perpendicular to the relationship f(t) =

m- a(t).

We would like the estimate / to minimize

$e = yo eal) = S)°
,

15.39)

This is a nonlinear minimization problem since the desired estimate, mm appears in

both the numerator and the denominator of the objective function, and is squared

in the denominator. Thus, we cannot apply standard least squares techniques to

this problem, or use the normal equations to find the estimate.
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An Eigenvalue/Eigenvector Based Estimation Procedure

We can solve this nonlinear estimation problem if we think of it as a linear algebra

problem (Koopmans, 1937). We express €(t) as a vector:

/

a(1) f(1)
a(2) £(2)

\ a(p) f(p)

5-1 J

(

]

(1) \

(2)

\ e(p) )

fr

A
9.40.in)

and notice that the above forms the matrix/vector equation:

xy — {
#gEot1)

Note that v has unit length.

Our estimation problem is now to find the unit length vector v that minimizes

the length of Bv. This will minimize

y "(t) (:.42)

as we desire. Now that we have reformulated the estimation problem as a linear

algebra problem, we can recognize that the desired ¥ is simply the right eigenvector

of B corresponding to the smallest singular value of B, or equivalently, ¥ is the right

eigenvector corresponding to the smallest eigenvalue of BTB (Golub and Van Loan,

1983). To see this, we realize that minimizing the square of the errors is equivalent

to minimizing

Y_€X(t) =vTBTBv (5.43)

We merely decompose a candidate ¥ into its projection along the orthogonal eigen-

vectors of BTB. i.e..

&gt; Vo —~4 YyoVao + °- Ns) - %3 4, TA
J
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where v; is the eigenvector corresponding to the smallest eigenvalue A;. Since v is

of unit length, &gt;-¥_; 42 = 1. The function to minimize is now

VTBTBY = Aly + XIE + + AZ? (5.45)

To minimize this sum we should choose Vv = v;, as previously stated. 77 can be

easily computed from Vv, although it may be hard to find the error distribution of

given the error distribution in V.

Effect Of Colored Noise

The effect of colored noise is once again to lead us to weight the errors in our criteria

for an optimal estimate. We once again look at the expected power spectrum of the

noise:

Aw) — F(w)|®E 2 — imi= 3mA
We note that the expected power spectrum of the noise is

2
g, = Sn t Sn;

m2 +1

(5.46)

(5.47)

and once again we should weight the errors. Since the denominator in the above

expression for the power spectrum is a constant, it can be ignored in the weighting.

The estimate m should minimize

3 |m-A(w)-F(w)|?
w m28n,+Sn,

m2 LL 1 (5.48)

This is equivalent to prefiltering the data with the frequency domain filter

/m?S,. +Sn,
1

(5.49)

We note that our data filter we use to estimate / depends on the true value of

the unknown parameter, m. We therefore are forced either to adopt an iterative es-

timation procedure, or to simply approximate our filters to the theoretically optimal
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filters. We chose the second course, as it is not clear we will know the noise spectra

exactly enough to know the true data filters to the accuracy where approximating

m would make a difference.

Handling Missing Measurements

When there are data that appear in the parameter estimation equations but are

not measured directly we must generate that missing data. This requires that we

measure some other data that is directly related to the missing data by some known

transformation. We apply that known transformation to the measured data to es-

timate the missing data, and we also need to transform the noise power spectrum

of the measured data to generate the noise power spectrum of the missing data. In

this example we reconstruct acceleration from velocity measurements.

Conclusions On Our Estimation Procedure

1. When there is substantial noise on more than one source of data it is appro-

priate to use an eigenvalue/eigenvector based parameter estimation algorithm.

2. The optimal filter (in the frequency domain) for the prototype problem is given

By

L

/m2S,, + Sy,
(5.50)

3. To design the optimal filter we need to know noise characteristics such as the

power spectra S,, and S,,.

4. The true optimal filter depends on the true values of the parameters to be

estimated. We are forced either to iterate or to approximate, and we choose

approximation in this chapter.

5. This estimation approach can easily be generalized to apply to more complex

problems with more than two measurements.
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6. Missing data and its noise spectrum should be reconstructed from other mea-

sured data if possible.

5.3 A Filter Design Exampl~or

Figure 5.4 shows an example parameter estimation problem and the resulting optimal

Alters.

We present a simple example to clarify the concepts presented in the previous sec-

tions. Force and velocity are measured as in the prototypical problem, and the noise

on each is independent zero mean white gaussian noise with variance 1. Therefore

their power spectra are simply constants. We note that differentiating the velocity

to estimate the acceleration will result in an acceleration noise spectrum equal to

w?. The true value of the mass parameter is assumed to be 1 in this example, so the

frequency domain data filter is

./m2S, + Sn, Vwi Fl
 KE 1

r

§
fy, 1)

The frequency domain force filter is

1

Vw? +1 (5.52)

while the frequency domain velocity filter combines a differentiating filter with the

data filter. The magnitude of the velocity filter is

vw? +1

9,

(5.53)

and the phase of the filter is a 90° phase advance at all frequencies, due to the

differentiator.

Let us examine what happens to the filters as the frequency, w, goes to zero and

infinity. As the frequency goes to 0, the force filter becomes

1
lim —— — 1

w—0 /(w? +1
(5.t 1)
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and the velocity filter becomes

w
lim —— — w

w—0 4/2? + 1
{-, 13

| Ted5)

in the frequency domain. What is happening is at low frequencies the optimal filters

essentially just differentiate velocity, and do nothing to the force signal. As the

frequency goes to oo, the force filter becomes

1 1
lim ———=
oo wil ow (5..6)I

and the velocity filter becomes

 Ww
lim ————1

w—o0 f(y? 4+ 1 (5.57)

in the frequency domain. What is happening here is at high frequencies the optimal

filters essentially do nothing to the velocity signal, and integrate the force signal.

We see from the above limits and from the magnitude plots of the optimal fil-

ters in Figure 5.4 that the optimal filters avoid differentiating the velocity at high

frequencies, where noise would be greatly amplified, but they also avoid integrating

the force at low frequencies, where bias and drift would be greatly amplified (Figure

5.5).

The details of the filters depend on the noise spectra and the a priori estimates

of the true values of the unknown parameters, but the filters make intuitive sense

in what they are trying to do. We note that setting the acceleration noise to zero

tells us that the data filter should be just as the standard least squares approach

predicts

5.4 Characterizing The Noise

We see that in order to design optimal filters for the data we need to know the power

spectra of the noise. Given that in real life one never knows the true value of the
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signal, but can only look at a noisy measurement, it seems unrealistic to expect to

be able to find the noise power spectra. However, with no more sensing than the

sensing we have already postulated, we can estimate the noise spectra of the data.

