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1. Introduction

The problem of quantum measurement has received a

great deal of attention in recent years, both in the quantum

physics literature and in the context of optical communica-

tions. An account of these ideas may be found in Davies

[1976] and Holevo [1973]. The development of a theory of

quantum estimation requires a theory of integration with

respect to operator-valued measures. Indeed, Holevo [1973]

in his investigations on the Statistical Decision Theory

for Quantum Systems develops such a theory which, however,

is more akin to Riemann Integration. The objective of this

paper is to develop a theory which is analogous to Lebesque

integration and which is natural in the context of quantum

physics problems and show how this can be applied to quantum

estimation problems. The theory that we present has little

overlap with the theory of integration with respect to

vector measures nor the integration theory developed by

Thomas [1970].

We now explain how this theory is different from some

of the known theories of integration with respect to operator-

valued measures. Let S be a locally compact Hausdorff space

with Borel sets ). Let X,Y be Banach spaces with normed duals

X*,Y*. C (S,X) denotes the Banach space of continuous X-

valued functions f: S AX which vanish at infinity (for every

E>O, there is a compact set KCS such that If(s)l < s for all

sCS\K), with the supremum norm Ifl, = sup f(s)l . It is possible
sCs
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to identify every bounded linear map 1: C (S,X) +Y with a

representing measure m such that

Lf = fm(ds)f(s) (1.1)
S

for every f ECo(S,X). Here m is a finitely additive map

m: B - L(X,Y**)(1) with finite semivariation which satisfies:

1. for every z EY*, m z: B - X* is a regular X*-valued

Borel measure, where m z is defined by

mZ (E)x = <z,m(E)x> E (3, x e X; (1.2)

2. the map z H mZ is continuous for the w* topologies

on z(Y* and m E Co(S,X)*.

The latter condition assures that the integral (1) has

values in Y even though the measure has values in L(X,Y**)

rather than L(X,Y) (we identify Y as a subspace of Y**).

Under the above representation of maps L E L(Co(S,X),Y), the

maps for which Lx: Co(S) + Y: g(.) H L(g(.)x) is weakly

compact for every x X are precisely the maps whose

representing measures have values in L(X,Y), not just in

L(X,Y**). In particular, if Y is reflexive or if Y is

weakly complete or more generally if Y has no subspace

isomorphic to co, then every map in L(Co (S,X),Y) is weakly

compact and hence every LE L(C (S,X),Y) has a representing

measure with values in L(X,Y).

(1)L(X,Y) denotes the Banach space of bounded linear
operators from X to Y.
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We now develop some notation and terminology which will

be needed. Let H be a complex Hilbert space. The real

linear space of compact self-adjoint operators s (H) with the

operator norm is a Banach space whose dual is isometrically

isomorphic to the real Banach space Ts (H) of self-adjoint

trace-class operators with the trace norm, i.e.

s s(H)* = T s(H) under the duality

<A,B> = tr(AB) < IAltrjB I AE (H), B (s (H).

Here Ijt = sup{IBOI: 4E H, jI < 11 =

sup{trAB: A t s(H), IAItr < 11 and IAItr is the

trace norm Z IXfl < +- where AE T (H) and {X.1 are

the eigenvalues of A repeated according to multiplicity.

The dual of 7T(H) with the trace norm is isometrically

isomorphic to the space of all linear bounded self-adjoint

operators, i.e. TS(H)* = gs(H) under the duality

<A,B> = tr(AB) A s(H), BS s(H).

Moreover the orderings are compatible in the following

sense. If 7(s (H)+ , Zs (H)+, and s(H)+ denote the

closed convex cones of nonnegative definite operators

in s S(H), Ts (H), and s (H) respectively, then

[Xs(H)+] = Zs(H)+ and [ s(H) +] = 's (H)+
where the associated dual spaces are to be understood in

the sense defined above. 

In the context of quantum mechanical measures with values
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in Ls(H), one can identify every continuous linear map L:

C0 (S) + Ls(H) (here X=R, Y=LS(H)) with a representing measure

with values in L s (H) rather than in Ls(H)**, using fairly

elementary arguments. Since Y=L (H) is neither reflexive nor

devoid of subspaces isomorphic to Co, one might think at first

sight this is incorrect. However, whereas in the usual

approach it is assumed that the real-valued set function

zm(-)x is countably additive for xt X and every z EY*, we

require that it be countably additive only for x EX and

z (Z=T s (H), where Z=T s (H) is a predual of Y=L s (H), and

hence can represent all linear bounded maps L: C (S,X) -+ Y
0

by measures with values in L(X,Y). In other words, by

assuming that the measures m: B -+ L (H) are countably

additive in the weak* topology rather than the weak topology

(these are equivalent only when m has bounded variation),

it is possible to represent every bounded linear map

L: Co(S) - Ls(H) and not just the weakly compact maps.

This approach is generally applicable whenever Y is a dual

space, and in fact yields the usual results by imbedding

Y in Y**; moreover it clearly shows the relationships

between various boundedness conditions on the representing

measures and the corresponding spaces of linear maps. But

first we must define what is meant by integration with

respect to operator-valued measures. We shall always take

the underlying field of scalars to be the reals, although

the results extend immediately to the complex case.

2. Additive Set Functions
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Throughout this section we assume that E is the

a-algebra of Borel sets of a locally compact Hausdorff

space S, and X,Y are Banach spaces. Let m: +- L(X,Y) be

an additive set function, i.e. m(ElU E2) = m(E1)+m(E2)

whenever E1,E2 are disjoint sets in B. The semivariation

of m is the map mi: 2 + 1+ defined by

n
m(E) = sup I £ m(E1)xil,

i=l

where the supremurm is taken over all finite collections

of disjoint sets El,...,E n belonging to Bn E and

X 1,. . .,xn belonging to X1. By 3 nE we mean the sub-a-algebra

{E'E Z: E' CE} = {E'l E: EEB} and by X 1 we denote the

closed unit ball in X. The variation of m is the map

lm I: a + R+ defined by

n
Iml(E) = sup Z )m(Ei)I

i=l

where again the supremum is taken over all finite collections

of disjoint sets in a nE. The scalar semivariation of m is

the map m: +- R+ defined by

n
m(E) = supl Z aim(Ei)l

i=l

where the supremum is taken over all finite collections

of disjoint sets E1 ,...,En belonging to 8n E and

al,...,ant R with la.il < 1. It should be noted that the

notion of semivariation depends on the spaces X and Y;
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in fact, if m: 3 + L(X,Y) is taken to have values in

L(R,L(X,Y)), L(X,Y), L(X,Y)** = L(L(X,Y),R) respectively

then

m mL(R,L(X,U)) m = mL(X,Y) ml = mL(L(X,U)*,R) (2.1)

When necessary, we shall subscript the semivariation

accordingly. By fa(B,W) we denote the space of all finitely

additive maps m: B + W where W is a vector space.

Proposition 2.1. If m c fa(3,X*) then m = jm. More generally,

if m, (fa(B,L(X,Y)) then for every z Y* the finitely

additive map zm: B + X* satisfies zm -= zmJ.

Proof. It is sufficient to consider the case Y = R, i.e.

m E fa(Z,X*). Clearly m < Iml. Let EE X and let E1,...,En

be disjoint sets in 93r\E. Then 7Jm(Ei)I sup Zm(Ei)xi

sup im(E i)x i l <_ m(E). Taking the supremum over all
xieX 1 -

disjoint E i 2 nE yields imi (E) < m(E). [

We shall need some basic facts about variation and

semivariation. Let X,Y be normed spaces. A subset Z of

Y* is a norming subset of Y* if sup{zy: zt Z,Iz| < 1} = |yl

for every y 6Y.

Proposition 2.2. Let X,Y be normed spaces, m (fa(Z , L(X,Y)).

If Z is a norming subset of Y*, then
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E) zm (E) , E *0
zEZ I z.<l

m(E) Su= suP I zm(.)xI(E) , EeA
zEZ, z i <1 x X, x I <1

Moreover |y*m(-)xl(E) < Ix.I-y*mI(E) < Ix|I y*Il-mI(E)

for every xE X, y*( Y*, EE .

