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Introduction:

Logarithmic transformations for stochastic control and filtering in con-

tinuous time have been discussed e.g. in [1-5]. After an outline, given in

the next Section 1, of some of the results contained in the above references,

we extend them to the case of discrete time. In Section 2 we first present a

general "duality result" as a rather straightforward extension of [6]. Using

this general result, we then discuss possible ways of applying it to various

particular situations, thereby obtaining results that in some sense parallel

those available in continuous time. Comments on further possible uses of the

results obtained here are in the concluding Section 3.

1. Summary of results available in continuous time

1.1 Introduction: Positive solutions to backwards equations and stochastic

control problems

We follow [1]. Given a linear operator L + V(x), where L is the generater

of some Markov process xt and V(x) is a "potential", consider the backwards

equation

(1.1) U4(s,x) + L~(s,x) + V(x)~(sx) = 0,

s < T, P(T,x) = ¢(x)

Given a positive solution ~(s,x) of (1.1) we seek a probabilistic interpre-

tation for

(1.2) S(s,x): = -lg ~(s,x)

as optimal cost-to-go for a certain stochastic control problem. Relation

(1.2) changes (1.1) into

(1.3) as
13 + H(S) - V(x) = 0,3s

S(T,x) = -lg p(x)

where

(1.4) H(S): = -eSL(e -S)

is a concave finction of S which we express as



(1.5) H(S)(x) = inf [LU S(x) + k(x,u)]
U

where Lu will be the generator of another (controlled) Markov process it

With (1.5) equation (1,3) becomes

(1.6) as + inf ILUS + k(x,u) - V(x)] = 0
as

which is the dynamic programming equation of the following stochastic

control problem:

Find a feedback u minimizing

(CP) J(s x;u) = E [kt }

where it has generator LU ( s=x) and 4(-!= -g 4(g,).

The probabilistic interpretation that we were looking for is then

(1.7) -lg 4(s,x) = S(s,x) = min J(s,x;u)
U

In order to use these results to actually construct a control problem that

corresponds (is dual) to (1.1) we need to solve the following

Problem: Given L, find LU and k(x,u) (and possibly an optimal control u

In the next subsection 1.2 we shall present a general result to solve

this problem. In many cases of interest however, an L and k(x,u)- are

immediately suggested by the form of equation (1.3). This is the case e.g.

in the following example where we shall be purely formal

Example 1.1 Let L be the generator of the following diffusion in R.

(1.8) dxt = b(xt) dt + dwt

so that (1.3) becomes

(1.9) S +S - 2 (S )2 + bSx -V=
2xx 2 x x

If we now consider the equation

(1.10) S + min [ iS + (b+u)S + 2 U - V] O
S 2 XX X 2

U

we immediately obtain the miniminizing



(1.11) u = -S

for which (1.10) becomes (1.9).

Equation (1.10) is the dynamic programming equation for

dxt = [b(x t) + u(xt)] dt + dwt
(1.12) T t t

min E { T ½utdt -lg T(xT)

Analogous results are obtained in [1] also for L corresponding to a jump

process by using

r
e = max [ur + u-u lg u]

u>O

1.2 A general result of Sheu

Consider (1.1) where for simplicity V.(k)=O: arnd\ here L: s-atigfies- a

positive maximum principle and let

(1.13) $(T,x) = ¢(x) = exp(- ¢(x))

It is proved in [5] that for S(s,x) as defined in (1.2) we then have

(1.14) 9aS S -S
a e L(e )

= as + inf [Lgs + kg] = 0; S(T,x) + ¢(x)
as g(.)>o

where (g(.)>O is such that the expressions below make sense )

Lgf: = [L(fg) - fLg]
(1.15) - g g kg: Lglg g) g

In addition

(1.16) arg min [LgS( s,x) + kg(s,x)] = $(s,x) = exp(-S(s,x))

Example 1.2 Let us apply the previous result to the L of Example 1.1.

