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Dual Estimation of the Poles and Zeros
of an ARMA (p,q) Process!

M. Isabel Ribeiro®, José M. F. Moura®

Abstract: Identification of the p poles and q zeros of an autoregressive mov-
ing average process ARMA(p,q) is considered. The method described departs from
approaches frequently reported in the litterature in two main respects. First, it
substitutes the sample covariance lags by the sequence of estimated reflection coef-
ficients. Second, it provides a direct estimation procedure for the MA component,
which is not contingent upon prior identification of the AR structure. In distinc-
tion to current practice, both tasks are directly addressed, avoiding that errors in
one contaminate the other. The algorithm explores the linear dependencies between
corresponding coefficients of successively higher order linear filters fitted to the time
series: linear predictors are used for the estimation of the MA component and linear
innovation filters for the identification of the AR part. The overdimensioned system
of linear equations derived from these dependencies provides statistical stability to
the procedure. The paper establishes these dependencies and derives from them a
recursive algorithm for ARMA identification. The recursiveness is on the number of
(sample) reflection coefficients used. As it turns out, the MA procedure is asymp-
totic in nature, the rate of convergence being established in terms of the second
power of the zeros of the process. Simulation examples show the behavior of the
algorithm, illustrating how peaks and valleys of the power spectrum are resolved.
The quality of the estimates is established in terms of the bias and mean square

error, whose leading terms are shown to be of order T™?, where T is the data lenght.
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1. INTRODVUCTION

In many problems an important question is that of fitting models to
a series of measurements points. Tha available a priori information and the
ultimate purpose of the model may change with the specifics of each
application. Accordingly, there are alternative standard classes of models
to fit the time series. The Autoregressive Moving-Average processes with p
poles and q zeros, ARMA(p,q), plays a relevant zxole in the study of
stationary time series with rational spectrum. The ARMA process is the
output of a linear discrete time invariant system driven by an uncorrelated
sequence of Gaussian random variables. The system exhibits a feedback or
Autoregressive part AR(p) and a feedforward or Moving-Average part MA(q). In
the absence of the moving-average component (q=0), the work of several
authors shows that the estimate of the process parameters has well
established methods, see for example appropriate comments in [1], [2], [3].
These nwmethods explore the linear dependence between (p+l)-successive
autocorrelation lags of the process (Yule-Walker equations). Taking into
account the Toeplitz structure of the associated autocorrelation matrix,
when a new lag is available, the Levinson algorithm updates the AR
parameters via a numerically efficient recursion. The Burg modification [4]
of the Levinson algotithm substitutes the knowledge of the autocorrelation
lags by the estimation of the reflection coefficients.

When +the NA component is present, the moving-average parameters are
ponlinearly related to the autocorrelation lags. The methods reported in the
literature either require nonlinear optimization techaniques, or first
estimate the AR parameters, then remove the (estimated) AR component, and

finally obtain the MA parameters by factorization of the spectrum of the

residual process. Whatever procedure used, experience has shown that the MA
parameter estimates are as a rule of lower guality as compared to the AR
estimates, e.g. [1], [2], [3].

By the Nold decomposition [5], (6], [7]), a finite order ARMA(p,q) is
equivalent to an MA(co) or an AR(c ). The presence of zeros may be traded
for the inclusion of higher order poles. This is particularly penalizing in
narrowband applications, where an acceptable accuracy of the spectral
notches may require a larger number of poles. Albeit contradicting the
parsimony principle of statistics, this is a common procedure in practice.
Noting that the Burg recursion provides at intermediate stage i the "best”



(in the =aean square sense) ith order linear predictor approximation to the
process, higher order AR models are successively fitted to the time series,
till a "reasonable®” approximate model is found.

The ain of the present paper is to discuss a method where the AR and
MA component of a wmultivariable ARMA(p,q) process are estimated by a
dualized type algorithm. This dualization is in the sense that the mechanics
of the MA estimation algorithm parallel those of the AR part. Actually, the
proposed equations do not use the autocorrelation lags, but the elements of
@ conveniently defined square root of the Toeplitz matrix of autocorrelation
lags associated with the process. The algorithm accomplishes the following:

i) The MA coefficients are determined from +the linear dependence
exhibited by corresponding coefficients of successively higher order
linear predictor filters.

ii) The AR coefficients are determined from the linear dependence
exhibited by corresponding coefficients of successively higher order
innovations fiIVets,.

The above statements need clarification. In point i) the
coefficients of the alluded linear dependence are nct the MA parameters. The
important fact is that asymptotically they converge to the MA parameters
(Corollary 1). The quality of the procedure is connected to the rate of this
convergence (Theorem 3). In point ii) the coefficients of the linear
dependence are in fact the AR parameters. From a different perspective, this
explains why the MA determination may have lower quality than the AR
estimation.

