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Abstract

Simulated annealing is a popular Monte Carlo algorithm for combinatorial

optimization. The annealing algorithm simulates a nonstationary finite state

Markov chain whose state space Q is the domain of the cost function to be

minimized. We analyze this chain focusing on those issues most important for

optimization. In all of our results we consider an arbitrary partition

{I,J} of Q; important special cases are when I is the set of minimum cost

states or a set of all states with sufficiently small cost. We give a lower

bound on the probability that the chain visits I at some time < k, for k

= 1,2,.... This bound may be useful even when the algorithm does not

converge. We give conditions under which the chain converges to I in

probability and obtain an estimate of the rate of convergence as well. We

also give conditions under which the chain visits I infinitely often,

visits I almost always, or does not converge to I, with probability 1.
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1. Introduction

Simulated annealing, as proposed by Kirkpatrick [11, is a popular

Monte-Carlo algorithm for combinatorial optimization. Simulated annealing is

a variation on an algorithm introduced by Metropolis [2] for approximate

computation of mean values of various statistical-mechanical quantities for a

physical system in equilibrium at a given temperature. In simulated

annealing the temperature of the system is slowly decreased to zero; if the

temperature is decreased slowly enough the system should end up among the

minimum energy states or at least among states of sufficiently low energy.

Hence the annealing algorithm can be viewed as minimizing a cost function

(energy) over a finite set (the system's states). Simulated annealing has

been applied to several combinatorial optimization problems including the

traveling salesman problem [2], computer design problems [2],[3], and image

reconstruction problems [4] with apparently good results.

The annealing algorithm consists of simulating a nonstationary

finite-state Markov chain which we shall call the annealing chain. We now

describe the precise relationship between this chain and the finite

optimization problem to be solved. Here and in the sequel we shall take R

to be the real numbers, M the natural numbers, and M 0 = M U {O}, and we

shall denote by tAI the cardinality of a finite set A. Let Q be a

finite set, say Q = {1,...,QI}, and Ui E R for i E 0; we want to

minimize U i over i E n. Let Tk > 0 for k E MN. ( shall be the

state-space for the annealing chain and we shall refer to {Ui}iEQ as the

energy function and {Tk}kEMN as the annealing schedule of temperatures.

Let W(k) = Wk) iE1 (a row vector) be a Boltzman distribution over the

energies {U i}iE at temperature Tk, i.e.,

-Ui/Tk
Wk) e

v-U j/Tk

for all k E N 0. The annealing chain will be constructed such that at each



time k the chain has 7(k) as its unique invariant distribution, i.e., at

each time k the annealing chain shall have a 1-step transition matrix

P(kk+l) = [p (k k+l)i 3 Q such that 7 = D(k) is the unique solution of

the vector equation 7 -=p(k,k+l) The motivation for this is as follows.

Let S be the minimum energy states in Q. Now if Tk -* 0 as k - X then

13ct Tif iE S

(k ) _,S*

0 if i S ,

as k , i.e., the invariant distributions converge to a uniform

distribution over the minimum energy states. The hope is then that the chain

itself converges to the minimum energy states.

We now show how Metropolis constructs a transition matrix p(k,k+l)

with invariant vector 7(k) for k E N0. Let Q = [qij]ijE be a

symmetric and irreducible stochastic matrix, and let

-( Uj-Ui) /Tk
qije if Uj > Ui,

P ~kk+l) qI i if Uj < Ui, J • i,

·- ~ 1~ (k,k+l)( 1- > Pie if 3 = i,Qli

for all i,j E Q and k E M 0. Then it is easily verified that (k)

f(k)p(k,k+l) for all k e N. In fact, p(kk+l) and 7(k) satisfy the

reversibility condition

p(k,k+l) f(k) = ilk) (k,k+l) i, E
ji i ij '

for all k E N0. Let {xkI}kEN be the annealing chain with 1-step

transition matrices ({P(kk+l)}k and some initial distribution,

constructed on a suitable probability space (M,A,P). Let pik) - P{xk = i}

for i E Q and k E [NO.

The annealing chain is simulated as follows. Suppose x k = i E 0. Then

generate a random variable y E n with P{y = J} = qiJ for j E 0.
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Suppose y = J E Q. Then set

(i if Uj < Ui,
}3~~ if ~~~~~-(U -Ui)/T k

j k+1 j :if U Ui with probability e

i else.

Hence we may think of the annealing algorithm as a "probabilistic descent"

algorithm where the Q matrix represents some prior distribution of

"directions", transitions to same or lower energy states are always allowed,

and transitions to higher energy states are allowed with positive probability

which tends to 0 as k - o (when Tk - 0 as k -+ A).

Even though simulated annealing was proposed as heuristic, its apparent

success in dealing with hard combinatorial optimization problems makes it

desirable to understand in a rigorous fashion why it works. The recent works

of Geman [4], Gidas C5], and Mitra et. al. [6] have approached this problem

by showing the existance of an annealing schedule for which the annealing

chain converges weakly to the same limit as the sequence of invariant

distributions {ff(k)} , i.e., to a uniform distribution over S . In each

case a (different) constant c is given such that if Tk > c / log k for

large enough k E N and T k - 0 as k - ~ then
1 *
1t - if i E S*,
Is,

O Piif i f

0 if i0 S

as k * A. Furthermore, under an annealing schedule of the form Tk = T /

log(k+k0) where T > c and k 0 1, Mitra et. al. obtain an upper bound on

E |pk)-il for k E N 0. The results of Geman, Gidas, and Mitra et. al.
icQi

are an extension of weak convergence results for stationary aperiodic

irreducible chains [7] and certain nonstationary chains [8], and are useful

in proving ergodic theorems (which Gidas does). However, if one is simply

interested in finding any minimum energy state than weak convergence seems

unnecessarily strong. In a recent paper HaJek [9] investigates when the



annealing chain converges in probability to S . Hajek gives an expression

for a constant d such that under the annealing schedule Tk = T / log k

for large enough k E lN, P{x k E S ) - 1 as k - o iff T > d .

