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Abstract

Chapter 1. Modeling Studies for Diiron Sites with Carboxylate Rich
Coordination Environments in Dioxygen-Dependent Non-Heme Enzymes:

Compounds Synthesized, Understanding Achieved, and Directions to Take

Our efforts to better understand of dioxygen-dependent diiron proteins
with carboxylate-rich coordination environments through synthesis of small

model complexes are summarized. We describe both not only the significant

results that have contributed toward this goal, but also the rationale behind how

one generation of model systems gave way to the next.

Chapter 2. Mechanistic Studies of the Oxidative N-Dealkylation of a Benzyl

Group Substrates Tethered to Carboxylate-Bridged Diiron(II) Complexes,

[Fe2(i-0 2CArT°o)2(O2CArT°i)2(N,N-Bn 2en)2]

Hammett and intramolecular kinetic isotope effect (KIEitra,,,) analyses for

oxidative N-dealkylation of [Fe2(/-O2CArT°I)2(O2CArT°')2(N,N-Bn2en)2] rule out

previously proposed concerted and hydrogen atom transfer mechanisms. We

conclude that the reaction operates through single-electron transfer from the

non-bonding electron pair of the amine substrate to the dioxygen-generated

intermediate, followed by proton transfer and rearrangement.
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Chapter 3. Synthesis, Characterization, and Dioxygen Reactivity of
Tetracarboxylate-Bridged Diiron(II) Complexes with Coordinated Substrates

The synthesis and characterization of [Fe2(W-O2CArT °) 4L21 complexes,

where L is benzylamine (BA) or 4-methoxybenzylamine (BAP°'Me), and their

oxygenation are described. Various methods, including resonance Raman (rR)

and electron paramagnetic resonance (EPR) spectroscopy, have been applied to

understand the mechanism and the intermediates involved. In addition, upon

dissolution of the tetracarboxylate-bridged diiron(II) complex in methanol, an

asymmetric tetrairon(II) cubane complex was identified and structurally
characterized.

Chapter 4. Synthesis and Characterization of {Fe2(g-OH)2(j1-O2CR)}3 ' and {Fe2(-

O)(-O2CR)}3 ' Complexes with Carboxylate-Rich Metal Coordination

Environment as Models for Diiron Centers in Oxygen-Dependent Non-Heme

Enzymes

Utilizing hydrogen bonding interactions and sterically bulky carboxylates,

synthetic routes were developed to prepare the mononuclear iron(II) complexes

with the vacant coordination sites for 02 binding. Reactions of such complexes

with 02 resulted in rare asymmetric complexes having an {Fe2(p-O)(gt-02CR)}3+ or

{Fe2(1-OH)2(Cg-O2CR))3 unit. These diiron(III) complexes with carboxylate-rich

metal coordination environments reproduce the diiron(III) cores housed in four-

helix bundles found in nature. Compound 3, which replicates the {Fe2(-OH) 2(-

O2CR)) core of sMMOHox, shares several physical properties with the enzyme,

electronic transitions, M6ssbauer spectra, and magnetic exchange interactions.

On the other hand, the structure of 4, (-oxo)(p-carboxylato)diiron(III) complex,

mimics the diiron(III) sites of RNR-R2. The electronic and Mbssbauer spectral

transitions of 4 are typical of diiron(III) complexes with an Fe-O-Fe moiety.

Magnetic exchange coupling interaction between the two iron atoms is within

the expected range for oxo-bridged diiron(III) sites. These results demonstrate

how the diiron(III) structures in different metalloproteins, namely, the t-oxo
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cores of RNR-R2 and the -dihydroxo unit in MMOH, can be replicated by

subtle changes in ligand composition.

Chapter 5. Synthesis and Characterization of Dinuclear Iron Complexes

Having Proton Donors in the Ligand Framework

We prepared carboxylate-rich diiron(II) complexes having proton donors

in the close proximity to the bimetallic center. Two isomers, a windmill and a

paddlewheel structure, were isolated from the same reaction mixture, attesting

their similar energies and the likely interconversion between the two isomers by

carboxylate shifts. Use of a sterically bulkier 3,5-dimethylpyrazole N-donor

ligand compared to pyrazole ligand led exclusively to the isolation of a

dicarboxylate-bridged diiron(II) complex.

Chapter 6. Di- and Tetra-Bridged Diiron(II) Complexes with Four Terphenyl-

Derived Carboxylates and Two Water Molecules

The water-containing diiron(II) complexes [Fe2(g-O2CR)2(O2CR)2(THF)2_

(OH 2) 2 1 (1), [Fe2(p-OH 2)2(W-O2CR) 2(O 2CR) 2(THF) 21 (2) and [Fe 2(R-OH 2)2(x-O 2CR) 2

(O2CR)2(4-tBuC5H4N)2] (3) were synthesized and structurally characterized. Two

octahedral iron(II) centers in 2 and 3 are bridged by m-terphenyl-derived

carboxylates and two water molecules, generating diamond cores. The bridging

water molecules in 3 are in an on/off equilibrium with the dehydrated complex

[Fe2(-0 2CR)4(4-tBuC5 H4 N)2].

Chapter 7. Water-Dependent Reactions of Diiron(II) Carboxylate Complexes

Carboxylate-rich iron(II) complexes with varying numbers of water
ligands have been characterized, including the first asymmetric complex with a

(Fe2([-OH2) 2(-O 2CAr4 ?FPh)}3+ unit. The isolations of those complexes attest to the

idea that the carboxylate-bridged diiron(II) complexes act as sponges in response

to water influx. The M6ssbauer and variable temperature, variable field magnetic

susceptibility experiments indicate that the compound [Fe2(!x-OH2)2(p-O2CAr4 F
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Ph)(O2CAr4FPh)3(THF)2(OH2)] has a high-spin diiron(II) core with little significant

exchange coupling interaction.

Chapter 8. Water Affects the Dioxygen Reactivity of Carboxylate-Rich

Diiron(II) Complexes as Models for Diiron Centers in Dioxygen-Dependent

Non-Heme Enzymes

High-spin diiron(II) complexes with distinct visible electronic transitions

have been prepared to quantitatively measure the water-dependent equilibria.

By utilizing a metal-to-ligand charge-transfer band, the effects of water

molecules on the oxygenation of diiron(II) complex [Fe2(-O 2CArT°l)4(4-

NCCsH4N)2] has been addressed. Water binds to the diiron(II) site, generating an

open coordination site by shifting carboxylate from bridging to terminal. The

available open coordination site for dioxygen binding may accelerate the

oxygenation rate compared to oxygenation under anhydrous conditions.

Thesis Supervisor: Stephen J. Lippard

Title: Department Head and Arthur Amos Noyes Professor of Chemistry
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I. Introduction

Bioinorganic complexes containing diiron units with carboxylate rich

coordination environments constitute a commonly occurring element in a large number

of dioxygen-dependent metalloproteins. Examples include the R2 subunit of

ribonucleotide reductase (RNR-R2),"2 soluble methane monooxygenase (sMMO),3 '4 fatty

acid desaturase (A9D),5'6 and toluene monooxygenase (ToMO).7 8 Schematic diagrams of

the protein cores are depicted in Figure 1.1. The functions of these diiron sites vary from

the generation and storage of a catalytically essential tyrosyl radical (Tyr-O) in RNR-

R2,9-" catalysis of the selective oxidation of methane to methanol in sMMO,'4"2 and

insertion of a cis double bond into the alkyl chain of an acyl carrier protein-linked fatty

acid in MAD,5 '13 to hydroxylation of toluene to o- and p-cresol in ToMO.8"4 The

polypeptide folds of these enzymes all contain a four-helix bundle motif that houses the

diiron center. These diiron sites share similar coordination environments, composed of

both bridging and free carboxylate ligands as well as two histidine ligands in a syn

disposition with respect to the Fe-Fe vector. Only subtle differences in the enzyme

active sites, such as the binding modes of the carboxylates and the occurrence of water

molecules, have been identified. It is clear from the diverse range of reactivities

exhibited by these redox-active proteins that subtle differences in the diiron

coordination environments and surrounding polypeptide matrix tune their chemical

properties to achieve a particular function. Understanding how these diiron-carboxylate

proteins operate and how they relate to one another represents a challenging and active

area of research in bioinorganic chemistry.

One approach to addressing these issues and decoding the structure-function

relationships that operate for these proteins is to study the bio-molecules themselves.

Although such investigations are often conducted in vitro, they provide the most direct
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way to gain insights into the evolutionarily defined functions. Using the tools of

molecular biology, specific changes in amino acid composition can be introduced in

order to probe the importance of certain residues, thereby providing additional

information about the properties of the native systems. A detailed and quantitative

description of the chemistry is often difficult to obtain, however, owing to potential

limitations in the accessibility of the protein and in the range of experimental conditions

that can be achieved.

An alternative approach involves the use of theoretical methods to explain, test,

or predict a given phenomenon at a computational level. With the continually

expending power of computers, analyses of increasingly sophisticated constructs are

becoming possible. Nonetheless, results based on theory can always be challenged with

respect to their relevance to reality. The predictive power of a theoretical technique can

sometimes be evaluated by comparing calculated outputs with corresponding

experimental values. In certain cases, however, theory may offer the only practical

means to a physical model for a short-lived reactive intermediate or transition state.

A third and complementary approach involves synthetic chemistry, where

artificial systems, much smaller than the protein and its isolated active site motif, are

designed to reproduce the chemistry exhibited by the macromolecules. Synthetic

models offer the opportunity to explore a wide range of reaction conditions, from which

a detailed understanding of the chemistry can often be obtained. Properties intrinsic to

the model compounds, such as steric and electronic factors, can be controlled through

appropriate synthetic modifications. In addition, external parameters such as solvent

and temperature can be manipulated over a wide range in an effort to characterize

reactive intermediates that may serve as synthetic analogs of species observed in

protein systems. The utility of this approach is reliant, however, on the existence of an
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appropriate model system. The initial challenge associated with these types of studies

therefore rests on creating a molecular system that bears a close resemblance to the

biological one. Modeling an enzymatic transformation by creating an environment that

stabilizes the ligand composition at the metal ion while offering labile sites for catalysis,

however, has been one of the greatest challenges for the synthetic inorganic chemist. In

a biological molecule, ligands are typically supplied by amino acid side chains and are

therefore held in relatively fixed positions, prohibiting disassembly or rearrangement to

thermodynamically more stable entities.

In this Chapter, we summarize our efforts to understand the chemistry of

dioxygen-dependent diiron proteins with carboxylate rich coordination environments

through the synthesis of small model complexes. We describe not only the significant

results that have contributed toward this goal, but also the rationale behind how one

generation of model systems gave way to the next.

II. Diiron Model Complexes with Oxygen-Rich Metal Coordination Environments.

A. General Comments. The incorporation of carboxylates as a major ligand

framework for the iron centers constitutes a recurring theme that distinguishes our

model systems from many others in the literature. The desire to reproduce faithfully the

carboxylate-rich diiron sites in the proteins of interest introduces additional synthetic

complications, owing both to the kinetic lability of iron and multiplicity of binding

modes of the carboxylate ligand. Major complications include the generation of

mononuclear complexes and polynuclear clusters, commonly encountered products in

iron-carboxylate chemistry.'-5 8 Nonetheless, a diverse collection of carboxylate diiron

complexes can be prepared through the careful control of reaction conditions such as
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the utilization of specific precursor complexes, steric bulk of the ligands, and the solvent

system.

When the demand for more elaborate synthetic models increased, ligand design

played a central role in the bioinorganic modeling field. The synthesis of carboxylate-

rich diiron complexes relies heavily on the ability of the ligand framework to stabilize

dimetallic sites and block mono- and polynuclear structures. Modem methods in ligand

design include computer modeling, whereby structures are analyzed to reveal

important features that might aid in obtaining the desired compound. An efficient route

to multigram quantities of the desired ligand is an important practical matter that must

also be considered during the design process. We describe below specific examples of

synthetic models that have been developed out of these considerations. Before directly

discussing carboxylate-rich diiron model complexes, however, two nitrogen-rich

systems will be described that represent our initial motivation in this area and

suggested that the desired chemistry should be possible to achieve.

B. Dicarboxylate-Bridged Diiron Complexes with Nitrogen-Rich Coordination

Environments. In 1983, we published the first well-characterized example of a synthetic

carboxylate-bridged diiron(III) complex [Fe2(w-O)(L-O02CCH3)2(HB(Pz)3)2] (1) (Figure

1.2).1920 A second, independently reported example, [Fe2(I-O)(- 2CCH3) 2(TACN)22

(2), also appeared in the literature in the same year.2 The chemical compositions of 1

and 2 differ only in the identity of the tridentate N3 donor ligand, HB(Pz)3- or TACN,

prevents polyiron cluster formation by capping the (-oxo)bis(i-acetato)diiron(III) core

that is featured in both structures. The resulting dinuclear structures reproduced for the

first time the basic features of the active site of azide-bound hemerythrin (azidometHr),
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which utilizes diiron sites with N303 and N20 3 coordination environments to carry

dioxygen in marine invertebrates.3 Although the crystal structure of azidometHr had

been elucidated by X-ray crystallography several years earlier, the synthesis of these

complexes are historically significant because they demonstrated that synthetic models

of diiron-carboxylate proteins could be prepared in the laboratory, laying the

foundation for future studies in this area. Compound 1 has been investigated

thoroughly, and it continues to serve as a well-defined benchmark for comparison in

diiron-carboxylate chemistry.

Three landmark papers in diiron-carboxylate modeling chemistry appeared in

1996, reporting X-ray crystal structures of peroxo diiron(III) complexes.4 The

structure of one of these compounds, [Fe2(R-O2)(pL-O2CBn)2(HB(3,5-'Pr2pz)3) 2] (3),2

contained two {(HB(3,5-'Pr2pz)3)Fe)2 ' units connected by a -1,2-peroxo ligand and two

1t-1,3-phenylacetates (Figure 1.2). An Fe...Fe separation of 4.004(4) A was determined

with a gauche Fe-O-O-Fe dihedral angle of 52.9°. The M6ssbauer parameters of a

frozen solution of 3, 8 = 0.66 mm/s and AEQ = 1.40 mm/s, are remarkably close to those

of the peroxo intermediate ( = 0.66 mm/s and AEQ = 1.51 mm/s) v in the oxygenation

cycle of MMOH. Although the coordination environments in this nitrogen-rich peroxo

diiron(III) species differ significantly from those of the more oxygen-rich metalloprotein

core, it served to demonstrate that one could achieve with small molecules the

structural characterization of spectroscopically defined intermediate(s) in the biological

system. The reactivity of the peroxo model complex 3 is quite, however, different from

that of the carboxylate-rich diiron sites in metalloproteins, which prompted our effort to

prepare more carboxylate-rich model systems.
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C. Small Diiron Complexes with Carboxylate Rich Coordination Environment.

The synthesis of a carboxylate-bridged diiron(II) complex with an oxygen rich

coordination environment was achieved by combining equimolar amounts of

Fe(O2CH)2H20 with BIPhMe, a bidentate ligand that was designed to serve a

replacement for bis(histidine) ligation (Scheme 1.1). The neutral colorless product

[Fe2(ii-O2CH)3(O2CH)(BIPhMe)2 ]2829 (4) was isolated in high yield and shown by X-ray

crystallography to include an Fe...Fe separation of 3.57 A and an unprecedented tris(!L-

carboxylato)diiron core, in which one formate ligand adopts a monodentate bridging

(p-1,1) coordination mode. When ferrous acetate was used instead of formate in the self-

assembly reaction, the trinuclear complex [Fe3(t-O2CCH3)6(BIPhMe)2] (5), containing a

linear arrangement of iron atoms, was obtained. The characterization of these

complexes contributed to the discovery of the carboxylate shift, in which a carboxylate

ligand alters its binding mode in response to a chemical event.

Although only speculated at the time, the significance of a I1-1,1 carboxylate

bridged diiron(II) center in diiron-carboxylate proteins later became important when it

was subsequently observed as the active-site core structure of MMOHd (Figure 1.1).

The terminal coordination sites at the Fe2 in complex 4 are occupied by two N-

donors of the BIPhMe chelating ligands and one monodentate formate trans to the [L-

1,1-formate, giving rise to a dinuclear complex containing one six- and one five-

coordinate iron center. The reason for employing BIPhMe in this diiron(II) model

system was to generate a coordinatively unsaturated model complex to allow for

dioxygen binding and activation. Complex 4 is oxidized readily in the presence of

dioxygen to generate the C2 symmetric (-oxo)bis(!-carboxylato)diiron(III) complex

[Fe2(-O)(1-0O2CH)2(0 2CH)2(BIPhMe)2 (6). The dioxygen-dependent conversion of 4 to 6
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is accompanied by metal-centered redox changes, incorporation of an oxygen atom into

the product, and significant rearrangements in the positions of the formate and BIPhMe

ligands. Stopped-flow kinetic studies indicated that this transformation is first-order in

dioxygen and second-order in metal complex, and a chemically reasonable mechanism

consistent with these results was proposed (Scheme 1.1). The first step involves

reversible addition of dioxygen to complex 4 to form a peroxo adduct, a reaction that

occurs concurrently with a carboxylate shift of the p-l,l-formate into a mondentate

coordination mode, followed by irreversible and rate-limiting reaction with another

molecule of 4 to generate a mixed valent (-peroxo)Fe" 2Fe"' 2 species (I4). Subsequent

cleavage of the 0-0 bond affords two equivalents of 6. The intermediacy of 14

represented a key feature in this autoxidation process because it requires dimerization

of a dinuclear species to form a tetranuclear one. The preparation and structural

characterization of complexes having such a (-peroxo)Fe`' 4 tetrairon-peroxide core

geometry supported the plausibility of the postulated structure I4.303 Although this

transformation has no direct bearing on the oxygenation cycle of the diiron enzymes,

the finding led to the design and utilization of ligands with enough bulk to block such

deleterious bimolecular decomposition. In the metalloproteins of interest, the active site

is buried in a cavity that is surrounded by a heterophobic shield rendering such

chemistry impossible.

D. Carboxylate Rich Diiron Complexes with Pre-organized Bis(carboxylate) Ligand

Platforms. The search for a ligand that would act as a dinuleating dicaboxylate and

block the bimolecular decomposition pathway led to the use of m-xylylenediamine bis

(Kemp's triacid imide) (H2XDK).32 The XDK ligands with methyl, propyl, and benzyl

substituents were prepared in order to isolate the diiron core from the surface of
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generated molecules (Figure 1.3).3334 Incorporation of two additional carboxylate and

two N-donor ligands afforded compounds having the correct stoichiometric

composition as found at the active sites of carboxylate-rich diiron proteins (Figure 1.1).

The complex [Fe2(t-BXDK)(t-0O2CCPhCy)(O2CCPhCy)(MeIm)2]2 3334 (7) exemplifies this

strategy. Complex 7 (Figure 1.3) contains one ferrous site in an octahedral geometry and

a second, coordinatively unsaturated NO4 site. Two N-donor ligands coordinated in the

anti disposition via Fe-Fe vector and regardless of the ancillary N-donor ligands used

in the assembly of the dimetallic cores, the Fe...Fe separation is -3.4 A in this series of

compounds. These results attest to the rigidity conferred by the XDK platform to the

diiron centers. Upon oxygenation of derivatives of 7 having various carboxylates at -78

°C, (-peroxo)diiron(III) intermediates are generated. The rate of formation of the

peroxo species is inversely proportional to the steric demands imposed by the ancillary

carboxylate ligands, suggesting that a carboxylate shift occurs in the rate-determining

step to accommodate the dioxygen binding to the diiron site. The stability of the 02-

adducts is heavily dependent upon the bulk provided by the supporting XDK units,33 35

confirming that the peroxo intermediate is protected from bimolecular decomposition,

as was designed.

Although the peroxo species are accurate compositional models for the (-

peroxo)diiorn(III) intermediates that form in the related non-heme diiron enzymes,

their reactivity towards hydrocarbon substrates once again differs substantially from

that of the natural systems. In particular, oxidation of hydrocarbon solvent by [Fe2([L-

0 2)(yt-PXDK)(pg-O2CPhCy)(O2CPhCy)(Bu-Im)2] (8) appeared to proceed by radical

autoxidation chemistry.35 This result is a marked contrast to the selective hydroxylation

chemistry affected by dioxygen-dependent non-heme diiron enzymes, despite the
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obvious structural similarities between these XDK models and the diiron cofactors in

Nature. One reason for this difference may be the inherent inflexibility of XDK ligand

family. These rigidly held dicarboxylate ligands may not allow conversion of the peroxo

intermediate to high-valent Fe2(O)2}4' species,3637 proposed to be the an ultimate

oxidant that achieves the functions of non-heme diiron enzymes. The Fe...Fe separations

of the diiron species involved in the oxygenation cycle of MMOH, for example, are

postulated to vary from 3.5 A in MMOHd to - 2.5 A in the high-valent oxidant

(Fe2(0) 2)4' species.3

These results accentuate the importance of designing ligand systems that permit

the diiron unit sufficient flexibility to convert the peroxo intermediate to the putative

di([t-oxo)diiron(IV) species. From studies of the XDK family of diiron complexes,

therefore, one more criterion in designing the ligand framework, flexibility at the diiron

center, was added to that of steric bulk to prevent bimolecular decomposition.

E. Diiron Complexes with Four Sterically Hindered m-Terphenyl-based

Carboxylate Ligands. The steric bulk provided by the m-terphenyl-based carboxylate

ligands CO2ArX, where X is tolyl or 4-fluorophenyl, facilitates the synthesis of

carboxylate-bridged diiron(II) compounds that combine four carboxylate and two N-

donor groups to model the active sites of the metalloproteins (Figure 1.4).3 '8 Some

related complexes have been prepared and characterized by other. Diiron(II) complexes

with these sterically bulky carboxylate contains flexible diiron unit and bridging ligand

binding modes, as evidenced by a diverse range of inter-metal distance. Crystal

structures of complexes having a dicarboxylate bridged structure reveal relatively long

Fe .--Fe distances of 3.8 - 4.4 A, with the terminal carboxylate bound in either a

monodentate or bidentate mode. On the other hand, complexes bridged by four
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carboxylates have a shorter Fe ...Fe distance of - 2.8 A. Variable temperature NMR

studies established the interconversion between tetra- and dicarboxylate bridged

structures, which can occur through carboxylate shifts. In addition, several structures of

tricarboxylate bridged diiron(II) complexes were determined, suggesting possible the

intermediates in the equilibrium involved in the conversion of tetra- and dicarboxylate

bridged diiron(II) complexes (Scheme 1.2).4146

Diiron(II) complexes such as [Fe2(O2CArT°) 4(L)2] (9 - 11), where L is C5H4N, 4-

tBuC5H4N,2 and BAPOMe',248 respectively, react with dioxygen at -78 C to afford

interesting metastable green intermediates. Addition of dioxygen to the complex [Fe2(-

O2CArT°I)4(4-tBuC5H4N)2 8 (11) can effect the oxidation of phenolic substrates to the

corresponding phenoxyl radicals. Out of the resulting yellow solution can be isolated as

the final product a unique bis(R-hydroxo)bis(w-carboxylato)diiron(III) complex [Fe2(I-

OH)2(t-0 2CAr TI)4 (02 CArT °I)2(4 tBuC5 H4N)2] (12). The proposed reaction mechanism for

these processes is summarized in Scheme 1.3. Reaction between the diiron(II) complexes

and dioxygen generates peroxo Fe(III,III) species, which may convert to electrophilic

high-valent Fe(IV,IV) species. Electron transfer (ET) from the starting diiron(II) complex

to the putative high-valent dioxygen-adduct(s) could occur to afford equimolar

amounts of the Fe(III,IV) and the Fe(II,II) species. The latter is able to oxidize phenolic

substrates to the corresponding phenoxyl radicals. This proposed process parallels the

mechanism established for RNR-R2, in which a high-valent Fe(III,IV) intermediate X

species oxidizes an adjacent tyrosine residue. Although the catalytic cycle of RNR-R2

system has been partially reproduced by oxygenation of compound 11, to model the

function of high-valent diiron species in MMOH, hydroxylation of aliphatic C-H bonds,

the generated intermediate(s) need to be protected from intermolecular ET processes.
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One way to accomplish this goal has been to tether an oxidizable C-H bonds in

proximity to the generated oxidant. The compound [Fe2(R-O2CArT°) 2(O2CArTo)2(N,N-

Bn2en)2]°'43 (13) reacts with 02 to afford the diiron(III) complex [Fe2([t-OH)2(tL-

02CArTo')(O2CArT')3(N,N-Bn2 en)(N-Bnen)] (14), in which oxidative N-dealkylation of the

tethered benzyl group on the diamine ligand has occurred (Scheme 1.4). The diiron(III)

complex generated contains the long-sought Fe2(-OH) 2(-O 2CR)}3 core structure of

sMMOH in its resting state,49 drawing a parallel to the chemistry of the enzyme, in

which an 02-derived oxygen atom is incorporated into the C-H bond of methane.

Detailed mechanistic studies, including a Hammett analysis and kinetic isotope effects,

suggest that sequential one-electron oxidation of the dangling nitrogen atom, followed

by a-proton abstraction and sequential oxygen rebound, occurs. Replacement of the

C-H bond in the benzylic position with heteroatoms to provide phosphino and sulfide

substrate facilitated oxidation of the heteroatom moiety. Oxygenation of the diiron(II)

complex [Fe2(L-O20CAr4FPh)3(0 2CAr4F'Ph)(2-Ph2Ppy)] (15) afforded the diiron(III) complex

[Fe2(1t-OH)2(-0 2CAr4FPh)(CArP)(4FPh)3(2-Ph2 P(O)py)(OH2)] (16), in which the oxidized

ligand, 2-Ph2POpy,22 is bound to the {Fe2(tL-OH)2(-O 2CR)}3+ core structure. Therefore,

perhaps due to the immediate accessibility of a substrate, intermediates have not been

detected in these systems.

III. Advanced Model Complexes Containing Diiron(II) Centers with an Oxygen-Rich

Metal Coordination Environment

A. General Comment. The model complexes with four terphenyl-based carboxylate

ligands are able to hydroxylate benzylic C-H bonds and to oxidize phosphine and

sulfide moieties with simultaneous generation of diiron(III) species having the {Fe2([L-
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OH)2(-O 2CR))3 + core structure. Although the observation of intermediates and the

activation of strong C-H bonds from carboxylate-rich diiron model complexes has been

a major focus of our research, we have recently begin to address certain geometric and

compositional difference from the diiron(II) cores at the active site of the targeted

metalloproteins. In the last part of this Chapter, our efforts to understand the effect of

water molecule(s) in the first and second coordination spheres as well as the syn

disposition of N-donor ligands at the diiron center are summarized(Figure 1.1).

B. Understanding the Effect of Coordinated Water. In recently published DFT

calculations,' the utilization of a coordinated H20 molecule as a hydrogen-bond donor

was considered to be a key component in the formation of reactive intermediate(s) upon

oxygenation of the diiron(II) site. It was strongly suggested that a ligated water

molecule is required for the enzyme to function. Accordingly, we have undertaken the

synthesis of model complexes to reproduce this feature. The reaction between water

and carboxylate rich diiron(II) complexes was investigated, allowing ferrous species

with varying numbers of water ligands to be isolated.51 A striking observation is that

the tetracarboxylate bridged diiron(II) complexes readily bind water and alter their

structures. 2 The diiron(II) sites in enzymes similarly adopt different forms depending

on the availability of water in the active site. For example, two water molecules are

bound by diiron center in MMOHd, but none were found in the X-ray structure of

reduced RNR-R2. This observation indicates that the accessible amount water in

different non-heme diiron(II) sites varies and may be a controlling factor in determining

their chemistry.

In the work discussed thus far, equilibria were postulated on the basis of single

crystal X-ray studies. High-spin iron(II) complexes are typically colorless, limiting the

utility of more convenient UV-vis spectroscopy to determine underlying
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thermodynamic and kinetic parameters in water-dependent equilibria and to study the

effect of water on the oxygenation chemistry of these complexes. We found, however,

that by placing an electronic withdrawing group such as a nitrile on the N-donor ligand

we could shift the metal-to-ligand charge-transfer band into the visible region of the

spectrum. In particular, the 4-cyanopyridine complex [Fe2(-O 2CArTl) 4(4-NCCsH4N)2]

(17) has a strong electronic transition at 510 nm, with = 2,200 cmn'MW. Treatment of 17

with excess water in CH2Cl2 solution generated the aqua complex [Fe2(O2CArT°)4(4-

NCC5H4N)2(OH2)2] (18) (Scheme 1.5). A distinguishing feature of a solution of 18 is its

thermochroism, in which the water-dependent equilibrium is temperature dependent

with thermodynamic parameters of AH = -95 (11) kJ/mol and AS = -250 (50) J/mol K for

the reaction in Scheme 1.5.

Study of the reactions of water and dioxygen with complex 17 revealed in

sequential binding first of water to the carboxylate-rich diiron(II) complex, followed by

oxygenation. Notably, the hydration rate is ca 1000 times faster than oxygenation of 17.

Oxygenation of the water-containing complex is ca 10-fold faster than of the anhydrous

analogous complex 17. Water binding may induce a carboxylate shift, opening a

coordination site required for dioxygen binding and accelerating oxidation. Although

no intermediate have yet been observed upon oxygenation of the water-containing

complex, the effect of water on the conformation at the diiron(II) sites and the reactivity

of water with diiron(II) species were demonstrated for the first time by these studies.53

C. Modeling the Syn Disposition of Nitrogen Donors. As shown in Figure 1.1, the

primary coordination spheres of carboxylate-bridged diiron centers in the

metalloproteins contain four glutamate or asparatate side chains and two histidine

residues. Whereas the coordination modes of the carboxylate groups vary among the
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enzymes, the two nitrogen donors are consistently bound in a syn fashion, on the same

side of the Fe-Fe vector. In MMOH, the substrate pocket is positioned opposite these

two nitrogen donors. Considering that just one oxygen atom from dioxygen is

transferred to methane, delivered within the substrate binding pocket, the syn N-donor

geometric feature may be important in facilitating substrate oxidation. The relative

orientation of nitrogen donors may significantly influence the reactivity of the

generated high-valent Fe2(O)2 intermediate.

In contrast to the syn disposition of N-donor ligands commonly encountered in

the natural systems, self-assembly methods have thus far failed to produce such a

feature. The [Fe2(O2CR)4(N)2] cores formed in the synthesis of XDK or m-terphenyl-

based carboxylate complexes invariably feature anti coordination of the N-donors. The

synthesis of targeted diiron(II) complexes with a syn N-donor ligand disposition was

accomplished by introducing the N-donors as quinoline moieties provided by 1,2-

diethynylbenzene-based Et2BCQEBEt (Figure 1.5).254 Reaction of this ligands with an

iron(II) precursor afforded [Fe2(Et2BCQEBEt)(t-02CArT')3]+(19), in which the N-donors

are in syn positions. Although this complex provides a proof of principle for the

approach, a significant amount of work remained to be carried out to achieve a

stoichiometric and geometric match to the reduced diiron(II) sites in the

metalloenzymes.

IV. Conclusion and Perspective

Several generations of ligand design and diiron complex synthesis have evolved

to meet the requirements for accurately reproducing the chemistry of carboxylate-rich

diiron sites in Nature. The following features have emerged as being important for

achieving this challenging goal. The ligand framework should be sufficiently bulky to



44

prevent deleterious bimolecular decomposition of generated intermediates. The model

complex should have open coordination sites for dioxygen-binding and room for

substrate to access to the oxygenated diiron site. The ligand framework should render

the diiron site with enough flexibility to accommodate variable Fe-Fe separations as

observed in metalloenzymes catalytic cycles. Most of these requirements are fulfilled by

bulky m-terphenyl-based carboxylates, now such that we are able to investigate

additional factors, such as the influence of water and the effect of the syn disposition of

N-donors.

Despite these accomplishments, more work must be carried out to achieve

remaining important goals of the synthetic modeling chemistry. The first is to obtain a

system having the syn disposition of N-atoms that matches the stoichometry of the

diiron core of the proteins. Another is to generate and characterize intermediate

following oxygenation. The ultimate answers are to build a substrate-binding unit in the

second coordination sphere and to achieve the catalytic oxygenation of molecules that

bind them.
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2:N3=TACN
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[Fe2(l-o 2 )(R- 2CCBn)2(N3)2]

3: N3 = HB(3,5-'Pr2pz) 3

Figure 1.2. Examples of dicarboxylate-bridged diiron(III) complexes with nitrogen-rich

coordination environments.
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R = nPr H2PXDK R= 02CCPhCy
R = Bn H2BXDK 7

Figure 1.3. The XDK family of ligands and resulting bis(R-carboxylato)diiron(II)

complex.

R=Me HXDK
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Figure 1.4. Examples of sterically hindered carboxylate ligands derived from m-

terphenyl carboxylate and examples of diiron(II) complexes containing these
carboxylates.
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1+

19

Figure 1.5. Representation of the cation [Fe2(Et2BCQEBEt)(-O2CArT°l)3]+ (19) featuring a

syn disposition of nitrogen donors.



Chapter 2

Mechanistic Studies of the Oxidative N-Dealkylation of a Benzyl Group

Substrates Tethered to Carboxylate-Bridged Diiron(II) Complexes,

[Fe 2(u-0 2C 2(O 2)2(O2CArT°') 2(N,N-Bn 2en) 2]
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Introduction

The activation of triplet ground state dioxygen and the hydroxylation of unacti-

vated C-H bonds under ambient conditions by iron- and copper-containing metalloen-

zymes have attracted considerable interest due to their potentially numerous catalytic

and synthetic applications.' 4 Monooxygenase enzymes, which catalyze hydroxylation

of aliphatic hydrocarbons, are of particular interest because of their unique ability to

functionalize C-H bonds. The hydroxylase component of methane monooxygenase

(MMOH) is one such enzyme that activates dioxygen to afford reactive intermediate(s).7

The resulting oxidant can insert one oxygen atom into a C-H bond that is inherently

difficult to activate. Understanding such a remarkable process in molecular detail is an

important objective that may lead to new insights into how the metalloproteins work

and how to design catalysts for dioxygen activation and C-H bond hydroxylation.

The active site of MMOH utilizes diiron sites, coordinated by four carboxylates

and two histindine ligands derived from amino acid side chains, as a working module

to achieve its physiological role.8 Although a number of small model complexes can re-

produce the composition of the diiron(II) site in MMOH,9 '4 few of these can function in

a manner similar to the enzyme."5' 6 In particular, the carboxylate-rich composition of

the protein diiron core has been reproduced with the use of sterically hindered ter-

phenyl-derived carboxylate ligands.9 -2' l'8 Moreover, the diiron(II) complex [Fe,(p-

O2CArTo°)2(O2CArT°I)2(N,N-Bn2en)2] (1), where ArT°ICO2- is 2,6-di(p-tolyl)benzoate and

N,N-Bn2en is N,N-dibenzylethylenediamine, decomposes upon exposure to dioxygen,

resulting in the formation of benzaldehyde (PhCHO) and [Fe2(/l-OH)2(!i-

0 2CArT')(O2CArT°'(NNBe)3n)(N-Bnen)(N-Bnen)], the latter being structurally homologous to

the active site of oxidized MMOH (Scheme 2.1).9 15 The oxidative N-dealkylation of a

substrate tethered to a carboxylate-bridged diiron(II) complex by reaction with dioxy-
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gen has been a highlight in the pursuit of structural and functional MMOH model com-

plexes.

The stoichiometric correspondence of 1 with the diiron active site of MMOH and

early experimental results indicated that the N-dealkylation reaction might involve an

oxidant similar to that of the enzyme, perhaps a di(#-oxo)diiron(IV) species.9"5 Three

possible pathways were suggested for insertion of the oxygen atom from such a high-

valent intermediate into the benzylic C-H bond of the N,N-Bn2en ligand. Concerted in-

sertion of the oxygen atom into the C-H bond (Top, Scheme 2.1) and conventional recoil

with hydrogen atom transfer (HAT) followed by rebound (Middle, Scheme 2.1) for oxy-

genation of 1 follow commonly proposed mechanisms for the MMOH catalytic cycle.l9

Sequential single electron transfer (SET), deprotonation, and internal electron transfer

(Bottom, Scheme 2.1) can equally well account for the observed chemistry. This possi-

bility was suggested by the proximity of the lone pair of electrons on the uncoordinated

nitrogen atom of the Bn2en ligand to the proposed electrophilic high-valent intermedi-

ate and also by the precedence for such chemistry in heme iron oxidations.20

The work described here was performed to clarify the mechanistic details of the

hydroxylation reaction through a Hammett analysis and the measurement of in-

tramolecular deuterium kinetic isotope effects (KIEs), both based on product distribu-

tions. These objections were achieved by the synthesis and characterization of a series of

diiron(II) complexes with N,N-Bn2en ligands containing para substituents on the phenyl

ring or deuterium atoms at the benzylic position.