In order to establish the linear dependence mentioned in i) and ii)
above, the ARMA model is given in Section 2 an internmal description (state
variable framework). The model fitting becomes a linear prediction problem
of the Kalman-Bucy ¢type [8], where the measurement noise is completely
correlated with the driving noise sequence. For this problem, Section 2
adapts the asymptotic results of the associated Riccati equation obatined in
[9), where the limiting behavior is in the sense that the measurement noise
becomes totally correlated with the driving noise. The limiting results of
(9] parametrize the coefficients of the successively higher order linear

predictor and lipear innovation filters in terms of the state variable



matrices describing the process in terms of +the solution of a
(degenerate) Riccati equation. Section 3 shows how the coefficients of those
filters are linearly related by the MA and AR parameters. Section 4 presents
the details of +the dual algorithm for AR and MA estimation. In section §,
some simulation results are presented together with a discussion of the
performance of the algorithm. Finally Section 6 concludes the paper.

2. MODELLING CLASS

An s-dimensional, zero mean stationary sequeace, {..., y(n-1), y(m),
y(n+l),...} is given, being assumed ¢o0 be a multivariable ARMA process,
output of the linear discrete time invariant (LDTI) system

P q :
y(2) + ) Ayla-i) = ) B.e(s-i) . (1)
i=1 i=0

Define the z transfo;ms

P : q
Mz) = ) Az, A=l B(z) = ) B, z . (2)
=0 i=

The following are in force:

(H1) (en} is an s-dimensional discrete white Gaussian noise sequence,
with zero mean, and identity covariance matrix,

(HZ2) p2q, det AP#O, det BO#O, quo,

(H3) detA(z) is an asymptotically stable polynomial,

(H4) the polynomial matrices A(z) and B(z) are left coprime.

By (H2)
deg(detA(z)) = d = ps . {(3)

We will denote by a, i=0,...,d the coefficients of the characteristic
polynomial,

d
a(z) =det AM(z) = ) a; z ', a =1, (4)
i=0




and by
u
Nzb= Y N 2l N =B (5)
i=0 _
the numerator polynomial of the system transfer matrix, A-l(z)B(z) written
as #(z)=N(z)/a(z), where, by (HZ2) and (H4), u=d-(p-q).

With (1), we associate the state-variable model,

T4 T F X + G e 020 (6)

I, * H X + Bo e {(7)

which, under (Hl1)-(H4) can be chosen so that,

(Ml) - it has minimal dimension d, i.e. xeRd,

(MZ) - F is an asymptotically stable matrix,

(M3) - (F,G) and (F,H) are completely controllable and completely
observable pair;{

(M4) - F is nomsingular.

The dimensions of F, G and H follow from (Ml). The iaitial state X,
is a Gaussian, zero mean vector, with covariance matrix Po' solution of the
discrete Lyapounov equation

_ T T
P,=FP F +GG. (8)

The Kalman-Bucy filter associated with (6)-~(7) leads to

~ A A
X4 S F in + l(n Voo x, = 0 (9)
¥, *= H X + \A {10)

where x is the one-step ahead linear prediction of the state vector x at
time 1n given the past observations and Va is the innovation process. The
gain matrix Kn is given by

T

T, a1
Kn =(F Pn H +G BO) Dn ' (11)




where

T T
Dn = H Pn H ¢ BOBO ' (12)

is the power of the innovation sequence. The one step ahead prediction error
covariance matrix Pn is given by the Riccati equation
T T T =

PD*I =FPnF -Kn Dn Kn*GG I3 3-0,1,2,..- (13)

P° = P° ' (8)
that corresponds to the prediction problem where the observation and driving
noises are totally correlated. The behavior of this equation can be
established by a straightforward modification of the results of [9], which
considers the prediction problem when there is no noise in the observatiosn.

In particular, we obtain the following three results that will be needed
later on.

Lemma 1: P = 0 is a fixed point of the Riccati equation (13).

Lemma 2: lim Pn = 0 as n goes to infinity.
Proof of Lemma 2: Lemma 1 1is obtained by direct verification. By the
controllability and observability properties of (6)-(7), (13) has a unique
nonnegative definite solution. Then Lemma 2 follows from Lemma 1.

$
Lemma 3: PLCF)IH =0 23, 1¢35¢pq (14)

xn" (F M T oy 1< 5¢pqH, n) 3 (15)

Proof of Lemma 3: the Markov parameters of the system (1)-(2) satisfy
-1
HF "G = B° - Ny / 3, (16a)
HF2G=90 2¢3<pq (16b)

where, Nk=0 for k>u. The proof of this Lemma then follows by induction using
(13) and (11) together with (16a)-(16b); it is a straighforward modification
of the proof for the scalar case contained in {10]




Define

k T T,T
Yr = vect (yi) r<idk = ( Vo0 Ty ]

and similarly V:. Considering the pormalized variance representation of the

o -1/2

innovation process, i Di A (%), the input/output relatiorns (9)-(10) may

be writen in a matrix format as

N ou ¥
Yo = NN 0! (17)
where ﬁ“ is the (N+1)x(N+1) block lower triangular matrix
- -
o 1/2
Wy = pol . (18)
0
Hk_p1/2 ny/? =
1/2 1/2 1/2
HFKIDO HKID1 Dz
HE' ok p2/2 w2 plf2 o pi/2
L 11 N
each block being a square matrix of order s. The block line i of N (line

and column blocks are numbered starting from zero)

normalized

entries on line

prediction error filter coefficients associated with the process.