Letting g be C2 with respect to the. x-variable, we have

(1.17) Lg = S + [b + (lg g)x] Sx
2 XX X X

Putting

(1.18) u = (ig g)x

we obtain from (1.17)



(1.19) L S = -S + [b + u] S
2 XX X

On the other hand

(1.20) kg = ((lg g)x) =
2 2

and we reobtain the control problem (1.12) for which g (optimal g)= - m *plies

(see (1.11))

(1.21) u = -S
X

Analogous results can be obtained for jump-processes, discrete-state processes,

etc.

1.3 Positive solutions to forward equations and stochastic control problems

Before applying the previous results to obtain a duality relation between

stochastic filtering and control, let us analyse the situation when, instead

of the backwards equation (1.1), we start from a forwards equation

(1.22) = L * ;4 (O,x) = ¢(x)

For simplicity, let us assume that L corresponds to the diffusion (1.8) so

that, if ¢(x) is the initial density of the process xt, ~(t,x) represents

its density at time t. In this case (1.22) becomes

(1.23) a 2 xx (b¢)x
_Tt 2 xx

= xx - b x -bx
2 XX X X

which, after a time inversion, becomes a backwards equation with potential of

the form (1.1) to which we can apply our previous results obtaining a corresponding

control problem. This then leads to a "duality relation," via (1,7),. between

positive solutions j of (1.22) and optimal cost-to-go functions S of the

corresponding control problem; the effect of the time inversion is shown in

the following picture



(t time units elapsed) 5

P (t,x)

S(t,x)

<

(t time units to go)

where the controlled process runs backwards in time. It also follows that, if

we can solve (1.22) to obtain a positive solution, we canlsolve the corresponding

control problems.

1.4 Applications to filtering

An application of the previous results to filtering is discussed in

[2,3]. Consider the nonlinear filtering model

i dxt = b(xt )dt + o (xt) dwt

dyt = h (xt)dt + dvt

where xt is the signal process, ytthe observations and {w t} and {vt } are

independent standard Wiener processes. Letting qt(x) = q(x,t) denote

t
an unnormalized conditional density of xt, given y: = {Ys, s At}, it is

well known that it satisfies the Zakai equation

(1.24) dqt = L qtdt + htqtdY t

which is a linear stochastic PDE where L is the forward operator corresponding

to {xt}. The substitution

(1.25) q(x,t) = exp {Yt h(xt)} p(x,t)

transforms (1.24) into the following deterministic linear PDE

(1.26) p = tr a(x)Pxx + gY(x,t)p + VY(x,t)p

1 t
where a(x) = C(x) Ol(x) and gY(x,t),VY(x,t) are parametized by y-. Again,

via a time inversion, (1.26) becomes a backwards equation with potential of

the form (1.1) to which we can apply our previous results to obtain a corre-

sponding control problem where the controlled process runs backwards in time.

The resulting "duality" between filtering and control problems is ex-
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ploited in [2] to obtain upper and lower estimates on p(x,t) and S(x,t) =

-lg p(x,t) as /x/ -+ a. In [4], by essentially the same methods, but using the

Stratonovich form of (1.24) without going through the substitution (1.25),

a duality relation is established between filtering problems for diffusion

processes and stochastic control problems, where the latter are of the type

of a tracking problem.

2. The discrete-time case

2.1 Introduction

In the previous Section we started our analysis from the backwards

equation (1.1) as a natural equation to obtain a (backwards) dynamic programming

equation. As discussed in subsection 1.3, via a time inversion, a forwards

equation can, in continuous time, rather easily be reduced to a backwards

equation of the form (1.1) that contains a potential term. The duality

relation between positive solutions to forward equations and stochastic control

problems had a natural extension to duality relations between filtering and

control. Our purpose now is to obtain analogous results for the discrete-

time case. Contrary to the continuous time case however, in discrete time

the change from a forwards to a backwards representation is not any more as

straightforward. On the other hand, one of our goals is to establish a duality

relation between filtering and control, so let us start directly from a

forward equation.