Experimental Section

General Considerations. All reagents were obtained from commercial suppliers

and used as received unless otherwise noted. Dichloromethane, diethylether and pen-

tanes were saturated with argon and purified by passing through activated A1203 col-
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umns under argon.21 Dioxygen (99.994%, BOC Gases) was dried by passing the gas

stream through a column of Drierite. The compounds a-d2-benzylamine, [Fe2(p-

O2CArTo')2(O 2CArT°') 2 (THF) 21],l and [Fe2(i-O 2CArT°I)2(O 2CArT°) 2(N,N-Bn 2en) 2
9'l5 were

prepared as described in the literature. All syntheses and air-sensitive manipulations

were carried out under nitrogen in an MBraun glovebox.

Physical Measurements. 1H and 3C-NMR spectra were recorded on a Bruker 400

spectrometer in the Massachusetts Institute of Technology Department of Chemistry

Instrument Facility (DCIF); chemical shifts were referenced to residual solvent peaks.

FT-IR spectra were recorded either with a Thermo Nicolet Avatar 360 spectrometer or

Perkin Elmer FTIR model 2000.

Synthesis of Benzyl(4-R-benzyl)aminoacetonitrile Compounds. The general re-

action pathway is shown in Scheme 2.2. A solution of 4-R-benzaldehyde (0.100 mol),

where R = Cl, F, CH3, t-Bu, and OCH3, in 27 mL of benzene was cooled to 0 C. To this

solution was added 10.8 g (0.101 mol) of benzylamine in 17 mL of benzene. The solution

was warmed to ambient temperature. The flask was connected to a Dean-Stark water

separator, followed by refluxing overnight, resulting in separation of ca 1.5 mL of wa-

ter. The volatile portion was removed under reduced pressure, resulting in a light yel-

low oil, which was dissolved in 150 mL of methanol. The solution was cooled to 0 °C

and 5.4 g (0.14 mol) of NaBH4 was added slowly. The reaction mixture was allowed to

warm to ambient temperature and stored overnight. The volume was reduced to half

under reduced pressure and water (200 mL) was added. The product was extracted

with 3 x 50 mL of dichloromethane, dried using anhydrous MgSO4 and filtered through

Celite. The volatile portion of the filtrate was removed under reduced pressure, result-

ing in a light yellow oil. To a rapidly stirred DMF (50 mL) solution of N,N-benzyl(4-R-

benzyl)amine (96.7 mmol), were added first triethylamine (13.5 mL) and 6.8 mL of

chloroacetonitrile in a dropwise manner. The solution turned cloudy and was stirred
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overnight. DMF was removed under reduced pressure, and 40 mL of water were

added. Anhydrous Na2CO3 was added to increase the pH of solution to ca 14. The

product was extracted with 3 x 50 mL of dichloromethane, dried with MgSO4, and fil-

tered through Celite. The targeted compound was isolated by using silica column

chromatography with ethylacetate as the eluent.

Benzyl(4-chlorobenzyl)aminoacetonitrile. Yield (77 %). 'H NMR (CDC13, 400 MHz): 7.41-

7.32 (9 H, mm), 3.74 (2 H, s), 3.72 (2 H, s), 3.37 (2 H, s). 3C NMR (CDC13, 100 MHz): 6

137.08, 135.84, 133.78, 130.43, 129.13, 129.05, 128.91, 128.11, 114.69, 58.43, 57.72, 40.99.

FT-IR (NaC1 disk, cm-') 3063 (w), 3030 (w), 2933 (w), 2831 (m), 2228 (w, VCN), 1598 (),

1492 (), 1453 (m), 1419 (w), 1369 (w), 1324 (w), 1119 (w), 1090 (m), 1015 (m), 858 (w), 800

(m), 743 (m), 699 (m). GC/MS (EI) M+: Calcd for C,6H,,C1N2, 270; Found, 270.

Benzyl(4-fluoro-benzyl)aminoacetonitrile. Yield (72 %). 1 H NMR (CDC13, 400 MHz): 6 7.41-

7.31 (7 H, mm), 7.07 (2H, t, 8.7 Hz), 3.74 (2 H, s), 3.72 (2 H, s), 3.37 (2 H, s). 13C NMR

(CDC13, 100 MHz): 6 162.57 (d, JF = 246.1 Hz), 137.16, 133.02 (d, 4JCF = 3.1 Hz), 130.7 (d,

3JcF = 7.9 Hz), 129.01, 128.90, 128.08, 115.74 (d, 2JCF = 21.4 Hz), 114.74, 58.40, 57.66, 40.90.

FT-IR (NaCI disk, cm-' ) 3031 (w), 2935 (w), 2826 (m), 2228 (w, VC.N), 1602 (), 1509 (),

1454 (), 1419 (), 1369 (), 1350 (), 1324 (), 1294 (), 1223 (), 1156 (), 1119 (W),

1093 (), 976 (), 855 (m), 820 (m), 743 (m), 699 (m), 504(w). GC/MS (EI) M+: Calcd for

C,6H15FN2, 254; Found, 254.

Benzyl(4-methyl-benzyl)aminoacetonitrile. Yield (69 %). 'H NMR (CDC13, 400 MHz): 6 7.43-

7.29 (7 H, mm), 7.18 (2 H, d, 7.9 Hz), 3.75 (2 H, s), 3.73 (2 H, s), 3.38 (2 H, s), 2.37 (3 H, S).

'3C NMR (CDC13, 100 MHz): 6 137.67, 137.41, 134.24, 129.50, 129.13, 129.10, 128.82,

127.94, 114.91, 58.39, 58.21, 40.86, 21.34. FT-IR (NaCl disk, cm -') 3028 (m), 2923 (m), 2826

(m), 2230 (w, VC-N), 1603 (w), 1515 (s), 1496 (m), 1454 (s), 1419 (m), 1369 (m), 1349 (w),

1324 (w), 1303 (w), 1249 (w), 1204 (w), 1179 (w), 1117 (m), 1105 (m), 1075 (w), 1022 (w),
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975 (m), 858 (m), 803 (m), 758 (m), 742 (s), 699 (s), 488 (m). GC/MS (EI) M+: Calcd for

C,,Hl8N 2, 250; Found, 250.

Benzyl(4-tert-butyl-benzyl)aminoacetonitrile. Yield (87 o). 'H NMR (CDCl3, 400 MHz): 6

7.43-7.30 (9 H, mm), 3.76 (2 H, s), 3.74 (2 H, s), 3.39 (2 H, s), 1.33 (9 H, s). 13C NMR

(CDC13, 100 MHz): 6 150.96, 137.45, 134.26, 129.13, 128.84, 128.83, 127.94, 125.73, 114.95,

58.45, 58.11, 40.96, 34.74, 31.55. FT-IR (NaCl disk, cm') 3087 (w), 3062 (w), 3029 (w), 2963

(s), 2904 (m), 2868 (m), 2826 (m), 2228 (w, vcN), 1513 (w), 1496 (w), 1454 (m), 1417 (w),

1363 (m), 1393 (w), 1323 (w), 1269 (w), 1111 (m), 1076 (w), 1028 (w), 859 (m), 740 (m), 737

(m), 699 (m). GC/MS (EI) M+: Calcd for C20H24N2, 292; Found, 292.

Benzyl(4-methoxy-benzyl)aminoacetonitrile. Yield (76 %o). H NMR (CDC13, 400 MHz): 6

7.43-7.32 (7 H, mm), 6.92 (2 H, d, 8.4 Hz), 3.83 (3 H, s), 3.75 (2 H, s), 3.71 (2 H, s), 3.37 (2

H, S). 13C NMR (CDC13, 100 MHz): 6 159.35, 137.39, 130.31, 129.25, 129.08, 128.78, 127.90,

114.87, 114.13, 58.28, 57.80, 55.42, 40.72. FT-IR (NaCl disk, cm -l) 3062 (w), 3030 (w), 3004

(w), 2934 (w), 2835 (m), 2230 (w, Vc.N), 1611 (m), 1512 (s), 1454 (m), 1419 (w), 1302 (m),

1250 (s), 1173 (m), 1105 (w), 1076 (w), 1034 (m), 854 (w), 813 (w), 743 (m), 700 (m).

GC/MS (EI) M+: Calcd for C,7H,,N 20, 266; Found, 266.

Synthesis of Benzyl(4-R-benzyl)ethylenediamine Compounds (N,N-(4-R-

Bn)Bnen). To a rapidly stirred diethylether (25 mL) suspension of lithium aluminum

hydride (LAH) (1.5 g, 36 mmol) was added a diethylether solution (25 mL) of benzyl(4-

R-benzyl)aminoacetonitrile (19 mmol) at -78 °C. The reaction mixture was stirred for 10

min, warmed to ambient temperature, and stirred overnight under argon. The sequen-

tial addition of 1.5 g of water, 1.5 g of 15 % NaOH(aq), and 3 x 1.5 g of water was per-

formed cautiously. The product was extracted with CH2C12, dried over MgSO4, filtered

through Celite, and evaporated under reduced pressure to afford light yellow oil.
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N,N-Benzyl(4-chlorobenzyl)ethylenediamine (N,N-(4-Cl-Bn)Bnen). Yield (88 %O). H NMR

(CDC13, 400 MHz): 6 7.35-7.25 (9 H, mm), 3.57 (2 H, s), 3.54 (2 H, s), 2.75 (2 H, t, J = 6.0

Hz), 2.50 (2 H, t, J = 6.0 Hz). 13C NMR (CDC13, 100 MHz): 6 139.42, 138.27, 132.76, 130.30,

128.57, 128.50, 127.24, 58.74, 58.10, 56.81, 39.72. FT-IR (NaCI disk, cm -') 3084 (w), 3061

(w), 3027 (w), 2939 (m), 2801 (s), 1597 (w), 1490 (s), 1452 (m), 1407 (w), 1366 (m), 1244

(w), 1126 (w), 1088 (m), 1028 (w), 1015 (m), 978 (w), 908 (w), 841 (m), 804 (m), 739 (m),

699 (m), 671 (w). ESIMS MH': Calcd for C,6H20CIN2, 275.4; Found, 275.4.

N,N-Benzyl(4-fluoro-benzyl)ethylenediamine (N,N-(4-F-Bn)Bnen). Yield (87 %). 'H NMR

(CDC13, 400 MHz): 6 7.34-7.25 (7 H, mm), 7.01 (2H, t, 8.7 Hz), 3.57 (2 H, s), 3.54 (2 H, s),

2.75 (2 H, t, J = 6.0 Hz), 2.51 (2 H, t, J = 6.0 Hz). '3C NMR (CDCl3, 100 MHz): 6 162.06 (d,

JcF = 244.7 Hz), 139.56, 135.36 (d, 4JF = 3.0 Hz), 130.43 (d, 3JF = 7.9 Hz), 128.98, 128.46,

127.19, 115.21 (d, 2JCF = 21.3 Hz), 58.69, 58.01, 56.77, 39.74. FT-IR (NaCl disk, cm-') 3028

(w), 2939 (w), 2802 (m), 1602 (w), 1508 (s), 1452 (w), 1366 (w), 1292 (w), 1220 (s), 1154

(w), 1126 (w), 1091 (w), 1070 (w), 1028 (w), 1015 (w), 978 (w), 824 (m), 791 (w), 767 (w),

739 (m), 699 (m), 502 (w). ESIMS MH': Calcd for C,6H20FN2, 259.3; Found, 259.4.

N,N-Benzyl(4-methyl-benzyl)ethylenediamine (N,N-(4-Me-Bn)Bnen). Yield (78 %). 'H NMR

(CDC13, 400 MHz): 6 7.40-7.27 (7 H, mm), 7.16 (2 H, d, 7.5 Hz), 3.61 (2 H, s), 3.58 (2 H, s),

2.77 (2 H, t, J = 6.0 Hz), 2.53 (2 H, t, J = 5.9 Hz), 2.37 (3 H, s). '3C NMR (CDCI3, 100 MHz):

6 139.82, 136.62, 136.56, 129.10, 129.00, 128.98, 128.39, 127.05, 58.70, 58.45, 56.84, 39.82,

21.28. FT-IR (NaCI disk, cml) 3372 (w), 3084 (w), 3025 (m), 2924 (s), 2798 (s), 1602 (w),

1513 (m), 1494 (m), 1452 (m), 1365 (m), 1104 (w), 1070 (w), 1027 (m), 845 (m), 737 (s), 698

(s), 486 (w). ESIMS MH+: Calcd for C,7H3N2, 255.4; Found, 255.4.

N,N-Benzyl(4-tert-butyl-benzyl)ethylenediamine (N,N-(4-tBu-Bn)Bnen). Yield (85 %). 'H

NMR (CDCI3, 400 MHz): 6 7.38-7.24 (9 H, mm), 3.59 (2 H, s), 3.57 (2 H, s), 2.76 (2 H, t, J =

6.0 Hz), 2.52 (2 H, t, J = 6.0 Hz), 1.32 (9 H, S). ' 3C NMR (CDC 3, 100 MHz): 6 149.97,

139.88, 136.60, 129.03, 128.66, 128.43, 127.09, 125.34, 58.95, 58.38, 56.85, 39.82, 34.65, 31.61.
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FT-IR (NaCI disk, crm') 3375 (w), 3085 (w), 3060 (w), 3026 (w), 2961 (s), 2903 (m), 2868

(m), 2798 (m), 1602 (w), 1512 (w), 1494 (w), 1453 (m), 1362 (m), 1269 (w), 1109 (w), 1070

(w), 1027 (w), 834 (m), 741 (m), 698 (m), 546 (w). ESIMS MH*: Calcd for C20H 29N2, 297.5;

Found, 297.5.

N,N-Benzyl(4-methoxy-benzyl)ethylenediamine (N,N-(4-OMe-Bn)Bnen). Light brown yellow

crystals. Yield (83 %). 'H NMR (CDC13, 400 MHz): 6 7.34-7.22 (7 H, mm), 6.86 (2 H, d, 8.6

Hz), 3.79 (3 H, s), 3.57 (2 H, s), 3.53 (2 H, s), 2.76 (2 H, t, J = 6.0 Hz), 2.59 (2 H, t, J = 5.9

Hz). 13C NMR (CDCl3, 100 MHz): 6 158.88, 139.36, 131.12, 130.29, 129.11, 128.55, 127.26,

113.92, 58.54, 58.01, 55.44, 54.92, 39.09. FT-IR (NaCi disk, cm'l) 3027 (w), 2998 (w), 2933

(w), 2833 (m), 1611 (w), 1584 (w), 1511 (s), 1494 (w), 1452 (w), 1366 (w), 1301 (w), 1248

(s), 1178 (w), 1104 (w), 1035 (w), 819 (w), 740 (w), 699 (w). ESIMS MH+: Calcd for

C,7H23N2O, 271.4; Found, 271.4.

aa'-d 2-N,N-Dibenzylethylene-1,2-diamine ((C6H5CDH)2en). To a stirred anhy-

drous suspension of lithium aluminum deuteride (2.6 g, 62 mmol) in diethylamine (25

mL) was added a solution of benzaldehyde oxime (3.0 g, 25 mmol), using a pressure-

compensated dropping funnel at -78 C. The mixture was warmed to room temperature

and stirred for 6 h before being carefully hydrolyzed by sequential addition of 2.6 g of

water, 2.6 g of 15 % NaOH (aq), and 3 x 2.6 g of water. Inorganic salts were removed by

filtration and washed with 200 mL of ethylacetate. The filtrate was dried over MgSO4

and concentrated. The amine product was separated from starting oxime by extraction

with CHCl3, resulting in a turbid solution. The solution was filtered through Celite and

concentrated. To a solution of dl-benzylamine (1.6 g, 15 mmol) in 5 mL of benzene in a

50 mL round-bottom flask, cooled to 0 C, was added a solution of PhCHO (2.0 g, 19

mmol) in 5 mL of benzene. The solution was warmed to room temperature, resulting in

a turbid suspension. After 1 h stirring, the flask was connected to a Dean-Stark water

separator and refluxed overnight at 92 C. The solution was concentrated under vac-



67
uum, and without further purification, the resulting Schiff base was taken up in 60 mL

of methanol and cooled to 0 °C. A 0.8 g (19 mmol) of solid NaBD4 was carefully added,

and the reaction mixture allowed to warm to room temperature and then stirred for an

additional 12 h. The solvent was concentrated under vacuum, 100 mL of water was

added, and the solution was extracted with 4 x 50 mL portions of ethylacetate. The so-

lution was dried (MgSO4) and concentrated. With the resulting d2-N,N-dibenzylamine,

the colorless oil (C6H5CDH)2en compound was prepared as described for the synthesis

of benzyl(4-R-benzyl)ethylenediamine. Yield (54 %). 'H NMR (CDC13, 400 MHz): 8 7.38-

7.24 (9 H, mm), 3.59 (1 H, s), 3.57 (1 H, s), 2.76 (2 H, t, J = 6.0 Hz), 2.52 (2 H, t, = 6.0 Hz).

'3C NMR (CDCl3, 100 MHz): 6 138.49, 129.14, 128.57, 127.37, 58.13 (t, 1JcD = 18.98 Hz),

52.48, 38.04. FT-IR (NaCI disk, cm'l) 3059 (w), 3025 (w), 2938 (w), 2080 (w), 1662 (m),

1603 (m), 1494 (s), 1449 (s), 1397 (w), 1342 (w), 1313 (w), 1213 (w), 1155 (w), 1075 (w),

1028 (w), 924 (w), 738 (s), 698 (s), 614 (w). ESIMS MH+: Calcd for C,6HgD 2N 2, 243.4;

Found, 243.4.

a,a-d2-N,N-Dibenzylethylene-1,2-diamine ((C6HsCD2)Bnen). The compound

a,a-d2-benzylamine was prepared by reduction of cyanobenzene using lithium alumi-

num deuteride as described in the literature. ° With the resulting a,a-d2-benzylamine,

the colorless oil (D2-Bn)Bnen was prepared as described for the synthesis of benzyl-(4-R-

benzyl)ethylenediamine. Yield (71 %O). 'H NMR (CDC13, 400 MHz): 7.38-7.24 (9 H,

mm), 3.60 (2 H, s), 2.76 (2 H, t, J = 6.0 Hz), 2.52 (2 H, t, J = 6.0 Hz). ESIMS MH: Calcd for

C16H1 9D2N2, 243.4; Found, 243.4.

Synthesis of [Fez(/-O 2CArT°')2(O2CArT°')2(N,N-(4-R-Bn)Bnen) 2] Complexes. To a

rapidly stirred CH2C12 (3 mL) solution of [Fe2(#-O2CArT °i)2(O2CArT°)2(THF)2] (37 mg,

0.026 mmol) were added 2 equiv of N,N-(4-R-Bn)Bnen or deuterated Bn2en. After 2 h,

the solution was filtered through Celite and reduced to 3 mL under reduced pressure.
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Colorless block crystals were isolated upon the vapor diffusion of pentane into the so-

lution and characterized by X-ray crystallography and elemental analysis.

[Fe2(l1-O2CArT o')2(O 2CArT °)2(N,N-(4-CI-Bn)Bnen) 21 (2). Yield 68 %. FT-IR (KBr, cm-') 3321

(m), 3250 (w), 3056 (w), 3027 (m), 2920 (m), 2875 (w), 2835 (m), 1609 (s), 1549 (s), 1515 (s),

1489 (m), 1456 (s), 1408 (m), 1384 (s), 1346 (w), 1186 (w), 1098 (w), 1075 (m), 1018 (m),

856 (m), 837 (m), 818 (m), 801 (s), 784 (m), 764 (m), 735 (m), 704 (m), 610 (m), 584 (m),

546 (w), 522 (m), 456 (w). Anal. Calcd for 20.5(CH 2C 2) or C1165Cl3Hj07Fe2N408: C, 73.29;

H, 5.65; N, 2.93. Found: C, 73.21; H, 5.42; N, 2.67.

[Fe2(I-0 2CArTo°)2( 2CArT°)2(N,N-(4-F-Bn)Bnen)zJ (3). Yield 46 %. FT-IR (KBr, cm -') 3316

(m), 3268 (w), 3057 (w), 3024 (w), 2919 (s), 2861 (w), 1605 (s), 1547 (s), 1508 (s), 1454 (s),

1410 (m), 1383 (s), 1307 (w), 1263 (w), 1221 (s), 1187 (w), 1152 (w), 1110 (w), 1070 (w),

1041 (w), 1020 (w), 974 (w), 855 (w), 819 (s), 801 (s), 784 (s), 765 (s), 736 (s), 700 (s), 584

(m), 546 (m), 521 (m). Anal. Calcd for 3, C,,6F2H 06Fe2N4O8: C, 75.98; H, 5.83; N, 3.06.

Found: C, 75.45; H, 5.83; N, 3.50.

[Fe2(p-0 2CArTo)2 (02CArT °t)2(N,N-(4-Me-Bn)Bnen)21 (4). Yield 67 %. FT-IR (KBr, cm') 3319

(m), 3254 (w), 3057 (w), 3023 (w), 2917 (w), 2790 (w), 1604 (s), 1565 (s), 1514 (s), 1454 (s),

1410 (m), 1373 (s), 1307 (w), 1269 (w), 1242 (s), 1187 (w), 1142 (w), 1118 (w), 1082 (w),

1044 (w), 1017 (w), 974 (w), 852 (w), 819 (s), 801 (s), 787 (s), 765 (m), 739 (s), 698 (s), 584

(m), 543 (m), 521 (s). Anal. Calcd for 4.0.5(CH 2C12), Cll8 5C1lH113Fe2N4O8 : C, 76.18; H, 6.10;

N, 3.00. Found: C, 76.01; H, 6.37; N, 3.17.

[Fe2(t -02CArT°a)2(02CArr)2(N,N-(4-tBu-Bn)Bnen), (5). Yield 57 %. FT-IR (KBr, cm-') 3321

(m), 3270 (w), 3057 (m), 3025 (m), 2961 (s), 2919 (m), 2866 (m), 2799 (m), 1608 (s), 1545

(s), 1515 (s), 1495 (m), 1455 (s), 1410 (s), 1384 (s), 1306 (m), 1269 (m), 1212 (w), 1187 (w),

1145 (w), 1109 (m), 1070 (m), 1041 (w), 1020 (m), 984 (m), 943 (w), 855 (m), 818 (m), 800

(s), 785 (m), 766 (m), 737 (m), 712 (m), 699 (m), 608 (w), 584 (m), 544 (m), 521 (m), 455
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(w). Anal. Calcd for 5-0.5(CH2 Cl2), C124.sC1H25Fe2N 4O 8: C, 76.59; H, 6.45; N, 2.87. Found:

C, 76.70; H, 6.71; N, 3.00.

[Fe2(-O 2CArT °')2(O2CAr To')2(N,N-(4-OMe-Bn)Bnen)2] (6). Yield 54 %. FT-IR (KBr, cm-')

3318 (w), 3256 (w), 3057 (w), 3024 (m), 2918 (m), 2833 (w), 2795 (w), 1610 (s), 1584 (m),

1593 (m), 1513 (s), 1454 (s), 1407 (w), 1378 (m), 1329 (s), 1305 (m), 1246 (s), 1179 (w), 1143

(w), 1110 (m), 1070 (w), 1038 (m), 1021 (w), 977 (w), 820 (s), 802 (s), 786 (m), 766 (m), 739

(m), 716 (w), 699 (m), 609 (m), 546 (m), 524 (m), 467 (w). Anal. Calcd for 6 CH2C12 ,

C119C12H1 14Fe2N4O, 0: C, 73.57; H, 5.91; N, 2.88. Found: C, 73.61; H, 6.12; N, 3.26.

[Fe2(pI-O2CArTO°)2(0 2CArTo) 2)((C6H5CDH)2en)2] (7). Yield 26 %. FT-IR (KBr, cm'l) 3348 (m),

3293 (m), 3058 (w), 3025 (w), 2925 (m), 2881 (w), 1606 (s), 1576 (s), 1515 (s), 1495 (m),

1455 (s), 1413 (s), 1387 (s), 1306 (w), 1264 (m), 1186 (w), 1138 (w), 1110 (m), 1073 (m),

1020 (m), 820 (s), 801 (s), 786 (w), 766 (w), 736 (m), 701(s).

[Fe2(-0 2CArT °')2(O2CArT°)((C6H5CD2)Bnen)21 (8). Yield 63 %O. FT-IR (KBr, cm') 3315 (m),

3268 (m), 3058 (m), 3023 (m), 2919 (m), 2859 (w), 1612 (s), 1544 (s), 1515 (s), 1493 (m),

1454 (s), 1410 (m), 1381 (s), 1109 (w), 1038 (w), 1021 (w), 986(w), 913 (w), 857 (w), 820

(m), 800 (s), 783 (m), 765 (w), 736 (m), 714 (m), 699 (m), 584 (w), 546 (w), 520 (w), 452

(w).

X-ray Crystallographic Studies. Single crystals were mounted at room tem-

perature on the tips of quartz fibers, coated with Paratone-N oil, and cooled under a

stream of cold nitrogen. Intensity data were collected on a Bruker (formerly Siemens)

APEX CCD diffractometer running the SMART software package, with Mo Ka radia-

tion (k = 0.71073 A). Data collection and reduction protocols are described in detail

elsewhere.23 The structures were solved by Patterson methods and refined on F2 by us-

ing the SHELXTL software package.24 Empirical absorption corrections were applied

with SADABS,25 part of the SHELXTL program package, and the structures were

checked for higher symmetry by the program PLATON.26 All non-hydrogen atoms
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were refined anisotropically. In general, hydrogen atoms were assigned idealized posi-

tions and given thermal parameters equivalent to either 1.5 (methyl hydrogen atoms) or

1.2 (all other hydrogen atoms) times the thermal parameter of the carbon atom to which

they were attached. In the structures of 2 - 6, two CH2C 2 solvent molecules were as-

signed in the lattice. In the structure of 7, one carbon atom connected to the primary

amine in (C6H5CDH)2en ligand is disordered over two places with 0.7 and 0.3 occu-

pancy factors; hydrogen atoms for the disordered atom were omitted. One CH2C 2 sol-

vent molecule was assigned in the lattice in the structure of 8. Data collection and ex-

perimental details for the complexes are summarized in Table 2.1 and relevant intera-

tomic bond lengths and angles are listed in Table 2.2.

General Procedures for Oxidative N-Dealkylation Studies Using GC and

GC/MS Analysis. Analyses were carried out on an HP-5970 gas chromatograph con-

nected to a HP-5971 mass analyzer. An Alltech Econo-cap EC-WAX capillary column of

dimensions (30 m x 0.25 mm x 0.25 lm) and HP-5 cross-linked 5% PhMe-silicone col-

umn (25 m x 0.32 mm x 0.5 lm) were used for GC/MS and GC studies, respectively.

The following method was used to effect all separations: initial temperature = 50 C;

initial time = 6 min; temperature ramp = 50 - 200 °C at 20 deg/min. The products were

identified by comparing their retention times and mass spectral patterns to those of

authentic standards. FID response was calibrated by running with authentic samples

containing an internal standard of 1,2-dichlorobenzene. All samples were prepared in

an anaerobic glove box. Analytical conditions were maintained to match those reported

in the initial studies of compound 1. The 12.0 mM CH2C12 solutions of compounds

[Fe2(p-O2CArT°I)2(O2CArT°I)2(N,N-(4-R-Bn)Bnen)2] were prepared under nitrogen. The

solutions turn brownish-yellow immediately upon the exposure to dioxygen at 23 C.

After 1 h of additional stirring, 1,2-dichlorobenzene was added as an internal standard,

and the reaction mixture was filtered through a 1-cm silica column to separate the or-
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ganic products from inorganic materials. The resulting transparent solution was ana-

lyzed by GC. Standard deviations were obtained from the results of at least three inde-

pendently prepared samples.

Kinetic Isotope Effect Measurements. The product distribution was initially

monitored by using GC-MS analysis. Because the peaks for PhCHO and deuterated

benzaldehyde (PhCDO) were not well separated, 'H-NMR intensities were ultimately

employed to determine the product distribution. A 12.0 mM CH2C 2 solution of 7 or 8

was gently purged with dioxygen gas for 1 h, maintaining the temperature at 23 °C, and

filtered through a 1-cm dry silica column. The H NMR spectrum was used to deter-

mine the product distribution. Standard deviations were obtained from the results of

three independently prepared samples.

Results

Ligand Syntheses. A drawback in planning the mechanistic study of the oxy-

genation pathway of 1 is the absence of unique optical spectroscopic features that can be

used to follow the course of reaction. No band corresponding to the electronic transition

of an intermediate develops when dioxygen is introduced a solution of 1, even at - 78

°C. Deeper insight into the nature of the C-H bond-breaking step, for which three

pathways has been proposed (Scheme 2.1.), were therefore sought by Hammett and KIE

studies based on the distribution of oxygenation products of the complexes [Fe,(fP-

O2CArT°O)2(O2CArT°l)2L 2], where L is N,N-(4-R-Bn)Bnen or (C6H5CDH) 2en.

A series of asymmetric ligands N,N-(4-R-Bn)Bnen with para-R-groups Cl, F, Me,

tBu, or OCH3 was prepared by the four-step route depicted in Scheme 2.2, starting from

commercially available benzylamine and the respective benzaldehyde. Reaction of ben-

zylamine with the para-substituted benzaldehyde (4-R-PhCHO) yielded (4-R-

benzyl)benzylimines, which were converted to the compounds (4-R-
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benzyl)benzylamines by treatment with NaBH4. Reaction of the (4-R-

benzyl)benzylamines with chloroacetonitrile afforded the (4-R-

benzyl)benzylaminoacetonitriles. Reduction of these acetonitriles with LiAlH4 gener-

ated the targeted asymmetric (4-R-benzyl)benzylethylenediamines with overall good

yields. The ligand (C6H5CDH)2en was synthesized from a-d-benzylamine, prepared by

the reduction of benzaldehyde oxime with lithium aluminum deuteride. Reaction of a-

d-benzylamine with benzaldehyde (PhCHO) yielded (a-d-benzyl)-benzyl-imine, which

was converted to a,a'-d 2-dibenzylamine by treatment with NaBD4. With the resulting

a,a-d2-dibenzylamine, the compound (C6H5CDH)2en was prepared as described for the

synthesis of N,N-(4-R-Bn)Bnen. The asymmetric dideuterated Bn2en ligand,

(C6H5CD2)Bnen, was prepared from a-d2-benzylamine,22 following a similar reaction

route previously described for the synthesis of N,N-(4-R-Bn)Bnen ligands.

Synthesis and Structural Characterization of Diiron(II) Complexes. The reac-

tion of the precursor complex, [Fe2(j-02CArT°o)2(O2CArT°')2(THF)2], with 2 equiv of the

diamine ligands N,N-(4-R-Bn)Bnen (R = MeO, tBu, Me, F, Cl), (C6H 5CDH)2en, and

(C6H5CD2)Bnen afforded the neutral diiron(II) complexes 2 - 8. Their structures, shown

in Figures 2.1 - 2.7, were determined by X-ray diffraction. All compounds contain a

crystallographic inversion center. The pseudo-trigonal bipyramidal iron(II) centers in 5,

7, and 8 have an NO4 coordination environment with chelating terminal carboxylate

ligands. In 2, 3, 4 and 6, however, the terminal carboxylates are monodentate, resulting

in four coordinate NO3 coordination environments. The relatively long Fel...O(teminal

carboxylate) distance of ca 2.5 A may be compared to the shorter distances of -2.25 A in

5, 7, and 8 (Table 2.2). In the all compounds, the coordinativly unsaturated iron(II) cen-

ters are bridged by two carboxylates and the Fe...Fe distances vary from 3.8680(8) A to

4.360(5) A. The Fe...Fe distances in 7 and 8, which have similar chemical compositions,

are 4.360(5) and 3.934(2) A, respectively. These diverse Fe...Fe and Fe-O distances in-
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volving terminal carboxylates indicate the flexible character of the carboxylate-rich dii-

ron(II) units. The 4-R groups in the N,N-(4-R-Bn)Bnen ligands of 2, 3, 4, and 6 are disor-

dered over two positions, each assigned a 0.5 occupancy factor; however, the tert-butyl

group in 5, which is a bigger relative to the other 4-R groups, are localized on just one of

the phenyl rings of the Bn2en moiety.

Hammett Study of the Reactions of Diiron(II) Complexes 2 - 6 with Dioxygen.

The series of diiron(II) complexes prepared with ligands 4RBnBnen (R = C1, F, Me, t-Bu,

or OCH3) were allowed to react with 02 at ambient temperature. Both 4-R-PhCHO and

PhCHO were identified in the oxygenation product mixture by GC-MS spectroscopy

(Scheme 2.2). The product distributions were analyzed by GC and the overall yields

were - 60 % based on the Fe2 unit (Table 2.3). In addition to GC analysis, the products

ratios in the oxygenation reactions of 2 and 5 were confirmed by using 'H-NMR spec-

troscopy, comparing the integrated intensities of the aldehyde C-H protons of 4-R-

PhCHO and PhCHO (Table 2.3, Figure 2.8). The resulting product ratios were the same

within error as those determined by GC analysis. A plot of the product ratios against

Hammett a values2 (Figure 2.9) revealed a linear relationship, supporting the existence

of similar transition states (TS) for the set of reactants. The positive slope, p = + 0.48 (R =

0.98), indicates that the TS is stabilized by electron withdrawing substituents. This re-

sult strongly suggests that C-H bond breaking occurs through generation of anionic

character at the benzylic position in the transition state.

Kinetic Isotope Effects. The determination and interpretation of intramolecular

KIEs is one approach to unravel C-H bond breaking mechanisms in spectroscopically

silent reactions.283 The method interrogates the effect on the product distribution of re-

placing an atom, from at least two equivalent atoms, by one of its isotopes. These types

of intramolecular KIEs are not affected by steps that occur before and after C-H bond
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breaking. The observation of a KIEi, t, reflects the changes in the C-H(D) bonds from

reactants to the TS in the C-H bond breaking step?28'3

A KIEitravalue of 1.3 (1) at 23 C was obtained from the PhCDO/PhCHO ratio

for oxygenation of [Fe2(I-O2CArTo°)2(O2CArTo)2((C6HsCDH)2en)2] (7). This value was de-

termined by using product distribution analysis between PhCDO and PhCHO based on

GC-MS and H NMR spectroscopy (Figure 2.10). Breaking of the C-H bond in 7 yields

the amino alcohol, which eliminates PhCDO (see Scheme 2.3). The near unity value of

the KIE raise the question of whether it is a secondary instead of a primary effect. To

address this issue, the compound [Fe2(u-O2CArT') 2(O2CArT )2((C6H5CD2)Bnen)2] (8)

having asymmetrically deuterated Bn2en ligands was prepared. If the KIE value for 7

was to originate from a secondary isotope effect, the KIE values for 8 should be the re-

ciprocal of 1.3, whereas, the primary KIE values for oxygenation of 7 and 8 are expected

to be identical (Scheme 2.3). C-H bond breaking at the benzylic position of the

(C6H5CDH)2en ligand and C-D bond breaking within the (C6H5CD2)Bnen ligand both

afford a C-D bond at the benzylic position.

The KIEi,,,, value of 8, measured by the same methods as used for 7, is 2.2 (2) at

23 C, obtained from the ratio of PhCHO/PhCDO (Figure 2.11). In the case of 8, the

C-H bond breaking generates PhCHO (Scheme 2.3). The KIEn, value, 2.2, is still small

but larger than that obtained by oxygenation of 7. We interpret these results in the fol-

lowing manner. The observed KIE for 7 is a primary effect; although small, it is not the

reciprocal of the KIE of 8. Evidently, the differences in two KIE values indicate that sec-

ondary effects contribute to the C-H bond breaking step in addition to the primary

KIEs. The combination of primary and secondary effects for the oxygenation of 7 and 8

is described by eqs 1 and 2, respectively.