of the inverse matrix W

-_17
N

expression of Nﬁl matrix entries

(%) The square root A
matrixz such that A = A

1/2

1/2

T 1/2

(A”)

are the i

is the i

el

order

innovation representation of the process. Coanversely, the block

h order normalized

An

of a matriz AX0 is defined as the lower triangular



—— e -

=1 [ -1/2 7
Wy =|o] (19)
_a-1/2 -1/2
Dy MK, D 0
_-1/2, ¢ -1/2
D,/ “HFSK c. . D;
n1/2, -cC
Dy"" HFF K, "
-1/2, ¢ ey  _n-1/2,.C c -1/2
Dy HFy_,...FiK =Dy WL ...FOK, e Dy
where — -
(¢]
FS=F-K H (20)

is the closed loop filter matrix, were presented in [3]. From (17)

-~ -T
RN = H“ N“

N NT
o (Yc)

=EY
where RN is the matrix of the autocovariance lags of the process {yn},
truncated at lag N. In the next section, lipear relations on the entries of

consecutive lines of iu and ﬁ;‘ will be established.

3. R N R_INNOV N_AND
R RS

As we recall, block line i=0,1,...,N of ;;1 represents the it"h order
predictor filter representation of the ARMA(p,q) process. We want to study
the linear dependence of each collection of utl consecutive nonzero elements
in every block column of ﬁ;l. A procedure that obtains asymptotically the
coefficients of the transfer matrix numerator polynomial {see equation (5))
from the coefficients of increasing order prediction error filters is
derived, together with the study of its rate of convergence. A dual,
nonasymptotic result is provided, relating each collection of 4+l
consecutive elements in every block colhnn of ;N and the coefficients of the
system characteristc polynomial (see equation (4)).

Let AN be the lower triangular band diagonal matrix of order (N+l)s,

with block entries




e mmm——- -

(Au)ij - 'i-sz 0i-j £ d (21)
i,3=0,...,N 0 othervise

where Is is the identity matrix of order s. Premultiply the normalized
innovation system (17) by AN to get

N _ ~ “N
AN Yo = ( A“ Hu ) Vo (22)
and let
-_1
6" N“ AN (23)

Theorem 1: Bu has the following structure

B, =g ]
?,(1’ (‘70(1)

oW qH(u) eee ﬂo(u)

.
. .

nd-t“") ceo 'nnld-t) q“u-u cos no‘d’“
0 0 ecee¢ O Q\J(d) e ﬂ‘(ﬂ) ﬂo(d)

. .
L] .
P .

QN cee QNN

where
d
. T _ -r T, o-1/2
Q_(1)=tN_B. Y a F"%p,_u'y D2/ (24)
r=m+d-u+l 0<m<udd, 1i2d

ié a square patrix of order s. )

Proof of Theorem 1: From the matrix identity (23), the structure of AN (21)
and the Cayley-Hamilton theorem satisfied by any 4+l consecutive block
entries on each column of iN below its main diagonal, “N is a lower
triangular band diagonal matrix, with block eatries

[} R R R
By)ss = Q4501 0¢i-j¢a (25)
i'j=°'1,--¢'" g i"j ) d

where,




—t——

]
oo -1-r -1/2 , 112
Q it =) aHF Tk __ D °4 (asa,) NyB, D (26)
r=0 0<ngd, mgi

is obtained by direct calculation on (23). The proof thenm follows replacing
{11) in (26) and using the results provided by Lemma 3 and the properties of
the system Markov parameters (see (16a)-(16b)). All the details of the
proof, concerning the scalar case are presented in [10].

Corollary 1: lim Qi(i) = Nm as i goes to infinity, O<&m(u.

Proof: The corollary follows from the asymptotic behavior of the solution of

the Rxccatx equation, as given in Lemma 2, and the fact that D converges to
(see (12)).

Represent by
al= (W), . 1,520,000 ,N {27)
the block entries of the normalized matriz H-l. The structure of the matrix

N
AN and BN in (23) lead to the following

Corollary 2: The elements Qh(i) satisfy the following linear recursions

Py

i o Ti-l LoTiew - i a
Qb(l) a, + Qi(l) ay + ... ¢+ Qu(x) a = 0 d(i(N, 0<igi-d-1  (2Ba)

Q (i) a§ + Q1) Z?“ b b Qi) ad = a, 1 didN, i-4¢5&i (28D

j i-i"s
. . Coyz
where the leading coefficient Qo(x)-Di .
]
Corollary 2 states that the set of u+l block elements on each column

of the normalized matrix H;l {(d¢i{N) satisfies the same linear relations

defined by the Qi(l) coeffxcxents, these relations are homogeneous for the
first i-d block columns of N {(see (28a)), and their left hand side is
defined by the system cbaractez;stxc polynomial coefficients for the last
d+l1 Dblock columns of H 1 . For the reflection coefficient matrices, (the
block elements of the fzrst coluann of H 1), this result is presented in [3].
Corollary 2 generalizes it ¢to all noznalized prediction errxor filter .




coefficients, giving, together with (24), a non-asymptotic relation between
then.