We simply make use of the redundancy in the sensing.

Let us assume we measure force and velocity

f(t) = f(t) + ny(t)

v(t) = 5(t) + no(t)

(~ 8)3

(5.59)

We will let the true value of the mass of the object be 1 for this discussion, so that

f (t) = £9(t), although it is quite easy to derive the same results for the general

case. We assume that n;(t) and n,(t) are zero mean, stationary, and independent.

Let us examine what the power spectra of the observed data will be. First we

note that the transfer function from velocity to force is

8 fs - (5.60)

The power spectrum of the true force signal will be related to the power spectra of

the true velocity signal by

S:(w) = H(jw)H* (Jw) Ss(w)

and the true cross spectra will }
JP

S370) = H()Si(0) = po

LI
re

4}

(5.62)

The spectra and cross spectra of the actual data can now be easily found:

Sy(w) = S§(w) + Sa, (w)

Sy(w) = Sp(w) + Sp, (w)

Siw)
Svs (w) = H(jw)Ss(w) =H(jw)

(5.63)

(5.64)

(5.65)
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This provides us with enough information to estimate the noise spectra:

Say (w) = S(w) — Sor(w) H* (jw)

Sus(w)
Sn. (W) = Sy(w) — Hijo)

“r 6) ase Ly

(5.67)

We have implemented this approach to noise characterization on simulated data

and noise, and it seems to perform well. We have yet to test it on real data or actual

nois~

Conclusions On Noise Characterization

1. We can use “redundant” sensing to characterize noise spectra.

2. We need to know the true underlying relationship between the redundant sig-

nals. In this case we needed to know:

es The true mass m.

» f(t) =m- a(t)

a(t) = L4(¢)

3. This approach to noise characterization generalizes to many other redundant

sensing situations.

5.5 Discussion

One may ask whether the additional complexity in data processing suggested by this

chapter is worth the effort. We are in the process of applying this scheme to a real

parameter estimation problem with data from actual hardware. This will enable us

to more concretely assess the procedure’s benefits.

We should point out, however, that one makes data filtering decisions all the

time. If we numerically differentiate data we also low pass filter it, and must choose
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the characteristics of the filter. If we integrate data, we must choose integration

intervals, which set the filtering characteristics of the integrator. We should at least

be aware of what good filtering decisions look like, even though we may not apply

the optimal filters directly.

We can ask whether the filtering that is suggested here makes intuitive sense.

Clearly, the noise matters in designing a filter. If there is almost no noise in a certain

frequency range we should pay attention to those frequencies, while if the noise is

much larger than any signal at some frequencies we should probably ignore those

frequencies. This is exactly what the filter tells us to do. Also, the decision of when

to integrate versus when to differentiate data seems reasonable, as explained in the

filter design example section.

We are solving a nonlinear estimation problem, and one would have expected an

iterative process somewhere. Note that the computation of eigenvalues and eigen-

vectors, or singular values and singular vectors require an iterative algorithm, and

this is where the iteration occurs. Such eigenvalue/singular value computation pro-

cedures are extremely well developed and a lot of effort has been put in to making

them numerically stable (Golub and Van Loan, 1983).

5.6 Conclusions

We have developed a parameter estimation procedure that shows us appropriate

ways to filter data for parameter estimation. The procedure addresses two main

problems:

1. Noise is typically present in all data.

2 Often we must reconstruct missing measurements.
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5.7 Appendix

5.7.1 Deriving The Dynamics Equations

The equations for the forces and torques (expressed in the load coordinate system)

necessary to move a load along a given trajectory are

F =mp-mg+wxme+wX(wxmc)

n- lw+wX Iw)+mexp—mexg

 3)!

iraE  tr

"“7 29)aks

whera:

f = the net force on the load,

m = the mass of the load,

P = the acceleration of the load,

g = the gravity vector (g = [0, 0, —9.8 meters/sec?]),

w = the angular velocity vector,

w = the angular acceleration vector,

C —

n —

I =

the unknown location of the center of mass of the load.

relative to the force sensing coordinate system origin,

the net torque on the load, and

the moment of inertia tensor of the load about the

force sensing coordinate system origin.

In order to formulate the above equations as a system of linear equations, the

following notation is used:

 WwW  C =

L

0 —w, wy

Wy 0 —w;

~W, Wg 0 |

Cp

Cc,

Cc.

g [wx] ¢ im1 9)
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Using these expressions, Equations (5.68) and (5.69) can be written as a single matrix

equation expressed in load coordinate frame. This load dynamics formulation is

presented in Equation (5.12).

5.7.2 Integrating The Forces And Torques In The Force Sen-

sor Frame

Throughout this derivation we will use the superscript notation ° and ? to indicate

what coordinate frame a vector is expressed in, if there is any confusion. If there is

no such superscript, the vector is expressed in the load frame.

The term P is integrated using equation 7.22 of (Symon, 1971):

d ,,. d 0° o Ou

R—(°D)=Z(R-°B)+R("wx°p) (5.73)

were R is the rotation matrix representing the rotation from an inertial coordinate

system to the force sensing coordinate system that continuously moves with the load.

To get an integral form of this equation we simply integrate it:

f

rt+T t+T t+T

Rpar=(R-p)| +[ R(wxp)dr (oO . 4)
ee
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and performing the indicated rotations leaves us with

Ft+T |t+T t+TPDdr = Pp ! [ PwxPpdr
+

[+7 t+T t+T
0dr =u ~ wx Pwdr =Pu)

Jt t £ i

since w X w = 0. We also remember that

Similarly
t+T

t+T tT

/ bgdr = / Rr °g
* t

5,7!
»¥

-):

(7 75)).

(5.7)

Fach of the matrices [Pwx] and [ew] can be integrated element by element to

show that
t+T

/ [Pwx]dr =

rt+T

/ [oPw] dr =
+

(oe) (17) 4
Lea)-Flm

U.

The matrix [(g — P) x] can be integrated element by element in the same way. Each

matrix element of the terms [Pwx|[Pwx] and [PwXx][e?w] are numerically integrated

by adding values at each time step. The result of this integration is given in Equa-

tion (5.14).
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Chapter 6

Single Trajectory Learning

6.1 Abstract

We present an algorithm enabling a robot that is repeating the same trajectory to

reduce its trajectory error on repetition of the motion. The algorithm details how

to use the trajectory following error (the time history of the differences between the

desired trajectory and the actually executed trajectory) after any particular move-

ment to update an actuator feedforward command that is used for the subsequent

attempt. This approach to robot learning is based on explicit modeling of the robot;

and uses an inverse of the robot model as the learning operator which processes

the trajectory errors. Results are presented from a successful implementation of this

procedure on the MIT Serial Link Direct Drive Arm. The major point of this chapter

is that more accurate robot models improve trajectory learning performance, and

learning algorithms do not reduce the need for good models in robot control.