Furthermore the condition that Q be symmetric is relaxed to what is called

"weak reversibility".

In this paper, we analyze simulated annealing focusing on optimization

issues. Here we are not so much interested in the statistics of individual

states as in that of certain groups of states, such as the set S of

minimum energy states or more generally a set S of all states with

sufficiently low energy. In all of our results we consider an arbitrary

partition {I,J} of Q, and examine the behavior of the annealing chain

relative to this partition; we obtain results for I - S as a special case.

We investigate both finite-time and asymptotic behavior as it depends on the

Q matrix and the annealing schedule of temperatures {Tk}kE.N

In Section 2 we establish notation. In Section 3 we examine finite-time

behavior. We observe that since we may keep track of the minimum energy

state visited up to time k, it seems more appropriate to lower bound the

probability of visiting S at some time n < k, rather than the probability

of visiting S at time k. Under an annealing schedule of the form

Tk = T / log(k+k0) where T > 0 and ki > 1, we obtain a lower bound on

P{xn E I, some n < k} for k E M O. For large T this bound converges to 1

exponentially fast. For small T the bound converges to a positive value >

0. Hence the bound is potentially useful even for small T when the

algorithm may not converge. In Section 4 we examine asymptotic behavior.

First, we show that under suitable conditions on Q there exists a constant
* *

U such that if Tk h U / log k for large enough k E I, then the

probability that xk E I infinitely often is 1. Second, we show that under

suitable conditions on Q if T > U and Tk = T / log k for large enough

k E I, then xk converges in probability to I. Infact, we show that

P{x k E I} = 1 - O(k /T ) as k - A, where T > 0 does not depend on T and
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only depends on Q through the set {(i,j) E Q x Q: qij , 0} of ordered

pairs of allowed transitions. Third, we show that under suitable conditions

on Q there exists a constant U* such that if U < T < U s and Tk = T /

log k for large enough k E N, then the probability that x k E I almost

always is 1. Hence we obtain three results about the convergence of the

annealing algorithm with increasingly stronger assumptions and conclusions.

In Section 4 we also obtain a converse which gives conditions under which the

annealing algorithm does not converge: we show that under suitable conditions

on Q that there exists a constant W such that if e > 0 and Tk <

(W -6) / log k for large enough k E N, then the probability that x k e I

infinitely often is < 1. Finally, we briefly compare our results to Hajek's

work and indicate some directions for further research. We remark that

Sections 3 and 4 are essentially independent of each other.

-- _ _ _ _ _



2. Notation and Preliminaries

In this section we describe notation which is necessary to state our

results, give a few examples of this notation, and discuss a technical

condition which we shall often impose in the sequel.

Let U = min U and U -= max Ui. Then S = {i E Q: Ui = U} and S =
-i EOi iEO

{i E (: U i U} for some U < U < U. Following standard notation, we shall

define p(k,k+d) -= P i (kk+d)]i to be the d-step transition matrix

starting at time k, i.e.,

p(k,k+d) =(k,k+l) p(k+d-l,k+d)

In defining the annealing chain {fX}kEM o in Section 1 we assumed that

the stochastic matrix Q was symmetric and irreducible. This assumption is

unnecessarily strong for our purposes. If {I,J} is a partition of Q and

we want xi to converge to I as k i a, then we need only require some

kind of condition which guarantees transitions can be made from J to I,

and possibly another condition which makes transitions from J to I more

likely than transitions from I to J, depending on the mode of convergence.

We will be more precise later in Section 4; for now assume Q is an

arbitrary stochastic matrix. For each i,j E 0 we shall say that i can

reach j if there exists a sequence of states i = i0,il,...,ik = J such

that qi i > 0 for all n = 0,...,k-1; if U E R and Ui < U for all

n = O,...,k than we shall say that i can reach J at energy U.

Let k E N0, and for every d E m and i,J E 0 let AJd) be the

sequences of states i - io,.,id = J such that p(kik+l) > 0 for all n =
in n+1

,... ,d-1. A(d) are the sequences of allowed transitions of length d from

i to j at positive temperature (we defined Tk > 0 for all k E N0). For

every d E mN and i,j E 0 let M(d) be the sequences of states i =
i-i

i0O,...id = J such that qin+1 > 0 for all n = 0,...,d-1. We might

think of iJd) as the sequences of allowed transitions of length d from i

to j at infinite temperature. Note that iJ c Ai ), and the elements of
i C Ae
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A) \ M( are precisely those sequences which have a self transition, say

from s - s, with qss = 0 and st >' 0 for some t E O such that Ut >

Us Now for d E N, i,j E , and X E Aid) let

d-1

U(X) = ] max[O, Ui -Ui ],

n=O n+1 n

V(X) = max maxtO, Ui -U i ],
n=O,...,d-1 n+1 O

W(X) = max maxtO, Ui -Ui ].
n=O,...,d-1 n+l n

Also let

rain U(X) # i,
E(dA (d ) )

umid) if(d)

if AiJd) =

for all d e I, and

Ui= inf U(d) min U(d) (2.1)
i deIN d<j| 'J

for all i,j E Q. Similarly define ViJd) Vi and d) WJ by replacing U
ij ,via Wi3 ii

by V and W, respectively, in the definitions of Uid),U above.

Finally, if one or both of the indices i,j E Q are replaced by I,J c Q in

these definitions then an additional minimization is to be performed over the

elements of I,J, e.g., Ui min U , Win W etc. Note that
JEJ iEI,JEJ

(d) (d) (d) (d)if we replace A) by in the definitions of U V and W)

then the values of these quantities will in general be changed; however the

values of Uij, Vij, and Wij will be unchanged. We shall refer to Uxy

U(d)) as the transition energy (d-step transition energy) from x to y,
xy

for x,y E Q U 2.