KIEbs for 7 = KIEprima x (1/KIEo,,d,1y) (1)



75
KIEob, for 8 = KIEpri,, x KIEseconday (2)

In the case of 7, the secondary KIE may detract from the primary KIE as shown in

Scheme 2.3, whereas both primary and secondary effects are expected to contribute the

oxygenation of 8. The result is a larger KIE value for 8 than for 7. Based on these meas-

ured KIEs, primary and secondary KIE values were calculated to be 1.7 and 1.3, respec-

tively. A secondary KIE that occurs for the oxygenation of complexes is often inter-

preted in terms of differing inductive and steric effects for the isotopic forms (a CD3

group is ca 10 % smaller than a CH3 group).3 The steric effect cannot apply to the oxy-

genation of 7 and 8, however, since a secondary KIE <1 should have been obtained for

the intramolecular competition (the CD2 group in 8 is less hindered than the CH2

group). Therefore, the observed secondary KIE may originate from the fact that deute-

rium is slightly more electron-donating than the proton.32 The generated anionic char-

acter at the benzylic position in TS state (see Hammett study) may be more destabilized

by the electron-donating deuterium in the benzylic position, resulting in a secondary

KIE reinforcing the primary effect in 8, but canceling that in the case of 7.

Discussion

Oxidative N-dealkylation of the complex [Fe2(p-O2CArT°')2(O2CArT°')2(N,N-

Bn2en)2] (1) upon introduction of dioxygen9"5 parallels the activation of 0,2 and C-H

bond hydroxylation by non-heme diiron enzyme active sites and is analogous to the

dealkylation reactions catalyzed by cytochrome P450 enzymes.33 Reaction of compound

1 with dioxygen may afford a transient adduct [1-02], which never builds up because

the tethered substrates readily react with any species so generated. Formal possibilities

for the dioxygen adduct include Fe2 m(02), Fe2
1 (0 2

2'), and Fe2rV(02')2. We previously re-

ported the formation and characterization of a high-valent Fe(III)Fe(IV) species in the
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reaction between dioxygen and diiron(II) complexes built with the ArT°'CO2 ligand

system, through bimolecular electron transfer between a putative Fe2V(O2)2 species and

the Fe2ILII starting material.' °"' These results suggest the involvement of a high-valent

iron(IV)-oxo species as a potential oxidant in the N-dealkylation reaction of 1, analogous

to well-studied N-dealkyations by cP450,33 Cu2(O),36 and Ni2(0)2
37 metal centers. As-

suming the participation of such a high-valent iron oxo species, three reaction pathways

were proposed for the oxidative N-dealkylation reaction of dioxygen with the diiron(II)

complex [Fe2(Iu-O2CArT°)2(O2CArT°I)2(N,N-Bn2en)2] (Scheme 2.1).9 An electrophilic high-

valent diiron oxo unit may perform 2-electon oxidative N-dealkylation by hydrogen

atom abstraction followed by oxygen rebound or by concerted insertion of the oxygen

atom into a C-H bond. Alternatively, sequential one-electron oxidation of the dangling

nitrogen atom by the proposed electrophilic high-valent iron(IV) oxo species, followed

by a-proton abstraction and sequential oxygen rebound, may also be the mechanism.

The present Hammett plot and KIEil results indicate that anionic character de-

velops in the transition state during the C-H bond breaking step, thus ruling out Paths

A and B in Scheme 2.4. Both hydrogen atom abstraction (Path A) and concerted oxygen

atom insertion (Path B) generate positive character at the benzylic position. Large KIE

values (>20) have been reported for N-dealkylations, effected through HAT mecha-

nisms by Cu35 and Ni37 complexes, in contrast to the small KIE values for oxygenation of

7 and 8. Single electron transfer from the nitrogen atom followed by a-proton abstrac-

tion (Path C in Scheme 2.4) may proceed through a TS that has anionic character at the

benzylic position. As shown in Path C, the KIEs would occur in the deprotonation step

that occurs following electron transfer. The size of primary deuterium KIEs for proton

transfer processes are generally considered to be a measure of the symmetry of the tran-

sition state. The maximal primary KIE (- 7) occurs for the most symmetrical activated

complex, usually one in which the proton is bound with equal strength to both the do-
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nor and acceptor. This situation occurs when the donor and acceptor have equal pK.

values. The small primary KIE for 7 and 8 may originate from the asymmetric character

in the benzylic carbon donor and oxygen atom acceptor in a generated high-valent

Fe-O intermediate. Tunneling, an effect that is claimed to occur in catalytic systems in-

cluding both enzymes'9 and their small molecule mimics,35 '3 7 is not involved in the C-H

bond breaking steps of 7 and 8.

The reaction mechanism for N-dealkylation by high valent Fe-oxo porphyrinates

has been continuously debated; both ET and HAT pathways have been claimed. In the

case of cP450, it is possible that N-dealkylation by the enzyme may operate by the ET

pathway for easily oxidized substrates, but by HAT for others. For synthetic model

systems, studies3 5'36 suggest that Cu2(O)2 complexes are capable of performing HAT re-

actions for benzylic amine substrates, which is in contrast to the present mechanistic

studies on diiron complexes with tethered benzylamines. It should be noted, however,

that the nitrogen atom in the copper complexes through which the substrate is tethered

to the metal site does not have the free, non-bonding electron pair that occurs in a N,N-

Bn2en ethylenediamine ligand. Consequently, it may be much more difficult for these

systems to proceed by an ET pathway. Recently, a mechanistic study of dicopper com-

plexes with substrates having nitrogen atom with free electron pair was reported. 4 A

shift in mechanism for oxidative N-dealkylation from ET to HAT was proposed, de-

pending on the ease of substrate one-electron oxidation.34

In summary, from our present Hammett and KIEi,,ra analyses for oxidative N-

dealkylation of [Fe2(/-O 2CArT°')2(O2CArT°i)2(N,N-Bn2en)2], we can rule out previously

proposed concerted and hydrogen atom transfer mechanisms. We conclude that the re-

action operates through single electron transfer from free non-bonding electron pair in

the dangling amine substrate to the generated intermediate, followed by proton transfer

and rearrangement. Efforts are currently in progress to understand the oxidative N-
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dealkylation mechanism of substrates that lack a non-bonding electron pair, but still can

be oxygenated by carboxylate-rich diiron(II) complexes.'8
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Table 3.2. Yield and Product Distribution of Reaction of 2 - 6 with Dioxygen

Complex 4-R oaP YH (%) YR (%) YR/YHC YR/YH log (YR/YH)
PhCHO 4-R-PhCHO

2 Cl 0.23 24(2) 31(4) 1.26 (7) 0.10 (3)
3 F 0.06 28(2) 32(1) 1.16 (8) 1.22 0.06 (3)
4 CH 3 -0.17 34(1) 29(2) 0.85 (6) -0.07 (3)
5 t-Bu -0.20 33(1) 24(3) 0.78 (5) 0.79 -0.11 (3)
6 OCH 3 -0.27 34(4) 25(2) 0.74 (10) -0.13 (6)

"'Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195. bYH and YR represent the
product yields of PhCHO and 4-R-PhCHO, respectively. 'Ratios were determined from
GC analytical data. dRatios were determined by using 'H NMR spectroscopy.
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Figure 2.1. ORTEP drawing of [Fe2(#-O2CArTao)2(O2 CArTI)2 (N,N-(4-C-Bn)Bnen)2 (2)

showing 50 % probability thermal ellipsoids. The solvent molecules and hydrogen at-

oms are omitted for clarity.
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Figure 2.2. ORTEP drawing of [Fe2(f/-O2CArT) 2(O2CArT')2 (N,N-(4-F-Bn)Bnen)2] (3)

showing 50 7% probability thermal ellipsoids. The solvent molecules and hydrogen at-

oms are omitted for clarity.
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Figure 2.3. ORTEP drawing of [Fe2(u-O2CArT'o)2(O2CArTo)2 (N,N-(4-Me-Bn)Bnen)2] (4)

showing 50 % probability thermal ellipsoids. The solvent molecules and hydrogen at-

oms are omitted for clarity.
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Figure 2.4. ORTEP drawing of [Fe2(U-O2CArT°I)2 (O2 CArT') 2 (N,N-(4-Bu-Bn)Bnen)2] (5)

showing 50 % probability thermal ellipsoids. The solvent molecules and hydrogen at-

oms are omitted for clarity.

·_
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Figure 2.5. ORTEP drawing of [Fe2 (p-O2CArT°)2 (02CArT) 2 (N,N-(4-OMe-Bn)Bnen)2] (6)

showing 50 % probability thermal ellipsoids. The solvent molecules and hydrogen at-

oms are omitted for clarity.
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D2A
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Figure 2.6. ORTEP drawings of [Fe2(/-O2CArT°l)2(O2CArT°o)2((C6H5CDH)2en)2] (7) (Top)

showing 50 % probability thermal ellipsoids. The solvent molecules and hydrogen at-

oms are omitted for clarity. (Bottom) All atoms of ArT°CO2 ligands in 7, except for the

carboxylate groups and the a-carbon atoms, were omitted for clarity.
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O1

Figure 2.7. ORTEP drawing of [Fe2(#-0 2CArT°)2(O2CArT°')((D2-Bn)Bnen)2] (8) (Top)

showing 50 % probability thermal ellipsoids. The solvent molecules and hydrogen at-

oms are omitted for clarity. (Bottom) all atoms of ArT°CO2 ligands in 8, except for the

carboxylate groups and the a-carbon atoms, were omitted for clarity.
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the product yields of PhCHO and 4-R-PhCHO, respectively. The line represents a least

squares fit to the data with the slope p = 0.48 (R = 0.98).
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Chapter 3

Synthesis, Characterization, and Dioxygen Reactivity of

Tetracarboxylate-Bridged Diiron(II) Complexes with Coordinated

Substrates
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Introduction

Dioxygen activation and O-atom transfer reactions promoted by iron-containing

metalloenzymes are of considerable interest. Monooxygenases,"' 3 which catalyze the

hydroxylation of unactivated hydrocarbons, are of particular interest because of their

ability to hydroxylate methyl groups bearing a range of substituents.4 The hydroxylase

component of soluble methane monooxygenase (sMMOH) performs this function by

first activating dioxygen to afford reactive intermediate(s).5 The resulting oxidant can

insert one oxygen atom selectively into a C-H bond. Understanding this bio-catalytic

process in molecular detail is an important objective which, if accomplished, could both

reveal how the metalloproteins work and facilitate the design of catalysts for 02

activation and selective hydrocarbon oxidation.

In pursuit of our goal to prepare diiron(II) complexes that mimic the functional

chemistry of sMMOH, we reported the carboxylate-bridged diiron(II) complex, [Fe2(/l-

02CArT °l)2(0 2CArTo°)2(N,N-Bn2en)2], where ArT"°CO2 is 2,6-di(p-tolyl)benzoate and N,N-

Bn2en is N,N-dibenzylethylenediamine, which oxidatively N-dealkylates a tethered N-

benzylamino functionality upon reaction with dioxygen. Based on Hammett and kinetic

isotope effect (KIE) studies, it was proposed that N-dealkylation occurs through

sequential one-electron oxidation of the nitrogen atom by a putative iron(IV) oxo

intermediate, followed by a-proton abstraction and oxygen rebound (Scheme 3.1).6 The

proximity of the lone pair electrons on the uncoordinated nitrogen atom of the Bn2en

ligand to the proposed high-valent intermediate may be the major reason for this

pathway. The oxidative N-dealkylation reactions effected by {Cu202} and {Ni20 2} model

complexes with coordinated benzylamine ligands, however, were proposed to occur

through a hydrogen atom abstraction pathway." The difference between these {Cu20 2)

or {Ni20 2) systems7' and [Fe2(#-O2CArT°)2(O2CArT°I)2(N,N-Bn2en)2] is the existence of a
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non-bonding electron pair within benzylamine substrates of N,N-Bn2en ligands; the

benzylamine ligands in the {Cu202) or {Ni202} species7 9 are coordinated to metal sites

and thus have no free non-bonding electron pair. In order to test the possibility that N-

dealkylation might occur for diiron(II) benzylamine complexes having no available

non-bonded electron pairs, we designed a system that lacks this feature, in which the

benzylamine groups are directly coordinated to the diiron(II) sites.

In this chapter, we describe the synthesis and characterization of [Fe2(Rl-

O2CArT°l)4L2] complexes, where L is benzylamine (BA) or 4-methoxybenzylamine (BAP-

OMe), and their oxygenation chemistry. Various methods, including resonance Raman

(rR) and electron paramagnetic resonance (EPR) spectroscopy, were applied to

understand the mechanism and the intermediates involved. In addition, upon

dissolution of the tetracarboxylate bridged diiron(II) benzylamine complex in methanol,

an asymmetric cubane tetrairon(II) complex was identified and structurally

characterized. A preliminary communication of a portion of this work has appeared

elsewhere.

Experimental Section

General Considerations. All reagents were obtained from commercial suppliers

and used as received unless otherwise noted. Dichloromethane, pentane, and toluene

were saturated with argon and purified by passage through activated A1203 columns

under argon. ° Dioxygen (99.994%, BOC Gases) was dried by passing the gas stream

through Drierite. The compound [Fe2(-O02CArT °) 2(O2CArT°')2(THF)2] was prepared as

described in the literature." Air-sensitive manipulations were carried out under

nitrogen in an MBraun glovebox. H-NMR spectra were recorded on a Bruker 400 MHz

spectrometer housed in the Massachusetts Institute of Technology Department of
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Chemistry Instrument Facility (MIT DCIF); chemical shifts were referenced to residual

solvent peaks. FT-IR spectra were recorded with both a Bio-Rad FTS 135 spectrometer

and a Thermo Nicolet Avatar 360 spectrometer. UV-vis spectra were recorded on a

Hewlett-Packard 8453 diode array spectrophotometer.

[Fe2(1-0 2CArT °')4(BA)2 j (1). To a rapidly stirred CH2 C 2 (10 mL) solution of [Fe2([-

0 2CArT°O)2(0 2CAr TO)2(THF)2] (86.8 mg, 0.0615 mmol) was added benzylamine (BA) (14.1

mg, 2 equiv), to afford a greenish yellow precipitate (70.1 mg, 76 %o). This solid

dissolved to THF (10 mL) upon gentle heating. Light green blocks of 1 suitable for X-ray

crystallography were obtained by vapor diffusion of pentane into the THF solution. FT-

IR (KBr, cm - ) 3324 (w), 3271 (w), 3024 (w), 2919 (w), 1607 (s), 1585 (m), 1550 (w), 1514

(m), 1452 (m), 1404 (s), 1384 (s), 1303 (w), 1210 (w), 1187 (w), 1150 (w), 1109 (w), 1074

(w), 1036 (w), 1020 (w), 996 (w), 843 (w), 814 (m), 790 (m), 763 (w), 727 (w), 706 (m), 584

(w), 526 (m), 463 (w). Anal. Calcd. for C98H86N2Fe2 08 : C, 76.86; H, 5.66; N, 1.83. Found:

C, 76.81; H, 5.61; N, 1.87.

[Fe2(-O 2CArTo) 4(BAP' Me)2] (2). To a rapidly stirred yellow CH2C12 (10 mL)

solution of [Fe2(-O 2CArT ') 2(O2CArTOI)2(THF)2] (94.8 mg, 0.064 mmol) was added

dropwise neat 4-methoxybenzylamine (BAPMe) (17.1 mg, 2 equiv). The resulting light

greenish yellow solution was stirred for 10 min and filtered through Celite. Light green

blocks of 2 (87.4 mg, 83 %) suitable for X-ray crystallography were obtained by layering

pentanes over the filtrate. FT-IR (KBr, cm') 3332(w), 3274(w), 3021(w), 2918(w),

2863(w), 2833(w), 1607(s), 1586(m), 1550(w), 1514(s), 1453(m), 1404 (m), 1303 (s), 1248

(s), 1178 (w), 1110 (w), 1073 (w), 1035 (m), 1020 (w), 997 (w), 842 (w), 814 (m), 791 (m),

763 (w), 726 (w), 706 (m), 643 (w), 584 (w), 558 (w), 526 (m), 462 (w). Anal. Calcd. for

C1OOHIN2Fe 2Oo0 : C, 75.47; H, 5.70; N, 1.76. Found: C, 75.11; H, 5.39; N, 1.92.
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[Fe4(!I-OMe)4(O2CArT°)(HOMe)6(HOMe) (3). Method A. Rapid stirring of a

suspension of 2 in methanol (10 mL) for 30 min effected dissolution. Light green blocks

of [Fe4(-OMe) 4(O2CArT°o)4 (OMe)6](HOMe) (3) suitable for X-ray crystallography were

obtained by layering pentanes over the light greenish solution. Method B. A portion of

the NaO 2CArT ' (0.597 g, 1.84 mmol) was mixed with Fe(OTf)2.2CH 3CN (0.802 g, 1.84

mmol) in 20 mL of methanol, affording a pale yellow solution. After 1 h stirring,

triethylamine (0.186 g, 1 equiv) was added and colorless block crystals (0.2010 g, yield

25 %) were isolated after 2 days. FT-IR (KBr, cm') 3053 (w), 3021 (w), 2918 (w), 2871 (w),

1609 (s), 1590 (s), 1517 (w), 1482 (m), 1444 (m), 1400 (s), 1283 (w), 1266 (w), 1154 (w),

1101 (w), 1035 (m), 1005 (w), 845 (w), 818 (m), 761 (s), 733 (m), 718 (m), 711 (m), 658 (m),

639 (w), 567 (w), 549 (w), 512 (m), 475 (w). Anal. Calcd. for CH04Fe 4 ,08 : C, 64.69; H,

6.01. Found: C, 64.63; H, 5.79.

a-d,-4-Methoxybenzylamine (a-d,-BAP°M'). To a stirred anhydrous THF (25 mL)

suspension of lithium aluminum deuteride (2.6 g, 62 mmol), a solution of anisaldehyde

oxime (3.0 g, 24 mmol) was slowly added at -78 C. The mixture was warmed to room

temperature and stirred for 2 days. The mixture was carefully hydrolyzed by addition

of 2.6 g of water, 2.6 g of 15 % NaOH (aq), and 3 x 2.6 g of water. Inorganic salts were

removed by filtration and washed with ethylacetate (200 mL). The solution was dried

(MgSO4), filtered through Celite, and concentrated to give 1.6 g (61 %) of the product.

'H NMR (CDC13, 400 MHz): 8 7.22 (d, J = 8.5 Hz, 2 H), 6.87 (d, J = 8.6 Hz, 2 H), 3. 79 (s, 3

H), 3. 77 (t, J = 0.05 Hz, 1 H).

[Fe2(l-O2CArT°)4(a-d-BAP°M')2]. This compound was prepared as described

above for 2. FT-IR (KBr, cmnl) 3332 (w), 3275 (w), 3051 (w), 3022 (w), 2918 (m), 2862 (w),

2299 (w), 1607 (s), 1545 (s), 1514 (s), 1454 (s), 1405 (s), 1385 (s), 1304 (w), 1287 (w), 1247

(s), 1178 (m), 1154 (w), 1110 (w), 1071 (w), 1032 (m), 942 (w), 914 (w), 858 (w), 843 (m),
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816 (s), 800 (s), 787 (m), 764 (m), 736 (w), 727 (w), 713 (m), 705 (m), 638 (w), 585 (m), 546

(w), 525 (m), 461 (w).

[Fe,(p,-O2 CArT °l)4 (BAP'°Me)2 (PF6) (4). To a rapidly stirred yellow CH2 C12 (7 mL)

solution of [Fe2(-O 2CArT°) 4(BAP'M') 2] (151.5 mg, 0.095 mmol) was added dropwise a

CH2C12 (3 mL) solution of AgPF6 (24.0 mg, 0.095 mmol). The resulting dark-forest green

solution was stirred for 2 h and filtered through Celite. Dichroic brown-green blocks of

[Fe2(-O 2CArT°)4(BAPMe)2](PF6) (43.2 mg, yield 26%) were obtained by layering

pentanes over the filtrate. FT-IR (KBr, cm-') 3300 (w), 3243 (w), 2919 (w), 1613 (w), 1583

(m), 1514 (s), 1441 (s), 1405 (s), 1386 (s), 1304 (w), 1252 (m), 1182 (w), 1155 (w), 1110 (w),

1074 (w), 1034 (w), 973 (w), 847 (s), 814 (s), 793 (m), 762 (w), 727 (w), 713 (w), 705 (m),

586 (m), 557 (w), 529 (m), 491 (w). Anal. Calcd. for COH9N 2Fe2O,0 F 6P : C, 69.17; H, 5.22;

N, 1.61. Found: C, 69.17; H, 5.16; N, 1.55.

X-ray Crystallographic Studies. Intensity data were collected on a Bruker

(formerly Siemens) and APEX CCD diffractometer with graphite-monochromatized Mo

Ka radiation ( = 0.71073 A), controlled by a Pentium-based PC running the SMART

software package. Single crystals were mounted at room temperature on the tips of

quartz fibers, coated with Paratone-N oil, and cooled to 173 K under a stream of cold

nitrogen maintained by a Bruker LT-2A nitrogen cryostat. Data collection and reduction

protocols are described elsewhere. 2 The structures were solved by Patterson and direct

methods and refined on F2 by using the SHELXTL software package.'3 Empirical

absorption corrections were applied with SADABS'4, part of the SHELXTL program

package, and the structures were checked for higher symmetry by the program

PLATON.5 All non-hydrogen atoms were refined anisotropically unless otherwise

noted. In general, hydrogen atoms were assigned idealized positions and given thermal

parameters equivalent to either 1.5 (methyl hydrogen atoms and NH2 hydrogen atoms)
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or 1.2 (all other hydrogen atoms) times the thermal parameter of the carbon atom to

which they were attached. The hydrogen atoms of O-H groups in six coordinated

methanol molecules in compound 3 were assigned from electron-density map. In the

structure of 3, one methanol molecule was found in the crystal lattice. Detailed

crystallographic information is provided in Table 3.1. Selected interatomic distances

and angles are listed in Table 3.2 for compounds 1 and 2 and Table 3.3 for compound 3.

57Fe Missbauer Spectroscopy. Zero-field M6ssbauer spectra were obtained on an

MS1 spectrometer (WEB Research Co.) with a 57Co source in a Rh matrix maintained at

room temperature in the DCIF. Solid samples were prepared by suspending ca 0.015

mmol of the powdered material in Apeizon N grease and packing the mixture into a

nylon sample holder. All data were collected at 4.2 K and the isomer shift () values are

reported with respect to natural iron foil that was used for velocity calibration at room

temperature. The spectra were fit to Lorentzian lines by using the WMOSS plot and fit

program.'6

Magnetic Susceptibility Measurement. Magnetic susceptibility data for

powdered solid for 1 were measured between 5 and 300 K with applied magnetic fields

of 0.1 T and multifield saturated magnetic susceptibility data for powdered solid 2 were

measured between 2 and 300 K with applied magnetic fields of 0.5, 1, 2.5, and 5 T using

a Quantum design MPMS SQUID susceptometer. The samples were loaded in a gel

capsule and suspended in a plastic straw. The susceptibilities of the straw and gel

capsule were independently determined over the same temperature range and field to

correct for their contribution to the total measured susceptibility. Underlying

diamagnetism of the samples was calculated from Pascal's constants.l7 The saturation

magnetization difference data of 2 were fit using the simplex method to find the spin

Hamiltonian parameter set, yielding the minimum in the standard quality of the fit
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parameter, X2.2 The uncertainties were calculated by averaging the parameters from the

best fits obtained from two independently prepared samples. The detailed data

handling and fitting processes are described in the literature.' 2 The software package

(WMAG) used to carry out the data analysis is a product of WEB Research Co., Edina,

MN, U.S.A

Electrochemistry. Cyclic voltammetric measurements with an EG&G model 263

potentiostat were performed in an MBraun glovebox under nitrogen. A three-electrode

configuration consisting a platinum working electrode, a AgNO3/Ag (0.1 M in

acetonitrile with 0.5 M (Bu4N)PF6) reference electrode, and a platinum mesh auxiliary

electrode was used. The supporting electrode was 0.5 M (Bu4N)PF6 in CH2C12. All cyclic

voltammograms were externally referenced to the Cp2Fe/Cp2Fe' couple.

Resonance Raman Spectroscopy. Resonance Raman spectra of frozen solutions

of 2 oxygenated with either 1602 or sO02 at -78 °C were obtained by using a Kr ion laser

with excitation provided at 647.1 nm and 8 milliwatt of power at the sample. A

monochromator (1200 grooves/nm grating) with an entrance slit of 18 microns and a

TE-CCD-1100-PB-VISAR detector cooled to -30 C with a circulating water bath was

employed in a standard backscattering configuration. Data were collected at -196 °C in

dichloromethane using a glass cryostat, similar in design to one described previously,

that incorporates a copper cold finger.24 The sample concentration was 5 mM. Each

measurement was made on more than one freshly prepared sample and the

measurements were made in triplicate to ensure the authenticity of the results. The

dichloromethane bands at 1156 cml, 897 cm'l, 704 cm1' , and 286 cm' were used as an

internal calibration standard. Data were processed using WinSpec 3.2.1 (Princeton

Instruments, Inc.) and were further manipulated with Kaleidagraph.
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EPR Measurements. X-band EPR spectra were recorded on a Bruker EMX EPR

spectrometer (9.37 GHz) running WinEPR software. Temperature control was achieved

with an Oxford Instruments ESR900 liquid-helium cryostat and an ITC503 controller.

Dry 02 gas was directly bubbled into an 0.50 mM CH2C12 solution of [Fe2(R-

O2CArT°')4(BAPMe)2] for 1 min at -78 °C, resulting in a color change from light yellow to

dark forest green, indicating the formation of a mixed-valent Fe(II)Fe(III) intermediate.

The solution was then frozen at liquid N2.

Stopped-flow Kinetics. Kinetic experiments were performed by using a double-

mixing Canterbury Stopped-Flow SF-40 and MG-6000 Rapid Diode array System (Hi-

Tech Scientific). A CH2C12 solution of 2 prepared in a glove box under a nitrogen

atmosphere and stored in a gas-tight syringe prior to loading into the stopped-flow

apparatus. Dioxygen was introduced to the system as a saturated solution in solvent,

generated by bubbling in dried 02 gas for 30 min at 20 C.

GC/MS Studies. GC/MS analyses were carried out with an HP-5890 gas

chromatograph connected to a HP-5971 mass analyzer. Alltech Econo-cap EC-WAX

capillary columns of dimensions (30 m x 0.25 mm x 0.25 pm) were used for GC/ MS

studies. The following method was used to effect all separations: initial temperature =

100 C; initial time = 5 min; temperature ramp = 100 - 250 C at 25 deg/min. The

products were identified by comparing their retention times and mass spectral patterns

to those of authentic standards. Response calibrations were measured by running

calibration curves with authentic samples and an internal standard of 1,2-

dichlorobenzene. A 7.1 mM CH2C12 solution (1 mL) of compound 2 was loaded into a

vessel fitted with a rubber septum. Dioxygen was bubbled into the solution for one

minute at room temperature and the resulting yellow solution was filtered through a 1
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cm silica column. 63.5 mM toluene solution (0.15 mL) of dichlorobenzene was added.

All samples were prepared in an anaerobic glove box prior to introduction of dried 02.

Kinetic Isotope Effect Measurement. A 7.8 mM CH2Cl2 solution of [Fe2(D-

02CArT°)4(a-d-BAP-Me)2] was bubbled with dry 02 gas at -78 C for 1 h, warmed to

room temperature, and filtered through a 1 cm (diameter, 0.6 cm) dry silica column. IH-

NMR spectroscopy (CD2Cl2) was used to determine the product distribution by

comparing the integration of 9.85 ppm (s, 1H) and 7.83 ppm (d, I = 8.5 Hz, 2H) peaks.

Results and Discussion

Synthesis and Structural Characterization of Compounds [Fe2(Dg-

O2CArT°')4(BA)2 1 (1) and [Fe:2( -O 2CArT °)4(BAO°M)2 ] (2). Addition of 2 equiv of BA to

[Fe2(-0 2CArToi)2(02CArT°I)2(THF)2] in CH2C 2 afforded the tetracarboxylate-bridged

diiron(II) compound [Fe2(R-O2CArT°I)4(BA)2]1 (1) in good yield (Scheme 3.2). The

structure of 1 is depicted in Figure 3.1 and Table 3.2 lists selected bond lengths and

angles. Two crystallographically inequivalent iron(II) centers have square pyramidal

geometry with an NO4 coordination environment and are linked by four terphenyl-

based carboxylates. These geometric parameters closely resemble those of previously

reported paddlewheel type diiron(II) complexes.?26 Interestingly, the Fe ...Fe distance

(2.7937(6) A) of 1 is comparatively shorter than that of the compound [Fe2(g-

0 2CArT°')4(4-t'BuC 5H 4N)2], 2.8229(9) A, where 4-t BuC5 H4N is 4-tert-butylpyridine .?

Using BAPM'e in place of BA, the compound [Fe2(t-0 2CArT°l)4(BAP°Me)21 (2) was

synthesized and the structure determined. Selected bond lengths and angles for 2

(Figure 3.2) are listed in Table 3.2, revealing very close similarities with compound 1.

The Fe...Fe distance is 2.7638(17) A. The closest intermolecular separation between the

centers of the diiron(II) unit of 2 are 11.631 A (Figure 3.2, bottom right), a value
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indicating that the diiron(II) sites in 2 are magnetically isolated. Since 1 is not very

soluble in most aprotic organic solvents, further studies were performed exclusively

with compound 2.

Synthesis and Structural Analysis of [Fe4(-OMe) 4(O2CArT') 4(HOMe)6](HOMe)

(3). The methoxide-bridged cubane-type tetrairon(II) cluster 3 was initially isolated

when the solubility of compound 2 in methanol was tested. The crystal structure of 3 is

shown in Figure 3.3 and selected bond lengths and angles are listed in Table 3.3.

Compound 3 has a distorted cubic Fe4(gl-OMe)4}4' unit, in which Fe4 and (OMe)4

disphenoids are interpenetrating. Three iron(II) sites (Fel, Fe2, and Fe3) have slightly

distorted octahedral geometries with an 06 donor atom set. By contrast, the Fe4 site has

a distorted trigonal bypyramidal 05 coordination environment, resulting in overall C1

point group symmetry for compound 3. Unlike the monodentate carboxylates

coordinated to the three octahedral Fe(II) sites, the carboxylate ligand at the Fe4 site is

chelating, with Fe-O separations of 2.0957(17) A and 2.2101(19) A. The

Fe-O(methoxide) average distance is 2.116(56) A and the Fe-O-Fe angles are closely

distributed, ranging from 92.20 (6)0 to 98.24 (7)°. The average Fe---Fe separation is

3.134(33) A. The other coordination sites in three octahedral iron(H) sites are filled by 3

x 2 methanol molecules. The assignment of methanol over methoxide is supported by

overall charge balance considerations as well as by the location and refinement of the

associated hydrogen atoms from the difference electron density maps. The coordinated

methanols and terminal monodentated carboxylates generate a tight intracluster net-

work of hydrogen bonds with an average 0.. 0 separation of 2.675(44) A. Such

hydrogen bonding interactions may help the assembly of the Fe4([t-OMe)4}* core.

Both the absence of BA°M e ligands and the presence of deprotonated methoxide

in the structure of 3 suggest that the basic amine ligand (BA°Me) may deprotonate
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methanol to form the methoxide anion. The methoxide ions so generated react with the

metal ion to afford the isolated cubane-type tetrairon(II) complex. This hypothesis was

tested by treating a methanol solution of a mixture of NaO2CArT and Fe(OTf)2-2CH3CN

with 1 equiv of triethylamine (Method B), affording compound 3. The chemistry

discussed here limits the range of solvents that can be used to characterize the physical

properties and study the reactivity of these carboxylate rich diiron(II) complexes.

Miissbauer Spectroscopy. The zero-field M6ssbauer spectra of solid samples of

1, 2 and 3 at 4.2 K are displayed in Figures 3.4. and 3.5. The corresponding parameters

derived from fits of the spectra are provided in Table 3.4. Both compound 1 and 2

displays a broad and asymmetric signal that was best fit as two overlapping

quadrupole doublets. The crystallographically inequivalent iron(II) sites may be

distinguished in the M6ssbauer spectra. The isomer shifts and quadrupole splittings are

typical of high-spin iron(II) centers and comparable to those reported for related

tetracarboxylate bridged diiron(II) complexes.

Two distinct quadrupole doublets with 1:3 intensity ratio are observed in the

M6ssbauer spectrum of 3 at 4.2 K (Figures 3.5). This result is in accord with the two

types of iron(II) sites with different geometries revealed by X-ray crystallography. The

M6ssbauer fit parameters are listed in Table 3.4. It is noteworthy that the iron(I) sites

with 06 coordination environments have a larger isomer shift of 1.30(2) mm/s than the

iron(II) site with 05 geometry (1.17(2) mm/s).

Magnetochemistry. The effective magnetic moments (eff) of 1, measured at 0.1

Tesla, steadily increase from 8.0 /B at 300 K to a maximum of 8.6 IB at 80 K, before

decreasing to 7.7 ,B at 5 K (Figure 3.6). This behavior indicates weak ferromagnetic

exchange coupling between the two high-spin iron(ll) centers of the tetracarboxylate-
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bridged dimer. The measured value of 8.0 /B at 300 K is consistent with the presence of

two uncoupled S = 2 centers with g = 2.3 (expected Lef value of 7.967).

One complicating feature of diiron(II) complexes in elucidating their exchange

coupling interaction is the large zero-field splitting (ZFS) effect, up to - 120 cm1 I, which

can affect the magnetic behavior even at fairly high temperatures.2 7 In the case of I D I 

J (where D and J are axial ZFS and exchange coupling parameters, respectively), the

solutions from single field magnetic data are not often unique. In order to address the

ZFS effect, multifield saturated magnetic susceptibilities of 2 from 2K to 300K were

measured (Figure 3.7). A Curie magnetization law plot of the data set at 0.5 T has a near

zero intercept, -0.015 with R = 0.99, indicating no significant intermolecular interaction

(Figure 3.8). This result is in agreement with the very long intermolecular distance

observed in the crystal lattice. Thus, the observed magnetic data were considered to

reflect only the intramolecular interactions.

The energy levels of the system formed by two exchange coupled high-spin

ferrous (S = 2) sites can be described by the spin Hamitonian, given in eq 1, where is

the isotropic exchange coupling constant, Di and Ei are the axial and rhombic zero-field

splitting parameters, and gi are the g tensors of the uncoupled site (i = 1, 2).

H = -2JS1-S2 + Yi[D1(Sz2-2) + E,(Sx2- Syi2) + f3 SigiH] i = 1, 2 (1)

We assumed two identical high spin Fe(II) sites to prevent over-

parameterization. In Figure 3.7 (Top) the data are presented as magnetic moment versus

temperature at all four fields. In Figure 3.7 (Bottom) the data are presented as

susceptibility versus temperature. The solid lines in Figure 3.7 were calculated by

diagonalization of the full 25 x 25 spin Hamiltonian of eq 1 with J = 9.2(0.8) cmr', D, = D2
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= -5(0.2) cm-', El/D, = E2/D2 = 0.14(0.3), and g, = g2 = 2.23(0.8). The small positive J

value indicate that the high-spin diiron(II) sites are weakly but ferromagnetically

exchange coupled. The significant difference between the magnetic behavior of 1 and 2

compared to the previously reported strong antiferromagnetic exchange coupling

interaction for the paddlewheel complex [Fe2(-O 2CArT °I)4(4-BuC5H4N)2] must reflect

small differences (-0.03-0.06 ) in Fe...Fe distance as well as the electronic character of

the axial ligands. Theoretical studies are required for further insight.