Proof. Let {E1,...,E n} be disjoint sets in 3 n E and

x1 ,...,xn X 1. Then

n n n
I Z m(Ei)xil = sup <z, E m(Ei)xi> = Z zm(Ei)xi.
i=l zEZ 1 i=l 1 1 i=l

Taking the supremum over {Ei} and {xi} yields

m(E) = |zm|(E). Similarly,

n n
sup f Z aim(Ei ) sup sup sup <z, Z aim(Ei )x>

lai l<l i=l lai l<l x(X1 zEZ 1 i=l

n
sup J Izm(Ei)x l

xEX 1 i=l

zEZ 1

and taking the supremum over finite disjoint collections

{Ei} C .nE yields im(E) = sup sup Izm( )x I(E).
JxI< zjl<l

It is straightforward to check the final statement of the

theorem. 3
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Proposition 2.3. Let m e fa(O , L(X,Y)). Then m, m, and Iml

are monotone and finitely subadditive; Iml is finitely

additive.

Proof. It is immediate that m, m, Iml are monotone.

Suppose E 1l E 2 a39 and Eln E 2 = 0, and let F 1.. Fn

be a finite collection of disjoint sets in Ji n(E1VJE2).

Then if lxil < 1, i = 1,...,n, we have

n n
m(Fi)xil = 1m (m(F. E )+m(Fi.E ))X il

i=l 1 i=l 1

< Zm (Fin El)xi + I m(Fi A E 2)xi 
i i

< m (E1 )+m (E2 ).

Taking the supremum over all disjoint F1, .. . ,Fn - n(E 1V E 2)

yields m(E 1UE 2) < m(El))+m 2 (E2). Using (2.1) we immediately

have m, Iml finitely subadditive. Since Iml is always

superadditive by its definition, Iml is finitely additive. D

3. Integration with Respect to Additive Set Functions

We now define integration with respect to additive set

functions m: a + L(X,Y). Let &@OX denote the vector

space of all X-valued measurable simple functions on S,
n

that is all functions of the form f(s) = Z 1E (s)x
i=l 1

where {E1,...,E n} is a finite disjoint measurable

partition of S, i.e. Ei( Ji i, EinEj = 0 for i ~ j,
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n
and U E i = S. Then the integral fm(ds)f(s) is defined

i=l S

unambiguously (by finite additivity) as

n
fm(ds)f(s) = Z m(Ei)xi . (3.1)
S i=l

We make ce8X into a normed space under the uniform norm,

defined for bounded maps f: S + X by

If 1 = suplf (s).
sES

Suppose now that m has finite semivariation, i.e.

m(s) < +X. From the definitions it is clear that

lfm(ds)f(s) <_ m(S). Iflo , (3.2)

so that f ' fm(ds)f(s) is a bounded linear functional on
s

O(8eX, I.|); in fact, mr(S) = sup{Ifm(ds)f(s)J: IflI < l,fEOX}

is the bound. Thus, if m(S) < +c it is possible to extend

the definition of the integral to the completion M(S,X) of

D@X in the I |. norm. M(S,X) is called the space of totally

s-measurable X-valued functions on S; every such function

is the uniform limit of a-measurable simple functions.

For f eM(S,X) define

fm(ds)f(s) = lim fm(ds)fn(s) (3.3)
s n+oo s
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where fn e OX is an arbitrary sequence of simple functions

which converge uniformly to f. The integral is well-defined

since if {fn } is a Cauchy sequence in 6aOX then

{fm(ds)fn(s) is Cauchy in Y by (3.2) and hence converges.

Moreover if two sequences {f },{g n I in a OX satisfy

gn,-fl +- 0 and Ifn-fI[ + 0 then Ifm(ds)fn(s)-fm(ds)g n(s) <

(S)fn-g 0 so lim m(ds)fn(s) = lim fm(ds)gn(s).
n-+* s n-+00 s

Similarly, it is clear that (3.2) remains true for every

fE M(S,X). More generally it is straightforward to verify

that

m(E) = sup{fm(ds)f(s): f M(S,X), If 1 < 1, suppfC E}. (3.4)
S

Proposition 3.1.C o (S,X)C M(S,X).

Proof. Every g(-)E Co (S) is the uniform limit of simple

real-valued Borel-measurable functions, hence every function
n n

of the form f(s) = v gi(s)xi = 7 giOxi belongs to M(S,X),
i=l i=l 1 ' 1

for gi~Co(S) and xi.X. These functions may be identified with

Co(S)@X, which is dense in Co(S,X) for the supremum norm (cf.

Treves [1967], p. 448). Hence C (S,X) =clC (S)$XC.M(S,X).

To summarize, if m Efa(o, L(X,Y)) has finite semivariation

m(S) < +c then fm(ds)f(s) is well-defined for
S



f M(S,X) Co(S,X), and in fact f v fm(ds)f(s) is a bounded

linear map from Co (S,X) or M(S,X) into Y.

Now let Z be a Banach space and L a bounded linear

map from Y to Z. If m: '+ L(X,Y) is finitely additive

and has finite semivariation then Lm: 3 -+ L(X,Z) is

also finitely additive and has finite semivariation

Lm(S) < ILl-mr(S). For every simple function ft E ~)X it-

is easy to check that Lfm(ds)f(s) = fLm(ds)f(s). By
S S

taking limits of uniformly convergent simple functions we

have proved

Proposition 3.2. Let m Efa(3a, L(X,Y)) and m(S) < +X. Then

Lm E fa() , L (X,Z)) for every bounded linear L: Y- Z, with

Lm(S) < + X and

Llm(ds)f(s) = fLm(ds)f(s). (3.5)
s s

Since we will be considering measure representations

of bounded linear operators on Co (S,X), we shall require

some notions of countable additivity and regularity. Recall

that a set function m: ~ + W with values in a locally

convex Hausdorff space W is countably additive iff

0 c0o

m( U E n) = Z m(En) for every countable disjoint sequence
n= in n=leorem (cf. Dunford-S

{Ei. in 3. By the Pettis Theorem (cf. Dunford-Schwartz [1966]) countable
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additivity is equivalent to weak countable additivity,

i.e. m: - W is countable additive iff it is countably

additive for the weak topology on W, that is iff w*m: -+ R

is countably additive for every w* F W*. If W is a Banach

space, we denote by ca(cD,W) the space of all countably

additive maps m: + + W; fabv( b,W) and cabv(b,W) denote

the spaces of finitely additive and countably additive

maps m: , + W which have bounded variation iml(s) < + A.

If W is a Banach space, a measure m fa(,,W) is

regular iff for every c > 0 and every Borel set E

there is a compact set KC E and an open set G DE such

that Im(F)J < c whenever F 6 & C(G\K). The following

theorem shows among other things that regularity actually

implies countable additivity when m has bounded variation

|Iml(S) < +o (this latter condition is crucial). By

rcabv(J2 ,W) we denote the space of all countably additive

regular Borel measures m: t + W which have bounded

variation.

Let X,Z be Banach spaces. We shall be mainly concerned

with a special class of L(X,Z*)-valued measures which we

now define. Let ( , L(X,Z*)) be the space of all

m Efa(J, L(X,Z*)) such that <z,m(.)x>E rcabv(c) for

every x X, zE Z. Note that such measures m i ?(~, L(X,Z*))

need not be countably additive for the weak operator
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(equivalently, the strong operator) topology on L(X,Z*),

since z**m(-)x need not belong to ca(f) for every

x e X, z** E Z**.

The following theorem is very important in relating

various countable additivity and regularity conditions.

Theorem 3.1. Let S be a locally compact Hausdorff space

with Borel sets O. Let X,Y be normed spaces, Z1 a

norming subset of Y*, m (fa(*&, L(X,Y)). If zm(-)x: ~ + R

is countably additive for every z E Zl, xE X then

Imr(-) is countably additive J + R+. If zm( )x: -+ R

is regular for every z ( Z1, x EX, and if JmI(S) < +c,

then Iml(-)& rcabv( ,R+). If Iml(S) < +-, then m(-)

is countably additive iff Iml is and m(') is regular

iff Iml is.