Example 2.1 In Figure 2.1 we show a state transition diagram for Q -

{1,...,5} where transitions are governed by the Q matrix, i.e., an edge

from i E Q to J E Q is shown iff qij , O, in which case the edge is

labelled with the value of qij. To obtain the state transition diagram for

the corresponding p(k,k+l) matrix, k E No0 simply add a self-transition

loop to every state which can make a transition to a higher energy state (if
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one is not already present) and relabel the edges appropriately. The

self-transitions which are allowed under P(kk+l) but not under Q are

depicted by broken loops. Also observe that the ordinate axis gives the

energy of the corresponding state. To illustrate the notation we have

A() = {(1,1,2,3,4,5),(1,2,3,3,4,5),(1,2,3,4,5,5,)}15
M(5) = {(1,1,2,3,4,5)}

U 15 - U U 1 + U 4-U 3 = 4,Ui5 = U1 4 3

V1 5 V = U4-U i = 3,

1 = 15 = UU1 = 2

Let {I,J} be a partition of Q. In Section 4 we will often impose the

following condition: there exists d E I such that the d-step transition

energy from j to I equals the transition energy from j to I, for all

J E J (U (d) = Uj for all J E J). This will allow us to get lower bounds

on the quantity P{x(k+l)d E I I x|d = j} for all j E J. It is easy to show

that if I = S then this condition is satisfied. Infact, in this case there

exists d0 < IJI such that for every d > do, U(d) = UjZ for all j E J.

Example 2.2 In Figure 2.2 we show a state transition diagram for Q =

{1,...,7} (see Example 2.1). Let I = S = {i E Q: U i < 2} = {1,2,3}, J =

{3,...,7}. Then

(d) (d) (d)
U 3I = U361 7I I _= UGId > 1,

U (d ) = 1i, d > 2,

U (d ) U4 = 2, d > 3,

and so do 3. Note that if we replace A(d) by Mid) in the definition0 3ij i
of U (d) for i, E , then there does not exist d E such that U(d) for all E 

Uji for all J E J.



3. Finite-time Behavior

From the point of view of applications it is important to understand the

finite-time behavior of the annealing algorithm. Certainly it is interesting

to know whether the annealing algorithm converges according to various

criteria, and this information may well give insight into finite-time

behavior. However this information may also be misleading for the following

reasons. First, the finite-time behavior of the annealing algorithm may be

quite satisfactory even when the algorithm does not converge, which may well

be the case for typical applications. Second, the finite-time behavior of

the annealing algorithm may not be clearly related to the convergence rate

when the algorithm does converge, as the following example indicates.

Example 3.1 It is a simple consequence of Proposition 4.1(ii) that if

Q is symmetric and irreducible, T > 0, and T k > T / log k for large

enough k E [, then there exists a,a > 0 such that

P{xk E S } < 1 - a k large enough.

Now let P be the matrix obtained from p(kk+1) by setting Q = [l/IQ13

and Tk = O, and let {Yk}k E,[ Yk E 0, be a stationary Markov chain with

1-step transition matrix P and some initial distribution, constructed on

(M,A,P). Since S is Just the set of persistent states for this chain, it

is well-known that there exists b > 0 and 0 < p < 1 such that

k
P{Yk E S >} 1 - bp , k E N0.

Hence assuming that T is chosen such that P{xk E S I} 1 as k - o then

the rate that P{(xk E S } 1 is at best polynomial while the rate that

P{Yk E S } - 1 is at worst exponential. Of course we would hope that the

finite-time behavior of the annealing chain would be better than the

stationary chain, for appropriate choice of Q and T. 4

We now address the question of what is an appropriate criterion to

assess the finite-time behavior of the annealing algorithm. For our

purposes, we are simply interested in finding any state of sufficiently low

energy, i.e., an element of S. Hence it seems reasonable to lower bound



P{(k E S} for k E N0. However, we observe that by just doubling the

annealing algorithm's memory requirements we can keep track of one of the

minimum energy states visited by the chain up to the current time. In this

case we are really interested in having visited S at some time n < k, as

opposed to actually occupying S at time k. Hence it seems more

appropriate to lower bound P{xn E S, some n < k} for k E MN.

We start with a proposition which gives a lower bound on the d-step

transition probability p(kkd) in terms of the transition energies U(X)

of sequences X E A(d) for i,j E Q

Proposition 3.1 Let d E f, T > 0, k0 > 1, and Tk = T / log(k+k 0)

for k E MN. Then for every i,j E Q

p(k,k+d) > ) r(X)(k+k0 +dl)-U(X)/T, k E 0, (3.1)
XEP(d)

where r(X) > 0 is given in (3.2).

Proof Let

(k)

( (k,k+l) if J i
Pii

for all i,j E 0 and k E MN. Also for every i,J E 0 and X (io,...,id)

E A(d) let

An(X) = max[O, Ui -Ui n = 0,...,d-l,
n+1 n

d-1 (k+n)
rk(X) = TT ri ) ' 0, k E NO,

n-0O n n+l

and

d-1
r(X) -= ri ° ) > 0. (3.2)

n-O n n+1

Since Tk is strictly decreasing, (k,k+l) and hence rk) are

nondecreasing, so that rk(X) > r(X) for all k E MiN. Hence for every i,J

E

(k,k+d) d-1 (k+nI 
Pij FT7 Pi nin +n+l)

(i i )EAJd) n-0 in n+l



2 ( a) r! i n) exp T 1+ max[O, U i 1 ]log(k+- 0+d.-) -i1UA(d) n=O nin+1 
(io ... d ) ij

d-1 AnW

> d rk(X) exp - nT 
- (d) r(X)(k + 0dT, k e k+nXE-'( n=O

XEAij

XeAi

Remarks on Proposition 3.1 (1) In Figure 2.1 we have
1

r((1,2,3,4,5)) = q1223q34q45 =

r((2,3,3,4,5)) = 23P33 445 = 1 - 2 2/T
I0 0

r((2,3,4,5,5)) = q3q34q45P55 (1) 1 /T 

(2) Fix k E [N0.' From (3.2) it is easy to see that r(X) is

nondecreasing as T decreases or k 0 increases, which reflects the fact

that self-transitions in the sequence X have larger probability at lower

temperature. On the other hand, (k+ko+d-l)-U(X)/T 1 0 as T 1 0 or ko T

(if U(X) > 0), which reflects the fact that transitions to higher energy

states in the sequence X have smaller probability at lower temperature.