Electrochemistry. The electrochemical properties of 2 were investigated to

evaluate the one-electron oxidation potential and to probe the possibility of outer-

sphere redox chemistry with dioxygen. Cyclic voltammograms of a CH2Cl2 solution of 2

revealed a quasi-reversible, one-electron oxidation at El/2 = 69 mV vs. Cp2Fe/Cp2Fe'

(AEp = 114 mV, scan rate = 25 mV/s) (Figure 3.8). This potential can be converted to

+772 mV vs. NHE. Conversion from Cp2Fe/Cp2Fe+ scale to NHE scale was based on

following values: Cp2Fe/Cp2Fe = 460 mV vs. SCE (in CH2C12 with (Bu4N)PF6

supporting electrolyte),' SCE = +242 mV vs. NHE.' Based on the measured El/2 value

for oxidation of 2, outer-sphere electron transfer upon reaction with dioxygen to form

(Fe2 lI + 021 is unlikely to occur, due to the low reduction potential of dioxygen (02/02-

= -550 mV vs. NHE) in CH2CL2 .

Reactivity with Dioxygen and Characterization of Intermediates. When a

CH2 C2 solution of 2 was allowed to react with dioxygen at -78 C, a green color

developed (Xmax = 645 nm) over a period of 200 sec. This metastable solution decayed

within -6 h at -78 °C to form a yellow species (Figure 3.9 a). Clues to the identity of the

observed green intermediate were provided by resonance Raman (rR) and EPR

spectroscopic measurements. The frozen solution rR spectrum was measured, revealing

an enhanced peak at 844 cm-' (Figure 3.10). This peak is not 8 0O-sensitive, which
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indicates that the chromophore does not contain an Fe-O bond derived from dioxygen.

A rR peak with similar charactertics has been previously reported for the intermediate

formed by oxygenation of [Fe2(-O 2CArT) 4(4-'BuC5 H4N) 21.2 8 29

The X-band EPR spectra of the green intermediate measured at 5 K exhibited two

distinct signals at g = 12 and g = 2.0 (Figure 3.11). The broad g = 12 signal may originate

from a ferromagnetically coupled high spin Fe(II)Fe(III) unit with an S = 9/2 ground

state. This assignment was confirmed by comparison to the UV-vis and EPR spectra of

the chemically synthesized, mixed-valent [Fe2(.t-O2CArT°I)4(BAPMe')2](PF6) complex

(Figures 3.10b and 3.11b). The g = 2.0 signal (Figure 3.11) must then arise from an

antiferromagnetically coupled Fe(III)Fe(IV) unit with an S = 1/2 ground state. These

observations are identical to the reported behavior of the tetracarboxylate bridged

diiron(II) complex [Fe2(t-O2CArT l)4(4-BuC5H4N)2] in the presence of dioxygen.

Oxygenation Product and Kinetic Isotope Effect (KIE) Analyses. The products

formed upon exposure of a CH2C2 solution of 2 to dioxygen at ambient temperature as

analyzed by GC-MS include anisaldehyde, with an average yield of 26(7) % per Fe' 2

unit. This product corresponds to N-dealkylation following putative hydroxylation at

the benzylic position. This supposition was confirmed by the reaction of [Fe2(ji-

O2CArT°l)4(a-dd-BAPMe)2] in CH2C12 solution with dioxygen at -78 C, which afforded

anisaldehyde and dl-anisaldehyde in a ratio of -1:3 (Figure 3.12). This kinetic isotope

effect is consistent with C-H bond cleavage in the product-determining step of the

reaction. The benzyl substituent in 2 being positioned such that the C-H bonds to be

activated are a to the metal-bound nitrogen atom.
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Summary

Generation of the mixed valence intermediates and N-dealkylation might occur

via the following scenario. Reaction of 2 with dioxygen affords a transient adduct [2-02,1

that never accumulates, possibilities for which are as Fe2,"m(02 ), Fe2m(022), or Fe2W(02-)2.

Based on the E/2 value for oxidation of 2 measured electrochemically, outer-sphere

electron transfer upon reaction with dioxygen to form {Fe2ILm + 02-} is unlikely to occur,

due to the low reduction potential of dioxygen in dichloromethane. We therefore

conclude that a transient [2-02] adduct forms, but before it can accumulate to any

spectroscopically detectable concentration, it reacts rapidly with unreacted 2 to afford

an equimolar mixture of the green mixed-valent Fe"Fem and Fe'Fe'V complexes. A

similar sequence of reactions was proposed for the chemistry of [Fe2(t-O2CArToi)4(4-

tBuCH4N)2] with dioxygen.

Oxidative N-dealkylation of compound 2 may proceed by one-electron oxidation

at the nitrogen atom followed by proton transfer and rebound (Scheme 3.1), stepwise

oxygen recoil/ rebound, or by a concerted mechanism. The absence of a lone pair of

electrons in the coordinated BApOMe ligand eliminates the first of these possibilities for

the present reaction. The involvement of electron transfer between the intermediate and

starting diiron(II) complex to generate mixed-valent species does not allow us to

determine the reaction mechanism for this step.
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Table 3.1. Summary of X-ray Crystallographic Information for [Fe2(t-O 2CArT°l)4(BA)2]

(1), [Fe2([-O 2CArT°) 4(BAPM) 2] (2) and [Fe 4(-OMe) 2 (02 CArTO)4(HOMe) 6] (3)

Compound 1 2-0.5CH 2C12 3-MeOH

Empirical formula
Fomula weight
Space group
aA
bA
cA
a, deg
S, deg

Y, der
v,A
z
Pcalc, g/cm 3

T,°C
RI(Mo Ka), mm-f
total no. of data
no. of unique data
no. of params
R1 (%)a

wR2 (%)b
Largest diff. peak
and hole

Fe2C98HO, 8N2

1531.39
P21/n
14.6583(18)
19.801(3)
27.365(4)

91.968(2)

7938.2(17)
4
1.281
-80
0.426
57047
18357
1007
5.38
10.31
0.508
-0.615

Fe2 C9 2H8O 12

1633.90
Pe

14.353(9)
16.211(9)
19.993(12)
70.78(3)
89.83(3)
76.08(3)
4249(4)
2
1.277
-133
0.435
26166
18658
1064
5.78
15.83
1.184
-0.318

Fe4 C95 Hl080 1 9

1777.21
P21/ c
17.421(3)
14.762(2)
36.701(6)

102.017(3)

9232(3)
4
1.279
-100
0.682
46880
16172
1127
3.78
11.84
0.816
-0.493

a R1 = ZlFol - IFII/EFolj. b wR2 = {[w(Fo 2 - F2)2]: [W(Fo2)2]}'12
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Table 3.2. Selected interatomic bond lengths (A) and angles (deg) for [Fe2([L-

O2CArT°) 4(BA)2] (1) and [Fe2(W-O2CArTi°) 4(BAP°oMe)2] (2)a

Compound 1 2-0.5CH 2C12

Fel...Fe2
Fel-O1
Fel-03
Fel-05
Fel-07
Fe2-02
Fe2-04
Fe2-06
Fe2-08
Fel-N2
Fe2-N2
O1-Fel-Nl
03-Fel-Nl
05-Fel-N1
07-Fel-N1
02-Fe2-N2
O4-Fe2-N2
06-Fe2-N2
08-Fe2-N2
01-Fel-03
01-Fel-05
01-Fel-07
03-Fel-05
03-Fel-07
05-Fel-07
02-Fe2-04
02-Fe2-06
02-Fe2-08
04-Fe2-06
04-Fe2-08
06-Fe2-08

2.79379(8)
2.0953(13)
2.1256(19)
2.046(2)
2.0831(19)
2.074(2)
2.0372(19)
2.1754(19)
2.0512(19)
2.119(3)
2.130(3)
86.71(10)
90.30(11)
110.51(10)
106.29(11)
116.15(10)
99.26(12)
81.61(10)
97.18(12)
87.31(7)
162.40(8)
86.80(8)
88.95(8)
162.03(7)
91.56(8)
91.79(8)
162.15(7)
88.38(8)
86.76(7)
161.57(8)
87.46(7)

2.7638(17)
2.102(2)
2.044(2)
2.120(2)
2.039(2)
2.049(2)
2.067(2)
2.036(2)
2.143(2)
2.105(3)
2.119(3)
100.63(12)
103.96(13)
96.30(12)
91.45(13)
101.23(11)
116.05(11)
95.36(11)
83.77(11)
86.72(9)
163.08(8)
90.63(9)
89.22(9)
164.59(8)
88.93(9)
90.59(9)
162.11(9)
88.14(9)
88.06(9)
159.96(8)
87.06(9)

aNumbers in parentheses are estimated standard deviations of the last significant figure.
Atoms are labeled as indicated Figure 3.1 and 3.2.
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Table 3.3. Selected interatomic bond lengths (A) and angles (deg) for [Fe4(i-

OMe) 2(O2CAr'o) 4(HOMe)6](HOMe) (3)a

Fel-O1-Fe2
Fel-O1-Fe3
Fel-02-Fe2
Fel-02-Fe4
Fel-03-Fe3
Fel-03-Fe4
Fe2-01-Fe3
Fe2-02-Fe4
Fe2-04-Fe3
Fe2-04-Fe4
Fe3-03-Fe4
01-Fel-02
01-Fel-03
01-Fe2-02
01-Fe2-04
01-Fe3-03
01-Fe3-04
02-Fel-03
02-Fe2-04
02-Fe4-03
03-Fe3-04
03-Fe4-04
04-Fe4-012
04-Fe4-O11
O11-Fe4-012
02-Fe4-011
02-Fe4-012
03-Fe4-011
03-Fe4-012

97.90(7)
97.32(7)
94.15(6)
97.02(7)
92.20(6)
98.24(7)
97.04(7)
94.79(7)
94.79(6)
94.16(6)
93.14(7)
83.24(6)
85.46(6)
83.49(6)
83.01(6)
83.51(6)
84.41(6)
79.57(6)
82.64(6)
85.16(7)
82.38(6)
88.43(7)
154.33(7)
94.32(7)
60.27(7)
131.75(8)
111.21(7)
143.02(8)
109.45(7)

Fel..-Fe2
Fel-..Fe3
Fel ..Fe4
Fe2-..Fe3
Fe2 ...Fe4
Fe3.-.Fe4
Fel-O1
Fel-02
Fel-03
Fe2-01
Fe2-02
Fe2-04
Fe3-01
Fe3-03
Fe3-04
Fe4-02
Fe4-03
Fe4-04
05 -015
06 -014
07' .018
08-016
09 .013
010 -017
Fe4-011
Fe4-012

3.1680(6)
3.1453(6)
3.1580(6)
3.1435(6)
3.0907(6)
3.0956(7)
2.0972(17)
2.1715(17)
2.1406(17)
2.1037(16)
2.1550(17)
2.1582(16)
2.0920(16)
2.2237(17)
2.1123(16)
2.0429(17)
2.0353(17)
2.0611(16)
2.646(3)
2.718(3)
2.743(3)
2.654(3)
2.640(3)
2.647(3)
2.0957(19)
2.2101(19)

aNumbers in parentheses are estimated standard deviations of the last significant figure.
Atoms are labeled as indicated Figure 3.3.
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Table 3.4. Summary of M6ssbauer parameters for [Fe2(i-02CArT°t)4(BA)2] (1), Fe2(t-

O2CArT°I) 4(BAP M e)2] (2), and [Fe 4(jt-OMe) 2(O2CArT a°)4(HOMe)6 ] (3)

1 2 3

6 (mm/s) 1.08(2) 1.12(2) 1.06(2) 1.14(2) 1.17(2) 1.30 (2)
AEQ (mm/s) 2.12(2) 2.58(2) 2.12(2) 2.44(2) 2.35(2) 3.53(2)
r 0.29(2) 0.22(2) 0.25(2) 0.33(2) 0.28 (2) 0.28(2)
Area 1 1 1 1 1 3
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Scheme 3.1.
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02

01

05
06

Figure 3.1. Top: ORTEP diagram of [Fe2(R-O2CArT°) 4(BA)2] (1) showing 50 % probability

thermal ellipsoids for all non-hydrogen atoms. Bottom: The aromatic rings of ArTiCO2-

ligands are omitted for clarity.
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Figure 3.2. Top: ORTEP diagram of [Fe2(W-O2CArT°l)4(BAPMe)2] (2) showing 50%

probability thermal ellipsoids for all non-hydrogen atoms. Bottom left: The aromatic

rings of ArT°CO2- ligands are omitted for clarity. Bottom right: Crystal packing diagram

of 2.
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Figure 3.3. Top: ORTEP diagram of [Fe4(R-OMe)4(O0CArT °) 4(HOMe)6] (3) showing 50 %

probability thermal ellipsoids for all non-hydrogen atoms. Bottom left: The aromatic

rings of ArT°ICO2' ligands are omitted for clarity and hydrogen-bonding interactions are

depicted with dot lines. Bottom right: The cubane core diagram with carboxylates and

bridging methoxides.
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Figure 3.4. Zero-field M6ssbauer spectrum (experimental data (I), calculated fit (-))

recorded at 4.2 K of the solid sample of [Fe2(1.-O2CArT°l)4(BA)2] (1) and [Fe2([-

O2CArT°I)4(BAPMe )2] (2), top and bottom, respectively.
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Figure 3.5. Zero-field M6ssbauer spectrum (experimental data (I), calculated fit (-))

recorded at 4.2 K of the solid sample of [Fe4(L-OMe)4(O2CArT°I)4(HOMe)6] (3).
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Figure 3.6. Plots of the effective magnetic moment (aff) per molecule versus
temperature (filled circles) and molar susceptibility (XM) versus temperature (unfilled

circles) for [Fe2(t-O 2CArT°) 4(BA)2] (1).
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Figure 3.7. Plots of the effective magnetic moment (ff) per molecule versus

temperature (Top) and molar susceptibility (XM) versus temperature (Bottom) for [Fe2(g-

O2CArTO°)4(BAP-Me)2] (2). The line represents the fit.
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Figure 3.8. Plots of molar susceptibility (XM) versus inverse temperature for [Fe2([-

O 2CArT°') 4(BAP~Me)2] (2), measured at 0.5 T.
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Figure 3.9. Cyclic voltammogram of [Fe2(hx-O2CArTi°)4(BAP°Me)2] (2) in CH2 C12 with 0.5 M

(Bu4N)PF6 as supporting electrolyte and a scan rate of 25 mV/s. The inset is a cyclic
voltammogram of Cp2Fe+ / Cp2Fe.
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Figure 3.10. (a) Spectral changes that occur during the reaction of 2 (1.46 x 10' M) with

dioxygen in CH2Cl2 at -78 C. (Inset) Kinetic trace for the development and decay of the

intermediate recorded at 645 nm. (b) UV-vis spectrum of [Fe2(W-O2CArT I')4(BAP

OMe)2(PF 6) in CH 2C12.
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Figure 3.11. Resonance Raman spectra of the frozen solution of intermediates derived

from the oxygenation of [Fe2(t-O02CArT°I)4(BAP' M e)2I (2) with 1602 (top spectrum) and 1802

(bottom spectrum) at -78 °C. The asterisk indicates a solvent band.
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Figure 3.12. X-band EPR spectra of a frozen CH2C12 solution sample of (a) intermediate

species generated by the oxygenation of 2 at -78 C, (b) [Fe2(t-O 2CArT°l)4(BAP°Me)21(PF 6),

measured at 5 K.
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Figure 3.13. The oxygenation product distribution of [Fe 2(y-O 2CArT") 4(a-d,-BAPMe) 2 ] (4)

at -78 C. a) and b) H NMR spectrum: 9.85 ppm (s, 1H from anisaldehyde), 7.83 ppm
(d, 2H from the combination of anisaldehyde and d,-anisaldehyde).



Chapter 4

Synthesis and Characterization of {Fe2(-OH) 2(-O 2CR)3 + and {Fe2(-

O)(-O 2CR))3 + Complexes with Carboxylate-Rich Metal Coordination

Environment as Models for Diiron Centers in Oxygen-Dependent Non-

Heme Enzymes*
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Introduction

Carboxylate-bridged diiron clusters are frequently found among dioxygen-

dependent non-heme enzymes, including the R2 subunit of ribonucleotide reductases

(RNR-R2), soluble methane monooxygenase (sMMOH), and A9 desaturase (A9D).1-5 The

diiron active sites within these enzymes include four carboxylates and two histidine

ligands derived from the amino acid residues. This structural motif is effectively

utilized to achieve diverse functions, such as the generation of a stable tyrosyl radical,

methane oxidation, and the insertion of a 9,10 cis-double bond into a bound fatty acid.

Subtle changes in the universal structure of the diiron core might have been necessary

for these enzymes to accomplish their diverse physiological roles. One distinct

difference occurs in the structure of the oxidized forms of the diiron center, which is

{Fe2(ji-OH)2 (LO 2CR)}3+ in sMMOHo6'7 and {Fe2(RwO)(W-O2CR)}3 + in RNR-R28 (Chart 4.1).

A (-oxo)diiron(III) core has been proposed as the structure of the oxidized form of A9D,

based on spectroscopic informations.9 Changes in the bridging ligand at these diiron(III)

sites are reflected not only in their functions but also in their spectroscopic and

magnetic properties.l

To unravel the relationships among the structural, functional, and physical

properties of diiron sites in these enzymes, small model complexes have been prepared

and studied concurrently with direct investigations of the natural systems. For

examples, a number of symmetric diiron complexes employing nitrogen and phenolic

oxygen ligands have been reported as mimics for the asymmetric diiron sites in

enzymes with carboxylate-rich metal coordination environment." 2 Studies of these

complexes contributed to an initial understanding of the native enzymes. The model

complexes with N-rich metal coordination environments, however, have limitations in

- - - --- - - - -
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reproducing the structural and physical properties of diiron cores in enzymes having 0-

rich ligand sets. The synthesis of asymmetric model complexes with a carboxylate-rich

coordination environment is required to elucidate the close relationship between

structure and function or physical properties of diiron sites in this series of related

enzymes.

The synthesis of complexes wtih Fe2(g-OH)2(g-O2CR)}3 or {Fe2(-O)(-0 2CR)}3`

cores in a carboxylate-rich coordination environment, however, is often challenging due

to the propensity of iron(III) salts to form oligo- or polynuclear iron(III) complexes.

Along with hydrolysis of ferric salts in the presence of a chelating ligand, a commonly

used strategy to prepare diiron(III) model complexes is direct oxygenation of

carboxylate-bridged diiron(II) complexes. This route mimics the oxidation process of

the enzymes and results in the isolation of diiron(III) complexes with coordination

geometries similar to those of the enzymes."'3 4 The first synthetic analogue of the

{Fe2(t-OH) 2(w-O2CR))3 core of sMMOHox was synthesized by direct oxygenation of the

diiron(II) complex [Fe2(-O02CArT°l)2(02CArT°')2(N,N-Bn2en)2], where ArT°ICO2 is 2,6-di(p-

tolyl)benzoate and N,N-Bn2en is N,N-dibenzylethylenediamine.3 "5

An alternative strategy is to decompose a carboxylate-bridged diiron(II) complex

into its mononuclear components and, upon oxygenation, bimolecular combination can

generate a diiron(III) product via a possible Fe2(02) intermediate adduct (Scheme 4.1). In

this chapter, we describe such an approach, namely, the synthesis of carboxylate-rich,

asymmetric Fe2([t-OH)2(4-0 2CR)}3' and {Fe2(t-O0)(-02CR))3 cores from direct

oxygenation of mononuclear iron(II) complexes. Their physical properties, including

electronic transitions, M6ssbauer spectra, and magnetic data, have been characterized

and are compared with those of the diiron sites of the related enzymes.
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Experimental Section

General. All reagents were obtained from commercial suppliers and used as

received unless otherwise noted. Dichloromethane, pentane, THF, and toluene were

saturated with argon and purified by passage through activated A1203 columns under

argon.'6 Dioxygen (99.994%, BOC Gases) was dried by passing the gas stream through

Drierite. The compounds [Fe2(-O 2CArT°I)2(O2CArT°) 2(THF)2] and [Fe2(-O 2CAr4 FPh)2-

(O2CAr4FPh)2(THF)2], where -O2CArT' is 2,6-di(p-tolyl)benzoate and O2CAr4F 'Ph is 2,6-

di(p-fluorophenyl)benzoate, were prepared as described in the literature.'4 Air-sensitive

manipulations were carried out under nitrogen in an MBraun glovebox. FT-IR spectra

were recorded with a Thermo Nicolet Avatar 360 spectrometer. UV-vis spectra were

recorded on a Hewlett-Packard 8453 diode array spectrophotometer.

[Fe(O2 CArT °l)2(Hdmpz)2 1 (1). To a rapidly stirring light yellow CH 2C12 (6 mL)

solution of [Fe2(p-O2CArT°I)2(O2CArT ') 2(THF)2] (92 mg, 0.062 mmol) was added Hdmpz

(23 mg, 4.0 equiv) to afford a light yellow homogeneous solution. After 2 h of stirring,

the solution was filtered through Celite and reduced to 3 mL under reduced pressure.

Light violet block crystals of 1 were isolated in 91 % yield upon vapor diffusion of

pentane into the solution. The structure was determined by X-ray crystallography. FT-

IR (KBr, cm') 3356(w, br), 3050 (w), 3022 (w), 2919 (w), 2862 (w), 1618 (w), 1612 (w),

1585 (s), 1577 (s), 1571 (s), 1560 (s), 1542 (s), 1514 (s), 1405 (w), 1384 (m), 811 (s), 789 (s),

705 (s), 585 (w), 524 (m). Anal. Calcd. for C52H50FeN404: C, 73.41; H, 5.92; N, 6.58.

Found: C, 73.88; H, 6.14; N, 6.59.

[Fe(O2CAr4FPh)2(Hdmpz)2] (2). This compound was prepared as described above

for 1 (yield 85 %) using [Fe2(,-O 2CAr4FPh)2(O2CAr4FPh)2(THF)2] as the precursor. The



143

structure was determined by X-ray crystallography. FT-IR (KBr, cm'l) 3200 (w, br), 3041

(w), 2928 (w), 2863 (w), 1599 (s), 1562 (s), 1511 (s), 1475 (m), 1454 (m), 1403 (w), 1370 (m),

1288 (w), 1216 (s), 1158 (m), 1096 (w), 1037 (m), 1014 (w), 845 (s), 815 (s), 791 (s), 772 (m),

740 (w), 718 (w), 706 (s), 598 (w), 584 (w), 555 (m), 531 (m), 469 (w), 421 (w). Anal. Calcd.

for C48H 38F4FeN404: C, 66.52; H, 4.42; N, 6.46. Found: C, 66.06; H, 4.32; N, 6.74.

[Fe2(i-OH) 2(~-0 2 CArT°)(O2CArT°I)3 (OH2 )(Hdmpz)21 (3). A colorless toluene (10

mL) solution of 1 (15 mg, 0.017 mmol) was saturated with dry dioxygen by bubbling

over a period of 10 min, resulting in a golden yellow solution. The solvent was

evaporated under reduced pressure and the resulting yellow powder was dissolved in 3

mL of CH2Cl2. The solution was filtered through Celite and pentane was diffused into it.

Yellow needle crystals of 3 (11 mg, 70 %) were obtained after several days and analyzd

by X-ray crystallography. FT-IR (KBr, cm'l) 3572 (w, br), 3386 (w), 3283 (w, br), 3053 (w),

3023 (w), 2920 (w), 2864 (w), 1609 (m), 1574 (s), 1539 (s), 1515 (s), 1542 (s), 1408 (m), 1348

(w), 1305 (m), 1145 (w), 1110 (w), 1070 (w), 1045 (w), 818 (s), 800 (s), 785 (s), 765 (m), 714

(m), 699 (m), 585 (m), 543 (m), 522 (m). Anal. Calcd. for Cg4H8Fe 2N 401 : C, 72.31; H, 5.68;

N, 3.59. Found: C, 71.81; H, 5.52; N, 3.55.

[Fq(-O)(-O 2CAr 4F'Ph)(O 2CAr4FPh)3(Hdmpz)3](CH2Cl2) (4). A colorless toluene

(20 mL) solution of 2 (126 mg, 0.145 mmol) was saturated with dry dioxygen by

bubbling over a period of 10 min. The yellow brown solution was filtered through

Celite and the volatile portion evaporated under reduced pressure. The brown powder

was dissolved in 3 mL of CH2C12 and pentane was diffused into it. Brown block crystals

of 4 (98.3 mg, 78 %) were obtained overnight and analyzed by X-ray crystallography.

FT-IR (KBr, cm -') 3369 (w), 3206 (w), 2929 (w), 1607 (w), 1574 (w), 1539 (m), 1511 (s),

1452 (m), 1411 (m), 1375 (m), 1281 (w), 1223 (s), 1159 (m), 1043 (w), 865 (w), 833 (m), 817
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(m), 771 (w), 712 (m), 701 (w), 555 (w), 531 (w). Anal. Calcd. For C92H70C12F8Fe2N 6O 9: C,

63.57; H, 4.06; N, 4.83. Found: C, 63.45; H, 4.27; N, 4.87.

Physical Measurements. M6ssbauer spectra were obtained on an MS1

spectrometer (WEB Research Co.) with a 57Co source in a Rh matrix maintained at room

temperature in the Massachusetts Institute of Technology Department of Chemistry

Instrument Facility (MIT DCIF). Solid samples were prepared by suspending ca 30 mg,

25 mg and 80 mg of the powdered material 2, 3 and 4, respectively, in Apeizon N grease

and packing the mixture into a nylon sample holder. Data were collected at 4.2 K and

the isomer shift (6) values are reported with respect to natural iron foil that was used for

velocity calibration at room temperature. The spectra were fit to Lorentzian lines by

using the WMOSS plot and fit program."

Magnetic susceptibility data for powdered solid were measured between 5 and

300 K with applied magnetic fields of 0.1 T using a Quantum design MPMS SQUID

susceptometer. The sample was embedded in a gel capsule using the parafilm and

suspended in a plastic straw. The susceptibilities of the straw and gel capsule with

parafilm were independently determined over the same temperature range and field for

correction of their contribution to the total measured susceptibility. Underlying

diamagnetism of the sample was calculated from Pascal's constants.'8 The molar

magnetic susceptibility data were fit to the expression derived from the general

isotropic exchange Hamiltonian, H = -2JS,S2, where S, = S2 = 5/2. This expression is

given in eq 1, where x = J/kT and p is the mole fraction of a paramagnetic impurity with

S = 5/2. The uncertainties in spin Hamiltonian parameters are derived from the results

of fitting data collected from two independently prepared samples.
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Ng'B 2e 2 x + 10e6x + 28e12x + 60e2 0 x + I 110e +
XM x +4.4plT (1)XM - kT 1 + 3e2' + 5e6x + 7e2 + 9e2 + 1 le (1)

X-ray Crystallographic Studies. Intensity data were collected on a Bruker

(formerly Siemens) CCD diffractometer with graphite-monochromatized Mo Ka

radiation ( = 0.71073 A), controlled by a Pentium-based PC running the SMART

software package. Single crystals were mounted at room temperature on the tips of

quartz fibers, coated with Paratone-N oil, and cooled under a stream of cold nitrogen

maintained by a Bruker LT-2A nitrogen cryostat. Data collection and reduction

protocols are described elsewhere.'9 The structures were solved by both direct and

Patterson methods and refined on F2 by using the SHELXTL software package.'

Empirical absorption corrections were applied with SADABS2 , part of the SHELXTL

program package, and the structures were checked for higher symmetry by the

program PLATON.22 All non-hydrogen atoms were refined anisotropically. In general,

hydrogen atoms were assigned idealized positions and given thermal parameters

equivalent to either 1.5 (methyl hydrogen atoms) or 1.2 (all other hydrogen atoms)

times the thermal parameter of the carbon atom to which they were attached. Hydrogen

atoms of N-H of Hdmpz, O-H of bridging hydroxides, and water molecule were

assigned using difference Fourier electronic density maps. Hydrogen atoms of

disordered CH2C12 molecules were not included in the refinement. In the structure of 1,

one CH2C12solvent molecule was assigned in the lattice. The structure of 3 contains 3.25

CH2C 2 molecules that were distributed over four positions at occupancies of 0.75, 0.75,

0.75, and 1.00. In the structure of 4, one Hdmpz ligand coordinated to Fe2 is disordered

over two positions. They were split over two conformations with 0.5 occupancy factors.
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One lattice CH2C12 molecule was found in compound 4 in two positions with 0.5

occupancy factors.

Results and Discussion

Rationale for the synthetic approach. The observation of a green

peroxodiiron(III) species during the oxygenation of [Fe(O2CR){HB(pz')3)}, pz' = 3,5-

bis(isopropyl)pyrazoyl, provided an early validation of the strategy for bimolecular

combination of mononuclear iron(II) complexes to generate a diiron(III) product by

oxygenation.2'24 Upon warming to ambient temperature, however, the structural

integrity of the spectroscopically characterized, [Fe2(-O 2)(O2CR)2{HB(pz')3}2] complex

was lost, resulting in a trinuclear iron(III) product. This example suggested to us that

oxygenation of mononuclear iron(II) complexes would be a good route to di([L-

hydroxo)diiron(III) species if ligand framework were able to stabilize the dinuclear

entity.

Previous work in our group demonstrated that m-terphenyl-based carboxylates

can provide such a framework. Diiron(II) complexes were synthesized using bulky

carboxylates, and Fe2([-OH)2(1t-O2CR)n=2} species were isolated from oxygenation of

these diiron(II) precusors.'3" 4 Mononuclear iron complexes with these sterically bulky

carboxylates have also been previously synthesized. The mononuclear iron(II)

precursors to assemble interesting diiron(III) complexes upon oxygenation, however,

had not been reported yet.

Synthesis. The reaction of [Fe2(-O 2CArTO)2(O2CArTa)2(THF)2, where O 2CArT is

2,6-di(p-tolyl)benzoate, with 4 equiv of Hdmpz quantitatively yielded the mononuclear

iron(II) compound 1 (Scheme 4.2). Oxygenation of a solution of 1 afforded crystalline 3,
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containing the {Fe2(-OH) 2(-O 2CR))3 + core. Compound 2, the analogue of 1, was

prepared using [Fe2(-O 2CAr4 FPh)2(O2CAr4FPh)2(THF)2] (-O2CAr4F'Ph = 2,6-di(p-

fluorophenyl)benzoate). A colorless toluene solution of 2 reacts with dioxygen,

resulting in a green brown solution. Compound 4, which has a {Fe2(i-O)(-O 2CR)}3+

core, was exclusively isolated as a final oxygenation product.

Description of the Structures. A summary of crystal parameters and refinement

results is given in Table 4.1, and selected interatomic distances and angles are

summarized in Table 4.2, and 4.3. Compounds 3 and 4 crystallize as a racemic mixture

of enantiomers.

[Fe(O2CArT)2(Hdmpz) 21 (1). An ORTEP diagram of the X-ray structure, shown in

Figure 4.1, depicts a pseudo-tetrahedral iron(II) center bound to two carboxylates, each

in monodentate fashion with Fe-O distances of 1.9559(16) and 1.9569(16) A (Table 4.2).

Other coordination sites are occupied by two Hdmpz ligands with Fe-N distances of

2.042(2) and 2.057(2) A. The comparatively short Fe-to-ligand distances are a

consequence from the low coordination number of the Fe atom. The L-Fe-L angles are

distributed around 109.46° with the largest deviation being 7.29°. Two hydrogen

bonding interactions are observed between the ArT'CO and Hdmpz ligands, the

O...H-N distances being 2.743 and 2.783 A. A space filling model conveys the steric wall

imposed by two ArT°OCO2- and two Hdmpz ligands. The combined influence of the

sterically hindered carboxylate ligands and the intramolecular hydrogen-bonding

interactions changes the binding mode of the carboxylate ligands from monodentate to

bidentate and stabilizes 1 with the low coordination number of 4.

[Fe(O2CArFPh)2(Hdmpz) 2] (2). Compound 2 is isostructural with 1 (Figure 4.2).

The less acidic and less sterically hindered nature of HO2CAr4F Ph ligand, compared with
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HO2CArT , does not appear to affect the structure. Although 2 is less soluble than 1 in

toluene and THF solvents.

[Fe2(g-OH) 2(9-O 2CArT"°)(O2CArT°')3(OH2)(Hdmpz) 2] (3). The structure of 3 is

depicted in Figure 4.3. The two iron atoms are pseudo-octahedral unit bridged by one

carboxylate and two hydroxo groups. The Fel-01-Fe2 unit has Fe2-01 and Fel-0(2)

distances of 1.958(5) and 1.944(5) A, respectively, and a 100.3(3)° bridging angle. The

Fe-O bond lengths in the Fel-02-Fe2 unit are longer, but the angle is sharper, the

separation values having 2.012(5) and 1.953(5) A, and 98.1(2)° for the bridging angle.

The torsion angle is 153.20, for Fel-01-Fe2-02, reflecting that the Fe2(OH)2 ring is bent

upward, away from the bridging carboxylate. The Fe ...Fe distance is 2.996(2) A, similar

to those of previously reported bis(t-hydroxo)(w-carboxylato)diiron(III) cores. Values of

2.9788(6) and 2.99-3.14 A were reported for the [Fe(t-OH) 2(-

0 2CArT°o)(O2CArT°')3(Bn2en)(Bnen)] model complex15 and the diiron cores in MMOHox67

respectively.

In addition to the bridging ligands, the coordination sites of Fel include one

monodentate carboxylate and two Hdmpz ligands, completing a N204 donor set. The

other site, Fe2, is octahedral with a 06 set, completed by two monodentate carboxylates

and one water molecule. The largest deviations from ideal 90° interbond angles are

12.5(2)° and 13.6(2)0 for Fel and Fe2, respectively, and occur at the O-Fe-O angle of the

bent four-membered Fe2([t-OH)2 ring. Two hydrogen bonding interactions occur

between the carboxylate and bridging hydroxo groups, with 0(1)... 0(8) and 0(2) .. 0(6)

interatomic distances of 2.768(2) and 2.898(3) A, respectively. The carboxylate and water

molecule coordinated to Fe2 generate a hydrogen-bonding interaction at a distance of

the 2.662(3) A between 0(10)...0(11). The combined effect of sterically hindered
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carboxylates and three hydrogen bonding interactions stabilizes the diiron(III) core,

allowing its isolation and characterization.

The closest intermetallic distance between diiron in the crystal lattice is 13.776 A.

The large separation suggests that there are no significant interactions between [Fe2(ii-

OH)2(t-0 2CArT°I)(O2CArT°)3(OH2)(Hdmpz)2] molecules in the lattice, and the major

magnetic coupling interaction originates from intramolecular exchange coupling

between two iron(III) sites (see Magnetism section).

[Fe2(Io-0)(-0O2CAr 4F'Ph)(02CAr4FPh)3(Hdmpz)3 (4). The structure of 4 is depicted

in Figure 4.4. The two iron atoms have a distorted octahedral geometry and are linked

by one carboxylate and one oxo group. The Fel-O(1) and Fe2-0(1) distances,

composing the bridging connection of Fel-O(1)-Fe2, are 1.7882(2) and 1.771(2) A,

respectively. The Fel-01-Fe2 angle of 139.85(12)° is larger than those in [Fe2([t-O)([t-

HCO 2)(N-MeIm)8] 3+ (131.3(2)°)25 and [Fe2(p-O)(t-HCO)(TPA)2]3 + (128.6(3)°)8, for which

the Fe-O distances are ca 1.78 A, a value almost identical to those observed in 4. Because

of the larger angle, the Fe...Fe distance in 4 (3.3425(8) A) is longer than those of [Fe2(t-

O)(R-HCO2)(N-MeIm)813+(3.285(5) A) and of [Fe2(g-O)(,u-HCO2)(TPA) 2]3 (3.231(5) A)8 .

Interestingly, the Fe ...Fe separation of 3.4 A in the (-oxo)(Lt-carboxylato)diiron(III) core

of RNR-R2 is close to that of 4.