 1 This chapter is a revised version of (Atkeson and McIntyre, 1986)
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6.2 Introduction

Adaptive feedforward control for repetitive motions: In actual use robots

tend to execute the same sequence of motions with the same loads repeatedly. We

can take advantage of this pattern of usage by specializing the robot control system

to store feedforward commands in a memory and play them back when necessary.

This type of control system would repeat its errors on each movement, in contrast

to the performance improvement with practice seen in human movement control.

We propose an algorithm that uses practice to improve movement execution, by

altering the stored feedforward commands on the basis of previous movement errors.

This serves two purposes: 1) to improve robot trajectory following for repetitive

movements, and 2) to increase our understanding of the role of practice in human

motor control.

6.2.1 Previous Work

Recent work in a number of laboratories has focused on how to refine feedforward

commands for repetitive movements on the basis of previous movement errors. The

first paper on repeated trajectory learning seems to have been (Uchiyama, 1978).

Subsequent work includes (Arimoto, 1985; Arimoto et. al., 1984a, 1984b, 1984c,

1985; Hara, Omata, and Nakano, 1985; Kawamura et. al., 1984, 1985; Casalino

and Gambardella, 1986; Craig, 1984, 1983; Furuta and Yamakita, 1986; Harokopos,

1986a, 1986b; Mita and Kato, 1985; Morita, 1986; Togai and Yamano, 1985, 1986;

Wang, 1984; Wang and Horowitz, 1985)

These papers discuss using linear learning operators and have emphasized stabil-

ity of the proposed algorithms. There has been little work emphasizing performance,

i.e. the convergence rate of the algorithm. Simulations of several of these algorithms

have revealed very slow convergence and large sensitivity to disturbances and sensor

and actuator noise.
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6.2.2 Features Of This Work

What distinguishes this trajectory learning algorithm from previous robot trajectory

learning schemes is the following combination:

Provides guidance for designing the learning operator: The central prob-

lem in making use of trajectory error measurements is transforming those errors into

feedforward command corrections. Previous work has explored the requirements on

the learning operator for convergence, but has given little guidance as to how one

should choose a particular learning operator from the large set of learning operators

that converge. The algorithm proposed here explicitly uses an inverse plant model

as the learning operator. If there are no disturbances or sensor or actuator noise

and we have perfect models of the robot, the algorithm will correct any errors in the

feedforward command after one practice motion.

Handles nonlinear plants: The algorithm can make use of the nonlinear rigid

body robot dynamics in the model used to generate feedforward command correc-

tions. Previous work have used linearized or otherwise simplified robot models.

Makes explicit use of feedback control: The algorithm takes explicit ad-

vantage of the on-line trajectory improvement provided by the feedback controller

in calculating the next feedforward command.

Successful implementation: The algorithm has been implemented on an ac-

tual robot, the MIT Serial Link Direct Drive Arm. Excellent trajectory learning

performance requiring only a small number of practice trials has been achieved.

Generality: works with many feedback controllers: The algorithm ap-

plies to a wide variety of feedback controller structures, as only knowledge of the

feedback controller output is required. It would be easy to combine this adaptive

feedforward control algorithm with adaptive feedback controllers.

(enerality: works with many plants: The algorithm does not require the

plant dynamics to be of a particular type and applies to a wide range of robots
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with (for example): actuator dynamics, joint compliance dynamics, and flexible link

dynamics. This is an important feature of the algorithm, as it is becoming clear that

a typical robot exhibits quite complex dynamics (Sweet and Good, 1985).

Analysis relevant to other schemes: The analysis of this algorithm makes

clear why other trajectory improvement schemes that intuitively seem correct often

perform badly or actually degrade performance in practice.

5.3 The Trajectory Learning Algorithm

6.3.1 The Control Problem

Our goal is to repetitively execute an unrestrained robot trajectory with as small

a trajectory following error as possible. The desired trajectory has a finite time

duration and the robot starts in a known initial steady state, x(0). We assume

that modelling errors are much larger than any sensor and actuator noise or plant

disturbances, and save the question of how to appropriately filter out non-repeatable

noise and disturbances for a later paper.

There are three components of the trajectory learning algorithm: feedforward

command initialization, movement execution, and feedforward command modifica-

tion (Figure 6.1). After initializing the feedforward command, the movement exe-

cution and feedforward command modification steps are executed for each repeated

movement attemnt.

6.3.2 Feedforward Command Initialization

Given the desired state trajectory specification, x4(t), the feedforward command

memory is initialized using a model of the inverse of the robot dynamics (Fig-

are 6.1A)

 4(t) = RY (x4(2), %4(t))¥
’6. -i J
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Figure 6.1: Block diagrams for feedforward command initialization, execution, and

modification.
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Using inverse models of robots to generate feedforward control signals:

The robot itself transforms a vector of actuator commands, u, into motion, .:

»

R{x.u) '-.2)\

x represents the state vector of the robot, which includes the position and velocity

of each joint. x is the derivative of x. A model of the inverse of the robot dynamics

transforms a trajectory specification, x(t), into actuator commands necessary to

achieve the desired motion:

u=R(x,x) (6.3)

For robot arms a rigid body dynamics model is often used to predict the forces and

torques necessary to achieve a particular motion, and thus serves as a model of the

inverted robot dynamics. The rigid body dynamics equations for a robot can be

written as

R7'(x,%) = Torques = 1(0) - 6 + 0 - C(0) - 6 + g(0) (6.4)

where 0(t) is the desired trajectory of the joint angles, I(8) is the inertia matrix of the

arm, C(0) is the Coriolis and centripetal force tensor, and g(8) is the gravitational

force vector (Hollerbach, 1984). For some robots it is argued that additional sources

of dynamics are important (Goor, 1985a; Sweet and Good, 1985; Good, Sweet, and

Stroebel, 1985). In these cases we can still model the robot dynamics and invert the

model. For the purposes of this chapter we will use only rigid body robot models.

as these types of models describe most of the dynamics seen in a direct drive robot

ari.

Generating the robot model: In order to use a rigid body robot model the iner-

tial parameters of the robot must be known. There are several sources of parameter

estimates: 1) CAD/CAM models may be used to compute inertial parameter esti-

mates, 2) the robot can be disassembled and the inertial parameters of the parts
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measured, or 3) the inertial parameters can be estimated using movement and actua-

tor data from actual use of the robot. In previous work we have taken the parameter

estimation approach and shown that the dynamics are linear in the unknown iner-

tial parameters of the links. We have identified the rigid body dynamics of the MIT

Serial Link Direct Drive Robot Arm, and have used this dynamic model for control

(An, Atkeson, and Hollerbach, 1985).