Proof. Suppose zm(-)XEca(vo,R) for every zE Z 1, x X.

Let {Ai} be a disjoint sequence in . Let {B1 ,...,Bn }

be a finite collection of disjoint Borel subsets of

VA.. Then
i=l 

n n c n c
Z Jm(B )I = j Im(VA i )BI = E sup Izjm(U A.nBj)xj.

j=l j i= j=lx fix i=l J i

z .6Zj 1

Since each zjm(-)xj is countably additive, we may continue

with
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n co co
j= l xj sup i Z ajm(Ai.Bj)x.j < Z sup iz. m(AinB.)xj

j=1 x.Xi1 3 3. 3 - j=l x jeX 1 i=l J

z. Z1 z j Z1

n c OD n co

< f Z m(AinBj)I = E Im(AiBj I < Z Iml (Ai).
j=l i=1 i=l j= - i=l

Hence, taking the supremum over all disjoint {BjC U A
co~~ co ~~i=l

we have ImIC U Ai ) < Z Imi (Ai). Since Iml is always
i=1 i=l

countably superadditive, Iml is countably additive.

Now assume zm(-)x is regular for every z Z1, xE X,

and ImI(S) < +0. Obviously each zm(-)x has bounded

variation since Iml (S)<+-, hence zm(.)xfca(.) by (Dunford-

Schwartz [1966], III.5.13) and zm(.)xercabv(0). We wishto show

that Iml is regular; we already know ml E cabv(2 ).

Let E E6, e > 0. By definition of Iml(E) there is a

finite disjoint Borel partition {E1 ,...,E } of E such
~n

that ml|(E) < Z Im(Ei)J + s/2. Hence there are
i=l

Zl ... ,Zn Z1 and X 1 ... ,Xnt EX, Ixil < 1, such that

n
Im|(E) < Z zim(Ei)xi + £/2.

i=l

Now each zim(-)xi is regular, so there are compact KiCEi
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for which Izim(Ei\ Ki)xil < c/2n, i = 1,...,n. Hence

ImI(E\K) = Im|(E) - |m|(K)

n n
c

< zim(Ei)xi + - zi.r(E ir-Ki)xi

n
= zim(Ei Ki)xi + e/2
i=l

< c£

and we have shown that Iml is inner regular. Since

mim(s) < +-, it is straightforward to show that Iml is

outer regular. For if E ( , s > 0 then there is a

compact KC S\ E for which Imi(S\ E) < Iml(K) + £ and

so for the open set G = S\ K DE we have

ImI(G\E) = ImI(S\E) - Iml(K) < c.

Finally, let us prove the last statement of the

theorem. We assume mE fa(.), L(X,Y)) and ImI(S) < +-.

First suppose m(.) is countably additive. Then for

every disjoint sequence {Ai} in & ,

00 n
m( U A i) - m(A) I - 0, so certainly
i=l i=l

co n
y*m( U Ai)x - £ y*m(Ai)xi O0 for every y*( Y*, xE X

i8l il 3
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and by what we just proved Iml is countably additive.

Conversely, if Iml is countably additive then for every
n

disjoint sequence {A i} we have Jm( Ai) - Z m(Ai)| =
i=l i=l1

n
Im( U Ai) < Iml( UOA i) Im( U A) - lmi(A) 0.

i=l - i=l i=l i=l

Similarly, if m is regular then every y*m(*)x is regular

and by what we proved already Iml is regular. Conversely,

if Iml is cegular it is easy to show that m is regular. D

Theorem 3.2. Let S be a locally compact Hausdorff space

with Borel sets pt . Let X,Z be Banach spaces. There

is an isometric isomorphism L+ m between the bounded

linear maps L: C O (S) - L(X,Z*) and the finitely additive

measures m: 3 - L (X,Z*) for which zm(-)x f rcabv(s )

for every x X, z Z. The correspondence L m is

given by

Lg = f g(s)m(ds), g EC O (S) (36)
S

where ILl = m(S); moreover, zL(g)x = f g(s) zmids)x and
S

IzL(')xl = Izm(-)xl(S) for x e X, z 6 Z.

Remarks. The measure m 6fa(J , L(X,Z*)) need have neither

finite semivariation r(s) nor bounded variation Im (S).

It is also clear that L(g)x = f g(s)m(ds)x and
S

zL(g) = f g(s)zm(ds), by Proposition 3.2.
S
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Proof. Suppose L e L(Co (S), L(X,Z*)) is given. Then

for every x E X, z e Z the map g '- zL(g)x is a bounded

linear functional on C (S), so there is a unique real-
0

valued regular Borel measure m : 3 + R such that
XtZ

zL(g)x =f f(s)mx (ds). (3.7)
S

For each Borel set E E ., define the map m(E): X + Z*

by <z,m(E)x> = m (E). It is easy to see thatxz

m(E): X + Z* is linear from (11); moreover it is con-

tinuous since

m(E)| < m(S) s= sup Izm( )x (s) -= sup Im I(s) 

!x1<1 Izl<l

sup IzL(.)xl = ILl.

Ixlfl
Izl<

Thus mr(E) E L(x,z*) for E 6 and m Efa(C, L(X,Z*))

has finite scalar semivariation m (S) = ILI. Since

m = mL(R,L(X,Z*)) is finite, the integral in (3.6) is

well-defined for g EC (S)C 1M(S,R) and is a continuous

linear map g H fm(ds)g(s). Now (3.7) and Proposition 3.2
S

imply that

zL(g)x = fzm(ds)xg(s) = <z,fm(ds)g(s)-x>
S S
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for every xE X, z E Z. Thus (3.6) follows.

Conversely suppose m E fa( , L (X,Z*)) satisfies

zm(-)xc rcabv(A ) for every x( X, zE Z. First we must

show that m has finite scalar semivariation m(S) < +(.

Now sup jzm(E)xl < Izm(.)x (S) < +< for every x eX, zE Z.
EE -

Hence successive applications of the uniform houndedness

theorem yields sup Jm(E)xI < + ~ for every x X and
EEO

sup Jm(E) < +-, i.e. m is bounded. But then by
EEO

Proposition 2.2.

n
m(S) = sup Izm(.)x!(S) = sup sup Z Izm(Ei)xI

Ix 1<1 IJx1<l E i disjoint i=l

IzI<l IZI<l

= sup sup Z zm(E.)x - Z-zm(E.)x
Ixi<l <i disj

IzI<l

= sup sup zm(U+Ei)x- zm(UFE.)X
|x I<l Eidisj

izl<l

< sup 2 su lzm(E)xl = Zsup1m(E)| <
Ixi<l Es. 
IzI<l

where Z+ and U+ (Z- and U-) are taken over those i

for which zm(Ei)x > 0 (zm(Ei)x < 0). Thus mr(s) is

finite so (3.6) defines a bounded linear map

L: C o (S) + L(X,Z*). 
0
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We now investigate a more restrictive class of

bounded linear maps. For L i L(C o(s), L(X,Z*))

define the (not necessarily finite) norm

n
|ILI| = sup| E L(gi)xil

i=1l

where the supremum is over all finite collections

gl' .'''gn ( Co(S) and x1 ,....,xn X1 such that the qi

have disjoint support.

Theorem 3.3. Let S be a locally compact Hausdorff space

with Borel sets 0 . Let X,Z be Banach spaces. There

is an isometric isomorphism L1 * m L2 between the

linear maps L 1: C O(S) -+ (X,Z*) with IL L 1J < +X; the

measures m ( fa ( , L (X,Z*)) with finite semivariation

mr(S) < +c for which zm(-)x E rcabv(3 ) for every

z EZ, x EX; and the bounded linear maps L2: C O(S,X) - Z*

The correspondence L1 m -L 2 is given by

Llg -= m(ds)g(s) , g C o ( S ) (3.8)
S

L 2 f = f m(ds)f(s) , fE C (S,X) (3.9)
S

L 2(g(.)x) = (Llg)x , g Co(S), X X. (3.10)

Moreover under this correspondence IILlII = m(S) = IL21;
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and zL E Co(S,X)* is given by zL2f = f zm(ds)f(s)
S

where zm C rcabv(o ,X*) for every z e Z.

