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ABSTRACT noncausal estimation problem and following the
methodolocy introduced in [6], we augment the

We consider estimation of an nxl vector non- methodology introcess to be estimated with the

causal stochastic process governed by the linear
complementary model and invert the combined
system to obtain a differential realization of

x(t) = A(t)x(t) + B(t)u(t) the smoother.

with two-point boundary condition 2. LINEAR STOCHASTIC TWO-POINT BOUNDARY VALUE
with two-point boundary condition

PROCESS (TPBVP)
0 T

v = V x(O) + V x(T)
The General Solution

where u is an mxl white input noise with covari-

ance parameter Q(t) and v is an nxl zero mean
governed by an nth order linear stochastic

Gaussion boundary value with nonsingular covari-
differential equation together with a specified

ancev m uncorrelated with u on [OT]. two-point boundary condition. Accordingly, the
Estimation of processes satisfying models of 

process will be referred to as a linear stochas-
this type was first suggested by Krener [1].

tic two-point boundary value process or TPBVP.

1. INTRODUCTION In describing the model we employ the white
noise formalism for representing linear stochas-
tic differential equations. Let u(t) be a mxl

The now classical solutions to linear fil-
white noise process with covariance parameter

tering and smoothing problems for one-dimensional white noise process with covariance parameter
Q(t). Let v be a nxl random vector, independent

(l-D), nonstationary, causal processes are dis- of u(t), with covariance matrix The nxl
' ^ of u(t), with covariance matrix E . The nxl

cussed in the review paper by Kailath [2]. v
boundary value process x(t) is governed on the

Notable in the derivations of these solutions is boundary value process x(t) is governed on the
the use of the Markovian nature of the models for

these 1-D processes. However, in as much as
stochastic processes in higher dimensions (random
fields) are typically noncausal and consequently
are not Markovian in the usual sense, their es-

timators cannot be derived through a direct exten- O T
sion of these 1-D derivations. Thus, linear
estimation-problems for noncausal processes require
estipationp roblems for noncausal processes require It will be assumed that A and B are continuous on

new approaches, and a natural foirst step is to O,T] and that all random variables are zero-mean.
solve the estimation problem for 1-D noncausal

processes. It is instructive to derive one form of the

. With this as motivation, Krener [3] intro- general solution for (1) as the approach we take
duced a class of linear noncausal 1- dynamic in this derivation will be used later. The form

duced a class of linear noncausal 1-D dynamic
models. In his study of these models, Krener of the solution which we obtain differs from the

usual Green's function solution (e.g. see [1 ]).
has developed results on controllability, obser-

Let ¢(t,s) be the transition matrix associated
vability and minimality and has solved a deter-

ministic linear control problem. In addition, with A(t). If x(O) were known, then x(t) could
ministic linear control problem. In addition,
he has posed the fixed-interval linear smoothing be represented in the variation-of-constants
problem for these systems and has derived inter- form
gral equations for both the weighting pattern and O
the error covariance for the optimal smoother.
Working directly with these equations he has had where t) is the solution of la) with 

where x (t) is the solution of (la) with x (0) =0:
some success in obtaining a dynamic realization
of the smoother for a special "stationary-cyclic"sbsusds 2b
class of these processes [4]. x (t)= f (t,s)b(s)u(s)ds

In this paper we solve the estimation problem Substituting from (2a) at t = T into the boundary
for Krener's 1-D noncausal models through a condition (lb), we can write
generalization of the complementary models T T
approach to linear estimation which was first v = V x (t) = [V + V T(T,O)]x(O) . (3a)

introduced by Weinert and Desai [5]. In parti-
cular, we present a procedure for finding the For a well-posed problem, there will be a unique
complementary modelwhich is appropriate for the 1-D x(O) for a given v and u on [O,T]. Thus



well-posedness requires that ihe nxn matrix The reason for our choice of subscripts f and b,

0 T denoting forward and backward respectively, will
F = V + VT (T,O) (3b) become apparent blow.

be nonsingular. With F invertible, we can solve If x(O) and xb(T) were known, then we
for x(O) as could solve for xf(t) and xb(t) as

-fo T x (t) = D (t O)x (0) + X Ct) (7a)
x(O) = F v - V x (T) . (3c) f(t) = (tO)xf(O) f(t)