6.3.3 Movement Execution:

The ith attempt at the desired movement is executed using the current feedforward

command, uy,(t)(Figure6.1B). This command includes an error, §u’,(t), which is

reduced by the actions of a suitably designed feedback controller, C, leaving an error,

6u*(t), in the actuator commands sent to the robot, u*(t). For a linear plant and

controller the amount of error reduction can be expressed using Laplace transforms:

1 _ 1 t

1) = TromrE©) (.5)

The actuator commands and the actually executed movement trajectory, x*(t), are

stored for use by the learning module.

6.3.4 Feedforward Command Modification

The previous steps in this algorithm are standard components of many current robot

controllers. One contribution of this work is to propose a particular approach to

transforming trajectory errors into modifications of the feedforward command. We

represent errors in our dynamic models of the robot as'an input command distur-

bance, which we can correct for by modifying the feedforward command. We use

our models of the inverted robot dynamics to estimate this actuator command error,

fu (2), which is then subtracted from the previously applied actuator commands to

form the feedforward command for the next movement attempt (Figure 6.1C).
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Estimating the actuator command error

We assume there exists a correct actuator command history, u*(t), that drives the

plant exactly along the desired trajectory in the absence of disturbances or noise,

and define the current actuator command error as

sui(t) = u'(t) — u(t) = R7I(x(8),%(1)—-R40),%(t) (6.6)

where R™1() is the true inverse robot dynamics. Our estimate of the error in the cur-

rent actuator command is found by simply replacing the true inverse robot dynamics

with our model:

u(t) = RU(x(2),%(8)—BR(xi(t),%4(2))
= RI(x'(t),%(t)) — a*(¢t)

(6./)

When the plant is linear we can apply the plant inverse directly to the trajectory
3
oh TOT

R71(x,%) — BR(x4,%q) = R™(e,é) (6.8)

The command error estimate can be expressed in terms of the feedforward command

error using Laplace transforms.

i) R(s) i
e'(s) = TTC RG)urs)

~i 1 0 1 R(s) ;

bu (s) = FC (s) = 25) 1 Clo) Re) Wr ()

[6.1))

(€.10)

Updating the feedforward command

The update for the feedforward command on the next movement is simply the mod-

ified actuator command.

1]
ffLt) = u(t) — bu’(2) (€. 11)
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By subtracting the correct command, u*, from both sides of Equation (6.11) and

using Equations (6.5) and (6.10) we can express the Laplace transformed error prop-

agation equation for the linear case:

R(s)— R
suits) = =n)ZR)soy

R(s)(1+ C(s)R(s))
\ 1

With a perfect model, R = R, the feedforward command errors will be zero after

one movement.

6.4 An Implementation Of The Algorithm

We have implemented the trajectory learning algorithm on the MIT Serial Link

Direct Drive Arm. This three joint arm is described in (An, Atkeson, and Hollerbach,

1985). To explore the effectiveness of our learning algorithm we will present results

on learning a particular trajectory.

Discrete vs. Continuous Time: Since we are using a computer to generate

the control signals, all signals and controlled systems were represented in discrete

time rather than continuous time.

The Test Trajectory: All three joints of the Direct Drive Arm were commanded

to follow a fifth order polynomial trajectory with zero initial and final velocities and

accelerations and a 1.5 second duration. Figure 6.2 shows the shape of the trajectory

for each joint, and Table 6.1 gives the initial and final joint positions, the peak joint

velocities, and the peak joint accelerations.

The Feedback Controller: An independent digital feedback controller was

implemented for each joint and was not modified during learning.

Initialization Of The Feedforward Command: The initial feedforward

torques were generated from a rigid body dynamics model. The model and the

estimation of its parameters are described in (An, Atkeson, and Hollerbach, 1985).

The calculated feedforward torques are shown in Figure 6.3A.
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Joint

Initial
Position
radians

1 0.5

2 | 5.0
3 4.0

Final |Position
radians

4.5
1.0

-0.5

Peak

Velocity
| radians/s

5.0
-5.0
-5.6

Peak |

Acceleration

radians/s?
+10.3
+10.3
+11.5

Table 6.1: Test trajectory parameters.
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Initial Trajectory Performance: As an index of trajectory following perfor-

mance the velocity errors (the difference between the actual joint velocity and the

desired joint velocity) for the first movement are shown in Figure 6.4A. We have plot-

ted the raw velocity error data to give an idea of the relative size of the trajectory

errors and sensor noise.

Calculating Acceleration and Filtering: In order to use the rigid body

inverse dynamics model to compute joint torques it was necessary to compute the

joint accelerations. Joint positions and velocities were measured directly. A digital

differentiating filter combined with an 8Hz. low pass filter was applied to the velocity

data to estimate accelerations.

To reject noise and non-repeatable disturbances it is necessary to filter the trajec-

tory errors and controller output to improve the convergence of the learning process.

In this implementation we applied low pass digital filters with an 8Hz. cutoff to the

data used in the learning process. We filtered the references used by the learning

operator with the same filter used on the data. It was necessary to correct for incon-

sistencies between the velocity sensors and the position measurements, which was

done by calibrating the position reference to the feedback controller.

Final Trajectory Performance: The robot executed two additional training

movements which are not shown, and its performance on the fourth attempt of the

test trajectory was assessed. Figure 6.3B shows the modified feedforward commands

used on the fourth movement, and should be compared with the predicted torques

shown in Figure 6.3A. Figure 6.4B shows the velocity errors for the fourth movement,

and should be compared with the initial movement velocity errors in Figure 6.4A.

There has been a substantial reduction in trajectory following error after only three

practice movements.
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6.5 Using Simplified Models

It may seem unnecessary to use the full rigid body dynamics model of the robot in the

learning algorithm. One might think that learning algorithms of this type allow one

to avoid modeling the robot in full detail. This is not the case. Simplifying the robot

model necessarily introduces additional modeling error. Without careful analysis

such modeling errors may cause the learning algorithm to have poor performance,

or even to degrade performance. As an illustration of the possible effects of modeling

error due to the use of simplified models, we will now present a seemingly reasonable

simplified model of a two joint robot arm that when used as the learning operator

fails to learn. The robot arm is a planar two link mechanism with rotary joints and

is described in the introduction to (Brady, et al., 1982.)