Corollary 1 gives the asymptotic behavior of the nonzero Qm(i) as i
goes to infinity. We study now the rate of this convergence. Let ,hj, the
th line of H be such that

1T -2,T -4, T

- - T
T =[ (th | (th | N B (th )} ]

1{igs (29)
is a nonsingular matrix.

mma__4: Under the coordinate transformation T (29), the covariance matrix
Pn becomes

-——— -

0 1 Q

P, = [Q 19 ], nq (30)

where the square matrix of order u=d-(p-q}, Qn’ satisfies the Riccati

equation
= F..QF. +G,.60, - T

Qui1™ Fa205F25 + Gyp06y5 = KD K n2p-q (31)
and _ _ -
F = TFT '=f-a, - I P I az
Fe "3 B2 Th 1 | Fiz (az)
1 T R .
. | - I -
0 . :0 fa | 2
b 1' - L { (uxu)
G=16=[hF 6" ... Fi& =06, 1 G, (33)
- -1 -~ -
H=HT" = [H, | H, ] (34a)
hj = [ -al ’iz see -‘d ] (qu)
- _ - T ~’.1
Ky = (Fpp Oy Hyy + Gy 850 D (35)
- - -T T .
Dn = Mz O Hyz + BBy (36)

where hj is the j th line of the matriz H.




Proof of Lemma 4: Under T, PntrPnt?. For p=q, equations (31)-(36) follow by
direct evaluation of +the Riccati equation (13) under T according to (32)-
(36). For p>q, and by Lemma 3,

1 .7.7T

TPn = 0 1 ( Qn | S n)p-q (37)
and
T 2
PnT =[ 0 l Qn ] n2p-q (38)

where Qi is uxd and Q: is dxu. Multiplying (37) by TT on the right, and (38)
by T on the left, equality of results leads to (30). Equation (31) then
follows by the same argument used for p=q.
]
Having in ®mind the special structure of the covariance equation

given by Lemma 4, the expression of the Qn(i) given by theorem 1 is
rearranged in the following theorenm.

a
Theorem 2: Q (i) = { NB* - Y  a_wir-m),, Q,_ H., 3} D2  (39)
* 'm o b4 12 “i-m 12 i-n
r=mtd-utl

i-m)d-u, 0 { m (u (d
where W(:—n)12 is defined in (40). .
Proof: Starting with equation (24), we note that HFnH is coordinate
invariant. By Lemma 4, it follows that

T-. -T -
HPnH = leonﬁlz n ) p-q

from which nncnn for n)p-q. Under the transformation T,

T=hr TP T ma-utrgeca

~(x-m)
HF Pi-m“
Defining

hF_(r-m) = Y(zr-m) = [W(r-m’ll | W(r‘n)ul ' (40)

and from (30) yields

s=—({r-m)y ST _ . _ =7




© e—

thus concluding the proof. For the scalar case, the line matrix VU(r-m) has
null entries except for its r-m position which is ope [10]. On the
multivariable case, the same structure occurs on line j of Y(r-m), under the
coordinate transformation T (29).

]
Theorem 2 shows that the rate of convergence of the Q&(i) to the Nm
parameters is determined by the convergence to zero of Qn' This depends on

the rate by which

G, = Ale=(p-@)] ¢ aA-lo=(p=q)] (41)

goes to zero, where /\=diaq(ki), kibeing the nonstable eigenvalues of the
Hamiltonian matrix H associated with (41),
T -1 T-15T -1 =

T.-1
H = [(R") I (RV) HIZ(BOBQ) le (42)

R=F,, - 612 Bo le (43)

and W is a constant matrix [11],[12],(13].

L
Finally we focus on the asymptotics of the Qi(i).
Theoren 3: Il Q (i) = N_ I ~ 0 ()\g(i'“’"‘” ) (44)

where O(.) means it goes to zero at least as the slowest argument and Rj are
the zeros of the original multivariable ARMA process.

Pxoof: The rate of convergence of the ﬁk(i)‘s depends on the rate by which
Gn--~)0, see (41); this convergence is “a function of the nonstable
eigenvalues of the Hamiltonian matrix H. The task is then to evaluate these
eigenvalues. From (42), it follows

A(\)=det (AI-H) = o(\) o()\ )

where e(A) = det (AI - R) and R is hefined in (43) for the reduced order
systen (;22,812,512,80). It is shown in [9] that, in +the case of no
observation noise, the asymptotic closed loop poles are the zeros of the
original open loop system, this being actually a dual result for singular




control systems, see [12]. In the context of the fully correlated
observation and input noise model being studied here, this says that

-7

= -1 -- H - F
®(N) = (detB ) "det(\I -F,,) det[H ,(AI - F,,) G, +B] . (45

22

It zremains to show that the zeros of the reduced system coincide
with the zeros of the original system (F,G,H,Bo). For the concept of the
zexros of a multivaribale system see, e.g., [14]. For p=q, the triplet
‘;zz'a1z'azz’ coincides with (F,G,H) and the result directly holds from
(45). For p>q, note that

det[B°+H(lId-F) Gl= detBo det[RId (F GBo H)]/det(kld F) (46)