These two phenomena compete with each other in the lower bound (3.1).

The next theorem gives a lower bound on P{xn E S, some n < k} for k E

[N by setting I = S.

Theorem 3.1 Let {I,J} be a partition of Q. Also let d E [N, U =

(d)max Uji, T , O, k 0 , 1, and Tk = T / log(k+k O) for k E [NO. Then
jEJ

P{xnd E J, n = O,...,k}

exp d(1-a 1-aexp d.(a) nO ] exp[ k a) (d + n) if T U,

<tp no] if T = U,

exp| d(a-1) na-l e[a-) (kd + n)a-1 if T 
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for all k E N0, where a = U/T, nO = k0+d-1, and a > 0 is given in

(3.5).

Note In the statement of Theorem 3.1 and in the proof to follow we

suppress the dependence of the constants U and a on d. Later, we shall

make this dependence explicit by writing U (d) and a (d)

Proof From Proposition 3.1 for every i,j E Q

p(k,k+d) >_ r(X)(k+ko+d-1)-U(X)/T k E [0,

XEA d

where r(X) , O is given in (3.2). Hence

k-1
P{Xnd E J, n = O,...,k} _< - max P{X(n+l)d E J I Xnd =J}

n=O JEJ

n=O 0 (nd (n+i)d)= F 7 1 - min pji
n-03JEJ iEif

k-l

n=O (nd + n o)a (34)

where

a = min r(X) > 0. (3.5)
EJ iEI kXEAi

U(X)<u
(if U = ~ let a be any positive real). Since 1+x < ex for all x E R,

we have

~k-1~~~~ ~k-1ik-1 a 1
T [ | < exp[- a ) 1 <exp- a| d
n=O (nd + n O ) a -= (d + n0)a O (xd + n ) an0al exp[- a n=0 (nd+0

exp d la n exp[- d (kd + n)1a if a 1,

kd, [ nO + d if a - 1, (3.6)

for all k E MN. Combining (3.4) and (3.6) completes the proof.

Remarks on Theorem 3.1 (1) Let I - S = {5}, J = {1,2,3,4}, and d

= 4 in Figure 2.1. Then U = U (4 ) = 4 and15

a min r(X).
JE{1,2,3,4} XEA),

U(X)<4

Now it is not hard to see that the minimum is obtained by J = 1 or 2. Using
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the values of r(X) computed in the first remark following Proposition 3.1

we have

a1 min[1, 4 _ 2 _ 1 1 a m Hk 4 /T k2/T k1jT

(2) Note that

P{xnd E J, n E 0} = lim P{xnd E J, n = O,...,k}
k-4 n

=0 if T > U,

< exp- d(a- ) n- l if T < U,

so that the bound is potentially useful even when T < U.

(3) Fix k E N . It will be convenient to analyze the dependence of

the upper bound (3.3) on T and k 0 in the form

P{xnd J, n = 0,...,k} < exp - a (xd + n(3.7)

(see (3.6)). Since r(X) is nondecreasing as T decreases or k 0

increases, we have from (3.5) that a is nondecreasing as T decreases or

k 0 increases, which reflects the fact that self-transitions in sequences of

transitions from J to I have larger probability at lower temperature. On

the other hand, d 1 dx I 0 as T I 0 or ko0 T (if U > o),
0 (xd + no)a

which reflects the fact that transitions to higher energy states in sequences

of transitions from J to I have smaller probability at lower temperature.

Since these two phenomena compete with each other one could consider

minimizing the r.h.s of (3.7) over T and k 0 to obtain the best bound.

(4) We can generalize Theorem 3.1 by replacing U = max UJd) with U'
JEJ

> U (if U' < U then a = 0 and the upper bound (3.3) is useless). Since

a and a are both nondecreasing with increasing U' one could consider

minimizing the r.h.s. of (3.7) over U' as well as T and k 0 to obtain

the best bound (see previous remark).

In order to apply Theorem 3.1 we must obtain suitable estimates for the

constants U(d) and a(d). We are currently investigating this in the

context of a particular problem.
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4. Asymptotic Analysis

In the previous section we pointed out some of the difficulties

associated with using the asymptotic behavior of the annealing algorithm to

predict its finite-time behavior. Nonetheless, it is certainly interesting

from a theoretical viewpoint to perform an asymptotic analysis, i.e, to find

conditions under which the annealing algorithm does or does not converge

according to various criteria, and when the algorithm converges to estimate

the rate of convergence as well. In this section we address these questions,

and then briefly compare our results to HaJek's work and indicate some

directions for further research.

We first address the question of what are appropriate criteria to assess

the asymptotic performance of the annealing algorithm. For our purposes, we

are simply interested in finding any state of sufficiently low energy, i.e.,

an element of S. Hence we shall investigate conditions on the Q matrix

and the annealing schedule of temperatures (T k}kEN under which one or more

of the following is true:

(i) P{xk E S i.o.} = 1,

(ii) P{xk E S} I 1 as k - ,

(iii) P{xk E S a.a.} = 1.

Here "i.o." and "a.a." are abbreviations for "infinitely often" and "almost

always", i.e.,

{xk E S i.o.} { E S} = n U {xk E S}
k--)} - na=1 k>n

and

{xk E S a.a.} = lim {xk E S} = U n {Xk E S}
Ok-, n=l k>n

Since (c.f. (7])

P{xk E S a.a.} < lim P{xk E S)} < I P{Xk E S} < P{Xk E S i.o.}, (4.1)

it follows that (i),(ii), and (iii) are increasingly strong results and so we

expect increasingly strong conditions under which each is true. We are also

interested in obtaining the rate of convergence in (ii) as well as conditions
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under which (i),(ii), and (iii) do not hold.

We start by giving a proposition which establishes asymptotic upper and

lower bounds on the d-step transition probability pijk+d) as k in

terms of the transition energy Uij, for i,j E Q.