The simplified dynamic model that we have chosen for this example is that of

two independent rotary joints with constant moments of inertia. That is, we ignore

the centripetal and coriolis torques of the complete rigid body robot dynamics, and

we assume constant moments of inertia around each joint. The moment of inertia

of link 2 is a constant with respect to 6,. The moment of inertia around joint 1

depends on f#,. We approximate the moment around joint 1 as the average of the

maximum and minimum moments around that joint, over all possible configurations

of the robot. The equations of motion for such a simplified system are:

Torques = 1- ¢

where I is a constant diagonal 2 x 2 matrix. This gives a learning operation of:

ul! =u’ — Iegtimated (0 — 04)

(6.13)

(6.14)

The results of applying this learning algorithm to the simulated two joint robot

movement are show in Figure 6.5. The movement is from point a to point b with zero

initial and final velocity, acceleration, and jerk (seventh order polynomial). Feed-

back control is provided by independent PD controllers at each joint, each having
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a bandwidth of 1.0 hertz and damping coefficient of 0.707 (based on Teatimaied):

Figure 6.5A shows the performance of the system on the initial trial, with the ini-

tial feedforward torques, uj, based on the simplified dynamics model. Figure 6.5B

shows the performance of the system after five iterations of the learning algorithm.

In this case, where an inaccurate inverse model of the robot has been used to update

the feedforward torque command, no improvement in trajectory following perfor-

mance is seen. Had the full inverse dynamics model been utilized (under these ideal

conditions of no measurement noise, actuator noise, or external torque disturbances),

our algorithm would have produced a perfect movement after one iteration.

Appropriate Robot Models: It has been argued that simplified models are

appropriate for a robot with high gear ratios such as the PUMA. One must still model

the other sources of dynamics prominent in these types of robots (Sweet and Good,

1985; Good, Sweet, and Stroebel, 1985). Higher order actuator dynamics may play

an important role (see, for example, Goor (1985a,b)). Our point is not that the rigid

body dynamics are the only appropriate model and must be used, but that we must

oe careful to include all significant dynamics in our models. Learning performance

can be used to assess the quality of the models used to drive the learning.

6.6 Convergence

An important question that arises is how close our model of the inverted robot dy-

namics has to be to the true inverted robot dynamics for the proposed trajectory

learning algorithm to converge to zero trajectory error. We will indicate how conver-

gence can be tested in the general nonlinear case, but by specializing the convergence

criteria to the linear case and presenting a numerical example we will show that a

convergence proof does not guarantee acceptable performance.
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6.6.1 Nonlinear Convergence Criteria

Analogies to solving simultaneous nonlinear equations: One way to view

the proposed trajectory learning algorithm is as a procedure to solve the vector

nonlinear equations:

Xa = R(pss) (6.15)

for usr, where x4 is the sampled version of the desired trajectory expressed as a vector

(xa[1],%a[2],...,%q[T])T, pss is a similar vector of the feedforward commands, T is

the number of samples in the trajectory, and R is a nonlinear function representing

the true robot and feedback controller dynamics. Since the initial state of the robot

at the beginning of each movement is a known constant, R() does not require the

robot initial state as an explicit argument.

Testing for convergence using fixed point theory: One approach to analyzing

convergence of algorithms to solve nonlinear equations is to combine the original

equations and the proposed algorithm into a single iteration function. Each cycle

of movement repetition and feedforward command modification can be expressed as

an iterative function,

uit = Gu,(ke) (6.16)

and we can appeal to fixed point theory for convergence conditions for u;; (Isaacson

and Keller, 1966). This is the approach suggested by (Wang, 1984; Wang and

Horowitz, 1985).

6.6.2 Convergence Does Not Guarantee Good Performance.

Although conceptually elegant, the convergence conditions provided by fixed point

theory are too weak to be useful. The reason for this is that the duration of the exe-

cuted trajectory is finite and the controlled plant is causal. The trajectory duration
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is referred to as the learning interval, as this is the time over which the feedfor-

ward command is modified. Convergence can be guaranteed by assuring that the

feedforward command errors propagate forward in time on each cycle of movement

execution and feedforward command modification until the command errors propa-

gate out of the learning interval (Figure 6.6). Command and trajectory errors can

grow exponentially as long as they are continually shifted forward in time, as we will

show in the following example.

The example plant

Consider a rotary single degree of freedom robot. The dynamics of this robot in

continuous time are

f ie (6.17)

where 7 is the torque at the joint, I is the moment of inertia of the robot, and § is

the angular acceleration. We can express the dynamics of this robot in discrete time

~~}

h?
Or — 201 + Or—2 =57 (Tk + Th-1) (6.18)

where h is the sampling period (Astrom and Wittenmark, 1984). Note that for

later notational convenience in inverting the plant the sampled torques have been

renumbered to remove the plant delay. A sampling frequency of 1kHz is used in the

numerical simulations to follow.

We use a feedback controller

thers = —k(0k — 0a.) — b(0 — 64, (6.19)

to give the second order plant a natural frequency of 10Hz and a damping ratio

of 0.707. The angle and the angular velocity of the single joint are both measured

directly.
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Deriving the convergence criteria

Since the plant is linear the inverse plant model used for feedforward command

modification will be linear, and it can therefore operate directly on the trajectory

error, et]. The example plant is also minimum phase and the plant inverse will be

causal. In order to put convergence bounds on the learning operator we will refer

to a general learning operator L instead of requiring the learning operator to be

the inverse of the robot dynamics, B=. L will be restricted to be a causal linear

operator.

The propagation of feedforward command errors from one movement to the next

is given by subtracting the correct command, u*, from both sides of Equation (6.11):

suitlt] = 6u't]—fu'lt)
= éu‘lt]—It]*eft]

7.0)\
AY.

where {[t] is the impulse response of the learning operator L and * is the convo-

lution operator. Since the learning interval (the duration over which we modify a

particular feedforward command) is finite and includes only T samples, we can ex-

press Equation (6.20) as a matrix equation by replacing convolutions with matrix

operations.

The sequence of sampled command errors and feedforward command errors are

expressed as vectors, and the transformation between them can be expressed as a

matrix equation fu’ = Adu’:

( 6u’(0] ) / a[0] 0

all] a0] --Sutl1]

0

0

) ! sui, [0]
du’ [1]

\

(= «1)v

Cowlr)) ar) aiT—11 oo oo] ) \sui,7]
where A is a lower triangular Toeplitz matrix. The elements aft] are the impulse

response of the transfer function relating feedforward command errors to actuator
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command errors, 1/(1 + C[2]R[z]), and we note that a[0] must always be 1 due to

a minimum loop delay of one sample before the feedback command can compensate

for feedforward command errors.