From (32)-(28) and the Markov parameters associated with (6)-(7),
see (16a)-(16b), it follows that

- - -1-' = - -
Fy,- Gy B tH, =[0 (d-u)x{d-u) (47)
1 0
1 0
F..- G,.BI§ . =0
127 618 By = 0
and thus
det[AI,=(F-GB  H)] = A% det[\I —(F..-G..B *H..)) (48)
a o u 22 1270 12’7 °

By (45), equation (48) can be rewritten as

det[KId—(F-GBO H)] = A (detBo) det[B°+H12(RIu-F ) 612] det(kIu Fzz) .

(49)

22

Replacing (49) in (46) yields
det[Boi»H(XId F) "Gl = A det[B°+H12(kIu Fzz) G12 ]Idet(kld F)

thus concluding the proof.




Theorem 3 gives the very iateresting result that the rate of
convergence of the fg(i) to the MA coefficients are determined by the zeros
of the process itself. This means that when the zeros are near the unit
circle (narrowband process) the convergence is slowed down; as the zeros get
away from the unit circle (wideband), the convergence is fastened. Note,
however, that the convergence goes with the second power of the zeros, which
preludes a fast convergence in many practical situations.

The AR counterpart of corollary 2 can be obtained from the
normalized inmnovation system representation (17) and +the underlying
structure of the wmatrices BN as in theorem 1, AN as in (22), and GN as in
(18). From the matrix identity (23), obtain:

Corollary 3: The block coefficients of successively higher order linear
predictors are related by: '

i ~i-1 ~i-2 =i-d _ : e
Wyt Wi+, W .+ oo bay WO =0, dQICN 0gigi-u-1 (S0a)
-3 “§-1 =j-2 “j-d _ - . g

where §§=(§N)ij (i, 3=0,...,N) is the block entry ij of the block triangular
matrix Hu, which is zero for i>j.
4

Equation (50a) above means that the increasing order normalized
innovation filter coefficients contained in the first i-u columns of ﬁi
satisfy a set of linear =zelations defined by the system characteristic
polynomial coefficients. }

Both (28a) and (50a) are used in section 4 to define an
"overdetermined Yule-Walker® +type algoritham which independently estimates
the AR and MA components of a stationary multivariable ARMA process with
known orders. Simulation results of such an algorithm that applies the Burg
technique {4) to estimate the reflection coefficients directly from data are
presented, for the scalar case, in Section 5. Some examples are also presen
ted in [10) and will be extensively discussed in [15).




4. IMATION R

In this section the estimation algorithm for both components of a
multivariable ARMA(p,q) process is presented.

The {Ni}, (i=0,...,u) coefficients of the transfer matrix numerator
polynomial are asymptotically determined from the 1linear dependence
exhibited by the corresponding coefficients of successively higher order
linear predictor filters. The {ai} coefficients of the system characteristic
polynomial are obtained from the linear relations satisfied by the
corresponding coefficients of the higher order linear inmnovation filters.

The MA and AR components are thus estimated by decoupled dualized
procedures. Further, the {ai} coefficients may be obtained by a recursive
scheme whose structure resembles that of an adaptive algorithm. The moving
average counterpart result is asymptotic ia nature.

4.1. AUTOREGRESSIVE ESTIMATION

The coefficients of the system characteristic polynomial {ai} are
given as the solution of .a set of linear (algebraic) equations, established
from the linear, matricial relations presented in Corollary 3.

Let
- T
A=1[ alls aZIs oo adI5 ] | (51)
be a block matrix defined by the coefficients a, i=1,...,4, and rewrite

{S50a) as
A{idN  0¢jgi-u-1 {52)

where it is assumed that (52) is not verified when j belongs to an empty
set. For a fixed pair (i,j), the equation (52) represeants a system of 52
linear, scalar relations defined by the corresponding entries of the block
matrices i;, ceieg ﬁ§—d; for each entry of those matrices, (52) is rewritten
as

-

- _ qul
lJa-= (Nj)km

gi-d

ai-1 qi=2
. e (Hj )

[(Hj Ykn (H) )km d{i¢N  0g3igi-u-1  (53)
1 {km<{s
where (Wg)km is the element on line k (k=1,...,s5) and column m (m=1,...,5)

of H;, and

km




—

- T
a=Il '1 'z oo 'd ) (54)

The number of equations in (53) is

N
s2 . ) (i-u)=s? (NH-d) (NH-2u)/2 (55)
i=d
which is =much larger than the number d of unknown transfer matrix
denominator polynomial coefficients.

If the coefficients of the normalized innovations filters were
exactly known, the {ai} could be determined by solving jointly any d of the
preceeding equations (53). However, in the presence of a finite sample of
the observation process, the exact value _of ﬁN is not available.
Accordingly, on what follows it is assumed that “N is replaced by a suitable
estimate. It is then of interest to obtain a recursive scheme fcor the
solution of (53) as N is increased.