The coordination sites of Fel are occupied by one monodentate carboxylate and

two Hdmpz ligands, while those of Fe2 are completed with two carboxylates (one

monodentate and one chelating) and one Hdmpz ligand. The bond lengths and angles

in 4 fall within the typical range of those observed in published (-oxo)diiron(III)

complexes. The closest intermetallic distance in the lattice is between Fel and Fe2 is

12.992 A.
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The N-H groups of the Hdmpz ligands generate hydrogen bonding interactions

with either the carboxylate ligands or the bridging oxo group. Three hydrogen bonding

interactions were identified, O(1)...---H-N(4), 0(6)...H-N(2), and O(9) ..H-N(6) with O---N

distances of 2.743, 2.783, and 2.888 A, respectively. One interesting feature is that the

01.. H-N4 hydrogen bonding interaction generates a five membered

Fel-N-N-H...O(oxo) ring which is similar to the five membered Fe-O-O-H...O(oxo)

ring plane in oxyhemerythrin (Chart 4.2)."26 It has been proposed that the Fe-O(oxo)

strength decreases as a result of this hydrogen bonding interaction and reduces the

magnetic exchange coupling interaction (J = - 77 cm') in oxyhemerythrin, compared to

methemerythrin ( J = - 134 cm-).278 However, the hydrogen bond interaction of

01..-H-N4 in compound 4 perturbed neither the Fel-O1-Fe2 angle nor the Fel-O1

distance compared to the range typical of those found in (-oxo)(t-

carboxylato)diiron(III) complexes. Consistent with these structural features, the

magnetic exchange coupling interaction for oxo-bridged diiron(III) center in 4 is not

unusual (see Magnetism section). Our results these suggest that the reported exchange

coupling in oxyHr is worthy of a re-examination.

Electronic Absorption Spectral Properties. No UV-vis transition, as expected for

a complex with two bridging hydroxide ligands, was observed for a CH2C12 solution of

3 (Figure 4.5). The electronic absorption properties are changed by converting to a (-

oxo) moiety. The optical spectrum of 4 in CH2C 2 has bands at 470 (sh, E = 900 M'-cm:')

and 580 (E = 400 M'lcm l') nm, which are characteristic for (-oxo)diiron(III) complexes.

These transitions were also observed in the oxidized form of RNR-R2, at 500 ( = 800 M-

lcm') and 600 ( = 300 M'cm - ) nm.29
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Mossbauer Spectroscopy. The 57Fe M6ssbauer spectrum, measured at 4.2 K,

consists of a single quadrupole doublet of compound 2 (Figure 4.6). The resulting

parameters are shown in Table 4.4. The M6ssbauer spectra of both 3 and 4 consist of a

single quadrupole doublet (Figure 4.7). Although the two iron(III) sites differ in both

cases, there is no evidence for two overlapping doublets in either spectrum. The line

widths are reasonably close to natural line widths indicating that the two iron(III) atoms

in 3 and 4 are indistinguishable by M6ssbauer spectroscopy.

Compound 3 with the {Fe2(-OH)2(,-O2CR)}3 core exhibits a quadrupole doublet

with 8 = 0.45(2) mm/s and AEQ = 1.21(2) mm/s at 4.2 K. The isomer shift falls in the

range of the high-spin Fe(III) complexes. '30 The significantly different AEQ values

obtained for 3 and the structurally related [Fe2(1-OH)2(R-

O2CArT°)(O2CArT°I)3 (Bn2en)(Bnen)] complex (AEQ = 0.61(2) mm/s) are somewhat

unexpected due to the similar octahedral coordination geometry around the iron(III)

sites."s Notably, compound 3 has a more O-rich coordination environment than [Fe2([-

OH)2(W[-02CArT o°)(02CArT°l)3(Bn2en)(Bnen)], with a H20 (O-donor) ligand instead of the

Bnen (N-donor) ligand. It is quite interesting that the {Fe2(gu-OH)2(4t-02CR)}3' core in

sMMOHox which also has one water molecule, displays the similar AEQ values (0.87 and

1.16 mm/s).31 The O-rich metal coordination environment may result in the similar AEQ

(- 1 mm/s) values both for compound 3 and the diiron sites of sMMOHo.

Compound 4, with the {Fe(j-O)(-O 2CR))3 ' core, has 8 = 0.51(2) mm/s indicating

a high-spin diiron(III) site. The small AEQ value (1.256(2) mm/s) is at the lower end of

the range ( > 1mm/s ) found for most oxo-bridged diiron(III) complexes.' The value is

close to that measured for 3, indicating a similar electronic field gradient at the iron(III)

nuclei. Deprotonation of the hydroxo-bridge may be accompanied by a decrease in the
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Fe-O distance in the crystal structure of 4. The coordination environment perturbed by

the presence of an oxo bridge may be compensated by a carboxylate shift of the

monodentate carboxylate, which results in similar electronic field gradient to

compound 3.

Magnetism. Variable-temperature magnetic susceptibility plots for 3 and 4 are

depicted in Figures 4.8 and Figure 4.9, respectively. The effective magnetic moment of 3

at 300 K is 7.4 4, which is lower than the calculated value of 8.37 [LB for a high spin

diiron(III) center with g = 2.0. Upon lowering the temperature, the magnetic moment

decreases to 0.01 B at 5 K. The best fit was obtained with J = - 7.2(2) cm-' and g = 2.0

(fixed), implying a weak antiferromagnetic exchange coupling interaction in di([-

hydroxo)diiron centers. This result is the first measured spin exchange integral for a

{Fe2(tt-OH)2(1 -O2CR)}3 + core in any small molecule complex. The observed J values for

the diiron(III) sites of sMMOHox and 3 are identical, consistent with the observed close

similarity in the structure and M6ssbauer spectrum?.

The effective magnetic moment of 4 at 300 K is 4.3 RB, indicating a stronger

antiferromagnetic exchange interaction at the diiron(III) site even at high temperature.

The best fit was obtained with J = - 117.2(1) cm', with g = 2.0 (fixed), which in the range

of values = -90 - -120 cm'l) reported for (-oxo)(-carboxylate)diiron(III) complexes.l0

The effect of hydrogen bonding between the N-H group of Hdmpz and bridging oxo

group (Chart 4.2) does not significantly perturb exchange interactions in the ground

states of (gI-oxo)(R-carboxylate)diiron(III) molecules.
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Summary.

Utilizing hydrogen bonding interaction and sterically bulky carboxylates,

synthetic routes were developed to prepare mononuclear iron(II) complexes with

vacant coordination sites for 02 binding. Reaction of such compounds with 02 resulted

in rare asymmetric complexes having the Fe2(-O)(L-O2CR)}3 + and Fe2(IL-OH)2(!I-

O2CR)}3 + units. These diiron(III) complexes mimic the carboxylate-rich metal

coordination environments of metal cores housed in four-helix bundles in nature.

Interestingly, compound 3 which replicates the Fe2(R-OH)2([t-O2CR)} core of sMMOH,,

shares several physical properties including electronic transitions, M6ssbauer spectra,

and magnetic properties with the enzyme. On the other hand, the structure of 4, which

can be defined as a (-oxo)(R-carboxylato)diiron(III) species, mimics the diiron(III) site

of RNR-R2. The electronic transitions and Mdssbauer spectra of 4 are typical of such

diiron(III) complexes having an Fe-O-Fe moiety. The magnetic exchange coupling

interaction in 4 is within the expected range for oxo-bridged diiron(III) sites. These

results demonstrate how the diiron(III) structures in different metalloproteins, namely,

the li-oxo cores of RNR-R2 and A9D the di(R-hydroxo) unit in MMOH and ToMOH can

be accessed by the appropriate differences in ligand compositions
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Table 4.2. Selected Interatomic Distances (A) and
[Fe(O 2CArT°') 2(Hdmpz) 21 (1) and [Fe(O 2CAr4 FPh)2(Hdmpz) 2] (2).

Angles (deg) for

Fe - N1

Fe - N3

Fe - 01
Fe - 03
N1 -Fe -N3

N1 - Fe - 01
N1 - Fe - 03
N3 - Fe -01

N3 - Fe - 03
01 - Fe - 03
N2 .-. 04

N4 ... 02

1-0.5(CH2C12)

2.042(2)

2.057(2)

1.9560(16)

1.9570(16)

103.05(8)

104.33(8)

116.75(8)

113.54(7)

108.89(7)

110.22(7)

2.783(3)

2.743(3)

2

2.0907(14)

2.0578(14)

1.9968(11)

1.9691(11)

108.41(6)

99.99(5)

116.55(5)

110.18(5)

104.91(5)

116.67(5)

2.711(2)

2.8019(19)

a Number in parentheses are estimated standard deviations of the last significant figure.
Atoms are labeled as indicated in Figures 4.1 and 4.2.

_ I___ __ ·
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Table 4.3. Selected Interatomic Distances (A) and Angles (deg) for [Fe2(g-OH)2(A-

O2CArT°)(O2CArT ')3(OH2)(Hdmpz)2] (3) and [Fe2(l-Oo)([L-O2CAr4F-Ph)(02CAr4F-h)3-

(Hdmpz)3] (4).

Fel -. Fe2

Fel - O(1)

Fel - 0(2)

Fel - 0(3)

Fel - 0(5)

Fel - N(1)

Fel - N(3)

Fe2 - O(1)

Fe2 - 0(2)

Fe2 - 0(4)

Fe2 - 0(7)

Fe2 - 0(9)

Fe2 - O(11)

Fel-O(1)-Fe2

Fel-0(2)-Fe2

3-3.25(CH 2C12)

2.996(2)

1.953(5)

1.958(5)

2.073(5)

1.980(5)

2.139(6)

2.106(6)

1.944(5)

2.012(4)

2.027(4)

1.986(4)

2.059(4)

2.016(6)

100.3(3)

98.1(2)

Fel ..- Fe2

Fel - 0(1)

Fel - 0(2)

Fel - 0(4)

Fel - 0(5)

Fel - N(1)

Fel - N(3)

Fe2 - 0(1)

Fe2 - 0(3)

Fe2 - 0(6)

Fe2 - 0(7)

Fe2 - 0(8)

Fe2 - N(5)

Fel-O1-Fe2

4-(CH 2 C12 )

3.3425(8)

1.772(3)

2.062(2)

2.067(2)

2.295(3)

2.135(3)

2,087(3)

1.786(3)

2.117(2)

2.068(2)

2.309(3)

2.017(2)

2.076(3)

139.94(14)

n Number in parentheses are estimated standard deviations of the last significant figure.
Atoms are labeled as indicated in Figures 4.3 and 4.4.

_ __ �___ __ ·
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Table 4.4. Summary of Pertinent Spectroscopic Data for 3, 4, sMMOH.o, and RNR-R2

3 sMMOHox sMMOHox 4 RNR-R2ac t

(OB3b) (Bath)
Optical
Xmax, nm
(E, M-'cm - )
M6ssbauer
6, mm sal

AEQ, mm s-

rLR mm s-
Magnetics
1, cm-'
g(fixed)

282

0.454 (2)
1.206 (2)
0.357 (2)

-7. 2 (2)
2.0

Fel
0.51
1.16

-7±3

Fe2
0.50
0.87

Fel
0.51
1.16

Fe2
0.50
0.87

470(sh,900)
580 (400)

0.508(2)
1.256(2)
0.303(2)

-117.4 (1)
2.0

500 (800),
600 (300)
Fel Fe2
0.53 0.44
1.66 2.45

-110

Reference This work This work31
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Figure 4.1. Top: ORTEP diagram of [Fe(O2CArT°l)2(Hdmpz)2] (1) showing 50%

probability thermal ellipsoids for all non-hydrogen atoms. The hydrogen atoms of the

N-H group of the Hdmpz ligands are added to show the hydrogen bonding interaction.

Bottom: Space-filling representation of 1.
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Figure 4.2. ORTEP diagram of [Fe(O2CAr4F'Ph)2(Hdmpz)j (2) showing 50% probability

thermal ellipsoids for all non-hydrogen atoms. The hydrogen atoms in the N-H group

of Hdmpz ligands are added to show hydrogen bonding interactions.
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Figure 4.3. Top: ORTEP diagram of [Fe2 (t-OH) 2(gt-O2CArT)(0 2CArT°l)3 (OH2)(Hdmpz) 2]

(3) showing 50% probability thermal ellipsoids for all non-hydrogen atoms. The

hydrogen atoms in the N-H group of Hdmpz, the bridging O-H group, and water

ligands are included. The aromatic rings of ArT°CO2- ligands are omitted for clarity.

Bottom: Crystal packing diagram of 3.
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Figure 4.4. Top: ORTEP diagrams of [Fe2(-O)(-0 2CAr4F'Ph)(02CAr4FPh)3(Hdmpz)3] (4)

showing 50 % probability thermal ellipsoids for all non-hydrogen atoms. The hydrogen

atoms in the N-H group of Hdmpz ligands are added. Bottom: The phenyl rings of

Ar4FPhCO2- ligands are omitted for clarity. Bottom left: Crystal packing diagram of 4.
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Figure 4.5. UV-vis spectra of [Fe2(g-OH)2(-O02CArT a')(O2CArT°)3(OH2)(Hdmpz)2 ] (3)

(solid line) and [Fe2(p-O)(-02CAr4Ph)(02CAr4FPh)3(Hdmpz)3] (4) (dashed line) in

CH 2C1 2.
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Figure 4.6. M6ssbauer spectrum (experimental data (I), calculated fit (-)) recorded at

4.2 K for a solid sample of [Fe(O2CAr4F'Ph)2 (Hdmpz)2] (2).
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Figure 4.7. M6ssbauer spectra (experimental data (I), calculated fit (-)) recorded at 4.2

K for a solid sample of [Fe2(L-OH)2 (L-O2 CArT I)(O2CArT )3 (OH2)(Hdmpz) 2] (3) (A) and

[Fe 2(W-0)(L-- 2CAr 4 -FPh)(02CAr - n'h)3(Hdmpz) 3] (4) (B).
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Temperature (K)

Figure 4.8. Plots of XM (o) and Ileff () vs T for solid 3. The solid lines represents the best

least-squares fit of eq 1 (see text) to the experimental susceptibility data.
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Figure 4.9. Plots of XM (o) and eff (e) vs T for solid 4. The solid lines represents the best

least-squares fit of eq 1 (see text) to the experimental susceptibility data.



Chapter 5

Synthesis and Characterization of Dinuclear Iron Complexes Having

Proton Donors in the Ligand Framework
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Introduction

The R2 subunit of ribonuclideotide reductase (RNR-R2),12 A9-desaturase,3 and

the hydroxylase components of soluble methane monooxygenase (sMMOH)4 and

toluene monooxyanase (ToMOH)5 are examples of well-known dioxygen-dependent

non-heme enzymes. Despite their diverse biological functions, however, a common

structural motif is shared between these enzymes. In their reduced states, they all have

four carboxylates and two imidazoles as the endogenous ligands derived from amino

acid side chains (Chart 5.1). A universal mechanism for oxygenation of these diiron

sites, involving (peroxo)diiron(III) intermediates and high-valent oxo species, is

proposed due to their close structural similarity. The reactivity of such generated high-

valent oxo species toward substrate varies accordingly to their required physiological

roles. The high-valent intermediate in sMMOH hydroxylates methane to methanol,

whereas that in RNR-R2 generates a tyrosyl radical. Subtle variations, including the

existence of water in the first and second coordination sphere of the diiron sites, the

binding mode of carboxylates, and the different amino acid side chains arranged

outside the diiron core, contribute to the differences in reactivity. Proton donors in the

proximity of diiron sites may influence the conversion of intermediates and modify

their characteristics. Such proton donors could be water or amino acid side chain

residues.

The first deliberate efforts to position such proton donors in proximity to the

diiron(II) sites in model complexes are described here. We employed pyrazole

derivatives for this purpose. The hydrogen-bonding interaction between pyrazole and

sterically hindered m-terphenyl-derived benzoate analogues directs of the N-H group

in proximity to the diiron center.
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Experimental Section

General Considerations. All reagents, including pyrazole (pz) and 3,5-dimethyl

pyrazole (Hdmpz), were obtained from commercial suppliers and used as received

unless otherwise noted. Dichloromethane, pentane, ethylether (OEt2) and toluene were

saturated with argon and purified by passage through activated A120 3 columns under

argon.6 The precursor complex [Fe2(g-O2CArT°I)2(O2CArT°o)2(THF)2] was prepared as

described in the literature.7' All syntheses and air-sensitive manipulations were carried

out under nitrogen in an MBraun glovebox. FT-IR spectra were recorded with a Thermo

Nicolet Avatar 360 spectrometer or Perkin Elmer FFIR model 2000.

[Fe2 (p-OzCArT°l)4(pz))I (1) and [Fe(-O 2 CArT°)2(O2CArT°l)I(pz) 2 1 (2). To a rapidly

stirred light yellow CH2C12 (3 mL) solution of [Fe2(#-O2CArT °) 2(O2CArT°')2(THF)2] (39

mg, 0.027 mmol) was added pz (3.6 mg, 2 equiv) to afford a gray-yellow homogeneous

solution. After 2 h stirring, the solution was divided into equal parts into which pentane

or OEt2 was diffused. Colorless block crystals of 1 were separated from the

CH2Cl2/diethylether solution. Light yellow block crystals of 2 precipitated from the

CH2Cl2/pentane solution. They were both analyzed by X-ray crystallography. The

yields were 75 % for 1 and 52% for 2. FT-IR (KBr, cm -') for 1 3360 (m, br), 3048 (w), 3022

(w), 2918 (m), 2860 (w), 1616 (s), 1585 ( s), 1575 (s), 1571 (s), 1550 (s), 1513 (s), 1439 (s),

1405 (s), 1385 (s), 1131 (w), 1109 (w), 1055 (m), 1044 (m), 843 (s), 813 (s), 789 (s), 753 (s),

705 (m), 584 (m), 524 (s). Anal. Calcd. For CH 76Fe2N 4O 8: C, 74.38; H, 5.27; N, 3.86.

Found: C, 74.09; H, 5.12; N, 3.79.

FT-IR (KBr, cmn') for 2 3378 (m), 3134 (w), 3119 (w), 3022 (w), 2915 (w), 1604 (s),

1556 (s), 1514 (s), 1456 (s), 1409 (s), 1379 (s), 1353 (m), 1126 (w), 1111 (w), 1058 (m), 1045

(m), 856 (m), 847 (w), 816 (m), 801 (m), 785 (m), 772 (m), 736 (m), 712 (m), 698 (m), 686

(m), 593 (w), 585 (w), 544 (w), 541 (w), 521 (m). Anal. Calcd. For COH76Fe 2N 4O 8: C, 74.38;

H, 5.27; N, 3.86. Found: C, 74.78; H, 5.14; N, 4.12.
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[Fe2(-O 2CArT °) 2(O02CArT°) 2(Hdmpz)2 ] (3). A 5 mL CH2C12 solution of Hdmpz

(33.4 mg, 2 equiv) was added dropwise to a stirred light yellow CH2C12solution (15 mL)

of [Fe2(i-O2CArT°I)2(O2CArToI)2(THF)2] (260 mg, 0.178 mmol). After stirring overnight,

the solution was concentrated under reduced pressure and the resulting light yellow

power was dissolved in 5 mL of benzene. Pentane diffusion afforded colorless block

crystals that were analyzed by X-ray crystallography. Yield, 71 %. FT-IR (KBr, cm'l) 3332

(w, br), 3053 (w), 3024 (w), 2920 (w), 2861 (w), 2562 (s), 1513 (s), 1454 (s), 1408 (m), 1381

(s), 1305 (w), 1186 (w), 1146 (w), 1109 (w), 1069 (w), 1045 (w), 1021 (w), 851 (m), 817 (m),

800 (s), 785 (m), 765 (m), 737 (w), 711 (w), 651 (w), 584 (w), 542 (w), 521 (w), 462 (w).

Anal. Calcd. For C94HFe2N 4O: C, 74.80; H, 5.61; N, 3.71. Found: C, 74.61; H, 5.81; N,

3.80.

[Fe2(-O)(O 2CArT') 4(Hdmpz) 2] (4). A toluene (5 mL) solution of 3 (63.9 mg,

mmol) was purged with dioxygen for 10 min, generating a brownish yellow solution.

After 1 h, anhydrous pentane was diffused into the solution, affording red brown block

crystals that were analyzed by X-ray crystallography. Yield, 81 %. FT-IR (KBr, cm'l) 3298

(w), 3130 (w), 3026 (w), 2920 (m), 2868 (w), 1623 (m), 1578 (m), 1515 (s), 1455 (s), 1410 (s),

1385 (s), 1343 (s), 1305 (w), 1186 (w), 1109 (w), 1053 (w), 1019 (w), 882 (w), 870 (w), 854

(m), 817 (s), 800 (s), 785 (s), 765 (w), 714 (m), 678 (w), 586 (w), 542 (w), 520 9m), 459 (w).

Anal. Calcd. For C94H4Fe2N 409: C, 74.01; H, 5.55; N, 3.67. Found: C, 73.72; H, 5.68; N,

3.75.

X-ray Crystallography. Single crystals were mounted at room temperature on

the tips of quartz fibers, coated with Paratone-N oil, and cooled under a stream of cold

nitrogen. Intensity data were collected on a Bruker (formerly Siemens) APEX CCD

diffractometer running the SMART software package, with Mo Ka radiation ( =

0.71073 A). Data collection and reduction protocols are described in detail elsewhere.9

The structures were solved by the Patterson method and refined on F2 by using the
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SHELXTL software package. 0 Empirical absorption corrections were applied with

SADABS", part of the SHELXTL program package, and the structures were checked for

higher symmetry by the program PLATON.2 All non-hydrogen atoms were refined

anisotropically. In general, hydrogen atoms were assigned idealized positions and

given thermal parameters equivalent to either 1.5 (methyl hydrogen atoms) or 1.2 (all

other hydrogen atoms) times the thermal parameter of the carbon atom to which they

were attached. Hydrogen atoms of N-H of the pyrazole derivatives were identified

from difference Fourier maps. In the structure of 1, one diethylether molecule was

assigned in the lattice. The structure of 3 contains one benzene and 0.5 pentane

molecules, the latter having disordered over two positions with equal occupancies. In

the structure of 4, one pentane and two benzene molecules were located and

isotropically refined. Data collection and experimental details for the complexes are

summarized in Table 5.1. Relevant interatomic distances and angles for 1 - 2, 3 and 4

are listed in Table 5.2, 5.3, and 5.4, respectively.

Mdssbauer Spectroscopy. MOssbauer spectra (4.2 K) were recorded in the MIT

department of Chemistry Instrument Facility on an MS1 spectrometer (WEB Research

Co.) with a 57Co source in a Rh matrix kept at room temperature. Spectra were fit to

Lorentzian line shapes by using the WMOSS plot and fit program' 3 and isomer shifts

were referenced to natural abundance Fe at room temperature. Solid samples were

prepared by suspending powdered material (-0.04 mmol) in Apeiezon N grease and

placing the mixture in a nylon sample holder.

EPR Measurements. X-band EPR spectra were recorded on a Bruker EMX EPR

spectrometer (9.37 GHz) running WinEPR software. Temperature control was achieved

with an Oxford Instruments ESR900 liquid-helium cryostat and an ITC503 controller.

Dry 02 gas was directly bubbled into an 0.50 mM toluene solution of [Fe2(/t-
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O2CArT°t)2(O2CArT°)2(Hdmpz)2] for 10 sec at -78 C, and the solution was then freeze-

quenched within 10 sec with liquid N2.

Results

Synthesis and Structural Characterization of the Isomeric Compounds [Fe2(IL-

O2CArTo)4(pz)2] (1) and [Fe2(g-O2CArTal)2(O2CArT°l)2(pz)2] (2). The reaction [Fe2(l-

0 2CArT°O)2(O2CArT°')2(THF)2]'7 with 2 equiv of pz afforded both compounds 1 and 2,

depending on the crystallization conditions (Scheme 5.1). The tetracarboxylate bridged,

paddle-wheel diiron(II) compound 1, was exclusively isolated as colorless block crystals

upon diethylether vapor diffusion into the CH2C 2 reaction mixture. Figure 5.1 shows its

structure and Table 5.2 lists selected interatomic distances and angles. The

crystallographically inequivalent iron(II) centers have identical square pyramidal

geometries with an NO4 donor atom set and are linked by four terphenyl-based

carboxylates with an Fe...Fe separation of 2.7886(7) A. There is a virtual C2 axis along

the Fe-Fe vector and the four p-tolyl groups flanking the bimetallic center are disposed

nearly orthogonal to each other along that axis. The pz ligands are coordinated through

the resulting pockets, each with a diameter of - 9 A (Figure 5.1 top left). The two pz ring

planes have a nearly orthogonal orientation, the dihedral angle of 96.6 °. The 2.793 A

distance between the N4 atom in pz and the 07 atom of the carboxylate ligand indicates

the presence of a hydrogen-bonding interaction. A broad infrared peak at 3360 cm'

further corroborates this feature. The hydrogen-bond may cause the elongation of the

Fel-05 distance to 2.1568(19) A. The Fel-O1 bond, located trans to the Fel-05 bond, is

shortened to 2.0677(19) A, an exemplification of the trans-influence. Typical Fel...O

distances of 2.0301(18) A and 2.0335(19) A were measured for the Fel-03 and Fel-08

bonds, respectively.
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The dicarboxylate-bridged diiron(II) windmill isomer 2 was obtained when

pentane was diffused into the CH2C12 solution. The structure and a list of selected

distances and angles are shown in Figure 5.2 and Table 5.2, respectively. The

cryallographically equivalent iron(II) centers in 2 have a distorted trigonal bypyramidal

geometry with NO4 coordination environments. The diiron(II) core undergoes a

dramatic shift from four bridging (in 1) to two bridging and two terminal carboxylates

in 2, with concomitant elongation of the Fe-..Fe distance to 4.326(2) A. The 1.537 A

difference in Fe...Fe distance between 1 and 2 illustrates the flexible nature of diiron(II)

complexes with the four terphenyl based-carboxylate ligand framework.

Together with the crystal structures of the two isomers, [Fe2(p-02CAr4FPh)4(THF)2]

and [Fe2(/I-O2CAr4FPh)2(0 2CAr4FPh)2(THF)21], the isolation of isomers 1 and 2 from the

same solution reinforced the contention that the di- and tetracarboxylate bridged

diiron(II) complexes are nearly isoenergetic.l1 The energy states of these two isomers

can be differentiated by using a more sterically hindered N-donor ligand, because the

small pocket size affording by in the structure of 1 cannot accommodate bulkier groups.

Synthesis and Cystallographic Analysis of the Dicarboxylate-Bridged

Compound [Fe2(/,-O2 CArTO°)2(O 2CAT°l)2(Hdmpz)2] (3). The previous argument is

illustrated by compound 3, which forms exclusively by substituting methyl groups at

the 3- and 5-positions of the pz unit. The reaction of [Fe2(g-O2CArT°) 2(O2CArT°I)2(THF)2]

with 2 equiv of Hdmpz afforded the colorless diiron(II) compound [Fe2(p-

O2CArTo')2(O2CArT°')2(Hdmpz)2] (3). The structure of 3 is presented in Figure 5.3 and

selected interatomic distances and angles are in Table 5.3. Two crystallographically

independent, centrosymmetric diiron(II) units are located in one unit cell. Each has two

equivalent iron(II) centers with NO3 coordination geometry bridged by two carboxylate

ligands. The Fe...Fe separations are 4.153 and 4.192 A, comparable to the 4.326(2) A

value of the windmill isomer 2 but longer than the 2.7886(7) A distance of the paddle
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wheel isomer 1. An average distance of 1.995(48) was observed for the Fe-O bonds,

comparable to those of other high-spin iron(II) complexes.

Oxygenation of Compound 3 and Crystallographic Analysis of the Resembling

Oxo-bridged Diiron(III) Compound [Fe2(/y-O)(O2CArT°) 4(Hdmpz)2] (4). Oxygenation

of a toluene solution of 3 at -78 C did not generate any optically distinguishable

intermediates. The initial solution had a very weak g = 16 signal in the X-band EPR

spectrum at 5 K (Figure 5.4 A). Two signals, at g = 1.99 and 4.28, formed upon

oxygenation of 3 at -78 °C (Figure 5.4 B), which decayed together at higher temperature

(Figure 5.4 C). The signal at g = 2.0 completely disappeared and only a trace signal

remained at g = 4.3. These results indicate that intermediates with half-integer spin

develop in the course of the oxygenation of 3 and that an EPR-silent species is generated

as the final product. The possibility of solvent oxidation by this characterized

intermediate was checked, but only trace amounts of benzaldhyde and benzyl alcohol

were detected from an oxygenated toluene solution of 3. When the oxygenation was

performed in the presence of a potential substrate, including propylene, cyclohexene, or

2,4-di-tert-butylphenol, no corresponding oxidation product was observed. This result

suggests that the EPR-active intermediate is unable to oxidize the added species. From

the oxygenation reaction was crystallized the oxo-bridged diiron(III) complex [Fe2(fl-

O)(O2CArT°)4(Hdmpz)2] (4) in over 80 % yield by layering on pentane, suggesting that

ligand oxidation also does not occur. Alhough autooxidation is one of the possible

reaction pathways, a reasonable explanation for all of the observed results is currently

not available.

The best crystal for X-ray analysis was obtained from oxygenation of 3 in

benzene solution followed by pentane vapor diffusion. The structure of 4 is depicted in

Figure 5.5 and the selected interatomic distances and angles are reported in Table 5.4.

Two iron(III) atoms are linked by a single oxo ligand with an Fe...Fe separation of 3.493
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A. The assignment of a bridging oxo vsrsus hydroxo unit is based on the short observed

distances of 1.781(3) A and 1.760(2) A between 01 and the Fe(III) sites. The overall

charge balance also supports this assignment. The Fel-01-Fe2 angle is 160.5(2)° . Both

iron(III) sites are coordinated by one Hdmpz and two terminal carboxylate units, but

they have different coordination environments. One has a pseudooctahedral NO5

coordination environment and the other site has distorted trigonal bipyramidal NO4

geometry. The small separation of 2.576 A and the orientation of the N9 atom in Hdmpz

and 04 of one of the carboxylates indicates the existence of a hydrogen bonding

interaction while further links the two iron(III) centers.

M6ssbauer Spectroscopic Properties of Compounds 3 and 4. The zero-field 57Fe

Mossbauer spectrum of 3, measured at 4.2 K, consists of a single quadrupole doublet

with 6 = 1.11(2) mm/s, AEQ = 3.00(2) mm/s and r = 0.25(2) mm/s (Figure 5.6. left). The

isomer shift and quadrupole splitting are typical of high-spin iron(II) sites and

comparable to those reported for related dicarboxylate bridged diiron(II) complexes

with a NO3 coordination environment.7'15"6 The M6ssbauer parameters obtained for 4

at 4.2 K are 6 = 0.49(2) mm/s and AEQ = 0.70(2) mm/s with a natural line width (F =

0.26(2) mm/s) (Figure 5.6. right). The isomer shift is in the range typical of high-spin

iron(III) sites.7"7'19 The AEQ value for 4 is not in this range, however, the diiron(III) sites,

despite the crystallographically inequivalent five- and six-coordination environments,

were not distinguished by M6ssbauer spectroscopy.

Summary

It was possible to synthesize carboxylate-rich diiron(II) complexes having proton

donors in the proximity to the diiron(II) sites. Two isomers, windmill and paddlewheel

type diiron(II) complexes 1 and 2, were isolated from the same reaction mixture,

attesting to the facile interconversion of the two isomers by carboxylate shifts. Using a
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sterically bulkier N-donor ligand (Hdmpz) than the pz moieties in 1, the dicarboxylate

bridged diiron(II) windmill complex 3 was exclusively formed.
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Table 5.2. Selected interatomic distances (A) and angles (deg) for [Fe2(W-O2CArT `°)4(pz)2]

(1) and [Fe2(t-O02CArT o')2(0 2CArT °')2(pz)2] (2).?

1 2

Fel ..Fe2
Fel-01
Fel-03
Fel-05
Fe 1-08
Fe l-Ni
Fe2-02
Fe2-04
Fe2-06
Fe2-07
Fe2-N3
01-Fel-NI
03-Fel-Ni
05-Fel-Ni
08-Fel-Nl
01-Fel-03
01-Fel-05
01-Fel-08
03-Fel-05
03-Fel-08
05-Fel-08
02-Fe2-N3
04-Fe2-N3
06-Fe2-N3
07-Fe2-N3
02-Fe2-04
02-Fe2-06
02-Fe2-07
04-Fe2-06
04-Fe2-07
06-Fe2-07
N2 05
N4 -07

2.7886(7)
2.0677(19)
2.0301(18)
2.1568(19)
2.0335(18)
2.064(2)
2.0471(19)
2.114(2)
2.037(2)
2.1377(19)
2.053(2)
106.95(8)
102.11(8)
85.91(8)
101.56(8)
91.23(7)
166.89(7)
90.27(7)
88.49(7)
154.71(8)
84.46(7)
101.67(9)

97.57(9)
101.65(9)
92.70(9)
89.43(8)
156.59(8)
87.37(7)
87.59(7)
169.67(7)
89.46(7)
3.104
2.793

Fel ...Fe2
Fel-01
Fel-02
Fel-03
Fel-04
Fel-Ni
01-Fel-Ni
01-Fel-02
01-Fel-03
01-Fel-04
02-Fel-NI
02-Fel-03
02-Fel-04
03-Fel-04
03-Fel-Ni
04-Fel-NI
01 ..-N2

UNumbers in parentheses are estimated standard deviations of the last significant figures.

4.326(2)
2.001(4)
1.975(4)
2.039(4)
2.380(5)
2.119(5)
90.0(2)
112.09(18)
121.38(18)
107.98(16)
103.83(19)
123.54(19)
89.70(17)
58.77(16)
93.36(19)
151.72(19)
2.973(7)
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Table 5.3. Selected interatomic distances (A) and angles (deg) for [Fe2(R-

O2CArT°') 2 (O 2CArT°') 2 (Hdmpz) 2] (3).a

Fel --FelA
Fe 1-02
Fel-03
Fe 1-07
Fel-N3
02-Fel-03
02-Fel-07
02-Fel-N3
03-Fel-07
03-Fel-N3
07-Fel-N3

4.1909(14)
1.927(3)
2.020(3)
2.023(3)
2.093(4)
116.67(16)
126.15(15)
106.32(15)
111.46(14)
95.73(14)
91.10(13)

Fe2..-Fe2A
Fe2-01
Fe2-04
Fe2-05
Fe2-Nl
0 1-Fe2-04
01-Fe2-05
01-Fe2-N1
04-Fe2-05
04-Fe2-N 1

05-Fe2-N 

aNumbers in parentheses are estimated standard deviations of the last significant figure

4.153(2)
2.032(3)
1.940(3)
2.038(3)
2.178(3)
117.20(15)
108.59(13)
98.16(14)
130.22(14)
101.58(14)
89.84(13)
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Table 5.4. Selected interatomic distances (A) and angles (deg) for [Fe2(it-

0)(0 2 CArT°') 4(Hdmpz) 2] (4)."

Fel-1Fe2
Fel-01
Fe2-01
Fel-0 1-Fe2
Fel-02
Fel-03
Fel-04
Fel-05
Fel-N3
01-Fel-02
01-Fel-03
01-Fel-04
01-Fel-05
01-Fel-N3
02-Fel-03
02-Fel-04
02-Fel-05
02-Fel-N3
03-Fel-04
03-Fel-05

3.493(3)
1.781(3)
1.760(3)
160.5(2)
2.071(3)
2.211(3)
2.172(3)
2.057(3)
2.055(4)
98.13(14)
158.99(13)
96.39(14)
106.31(14)
96.25(17)
60.90(12)
89.69(13)
143.74(14)
105.47(16)
158.63(14)
93.05(12)

03-Fel-N3
04-Fel-05
04-Fel-N3
05-Fel-N3
Fe2-06
Fe2-07
Fe2-08
Fe2-N1
01-Fe2-06
01-Fe2-07
0 1-Fe2-08
01-Fe2-N1
06-Fe2-07
06-Fe2-O8
06-Fe2-N1
07-Fe2-08
07-Fe2-N1
08-Fe2-N1
04---N2
09" N4

aNumbers in parentheses are estimated standard deviations of the last significant figures

88.85(16)
61.69(12)
85.49(12)
98.15(15)
2.036(3)
2.178(3)
1.924(3)
2.069(4)
118.66(15)
102.93(14)
121.82(16)
98.12(16)
62.08(13)
117.29(15)
91.50(14)
89.45(14)
151.89(14)
95.14(16)
2.964(18)
2.710(18)
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H2

08

04

03

Figure 5.1. ORTEP drawing of [Fe2(pj-02CArT°I)4(pz)2] (1) showing 50% probability

thermal ellipsoids. (Top, Left) The hydrogen atoms are omitted for clarity. (Top, Right)

Side on view showing pocket generated by four carboxylates. (Bottom) Drawing with

the aromatic rings of ArT°ICO2' ligands omitted for clarity.
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03

04

o02

Figure 5.2. ORTEP drawing of [Fe2(/-O 2CArT°)2(O2CArT°l)(pz)2] (2) showing 50%

probability thermal ellipsoids. (Top) The solvent molecules and hydrogen atoms are

omitted for clarity. (Bottom) The aromatic rings of ArT°'CO2' ligands were omitted for

additional clarity.
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Figure 5.3. ORTEP drawing of [Fe2(U-O2CArT°I)2(O2CArT°)2(Hdmpz) 2] (3) showing 50%

probability thermal ellipsoids. The solvent molecules, hydrogen atoms, and aromatic

rings of ArT°ICO2' ligands are omitted for clarity. The top and bottom views display the

two crystallographically independent dimers.