Proof. From Theorem 3.2 we already have an isomorphism

L1 mm; we must show that J IL1 1 | = m(S) under this

correspondence. We first show that J L 1 < ii(S).

Suppose gl,...,gn C (s) have disjoint support with

Jgi- |< 1; x l,..., xn X with xixJ < 1; and zE Z with

Jzj < 1. Then

n n
<ZI Z Ll(gi )x.> = Z fzm(ds)xi'gi(s)

i-=l i i=l S

n
< l Jzm( )xiJ(Suppgi)

n
< j |zm (suppg.)

where the last step follows from Proposition 2.2 lxii < 1<

Since Jzml is subadditive by Proposition 2.3, we have

n n
<i 1 Ll(gi)Xi> < Izml( U suppg i) < zmf ().

i=l - -i=l

Taking the supremum over IzI < 1, we have, again by

Proposition 2.2.

n

I* i,,,,(gi) . ; . ti; 1 . (.)X. t <rll mI l\ 
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Since this is true for all such collections {gi} and

{xi}, JIL|l < re(S). We now show i(S) < |IL|I. Let

£ > 0 be arbitrary, and suppose E1,.,. En ea are

disjoint, zl| < 1, Ix i | < 1, i = l,...,n. By regularity

of zm(.)xi, there is a compact K iC E such that

Izm(.)xil(E i) < l+ Izm(.)xi(Ki), i = l..,n Since

the K i are disjoint, there are disjoint open sets

G i D Ki. By Urysohn's Lemma there are continuous functions

gi with compact support such that 1K < gi < Then
l g G1

n n n
E zm(Ei)xi i= zL(gi)xi + f( E-gi 

) (s)zm(ds)x.
~~~~i=l irl i=l i

n n
< zL(g i)x i + (1 E -1 )(s)zm(ds)x
i=li i=l i i

n n n
Z< zL(gi)x. + Z zm(.)xx(E\ K i) < E zL(qi)xi+c

n
< E] L(gi)xil + E

i=l 

< IILIJ + £.

Taking the supremum over I z < 1, finite disjoint collections

{Ei}, jxiJ < 1 we get m (S) < J JLJ| + £. Since c > O
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was arbitrary m(S) < |ILII and so m(S) = IIL .

It remains to show how the maps L2 E L(C o(S,X),Z*)

are related to L 1 and m. Now given L1 or equivalently m,

it is immediate from the definition of the integral (3.3)

that (3.9) defines an L2 c L(Co(S,X) ,Z*) with

IL21 = i r(S) < +o. Conversely, suppose L2 L (Co(S,X) ,Z*)

is given. Then (3.10)defines a bounded linear map

L1: CO(S) -+ L (X,*), with 1L1 < IL2 1; moreover it is

easy to see that |IL 1 1 < IL2f. Of course, L1 uniquely

determines a measure mE i a(t, L(X,Z*)) with

m(S) = |1L 1 1 < IL2] such that(3.8) holds. Now suppose

n
f(.) = g.i()x i E Co (S)9X; then

i=l

n n
fm(ds)f(s) = Ll(gi)x i = ZL 2(gi(.)xi ) = L2(f)

i!=l

Hence (3.10) holds for f(.) i C (S)OX, and since C (S)0X is0 0

dense in C (S,X) we have

IL2J 1 sup IL2fI = sup fI/mds)f(s) I
fC o (S)eX f(C (S)OX

If 1<.ol Ifl <1

< sup jfm(ds)f(s)l - m(s).
feM(SX)

flI <1
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Finally, it is immediate from Proposition 3.2 that

zL2f = fzm(ds)f(s) for f C O(S,X), z EZ. We show that
S

zm E rcabv(O ,X*) for zE Z. Since IzmI (S) < Izl.Im(S)

by Proposition 2.2, zm has bounded variation. Since for

each x6 X, zm(.)xE rcabv(,G) we may apply Theorem

(with Y = R) to get |zmj 6 rcabv(ca ) and zm E rcabv(J3,X*). 0

The following interesting corollary is immediate from

I L11 = IL21 in Theorem 3.3.

Corollary. Let L 2: Co(S,X) - Y be linear and bounded,

where X,Y are Banach spaces and S is a locally compact

HIausdorff space. Then

n

IL2j = supIL 2 Z gi( )x i)),
i=l

where the supremum is over all finite collections

{g1 ,...,gn} CC O(S) and all {Xl,. .xn} e X such that

{suppg i} are disjoint and Igi l_ < , ixil < 1.

Proof. Take Z = Y* and imbed Y in Z* = Y**. Then

L 2 t L(Co(S,X) ,Z*) and the result follows from

I IL1 1 = IL21 in Theorem 3.3.tj

We now consider a subspace of linear operators

L 2 e L(C (S,X) ,Y) with even stronger continuity properties,
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namely those which correspond to bounded linear functionals

on Co (S,X6 Z); equivalently, we shall see that these maps

correspond to representing measures m e 7r(c, L (X,Z*))

which have finite total variation Im (S) < +co, so that

me rcabv(o3, L(x,Z*)). For L2 6 L(Co(S,X),Y) we define

the (not necessarily finite) norm

n
111L2111 = sup Z IL2(fi)!

{fi} i=l

where the supremum is over all finite collections

{fl,..*.fn } of functions in Co (S,X) having disjoint

support and lfil <- 1. In applying the definition to

L 1 eL (C (S), L(x,Z*)) = L(C o(S,R),Y) with

Y = L (x,z*) we get

n

IIILs11 up Z IL1 (gi)l
{gi} i=l

where the supremum is over all finite collections

{glo''''gn} of functions in Co (S) having disjoint

support and JgiJ 1.

Before proceeding, we should make a few remarks about

tensor product spaces. By X 8 Z we denote a tensor

product space of X and Z, which is the vector space
n

of all finite linear combinations Z ai.x.i z where
i=l ' 3
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a i R, x i X, zi 6 Z (of course, a i, x i, z i are not

uniquely determined). There is a natural duality between

X e Z and L (x,z*) given by

n n
< Z aixi 6 zi,L> = Z a i<z i,Lxi >.

2i-1i il

Moreover the norm of L E L(x,Z*) as a linear functional

on X 6 Z is precisely its usual operator norm

ILl = .sup <z,Lx> when X 0 Z is made into a normed
xl <1

I Zl<_
space X 6 I Z under the tensor product norm r defined by

n n
.w(u) = inf{ Z Ixi II zil : u = x 8 z }, uX 8 Z.

It is easy to see that Ar(x 0 z) = |x|.lzl for x X, z 6 Z

(the canonical injection X x z - X 0 Z is continuous)

and in fact r is the strongest norm on X 6 Z with

this property. By X e wZ we denote the completion of

X e TZ for the w norm. Every L 6 L(X,Z*) extends to

a unique bounded linear functional on X 08 Z with the

same norm. X 8w Z may be identified more concretely as

infinite sums Z a.x. 0 zi where x. - O in X,
i=l

zi - 0 in Z, and Z iail<c (Schaeffer [1971], III.6.4)
i3.
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and we i'dentify (XO Z)* with L(X,Z*) by

< £ aixi 0 z i ,L* = £ a i < zi,Lxi>.
i=l i=l

The following theorem provides an integral representation

of C o (S,xX O Z)*.

Theorem 3.4. Let S be a Hausdorff locally compact space

with Borel sets i . Let X,Z be Banach spaces. There

is an isometric isomorphism L 1 o m '4L 2 -*L 3 between

the linear maps L 1: C O(S) * L(X,Z*) with I I L11i < +I;

the finitely additive measures m: -~ L (X,Z*) with

finite variation imli(S) < + for which zm(.)x rcabv(b )

for every z E Z, xi X; the linear maps L 2 : Co(S,X) - Z*

with | I L2 111 < +0; and the bounded linear functionals

L 3: Co(S, X On Z) + R. The correspondence L1~ m L2*-' L 3

is given by

Llg = I m(dsg(s) , g Co(S) (3.11)
S

L 2f = f m(ds)f(s) , f C Co(S,X) (3.12)
S

L3U = f <u(s),m(ds)>, u ECo(S,X aw Z) (3.13)

<z,(Lg)x> = <z,L 2 (g()x)> = L 3 (g(')x)z), (3.1.4)

g CO(S), x E X, z Z.
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Under this correspondence I ILlIll = Iml(s) = 11 L2ll =

IL3 1, and m E rcabv( , L(X,Z*)).

Proof. From Theorem 3.3 we already have an isomorphism

L 1 *4 m - L2 ; we must show that the norms are carried

over under this correspondence. As in Theorem 3.2, we

assume that L m +L 2 with IlL1 11 = i(s) = IL2I < +L.