Proposition 4.1 Let d E m and T > O. Then there exists aij > 0

for i,j E Q such that each of the following is true:

(i) if Tk < T / log k for large enough k E N then

- iJ/T (k,k+d) < a
Pij < aij

for all i,j E f,

(ii) if Tk > T / log k for large enough k E N and Tk O as k *

D then

Lim ij/T (k,k+d)lim k pij > aij
k-.)a

for all i,j E f such that U (d) U
ij ii.

(iii) if Tk = T / log k for large enough k E m then

p(k,k+d) a ij
pij - Uij/T as '

for all i,3 E £ such that Ud )I Uij.

Proof We prove (i); the proof of (ii) is similar and (iii) follows

from (i) and (ii). So assume Tk < T / log k for large enough k E M and

for all i,j E f and k E M. Also, for every i,J E Q and X = (io,..., id)

E A(d) letij

An(X) = max[O, Ui n-Ui n 0,..,d

d-1 (k+n)
rk(X) = > ni 0O, k E IN,

n-O n n+l

and

r(X) = lim rk(X) = sup rk (X) > O.
k-n kEN



That the limit exists in the definition of r(X) and is equal to the

supremum is a consequence of lim (kk+l) sup (kk+l) (since Tk k- 0 as
lit Pii ItN Puk-) ~ kE Ni

k - a). Hence for every i,j E n

0'(7,d ij~(Itrk+d) d-1 (k+n,k+n+l)(i 0 ,... id)E,,jn
7= r rikn) exp[ T max[O, U i -Ui] 

(d)A n=O nn+1 k+d-l n+l n
(i,·..,id) ,ij

d-1 ACX)

= (d) rk(X)ep[- Tk+n
XEAij n=O

d-1

Z< E rW(X) exp[ - Alor IT An(X) W (k large enough)

E(d) n=O

XEAij k- rk(X)
(d) kr(X)/T

XEA(d k X [(d)UX

a j as Ik - ,i(d ij

where

aij () r(X) 0aiJ

U(X)=U (d)

(if iJd) = c let aij be any positive real).

The following theorem gives conditions under which P{x k E S i.o.} = 1

by setting I = S.

Theorem 4.1 Let {I,J} be a partition of Q and assume

(a) there exists d E M such that the d-step transition energy from J

to I equals the transition energy from J to I, for all J E J

Ud) = Uj for all J E J),

(b) every J E J can reach some i E I (max UjI < ).

JEJ
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Also let U - max UjI < T k > U / log k for large enough k E N, and
JEJ

Tk - 0 as k - a. Then P{x k E I i.o.} = 1.

Proof From Proposition 4.1(ii) there exists a > 0 such that

p(tI+d)> a k large enough,
kUij/U

for all i,j E such that (iJd) = Uij. Hence for every large enough k E N

P{xnd E J, n > k} < T7 max P{X(n+l)d E J I Xnd =j}
n=k JEJ

= FT[- mm P(nd,(n+l)d)=7 1 - min P i

n Or JE is Id, (nd)UJi/n=k JEJi

for all k , and the theorem follows./U< se n Iot1 mino 

the0r allk E M JEJ iE, (nd)UjApIx/U

Remarks on Theorem 4.1 (1) In Figure 2.1 let I a S = < J -

1,2,3,4. Then U = U 4. a
by (a). settin ceg I , and obtae ins an estimate of the rate of con verge nce as k

we0l. We shall neeand the te following lemma, the proof of which can be found ins.

(i 1 Remark-o = o(ebIn g as -o{5, J =

w,2here = a/(-a) U15 = 4.0,

-Our next theorem gives conditions under which P{x k E S 1 as k



(ii) for every n E [ 0

(k+l-m)n k l _ a_ _ = O(k), 
rn'3 Q=m+m0 QGjm=k m ~= O

where r = /-a > O.

Theorem 4.2 Let {I,J} be a partition of Q and assume

(a) there exists d E m such that the d-step transition energy from j

to I equals the transition energy from J to I, for all J E J

(U d) = U for all j E J),(i ji

(b) every j E J can reach some i E I (max UjI < a),
JEJ

(c) the transition energy from I to j is greater than the

transition energy from j to I, for all j E J (minEUIj-Uji] , 0).
JEJ

Also let U = max Uj < a, T > U, and Tk = T / log k for large enough k
JEJ

E N. Then P{xk E I} - 1 as k -4 C. Furthermore, if we assume

(d) there exists i E I which can reach some J E J (UIJ < ),

then

P{x k E I} = 1 - O(k-T T), as k - a,

where T = min[UIj-UjI (CO <' r by (c) and (d)).
3EJ

Proof From Proposition 4.1 there exists a 1 > 0 such that

(k,k+d) 1 (4.2)
i U. k E I, (4.2)

j kij /Ta1

for all i,j E Q. Also from Proposition 4.1 there exists a 2 > 0 such that

(k,k+d) 2 (a)
pik) > Uij/T k large enough,

for all i,; E £ such that (d) = U In the sequel (4.2) ((4.3)) will beij ij.

used to upper (lower) bound the probability of transitions from I to J (J

to I).

Let J1...,Jr O be a partition of J such that UJI = Uj I for all J

E Jr and UjrI < UjsI for all r ( s. For example, in Figure 2.1 let I =

S = {5}, J = {1,2,3,4}, so that 1 = {4}, J2 = {2,3}, and J = {1}.
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Also let a = U /T, a = U /T, UIj /T, Kr U J-s and k -