Given a Markov-transition kernel p(x/y), corresponding to a discrete-time

but continuous state-space process, consider the forward relation

(2.1) q (xn) p(xn/xn 1) qn-l(Xn-l)dx n-1

q (x ) given

For a positive solution q (xn) of (2.1) we seek a probabilistic interpretation of

(2.2) S (x): = lg q (x )
n n n n

as optimal cost-to-go (n periods remaining) of a corresponding discrete time

stochastic control problem. Notice that if qo(xo) is the initial density
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of the Markov process {u }, then q (x ) represents its density in period n;
Inn n

there may however be other positive solutions to (2.1). Relation (2.2) changes

(2.1) into

(2.3) S (xn) = -lgfp(x n/xn 
) exp(-Sn-l(Xn-l))dxn-1

which we would like to express as "backwards dynamic programming" equation

of a corresponding control problem. The fact of not having a time derivative

as in (1.3) causes some difficulties with the "log" in (2.3), even the relation

(2.4) exp(-S(y)) = exp [- S(y) + u.-u lg ul]
u,>o

leads to nowhere.

S.J. Sheu in an unpublished work [6] deals with an expression of the type

-S.
(2.5) lg(E. pje S) ; p j>, Zjpj = 1

that corresponds to a discrete state-space problem and, noticing that it is

convex, expresses it as the conjugate of its conjugate. Carrying over Sheu's

result to the right-hand side in (2.3), namely to our continuous state-space

problem, we obtain the general result of the next subsection.

2.2 A general result

Let p(x/y) be the Markov kernel in (2.1). For u(y)>O define

(2.6) pU(y/x): = p(x/y)u(Y)
fp(x/y)u(y)dy

and let q (x ) and S (xn ) be as in (2.1), (2.2). Notice that (2.6) makes sense

also if fp(x/y)dxIl provided fp(x/y)u(y)dy < oo

Theorem: We have

(2.7) -lg p(nXn-l) exp(-S (x ))dXn =
n-l n-l n-l n-l

inf U (x /x) S (x l)dxn l +
n-l n n-l n-ln-l

u(')>O

+ [PU(x l/x )lgu(xn l)dxn_1 lg (Xn/Xnl )u(x )dxn-l] 

So(X o) = -lg qo (x)

Furthermore, the minimizing u(s) is
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(2.8) u (Xn-l) qn l(Xn_l)

which implies
*

(2.9) pU (x /x ) = p(x /x )

where P(xnl!xn) is the "backwards kernel" of the Markov process {x } with

the given "forward kernel" p(x /x 1)

Proof: (Adapted from [6]). Relations (2.7) and (2.8) follow immediately

noticing that

fpU(xn-l/xn) S (x )dxn_ f +/pU(Xnl/xn)lg u(x _l)dxn -

g/(X /x n-l)u(x n-)dxn_1 + lg P(X /xn )exp(-S (x ))dx =

= -pU(xl/xn) lg exp (-S 1(Xn-)) dx n 1 +fp n n 1 1 n n-l n-l) n-l

+ ig fpU((x l/x ) exp (-Sn-l(Xn)) dxn1 > 0
u(x 1)u(n-l

with equality for

u(xn 1 ) = exp (-S -l(Xn- qn-l(X) n-l

Lett ing

(2.10) ku(x): = pu(y/x)lg u(y)dy -

lg I p (x/y)u(y)dy

we can rewrite (2.7) as

(2.11) S (x )= inf {kU(x ) + pU (xx i/Xn)Sn- (xn-l)dXn-l'
n n u(.)>0 n fPul n-

S (XO) = =ig qo(Xo)

which is now indeed a dynamic programming recursion for a discrete-time

stochastic control problem: The controlled process {x } is a Markov process

that runs backwards in time with kernel pthat runs backwards in time with kernel p (xn/xn), which is parametized.bY

the control u(*), and the running cost is kU(x ), again parametized by u(.,).

Notice that, via the normalization in (2.6), we automatically accomplish the

time inversion that was needed in continuous time. to pass from the forward

relation (1.22) to a backwards relation of the form (1.1).
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The kernel pU(x /x ) in (2.11) gives a very general, but implicit
n-l n

representation of the controlled process in the control problem that is dual

to (2.1).