Pefinition: Let ;(m) be the least-squares solution of the system of all the
linear equations (53) established for d(i(m.

A recursive solution of the oversized system of equations (53) is
provided by the following theorem. )

Theorem 4: The autoregressive coefficients are recursively estimated by

1.7

C

ath) = a(h-1) + MN7H CY [ £y - €y a(i-1) ) (56)

where ;(N) and ;(N-l) were defined above,

- —
“N-1 “N-d
CH = go vee ?0 (57)
;N-l ;N‘d
LIV e ¥N-a
. ¢ 2
;N-i ;N-u-l
"N"ll‘l sse "ﬂ‘l.l“l




iyt S i, T i, T ol T LT

where (iz) X is the column k of the square matrix of order s, §§, and
e NT °N.T N T.7 ’
fu - [ (!0) (!1) [N NN ] (!N-u"l) ] . (59)
The dxd matrix M(N) is defined by

M(N) = CT(N) €(N) (60)

and the block matrices ((N) and f\N) equal

GN) =[CyCh, +vn Cyy Cy 10 (61)
Ny =L £ €5 ... gy £0 0T (62)

the C, and f; being defined similary to (57), (59).

Remark: In the above  theorem, the ©recursion stands for the
normalized innovation filter order.

Proof of Theorem 4: Write the set of linear eguations (53) in matrix format
as )

() a(N) = £N) (63)
Partitioning,

g = tew-nTy cf 1T " (64)
£ = (-0 £ T (65)

where {(N-1), 4?(&-1) accounts for the linear relations (53) using the
innovation filters up ¢to order N-1, and CN’ fN (57)-(59) stands for the
contribution of the N-th order imnovation filter. Hence,

€(8-1) aiN-1) = £iN-1). | (66)
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Using the definition (60), the least-squares solution of (63) is
acny = un gty oy

From the partition (64), it follows further

atn) = M) et -1 w1y 4+ Cy ) - (67)
From (66),
&TN-1) £(N-1) = N(N-1) a(N-1) (68)

which substituted in (67) leads to

a(l) = M(N) Y [M(N-1) a(N-1) + C: £,0- (69)

Realizing that

- _ el
N(N-1) = M(N) C“ CN

the autoregressive estimation ®"at time instant N" is

a(N) = a(N-1) + N(N) ¢ c;‘; £, - c;’; Cy a(i-1)] (70)

directly leading to (56).

The initial condition for the above fecu:sion can be established for
an arbitrary value of N,(N>d), using a nonrecursive scheme based on (53).

4.2. MOVING-AVERAGE ESTIMATION

The proposed wmoving-average estimation algorithm paralells the AR
scheme presented in section 4.1.. There are however some differences that
will be pointed out in this section.

The moving-average component {Nn) is asymptotically evaluated from
the { ﬂ;(i)} coefficients. These are obtained as the solution of a set of




linear equations established from (2Ba). Thus, the duality of both
estimation schemes becomes apparent.
Let

Qi) = [ Q1) Qpti) «ee Q (1) ] (71)

which, together with Qo(i), converges the MA coefficients {Nm} (see
Corollary 1). Represent by

Qi) t(a‘ -1,T (aj -2, T . (Z?‘“)TJ‘; —ni” ;;
dgi< N, 0gici-d-1

(72)

the set of matricial equations (2Ba), satisfied by the time-varying
coefficients {Qm(i)} (0<mgu), the leading coefficient Qo(i) being
. 172
Qo(l) = Di . (73)
For 3j=0, equation (72) states that the normalized reflection matrix
coefficient sequence a: satisfies, asymptotically, a difference equa%tion

determined by the numerator polynomial of the system transfer function.

First presented iz [9], thxs result is genera11zed by (72) to the first N-d

block columns of the matrix "N

The time-varying behavior of the Q‘(i) coefficients prevents its
estimation using linear relations established for different values of i. For
iJutd, one can use at least u from the i-d linear relations (72) to evaluate
the Q_ (i) coefficients. However, if the order N of the matrix W, = is large
so that Q‘(N) are sufficiently close to the corresponding Nm {convergence
has been attained), a recursive scheme to update the MA parameter estimates
may be derived. This parallels the recursive AR procedure presented in
Theorem 4. Assuming that the convergence is attained for the prediction

error filter of order N*, the moving average component can be recursively
estimated by

N(k) = N(k-1) + [ E 'T N(k-1) Ex E'f 7 Mk)~? (74)

where ﬁ(k) stands for the estimation of the block matrix




B=0N N, o0 N )

-

using all the linear relatioans (72) for N*iigk, and

~ k-1  “k-1 ~k-1
&%= | % 3y A -a-1 (75)
k-2  “k-2 k-2
% 3 8 -3-1
“k-u *k-u “k-u
3 a 8 -a-1
L J
s . _qal/2 .k % X
£, Dk [a, a, ves 3, _a-1 1.