We first show IIILlII < 1 11L2 11. Now if

{g1l...,gn} C C(S)1 have disjoint support and Ixi _< 1,

then gi(' )xi Co(S,X) have disjoint support with

}gi(')xil < 1, so

n n
Z IL (gi)xi| i IL2(gi( ) I IIL211-Z IL1(gi)x~i = Z jL2 (gi(.)xi)j < {l1L2l11.

i=i i=l - 2

Taking the supremum over Ixi{ < 1 yields

n
Z IL1 (gi)I < IHIL 2 II, and hence IIIL 1 111 < IIIL2 HIII

Next we show 111L 2II < mi (s). Let

flt.*..fn Co(S,X) have disjoint support and Zl,...,Zn E Z

with Izil < 1. Then

n n n
Z ziL2(fi ) = Z / zim(ds)fi(S) < £Z zimt(suppf i )

i=l i=l S i=l

where the last inequality follows from (3.4) applied to

sTirn Efa(J3,X*). By Propositions 2.2 and 2.3 we now have
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n n n
z L(fi) < E Im I(suppfi) = I|r( U suppf i) < Iml(S).

i=l i2l i=l -

n
Taking the supremum over |zil < 1 yields E IL2fil < ImI(S),

i=l

and over {fi} yields I IL2 1II < Iml (S).

Now we show Iml(S) < I IIL 1 I|I. Let £ > 0 be

arbitrary, and suppose E1,...,En e are disjoint and

Ixil < 1, !zil < 1, i = 1,...,n. By regularity of

zim(')xi, there is a compact K i C Ei such that

zim()xil (E <i) + izim(-)xi Ki), i = 1,.. ,n, Since

the K i are disjoint, there are disjoint open sets

G i D K i. Urysohn's Lemma then guarantees the existence

of continuous functions gi with compact support wuch

that 1 < gi < 1 We have

n n n
Z zim(Ei)x i = ZiL1 (g)xxi + gi)(s)zim(ds)x i

i=l i=1 i=l 

n n
ZiL1(gi)xi + Z (1 -1K )(s)zim(ds)x

i=l i=l i i i

n n
< ziL1 (g i

)xi + i izlm(-)x i (Ei\ Ki)
i=l i=l 1

n
< Z IL1lgi + £ < IIILlll + C

Taking the supremum over ixil < 1 and 1li i I yields
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n
E Im(Ei) < I I IL1 1 + c, and the supremum over all

i=l

disjoint {E1,.,**En} yields ml (S) < I I IL1 I I + c.

Since E was arbitrary, ImI (S) < II TIH We also note

that if ImI (S) < +-o, then m E rcabv(, L (X,Z*))

by Theorem 3.1.

It remains to show how the maps L 3 E Co(S, X 80 Z)*

are related to L1, m, and L2. Suppose L 3( Co(S, X Z)*

is given. Define L1: Co (S) - L(X,Z*) by

<z,L l(g)x> = L 3(g(-)x 8 z), g EC o (S), x6X, zE Z. If

gl,..,gn E Co(S) have disjoint support with lgi _ 1,

and if Ixil < 1, IziI < 1 then z. lgi .)xi i zi <_ l
i=l

and so

n n
E ziL 1i(gi)xi = L 3 ( Z g ( ')x i zi) < 31

i=l i=l - i 3

n
Hence Z IJLgil < IL3 I and | |L 1 l < L 3 1. Conversely,let In

i=l -

correspond to L1; since Iml(S) = |I IL I < |L3< < +I

we know that m E rcabv( , L (X,Z*)) = rcabv( , (X 8I Z)*).

Let us define W = X 8 Z. By Theorem 3.2 there is an

isometric isomorphism between maps L 3 E Co (S,W)* =

L(C O(S,W),R) and measures m E rcabv( ,L (W,R)) =

rcabv(J3,W*) = rcabv( J, L(X,Z*)); under this correspondence
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L3u = f<u(s),m(ds)> and JL31 = Iml (s). Thus (3.13) holds
S

and the theorem is proved. tj

Thus, to summarize, we have shown that there is a

continuous canonical injection

C o ( S , X Z)* L(co(s,x),z*) + L(C o (s ), L(x,z*));

each of these spaces corresponds to operator-valued measures

m t C (., L(x,z*)) which have finite variation ImI (s),

finite semivariation m(s), and finite scalar semivariation

m(s), respectively. By posing the theory in terms of

measures with values in an L(x,Z*) space rather than an

L(X,Y) space, we have developed a natural and complete

representation of linear operators on C O (S,X) spaces.

Moreover in the case that Y is a dual space (without

necessarily being reflexive), it is possible to represent

all bounded linear operators L L(C (S,X),Y) by operator-

valued measures m e 4( s(, L(X,Y)) with values in L (X,Y)

rather than in L(x,Y**); this is important for the quantum

applications we have in mind, where we would like to

represent L( (s), L ( H)) operators by Ls (H)-valued

operator measures rather than Ls (H)**-valued measures.

We now give two examples to show how the usual representation

theorems follow as corollaries by considering Y as a

subspace of Y**.
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Corollary (Dunford-Schwartz [1967], III.19.5). Let S be a

locally compact Hausdorff space and X,Y Banach spaces. There

is an isometric isomorphism between bounded linear maps L:

CO (S,X) -+ Y and finitely additive maps m: X2 L (X,Y**)

with finite semivariation m(s) < +~ for which

1) y*m(') E rcabv(3,X*) for every y*E Y*

2) y* 1 y*m is continuous for the weak * topologies

on Y-*, rcabv(a,X*) - C o (S,X) *. This correspondence

L - m is given by Lf = fm(ds)f(s) for feC o (S,X),

and ILI = m(S).

Proof. Set Z = Y* and consider Y as a norm-closed

subspace of Z*. An element y** of Y** belongs to Y

iff the linear functional y* + y**(y*) is continuous for

the w* topology on Y*. Hence the maps L E L (c(S,) ,Y**)

which correspond to maps L i L(Co (S,X),Y) are precisely

the maps for which z v <z,Lf> are continuous in the

w*-topology on Z = Y* for every f C o(S,X), or

equivalently those maps L for which z F L*z is con-

tinuous for the w* topologies on Z = Y* and Co(S,X)*.

The results then follow directly from Theorem 3.3, where

we note that when L 4 m,

<f,L*z> = <z,Lf> = fzm(ds)f(s). z
S

Corollary (Dobrakov [1971], 2.2). A bounded linear map
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L: Co(S,X) + Y can be uniquely represented as

Lf = fm(ds)f(s) , f Co (S,X)
S

where m ¢fa( Z, L(X,Y)) has finite semivariation

i(s) < +~ and satisfies y*m(-)x E rcabv(2 ) for every

x EX, y*E Y, if and only if for every x EX the bounded

linear operator Lx: Co(S) + Y: g(*) i L(g( )x) is weakly

compact. In that case ILl = m(s) and L*y* is given

by (L*y*)f = fy*m(ds)f(s) where y*m Ercabv(#,X*) for
S

every y*E Y*.

Remark. Suppose Y = Z* is a dual space. Then by

Theorem 2 every L E L(CO (S,X),Y) has a representing

measure m E ( , L (X,Y)) . What this Corollary says is that

the representing measure m actually satisfies

y*m(-)xE rcabv(J)) for every y* Y* (and not just for

every y* belonging to the canonical image of Z in

Z** = Y*), if and only if Lx is weakly compact Co(S) + Y

for every x6 X; i.e. in this case we have (in our notation)

me lh(&,L (X,Y**)) cwhere Y is injected into its

bidual Y**.

Proof. Again, let Z = Y* and define J: Y + Y** to be

the canonical injection of Y into Y** = Z*. The bounded

linear operator Lx: Co(S) + Y is weakly compact iff
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** **
Lx : Co(S)** + Y** has image L Co(X)** which is a subset

of JY (Dunford-Schwartz [1966], VI.4.2). First, suppose Lx is weakly

compact, so that Lx*:C (S)**+ JY for every x. Now the map

A * A(E) is an element of C O(S)** (where we have

identified X E rcabv(~) - Co(S)*) for E O, and

Lx (X X (E) <z,m (E) <z,(E)x>)t Y**

where mt l( a, L(X,Z*)) is the representing measure

of JL: C (S,X) + Y** Since L x is weakly compact,

X * <zn,m(E)x> must actually belong to JYCY**, that is