The trajectory errors are generated by feedforward command

the matrix equation e' = Béut,:

(

\

a)

e*[1]

eT |

(so) ©

b[1] [0]

. ee 0
f

q{ su’;[0]
su’ [1]

)

0

\ 57] BT —1] --- b]0]
] \ su’, [T

'6.2.%)t

where b[t] is the impulse response corresponding to the transfer function R[z]/(1 +

C|z|R][z]).
The effect of the learning operator can be expressed as a lower triangular Toeplitz

matrix, L, using the matrix equation su’ = Le':

/

5u'[0]
5a]

\ [0 0
0 10)

0 all[0]
\

0 D 1

wm) moreno 1 1 \em /

v
oo

DV,3)

Combining the previous matrix equations, Equation 6.20 can be written as the

matrix equation:

— LB)éu};suf! = (A (6.24)

Testing for convergence of the feedforward command error to zero reduces to

guaranteeing that the absolute values of all the eigenvalues of the matrix (A — LB)

are less than 1. Since A, L, and B are all lower triangular Toeplitz matrices, the

eigenvalues are all equal to the diagonal element of (A—LB),a[0]—1[0]b[0].Werecall

that a[0] = 1, and note that the test for convergence in the finite learning interval

case reduces to a test involving only the first element of the learning operator impulse
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response and the controlled plant impulse response:

(i0]6[0]] &lt; 1 (6.25)

This convergence test does not require L to be a very accurate inverse plant model.

A numerical example

To demonstrate that the above convergence condition does not guarantee accept-

able performance let us example a particular learning operator which satisfies the

convergence test but generates bad performance. Let us choose a learning operator

that satisfies the finite learning interval convergence test exactly such that

[[0]b[0] = 0 &lt;1 (6.26)

Such a learning operator is given bv

CL ift=0
Ig] = { oO

0 otherwise
gy ©

1 7)

With this learning operator the eigenvalues of (A — LB) are all zero, and we are

guaranteed exact convergence in at most T" movements, where T is the number of

samples in the learning interval. This learning operator corresponds to correcting

the feedforward command with a scaled version of the position error history.

To examine the transient response of this learning operator we resort to nu-

merical simulation. We initialize the feedforward command to have a single error

on the first sample. The resulting position error is shown on the first graph of

Figure 6.6. Several of the following movements are also shown, and by the 10th

movement the position error has increased by a factor of 10%. It is difficult to see

that with each movement the first non-zero position error of the previous movement

is exactly cancelled, as the position errors later during the movement are blowing up

exponentially. This exponentially growing wave of errors does shift forward in time,
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and after T' movements will have shifted completely outside the learning interval.

Had the correct inverse dynamics model been used as the learning operator (under

these ideal conditions of no measurement noise, actuator noise, or disturbances) the

feedforward command error would have been entirely cancelled after one movement.

This type of finite time interval convergence relies on the absence of any intro-

duction of new errors. In the presence of sensor and actuator noise and plant distur-

bances the convergence promised by the finite time interval analysis will probably not

occur. In addition, as the sampling interval length changes in the discretization of a

continuous time plant, the convergence properties of this type of learning algorithm

change. Convergence is improved when the plant is sampled at low frequencies.

A performance test

The previous example demonstrates the need to test performance in addition to

showing convergence of a learning algorithm. In the nonlinear case performance

must usually be checked by simulation and by actual implementation, but with

linear plants and feedback controllers we can take advantage of superposition and

the ability to transform to the frequency domain to check how errors at all frequencies

are affected by the learning algorithm. From Equation 6.12 or 6.20 we see that the

errors are propagated according to

5 ut! jal == —L[z|R|z iremoul [2]
A[z]6ut [2]

Cc. 28)
&gt;

where the argument 2 indicates that we have shifted to the frequency domain using

the Z transform. With a perfect inverse model, (L = R71), A[2] is zero, implying

convergence of the feedforward command error to zero after one practice movement.

The learning algorithm will perform badly if at any frequency the gain of A[z] is

greater than 1. The gain of A[z] as a function of frequency can be used to evaluate

the efficacy of proposed learning operators. In the numerical example showing con-
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vergence with poor performance, the poor performance was indicated by a maximum

gain of A[z] equal to 530. This is approximately the factor by which the maximum

position error was growing on each movement repetition in the simulation.

6.7 Conclusions

The contributions of this work are:

The derivation of a nonlinear trajectory learning algorithm based on explicit

modelling of the plant.

The demonstration of good performance of the learning algorithm by imple-

mentation on the MIT Serial Link Direct Drive Arm.

The demonstration by a simple example that proofs of convergence do not

guarantee acceptable performance and of the need to verify performance.

We conclude that more accurate robot models improve trajectory learning perfor-

mance, and learning algorithms do not reduce the need for good models in robot

control.
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Chapter 7

Future Research

There are many components of motor learning, and the work in this thesis is only

a small step in a research program in motor learning. Some of the future research

which is very closely related to the research presented in the thesis is discussed in

the previous chapters. Other topics are mentioned here.

7.1 Local models

The single trajectory learning work can be extended to learning a group of similar

trajectories. This involves building a representation of the dynamics in a small region

of the augmented state space (the state variables and their derivatives), which I refer

to as a local model. The local model could be a representation of the linearized

dynamics about one of the desired trajectories in the group, or it could be a tabular

representation. This local modelling would be a correction model to the previously

identified global model. Key issues here are storage of all the information necessary

to represent the fine details of the local dynamics, and deciding whether to pool

information from different tasks or store experience according to the type of task.
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7.2 Task level learning

This thesis addressed only isolated learning modules. It is important to examine

learning a complete task in addition to focussing on modules, as there will be many

learning modules acting simultaneously in any realistic motor problem, and exploring

their interaction is important. It is important to focus on other kinds of tasks where

the effector system must respond to external demands rather than follow a given

plan.

Often task performance can be represented by a small number of parameters,

and the execution of an arbitrary trajectory is not required. Reducing the degrees

of freedom of possible motor performance greatly simplifies the learning problem,

and reduces the amount of knowledge necessary to learn from practice.

7.3 Plan optimization

The work in this thesis has focussed on improving execution of a given plan. The

perfect execution of a flawed plan will not lead to optimal performance. Plans can

be improved on the basis of models derived from experience.

7.4 Object perception

Rigid body load identification is a first step towards general object perception on

the basis of force/torque information. There are many types of loads that are not

well modelled by the rigid body dynamics framework, and alternative approaches to

identification and control of these loads should be explored.
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7.5 Human motor learning psychophysics

This work suggests a program of research on the quantitative psychophysics of motor

learning. My previous research, not discussed in this thesis, on biological movement

kinematics, dynamics, and control provides a strong base for planned studies on

biological motor learning. Findings relevant to motor learning include an invariance

of the tangential velocity profile across many different movement conditions, sepa-

rability and scaling of load dynamics, and scaling of control gains with movement

speed. In the immediate future my biological research will focus on two areas:

A Competence model: My own and other theoretical work have demonstrated

possible roles of internal dynamic models in control and learning, and provided

mathematical bounds on the required accuracy of these models. The goal of this

research is to estimate, using simulations, how good human internal models actually

are. However, in order for these estimates to be meaningful we need to have accurate

estimates of the mechanical properties of the arm and the effective feedback gains

during movement. I have begun this research by examining elbow movement, and

discovered both modulation of effective feedback gains during movement and scaling

of effective feedback gains for movements made at different speeds. These measure-

ments need to be extended to multi-joint movement, and then useful simulations can

be undertaken.