It would now be desirable that, given an explicit model for the process

{xn } that corresponds to a given (forward) Markov kernel p(x /x 1)' we would

be able to construct an explicit control model that generates the kernel

p (x /x ), thereby obtaining also an explicit expression for the running
n-l n

cost ku(x) in (2.10)

The key is the product p(x/y)u(y) in the definition (2.6). According to

the Theorem, the "inf" in (2.7) has to be taken over all positive functions

u(-) so that, for a given p(x/y), the product p(x/y)u(y) has to be computed for

all u(-)>O making it impossible to obtain an explicit expresssion. On the

other hand, that same Theorem gives us u (xn_ 1) = qnl(Xnl) so that, without

loss of generality, we can restrict the "inf" in (2.7) to any subclass of

positive u(-), provided this class contains u L'). This implies that for a

given kernel p(x/y), we may obtain many dual control problems: First, for

various q (.)>O we may obtain various q'--)>O. Second, given a solution

qn(-)>O to (2.1), and therefore a u (-), we may choose various subclasses

of positive u(-) that contain u (.).

This also implies that, if we can explicitly solve (2.1) to obtain at least

one positive solution, we can also explicitly solve all corresponding control

problems.

In the next subsection we exemplify this situation for a specific and

very simple kernel p(x/y).

2.3 Example of construction of (solvable) control problems corresponding to

positive solutions of a given forward equation

Consider the model
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(2.12) x = x + w , (x =w
n n-1 n o o

where {w I is i.i.d. X N(0,1), so that the corresponding kernel is
n

(2.13) p(xn/X ) exp{-(x -x1)2}

One positive solution to (2.1) for the kernel in (2.13) is

· 1 X2)
(2.14) q (x ) = 1 exp { 2(n+l) n

n n V 211 (n+l)

to which corresponds
2

(2.15) S (x) = lg /2R(n+) + x
n n 2(n+l)

We want to construct control problems for which (2.15) is the optimal cost-

to-go function. From the previous Theorem we know that

(2.16) u (x q (xexp x 2

nln-l c xn-l 2n -1n

By perturbing u (x 1) to obtain various classes of positive functions

u(x 1) that contain u (x 1) we may obtain as many corresponding explicit

and solvable control problems.

Since the "inf" in (2.7) is taken over functions u(') of x 1 for any

given x , we may more generally consider the "inf" in (2.7) over functions

of the form u(xn_ l;xn)

2.3.1 Dual problem I

Consider the class of controls u(x n_;x ) of the form

1 + v (x) 2
(2.17) u(x ;x) = exp n n x n-l n-i n n

which contains the optimal u for v(o)=O. We have

(2.18) p(xn/xn-l)u(x;n-lxn)

1 i 1 + n + v nx 22exp _ - n 

1fn\v nx

. exp 2(+n+v )n 12
exp - 2(1+n+v) X

from which, by (2.6), we conclude that a model for p

from which, by (2.6), we conclude that a model for p U(x /x ) is-n- 1 n



ll

nx
(2.19) x + w

n- 1 +n + v 1 + n + v n-
n n

where {w } are i.i.d N(0,1). Also, the running cost (2.10) becomes
n

1+ n + v (l+v )2(x2 -1)-(1 + v )n
n_+ n n n

(2.20) k (x,v) = g + n n 
n n 2(1 + n + v )

n

and

(2.21) S (X ) = lg / S2 + (x2 /2)
09 0

Notice that the control problem thus obtained is nonlinear. Notice also

that, for v =0 (optimal control), (2.19) becomes in fact the backwards model
n

corresponding to (2.12) (generates the same q (xn)).

2.3.2 Dual problem II

Consider this time the class of controls u(xn 1 ;xn) of the form

(2.22) u(x ;x ) = exp - x + v(x )x
n- 1 n F2n (XI TI n n n-1

We have

(2.23) p(x /xn l) u(n-1 ;xn)

exp 2 n [X(n-l n+l xnv n(x))

ep n+expn) 2(+l)

from which we conclude that a model for pu(x n/xn) is

(2.24) x 1 x f l v + n) ( ~Xn+l n- n+l n n + n-l

with running cost

n n nnF(2.25) k ( V2 + 2v x ) 2(n+2)

2 n n 2 ( n+l) n 2 1n n

n(2.24) X[n 2(n+1)

andn+l Sx as in (2.21).