_·�__�_



193

U 1U

410'

210'

0

-2 10'

-4 o

-6 10
0 1000 2000 3000 4000 5000 6000

G

Figure 5.4. X-band EPR spectra collected at 5 K. A) The toluene solution of 3 B) Samples

were prepared by exposing a toluene solution of 3 to 02 at -78 °C and freeze-quenching

after 10 sec in liquid N2. C) The fully oxidized toluene solution of 3 at the room

temperature.
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Figure 5.5. ORTEP drawing of [Fe2(p-O)(O2CArT°)4(Hdmpz)21 (4) showing 50 %

probability thermal ellipsoids. (Top) The solvent molecules and hydrogen atoms are

omitted for clarity. (Bottom) The aromatic rings of ArT°CO2
' ligands were omitted for

clarity.



195

-1

-1

-4 -2 0 2

Velocity (mm/s)

4

o

-1
C
0

to

0

<:2

4

4
6 4 -3 -2 1 0 1

Veb*(mnS)

Figure 5.6. Mossbauer spectra (experimental data (I), calculated fit (-)) recorded at 4.2

K for a solid sample of [Fe2(W-O2CArT°)2(O2CArT°)2(Hdmpz)2] (3) (Left) and [Fe2(R-

O)(O2CArT °I)4(Hdmpz) 21 (4) (Right).
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Chapter 6

Di- and Tetra-Bridged Diiron(II) Complexes with Four Terphenyl-

Derived Carboxylates and Two Water Molecules
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Introduction

The activation of triplet ground state dioxygen and the hydroxylation of

unactivated C-H bonds under ambient conditions by non-heme diiron enzymes are

topics of much current interest.'3 The hydroxylase component of soluble methane

monooxygenase (sMMOH), which utilizes dioxygen to convert CH4 into CH3OH, is a

well-studied member of this class of enzymes.4 The enzyme active site contains a diiron

core coordinated by four glutamate carboxylate groups and two histidine imidazole

ligands.5 This diiron unit with a carboxylate-rich coordination environment is

effectively utilized to bind, activate and transfer an oxygen atom from 02 to the

substrate. Similar diiron cores occur in related multicomponent dioxygen-dependent

enzymes, including toluene monooxygenase,6 the R2 subunit of ribonucleotide

reductase,7 8 and stearoyl-ACP A9 desaturase.9

To help understand how these enzymes achieve their physiological roles of 02

activation and utilization at carboxylate-rich diiron cores, much effort has been devoted

to reproducing the structures and functions of their active sites by small model

complexes. Recently, our group and others have reproduced the carboxylate-rich

composition of these diiron sites with the use of sterically hindered terphenyl-derived

carboxylate ligands.'0 3 Although these model complexes are able to hydroxylate

benzylic C-H bonds and to oxidize phosphine and sulfide moieties,13 17 the activation of

strong C-H bonds, such as that in methane, has not yet been achieved. This situation

directed us to revisit the diiron sites in the enzymes to identify features that had not

been adequately incorporated into the model complexes. One compositional difference

between most of the reported model complexes and the diiron(II) core at the active site

of MMOH is the presence of two water molecules in the first and second coordination

spheres (Chart 5.1). In recently published DFT calculations, the utilization of a
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coordinated H20 molecule as a hydrogen-bond donor was considered to be a key

component in the formation of reactive intermediate(s) upon oxygenation of the

diiron(II) site.1 8-20 The computational results strongly suggest that the ligated water

molecules may be required to reproduce the function of the enzyme in model systems.

Accordingly, we have undertaken the synthesis of model complexes containing water

molecules in the coordination spheres of their carboxylate-bridged diiron(II) sites. Here,

we report the result of our first efforts in this area, in which the synthesis and

characterization of diiron(II) complexes with two ligated water molecules and sterically

hindered terphenyl-based carboxylates are described.

Experimental

General Considerations. All reagents, including 4-tert-butylpyridine (4-

tBuC5H4N), were obtained from commercial suppliers and used as received unless

otherwise noted. Dichloromethane, pentane, and THF were saturated with argon and

purified by passage through activated A1203 columns under argon.21 Sodium 2,6-di-(p-

tolyl)benzoate (NaO2CArT o),2 '2 3 sodium 2,6-di-(p-fluorophenyl)benzoate (NaO2CAr4F'

Ph),23 [Fe2(O-0 2CArTOi)2(0 2CArTOl)2(THF)2],ll and [Fe2(RL-O2CArT o°)4(4-tBuC5H 4N)2]ll were

prepared as described in the literature. All syntheses and air-sensitive manipulations

were carried out under nitrogen in an MBraun glovebox. FT-IR spectra were recorded

with a Thermo Nicolet Avatar 360 spectrometer.

[Fe2(t-O 2CAr4 F'Ph)2(O 2CAr4 FPh)2(THF) 2(OH 2)2] (1). To a CH2CL2 solution (15 mL) of

NaO2CAr4 FPh (528 mg, 1.59 mmol) was added Fe(BF4)2.6H20 (268 mg, 0.794 mmol) in

THF (5 mL). The resulting suspension was stirred under reflux for 2 days, affording a

white precipitate that was filtered through Celite. Colorless blocks of 1 (231 mg, 34 %

yield) were obtained by layering pentane onto the filtrate, followed by slow evaporation

I
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and analyzed by X-ray crystallography. FT-IR (KBr, cmn') 3600 (w, o-H), 3443 (m, br,

VoH), 3059 (w), 2979 (w), 1606 (s), 1511 (s), 1455 (s), 1412 (s), 1382 (s), 1300 (w), 1221 (s),

1159 (s), 1095 (m), 1071 (w), 1036 (m), 1013 (w), 845 (m), 835 (m), 808 (s), 792 (m), 772

(m), 738 (w), 714 (m), 700 (m), 554 (s), 529 (s), 463 (m). Anal. Calcd for 1-0.5(CH2Cl 2) or

C84sH65Fe 2F 8 12Cl: C, 64.58; H, 4.17. Found: C, 64.85; H, 4.26.

[Fez(t.-OH 2)(L-O 2CArT )2(O2CArT °l)2(THF)2] (2). Method A. To a CH2C12 solution

(9 mL) of NaO 2CAr T (100 mg, 308 !xmol) was added Fe(BF4)2.6H20 (52 mg, 0.15 mmol)

in THF (3 mL). The resulting suspension was stirred for a day. The white precipitate

was filtered through Celite. Colorless blocks of 2 were obtained by pentane vapor

diffusion (7 mg, 6 % yield) and analyzed by X-ray crystallography.

Method B. To a portion (45.4 mg, 32.3 [1 mol) of [Fe2(x-

O2CAr'o')2(02CArTo°)2(THF) 211 was added a THF solution (1 mL) containing 10 !xL (0.56

mmol) of H20. The reaction mixture was stirred for 30 min. Colorless blocks of 2 (34.9

mg, 72 % yield), obtained after 2 days by diffusing pentane into the solution, were

analyzed by X-ray crystallography. FT-IR (KBr, cm-1) 3555 (m, VoH), 3400 (w, br, VOH),

3051 (w), 3022 (m), 2918 (m), 1588 (s), 1571 (s), 1514 (s), 1454 (s), 1408 (s), 1381 (s), 1305

(w), 1211 (w), 1145 (w), 1070 (w), 1042 (m), 1019 (w), 914 (w), 890 (w), 853 (w), 835 (m),

822 (s), 802 (s), 787 (m), 765 (m), 736 (m), 714 (w), 701 (m), 584 (m), 547 (m), 523 (m).

Anal. Calcd for C92H8Fe 2O 2: C, 73.80; H, 5.92. Found: C, 72.98; H, 5.98.

[Fe2(p-OH2)2(L- O 2CArT°l)2(O2CArT°l)2(4-tBuCsH4N)21 (3). A portion (50.5 mg, 31.8

[gmol) of [Fe2([-O2CArT°) 4(4-tBuC5H4N)2]xl was added to THF (1 mL) containing 10 l1

(0.56 mmol) of H2O. Stirring effected dissolution within 30 min to yield a light yellow

solution. Light yellow blocks of 3 (41.6 mg, 76 % yield), obtained by layering pentane

onto the solution, were analyzed by X-ray crystallography. FT-IR (KBr, cm-l) 3537 (s,

VO-H), 3425 (w, br, VoH), 3052 (m), 3020 (m), 2964 (s), 2919 (s), 2866 (m), 1613 (s), 1587 (s),
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1514 (s), 1501 (w), 1451 (s), 1383 (s), 1273 (w), 1071 (m), 1021 (w), 909 (w), 842 (w), 830

(m), 813 (m), 786 (m), 764 (m), 726 (w), 706 (m), 584 (m), 568 (w), 526 (m), 459 (w). Anal.

Calcd for C102H 98Fe2N20 10: C, 75.46; H, 6.08; N, 1.73. Found: C, 75.26; H, 6.14; N, 1.70.

X-ray Crystallography. Single crystals were mounted at room temperature on

the tips of quartz fibers, coated with Paratone-N oil, and cooled under a stream of cold

nitrogen. Intensity data were collected on a Bruker (formerly Siemens) APEX CCD

diffractometer running the SMART software package, with Mo Ka radiation (k =

0.71073 A). Data collection and reduction protocols are described in detail elsewhere.24

The structures were solved by Patterson methods and refined on F2 by using the

SHELXTL software package.25 Empirical absorption corrections were applied with

SADABS,26 part of the SHELXTL program package, and the structures were checked for

higher symmetry by the program PLATON.27 All non-hydrogen atoms were refined

anisotropically. In general, hydrogen atoms were assigned idealized positions and

given thermal parameters equivalent to either 1.5 (methyl hydrogen atoms) or 1.2 (all

other hydrogen atoms) times the thermal parameter of the carbon atom to which they

were attached. Hydrogen atoms of O-H of the coordinated water molecule were

identified from difference electron maps. In the structure of 1, two CH2C12 solvent

molecules were assigned in the lattice. The structure of 3 contains one THF and 0.5

pentane molecules. Data collection and experimental details for the complexes are

summarized in Table 6.1 and relevant interatomic bond lengths and angles are listed in

6.2.

Electrochemistry. Cyclic voltammetric measurements were performed in an

MBraun glovebox under nitrogen with an EG&G model 263 potentiostat. A three-

electrode configuration consisting of a platinum working electrode, a AgNO3/Ag (0.1 M

in acetonitrile with 0.5 M Bu4N(PF6)) reference electrode, and a platinum mesh auxiliary
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electrode was used. The supporting electrolyte was 0.5 M Bu4N(PF6) in CH2C12. All

cyclic voltammograms were externally referenced to the Cp2Fe/Cp2Fe* couple.

Results and Discussion

Synthesis and Characterization of the Doubly Bridged Diiron(II) Complex

[Fe2(OH2) 2(-0 2CAPh) 2(0 2CArF'Ph)2(THF)2] (1). Compound 1 was prepared from a

reaction between Fe(BF4)2'6H 2 0 and 2 equiv of NaO2CAr4F'Ph in a THF/CH 2C12 solution.

The structure comprises two distorted trigonal bipyramidal iron(II) centers straddling a

crystallographic inversion center with an Fe .. Fe separation of 3.4433(8) A (Figure 6.1).

The coordination sites are occupied by two bridging Ar4FPhCO2- ligands and the oxygen

atoms of THF, water, and monodentate terminal carboxylate group. The water molecule

coordinated to Fe(1) with a Fe-O bond length of 2.157(2) A is 3.107(2) A from Fe(1A)

and thus not bridging the two iron atoms in this structure. A THF molecule is located

trans to the water ligand. Strong intramolecular hydrogen bonding interactions occur

between terminal metal-bound carboxylates and water molecules, with O...O distances

of 2.608(3) A.

Synthesis and Characterization of the Diaqua-bridged Diiron(II) Complex

[Fe2(I-OH2)2(t-O2CAr T°I) 2(O2CAT°l)2(THF)21 (2). Although the syntheses of related

diaqua-bridged dinickel(II) and dicobalt(II) complexes have been described28, an iron(II)

analogue has not previously been reported. Only monoaqua-bridged diiron(II)

complexes, including [Fe2([-OH 2)(O2CR)4(tmen)2] [tmen = tetramethylethylenediamine,

R= CH3 and C6H5]29 and [Fe2(g-OH2)(O2Ac) 5(pyridine)2 ];,3° ' have been characterized.

The synthesis of compound 2 was initially achieved by self-assembly from

Fe(BF4)2-6H20 and 2 equiv of NaO2CArTMi in poor yield, as described in Method A in the

experimental section. The water molecules in 2 must derive from the iron(II) salt,
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Fe(BF4)2,6H20, used in the synthesis. The reaction may proceed through the

intermediate formation of [Fe2(W-O2CArT°I)2(02CArTOI)2(THF)j in the reaction. This

hypothesis was tested by treating independently synthesized [Fe2(g-

O2CArT°I)2(O2CArT°I)2(THF)2] with 17 equiv of water (Method B), resulting in the

isolation of compound 2 in excellent yield.

The structure, displayed in Figure 2, reveals two pseudo-octahedral iron(II)

centers bridged by two carboxylate ligands and two water molecules. The Fe-..Fe

separation of 3.073(4) A is shorter by - 0.37 A than that in 1, owing to the presence of

two additional water bridges. The assignment of these ligands as water rather than

hydroxo groups is based on the Fel-O(aqua) distances, which are 2.2903(11) and

2.3161(12) A, by the location and refinement of the associated hydrogen atoms in the X-

ray structure determination (O-H, 0.789 and 0.958 A) and by charge considerations.

This assignment is further supported by two O-H stretching bands at 3400 and 3555 cm

in the IR spectrum of 2. The remaining coordination sites are occupied by THF and

monodentate terminal carboxylate ligands. Strong intramolecular hydrogen bonding

interactions occur between terminal metal-bound carboxylates and water molecules,

with O- .. distances of 2.543(2) A.

Synthesis and Characterization of the Diaqua-bridged Diiron(II) Complex

[Fe2(,L-OH 2) 2(&-O 2CAr T°i) 2(O 2CArT i) 2(4-'tBuCsH 4N) 21 (3). The compound [Fe 2([-

O2CArT°L)4(4-tBuC5H4N)2],l which has a composition close to those of MMOH,5 RNR-

R2,8 and ToMOH,6 is one of the better studied model complexes. To address how water

in the coordination sphere might affect the properties of this complex, we synthesized a

water-containing analogue. Compound 3 was prepared in excellent yield by addition of

excess H20 to [Fe2(-O02CArT°l)4(4-tBuC5H 4N)2]. The pseudo-octahedrally coordinated

iron(II) atoms in 3 are related by a crystallographic inversion center and bridged by two
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water molecules and two carboxylates, resulting in an Fe-..Fe distance of 3.0548(10) A

(Figure 6.3). Additionally, two hydrogen bonding interactions between terminal

carboxylates and bridging water groups further compact the diiron(II) sites. The 0...0

distance of 2.5519 (36) A indicates a strong interaction. A broad IR band at 3434 cm-' in

the spectrum of 3 is consistent with strongly hydrogen-bonded water, and a relatively

sharp O-H stretching band at 3573 cm'1 originates from the remaining proton on the

ligand.

Although the structures of a series of Fe2(II,I),32 Fe2(III,III)33 and Fe2(III,IV)34

complexes having neutral polypyridine ligands and a central 2Fe20 quadrilateral are

currently available, only recently have related units with biologically more relevant O-

rich metal coordination environments become available (Chart 6.2)."° Compounds 2 and

3 complete one end of the series of diamond cores with O-rich metal coordination

environments. As indicated in Chart 6.2, there are several noteworthy differences

between members of the two series. The N-rich diiron complexes tend to have O-atom

bridges with fewer protons. Thus, the diiron(II) sites in the neutral O-rich complex 3 are

bridged by H20 molecules, in contrast to the hydroxo bridges in the dicationic diiron(II)

complex A. Similarly, hydroxo bridges occur in the neutral O-rich diiron(III) compound

E, compared to the oxo bridges in the N-rich diiron(III) complex C, which is a dication.

The aqua bridges that occur in the diiron(II) complexes [Fe2(-OH 2)(O2CR)4(tmen)2]29

(R= CH3 and C6Hs) and [Fe2(R-OH2)(O2Ac)5(pyridine)21 30,31 further substantiate this

observation. It is now generally accepted that the diiron(II) sites in deoxyhemerythrin,3

which has a N-rich metal coordination environment, are bridged by a hydroxo moiety

rather than water. Bridging H20 molecule(s) are therefore anticipated in the diiron(II)

site ligated by four carboxylates and two histidines in reduced ToMOH, as in MMOH.

A second difference noted is the small variation in Fe...Fe distance through the O-rich
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series compared to the N-rich one. The difference among diiron sites from 3 to E is only

0.171 A, compared to the 0.471 A spread from A to C. This property may be attributed

to the presence of two additional bridging carboxylates in the O-rich series of

compounds.

Vibrational and Electrochemical Properties. Figure 6.4 displays the infrared

spectra of compound 3 before and after heating at 100 °C under a nitrogen atmosphere.

The disappearance of bands at 3573 and 3434 crn' after heating is attributed to the loss

of coordinated water molecules in the solid state. The spectrum of 3 after heating

matches that of the known compound [Fe2(y-O2CArT°)4(4-BuC5H4N)2].l

The electrochemical properties of 3 were investigated by cyclic voltammetry

(Figure 6.5). One irreversible oxidation at El/2= -210 mV (AEp = 140 mV; ip,/ilC = 5.9, scan

rate = 50 mV/s) accompanied by a broad reduction wave at ca. -890 mV vs.

Cp2Fe*/Cp2Fe was observed in CH2C2 solution. When the voltammogram was scanned

only cathodically between -343 mV and -1143 mV and recorded, the reduction wave at

-890 mV was no longer present (Figure 6.5B). Similar voltammograms (Figure 6.6) were

produced by addition of 0, 1, 2, and 3 equiv of H20 to a CH2C12 solution of the

compound [Fe2(R-O2CArT°)4(4-BuC5H4N)2]. Combined with the IR spectroscopic data,

these results can be rationalized in the following manner (Scheme 6.1). Dehydration of 3

in CH2C12 can occur to afford two molecules of water and [Fe2([t-O2CArT°l)4(4-

'BuC5H4N)2], which has a reversible Fe2(II,II)/Fe 2(II,III) couple at El/2 = -216 mV.35

Oxidation of [Fe2(WL-O2CArT°t)4(4-tBuCsH4N)2] provides the mixed-valent cation, [Fe2(I-

O2CArT°l)4(4-BuC5H4N)2]+, which is stable in the absence of water.35 In presence of water

molecules, however, an aquated [Fe2(O2CArT°I)4(4-BuC5H4N)2(OH2)x]+ species may form,

in which x can be one or two. This complex will exhibit different electrochemical

behavior, and its reduction may give rise to the wave at ca -890 mV. The complex
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[Fe2(O2CArT°)4(4-fBuCsH4N)2(OH2)xI, generated in this manner, would quickly lose

water molecules to form [Fe2(p-O2CArT°I)4(4-tBuC5H4N)2], resulting in no oxidation wave

on the reverse sweep until a potential greater than -300 mV is attained. Uptake of water

thus appears to lower the reduction potential of the diiron(II) core by - 610 mV, as

might be expected from the addition of good a donors to the dimetallic center. Both the

reported dissociation of water from [Fe2(R-OH2)(O2CR)4(tmen)2] in solution by NMR

studies29 and the association/dissociation of water molecules of Co2(-OH 2) 2})4 in solid

state28 are consistent with our observations of reversible water loss from 3 in both the

solid and solution states.

The diiron sites in 3 and MMOH both contain four carboxylates, two N-donor

ligands, and two water molecules. The two water molecules in the first and second

coordination spheres of the kinetically labile diiron(II) sites in MMOH may also be in an

equilibrium between bound and free forms, like 3. Dissociation of water molecules in

MMOHed, together with a carboxylate shift, may generate the open coordination site(s)

needed for dioxygen binding and activation.36 In this respect it is noteworthy that, in the

presence of the coupling and reductase components, MMOB and MMOR, the redox

potential of the diiron center in MMOH changes significantly.37 ' The present results

suggest that this change may reflect loss of coordinated water molecules. On the other

hand, DFT calculations of the MMOH reaction cycle identify an associated water

molecule as a key component for generating oxygenated intermediate(s).'820 A more

complete understanding of the effects of water association and dissociation at

carboxylate-bridged diiron sites, before and after the introduction of dioxygen, is clearly

desirable. Although we now have clear evidence that the water molecules in 3 are

reversibly bound, exactly when and how they may influence the oxygenation reactivity

of diiron(II) sites remains to be determined. Efforts are underway to clarify the effect of
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water in the oxygenation pathways of model complexes with composition similar to

that of MMOH.

Summary

The existence of water molecules at the diiron(II) active sites of carboxylate-

bridged diiron enzymes directed us to explore water as a ligand in related complexes

supported by sterically hindered carboxylate groups. The first carboxylate rich

di(aqua)-bridged diiron(II) complexes have been characterized, completing one end of

this series of O-rich diamond core structures. Chemical, IR spectroscopic and

electrochemical experiments indicate the reversible generation of the quadruply

bridged diiron(II) complex [Fe2(g-O2CArT°)4(4-BuC5H4N)2] by loss of two water

molecules from compound [Fe2(g-OH2)2(~-O2CArT')2(O2CArT)2(4-uCH4N)].
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Table 6.1. Summary of X-ray crystallographic information for [Fe2(OH2)2([-O2CAr4F'

Ph)2(02CAr4 FPh)2(THF)2] (1), [Fe2(wL-OH2) 2(IL-O2CArT °l)2(O2CArT 'o) 2(THF) 2] (2) and [Fe 2(t-

OH 2) 2(-0 2CArT°I) 2(0 2CArT o°)2(4-t BuC5H4N) 2] (3).

Compound 1-2CH2C12 2 3-THF1 / 2Pentane

empirical formula Fe2C8 6H6O 1 2F8CI 4 Fe2C 2HO 12 Fe2C 108.5H 12N 20 11
weight 1698.90 1497.33 1731.70
space group PI P21/c C2/c
a, A 12.3562(11) 13.509(3) 23.880(6)
b, A 13.9639(13) 14.260(3) 17.100(4)
c, A 14.0539(13) 20.278(4) 27.078(7)
a, deg 97.189(2)
,B, deg 114.862(2) 104.707(3) 112.139(4)
y, deg 111.331(2)
V, A3 1935.3(3) 3778.6(13) 10208(4)
Z 1 2 4

Pcalc, g/cm 3 1.458 1.316 1.127
T, C -100 -100 -100
[i (Mo Ka), mrml 0.596 0.449 0.341
total no. of data 14443 31708 37188
no. of unique data 6755 8571 9008
no. of params 651 490 616
R (%)a 4.55 4.02 6.49
R. 2 (%)b 11.81 10.76 20.84

max, min peaks, 0.370,-0.349 0.544,-0.232 0.768,-0.365
e/A 3

a R = IIlFol - IFcll/lFol. b R2 = [w(Fo2 - F2 )2]/[w(Fo 2 )2]} 1/2
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Table 6.2. Selected interatomic bond lengths (A) and angles (deg) for [Fe2(OH2)2(w-

O2CAr4F'Ph)2(O2CAr4'Ph) 2(THF) 2] (1), [Fe 2(u-OH 2) 2(jt-O2CArT°t) 2(O 2CArT I) 2(THF)2] (2) and

[Fe2([L-OH2)2(-O2CAr7T°)2(O2CArT°)2(4-BuC5H4N)2] (3).

Compound 1-2CH2C12 2 3-THF-1/2Pentane

Fel FelA 3.4433(8) 3.073(4) 3.0548(10)
Fel-Ol 2.157(2) 2.2903(11) 2.292(3)
FelA-O1 3.1070(21) 2.3161(12) 2.306(3)
Fel-02 2.0391(18) 2.0806(11) 2.043(2)
Fel-03 2.0099(18) 2.0334(11) 2.085(2)
Fel-04 2.0298(18) 2.0536(11) 2.060(2)
Fel-La 2.1012(18) 2.1014(11) 2.132(3)
Fel-Ol-FelA N/A 83.68(4) 83.26(9)
Ol1-Fel-Ol1A N/A 96.32(4) 96.74(9)
02-Fel-03 138.60(7) 156.40(4) 156.85(9)
O1-Fel-04 92.12(8) 89.30(4) 89.06(9)
O1-Fel-La 176.07(8) 176.85(4) 177.84(11)
02-Fel-04 108.55(7) 105.85(6) 105.68(9)
03-Fel-04 112.85(7) 105.60(4) 93.73(9)
02-Fel-La 90.39(7) 94.36(5) 96.02(10)
03-Fel-L' 89.08(8) 96.29(5) 96.90(10)
O4-Fel-La 91.46(8) 87.59(4) 88.79(10)
02-Fel-O1 90.02(8) 83.75(5) 84.81(10)
03-Fel-O1 88.02(8) 84.04(5) 82.99(9)
02-Fel-Ol1A N/A 77.65(4) 83.60(10)
03-Fel-Ol1A N/A 83.72(5) 78.40(9)
04-Fel-Ol1A N/A 169.62(4) 169.52(10)
L -Fel-O1A N/A 86.83(4) 85.34(10)
05- 01 2.608(2) 2.543(2) 2.5519(36)

Numbers in parentheses are estimated standard deviations of the last significant
figures.
a L is the O-atom of THF in 1 and 2, the N-atom of 4-tBuC5H4N in 3, respectively.
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Scheme 1

3

2H20 + [Fe2(A-O2CArT) 4(4-tBuC5H4N)2] - 2H20 + [Fe2(-O2CArT°l) 4(4-tBuC5H4N)2]+

A t e- 
[Fe2(02CArTI)4(4-tBuC5H4N)2(H2)x] , [Fe2(02CArTOl)4(4-tBuC5H4N)2(OH2)x]+

Scheme 6.1.
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Figure 6.1. Top: ORTEP diagrams of [Fe2(OH2)2(-O 2CAr4FPh)2(O2CAr4 FPh)2(THF)2] (1)
showing 50 % probability thermal ellipsoids for all non-hydrogen atoms. Bottom:
Drawing with the aromatic rings of Ar4FCO 2 -ligands omitted for clarity.
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Figure 6.2. ORTEP diagram of [Fe2(tt-OH2)2(t-0 2CArT °')2(O2CArT °) 2(THF)2] (2) showing
50 % probability thermal ellipsoids for all non-hydrogen atoms. The aromatic rings of
ArT°CO2- ligands are omitted for clarity.
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0(2)

0(2A)

013A)
0(5A)

Figure 6.3. ORTEP diagrams of [Fe2(-OH 2 )2(-O 2 CArT°)2(O2CArT°l)2 (4-BuCsH4N)2] (3)
showing 50 % probability thermal ellipsoids for all non-hydrogen atoms. Drawing with
the aromatic rings of Ar T°CO2- ligands omitted for clarity.
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Figure 6.4. IR spectra of (A, B) [Fe2(-OH 2 )2(w1-O2CArTo')2(O2CArTI)2(4-tBuC5H 4N)2 (3),
before and after heating, and (C) [Fe2(-O 2CArT°')4(4-'BuC5H4N)2].
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Figure 6.5. Cyclic voltammograms of (A and B) [Fe2(y-OH2)2(y-02CAr) 2(02CArT o)2(4-
tBuC5H4N)2] (3) in CH2C12 with 0.5 M (Bu4N)PF6 as supporting electrolyte and a scan rate
of 50 mV/s.
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Figure 6.6. Cyclic voltammograms of [Fe2([i-O2CArT°I)4(4-BuC5H4N)2] with variable
amounts of H20 in CH2C12 with 0.5 M (Bu4N)PF, as supporting electrolyte and a scan
rate of 50 mV / s.



Chapter 7

Water-Dependent Reactions of Diiron(II) Carboxylate Complexes
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Introduction

Carboxylate-bridged diiron(II) cores, housed in the four-helix bundles, occur

frequently in the active sites of dioxygen-dependent non-heme diiron(II) enzymes. ' 3

The R2 subunit of ribonucleotide reductase (RNR-R2), A-9-desaturase (A9D), and the

hydroxylase component of soluble methane monooxygenase (sMMOH) are important

members of this metalloprotein family. A common diiron structural unit, in O-donor

ligand, is utilized to achieve the diverse, physiologically related roles of these enzymes.

Much effort has been devoted to reproducing the structures and functions of these

active sites by synthetic model complexes."4 Studies of the oxygenation reactions of

these system have contributed to our understanding of the chemistry in the

oxygenation cycle of enzymes. Few of the models, however, address the role of water

inn determining the reactivity of the carboxylate-rich diiron(II) sites. Recently we

reported the designed synthesis of the water-containing diiron(II) complexes as our

initial effort to address this issue.' Our result suggested the existence of the water-

dependent equilibria as an important factor in directing the chemistry.

In the present chapter we describe the isolation and characterization of diiron(II)

complexes with varying numbers of ligated water molecules and supporting 2,6-di-(p-

fluorophenyl)benzoate (-O2CAr4FPh)6 ligands. X-ray crystallographically determined

structures, clearly delineate a series of water-induced conversions, which may reflect

transformations that occur at the diiron(II) sites of related metalloproteins in an

aqueous environment. The physical properties of novel water-bridged diiron(II)

complexes are also described.
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Experimental

General Considerations. All reagents were obtained from commercial suppliers

and used as received unless otherwise noted. Pentane and THF were saturated with

argon and purified by passage through activated A1203 columns under argon.7 The

compound [Fe2(-O 2CAr4 FPh)2(O2CAr4FPh)2(THF)21 was prepared as described in the

literature.9 All syntheses and air-sensitive manipulations were carried out under

nitrogen in an MBraun glovebox. FT-IR spectra were recorded with a Thermo Nicolet

Avatar 360 spectrometer.

[Fe(H 20)6](O2CAr 4FPh) 2-2THF (1). To a portion (45.4 mg, 32.3 [tmol) of [Fe2(j-

O2CAr4F-Ph)2(O2CAr4F-Ph)2(THF)2] was added a THF solution (0.7 mL) containing 20 L

(1.11 mmol) of H20. Dissolution occurred within 30 min to yield a light green solution.

Colorless needles of 1, obtained within 2 days of pentane diffusion into the solution,

were analyzed by X-ray crystallography. The quantity of needles diminishes if crystals

are allowed to be stored without isolation.

[Fe2(i-OH 2)2(-O 2CAr-' h)(O2CAr'm) 3(THF)2(OH2)] (2). To a portion (45.4 mg,

32.3 y[mol) of [Fe2(-O 2CAr4FPh)2(O2CAr4FPh)2(THF)2 was added a THF solution (0.7 mL)

containing 10 AL (0.56 mmol) of H20. Dissolution within 30 min occurs without stirring

to yield a light green solution. Colorless multifaceted blocks of 2 (19.9 mg, 41 % yield)

were obtained within 2 days by diffusing pentane into the solution and were analyzed

by X-ray crystallography. FT-IR (KBr, cm') 3601 (w, VoH), 3434 (w, br, VoH), 3064 (w),

2957 (w), 1605 (s), 1546 (w), 1510 (s), 1455 (m), 1408 (w), 1380 (m), 1299 (w), 1225 (m),

1095 (w), 1071 (w), 1036 (w), 1014 (w), 914 (w), 880 (w), 853 (w), 838 (m), 808 (s), 789 (w),

774 (w), 737 (w), 712 (w), 700 (w), 582 (w), 554 (m), 529 (m). Anal. Calcd for 2-2THF or

C92H82Fe2O15F8: C, 65.33; H, 4.89. Found: C, 65.13; H, 5.31.
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[Fe2(OH2) ,(L-0CAr4FPh)2(02CAr4F-Ph)2(THF)2][Fe(-02CAr4FPh)2(02CAr4F'Ph)2-

(THF)21 (3). A portion (50.5 mg, 31.8 ymol) of 2 was added to THF (1 mL). Stirring

effected dissolution within 30 min to yield a colorless solution. A cluster of colorless

square blocks of 3 developed upon layering pentane onto the solution. The composition

was revealed by X-ray crystallography.

X-ray Crystallography. Single crystals were mounted at room temperature on

the tips of quartz fibers, coated with Paratone-N oil, and cooled under a stream of cold

nitrogen. Intensity data were collected on a Bruker (formerly Siemens) APEX CCD

diffractometer running the SMART software package, with Mo Ka radiation ( =

0.71073 A). Data collection and reduction protocols are described in detail elsewhere."

The structures were solved by Patterson methods and refined on F2 by using the

SHELXTL software package.l2 Empirical absorption corrections were applied with

SADABS'3, part of the SHELXTL program package, and the structures were checked for

higher symmetry by the program PLATON.'4 All non-hydrogen atoms were refined

anisotropically. In general, hydrogen atoms were assigned idealized positions and

given thermal parameters equivalent to either 1.5 (methyl hydrogen atoms) or 1.2 (all

other hydrogen atoms) times the thermal parameter of the carbon atom to which they

were attached. Hydrogen atoms of the coordinated water molecules were identified

from difference Fourier maps. In the structure of 1, an oxygen atom in one of the THF

solvent molecules was disordered in two positions and refined as such with half

occupancy factors. The structure of 2 contains 2.5 THF molecules over three positions in

the lattice with 1, 0.75, and 0.75 occupancies. The structure of 2 also contains 0.75 H2O

molecule in the lattice. The structure of 3 contains 1 pentane molecule in lattice. Data

collection and experimental details for the complexes are summarized in Table 7.1 and
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relevant interatomic bond lengths and angles for 1 and 2 are listed in Tables 7.2 and 7.3,

respectively.

57Fe Missbauer Spectroscopy. M6ssbauer spectra were obtained on an MS1

spectrometer (WEB Research Co.) with a 57Co source in a Rh matrix maintained at room

temperature in the DCIF. Solid samples were prepared by suspending ca 0.015 mmol of

the powdered material in Apeizon N grease and packing the mixture into a nylon

sample holder. All data were collected at 4.2 K and the isomer shift () values are

reported with respect to natural iron foil that was used for velocity calibration at room

temperature. The spectra were fit to Lorentzian lines by using the WMOSS plot and fit

program. 5

Magnetic Susceptibility. Multifield saturation magnetic susceptibility data for

powdered solid 2 were measured between 2 and 300 K with applied magnetic fields of

0.1, 1, 2.5, and 5 T using a Quantum design MPMS SQUID susceptometer. The finely

powdered sample was loaded in a gel capsule and suspended in a plastic straw. The

susceptibilities of the straw and gel capsule were independently determined over the

same temperature range and fields in order to correct for their contribution to the total

measured susceptibility. The saturation magnetization data of 2 were fit by using the

simplex method to determine the spin Hamiltonian parameter set that yielded the

minimum standard quality of fit parameter, X2.1618 The software package (WMAG) used

to carry out the data analysis is a product of WEB Research Co., Edina, MN, U.S.A.