IKr|, for r = 1,...,r O. Note that a. = a < 1 and K = J. Finally let

p(j,m,n,r) = P{xkd E Kr, k = m+l,...,n I xmd = J},

and

a(i,j,m,n,r) = P{Xkd E Kr, k = m+l,...,n-1 ; xnd = J md = i

for i,j E Q, m,n E N, and r = l,...,rO. Then for every k 0 E f we can

write

P{xkd E J} = P(k) + (i) (4.4)

where

(k d)
P(k) P= p P p(j,kO,k,rO) (4.5)

jeJ

and

k-1
pk) p(md) p(md,(m+l)d)p(Jm+lkr)

m=k0 iEI jEJ

for all k = ko k0 +1,.... In words, p(k) is the probability that Xnd E J0 1 nd

for all n = ko,..$,k, and p(k) is the probability that xmd E I for some

m = k o, ...,k - 1 and Xnd E J for all n = m+l,...,k. We can further write

(k) P(k) + P(k) (4.6)
2 3 4

where

k-1 rO
(k) = ) p(md) i _ (md,(m+l)d)
3 Pi Pij p(J,m+l,k,r) (4.7)

m=k iEI r=l jEJr

and

k-2 k ro

( k)md) a(i,j,m,n,r-1) p(j,n,k,r), (4.8)

m=k iEI n=m+2 r=2 jEJr

for all k i ko , .0+ ... In words, P(k) (P(k)) is the probability that

when xnd makes the transition from I to J at time m it visits at time

m+l (at some time > m+2) the state in J with the largest transition

energy back to I amongst the states in J that are visited from time n =

m+l,...20 -,k.
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The motivation for the decompostion in (4.6) is as follows. Suppose we

work directly with (4.4). Observe that the P(k) term only keeps track of

how the chain makes transitions from I to J but not how it stays in J.