Notice th at this time theng coproblem is linear-quadratic. Corresponding

to the optimal control v =0, it coincides with the previous problem (2.19)-(2.20);
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in fact, the optimal value for the two problems is the same. Notice further-

more that, for n -+ c, the present problem becomes

Xn-l = X +v +w
Xn- 1 n n n-l

(2.26) k (x,v) = vn 2

S (x ) = lg -i-+ x 2/2

2.3.3 Dual problem III

The previous dual problems I and II were based on the positive solution

(2.14) to the equation (2.1) for the kernel (2.13). Another such positive

solution is

(2.27) qn(x ) = 1

(not a density) to which corresponds

(2.28) S n(xn) = 0

Since u (x 1 ) = qnl(x ) = 1, by considering the class of controls of

the form

(2.29) u(x l ;x )= exp n(xn)n-}

which contains the optimal u for v (.)=0, we obtain, quite intuitively, the
n

following control problem

Xn-l = x +v +w
n n n-l

(2.30) k (x,v) v2
n x

So (xo) = O

2.4 Example of positive solutions to a forward equation corresponding to a

solvable control problem

So far the Theorem of this Section 2 has been used to construct solvable

control problems that are "dual" to_ a given forward- equation. The lTheorem can

however also be used to go the opposite way. The purpose of this subsection

is to exemplify such procedure in two simple cases.

Example 2.4.1 Consider the very simple control problem
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x =x +v + w
n-L n n n-l

(2.31) m in E{Z v2}
2 n

S (x ) = 0
0 0

for which the optimal control is v =0 with optimal cost-to-go S (x )=O. The

purpose is to construct a forward kernel p(xn/xn 1) so that qn(xn)=exp (-Sn (xn))=l

is a positive solution to the corresponding equation (2.1). From (2.31) we

have

(2.32) p(x /x = 1 exp ( 2(x l-x -v)
n- 1 n 2 n-l n

and

(2.33) p (x /x ) (x -x
n-l n ) ] ( n- l-Xn

From (2.9) we know that !p (Xnl/Xn) coincides with the backward kernel

p(x l/x ) of the Markov process {x } whose forward kernel p(x n/x n 1) we

are looking for: therefore, as expected

X(2.34) = nP(Xnl) /xn xn)q(xn n(2.34) f(x /x

= 1exp - 2 (x xn-Xl)

This example is the counterpart of the previous subsection 2.3.3 for

which qn(x ) is not a density. Notice in fact that (2.34) makes sense even

if fq(x)dx = as long as fp(x/y)q(y)dy < o (this is analagous to the case of

improper prior distributions in Bayesian Statistics). The next example considers

a case where qn(x ) is not a constant, but is integrable and positive and therefore

a density up to a multiplicative factor.

Example 2.4.2 The control problem is again the linear-quadratic problem

(2.31) except that now we take

(2.35) S (x ) = Ig V_-Tf- + 2 x2

One easily finds the optimal control as

* 1
(2.36) v (x ) = - - x

n n n+l _n
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with optimal cost-to-go

(2.37) S (x) =2 2 
n n 2(n+l) n n

where

(2.38) ci +- 1;, =g -n(2.38) a n-l n n ;= l 2

From (2.32), which remains the same also for the present Example, and

(2.36) we have

(2.39) p (x n /Xn) 2
nX- ·n /- 2 Xn-1 n+l n

which, according to (2.9), is the backwards form p(x l/x ) of the kernel

P(Xn/n 1) we are looking for. Since

(2.40) q (x) = exp (-S (x)) = exp (-a ) exp 2(n+) 

which is a density up to a multiplicative factor, we obtain the desired

forward kernel as

(2.41) P(X /x ) n (x )n n-l p(x n 1/x)q (x )(2.41) p(xn/xnl) SP 1/Xn)qn(Xn)dXn

VnZ+n+l i l n2+n+l n2+n
exp ix- 2 X

v/~Y(n+l) 2 (n+l)2 n n +n+l

Notice that, for n + 0o, (2.41) becomes

(2.42) P(x /x ) = 1 exp ( - n-

which is exactly the starting kernel (2.13) for the examples of the previous

subsection 2.3. In fact, the present example can be considered as counterpart

of subsection 2.3.2: Here we started with a control problem that coincides

with the problem (2.26) that was obtained there in the limit for n -+ .