Results and Discussion

Synthesis and Structural Characterization of the HexaaquaIron(II) Complex

[Fe(H2O)6 (O2CAr4h) 2.2(THF) (1). The dissolution of [Fe2(W-O2CAr4FPh)2(O 2CAr4F'

Ph)2(THF)2] in THF with 20 equiv of water, followed by pentane diffusion, results in
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colorless long needles. The structure of 1 is depicted in Figure 7.1 and selected

interatomic distances and angles are listed in Table 7.2. Two octahedral hexaaqua

iron(II) units are housed in the unit cell, with Fe-O bond length ranging from 2.1055(17)

to 2.1673(16) A. The charge of hexairon(II) unit is balanced by two carboxylate units,

and there are also two THF molecules in the asymmetric unit. The CO2- moieties of the

carboxylates are oriented perpendicular to each other (Figure 7.1 Top), with C-O bond

bond length of 2.247(2) A, 2.253(2) A, 2.255(2) A, and 2.259(2) A. These values indicate

them to be deprotonated. The average 0...0 distance between the carboxylate and

coordinated water O-atoms is 2.737(23) A, indicating the presence of hydrogen bonding

interactions. The oxygen atom in THF is also near the oxygen atoms of coordinated

water molecules at 0 ...0 separations of 2.643 and 2.690 A. Hydrogen bonding

interactions also occur between water molecules on adjacent iron(II) sites, with 0 .. 0

separations of 2.955 and 3.129 A (Figure 7.2). The adjacent iron(II) octahedral are

twisted by 45 degrees relative to each other and propagate in one dimension. All 12

hydrogen atoms in the six water molecules are involved a tight hydrogen bonding

network along the one dimensional iron(II) channel. Two modes of carboxylate

orientations, parallel and perpendicular to the direction of the channel, repeat along this

channel. The sterically hindered carboxylates separate one channel from another by - 14

A, as shown in Figure 7.1 bottom. Unfortunately, the colorless needles quickly lose their

identity when removed from solution, as evidenced by a change in color possibly

indication of decomposition. This instability hindered further physical characterizations

of compound 1.

Synthesis and Structural Characterization of [Fe2(pL-OH)2(-O 2CAriPh)-

(O2CAr4 F-Ph) 3(THF)(OH 2 )] (2) and [Fe 2 (OH,2 )2 (L-OCAr 4 FPh)(OCAr 4 ) 2(THF)2][Fe2 (-

O2CAr4 FrPh)2(02CAr&'Ph)2(THF)2 1 (3). Colorless block crystals of 2 were initially observed
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to form in the reaction of [Fe2(,-O 2CAr4FPh)2(O2CAr4FPh)2(THF)219 with 34 equiv of water,

after separation of compound 1 from the solution. Since 2 has fewer water molecules

than 1, this result suggested that formation of 1 may diminish the water content in the

solution leading to diiron(II) complexes containing fewer water molecules. This

hypothesis was confirmed by the synthesis of complex 2 through reaction of [Fe2(-

O2CAr4 FPh)2(O2CAr4FPh)2(THF)2]9 with 17 equiv of water. Colorless multifaceted crystals

of 2 were obtained upon vapor diffusion of pentane. The structure of 2 is shown in

Figure 7.3 and selected interatomic distance and angles are provided in Table 7.3. Two

iron(II) atoms having a pseudo-octahedral coordination geometry are bridged by one

carboxylate and two water molecules. The Fel-O1-Fe2 unit has Fe2-01 and Fel-O1

distances of 2.233(2) and 2.294(2) A, respectively, and a 93.18(8)° bridging angle. For

Fel-02-Fe2 the values are Fe2-02 and Fel-02 distances of 2.234(2) and 2.152(2) A,

respectively, and a 97.14(8)° for the angle. The Fe2(OH2)2 unit is bent up and away from

the bridging carboxylate. The Fe...Fe distance is 3.289(3) A. This diiron(II) core has not

been previously reported in structures of either small molecules or metalloproteins, The

bent motif occurs in the {Fe2([t-OH)2(w-O2CR)(OH2)}3 cores of the diiron(III) sites in the

enzymes.2223 Each iron(II) center contains one terminal carboxylate, which makes a

hydrogen bonding interaction with the bridging water molecule at 0.. 0 distances of

2.587 and 2.546 A. The position of the Fel site trans to the bridging carboxylate is

occupied by a terminal carboxylate, which is hydrogen-bonded to the bridging water

molecule 02. A terminal water molecule occupies the corresponding site on the Fe2 and

is strongly hydrogen-bonded to the terminal carboxylate on Fel at an 0 ..0 distance of

2.721 A. This interaction stabilizes a Fe2(g-OH2) 2)4' core fragment. The hydrogen atom

on the axial water interacts with a THF molecule in the crystal lattice at an 0...0
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distance of 2.644 A. The closest intermolecular separation in the lattice between the

centers of the diiron units is 13.22 A, indicating that solid 2 is magnetically dilute.

The dissolution of 2 in THF, followed by re-crystallization, affords 3. The

structure, displayed in Figure 7.4, reveals two different diiron(II) units, with

composition [Fe 2(O-0 2CAr4 FPh)2(0 2CAr4FPh)2(THF) 2]9 and [F e2(OH2) 2(-O 2CAr4 F

Ph)2(O2CAr4F'Ph)2(THF)2].5 Both of these compounds were previously reported from our

laboratory. The isolation of these water-containing 3 is in accord with our working

hypothesis, that these water-containing carboxylate-rich diiron(II) complexes are in

dynamic equilibrium with on another.

Only one species, [Fe2(R-OH2)2(1-O2CArTI)2(O2CArT°I)2(THF)215 has been detected

in the reaction of [Fe2(i-O2CArT°I)2(02CArT°I)2(THF)2] with water. This finding is

interesting considering to the variety of water-containing diiron(II) complexes

containing O2CAr4 FP h ligands. The difference may be related to the solubility

considerations. Iron(II) complexes with O 2CAr4FPh ligands are often less soluble in

aprotic solvents than those of 2,6-di-(p-tolyl)benzoate (O2CArT°l).6 Thus, the complexes

isolated may reflect kinetic products.

Missbauer Spectroscopic Properties of Complex 2. The zero-field M6ssbauer

spectrum of 2 was recorded at 4.2 K to address the influence of water coordination on

the M6ssbauer parameters (Figure 7.5). The symmetric quadropule doublet indicates

that the two different iron sites are indistinguishable under M6ssbauer conditions. The

isomer shift ( = 1.35(2) mm s'), quadrupole splitting (EQ = 3.26(2) mm s'), and

linewidth r = 0.25(2) mm s- are comparable to with those of other high-spin iron(II)

complexes.

Multifield Saturated Magnetic Susceptibility Properties of Compound 2. A

ferromagnetic exchange coupling interaction of the two iron(II) sites in sMMOH has

- -M



230

temperature. The solid lines in Figure 7.5 were calculated by diagonalization of the full

25 x 25 spin Hamiltonian of eq 1 with J = 0.02 cm' , Dr = D2 = -5.3 cm -', El/DI = E2/D2 =

0.13, and g = g2 = 2.02 and X2 =11.5. The J value close to zero indicates that there is no

significant exchange coupling interaction between two high-spin diiron(II) sites. When

compared to the previously described ferromagnetically coupled dibridged diiron(II)

complexes, this result suggests that the magnetic interaction in these systems may also

depend on the planarity of the Fe2(X)2 site, where X is the bridging atom.

Conclusions and Summary

Use of the sterically-hindered 2,6-di-(p-fluorophenyl)benzoate (-O2CAr4F Ph)

ligand, which has moderate solubility in organic solvents,' afforded iron(II) complexes

with a diverse number of water molecules. The synthetic pathway, shown in Scheme

7.1, reveals the existence of water-dependent equilibria. The complete disruption of the

[Fe2(,-O 2CAr4F-Ph)2(O2CArPh) 2(THF)2] complex by the addition of 34 equiv of water

reveals that the polymeric hydrated ferrous ion is very stable and that the carboxylate

ligands provide further electrostatic and hydrogen bonding interactions contributions

to this stability. When less water is added, diiron(II) complex 2, with three water

molecules, two in the bridging position and one in the terminal position is generated.

The related and previously known complex [Fe2(OH2)2(-O 2CAr4 FPh)2(O2CAr4F

Ph)2(THF)2] contains just two water molecules, both in bridging positions. Even an

average of fewer water molecules occur in [Fe2(OH2)2(-0 2CAr4F-Ph)2(O2CAr4F'

Ph)2(THF)2]-[Fe2(W-O2CAr4FPh) 2(O2CAr4FPh)2(THF)21. The isolation of these five diiron(II)

compounds strongly support the occurrence of water-dependent equilibria in the

solution. Carboxylate-rich diiron units apparently can accommodate diverse geometries

depending on the amount of water available. The diiron(II) sites in sMMOH,22 RNR-
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been revealed by resonance techniques.2 4 Such ferromagnetic coupling very rare, even

among synthetic diiron(II) molecules.8 '2526 Only the dihalide,25 diphenoxide,8' 26 and

recently observed diaqua27 bridged diiron(II) complexes have displayed ferromagnetic

exchange coupling between the two iron(II) sites. These observations suggest that two

single atom bridges are required for such coupling, suggesting the diiron(II) site in

reduced sMMOH may contain two single atom bridges.'826 The previously reported

ferromagnetically coupled diiron(II) complexes have another common fearture, namely,

thattwo single atom bridges are all in the plane defined by the two iron(II) atoms and

the two bridging atoms. It was therefore of interest to see whether complex 2 which has

two single-atom bridges but a non-planar core, exhibit a ferromagnetic exchange

coupling interaction.

In order to address this issue, multifield saturated magnetic susceptibility

measurements of 2 were made (Figure 7.6). The effective magnetic moment (ef) of 2

steadily decreases from 7.2 AB at 300 K to 6.6 B at 2 K. This behavior signals weak

exchange coupling between the two high-spin iron(II) centers of the triply-bridged

dimer. The energy levels of the system formed by two exchange coupled high-spin

ferrous (S = 2) sites can be described by the spin Hamitonian given in eq 1, where J is

the isotropic exchange coupling constant, Di and Ei are the axial and rhombic zero-filed

splitting parameters, and gi is the g tensors of the uncoupled site (i = 1, 2). We assumed

two identical, collinear high spin diiron(II) sites to prevent overparameterization.

H= -2JS,-S2 + E,[Di(Sz 2-2) + E,(Sx 2- Sy2) + P S,.g,-H] i = 1, 2 (1)

In Figure 7.6 Top the data are presented as magnetic moment versus temperature

at all four fields. In Figure 7.5 Bottom the data are presented as susceptibility versus
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R2,28 A-9-deasturase,9 and ToMOHz3 contain variable numbers of water molecules in the

coordination sphere of their diiron sites. Each is housed near a hydrophobic pocket that

limits water access in the X-ray crystal structure of the reduced form of sMMOH,22 the

diiron sites have two water molecules compared with no water molecules at all in the

diiron(II) core of RNR-R2.2 Perhaps, the accessible amount water in non-heme diiron(II)

sites is important and must be controlled. Although our study clearly demonstrates that

water is involved in equilibria with carboxylate-rich diiron(II) complexes, a quantitative

treatment and understanding of its influence on the oxygenation events remains for

future work.
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Table 7.1. Summary of X-ray Crystallographic Information for [Fe(H20)6(O2CAr4F

Ph)2(THF)2]2 (1), [Fe2(lw-OH2)2([-0 2CAr4'ph)( 2CAr 4FPh) 3(THF) 2(OH 2)I (2) and [Fe 2 (OH 2)2(g-

O2CAr4F-Ph)2(O2CAr4'Ph) 2(THF) 2] [Fe 2(-0 2CAr 4FPh) 2(0 2CAr 4F h)2(TIF) 2] (3).

Compound 1 2-2THF 3'C5Hlo

Empirical formula
Fomula weight
space group
aA
bA
cA
a, deg
0, deg
y, deg
V,A
z
Pcalc, g/cm 3

T, °C
(Mo Ka), mm-'

total no. of data
no. of unique data
no. of params
R1 (%)a
wR2 (%)b
Largest diff. peak
and hole

FelC46HS3012 F4

929.74
pi
11.244(3)
13.777(3)
15.447(3)
69.953(3)
89.780(4)
79.225(4)
2203.6(8)
2
1.401

-100
0.422
19290
9707
717
5.11
14.06
0.586
-0.294

Fe2C94 Hs7.50 16 .sFs
1744.84
P1

14.537(3)
15.812(3)
20.001(4)
92.153(3)
109.997(3)
98.874(3)
4248.1(13)
2
1.364
-100
0.427
32795
15649
1087
5.35
17.90
0.631
-0.586

Fe4 C1 73H 36 02 2 F1 6

3094.22
P1

13.645(2)
16.523(3)
16.777(3)
93.187(3)
107.174(3)
95.246(3)
3585.0(10)
1

1.433
-100
0.490
31330
15822
981
5.54
13.79
0.576
-0.320

a R1 = IIFolI - IFCIl/IFol. b wR2 = {[w(Fo 2 - Fc2)2]/E[w(Fo)2]} u
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Table 7.2. Selected interatomic distances () and angles (deg) for [Fe(H20)6(02 CAr4 F

Ph)2(THF)22 (1).a

Fel-01
Fel-02
Fel-03
Fe2-04
Fe2-05
Fe2-06
C100-07
C100-08
C200-09
C200-010
01-Fel-02
01-Fel-03
02-Fel-03
04-Fel-05
04-Fel-06
05-Fel-06
Fel-01-Fe2
Fel-0 1-Fe3
Fel-02-Fe2
Fel-02-Fe4
Fel-03-Fe3
Fel-03-Fe4

2.1158(15)
2.1279(17)
2.1531(15)
2.1673(16)
2.1248(15)
2.1055(17)
2.247(2)
2.253(2)
2.255(2)
2.259(2)
92.23(6)
88.32(6)
91.91(7)
93.18(6)
91.62(7)
90.94(7)
97.90(7)
97.32(7)
94.15(6)
97.02(7)
92.20(6)
98.24(7)

Fe2-01-Fe3
Fe2-02-Fe4
Fe2-04-Fe3
Fe2-04-Fe4
Fe3-03-Fe4
01-Fel-02
01-Fel-03
01-Fe2-02
01-Fe2-04
01-Fe3-03
01-Fe3-04
02-Fel-03
02-Fe2-04
02-Fe4-03
03-Fe3-04
03-Fe4-04
04-Fe4-012
04-Fe4-0 11
01 1-Fe4-012
02-Fe4-0 11

02-Fe4-012
03-Fe4-011
03-Fe4-012

aNumbers in parentheses are estimated standard deviations of the last significant figures.

97.04(7)
94.79(7)
94.79(6)
94.16(6)
93.14(7)
83.24(6)
85.46(6)
83.49(6)
83.01(6)
83.51(6)
84.41(6)
79.57(6)
82.64(6)
85.16(7)
82.38(6)
88.43(7)
154.33(7)
94.32(7)
60.27(7)
131.75(8)
111.21(7)
143.02(8)
109.45(7)
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Table 7.3. Selected interatomic distances (A) and angles (deg) for [Fe2(-OH 2 )2(t-O02 CAr4F '

Ph)O2CAr4 F-Ph)3(THF)2(OH2)] (2)a

Fel-Fe2
Fel-01
Fel-02
Fel-04
Fel-06
Fel-010
Fel-012
Fe2-01
Fe2-02
Fe2-03
Fe2-05
Fe2-08
Fe2-013
01...07
02" .09
02 -011
03...011
030...1S
Fel-01-Fe2
Fel-02-Fe2
01-Fel-02
01-Fel-04
01-Fel-06
01-Fel-010
01-Fel-012

3.289(3)
2.294(2)
2.152(2)
2.1251(19)
2.0413(19)
2.1416(19)
2.082(2)
2.233(2)
2.234(2)
2.116(2)
2.0190(19)
2.0594(19)
2.097(2)
2.547(3)
2.587(3)
2.617(3)
2.720(3)
2.644(3)
93.18(8)
97.14(8)
81.68(8)
85.30(8)
90.03(8)
90.86(8)
174.41(8)

02-Fel-04
02-Fel-06
02-Fel-010
02-Fel-012
04-Fel-06
04-Fe 1-010
04-Fel-012
06-Fel-010
06-Fel-012
010-Fel-012
OI-Fe2-02
01-Fe2-03
01-Fe2-05
01-Fe2-08
01-Fe2-013
02-Fe2-03
02-Fe2-05
02-Fe2-08
02-Fe2-013
03-Fe2-05
03-Fe2-08
03-Fe2-013
05-Fe2-08
05-Fe2-013
08-Fe2-013

aNumbers in parentheses are estimated standard deviations of the last significant figures.

89.50(8)
171.10(8)
85.52(8)
95.31(9)
93.07(8)
174.11(7)
89.98(8)
91.40(8)
93.21(8)
93.61(8)
81.28(8)
80.97(9)
88.41(8)
169.08(8)
100.09(8)
88.52(9)
91.74(8)
89.24(8)
174.83(8)
169.22(8)
93.44(8)
86.78(9)
97.34(8)
93.29(8)
88.89(8)
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- -6 - CTo~~~~~~~~~~~~~~~-

Figure 7.1. Top: ORTEP diagrams of [Fe(H2 0)6(O0CAr4F-Ph)2(THF)212 (1), showing 50 %

probability thermal ellipsoids for all non-hydrogen atoms in one unit cell. Bottom: Ball

and stick diagrams of 8 unit cells.
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Figure 7.2. Ball and stick diagram of [Fe(H20)6(O2CAr4FPh)2(THF)212 (1) The aromatic

rings of Ar4F'PhCO2' ligands and hydrogen atoms in THF molecules are omitted for

clarity. Left and Right are the side on views to each other.
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Figure 7.3. (Top) ORTEP diagrams of [Fe2(-OH2)2(L-O2CAr4F-Ph)(02CArt4F

Ph)3(THF)2(OH2)] (2) showing 50 % probability thermal ellipsoids for all non-hydrogen

atoms in one unit cell. (Bottom) The aromatic rings of Ar4FPhCO2- ligands and hydrogen

atoms in THF molecules are omitted for clarity
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Figure 7.4. Top: ORTEP diagram of [Fe2(OH2)2(t-O 2CAr4 -Ph)2(O2CAr4FPh)2(THF)J [Fe2( -
O2CAr4 FPh)2(O2CAr4FPh)2(THF)21 (3) showing 50 %o probability thermal ellipsoids for all
non-hydrogen atoms. Bottom left: The aromatic rings of ArT°CO2' ligands are omitted
for clarity and hydrogen-bonding interactions are depicted with dot lines.
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Figure 7.5. Zero-field M6ssbauer spectrum (experimental data (I), calculated fit (-))

recorded at 4.2 K of the solid sample of [Fe2(!-OH2)2(i-02CAr4F-Ph)(02CAr4 F

Ph)3(THF)2(OH2)] (2).
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Figure 7.6. Plots of the effective magnetic moment (aff) per molecule versus

temperature (Top) and molar susceptibility (M) versus temperature (Bottom) for [Fe2(w-

OH2)2(-O 2CAr 4 Ph)( 2CAr4Ph) 3(THF)2(OH2)I (2). The lines represent the fit.
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Chapter 8

Water Affects the Dioxygen Reactivity of Carboxylate-Rich Diiron(II)

Complexes as Models for Diiron Centers in Dioxygen-Dependent Non-

Heme Enzymes
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Introduction

Carboxylate-bridged diiron units constitute a commonly occurring element in a

growing member of dioxygen-dependent metalloenzymes. Important members of this

class include class I ribonucleotide reductase (RNR),'2 soluble methane monooxygenase

(sMMO),3 fatty acid desaturase (A9D),4 and toluene monooxygenase (ToMO).5 Although

these metalloproteins share a common structural motif, their diiron centers are tuned to

achieve diverse functions. There are subtle differences among the crystallographically

characterized enzyme active sites, including the binding modes of the carboxylates and

the existence of variable numbers of water molecules. These distinctions and the sur-

rounding polypeptide matrix alter the chemical properties of the core. Understanding

how these carboxylate-bridged diiron(II) units work and how their mechanisms relate

to one another represents a challenging and active area of research in bioinorganic

chemistry.

Numerous diiron complexes have been prepared to understand the chemistry of

these systems at the molecular level.' Much effort has focused on reproducing the ar-

chitecture of the active sites using carboxylate-based ligand frameworks and on study-

ing oxygenation of the resulting carboxylate-rich diiron(II) complexes to address the

roles of this basic unit shared by these enzymes. On the other hand, understanding

other factors, such as the presence of water molecules in iron coordination sphere or the

influence of the surrounding polypeptide matrix, has until now been forthcoming

mainly through direct studies of the biomolecule itself and by theoretical methods. The

importance of certain amino acid residues in the surrounding polypeptide has been

probed by selective mutagenesis. The effect of water on the oxygenation cycle has been

a focus of computational studies. In recently published DFT calculations, the coordi-

nated H20 molecule, used as a hydrogen-bond donor, was considered to be a key com-
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ponent in the formation of reactive intermediate(s) formed upon oxygenation of the dii-

ron(II) site.9' 0

Recently, we have begun to address the role that coordinated water might play

in the oxygenation cycle of carboxylate-rich diiron sites in metalloenzymes by using

small molecule synthetic mimics. The reaction between water and carboxylate-rich dii-

ron(II) complexes has been investigated and iron(II) complexes with varying numbers

of water ligands isolated, revealing that tetracarboxylate-bridged diiron complexes are

quite responsive to water influx.",2 In the present chapter, we report our efforts to treat

the water-dependent equilibria quantitatively and to address the effects of water on

oxygenation of the diiron(II) carboxylate complexes. In addition, the physical properties

of water containing diiron(II) complexes are described. These studies have been facili-

tated by the introduction of 4-cyanopyridine (4-NCC5H4N) as a ligand, which shifts the

metal-to-ligand charge transfer bands of the starting diiron(II) compounds into visible

region of the spectrum.

Experimental Section

General Considerations. All reagents, including 4-cyanopyridine, were obtained

from commercial suppliers and used as received unless otherwise noted. Dichloro-

methane, pentane, toluene, and THF were saturated with argon and purified by passage

through activated A1203 columns under argon.'3 Dioxygen (99.994%, BOC Gases) was

dried by passing the gas stream through Drierite. The compounds [Fe2([t-

O 2CArTo') 2(O 2CArT°o)4(THF)2, 7 where -O2CArTM ' is 2,6-di-(p-tolyl)benzoate,' 4 [Fe2 (j-

O2CAr 4F-Ph)2(CAr4 F-Ph)4(THF) 2], 7 where -O2CAr4F Ph is 2,6-di-(p-flurorphenyl)benzoate,' 4

and {H(OEt2)j{BAr'4}, 5 where BAr4 is tetra(3,5-di(trifluoromethyl)phenyl)borate, were
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prepared as described in the literature. Air-sensitive manipulations were carried out

under nitrogen in an MBraun glovebox. FT-IR spectra were recorded with a Thermo

Nicolet Avatar 360 spectrometer. UV-vis spectra were obtained on a Hewlett-Packard

8453 diode array spectrophotometer. In variable temperature UV-vis studies, the tem-

perature was controlled with an Oxford ITC 601 cryostat.

[Fe2(-0O2CArT°) 4(4-NCCsH4N)2j (1). To a light yellow solution of [Fe2([L-

O2CArT°l)2(O2CArT°O)2(T HF)2]7 (1.85 g, 1.26 mmol) in CH2C12 (100 mL) was added solid 4-

NCC5H4N (263 mg, 2.53 mmol) and the dark red pink solution was stirred for 20 min.

The solution was filtered through Celite and pentane was layered on top. Dichroic red

pink blocks of 1 (1.44 g, 75 %) formed overnight. The best crystals for X-ray crystallog-

raphy were obtained by recrystallization from THF I pentane. FT-IR (KBr, cma) 3050 (w),

3021 (w), 2918 (w), 2862 (w), 2236 (w, VcN), 1609 (s), 1551 (w), 1513 (w), 1493 (w), 1440

(m), 1404 (m), 1384 (s), 1303 (w), 1215 (w), 1188 (w), 1109 (w), 1065 (w), 843 (w), 814 (s),

789 (m), 762 (w), 727 (w), 706 (m), 580 (w), 558 (w), 526 (m). Anal. Calcd. For

1.0.5(CH2Cl2), C103H93Fe2N 4O 8Cl: C, 73.93; H, 4.95; N, 3.57. Found: C, 74.44; H, 5.10; N,

3.40.

[Fe2(w-O2CArPh) 4(4-NCCsH4N)2 (2). To a rapidly stirred solution of [Fe2(tt-

O2CAr 4F'Ph)2(0 2CAr4 FPh)2(THF)2]7 (762 mg, 51.0 mmol) in CH2C12 (50 mL) was added solid

4-NCC5H4N (106 mg, 102 mmol), yielding a red solution. A red precipitate of 2 (512 mg,

65 %) formed immediately and was isolated by filtration and washed with pentane. The

solid (20.3 mg) was dissolved in CH2C12 (10 mL), and exposure of the solution to pen-

tane vapor diffusion yielded dichroic yellow red blocks, suitable for X-ray crystallogra-

phy. FT-IR (KBr, cm'n) 3056 (w), 2239 (w, VCN), 1610 (s), 1569 (w), 1551 (w), 1509 (s), 1452

(w), 1404 (m), 1382 (s), 1299 (w), 1220 (s), 1159 (m), 1095 (w), 844 (m), 832 (m), 818 (m),
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793 (w), 773 (w), 727 (w), 706 (w), 582 (w), 556 (m), 532 (w). Anal. Calcd. For

C88H52F 8Fe2N408: C, 67.88; H, 3.37; N, 3.60. Found: C, 67.55; H, 3.45; N, 3.72.

[Fe2(.L-O2CArT°)(OCAr T "')2(4-NCCsH4N)2(OH2)2] (3). To a stirred yellow solu-

tion of [Fe2(g-O2CArT°)4(4-NCC5H4N)2] (49.5 mg, 29.8 gmol) in THF (1 mL) was added

dropwise H2 0 (7 FL) under nitrogen. Dichroic yellow red needle crystals of 3 (20.3 mg,

44% yield), suitable for X-ray crystallography, were obtained by vapor diffusion of

pentanes into the solution. FT-IR (KBr, cm'l) 3653 (w), 3423 (w, br), 2918 (w), 2235 (w,

Vc.N), 1609 (s), 1515 (s), 1452 (s), 1411 (m), 1381 (s), 1217 (w), 1190 (w), 1109 (w), 860 (w),

846 (w), 818 (s), 797 (m), 790 (m), 781 (m), 766 (w), 734 (w), 713 (w), 586 (w), 559 (m), 540

(w), 521 (w), 454 (w). Anal. Calcd for CH80Fe 2N 4O 1 0: C, 73.85; H, 5.16; N, 3.59. Found: C,

73.85; H, 5.48; N, 3.81.

[Fe2(W-O2CAr4FPh)2(O2CAr4F')2(4-NCCH4N)2(OH2)2] (4). Compound 4 was syn-

thesized as described for 3 and identified by X-ray crystallography (yield 58%). FT-IR

(KBr, cm-l) 3655 (w), 3420 (w, br), 3054 (w), 2244 (w, Vc.N), 1604 (s), 1510 (s), 1451 (s),

1409 (m), 1380 (s), 1301 (w), 1224 (s), 1160 (m), 1093 (w), 1011 (w), 852 (m), 833 (s), 814

(s), 807 (s), 789 (m), 773 (m), 733 (w), 712 (m), 701 (w), 556 (m), 527 (m), 464 (w). Anal.

Calcd for C88HJF8Fe 2N 40 0,: C, 65.04; H, 3.47; N, 3.45. Found: C, 65.55; H, 3.57; N, 3.70.

[Fe2(j-0O2CArTo) 3(4-NCCH4N)21[BAr,] (5). To a stirred solution of [Fe2(G-

O2CArT °O)4(4-NCC5H 4N) 2] (14.5 mg, 8.7 gmol) in CH2C12 (3 mL) was added 1 equiv of

{H(OEt2)2}{BAr'4, yielding a yellow solution under anaerobic conditions. The solution

was filtered through Celite and pentane was diffused into it. Yellow red blocks of 5

(12.3 mg, 68% yield), suitable for X-ray crystallography, formed overnight. FT-IR (KBr,

cn'l) 3051 (w), 2920 (w), 2237 (vc.,), 1614 (m), 1585 (s), 1514 (s), 1493 (s), 1436 (w), 1405

(m), 1385 (m), 1271 (m), 1219 (w), 1030 (w), 832 (s), 807 (s), 791 (m), 636 (w), 586 (m), 560
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(w), 528 (w). Anal. Calcd. For 5-0.5(CH2C 2) or C107.H72BClF24Fe 2N 406: C, 60.63; H, 3.41;

N, 2.63. Found: C, 60.74; H, 3.56; N, 3.02.

[Fe2(t-OH)z(tL-O2CArT°~)2(O2CArT°~)2(4-NCCsH4N)2-2(Ho2CArT) (6) and [Fe6 (-

O)2(gL-OH)4(iL-O2CArT°')6(4-NCCsH4N)4(C)2] (7). A red pink solution of 1 (15 mg, 0.017

mmol) in CH2Cl2 (10 mL) was saturated with dry dioxygen by bubbling over a period of

10 min, resulting in a green yellow solution. The solution was filtered through Celite

and pentane was diffused into it. Light green blocks of 6 and brown yellow blocks of 7

were obtained after several days. Although the structures of 6 and 7 could be deter-

mined by X-ray crystallography, the bulk samples could not be obtained.

X-ray Crystallographic Studies. Single crystals were mounted at room tem-

perature on the tips of quartz fibers, coated with Paratone-N oil, and cooled under a

stream of cold nitrogen. Intensity data were collected on a Bruker (formerly Siemens)

APEX CCD diffractometer running the SMART software package, with Mo Ka radia-

tion ( = 0.71073 A). Data collection and reduction protocols are described in detail

elsewhere.l6 The structures were solved by both direct and Patterson methods and re-

fined on F2 by using the SHELXTL software package.7 Empirical absorption corrections

were applied with SADABS,'8 part of the SHELXTL program package, and the struc-

tures were checked for higher symmetry by the program PLATON.'9 All non-hydrogen

atoms were refined anisotropically. In general, hydrogen atoms were assigned idealized

positions and given thermal parameters equivalent to either 1.5 (methyl hydrogen at-

oms) or 1.2 (all other hydrogen atoms) times the thermal parameter of the carbon atom

to which they were attached. Hydrogen atoms of the bridging hydroxides and water

molecules were located on difference electron density maps. In the structure of 1, four

THF molecules were assigned in the lattice and refined isotropically. The structure of 2
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contains four CH2Cl2 molecules in the lattice. In the structure of 5, three 3,5-di-

trifluorophenyl rings in BAr'4 were severely disordered. Four CH2C12 molecules were

found in the lattice of compound 6. There were six CH2C 2 molecules in the lattice of

compound 7. Data collection and experimental details for the complexes are summa-

rized in Table 8.1 and relevant interatomic bond lengths and angles for 1 - 7 are listed in

Tables 8.2 - 8.5.

57Fe Missbauer Spectroscopy. Zero-field M6ssbauer spectra were obtained on an

MS1 spectrometer (WEB Research Co.) with a 57Co source in a Rh matrix maintained at

room temperature in the Massachusetts Institute of Technology Department of Chem-

istry Instrument Facility (MIT DCIF). Solid samples were prepared by suspending ca 30

mg of the powdered solids in Apeizon N grease and packing the mixture into a nylon

sample holder. Data were collected at 4.2 K and the isomer shift (6) values are reported

with respect to natural iron foil that was used for velocity calibration at room tempera-

ture. The spectra were fit to Lorentzian lines by using the WMOSS plot and fit pro-

gram.2 0

Electrochemistry. Cyclic voltammetric measurements were performed in an

MBraun glovebox under nitrogen with an EG&G model 263 potentiostat. A three-

electrode configuration consisting of a platinum working electrode, a AgNO3/Ag (0.1 M

in acetonitrile with 0.5 M (Bu4N)PF6) reference electrode, and a platinum mesh auxiliary

electrode were used. The supporting electrode was 0.5 M (Bu4N)PF6 and the solvent was

CH2C12. All cyclic voltammograms were externally referenced to the Cp2Fe/Cp2 Fe* cou-

ple.

Resonance Raman Spectroscopy. Resonance Raman spectra were obtained by

using an Ar+ ion laser with excitation provided at 514 nm. A monochromator (1200

grooves/nm grating) with an entrance slit of 10 microns and a TE-CCD-1100-PB-VISAR
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detector cooled to -30 C with a circulating water bath was employed in a standard

backscattering configuration. Data were collected at 23 °C in dichloromethane using an

NMR tube. Each sample concentration was 6 mM. Measurements were made on more

than one freshly prepared sample and made in triplicate to ensure the authenticity of

the results. The dichloromethane bands at 1156 cm', 897 cm'l, 704 cm-', and 286 cm-'

were used as an internal calibration standard. Data were processed using WinSpec 3.2.1

(Princeton Instruments, Inc.) and were further manipulated by Kaleidagraph.

Stopped-flow Kinetics Experiments. All ambient-pressure kinetics experiments

were carried out by using a Canterbury Stopped-Flow SF-40 and MG-6000 Rapid Diode

array System (Hi-Tech Scientific). The solutions of 1 in CH2Cl2 (ca. 0.385 mM) were pre-

pared in a glove box under a nitrogen atmosphere and stored in a gas-tight syringe

prior to loading into the stopped-flow apparatus. A saturated solution of dioxygen was

prepared by bubbling the gas through CH2C12 for 20 min in a round-bottomed flask

closed with a septum and maintained at 20 C. The saturated CH2CL2 solution of dioxy-

gen containing 2 mM water was prepared by bubbling the dioxygen gas into a solution

of that composition.

Results and Discussion

In contrast to the relatively rich spectra afforded by the low-spin iron(II) com-

plex, high-spin iron(II) analogues are typically colorless, making it difficult to apply

standard optical-based spectroscopic methods to follow their chemistry. For example,

the charge-transfer band in the visible region of the spectrum are well documented for

low spin iron(II) complexes having pyridine ligands.2 '22 On the other hand, most high-

spin iron(II) complexes are colorless or almost light yellow. 324 In our previous studies,

the detection of water-dependent equilibria in carboxylate-rich diiron(II) complexes was
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achieved by using solid-state methods, chiefly X-ray crystallograpy. 2 To treat water-

dependent equilibrium in a quantitative manner and to address the effects of water on

the oxygenation reactions of high-spin diiron(II) complexes, an optical probe was highly

desired. Just such a probe was discovered with the introduction of 4-cyanopyridine as a

ligand.

Synthesis and Structural Characterization of Diiron(II) Complexes [Fe2(l-

O2CArTo°)4(4-NCC5H4N)2] (1) and [Fe2(,-O 2CAr4F'Ph)4(4-NCCsH4N)2] (2). A clue for how

to access high-spin diiron(II) complexes with visible absorption bands came from the

electronic spectrum of the [Fe2(w-O2CArToI)4(4-BuCH 4N)2],25 which has a shoulder at 370

nm with e = 1400 cm'M', assigned as a charge transfer transition from Fe(II) to the a*

orbitals of the pyridine ligand (MLCT). If so, by lowering the energy of acceptor it

should be possible to narrow the energy gap between the orbitals involved in this tran-

sition. This hypothesis was tested by synthesizing analogues of [Fe2(OL-02CArT°)4(4-

tBuC5H4N)2] with 4-NCC5H4N, anticipating a red shift of the electronic transition. Upon

addition of 2 equiv of 4-NCC5H4N, the light yellow solution of [Fe2(L-

O2CArT Ar°)2( 2CArT )2(THF)2] in CH2C12 instantaneously turned red pink, affording the

expected diiron(II) complex Fe2(-O 2CArT°t)4(4-NCC5H4N)2] (1) (Scheme 8.1). When

isolated from solution, however, the crystals developed fissures, probably due to loss of

the solvent molecule(s) in the lattice. The best crystals for X-ray analysis were obtained

by dissolution of 1 in THF, followed by vapor diffusion of pentane. Figure 8.1 shows the

structure and Table 8.2 lists selected interatomic lengths and angles. Two crystal-

lographically inequivalent square-pyramidal iron(II) centers, separated by 2.7754(9) A,

are linked by four bridging carboxylate ligands. The 4-NCC5H4N ligands coordinate to

the iron(II) sites in axial positions through pockets that are generated by the four bulky
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carboxylate ligands. Most of geometric features of 1 are the same as in the previously

characterized paddle-wheel complexes [Fe2(t-O 2CArT°)4(4-BuC5H4N)2]5 and [Fe2(Ix-

O2CArT°')4(BAP~Me)2,26where BAp0M 'e is 4-methoxylbenzylamine. A powdered sample of

1 is stable in the solid state for over 2 months in air, judging by the maintenance of its

distinctive color of compound.