Motor learning psychophysics: Theoretical analysis and implementation on robots

of different trajectory learning algorithms has revealed distinctive patterns of tra-

jectory modification for alternative algorithms. In order to test for the possible use

of any of these algorithms by humans we need to quantitatively measure patterns of

trajectory modification during learning of particular trajectories.
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7.6 Concluding note

This thesis provides a particular view on what intelligence is: identifying models

of both the environment and the organism itself, and using the identified models

to predict, plan, and control action. Attempting to build intelligent machines that

achieve or surpass human levels of performance tests our understanding of these

ideas, and how complete this view of intelligence really is.
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Appendix A: Using The Identified Arm Model
For Control
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Experimental Evaluation of Feedforward and Computed Torque Control

C.H. An, C.G. Atkeson, J.D. Griffiths, and J.M. Hollerbach

MIT Artifical Intelligence Laboratory
Cambridge, Mass. 02139 USA

Abstract. Trajectory tracking errors resulting from the application of various con-
trollers have been experimentally determined on the MIT Serial Link Direct Drive Arm.
The controllers range from simple analog PD control applied independently at each
joint to feedforward and computed torque methods incorporating full dynamics. It was
found that trajectory tracking errors decreased as more dynamic compensation terms
were incorporated. There was no significant difference in trajectory tracking perfor-
mace between the feedforward controller using independent digital servos and the full
computed torque controller.

1 Introduction

Despite voluminous publications on the control of robot arms, there have been few
experimental evaluations of the performance of proposed controllers. A major reason for
this is the lack of a suitable manipulator for testing that fits these publications’ modeling
assumptions. Commercial robots are characterized by high gear ratios, substantial joint
friction, and slow movement. As a result, their dynamics are approximated well by
single-joint dynamics (Goor, 1985; Good, Sweet, and Strobel, 1985). Moreover, hardly
any commercial robots allow the control of joint torque, which is required in many of
the proposed controllers.

Direct drive arms are increasingly overcoming some of the performance limitations of
highly geared robots (Asada and Youcef-Toumi, 1984; Curran and Mayer, 1985; Kuwa-
hara et al., 1985). The manipulator dynamics are made more ideal by the reduction of
joint friction and backlash effects, and the control of joint torques becomes more feasi-
ble. Hence direct drive arms have the potential for serving as good experimental devices
for testing advanced arm control strategies. When gearing is eliminated, however, the
full nonlinear dynamic interactions between moving links are manifested.

This paper reports on two sets of experiments with the MIT Serial Link Direct Drive
Arm (SLDDA) involving a subset of proposed control strategies. The first set of ex-
periments is based on a hybrid control system. There is an independent analog servo
{or each joint with the position and velocity references, and feedforward commands
generated by a microprocessor. Since most commercial arms are controlled by simple
independent PID controller for each joint, an independent PD controller was tested on
this arm to provide a baseline for comparison. The PD controller was augmented by
feeding forward first gravity compensation and then the complete rigid body dynamics
to ascertain any trajectory following improvements attained by taking the nonlinear
dynamics more fully into account. The second set of experiments shows the preliminary
results of digital servo implementation, using one Motorola 68000 based microproces-
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sor to control all the joints of the SLDDA. The on-line computed torque approach is
compared to the PD and to the feedforward approaches using the digital servo.

The accuracy of the manipulator dynamic model impinges on the performance of
feedforward and computed torque control. Since friction is negligible for direct drive
arms, and presuming that one has good control of joint torques, the issue of accuracy
reduces to how well the inertial parameters of the rigid links are known. In our previous
work, we developed an algorithm for estimating these inertial parameters for any multi-
link robot as a result of movement, and applied it to the SLDDA (An, Atkeson, and
Hollerbach, 1985). The present paper presents results of utilizing the estimated model
to control the robot by both off-line (feedforward) and on-line (computed torque) com-
putation of the joint torques.

1.1 Control Algorithms

The full dynamics of an n degree-of-freedom manipulator are described by

n = J(q)q + V(q,q) + G(q) + F(q,q) (1)

where n is the vector of joint torques (for rotational joints), q is the vector of joint
angles, J is the inertia matrix, V is the vector of coriolis and centripetal terms, G is
the gravity vector, and F is a vector of friction terms. The simplest and most common
form of robot control is independent joint PD control, described by

n=K,(qs—-4) +K,(q4—q)

where qq and qq are the desired joint velocities and positions, and K, and K,, are nxn
diagonal matrices of position and velocity gains.

Feedforward control augments the basic PD controller by providinr a set of nominal
torques ny:

n/,(Q4, 44, 4a) = J(Qa)@a + V(q4, 4a) + G(qa) + F(a, da) (3)

where the hat (*) refers to the modelled values. When this equation is combined with
(2), the feedforward controller results:

n = ny(q4, 44, Qa) + Ko(da — q) + K;(q4 — q) (4)

The feedforward term ny; can be thought of as a set of nominal torques which linearize
the dynamics (1) about the operating points qq, 44, and Gq. Therefore, it is reasonable
to add the linear feedback terms K,(d4—a) + K,(q4—q) as the control for the linearized
system. These feedforward terms can be computed off-line, since they are function of
the parameters of the desired trajectory only.

On the other hand, the computed torque controller computes the dynamics on-line,
using the sampled joint position and velocity data. The control equation is:

n.(qd, q, 44, q, 44) = J(q)§" .3 V(aq, q) de G(q) 3 F(q, q) /

5
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where q’ is given by,
4" = q+ Ku(ds - q) + Kp(q4—q). (6)

If the robot model is exact, then each link of the robot is decoupled, and the trajectory
error goes to zero. Gilbert and Ha (1984) have shown that the computed torque control
method is robust to small modelling errors.

Previously, Liegeois, Fournier, and Aldon (1980) suggested feedforward control as
an alternative to the on-line computation requirements of computed torque control, al-
though they did not present any experimental results. Golla, Garg, and Hughes (1981)
discussed different linear state-feedback controller using a linearized model of a ma-

nipulator. Asada, Kanade, and Takeyama (1983) presented some results of applying a
feedforward control to the early version of a direct drive arm at the Robotics Institute

of CMU, though for quite slow movements and for inertial parameters derived by CAD
modeling. The computed torque method has been considered by several other inves-
tigators (Paul, 1972; Markiewicz, 1973; Bejczy, 1974; Luh, Walker, and Paul, 1980).
Although simulation results have been presented, there has been no published report on
the actual implementation of this controller, mainly due to the lack of an appropriate
manipulator or on-line computational facility.