The matrix M(k) is defined in a similar way as in (60) using Ck'

9. SIMULATION RESULTS

In this section we present some simulation results concerning the
dual estimation algorithm discussed in the previous section, for the
particular case s=1, i.e. for a scalar process [yn].

The AR component estimation uses the recursive scheme (70), while
the MA parameters are obtained as the least.squazes solution of the linear
system of equations (72). Both component estimated values are based on a
finite sample of the process with lenght T.

In the presence of a finite sample of the observation process, the
exact values of ﬁn and i;l are not available. Accordingly, the algorithm
requires suitable estimates of both matrices. We use the Burg technique [4)
to estimate the reflection coefficients directly from data, and the Levinson
algorithm to recursively obtain the increasing order one-step ahead
prediction error filter coefficients. This procedure obtains the estimated
value of ¢the matrix ﬁ;l. A recursive inversion of this lower triangular
matrix leads to the estimation of the normalized imnovation filter
coefficients, i.e. to an estimated value of iu, for increasing values of N.

It is now evident that the use of an oversized system of equations
to obtain the AR and MA component estimates (see (70) and (72)) has an
important statistical relevance, compensating the errors in the estimation




of the reflection coefficients and consequently in the overall elements of
ﬁ;i and ﬁN'

An alternative procedure based on a sample covariance estimator
could have been used to estimate RN' followed by a Cholesky factorization
and a recursive inversion of the factors.

¢

All the simulation examples preseanted in this section are obtained
for an ARMA(6,4) scalar process, with pole-zero location displayed in Table
1.

Poles Zeros
Ampl.| Angle| Ampl. Angle

0.95 | +90° | 0.85 | +67.5°
0.85 | +#45° | 0.85 | #112.5°
0.85 | #135°

Table 1

The orders p=6 and q=4 are assumed known, and bo' the leading coefficient of
the transfer function numerator polynomial is equal to one. The notation
used for the real and estimated pole-zero pattern is the following:

real pole

estimated pole
real zero

O O &+ n
]

estimated zero

Figure 1 shows, for T=1000 data points, the evolution of the
estimated pole-zero pattern and the estimated spectrum as the order of the
filter N increases. From figure 1, one sees that, as the order N increases,
the algorithm leads to better zero estimates, and conseguently the deep
valeys of the spectrum are better resolved. As we increase the sample size
T, we obtain increased performance. This is shown is figure 2, for T=500,
1000 and 5000 and N=15.
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For small sample size, depending on the pole-zero pattern, the
errors in the prediction error filter coefficients or imnovation filter
coefficients induce biasing errors in the pole-zero estimates. Following the
analysis in [16) and [17]), one can show that the bias on the coefficients
{;i}, i=1,...,p, based on the estimated innovation filter coefficients up to
order N is given by

A NI, S . _ T * -1
Efa(N)]-a = = (CyCy)™" [Cy EI6CYY + E(V,) - Cy E(V,)) 2" +o(T ")  (76)

where CN is given in (54),

* T

a =11 ay a; ... ap ] (77a)

8Cy = Cy - Cy {77b)

¢t =r-f, 10 (77¢)
N NN ¢

with fN as in (59), and

® & jod
GCN = CN - C“ (774)
T T -1.7T *
V1 = 5CN (I- CN(CN CN) C“ ) 5CN (77e)
T =1 T o &
Vz = GCH ‘CN C“) C“ GC“ . (77f)

From [17) and [18), one can show that the bias and the error
covariance on the elements of C:, obtained through the Burg technique is
given by

-1

* -1
E [(5C“) =T Qij + o(T ™) (78)

ij

* * -1 -1
E [(ch)ij ‘GCN)kr =7 sij,kr + o(T 7) (79)

with Qij' 515 kr conveniently defined matrices. Consequently the bias on
[ -
the autoregressive component estimation (76) is of order T 1, meaning that




the estimator is asymptotically unbiased. A dual analysis, leading to
similar conclusions could have been presented for the MA component.
The bias effect is shown in the examples presented in figures 3 to §

which represent the mean estimated spectrum obtained, for different values
of N and T, with 100 Monte-Carlo runs.
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Fig.3 - Real and mean estimated spectrum obtained with 100 Monte-Carlo
runs for T=500, N=11, 14, 18 and 25.
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Comparing the mean estimated spectrum obtained for N=11 in figures
3, 4 and 95, one sees that the bias decreases as the number of sample data
points increases; the same is observed, for example, in figures 4 and 5 with
N=15. This is in accordance with (76). However, for a fixed value of T, the
increase of N does not always leads to a better performance.

In figure 3, and for N>14, the bias in the parameter estimates
dominates the estimation error, thus 1leading to a worst performance for
higher values of N. The same effect is evident in figure 4 for N>18, In
figure §, which is obtained for a higher value of T than the previous ones,
the bias effect is not significant till N=40,

$

Following again the analysis in [17], the error covariance for the

AR component estimation is also of order T-l.

6. CONCLUSIONS

The work describes a method where the AR and MA components of a
multivariable ARMA process are estimated by a dualized bvype algorithm. The
estimation scheme provides a distinct Yule-Walker type equations for each
component.