Substituting x(O) into (2a) gives the general and
solution for (la,b) as

x(t) = PD(tO)F~v V-1 - VTX O t OI (t) =(4) x b(t (t,T)xb(T) + xb(t) (7b)

where xf0(t) is governed by (6b) with xf(0) = 0
The noncausal nature of the TPBVP x(t) is where Xf t) is governed by (6b) with Xf(O) = 0

clearly displayed if we correlate the value of and xx° (t) is governed by (7b) with (T) = 0.
Following a derivation similar to that used to

x at t = 0 with future values of the input u:
obtain the general solution in (4), it can be

E{x(O)u'(t)} = -F- V (T,t)B(t)Q(t) t [O,T] shown that
(5)

Thus, the n order model in (1) is not Markovian, xf(t) f(t,O) 0
and consequently Kalman filtering and associated = . -fb Iv - vfxf(T)
smoothing technqiues are not directly applicable. xb(t) (t,T)

Below, as an alternative to (4), we present 1
a second form for the general solution of (1) xf(t)
which leads to a numerically stable implementa- - v (8)
tion. Consider the equivalent process obtained b xb(t)
by transforming x as b

L
x b ( t)

f( )1 = T(t)x(t) (6a) where

O T T 0
1'6'~~b~~~~~t)'] Ff V +VbF [V +V (T,) V + VbOb (O,T)]. (9)fb f f[f b bb

where the transformation matrix T(t) is chosen so
that 1) the dynamics of the system model in (1) The TPBVP x is recovered from (8) by inverting

become decoupledl: (6a):

[l : [L [ ] rx [f] (6b) x(t) = Tl (t) . (10)%J[%J b( )

and 2) Af is exponentially stable in the forward As we will see, the two-filter form of the
direction and A_ is exponentially stable in the general solution in (8) is the foundation for the
backward direction. For time-invariant systems implementation of the estimator that we develop
this is always possible by assigning those modes later in this paper. The term two-filter is used
associated with eigenvalues greater than or equal to signify that the numerical solution of (8)
to zero to Af and those less than zero to Ab. requires the integration of a forward process
For time-varying dynamics, it may be difficult to xf0 and a backward process xb
determine the dynamics and boundary conditions

for a transformation T(t) which transforms the Covariance of the TPBVP x(t)
system dynamics into this form. However, for
the systems of interest to us later in this paper The covariance of x(t)
we can overcome this difficulty by invoking re-
sults obtained previously for smoothing solutions P (t) = E{x(t)x'(t)} (11)
for causal processes. The boundary condition for x
the transformed process will be written as can be derived from (4) as

X(0) [xf (T) 0 -a TO T'

v =[ j [Volb (TJ F T (6c) P (t) = P (t) + m(t,0)F [(v + V P (T)V ]

F-1' (tO ) -' (t, (t)F-lVTPO(t) - (t)VT' F- ''(t,0)

1 (12a)
When there is no risk of confusion we will often
omit explicit reference to the independent vari-
able, i.e. A(t) + A.



where P (t) is the covariance of x (t) satisfying with r(t), u(t) and v with covariance matrix
x Ib. Define a qx2n matrix W partitioned into

*O = Ap0 qxn blocks asP = AP + P A' + BQB' ; P(0) = (12b) q blocks as
X X X X

W = [W
0

W
T ]

. (17a)
An additional expression for P can be derived
from the two-filter form of the general solution The boundary observation is the qxl random

(equation (8)). However, this expression is vector:

somewhat complex, and we will wait until a later
publication to present it in the context of the Yb = Wxb + rb (17b)
study of the estimation error covariance [7].

Define an nx2n matrix V as
Green's Identity

V = [V V
T
] (18a)

In establishing the solution to our estima-
tion problem we will make use of Green's Identity so that the boundary condition in (lb) can be
for the differential operator: written as

L:D(L) + R(L) ; (Lx) (t) = x(t) - A(t)x(t) (13) v = Vxb (18b)

where D(L) is the space of once continuously We will assume that the rows of W and the rows
differentiable nxl vector functions on [0,T] and of V are linearly independent (8].
R(L) is the Hilbert space of square integrable The fixed-interval smoothing problem is to

nxl vector functions on (OT]. Let E be a find the linear minimum variance estimate of
2nx2n matrix partitioned into nxn blocks with: the noncausal TPBVP x(t), t £ [0,T], given the

complete observation set Y:

E = 0 I (14a) Y = {Yb, y(t) . t [0,T]} . (19)

and define the 2nxl vector 4. SOLUTION TO THE ESTIMATION PROBLEM

Xb=xO) (1=4b) Our approach to the solution of the es-
[x(T)J (1) timation problem is based on an application of

the method of complementary models introduced
by Weinert and Desai [ ] in deriving the

t smoother for causal stochastic processes. A
(L A)(t) = -X(t) - A'(t)X(t) . (14c) brief discussion of the basis for this approach

follows. Define the underlying process i as

Given these definitions, the Green's Identity
for L on the interval [0,T] is obtained directly
by integration by parts, yielding = rv (20)

<Lx, N> + <x, L X> +<xb, b> E 2 n r
L 2[,T0 L[O,T] L

The complementary process Z = {Z, Zb} is
(15) orthogonal to the observations Y fy, yb

}
and

where Xb takes a form similar to xb in (14b). when combined with the observations, they span
the space spanned by i. In particular, we can
express the observations Y and the process to

3. PROBLEM STATEMENT
be estimated x as linear mapping of the under-

The fixed-interval smoothing problem for lying process
the noncausal process x(t) defined earlier is
stated as follows. Let r(t) be a pxl white Y[H I] (21a)
noise process uncorrelated with v and u(t) and Yb
with continuous covariance parameter R(t). Let
C(t) be a pxn matrix whose elements are contin- A

=M 
uous on [0,T]. The observations of x(t) are y
given by the pxl vector stochastic process:

and

y(t) = C(t)x(t) + r(t) (16)
x=M 5 . (21b)

x
In addition, we assume that there may be avail-
able a boundary observation Yb defined as fol-
lows. Let rb be a qxl random vector uncorrelated
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given by

Z =Zb (22a)
M = [-I : H*] Z; (25a)

is a linear mapping of g where H* is the Hilbert adjoint operator of H

in (21a) and E is the integral operator whose
z kernel is the correlation function of the

underlying process i. From the definition of
which satisfies: (1) the orthogonality condition the underlying process fr our problemthe underlying process for our problem

Z Rr -u
Z LY, i.e. E ] [z'(t), b = 0 (23a) = 

Y b J Z = = H-1 (25b)

and (2) the complementation condition: The
augmented mapping M defined by Given M , the final step in determining the

estimator isZto augment M and M as in (23b)

r~ [M] Aand invert. This step caX be siMplified if we
= MC (23b) first determine an internal differential reali-

zation for Z in a form similar to that for Y.
Then, following [ 5 ] the internal differential
realizations for Y and Z can be augmented and

is invertible so that 5 can be written as
inverted in a straightforward manner. From

g; = N Y + N Z (25b) we see that an internal differential
y z realization for Z implies an internal realiza-

tion for H*. To obtain such a realization,
= g + g (23c) start with the inner product identity for

Y-1 Hilbert adjoints

where the partitions of M are [] H* (26 

M EYy z Ln ] v (H) (H)

Given (23a) and (23c), the linear minimum vari- where 
ance estimate of E given Y is , the projection is an arbitrary element in the range
of (23c) into Span (Y). Since o is a linear of H, R(H), and is an arbitrary element in
mapping of i, the linear minimum variance [vU
estimate of x is the domain of H, D(H). Employing

M x Y H' =C (27a)

= M M Y (24a) v Wxb
x y

It is straight-forward to show that the estima- and defining
tion error is the minimum variance estimate

given Z: [A ,1` H*" fiUX1(27b)

=M i =M Nz
x z x y where

x y z H , .e. H* = H (27c)

Here we have expressed the error as a linear O I 0 I
mapping of the underlying process I, and the (26) can be rewritten as
estimation error variance is therefore a linear

function of the variance of E. <x C*u,> + <X, W*v> <Lx,

For the above construction to be useful we

need to know the mapping M in (22b) and the + <x > (28a)
inverse of the augmented map M in (23b). In b' b
[ 8] it is proved that the orthogonality and
complementation conditions are satisfied by M

z
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Applying Green's identity to replace <Lx, X> in r [ x(0)T)
(28a) gives 0 () T (T) (31b)

(0) (T)J
<X, [C*u> - L A]> = <Xb, [EEb + V*YIb - W*vX]>

where
(28b)

Now if W is a matrix such that [A BQB ]

p-V~l 14 = C R C -A'

rV= tWcl (29a)