In this paper, we first use the feedforward controller to evaluate the accuracy of

our estimates of the link inertial parameters, and to compare its performance against
several other simpler control methods for high speed movements. Then, we present
some preliminary results on the implementation of a computed torque controller, again
using the estimated inertial parameters of the links.

1.2 Estimates of inertial parameters

The inertial parameters in the feedforward computation for the SLDDA were estimated
by an algorithm developed previously (An, Atkeson, and Hollerbach, 1985). It was
shown that the unknown inertial parameters of each link (mass, center of mass, and
moments of inertia) appear linearly in the rigid body dynamics of a manipulator. Then
a least squares algorithm was used to compute the estimates of these parameters.

The accuracy of the inertial parameters was verified initially by comparing the mea-
sured joint torques to the torques computed from the estimated parameters. This
comparison, together with the torques computed from parameters derived by CAD
modelling, is shown in Figure 1 for a 1.3s trajectory of all the joints moving 250 de-
grees. The results were actually superior for the dynamically estimated parameters
than for the CAD-modelled parameters. A more practical verification of the estimated
parameters is in generating feedforward torques as part of a control algorithm. The
results of such experiments are presented in the next section.

2 Robot Controller Experiments

In this section, performances of several different controllers for full motion of the SLDDA
are evaluated using the hybrid controller. The reference positions and velocities, and the
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Figure 1: The measured, CAD-modelled, and estimated joint torques.

feedforward torques are generated by a microprocessor and input to three independent
joint analog servos. We present evaluations of the following five control methods used
for high speed movements of all three joints of the manipulator:

1 "D controller with position reference on]v:

n=-K,q+ K,(qq4 -q)
2. PD controller with position reference and feedforward of gravity torques:

n = G(qq) - K.q + K,(qq — q)

3, I'D controller with position and velocity references:

n =K,(qs-q) + Kp(qqs — q)

4 PD controller with position and velocity references plus feedforward of gravity
torques:

A (qq) + K,(q4 - q) + K,.(qq4 - q)
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Figure 2: Trajectory errors of the 5 controllers for full 1.3s motion.

5. PD controller with position and velocity references plus feedforward of full dy-
namics:

n = J(q4)ds + V(q4, da) + G(qa) + Ko(ds — 4)+Kp(qa— q)

In these experiments, friction was neglected. The nominal position and velocity gains
were adjusted experimentally to achieve high stiffness and overdamped charateristics
without the feedforward terms.

A fifth order polynomial in joint space was used to generate the reference trajec-
tory. The joints moved from (80°,269.1°, —30°) to (330°,19.1°,220°) in 1.3s, with peak
velocities of 360 deg/sec and the peak accelerations of 854 deg/sec? for each joint. For
control methods (2), (4), and (5), the estimates of the link inertial parameters given by
An, Atkeson, and Hollerbach (1985) were used to compute the feedforward torques.

The trajectory errors for the above 5 controllers are shown on Figure 2. The errors

for the first controller are very large and are out of the graph range. Adding a gravity
feedforward term does not help very much, and the trajectory errors for Controller 2
are also very large. This was expected since gravity feedforward is a static correction to
Controller 1, and the dynamic effects dominate the response for high speed movements.
Modifying the first controller by adding a velocity reference signal improved the response
greatly. As with Controiler 2, adding a gravity feedforward term did not reduce the
trajectory errors very much, and influenced mainly the steady state errors for joints 2
and 3.
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Figure 3: Trajectory errors of the three digital controllers for full 1.3s motion.

The full feedforward controller reduced the trajectory errors significantly for joints 1
and 2, with peak errors of only 0.33° and 0.64°, respectively. For joint 3, the feedforward
torques did not help because of the light inertia and the dominance of unmodelled
dynamics in the motor and in bearing friction. The high feedback gains make this joint
somewhat robust to these unmodelled dynamics; yet, the trajectory errors could not be
reduced below 1.4° with the feedforward torques based on the ideal rigid body model
of the link.

2.1 Computed Torque Controller Experiment

In this section, some preliminary results are presented for the computed torque method
implemented on the SLDDA. In this implementation, the analog servos are disabled,
and the feedback computation is done digitally by one Motorola 68000 based micropro-
cessor using scaled fixed-point arithmetic. Written in the C language, the controller,
including the full computation of the robot dyamics, runs at a 133 Hz sampling fre-
quency. Although further improvements in computation time are possible, this speed
was adequate in demonstrating the efficacy of dynamic compensation. The details of
this implementation are discussed in (Griffiths, 1986).

A similar fifth order polynomial trajectory as in the previous section was used for
this experiment. Figure 3 shows the trajectory errors for three controllers: the digital
PD controller, the feedforward controller using a digital servo, and the computed torque
controller. The computed torque and the feedforward controllers both show a significant
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reduction in tracking errors for joints 1 and 2 compared with the PD control, with no
clear distinction between feedforward and computed torque. The tracking errors for
joint 1 range from 4.4° to 2.2° and for joint 2 go from 3.5° to 2.0° with the addition of
dynamic component. As before, the trajectory errors for joint 3 were not reduced by
the computed torque or the feedforward controller. Again, this seems to indicate that
our model for the third link may not be very good.

The trajectory tracking performance of the computed torque controller is not as
good as that of the analog feedforward controller of the previous section. The main
reason for this is the slow sampling frequency (133 Hz) of the digital controller, as
compared to the 1 KHz sampling frequency at which the reference inputs were given
to the analog servos. Improvements in the computation time should also improve the
tracking performance of the computed torque controller.

3 Conclusions

We have presented experimental results of using an estimated dynamic model of the
manipulator for dynamic compensation via feedforward and computed torque control
methods. The results indicate that dynamic compensation can improve trajectory accu-
racy significantly and that the estimated rigid body model of the manipulator is quite
accurate and adequate for control purposes for joints 1 and 2. The unmodelled dynam-
ics of the light third link, including the motor dynamics and friction, are dominant and
yield larger trajectory errors than at the other two joints. Therefore, for joint 3, it may
be necessary to use a more complete model to improve trajectory following.

The results of the digital implementation of the feedforward and computed torque
controllers were not as good as the hybrid feedforward controller. This indicates that
if a robot was being used solely for free space movements without significant variation
of its loads, then a hybrid controller using an independent analog servo for each joint
may be quite adequate. A hybrid controller, however, is not flexible, and cannot handle
varying loads or interactions with the environment. Future experiments with the MIT
Serial Link Direct Drive Arm will concentrate on improving the computation time for
the digital control system and on issues of force control.
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