The estimation algorithm assumes that the orders p and q of the ARMA
process are known. If they were unknown, the algorithm is still useful in
fitting several classes of ARMA(pi,qi) to the data., A conveniently defined
stopping rule picks up the "best" (in a certain semse) class. This is
presently under experimentation.

In [19])-[20) an ARMA identification algorithm which is recursive on
the orders is presented. Ours is different from the one in [19]-[20] in
several regards. As mentioned before, the procedure studied here uses
estimates of the coefficients of successively higher order linear predictors
and innovation representations of the process, both of which can be obtained
from +the reflection coefficient sequence, avoiding the necessity of
obtaining sample autocorrelations as in [19)-[20]. Also, the scheme dualizes
the estimation of the AR part and of the MA part, without onme interfering
and degrading the other.

The AR coefficients are determined from <the linear dependence

exhibited by corresponding coefficients of successively higher order linear




innovations filters. A recursive implementation of the AR estimation
algorithm is also presented. In a pratvical situation where the AR
coefficients have to be estimated from a finite sample of the observation
process, the algorithm requires suitable estimates of N; and ﬁ;l. Because it
simultaneously uses all the innovations filters coefficients, the numerical
accuracy is then improved.

The MA coefficients are asymptotically determined from the linear
dependence exhibited by corresponding coefficients of successively higher
order linear predictor filters. The quality of the procedure is connected to
the rate of this convergence, which is proved to go with the second power of
the zeros of the original systemn.

Some simulation results together with a brief statistical and
performance analysis are presented.

REFERENCES

[1] J.A.CADZOW, *“"Spectral Estimation: An Overdetermined Rational Model
Approach", IEEE Proceedings, Vol.70, n®9, pp.907-939, Sept.1982Z.

[2] S.M.KAY, S.L.MARPLE, *“Spectrum Analysis: A Modern Perspective", IEEE
Proceedings, Vol.69, nfll, pp.1380-14Z7, Nov.1981.

[3] B.FRIEDLANDER, “Lattice Methods for GSpectral Estimation", IEEE
Proceedings, Vol.70, nfS9, pp.930-1017, Sept.19B8Z.

[4) J.P.BURG, “Maximum Entropy Spectral Analysis*, Ph.D Thesis, Stanford
University, 1975.

[S] H.WOLD, "A Study in the Analysis of Stationary Time Series", Uppsala,
Almquist and Wiksells, 1938.

[6] J.L.DOOB, “Stochastic Processes”, John Wiley, 1953.

[7} E.PARZEN, “Stochastic Processes", Holden-Day, 1587.

[8] R.E.KALMAN, R.S.BUCY, "New Results in Linear Filtering and Prediction
Theory", ASME Journal of Basic Eng., pp.35-45, March 1961.

[9] R.S.BUCY, "Identification and Filtering", Math.Systems Theory, Vol.16,
pp.307-317, Dec.1983.

[10] M.I.RIBEIRO, J.M.F.MOURA, “Dual Estimation of the Poles and Zeros of an
ARMA(p,q) Process", CAPS, Technical Report 02/84, November 1584;
Revised as LIDS Technical Report No. LIDS-P-1521, M.I1.T., September
1985.




[11]

[12]

[13]

(143
[15]

[16]

(17]

(18]

(18]

(201

R.S.BUCY, P.D.JOSEPH, "Filtering for Stochastic Processes whith
Applications to Guidance", John Wiley and Soms, 1968.

R.E.KALMAN, “"When is a Linear Control System Optimal?", ASME Jourmal of
Basic Eng., pp.51-60, March 1964.

D.C.YOULA, *®“On the Factorization of Rational Matrices", IRE Trans.
Information Theory, Vol.IT-7, pp.172-189, 1961.

T.KAILATH, "Linear Systems", Prentice-Hall, 18980.

M.I.RIBEIRQO, "Estimagdc Paramétrica em Processos Autoregressivos de
Média Mdével Vectoriais", forthcoming Ph.D. Thesis, Department of
Electrical and Computer Engineering, Iastituto Superior Técmnico,
Lisbon, Portugal, 1986.

PORAT, B., FRIEDLANDER, B., "Asymptotic Analysis of the Bias of the
Modified VYule-Walker [Estimator®, IEEE Transactions on Automatic
Control, Vol.AC-30, No.8, pp.765-767, 1985.

PORAT, B., FRIEDLANDER, B., “Asymptotic Accuracy of Arma Parameter
Estimation Methods Based on Sample Covariances", IFAC on Identification
and System Parameter Estimation, York, U.K., 1985.

KAY, S., MAKHOUL, J., "0On the Statistics of the Estimated Reflection
Coefficients of an Autoregressive Process”, IEEE Trans. ASSP, Vol.-31,
No.6, December 1983.

HANNAN, E. J., RISSANEN, J. “Recursive Estimation of Mixed
Autoregressive - Moving Average Order", Biometrika, Vol.63, No.l,
pp.B1-94, 1982.

FRANKE, Je, “4 Levinson-Durbin Recursion for ARMA-Processes",

submitted for publication, 1984.