'1 V0fIT-1V0 0' W' -10
is invertiable, we can define 0 v b

V- - - - - - -0 - - - - -- I (31d)

-WAl? VT' l1V + W Tlb W -:O

EXXA and v + w VXC = (P') E (29b) and

V V° '1VT + W Ewl : 0

Then it is shown in [8] that the map

T= = H* (30a)
Hamiltonian Diagonalization

b [ th

The solution of the 2n order boundary

has an internal differential realization with value process in (31) could be implemented by

interval process X satisfying either of the two forms of the general solution
derived earlier. However, by considering the

L = C'u, (30b) "time"-invariant case we can anticipate that
there may be numerical instabilities associated

with boundary condition with the first of those methods. In the time-
invariant case the eiqenvalues of the 2nx2n

=V r vx Hamiltonian matrix Y defined in (la) are symme-

[d = [ Ib (30c) tric about the imaginary axis [ 9 ], i.e. there
L0 ] X are n eigenvalues in each of the left and right

half planes. Thus, for the time-invariant case,

the right half plane eigenvalues will result in
numerical instabilities for the unidirectional

rTpi FB'X implementation suggested by (4). This stability
=ii II (30d) problem can be avoided in general by transforming

Lb [WkEb] the smoother dynamics into the stable forward/
LW'bJ WRb backward form in (8). To achieve this second

form, we need a transformation which diagonalizes
and that this choice of internal realization the dynamics of P. into two nxn blocks, one stable
satisfies the inner product identity (28b) with in the forward direction and the other backwards
both left and right hand sides identically zero. stable.

Augmenting Z defined by (25b) and- H* given Since the dynamics of our smoother as re-
by (30) with the internal differential reali- presented by tf are identical to those of the
zation for Y and inverting as in [ 6] and pro- smoother for causal processes as originally de-
jecting the solution onto the span of Y (see rived by Bryson and Frazier [10], any transfor-
(23)) we find [ 8] that an internal differential mation which results in a two-filter smoother
realization of the estimator is given by the for causal processes will also diagonalize our
2nth order system: smoother. However, choosing a diagonalizing

transformation for our problem requires special
[=] x 0considerations not encountered'in the causal

case. First, because the two-point boundary
1.1 = (31a) condition provides incomplete information for

_ _R both the initial and final values of the process,
we will choose a transformation which corres-

with two-point boundary condition ponds to a two-filter solution for causal pro-
cesses with both filters in information form.
Second, it is important to choose the boundary
conditions properly for the Riccati differential



equations which govern the time-varying elements then carrying out the calculation in (33a), it

of the diagonalizing transformation. Our choice can be shown that H is diagonalized with dia-
of diagonalizing transformation and corresponding gonal blocks q

boundary conditions makes it possible to formu-
late a numerically stable two-filter form for Hf = -[A' + efBQB'] (34e)

our smoother which is remarkably similar to two-
filter smoothers for causal processes. and

Define the time-varying transformation T(t) (-A' (34f)
as the 2nx2n matrix partitioned in nxn blocks b - bBQB] (34f)

as
Thus the dynamics of qf and qb are decoupled and
are given by

T(t) = [f - (32a) a f = Hfqf + C'R 1
y (35a)

= e (t)
b and

Let the transformed process be denoted by qb = bqb C'R y (35b)

If we assume for time-invariant dynamics
|qf(t) ^x(t) that {A,B} is stabilizable and that {A,C} is

q(t) = = T(t) (32b) detectable and for time-varying dynamics that
q (t(t) {A,B} is uniformly completely controllable and

Lb {A,C} is uniformly completely reconstructable,
then the invertibility of P in (34b) is guaran-
teed if both 8 (0) and 8 (Ty are nonnegative

Also define f b
definite [ 9]. Furthermore, these conditions

guarantee that 6 and eb and their derivatives

'iq = TT + THT (33a) are bounded and that Hf and Hfb are forward and
backward stable respectively.

and Under the transformation (32a), the boundary
condition (31b) becomes

G 
=
TG (33b)

q [0 O' II-1 qr-i) [ ]T)
so that the dynamics of the transformed process W b Yb 

0
f(O) qf(T)

can be written as] (36a)

wT' b q Lq b (0 )
+v

q b(T)