It is therefore quite plausible that here. we could obtain the starting kernel

for the problems there only in the limit for n + o. Notice however that,

for n + o, qn(X ) + 1/,/1i , S (xn) + lg 2/-i , so that in the limit we essentially

return to the situation of Example 2.4.1 (again in analogy to Bayesian Statistics
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where i'proper priors can be looked at as limiting situations.)

2.5 Applications to filtering

Analogously to the continuous-time case, the previous results can be

applied to obtain a form of "duality" between filtering and control problems.

Given a "signal" process {xn}, that we assume Markov with transition kernel

p(xn/x n-1) as well as an "observation" process {yn }, that we assume pro-

babilistically related to the signal {x } via e.g.
U.

(2.43) Yn = h. (xn) + vn ; {v } i.i.d - N(0,1)

we can recursively compute the conditional ("filtering") density qn(x ) = q (x ;yn)

of x given all the past and present observations y :=(Yo,...,y ) by using

the recursive Bayes formula (discrete-time Zakai-equation) namely

(2.44) q () = C(yn) exp { 2(Yn-h (xn))2 (x/x qndx

where C(yn) is a normalizing factor.

n-l
Letting p (x ) denote the "predictive" density of x , given y , we

can write (2.44) alternatively as

(2.45a) q (xn) = C(yn) exp {- (yn-h (x ))2 Pn(X)

(2.45b) p (x ) P(xn/x )C(yn-1)exp {- (Ynl-h (x nl))2 Pn l(x )dxn

= pY(xn/Xn 1) Pnl(Xn-l)dXn-l

Notice that, while (2.44) corresponds to the Zakai equation (1.24), the

relation (2.45a) corresponds to the substitution (1.25) so that (2.45b) is the

analog to (1.26). In fact, the transformation of the Zakai equation (1.24)

into its ("robust") form (1.26) was performed to obtain, via a time inversion,

a backward equation with potential of the form (1.1) from which we had

started our analysis.

Analogously, the transformation (2.45a) allows us to transform (2.44)

into (2.45b), which in form concides with (2.1) from which we had started our

analysis in discrete-time.
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In the next subsection 2.5.1 we parallel the analysis in [4] where,

without using the substitution (1.25), one starts directly from the Stratonovich

form of (1-.24) to obtain a corresponding control problem in the form of a

"tracking" problem.

In the following subsection 2.5.2 we then take advantage of the substitution

(2.45a) leading us to (2.45b), which then allows us to proceed in the filtering

case in complete analogy to what was done in subsections 2.3 and 2.4.

2.5.1 Example where the dual problem has a "tracking" interpretation

Using the transformation q n(x )=exp(-S (x )) and the theorem of Section 2.2

we obtain from (2.44)

(2.46) S (x )= -lg C(yn) + ( -h (x ))2
nn 2 n n

-lg fp(x /x)qn(Xn/X_)dxn-1

1 2
= -lg C(yn) + (Yn-h (xn)) +

+ inf U(x l/Xn ) S l(Xnl)dxn_ + k(x u)
fp n-l n n-l n- n-l n

with

(2.47) u (xnl) = qn-l(X n-

As in Section 2.3, in order to obtain a more explicit expression for pU(x /x )n- l n

and k(x ,u), we have to consider a specific filtering model. For the sake

of exemplifying the procedure let us therefore consider the following extremely

simple model

x = xn-l + w

(2.48) n

Yn x + v

where {w } and {v } are independent Gaussian white noise sequences. In this
n n

case the filtering density q (x ) is N(m , T2) where the mean m depends on
n n n n

n 2- n
the past observations y and T2 can be precomputed independently of y , more

precisely
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(2.49) qn-l(xn ) exp (x M2 = (x= 1 ex p { 1 2} *-r

n-1 n-l

Considering a class of controls of the form

(2.50) u(xni;x nY ) = - exp - (x -m )2+v (x ,m )x in-1 n ni~ 1- n n-l n-l nl n- n
n- n-i

which contains the optimal u for v (') = 0 we have
n

(2.51) p(xn/xn )u(xn ;X ny =

2 2
_ 1 1 : n-1 T12 (X V n 2

n- (x + v mn- 
2TII- 2 In_ 1 12 n n 2.