In this case we are forced to work with the "worst case" scenario where the

chain makes minimum energy d-step transitions from I to J (with energy

UIJ) and maximum energy d-step transitions from J to I (with energy max

~~~~~(k) ~~~~JEJ
UjI). In order to show that p(k) 2 0 as k - o it seems clear that we

would have to require UI - max U > 0. On the other hand, in the p(k)
jI 3

and p(k) terms of (4.6) we not only keep track of how the chain makes

transitions from I to J but also how it stays in J. In order to show that

P(k),p(k) - 0 (and consequently P(k) 0) as k - ~ it is not hard to see3 '4 2

that we need only require min[UIj-Uj] > 0, which is guaranteed by (c). We
je J

now proceed with the details.

(k)
We start by upper bounding p k) Using (4.3), for every large enough

k 0 E m we have

k-1

p(J0,kO,k,ro) < FT max P{x(p+l)d E J I Xd =J}
Q=ko jEJ
k-i QdQ+)d)]
7 5 |1 - min) p(J1d, ld)
Q=k 0 JEJ iE I
k-1 a
F T- I - min U /T
P=ko(-dU jTO t J iEI, (Qd) i

U d)=ui
ji ti

k-1 a

~-k jEJ iI, (d) U jI

u(d);u
ji i

k-i a 1
• 1 - 1 f 2 | Jo E J, k = kO ko+1,.

r = l,...,ro, (4.9)

by (a). Combining (4.5) and (4.9) gives for every large enough k0 E N

P1 <) [i 2d k = ko,k0o+ 1.... (4.10)
=k0 d)a 
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Since a2 > 0 and a < 1 we can apply Lemma (i) to (4.10) for every large

enough k0 E N to get

pk) = O(e-b(kd)l-a
p = o(eb(kd) ) as k - ', (4.11)

where b = a2 /(1-a) > 0.

We continue by upper bounding P3 and P4k) First, by almost the

same reasoning that led to (4.9), for every large enough n E I we have

k-l a2
p(j,n,k,r) < 1 - a j E J k = n,n+l...

(Qd)

r =- 1,... ,r O. (4.12)

Next, suppose that

xmd i,

Xk E Kr, for k = (m+l)d,...,(n-l)d,

Xnd j'

for some i,j E Q, m E N, n = m+2,m+3,..., and r = 1,...,r O. Then clearly

there exists k E N (1 < k < min[n-m-l,kr]), intermediate times m ( il

...< ik-1 < n-l, and distinct intermediate states Jl1''''Jk E Kr such that

Xmd = i, X(m+l)d j '

Xi d , = )d +, for Q = 1,...,k-1,

X(n-1)d = Jk' Xnd = j ' (4.13)

Let A(i,j,m,n,r;k,il,...,ikl, l'''...''jk) be the event defined by (4.13).

Then we have shown that

G(i,j,m,n,r) < ~. P{A(ij,m,n,r;kil,...,ik-lJl .... Jk)}
1' k-l'

Jl'''' 'Jk k

< kr 2 r (rn-m-2) r max P{A(i,j,m,n,r;k,il,...,ik_, l,,k'

k-1

j1,·..,jkk

i,j E n, n = m+2,m+3,..., m E [,

r = l,...,r O.
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Now using (4.2) and (4.12) it is not hard to show that for large enough m E

P{A(i,j,m,n,r;k,il,...,ik_ljil, ... ,jk }

k+1 n-2 a
< 1 T a

md)Uij/T Q=m+k d) ar

and consequently

k -1

(i,j,m,n,r) 0 (n-m-2)r - 1 - ij 
(md) U ij/ T Q=m+kr (Qd) r

n = m+2,m+3,..., r = l,...,r O , (4.14)

where cl is an unimportant constant. Combining (4.7),(4.8),(4.12), and

(4.14) gives for every large enough k0 E I

(k) (k)P +P
3 4

O k-1

+< ( -rn 1- 

z'=l m'kg (md):r P=m+lr=2 m=k 0 (md.)rd) r

'0 k-1 k
km)r-1 k -1 a

ArQ ~=m+k + a 
r=2 ,kkg (md) r_,( Qd) r

(4.15)

where c2, C3 are unimportant constants. Since a 2 , O, a r < ar = a ( 1,

and (Ar-ar)T = UJ JrI mTin [UI-UjI] > 0O for all r - l,...,r 0 we can
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apply Lemma (ii) to each term in (4.15) for every large enough ko0E to get

3(k) 4(k) /Tk-( r-ak) + p ) ( ) O(k/T as k - , (4.16)

r=l

where the last equality follows from

T = min[UIj-UJI1 = min [UIj - UJ I ] m- in (r-ar)T.
JEJ r=,... ,rr 0

Finally, combining (4.4),(4.6),(4.11), and (4.16) gives

-b(kd) 1- -r1/TP{Xkd E J} = O(e )_ + O(k /T)as k - . (4.17)

Similarly we can show that in (4.17) P{xkd E J} can be replaced by

P{xkd+k E J}, for all k 0= O,...,d-1. Hence

-bkl-a -r
P{xk E J} = O(e ) + O(k-/T as k - a, (4.18)

and the Theorem follows since b,r O0 (and Tr < if (d) is true).

Remarks on Theorem 4.2 (1) In Figure 2.1 let I = S = {5},

J = {1,2,3,4}. Then U = U15 = 4 and r = U51-U15 = U1-U =1.

(2) Condition (a) was discussed in Section 2 and is satisfied for I =

S.

(3) Condition (c) is satisfied for I = S and Q symmetric since

min[U UI > min [U ij -Uji] = min [Uj-U ] > .
EJ jE iE I, jGJ iEI, jEJ

(4) When condition (d) is not satisfied (7 -= ), (4.18) shows that

bkl-a
P{xk E II = 1 - O(e ), as k * a,

where a = U /T and b , O. What we have actually shown is that

l1-a
P{xk E I, some n < k} = 1 - O(e ), as k - a,

and this is valid when only (a),(b), T > U , and Tk > T / log k for large

enough k E m are assumed. Theorem 4.1 can be deduced from this by taking

T = U . It is possible to lower bound b in terms of the aij 's from

Proposition 4.1, but we shall not do so here.

(5) We can get a somewhat better estimate of the rate of convergence as

follows. Let I be the collection of subsets of I such that I0 E I iff

the partition {IO,J O} satisfies conditions (a),(b),(c), and (d). Assume
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that I • t and let

r(I,) r(Io)
*,_ _ - max

U (I*) I0E U ( o)

r = r(I.), T = T (I*). T > T , and Tk - T / log k for large enough k

E N. Then

P{xk E I} = 1 - O(k - r /T as k 

The corollary to the next theorem gives conditions under which

P(xk E S a.a.} = 1 by setting I = S.

Theorem 4.3 Let {I,J} be a partition of Q and assume that the

transition energy from I to J is positive (UIj > 0). Also let U* = Uij >

0, e > 0, and Tk < (U,-e) / log k for large enough k E N. Then

P{xk E I a.a.} = P{x k E I i.o.}.

Proof Let T = U*-E. Then from Proposition 4.1(i) there exists a > 0

such that

(k,k+l) < a
ij kUij/ 'EN,

for all i,j E n. Hence

P{xk e I, Xk+1 E J} < max P{xk+l E J I x k = i} = max P(k,k+l)
EI iEI JE

a [__a IJkan< max a - < I k E EN,
iE- Uij/T U./T 

ji J k j k

and since U*/T > 1,

0c

P{x k E I, Xk+1 E J} 

k=l

Applying the "first" Borel-Cantelli Lemma (c.f. [7]) we have

P{x k E I, xk+l E J i.o.} = 0, and the theorem follows.

Corollary 4.1 Let {I,J} be a partition of Q and assume that

(a) there exists d E N such that the d-step transition energy from j

to I equals the transition energy from j to I, for all j E J

(U(d ) UjI for all j E J),

(b) every j E J can reach some i E I (max U < ),
JEJ
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(c) the transition energy from I to J is greater than the

transition energy from j to I, for all j E J (UI - max Uj ,> 0).
*E*

Also let U =max U = U > 0 U < T U*, and T = T / log k

for large enough k E N. Then P{xk E I a.a.} = 1.

Proof Combine Theorems 4.1 and 4.3.

Remarks on Corollary 4.1 (1) In Figure 2.1 let I = S = {5}, J =

{1,2,3,4}. Then U = U15 = 4 and U* = U54 ° 4. Hence, unlike condition

(c) of Theorem 4.2, condition (c) of Corollary 4.1 is not generally

satisfied, even when I = S and Q is symmetric.

(2) Note that

UIA = = = min maxO[, Uj-Ui]

iEI, jEJ,

qiJ >

The corollary to the next theorem gives conditions under which

P{xk E S i.o.} ( 1 by setting I = S. By (4.1), these are conditions under

which the algorithm does not converge according to any of our criteria.

Theorem 4.4 Let {I,J} be a partition of Q and assume

(a) the transition energy from J to I is positive (UJI > 0),