= H + Gy . (33c)

q] q q where

If we use the following form for the inverse of Vq = V ( (36b)
T:

and

1 I I OP(t) 0 V =V T (T) . (36c)
q x(

T- (t) = _8 (t) _ _ _ _ _ _ _ _
t f(t ) To simplify the expressions for the boundary
b t f _s value coefficient matrices in (36b) and (36c),

choose the following nonnegative definite initial
and final conditions for the Riccati equations

(34c) and (34e):
where

-1 Of(0) = V -0 V + w 
0' W (37a)

P (t) = [ef(t) + b(t)] , (34b) (37a)
s f

and
and if we choose the dynamics for 6f and ab as

T' -1 T T' -i T (37b)
-0f = efA + A'6 f + fBQB'6f - C'R- C (34c) (T)= V T + T . (37b)

and Then defining e as the following nxn matrix:

-b = 6bA + A'6b - EBQB'b + C'R C (34d) e = vT' lD +CWT'b (38)b b b b b ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'c vb



it can be shown that the boundary value coeffi-
cient matrices can be written as qf(t) w [ b,

[ I .O) 8P (O 1 _ ) = 0fb (t)Ffb { Yb

q VfcPs() ecPs(V]

E[ bv v0b ] (39a) 0 ( (41c)

0 cPs (O)qb (0) Lq (t)
and

~~el~P~ (T) : P (T) ~The computational complexity of the non-
[VT e s c s causal smoother implementation suggested by (41)

q is nearly the same as that of the two-filter
smoothers for causal processes such as the
Mayne-Fraser form [11,121. We note, however,

_[ V V I . (39b) that before qf and q can be evaluated for any
f . b t S [O,T], bot qf and qb must be computed and

stored along with P and Q for the entire in-
s fb

Since the dynamics of qf and qb are de- terval EO,T]. Thus, the required storage exceeds
coupled, the only coupling between the two enters that of the smoother for causal processes. In-
through the boundary condition. By our choice deed, the Mayne-Fraser solution and ours differ
of initial and final conditions for the Riccati significantly in one aspect. That is, for our
equations, we have been able to display this smoother the contribution of the forward filter
coupling solely as a function of the matrix 0 . to the smoothed estimate at some point t depends

not only on past observations, as does the Mayne-
Fraser solution, but also on future observations

inverting T(t) in (32b) so that we obtain through the term 
through the term Oc'P,(T)qf0(T) in (14). A
similar statement applies tor the backward

^(t) = P (t) [qf(t) + qb(t)] . (40) filter contribution.

5. SMOOTHING ERROR
Following (8), an explicit expression for the

two-filter solution for %and q is formulated From (24b) we see that the smoothing error
(35a) and (35b) re ecte overned b y is the solution of the augmented and inverted(35a) and (35b) respectivery with boundary
conditions: q° (0) = 0 and $q (T) = 0. Define system projected onto the span of the complemen-

Ff band q tary process Z. By expressing the complementary
Ffb and f as the 2nx2n matricesfb a fb process as a linear function of the underlying

process and employing the internal differential
f (TO + T (41 ) realization of the inverted system it can be shown

Ffb f f(T,0) b b (41a) [8], that the smoothing error has the same
Hamiltonian dynamics so the smoother (31a) and

I + 0'P (T)(f(TO ) . e'P (T) that the boundary condition for the smoothing
a 1 c s(T)(Df( c s error can be written in terms of VO and V in

= - - - - - - - - - - - - - - - - - - - . vx
(31d) and (31e). As a consequence, the same

c P (0) I + cPs ()P (C,T diagonalizing transformation (32a) can be used
to write the error as a linear combination of a
forward stable process and backward stable pro--

and cess. From this representation it can be shown
[8] that the error covariance can be expressed

f(t,O) : 0 in terms of Of, 
8
b and 6c in (34c), (34d) and

Ofb(t) = -L- -- (41b) ~(38) plus the solution of one additional matrix
fb Riccati equation.

6. CONCLUSIONS

Then the two-filter solution for qCt) is given An internal differential realization of the
by fixed-interval smoother for an nth order non-

causal two-point boundary value stochastic pro-
cess (TPBVP) has been shown to have the same 2nth
order Hamiltonian dynamics as the fixed-interval
smoother for causal processes. The simplicity of
this two-filter form is achieved by employing an
information form for the diagonalizing transfor-
mation with carefully chosen boundary conditions
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