z 1 <z,m(E)x> is w* continuous and m(E)x e JY. Hence m

has values in L (X,JY) rather than just L(X,Y**).

Conversely if m E ( B, L(X,JY)) represents an

operator L 6 (CO(S,X),Y) by

JLf = fm(ds)f(s),

then the map Lx: * + Co(S)* L rcabv( ): z - <z,m(-)x>

is continuous for the weak topology on Z = Y* and the

weak * topology on Co (S)* 'rcabv( ) since m(E)x f JY

for every E E D, x -X. Hence by (Dunford-Schwartz [1966],

VI.4.7), Lx is weakly compact. O
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4. Integration of real-valued functions with respect to

operator-valued measures

In quantum mechanical measurement theory, it is nearly

always the case that physical quantities have values in a

locally compact Hausdorff space S, e.g. a subset of Rn.

The integration theory may be extended to more general

measurable spaces; but since for duality purposes we wish

to interpret operator-valued measures on S as continuous

linear maps, we shall always assiume that the parameter

space S is a locally compact space with the induced a-algebra

of Borel sets, and that the operator-valued measure is

regular. In particular, if S is second countable then

S is countable at infinity (the one-point compactification

S UAf} has a countable neighborhood basis at c) and every

complex Borel measure on S is regular; also S is a

complete separable metric space, so that the Baire sets

and Borel sets coincide.

Let H be a complex Hilbert space. A (self-adjoint)

operator-valued: regular Borel measure on S is a map

m: 2 + cs(H) such that <m(-)4hp> is a regular Borel

measure on S for every ,~ H. In particular, since

for a vector-valued measure countable additivity is

equivalent to weak countable additivity [DS, IV.10.1],
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m(.)o is a (norms) c.ountably additive H-valued measure

for every % e H; hence whenever {En } is a countable

collection of disjoint subsets in i} then

co co

m( UE n ) = Z m(En),
n=l n=l

where the sum is convergent in the strong operator topology.

We denote by 7( 8, t5 (H)) the real linear space of all

operator-valued regular Borel measures on S. We define

scalar semivariation of me N(o,s (H)) to be the norm

r(S) = sup J<m(.)OJ4>J(s) (4.1)

where j<m(.)J >j1 denotes the total variation measure

of the real-valued Borel measure E ' <m(E)%fJ>. The

scalar semivariation is always finite, as proved in

Theorem 3.2 by the uniform boundedness theorem

(see previous sections for alternative definitions of

m(s); note that when m(') is self-adjoint valued the

identity m(s) sup sup I<m('-)jI>I (s) reduces to (4.1)).

A positive operator-valued regular Borel measure is a

measure m e ?(&, Cs(H)) which satisfies

m(E) > O E e ,
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where by m(E) > 0 we mean m(E) belongs to the positive

cone Is (H) of all nonnegative-definite operators. A
probability rt. . ..ur

probability operator: easure (POM) is a positive

operator-valued measure m e t (oS s(H)) which satisfies

m (S) = I.

If m is a POM then every <m(-:)4f> is a probability

measure on S and m(S) = 1, In particular, a-'resolution

of the identity is an m e ?(o, . (H)) which satisfies

m(S) = I and m(E)m(F) = 0 whenever EnF = 0; it is

then true that m(-) is projection-valued and satisfies

m (E CF) = m(E)m(F), EF 

We now consider integration of real-valued functions

with respect to operator-valued measures. Basically, we

identify the regular Borel operator-valued measures

Proof. First, m(-) is projection valued since by finite

additivity

m(E) = m(E)m(S) = m(E)[m(E)+m(S\E)] = m(E) +m(E)m(S\E),

and the last term is 0 since E (S\E) = 0. Moreover we

have by finite additivity

m(E)m(F) = [m(EnF)+m(E\F)] [[m(EnF)+m(F\E)]

2
= m(EmnF) +m(EnF)m(F\E)+m(E\F)m(ErF)+m(E\F)m(F\E),

where the last three terms are 0 since they have pairwise

disjoint sets.
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~m e( ', Rs(H)) with the bounded linear operators

L: CO (S) + s (H), using the integration theory of

Section 3 to get a generalization of the Riesz

Representation Theorem.

Theorem 4.1. Let S be a locally compact Hausdorff space

with Borel sets ~ . Let H be a Hilbert space. There

is an isometric isomorphism m* L between the operator-

valued regular Borel measures mE, E (, .t s(H)) and the

bounded linear maps LE L (c (S ) , (H)). The correspondnece

m *-L is given by

L(g) = fg(s)m(ds), g E Co(S) (4.2)

where the integral is well-defined for g() E M(S) (bounded

and totally measurable maps g: S + R) and is convergent

for the supremum norm on M(S). If m*-mL, then mi(S) = JLJ

and <L(g)4fi> = fg(s)<m(.-)4l>(ds) for every E, (H.
S

Moreover L is positive (maps C (S)+ into 'S (H)+) iff

m is a positive measure; L is positive and L(1) = I iff

m is a POM; and L is an algebra homomorphism with L(1) = I

iff m is a resolution of the identity, in which case L

is actually an isometric algebra homomorphism of Co(S) onto

a norm-closed subalgebra of s (H).
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Proof. The correspondence L -wm is immediate from

Theorem 3.2. If m is a positive measure, then

<m(E)|l0 > 0 for every E Eo and 1 O H, so

<L(g)OO> = fg(s)<m(,)4J!>(ds) > 0 whenever g > 0, 46 H
S

and L is positive. Conversely, if L is positive then

<m(-)O! > is a positive real-valued measure for every

0 (H, so m(-) is positive. Similarly, L is positive

and L(l) = I iff m is a POM. It only remains to

verify the final statement of the theorem.

Suppose m(.) is a resolution of the identity. If

n m

91(s) = ajiE (s) and g2 (s) = _ bjlF (s) are simple
j=l j= 

functions, where {E1,...,E n} and {F1,...,Fn} are each
n n

finite disjoint subcollections of L , then

n m

fgl(s)m(ds)'fg2(s)m(ds) = Z a.bkm(Ej)m(Fk)
j=l k=l3

n m
= E ajbkm(ElN Fk )

j=l k=lJk 1

= fgl(s)g2(s)m(ds).

Hence g e fg(s)m(ds) is an algebra homomorphism from

the algebra of simple functions on S into s(H).

Moreover we show that the homomorphism is isometric on

simple functions. Clearly
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)Jg(s)m(ds) < _(s)}g], = I glC.

n
Conversely, for g = Z a jl E we may choose +j to be

j= j

in the range of the projection m(Ej), with 'j| = 1,

to get

[fg(s)m(ds)f > max <fg(s)m(ds) - j .j>

=max lajl<m(Ei) j j>j=l, .... n J 3

max faj] = IgI .
j=l,... ,n

Thus g f g(s)m(ds) is isometric on simple functions.

Since simple functions are uniformly dense in M(S), it

follows by taking limits of simple functions that

fgl(s)m(ds)sfg2(s)m(ds) = fgl(s)g2(s)m(ds) and

lfg l(s)m(ds)l = Igl[f for every gl,g2t M(S). Of course,

the same is then true for glg 2 6 Co(S)C M(S). Since

C0 (S) is complete, it follows that L is an isometric

isomorphism of C o(S) onto a closed subalgebra of ~s(H).

Now assume that L is an algebra homomorphism and

L(1) = I. Clearly m(S) = L(1) = I. Since