T2
nl 1 n-1.exp i - 2 2 (x2 +m )+ (v2 + 2v x ) +

(2.52 n-l1+ 22 n n n
n-i

n-1 1nn-

The cost function k(x ,v ) turns out to be a GFathers lenghty expression

which is a quadratic in the pair (x ,v ) that, for large values of Ins can be

approximated by 2 vn 22

We therefore conclude that a control model that can be considered dual

to (2.48) is given by the linear state equation (2.52) and a running cost (ton n

so that in this latter case the model just described corresponds in form to the

one obtained in [4-1.



2.5.2 A general form of duality between filtering and control 18

In this subsection, instead of starting directly from (2.44), we take

advantage of the substitution (2.45a) in order to start from (2.45b) which

coincides in form with (2.1). This then allows us to proceed exactly as

we did in Sections 2.3 and 2.4. Since the analogy is very close, we simply

mention that, proceeding as in 2.3 where now p(x /x n 1) is given by

pY (x /x 1) defined in (2.45b) and 9 (x ) is given by the predictive density

pn(Xn ), we can (see comments at the end of Section 2.2) obtain various con-

trol problems that are dual to a given filtering problem.

The analogy to Section 2.4 consists in constructing filtering models

that are "dual" to a given solvable stochastic control problem: given in

fact a solvable stochastic control problem (whose data depend on present

and future values of certain "observations" yn), by proceeding as in Section

2.4 we may be able to construct a kernel pY(x /x ) which is parametized
n n-i

by the same observations yn that now however belong to the past. The

possibility of ending up with the construction of an explicit (dual).

filtering model is related to the possibility of factoring (modulo a constant

of proportionality) the pY(x /x _1) into the product, see (2.45b), of a kernel

P(xn/xn-1) (the transition kernel of the original process x n) and a conditional

density p(y l/x l)(density of the observation Yn-1' given the original x 1).

3. Conclusions

Using logarithmic transformations we have been able to establish also

in discrete time a duality relation that was known in continuous time; more

precisely: given a forward equation, in particular a filtering equation, of

which an explicit analytic solution is known, we are able to construct various

corresponding (dual) control problems. The duality automatically provides

the solution to the control problem.

Although more involved, also the opposite is possible: given a stochastic

control problem whose solution is known, we automatically obtain a solution

to a corresponding (dual) forward equation, which under certain circumstances



19

might be interpreted as solution to a filtering problem.

The procedure has been exemplified by using the simplest possible models.

It is hoped that, by working out the procedure for more complicated filtering

or control problems, for which an explicit analytic solution is known (see

e.g. [7] for some control examples), one might be able to obtain as duals

new explicitly solvable filtering or control problems. This is not only

of interest in itself, but also because continuous-time filtering and control

problems can be arbitrarily closely approximated by corresponding discrete-

time problems (see e.g. [8], [9], [10]).

The basic logarithmic transformation between a positive solution 4(t,x)

of a forward (filtering) equation and the optimal cost-to-go S(t,x) of a

corresponding control problem is given by (see (2.2))

(3.1) k(t,x) = exp(-S(t,x)

This implies that 4(t,x) cannot be a (convex) combination of densities. In [8]

a discrete-time filtering model is considered that admits an explicitly

computable finite-dimensional filter given exactly by a combination of densities.

It seems therefore that for such problems we cannot use our procedure to

obtain corresponding solvable control problems. The particular model in [8]

however considers step functions which essentially reduces the problem to

one with a finite number of states, for which we can use the original

formulation of Sheu in [6] (see (2.5)) and derive a completely analogous

duality relation as was done here for continuous-state problems.

We finally mention that, analogously to Bayesian Statistics where the

exponential families of distributions play an essential role in the existence

of (finitely parametrized) conjugate families, one could expect that exponential

families play an important role also in the existence of finite-dimensional

filters in discrete-time (see e.g. [11], [12]). The duality relation (3.1)

expressing a filtering density q(t,x) as the exponential of -S(t,x) could

help in establishing similar results.
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