(b) every i E I can reach some j E J (max U )< c).
i JI

Also let E > 0 and Tk < (UJI-e) / log k for large enough k E N. Then

P{xk E I i.o.} < 1.

Proof From Proposition 4.1(i) there exists a > 0 such that

p(k,k+l) a k E
ij U.j./T ' ,

for all i,j E Q. Hence for every large enough k E m

P{xn E J, n > k} > P{xk E J} F7 min P{xn+ 1 E J I xn =J}
n=k jEJ

P{x k J} p- .1 - max Pji

n=k JEa iI 
P{xk 6 J} 1- max aIn=k J Uji/T

> P{x k E J} T 1- Ui |]

n
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Since Uji/T > 1 the infinite product converges (to a positive value), and

by (b) P{xk E J} > 0 for infinitely many k E N. Hence P{xn E J, n > k} >

0 for some large enough k E N, and the theorem follows.

Corollary 4.2 Let {I,J} be a partition of Q and assume that

(a) the transition energy from some j E J to I is positive

(max U > 0).

Also let W = max WJI > 0, J = {jE J: Wji = W }, I = Q \ J , and
JEJ

assume that

(b) the transition energy from J to I is positive (UJ* * > 0).
I

....Finally let e > 0 and T k < (W -E) / log k for large enough k E N. Then

P{xk E I i.o.} < 1.

Proof Observe that W = U*< * and apply Theorem 4.4 to the partition

{I ,T }.

In Figure 2.1 let I = S = {5}, J = {1,2,3,4}. Then W = W1 5 = W 2 5 = W35

2 and J = {1,2,3}.

We next state a theorem of Hajek's which gives necessary and sufficient

conditions for P{xk E S } - 1 as k - c.

Theorem (Hajek) Assume that

(a) i can be reached from j, for all i,j E Q (Q is irreducible),

(b) if i can be reached from j at energy U then J can be

reached from i at energy U, for all i,j E Q and U E R (Ui+Wij =

Uj+Wji, for all i,j E Q).

Let d = max V j* < c, T > 0, and Tk = T / log k for large enough k E

j s

N. Then P{xk E S } - 1 as k - m iff T > d.

Proof See C93.

Remarks on HaJ.ek's Theorem (1) In Figure 2.1 we have d = V15 = 3.

(2) In HaJek's paper conditions (a) and (b) are called "strong

irreducibility" and "weak reversibility", respectively. Condition (b) is

satisfied for Q symmetric.

(3) Obviously W < d < U and the equalities hold only in fairly
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trivial cases. Hence under conditions (a) and (b), Hajek's Theorem is

stronger than our Theorem 4.2 and Corollary 4.2 with I = S . However, the

conditions under which our results are obtained are different, and in general

weaker than Hajek's, with the exception that condition (c) of Theorem 4.2 can

be true when condition (b) of Hajek's Theorem is false and conversely. Also

we obtain an estimate of the rate for which P{xkE S } - 1 as k * a.

We close this section by indicating how we can analyze various

modifications of the annealing algorithm by our methods. Such modifications

might include

(i) allowing the Q matrix to depend on time,

(ii) measuring the energy differences Uj-U i with random error,

(iii) allowing the temperature Tk to depend on the current state xk.

The important point to observe in modifications such as these is that our

results depend only on the Markov property of the annealing chain {Xk}kE0

and the asymptotic behavior of its d-step transition matrix {P(k'k+d)}k

as k - co for fixed d E [N. In particular, our results are based on

satisfying one or both of the inequalities

lim ki/T (k,k+d)
_lim k i: > 0 (4.19)

k->co

and

U. /T
lim It 13 (k~kfd.) < co (4.20)
k-e

for appropriate i,j E Q. Hence our results are valid for any Markov chain

which satisfies (4.19) and/or (4.20) for appropriate i,j E Q. Ofcourse in

general the Uij's are not given by (2.1), and can infact be any

non-negative real numbers (or a), with the exception that in Theorem 4.2 we

require Uij < U i+U j for certain i,j,Q E Q. We are currently examining

the modifications of the annealing algorithm mentioned above and are also

attempting to extend our results to more general (countably infinite and

uncountable) states spaces.
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5. Conclusion

We have analyzed the simulated annealing algorithm focusing on those

issues most important for optimization. Here we are interested in finding

good but not necessarily optimal solutions. We distinguished between the

finite time and asymptotic behavior of the annealing algorithm. In our

finite-time analysis we gave a lower bound on the probability that the

annealing chain visits a set of low energy states at some time < k, for k =

1,2,.... This bound may be useful even when the algorithm does not converge

and as such is probably our most important result for applications. We are

currently engaged in trying to apply this bound to a specific problem. In

our asymptotic analysis we obtained conditions under which the annealing

algorithm converges to a set of low energy states according to various

criteria. HaJek has recently given necessary and sufficient conditions that

the annealing chain converge in probability to the minimum energy states. We

gave an estimate of the rate of convergence. Our methods apply to various

modifications of the annealing algorithm. We hope to explore some of these

modifications and to extend our results to more general state spaces.



6. Appendix

Proof of Lemma (i) Without loss of generality we assume k 0 - 1. Then

using the inequality l+x < ex for all x E R we have

k k-1 k 1-aIt [ exp-- a < exp[- a J 1 dax = ebe-bk
T[ a -exp[ -a a

k E N. (A.1)

Proof of Lemma (ii) Without loss of generality we assume k = m0 = 1.

Then using (A.1) and the inequality (x+l)y < xy + y for all x > 1 and 0

< y <1 we have

m[1 a ] < eb(m+ ) 1 - a -bkl - a eae-bkl-a bma
- e <ee

k = m+l,m+2,..., m E N.

Let

k+l-m)n eb m l-a
f (kP) _ (k -m) e bm 1,...,k, k E M, n E MO.

mn-

Then we can write

k

1 (k+m)n i m+l [ eaebkl f(kk) k E M n E [N

We shall show that for every n MN0 there exists an,bn E R such that

fn(k,) S an (k+l -Q) eb 1-a +b n 6 =,.. . k, k E N,

(A.2)

and consequently

i (1+m)n k

m kP FT [1 - a O(k[T), as k o,

m=l

as required.

Proof of (A.2) is by induction on n E N 0. First consider n = 0. Let

g(x) = ebx/xl, x > 1. Since g'(x) > 0 for large enough x, it follows

that

bml-a 
fo(k'0 ) = m < g(x)dx + g(l) + g(m)

m-1
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- l-a b + e -a
+e b e -+

1-aI 1 -e dx + e b e = 1,...,k, k E N,

where 6 = (A-a)/(l-a) = r/(l-a) > O. Let [6] be the largest integer < 6.

Then expanding ebx in a Taylor series and integrating term by term we have

1-a i i -a
f (k,Q) • 1 dx + e +

cok, S= |1 bixi Q1 a

I i-a i-a(i-l)!(i-5) Icoi ~ ~ b 1-a

,1 _ +- bi(l-a)i b eb

a(Q )6 aTIC +--6 1 i + e +-I--L i= ] +1

1-a

< aO + b, Q - l,...,k, k N,

where a = 1 + (1/a)(6j+1)/(6j+1-6)] and b1 = eb

Next assume (A.2) is valid for n E N0 and consider n+1. Summing by

parts (c.f. [10]) we have

fn+ (kB,) = (k+l-q)f (k,Q) + fn(k,m)

m=l
(k~in+1 ( ~ 1-a n+1

< a (k-Q) e+ 2b k + anf(k,-)

< an+ e +bn+ 1,...,k, k E N,

if we set an+l = a/(a +1) and b l b (a-+2). By induction (A.2) is

valid for all n E N. m
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