L(g2) = L(g)2 > 0 for every g EC (S), L and hence m

are positive. Let
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M1 = {gE M(S): fg(s)m(ds) fh(s)m(ds) = fg(s)h(s)m(ds)

for every h EC o(S)}.

Then M 1 contains Co (S). Now if gn M(S) is a uni-

formly bounded sequence which converges pointwise to go

then fgn(s)m(ds) converges in the weak operator

topology to fgo(s)m(ds) by the dominated convergence

theorem applied to each of the regular Borel measures

<m(. )cfj>, 4,pE H (the integrals actually converge for

the norm topology on 4s(H) whenever Ign-g9ol 0).

Hence M1 is closed under pointwise convergence of

uniformly bounded sequences, and so equals all of M(S)

by regularity. Similarly, let

M2 = {h M(S): fg(s)m(ds)-fh(s)m(ds) = fg(s)h(s)m(ds)

for every gE M(S)}.

Then M 2 contains Co(S) and must therefore equal all of M(S).

It is now immediate that whenever E,F are disjoint sets

in d then

m(E)m(F) = f 1Edm lFdm = flEnF(s)m(ds) = 0.

Thus m is a resolution of the identity. ,1

Remark. Since every real-linear map from a real-linear

subspace of a complex space into another real-linear
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subspace of a complex space corresponds to a unique

"Hermitian" complex-linear map on the complex linear

spaces, we could just as easily identify the (self-adjoint)

operator-valued regular measures (J3, ' s(H)) with

the complex-linear maps L: Co(S,C) -+ (H) which

satisfy

L(g) = L(g)*, g EC o(S,C).

I'~~~~~~~~~~~~
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5. Integration of Ts (H)-valued functions

We now consider /(H) as a subspace of the "operations"

e( T(H), Z(H)), that is, bounded linear maps from T(H)

into ?'(H). This is possible because if A 6 (H) and

B E t(H) then AB and BA belong to T(H) and

IABItr < IAItr BI

IBAItr < JAltrIBI (5.1)

tr(AB) = tr(BA).

Then every B d (H) defines a bounded linear function

LB: L(H) + A(H) by

LB (A) = AB, At ?(H)

with jBI = ILBI. In particular, A v trAB defines a

continuous (complex--) linear functional on A E t(H), and

in fact every linear functional in Zr(H)* is of this

form for some B 6 f (H). We note that

if A and B are selfadjoint then trAB is real
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(although it is not necessarily true that .AB is self-.

adjoint unless AB = BA). Thus, it is possible to identify

the space ZS(H)* of real-linear continuous functionals

on 7s(H) with i s(H), again under the pairing

<A,B> = trAB, A e t (H), B e &s(H). For our purposes we
s S

shall be especially interested in this latter duality be-

tween the spaces ts (H) and os(H), which we shall use later

to formulate a dual problem for the quantum estimation

situation. However, we will also need to consider s (H)

as a subspace of ;( Z(H), t(H)) so that we may integrate

Ts(H)-valued functions on S with respect to s(H)-valued

operator measures to get an element of t(H).

Suppose m e ( &, ts(H)) is an operator-valued

regular Borel measure, and f: S + Ts(H) is a simple

function with finite range of the form

n
f(s) = z 1E (s)pj

j=-l j 3

where pj 6 7s(H) and Ej are disjoint sets in , that

is f E 0 Z- T(H). Then we may unambiguously (by finite

additivity of m) define the integral

n
ff(s)m(ds) = E m(E )pj.
S j=l 1
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The question, of course, is to what class of functions

can we properly extend the definition of the integral?

Now if m has finite total variation Im[ (s), then the

map f ~ ff(s)m(ds) is continuous for the supremum norm
S

Iflf = supff(s) Itz on 8 0 s5(H), so that by continuity
s

the integral map extends to a continuous linear map from

the closure M(S, T'(H)) of 2@ t s(H) with the

1. I norm into ?-(H). In particular, the integral

ff(s)m(ds) is well-defined (as the limit of the integrals
S

of uniformly convergent simple functions) for every bounded

and continuous function f: S + 's(H). Unfortunately,

it is not the case that an arbitrary POM m has finite

total variation. Since we wish to consider general quantum

measurement processes as represented by POM's m (in parti-

cular, resolutions of the identity), we can only assume

that m has finite scalar semivariation m(S) < +X.

Hence we must put stronger restrictions on the class of

functions which we integrate.

We may consider every m 6 t (, ts(H)) as an element

of , (~, (T(H), t(H)) in the obvious way: for

E e &, p E T(H) we put

m(E)(p) = pm(E).

Moreover, the scalar semivariation of m as an element



45

of ;C( s , E s (H)) is the same as the scalar semivariation

of m as an element of ? (H,i (' ( H),)), since

the norm of B Zs (H) is the same as the norm of B as

the map p H pB in ' ( T(H), t(H)). By the representation

Theorem 3.2 we may uniquely identify

m E (8, es(H))C )( ,f ( T(H), ?(H))) with a linear

operator L (e ( (S), es(H))C e(C o (S), ( t(H), ?(H))).

Now it is well-known that for Banach spaces X,Y,Z we

may identify (Treves [1967], III.43.12)

(X Y (XY-,Z) = (X,Y ,Z)

where X 8 Y denotes the completion of the tensor product

space X 0 Y for the projective tensor product norm

n n

Ifl = inf{ Z Ix.j.J Yj : f= x.Oj y.}, f6X Y;
j=l = j=l f 3

p (X,Y:Z) denotes the space of continuous bilinear forms

B: X x Y + Z with norm

B z = sup sup IB(x,y)!;I(XY;Z) |XI<1 lyi <1

and : (X, X(Y,Z)) of course denotes the space of continuous

linear maps L 2: X + $ (X,Z) with norm

I1 (X,(Y, sup) sup 2xl2(y, Z).L2 j (x,(Yz) ixI<l
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The identification L1 + B -*L2 is given by

Ll(x Oy) = B(x,y) = L2(x)y.

In our case we take X = M(S), Y = Z = 7(H) to identify

f(M(S) ® T(H), T(H)) = R(M(S), R( t(H), ?(H))). (5.2)

Since the map g * fg(s)m(ds) is continuous from M(S)

into s(.H) C (Z (H), T(H)) for every m t (9, fs(H)),

we see that we may identify m with a continuous linear

map f -- ffdm for f M(S) As t(H). Clearly if

f EM(S) 0 T (H), that is if

n
f(s) = £ gj(s)pj

j=l

for gj EM(S) and pj e t(H), then

n
ff(s)m(ds) = Z p.fg.(s)m(ds).
S j=l 3

Moreover the map f -+ ff(s)m(ds) is continuous and linear
S

for the tl1 -norm on M(S) 0 T(H), so we may extend the

definition of the integral to elements of the completion

M(S) As Z(H) by setting

ffm(ds) = lim ffn(s)m(ds)
n+oo
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where fn EM(S) 08 (H) and fn + f in the :tI -norm.

In the section which follows we prove that the completions

M(S) 0 T (H) and Co (S) eT '(H) may be identified with

subspaces of M(S, t(H)) and C o (S , t(H)) respectively,

i.e. we can treat elements f of M(S) t rT(H) as totally

measurable functions f: S + T (H). We shall show that

under suitable conditions the maps f: S -+ T(H) we are

interested in for quantum estimation problems do belong

to C0 (S) 07 Ts(H), and hence are integrable against

arbitrary operator-valued measures me m ( C, s (H)).

Theorem 5.1. Let S be a locally compact Hausdorff