Treatment of a light yellow CH2C12 solution of [Fe2(RWO2CAr4FPh)2(O2CAr4F'

Ph)2(THF)2]7 with 2 equiv of 4-NCC5H4N afforded the red diiron(II) complex [Fe2([L-

O2CAr4F'Ph)4(4-NCC5H4N)2] (2) (Scheme 8.1), which has the same structure (Figure 8.2).

Selected interatomic distances and angles are in Table 8.2. Since compound 2 is not very

soluble in most solvents, further studies were performed exclusively with compound 1.

Syntheses and Structural Characterization of Water-Containing Diiron(II)

Complexes [Fe2(I-O 2CArT °l)2(O2CArT °I)2(4-NCC 5H 4N) 2(OH2 )2 (3) and [Fe2( -O 2CAr4"Ph)-

(O2CAr4 FPh)2(4-NCCsH4N)2(OH2)2] (4). Addition of 1 to a wet CH2C12 or THF solution re-

sulted in an instantaneous color change from red pink to light yellow-red. Out of these

solutions compound 3 was crystallized following vapor diffusion of pentane into it.

The structure of 3 is displayed in Figure 8.3 and the selected interatomic dis-

tances and angles are listed in Table 8.3. Two distorted octahedral iron(II) centers are

bridged by two carboxylate ligands with an Fe...Fe separation of 4.465 A. This value is

1.69 A longer than the Fe.--Fe separation (2.7754(9) A) in 1 and arises from water-

induced shifting of two carboxylate ligands from a bridging to a terminal chelating

mode. The reaction typifies how the binding of water in carboxylate-bridged diiron(lI)

complexes can induce a dramatic structural change. The non-bridging coordination

sites are occupied by 4-NCC5H4N, water, and the bidentate terminal carboxylate

ligands. The assignment of water as the ligand rather than hydroxide is based on the
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Fe-O(aqua) distance, 2.1686(15) A, the location and refinement of the associated hydro-

gen atoms in the X-ray structure determination (O-H, 0.71 and 0.86 A), and charge con-

siderations. Inter- and intramolecular hydrogen bonding interactions between the

metal-bound water molecules and the carboxylate ligand are characterized by short

O-H- -O distances, ranging from 2.731 A to 2.755 A (Figure 8.3 Bottom). Intermolecular

hydrogen bonds may contribute to the observed hardness of the crystals. When 3 is dis-

solved in anhydrous CH2C12, a red pink color is obtained, indicating that the coordi-

nated water ligands observed in the solid state are readily displaced from the first coor-

dination sphere. The complound 4 is essentially isostructural with 3 (Figure 8.4 and Ta-

ble 8.3).

Synthesis and Characterization of [Fe2(.-O 2CArT o')3(4-NCC5H 4N)2](BAr' 4) (5)

Upon Reaction of 1 with H*. When compound 1 was titrated with a CH2C12 solution of

[H(OEt2) 2]lBAr'4), 5 the intense red-pink color disappeared following addition of ca 1.2

equiv of the acid, generating a yellow solution. Yellow blocks of 5 were obtained by va-

por diffusion of pentanes into the solution. Although the structure of 5 could be deter-

mined by X-ray crystallography, the large unit cell volume and severe disorder in the

BAr'4 ' couteranion prohibited satisfactory refinement of the structure. The drawing of 5

is depicted in Figure 8.5. The two pseudo tetrahedral iron(II) sites with NO3 coordina-

tion geometries are bridged by three carboxylates at an Fe..-Fe distance of 3.111 A. Two

4-NCC5H4N ligands coordinate to the iron(II) sites through the pockets generated by the

three bulky carboxylates.

MiOssbauer Properties. Zero-field M6ssbauer spectra of solid samples of 1, 2, 3,

and 5 were recorded at 4.2 K in the absence of an external field. These spectra are dis-

played in Figures 8.6 and 8.7 and M6ssbauer parameters are listed in Table 8.6, which
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also includes those of related carboxylate-rich iron(II) complexes and enzymes of inter-

est. The M6ssbauer spectra of both 1 and 2 exhibit slightly asymmetric quadropole

doublet, probably reflecting the crystallographic inequivalent sites of the two iron at-

oms. By contrast, the iron centers of compounds 3 and 5 are crystallographyically

equivalent, resulting in spectra that are symmetric. The isomer shifts of these com-

pounds compare well with those of other high-spin iron(II) complexes having oxygen

rich coordination environments.27

There is one obvious trend in the data of Table 8.6, namely, that the iron(II) sites

with coordination number 4 tend to have lower isomer shifts (1.0 - 1.1 mm s-') com-

pared to the coordinatively saturated iron(II) sites (- 1.3 mm s-l). A possible explanation

for this trend is the following. The isomer shift is defined by the expression in eq 1,

= constant x ( I ,(O)s 1 2 - I s(O)A 2 ) (1)

where S and A are two different chemical environments of which S is the sample and A

is a reference absorber. I p,(O)s 12 is the s-electron density at the iron nucleus. The isomer

shift of an iron complex is dictated by two major factors, a direct contribution from 4s-

electron density, and indirect contributions from the 3d-electrons that shield interpene-

tration by the s-electrons. Since the direct contribution in the ferrous complexes is fixed,

only the indirect contributions are variable. In particular, the shielding can be consid-

ered as arising from the non-bonding effect of the 3d6 configuration of iron(II), cova-

lency of ligands in which filled ligand orbitals donate an effective total of x electrons to

the 3d-orbitals, and covalency with ligands into which metal 3d-orbitals donate an ef-

fective total of y 3d-electrons into the M ligand orbitals. Thus, the effective number of

shielding 3d-electrons can be described by Nff = 6 + x - y. Because the complexes listed

in Table 8.6 have ligand frameworks that are only weakly ar acidic, the y contribution
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can be considered to be negligible. The covalency contribution, x, is expected to follow

the order six- > five- > four-coordinate complexes. Larger isomer shifts will therefore

occur for complexes having higher N,,ff value, as observed for the compounds in Table

8.6.

The isomer shift of the diiron(II) sites in reduced sMMOH is reported to be - 1.30

mm s, which is in the range of six coordinate iron(II) sites, indicating that the metal

centers in the enzyme may be six coordinate.' The isomer shift of the diiron(II) sites in

RNR-R2 is 1.26 mm s'l, slightly smaller than most six-coordinate iron(lI) model sites.'

Magnetic Properties. The effective magnetic moment (ef) of 1 steadily increases

from 1.0 PB at 5 K to 8.0 M. at 300 K, with a plateau at 120 K (Figure 8.8). This behavior

signals a weak antiferromagnetic exchange coupling interaction between the two high-

spin iron(II) centers of the tetracarboxylate-bridged dimer. Although similar behavior

was reported for an analogous complex, [Fe2(-O 2CArT°')4(4-BuC5H 4N)2],29 a reasonable

model to explain the existence of a plateau in magnetic moment is currently unavail-

able.

Electronic and Resonance Raman Spectroscopy. The intense respective red pink

and red colors of 1 and 2 observed in solid state are also evident in CH2CI2 solutions of

the compounds, with kma occurring at 510 nm (e = 2200 cm'l M') and 480 nm ( = 2300

cm-' M-l) (Figure 8.9). Considering that the iron(II) sites of 2 are coordinated by car-

boxylates with more electron-withdrawing groups, the observed difference (blue shift)

in the electronic transition supports the hypothesis that it is a MLCT. To gain more in-

sight into the origin of this unusual electronic transition, a resonance Raman spectrum

of 1 was measured in CH2C12 solution at ambient temperature with excitation at 514 nm.

The result is presented in Figure 8.10, which displays the spectra of 1 and, for composi-
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tion, 4-NCC5H4N (literature data). Several strong resonance enhanced peaks appeared

in the 700 cm- - 1800 cm' region for 1. These features are also present in the rR spec-

trum of the 4-NCC5H4N ligand, indicating that the chromophore involves the N-donor

ligand. Based on the high intensities of the electronic transitions, the blue shift of the

more electron-poor iron(II) complex, and the resonance enhanced peaks corresponding

to the 4-NCC5H4N ligand, the visible bands of 1 and 2 are preliminarily assigned to an

Fe(II) -- 4-NCC5H4N charge transfer (MLCT) transition. A detailed calculation is cur-

rently in progress.

Equilibria Related to Coordinating Solvents. No marked thermochroism of 1

occurs in CH2C 2 or toluene solutions of 1. When coordinating solvents such as THF,

acetonitrile, or benzonitrile are employed, however, the visible band of 1 disappears at

ambient temperature and then grows in as the temperature is lowered (Figure 8.11

Top). The effect is fully reversible. This thermochromism involving solvent was further

investigated in THF solution, where the complex is more soluble. Addition of 2 equiv of

4-NCC5H4N ligand to a THF solution of 1 restored the color, indicating the existence of

the equilibrium shown in Scheme 8.2 and eq 2, where W is [Fe2(-

2CAr°CArO')2 T°IC)2(THF) 2 ] .

1 + 2.(THF) W + 2.(4-NCC5H 4N) (2)

Quantitative treatment of the equilibrium was performed by fitting the measured ab-

sorbance change over a temperature range. A mathematical equation describing this

model (eq 2) and the derivation is provided in the Appendix, which assumes no change

in extinction coefficient () of 1 over the entire temperature range and the presence of

only two metal containing species, W and 1. The resulting thermodynamic parameters
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are AH - 50.6 (7) kJ mol, AS = 130 (2) J mol-lK1' , and e490 = 2413 (51) M-cm with R= 1.00

(Figure 8.11, Bottom). The observed thermochromism originates from the small positive

enthalpy for the reaction. Excess coordinating THF solvent displaces the 4-NCCsH4N

ligands from compound 1. Because of the tendency for coordinating solvents to react

with 1, further studies were carried out in non-coordinating CH2C12.

Water-Dependent Reactions. Recently we reported the observation of a water-

dependent equilibrium involving the compound [Fe2(g-OH 2) 2(1-O 2CArTo°)2(O2CArT°o)2(4-

tBuCH4N)2].29 A quantitative treatment of the equilibrium was not possible, however,

due to the absence of optical spectroscopic bands. When the light yellow-red compound

3 is dissolved in anhydrous CH2C12, the solution becomes red-pink in color, matching

exactly the UV-vis spectrum of 1. This result indicates that the coordinated water mole-

cules dissociate from the first coordination sphere of the iron(II) centers as indicated in

eq 3, where A is a l-H 2O} adduct

1+ 2H 20 - A+H 20 (3)

Upon lowering the temperature from 273 K to 203 K, there is a gradual shift of the peak

maximum from 510 nm to 460 nm, with two isosbestic points at 480 nm and 420 nm

(Figure 8.12). The electronic transition at 460 nm (the color of solid compound 3) can be

reproduced by dissolving 1 in CH2Cl2 saturated with water. These results indicate that

the existence of a water-dependent equilibrium in CH2C12 solutions of 1. The peak at 510

nm originates from 1 and the peak at 460 nm is assigned to a water-containing species

A. The two observed isosbestic points suggest that compound 1 and A are the only

spectroscopically active species involved in the thermochromic behavior. Below -70 C,

however, the absorbance at 460 nm continues to increase and the isosbestic points dis-
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appear. A possible explanation for the observed thermochromism is the sequential in-

corporation of water molecules to 1, as displayed in Scheme 8.3. Dissolution of 3 effects

the dissociation of water molecules from the diiron site, generating 1 and two water

molecules. Binding of a water molecule to 1 decreases the absorbance at 510 nm while

increasing that at 460 nm, indicating the generation of a single water-containing species

A. Below -70 C, at which point conversion of 1 to A is complete, additional water

molecules are taken up by A, possibly generating the diiron(II) complex 2, which carries

two water molecules. A mathematical equation describing this model (eq 3) and the

derivation is provided in the Appendix. Fitting of the observed absorbance change at

510 nm resulted in the thermodynamic parameters AH = - 95 (11) kJ mol', AS = -250 (50)

J mol 'lK', E50 = 2000 (30) M-'cm'l for 1, and es0 = 1089 (10) M'cm' for A with R= 0.99.

The negative enthalpy results from the energy of bond formation between water and

iron(II), and the negative entropy corresponds to a bimolecular combination. Although

water binding is not tight at room temperature, it becomes very favorable at low tem-

perature. Recently reported oxygenation studies of diiron(II) complexes in a carboxy-

late-rich coordination environment described, without explanation, the inhibition of the

generation of intermediates at low temperature by a trace amount of water.30 We believe

the binding of water molecules to their carboxylate-rich diiron(II) complexes at low

temperature to be the cause of this behavior.

Electrochemistry. The electrochemical properties of 1 were investigated by cyclic

voltammetry. Compound 1 in CH2C12 undergoes a quasi-reversible one-electron oxida-

tion (El/2= 27 mV vs Cp2Fe*/Cp 2Fe; AEp = 120 mV, scan rate = 50 mV/s, Figure 8.13). As

expected, there is a positive shift (AE = +243 mV) in reduction potential compared to the
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analogue [Fe2(lt-O2CArT°)4(4-BuC5H4N)2],3l consistent with the more electron-

withdrawing nature of the 4-cyanopyridine ligand.

Cyclovoltammograms of compound 3 in CH2C12 are shown in Figure 8.14. One

irreversible oxidation at E 12= 27 mV (scan rate = 50 mV/s) accompanied by a broad re-

duction wave at ca. -697 mV vs Cp2Fe'/Cp 2Fe was observed (Figure 8.14 A). When the

voltammogram was only scanned between -149 mV and -949 mV and recorded, the re-

duction wave at -697 mV was no longer present (Figure 8.14 B). Combined with the

variable temperature UV-vis spectroscopic data, these results can be rationalized in the

following manner (Scheme 8.4). Dehydration of 3 in CH2Cl2 can occur to afford two

molecules of water and 1, which has a quasi-reversible Fe2(II,II)/Fe2(II,III) couple at El/2

= 27 mV. Oxidation of 1 provides the mixed-valent cation, [Fe2(tx-O2CArT°')4(4-

NCC5 H4N)2]*, which is stable in the absence of water. Such oxidations occur for the

[Fe2(p-O2CArT')4(4-BuC5H4N)2] analogues. In presence of water molecules, however, an

aquated [Fe2(O2CArT°I)4(4-NCC5H4N)2(OH2)x]+ species may form, in which x can be one

or two. This complex should exhibit different electrochemical behavior, and its reduc-

tion may give rise to the wave at ca -697 mV. The complex [Fe2(O2CArT°')4(4-

CNC5 H4N)2(OH2)XII, generated in this manner, would readily lose water molecules to

form 1 (see above), giving no oxidation wave on the reverse sweep until a potential

greater than -149 mV is attained. Uptake of water thus appears to lower the reduction

potential of the diiron(II) core by - 700 mV, as might be expected from the addition of

good a donors to the dimetallic center. This result is in line with the previously ob-

served electrochemistry of [Fe2(I-OH 2)2(t-O 2CArT °I)4(4-tBuC5H4N)2]. 2

Effect of Water on the Oxygenation Rate of Compound 1. The influence of wa-

ter on the oxygenation chemistry of carboxylate-rich diiron(II) complexes is of interest
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because the active sites in sMMOH contain two water molecules in the first and second

coordination spheres. Such water may modulate the oxygenation reactions of the dii-

ron(II) sites in the enzymes. The reaction of compound 1 with dioxygen instantaneously

leads to the formation of a light green yellow solution. This process was followed by

stopped-flow kinetics, monitoring the charge transfer band, a broad feature centered at

510 nm for 1 (Figure 8.15). When studied under conditions of excess dioxygen, the de-

cay of compound 1 follows a pseudo first-order rate law. Rate constants (Table 8.7) were

derived from time-dependent absorbance changes by using a nonlinear least squares

fitting procedure based on eq 4. The fast oxygenation of 1 contrasts with its observed

inertness to dioxygen in the solid state, indicating that the reactive species in solution

may not have a quadruply bridged structure. An equilibrium between doubly and

quadruply bridged isomers of 1 in the solution state is likely to exist through carboxy-

late shifts. Such an equilibrium has been proposed and is generally accepted for the

analogous complex, [Fe2(wt-O2CArTo°)4(4-BuCsH4N)2]. One of these isomers, probably a

doubly bridged complex, would react with dioxygen.

At= A. -(A.- A0)exp(-k~at) (4)

where A. and A0 respectively are the optical absorbance at infinite time and time zero

Competition between dioxygen and water for 2 was investigated between 193 K

and 293 K using stopped-flow kinetics (Figure 8.16). To obtain pseudo-first order con-

ditions, the concentrations of 1, water, and dioxygen were maintained at 0.19, 1.00, and

2.9 mM, respectively. The reaction proceeds through the extremely fast generation of a

species that absorbs at 460 nm, followed by decay of this species (Figure 8.16 Top). The
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first steps were only detectable at temperature below - 50 C and went to completion

within 1 sec. The time dependent absorbance changes follow a pseudo first-order rate

law and the fit results are listed in Table 8.8. The second step proceeds relatively more

slowly than the first. The decay at 460 nm also follows a pseudo first-order rate law and

rate constants were determined by a linear squares fit to eq 4. The kinetic behavior can

be rationalized by the following scenario (Scheme 8.5). The species with an absorption

at 460 nm, the formation of which is correlated with the decrease at 510 nm, is assigned

as the single water-containing species A, generated by hydration of 1 (see above), and

the decay of this peak occurs through oxygenation. The two-fold understanding is

achieved from this analysis. First, hydration of 1 is at least 1000 times faster than oxy-

genation of 1. The rate constant for hydration (k2 ,b5) of 1 at -50 °C is 63.5(8) s, whereas

the oxygenation rate constant (klob) of 1 at -30 °C is 0.045(5) s'. This dramatic difference

in rates may originate from the small but obvious size difference between water and di-

oxygen and the hydrogen bond donating ability of the former. Secondly, the water-

containing species (A) reacts with dioxygen ca 10-fold faster than does 1. We suggest

that the binding of water generates an open coordination site for dioxygen binding in A.

This event may facilitate Fe-O bond formation, which is presumably the rate-deter-

mining step of the oxidation process.

Isolation and Structural Characterization of Iron(III) Complexes [Fe2(!-OH)2(Pl-

O2CArT°')2(O 2CArTO)(4-CNCH4N)z.12(HO2CArT'I) (6) and [F e6(-O) 2(j-OH) 4(IW-

O2CArTo')6(4-CNC5H4N)4(C)2] (7). The light greenish-yellow CH2CI2 solution generated

upon oxygenation of 1 affords crystals upon vapor diffusion of pentane, an inseparable

mixture of the quadruply bridged diiron(III) complex 6 and the hexairon(III) species 7.

The structure of 6 is depicted in Figure 8.17 and selected interatomic distances and an-
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gles are listed in Table 8.4. Two distorted octahedral iron(III) atoms are bridged by two

hydroxide and two carboxylate ligands. The Fe-..Fe distance of 2.8323(10) A is in the -

2.85 A range typical for quadruply bridged (Fe2(p.-OH)2(-O 2CR)2}2 cores. Two in-

tramolecular hydrogen bonding interactions occur between the terminal, metal-bound

carboxylates and the bridging hydroxo groups, with O-H...O distances of 2.818(6) and

2.888(5) A. In addition, two carboxylic acids (HO2CArT Mi) are located in proximity to the

terminal carboxylates in the crystal lattice, generating hydrogen-bonding interactions.

The hexairon(III) species 7 was isolated with compound 6. The structure of 7 is

best described by the diagrams in Figure 8.18, and a list of selected interatomic dis-

tances and angles is included in Table 8.5. The structure of 7, which has an inversion

center, combines two ( 3-oxo)triiron(III) units through a four OH and two O2CArTI

bridging groups. Four octahedral and two distorted trigonal bipyramidal iron(III) sites

result. It is noteworthy that the structure of 7 also contains two Cl- ligands coordinated

to each of the octahedral iron(III) sites. The same experiment, performed in the absence

of light, afforded the same mixture of 6 and 7. This result indicates that a photo-

chemical reaction is not involved in generating the CI anion.

Mechanistic Considerations. Based on the spectroscopic, structural and kinetic

data obtained, a mechanism is proposed to account for the observed chemical conver-

sions (Scheme 8.5). An equilibrium between the doubly and quadruply bridged isomers

of 1 in the solution state can occur through carboxylate shifts. One of these isomers,

must likely the doubly bridged complex, reacts with dioxygen faster than the other,

quadruply bridged one. This explanation accounts for the marked difference in the

oxygenation of solid versus solution samples of 1. In the competition between water

and dioxygen, aquation occurs first and the resulting aqua complex then reacts with di-



265

oxygen. The faster reaction rate of the aquated species compared to 1 is due to the ex-

pected formation of an open coordination site generated by a carboxylate shift upon

binding of water. Oxidation of the solvent, CH2C12, generates Cl- anions which coordi-

nate to the iron(III) site, leading to reorganization of the diiron species to hexanuclear 7.

The dissociated carboxylic acid interacts with a diiron(III) unit through hydrogen-

bondings in compound 6.

Summary.

In summary, high-spin 4-cyanopyridine diiron(II) complexes with distinctive

electronic transitions in the visible region have been prepared and used to investigate

quantitatively a water-dependent reaction chemistry. Utilizing this charge transfer

band, we has been addressed the effects of water molecules on the oxygenation of the

diiron(II) complex 1. The binding of water to the diiron(II) site generates an open coor-

dination site via a carboxylate shift, leading to the acceleration of the oxygenation step

over oxygenation under anhydrous conditions. The final products of the oxidation are

the dinuclear complex 6 and a Cl-containing iron(III) complex. Finally, by comparison

of the new diiron(II) complexes with related ones in the literature, we established a cor-

relation between M6ssbauer effect isomer shifts and coordination number for high-spin

iron(II) complexes in an oxygen-rich coordination environment. The trend was ration-

alized on the basis of the s-electron density at the iron nucleus over the series.
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Table 8.2. Selected interatomic bond lengths (A) and angles (deg) for Fe2 (-O02CArT °) 4(4-

NCCHN)2] (1) and [Fe2(1W-02CAr4 F -Ph)4(4 -NCCsH 4N) 2] (2).

Compound 1-4THF 2-4CH2C12

Fel...Fe2
Fel-Ol
Fel-03
Fel-05
Fel-07
Fe2-02
Fe2-04
Fe2-06
Fe2-08
Fel-NI
Fe2-N3
01-Fel-Ni
03-Fel-NI
05-Fel-NI
07-Fel-Nl
02-Fe2-N3
04-Fe2-N3
06-Fe2-N3
08-Fe2-N3
0 1-Fel-03
01-Fel-05
01-Fel-07
03-Fel-05
03-Fel-07
05-Fel-07
02-Fe2-04
02-Fe2-06
02-Fe2-08
04-Fe2-06
04-Fe2-08
06-Fe2-08

2.7754(9)
2.131(3)
2.004(3)
2.145(3)
2.010(3)
2.032(3)
2.132(3)
2.016(3)
2.133(3)
2.100(4)
2.091(4)
98.39(14)
100.72(14)
94.50(14)
101.22(14)
99.65(14)
96.79(14)
102.16(14)
96.22(14)
89.94(12)
167.11(12)
87.90(12)
87.35(11)
158.03(13)
89.91(11)
89.68(12)
158.19(13)
87.68(12)
88.17(12)
166.99(12)
89.56(11)

2.7415(16)
2.036(5)
2.112(5)
2.040(5)
2.120(5)
2.057(5)
2.070(5)
2.064(5)
2.082(5)
2.086(7)
2.097(7)
104.8(3)
96.8(2)
96.5(3)
96.3(2)
93.3(2)
99.2(3)
101.0(2)
98.6(2)
86.5(2)
158.7(2)
92.2(2)
91.1(2)
166.7(2)
85.4(2)
88.2(2)
165.6(2)
87.1(2)
87.5(2)
161.8(2)
92.7(2)

Numbers in parentheses are estimated standard deviations of the last significant figure.
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Table 8.3. Selected interatomic bond lengths (A) and angles (deg) for [Fe2([t-

02 CArT°') 2(0 2CArT°o)2(4-NCCsH 4N)2 (0H2)2] (3) and [Fe2(-O0 2CAr4FPh)2(O2 CAr4F'Ph) 2(4-

NCC 5H 4N) 2(OH 2 )21 (4).

Compound 3 4

Fel ..Fe2
Fel-01
Fel-02
Fel-03
Fel-04
Fel-05
Fel-N1
01-Fel-02
01-Fel-03
01-Fel-04
01-Fel-05
O1-Fel-Nl
02-Fel-03
02-Fel-04
02-Fel-05
02-Fel-N1
03-Fel-04
03-Fel-05
03-Fel-N1
04-Fel-05
04-Fel-Nl
05-Fel-Nl
01-. 02
01 .. 05a

4.466
2.1686(15)
2.0285(13)
2.0871(13)
2.1475(13)
2.3278(14)
2.1505(16)
81.01(6)
172.53(6)
94.68(6)
79.07(6)
93.63(6)
106.34(6)
112.02(5)
156.99(5)
95.30(6)
83.85(5)
93.97(5)
84.51(6)
58.69(5)
152.36(6)
97.32(5)
2.727
2.755

4.402
2.1552(18)
2.0485(15)
2.0714(14)
2.1565(15)
2.3352(15)
2.1412(18)
80.60(7)
171.11(7)
91.10(7)
78.12(7)
95.73(7)
108.03(6)
115.24(6)
157.59(6)
89.93(6)
83.32(6)
93.05(6)
86.57(6)
58.58(5)
154.71(6)
99.06(6)
2.720
2.748

Numbers in parentheses are estimated standard deviations of the last significant figure.
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Table 8.4. Selected interatomic bond lengths (A) and angles (deg) for 6.

Fe2-06
Fe2-N3
08...01
08...011
010...013
010..02
Fel-01-Fe2
Fel-02-Fe2
01-Fel-02
01-Fe2-01

2.033(3)
2.127(4)
2.888(5)
2.639(5)
2.636(5)
2.814(6)
43.50(10)
43.33(10)
88.19(14)
87.75(14)

Fel .-Fe2
Fel-Ol
Fel-02
Fel-03
Fel-05
Fel-07
Fel-N1
Fe2-01
Fe2-02
Fe2-04

2.8323(10)
1.950(3)
1.978(3)
2.045(3)
2.076(3)
1.955(3)
2.132(4)
1.999(3)
1.945(3)
2.053(3)

Numbers in parentheses are estimated standard deviations of the last significant figure
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Table 8.5. Selected interatomic bond lengths (A) and angles (deg) for 7.

Fel .. Fe2 3.064(4) Fe2-010 2.059(7)
Fe2 Fe3 2.960(3) Fe2-06 2.085(7)
Fel O1 1.881(7) Fe2-012 2.019(8)
Fel-02 2.029(7) Fe3-07 2.063(7)
Fel-03 2.004(7) Fe3-N2 2.181(9)
Fel-04 2.042(8) Fe3-CI(1) 2.311(3)
Fel-O11 2.103(7) Fel-03-Fe2 99.9(3)
Fe2-03 1.999(7) Fel-04-Fe2 97.5(4)
Fe2-04 2.034(9) Fe2-012-Fe3 95.7(3)

Numbers in parentheses are estimated standard deviations of the last significant figure
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Table 8.7. Rate constants klo,, for oxygenation of 1 in CH2CI2

Temperature (K) klob ( s')
293 1.4(3)
283 0.71(6)
273 0.40(2)
263 0.20(1)
253 0.10(1)
243 0.045(5)

kl,, in oxygenation of 1 is defined by following the reaction pathway

Fe2(01,11) + 02 k obs final product
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Table 8.8. Rate Constants k2
0 bS and k3ob, for oxygenation of 1 in CH2C12 with water

Temperature k2obS (s-)'
(K)
223 62.8(5)
218 43.0(24)
213 23.7(17)
208 11.1(8)
203 5.1(2)
198 2.5(1)

Temperature K3obs ( s')"
(K)
293
283
273
263
253
243
233

14.6(7)
9.1(10)
5.5(5)
2.7(2)
1.21(17)
0.39(12)
0.12(1)

" k2obS and k3
0b5 in oxygenation of 1 are defined by following the reaction pathway.

k2bs k3ob final productFe2(11,11) + H20+0 2 - Intermediate - -, final product
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Appendix 1. Derivation of a mathematical model for eq 2.

The reaction is

1 + 2.(THF) W + 2(4-NCC 5H 4N) (2)

where W is [Fe2(p.-02CArT°')2(O2CArT°')2(THF)2]

Keq can be defined by

Keq = ([W][4-NCC5H4N] 2}/ ([1][THF]2) (II)

where [THF] is a constant as 12.2 M.

[T] = [1] + [W] (III)

where [T] is a constant as total diiron(II) concentration.

[4-NCC 5H4N] = 2.[W] (IV)

Applying eq II with eq III and eq IV gives

Keq = {4([T] - [1])3 } / {148.84[1]) (V)

Absorbance (A) = El[1] + E,[W] (VI)

where E = extinction coefficient of 1 and ,w = extinction coefficient of W = 0.

Applying eq VI with eq III

[1] = A/El (VII)

Since

-RTIn(Keq) = AH - TAS

We can write

-Rln((4([T] - (A/E))3) / (148.84((A/le)))) = AH/T - AS

Solving for 1/T vs A gives us

1/T = AS / AH - (Rln((4([T] - (A/E,))3)/ (148.84((A/e,)))))/AH

(VIII)
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Appendix 2. Derivation of a mathematical model for eq 3.

The reaction is

1 + 2H20 '- A + H20 (3)
where A is a {1H 20} adduct

Keq can be defined by

Keq = ([A]-[H 20]) / ([1] [ H20] 2) = [A]/([1]'[ H 20]) (II)

[T] = [1] + [A] (III)

where [T] is a constant as total diiron(II) concentration.

[H20] = 2[T] - [A] = [T] + [1] (IV)

Applying eq II with eq III and eq IV gives

Keq = ([T] - [1])/{([T] + [1])[1]} (V)

Absorbance (a) = el[l] + e,[A] (VI)

where E = extinction coefficient of 1 and EA = extinction coefficient of A.

Applying eq VI with eq III

[1] = (a + A[T])/( E,- EA) (VII)

Since

-RTIn(Keq) = AH - TAS

We can write

-Rlnl([T] - {(a + EA[T])/( el - EA))/{(IT] + {(a + eA[T])/( - A))).{(a + BA[T])/( e - EA)})}

= AH/T - AS

Solving for 1 /T vs. a gives us

1 /T =AS/AH

- (Rln{([T] - {(a + A[T])/( E, - EA)})/{([T] + (a + AlT])/( E - A)))-((a + A[T])/( El - EA)}}})/AH

(Vm)
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N2

Figure 8.1. Top: ORTEP diagram of [Fe2(w[-O2CArT"') 4(4-CNC5H4N) 21 (1) showing 50 %

probability thermal ellipsoids for all non-hydrogen atoms. Bottom: The aromatic rings

of ArT°'CO2
' ligands are omitted for clarity.
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Figure 8.2. ORTEP diagram of [Fe2(Wt-O2CAr4 FPPh)4(4-CNC5H 4N)2] (2) showing 50 %

probability thermal ellipsoids for all non-hydrogen atoms. Bottom: The aromatic rings

of Ar4FPhCO2- ligands are omitted for clarity.
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Figure 8.3. Top: ORTEP diagram of [Fe2(wl-O2CArT') 2(O2CArT') 2 (4-CNCsH4N)2(OH2) 2] (3)

showing 50 % probability thermal ellipsoids for all non-hydrogen atoms. Bottom: The

aromatic rings of ArT°CO2' ligands are omitted for clarity.
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Figure 8.4. Top: ORTEP diagram of [Fe2(-0 2CAr4FPh)2(O2CArIF-Ph)2(4-CNCsH 4N)2(OH2 )2]

(4) showing 50 % probability thermal ellipsoids for all non-hydrogen atoms. Bottom:

The aromatic rings of Ar4FPhCOj2 ligands are omitted for clarity.
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Ct

Figure 8.5. Ball and stick diagram of [Fe2(wt-O2CArT°o)3(4-CNC5H4N)2][BAr'4] (5) for all

non-hydrogen atoms.
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Figure 8.6. Mbssbauer spectra (experimental data (I), calculated fit (-)) recorded at 4.2
K for a solid sample of [Fe2(-0O2CArT"°) 4(4-CNC5 H4N)2] (1) and [Fe2(-O 2CAr4 F'Ph)4(4-
CNC5 H4N) 2] (2). Left to Right
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Figure 8.7. M6ssbauer spectra (experimental data (I), calculated fit (-)) recorded at 4.2

K for a solid sample of 3 and 5. Left to Right
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Figure 8.8. Plots of XM (o) and ILeff (.) vs T for solid [Fe2(t-O 2CArT°')4(4-CNCsH4N)2] (1).
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Figure 8.9. UV-vis spectra of [Fe2(w-O2CArT°l)4(4-CNC5H4N)2] (1) and [Fe2(-0 2CAr4

Ph)4(4-CNC5H4N)2] (2) in CH 2C12.
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Figure 8.10. A) Resonance Raman spectrum of a CH2C12 solution of [Fe2(-O 2CArT °')4(4-

CNC5 H4N)2] (1) at 23 °C. The asterisk indicates a solvent band. B) Resonance Raman

spectrum of 4-CNC5H4N at 23 °C (Literature data).
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Figure 8.11. (Top) UV-vis spectra of [Fe2([t-O2CArT°) 4(4-CNCH4N)2] (1) in THF,

measured at variable temperatures. (Bottom) The absorbance change at 490 nm was fit

to eq (2)
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Figure 8.12. (Top) UV-vis spectra of [Fe2(R-O2CArT"') 4(4-CNC5 H4N) 2] (3) in CH2C12,

measured at variable temperatures. (Bottom) The absorbance change at 510 nm was fit

to eq (3)

0.7

0.6

0.5

(1)0caC

n-.
0
U)
Ma<

0.4

0.3

0.2

0.1

0

o

-

_

I I II I ! I- --- _"U"



296

4

2

0

-2

-4

-6
-10.5 0 -0.5

E (V) vs. Cp Fe Cp2 Fe

Figure 8.13. Cyclic voltammograms of [Fe2(-0 2CArT°I)4(4-CNCsH4N)2] (1) in CH2Cl2

with 0.5 M (Bu4N)PF6 as supporting electrolyte and a scan rate of 50 mV / s.
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Figure 8.14. Cyclic voltammograms of [Fe2(tL-O2CArT°)2(O2CArToI)2(4-CNC5H4N)2(OH2) 2]

(3) in CH2C12 with 0.5 M (Bu4N)PF6 as supporting electrolyte and a scan rate of 50 mV / s.
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Figure 8.15. Spectral changes occur during oxygenation of 1 (1.74 x 10' M) without

water in CH2 C12 at 0 °C over 20 sec.
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Figure 8.16. (Top) Spectral changes that occur during the hydration of 1 (1.60 x 10.4 M) with

dioxygen and water in CH2Cl2 at -60 °C over 1 sec. (Bottom) Spectral changes that occur during

oxygenation of 1 (1.60 x 104 M) with dioxygen and water in CH2C12 at -20 °C over 10 sec.
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Figure 8.17. Top: ORTEP diagram of [Fe2(lt-OH)2(Wt-O2CArTI)2(O2CArTol)2(4-

CNC5H4N)2(OH2)21 2(HO2CArT )2 (6) showing 50 % probability thermal ellipsoids for all

non-hydrogen atoms. Bottom: The aromatic rings of ArT°ICO2 ligands are omitted for

clarity.
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Figure 8.18. Top left: ORTEP diagram of 7 showing 50 % probability thermal ellipsoids

for all non-hydrogen atoms. Top Right: The aromatic rings of ArT°'CO- ligands are

omitted for clarity. Bottom: The aromatic rings of ArT°ICO2 and 4-CNCsH4N ligands are

omitted for clarity