space with Borel sets o . Let H be a Hilbert space.

There is an isometric isomorphism L 1i~ m "*L2 between

the bounded linear maps L1: Co(S) 07 '(H) + T(H), the

operator-valued regular Borel measures m ?(P&, t (t(H) ,Z(H))),

and the bounded linear maps L 2: C O(S ) + (ZT(H), TH(H)).

The correspondence Las m- eL 2 is given by the relations

A
Ll(f) = ff(s)m(ds), f 0Co( S) en T (H)

S

L 2(g)p = L1 (g(.)p) = pfg(s)m(ds), gE C (S), p T(H)

and under this correspondence IL1J = m(s) = IL2 1. More-

over the integral ff(s)m(ds) is well-defined for every
S

f e M(S) A (H) and the map f ~ ff(s)m(ds) is bounded
S
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and linear from M(S) e T(H) into (H),

Proof. From Theorem 6.1 of section 6 (see next section), we

may identify M(S) oI t(H), and hence CO( S) n T (H),

as a subspace of the totally measurable (that is, uniform

limits of simple functions) functions f: S + Z(H). The

results then follow from Theorem 3.2 and the isometric

isomorphism

d(C o(S) ,0 (H) (H), H)) (C(S), ( 'T(H),' (H)))

as in (5.2). We note that by a ((H) , (H))-valued

regular Borel measure we mean a map m: o + S (T(H), (H))

for which trCm(.)p is a complex regular Borel measure

for every p e T(H), C E <(H), where in the application

of Theorem 3.2 we have taken X = T(H), Z = 24(H),

Z* '= (H). In particular this is satisfied for every

me (~, ~s(H)) ]

Corollary 5.1. If m e E( , s (H)) then the integral

ff(s)m(ds) is well-defined for every f M(S) 0 't(H).

Remark. It should be emphasized that the I' I norm is

strictly stronger than the supremum norm

If = suplf(s) Itr. Hence, if fn' f eM(S) d0 r(H)

satisfy fn(s) + f(s) uniformly, it is not necessarily true

that fn-f Ia 0 or that ffn (s)m(ds) -+ ff(s)m(ds).
n S S
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5.2. M(S) 4i T(H) is a subspace of M(S, Z (H))

6. A Result in Tensor Product Spaces.

The purpose of this section is to show that we may

identify the tensor product space M(S) i Ts(H) with

a subspace of the totally measurable functions

f: S + Ts(H) in a well-defined way. The reason why

A
this is important is that the functions f (M(S) y T5s(H)

are those for which we may legitimately define an integral

ff(s)m(ds) for arbitrary operator-valued measures
S

m 0 1(, is(H)), since f w ff(s)m(ds) is a continuous
S

linear map from M(S) do t(H) into t(H). In particular,

it is obvious that Co (S) 08 T(H) may be identified with

a subspace of continuous functions f: S + t (H) in a

well-defined way, just as it is obvious how to define the

integral ff(s)m(ds) for finite linear combinations
S

n
f(s) = E gj (s)pj Co (S ) e Ts(H). What is not

j=l

obvious is that the completion of C (S) 0 s (H) in
0 s

the tensor product norm 7 may be identified with a

subspace of continuous functions f: S -+ Ts(H).

Before proceeding, we review some basic facts about

tensor product spaces. Let X,Z be normed spaces. By

X 0 Z we denote a tensor product space of X and Z,

which is the vector space of all linear finite combinations



50

n
Z a.jx. z. where aj ER, xj % X, z.i Z (of course,

j=l J J D

aj,xj,zj are not uniquely determined). There is a natural

duality between X 0 Z and ; (X,Z*) given by

n n
< Z a.jxj zj, L> = Z a.<zj,Lxj>.
j=l ] 3 j=1 3

Moreover the norm of L E 4(X,Z*) as a linear functional

on X 0 Z is precisely its usual operator norm

ILI = sup sup <z,Lx> when X 0 Z is made into a
lzl<_l jx<l

normed space X 08 Z under the tensor product norm I' T

defined by

n n
If l = inf{ Z Ixj .fzj|: f = x j 8 z }, f X 0 Z.

j=l j=1 

It is easy to see that Ix 0 zJI = Ixl-IzI for

x C X, z6 Z (the canonical injection X x Z - X 0 Z is

continuous with norm 1) and in fact I'J is the strongest

norm on X 0 Z with this property. By X d0 Z we denote

the completion of X d0 Z for the |f norm. Every

L E ;(X,Z*) extends to a unique bounded linear functional

on X is Z with the same norm as its operator norm, so
Z)*=(, Z*) The space

that we identify (X d0 Z)* ( The space X Z

may be identified more concretely as all infinite sums
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E a.x. 0 z. where x. + 0 in X, z. - 0 in Z, and
j=l J J J

Iaja I < + (Schaeffer [1971], III.6.4), and the pairing between
j=l

X 0 Z and ' (X,Z*) by

co co
< Z a.x. 0 zj,L> = a <ziLxi>.
j=l 3 J i=l j i 'r

A second important topology on X 0 Z is the c-topology,

with norm

n n
Z a.xif zil = max max I Z ai<xi,x*><ziz*>

i= 1-£ x*|<1 |z| <I i=l 1 1

It is easy to see that |e' is a cross-norm, i.e.

Jx 0 zjl = Jx ljzI, and that |I _< |'| , i.e. the ¶-topology

is finer than the s-topology. We denote by X O® Z the

tensor product space X 0 Z with the s-norm, and by X 0e Z

the completion of X 0 Z in the c-norm. Now the canonical

injection of X 0T Z into X 8E Z is continuous (with

norm 1 and dense image); this induces a canonical continuous
A

map X OF Z + X s Z. It is not known, in general, whether

this map is one-to-one. In the case that X,Z are Hilbert

spaces we may identify X 8T Z with the nuclear or trace-
A

class maps T(X*,Z) and X 0E Z with the compact operators

K(X*,Z), and it is well known that the canonical map
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X Z -+ X ~ Z is one-to-one (cf Treves [1967], III.38.4). We are
T £

interested in the case that X = C o(S) and Z = s (H);

we may then identify C Co (S) TS (H) with C o ( , ' s(H))

(since the |[.[ is precisely the I' I norm when

C (S ) 0 Ts(H) is identified with a subspace of

C o( S, T s (H)), and CO (S) 8 Ts(H) is dense in

C o(S, Ts (H))) and we would like to be able to consider

Co (S ) d, Trs(H) as a subspace of Co (S , Ts(H)). Similarly

we want to consider M(S) 0 rT (H) as a subspace of

M(S, T(H)).

Theorem 6.1. Let X be a Banach space and H a Hilbert

space. Then the canonical mapping of X d0 1T(H) into

X 0e t(H) is one-to-one.

Proof. It suffices to show that the adjoint of the mapping

in question has weak * dense image in

(X 8 T(H))* /(X, (H)), where we have identified

T(H)* with 2(H). Note that the adjoint is one-to-one,

since the image of the canonical mapping is clearly dense.

What we must show is that the imbedding of (X 8 r(H))*t

the so-called integral mappings X + C(H) - T(H)*, into

i (X, /(H)) has weak * dense image. Of course, the set

of linear continuous maps Lo: X + c (H) with finite

dimensional image belongs to the integral mappings
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(X ®E T(H))*; we shall actually show that these finite-rank

operators are weak* dense in 9 (X, t(H)). We therefore

need to prove that for every f 6 (X do T(H)), L e , (X,4 (H)),

£ > 0 there is an Lo in 4(X, <(H)) with finite rank

such that f<fLL"0Lo0>1< s. Now f has the representation

f= E a.x. x z. (6.1)
j=l 

with Z Iajl < +o, x. O in X, and zj + 0 in T(H)
j=l 

(Schaeffer [1971], III.6.4), and

<f,L-L > Z a.j<Z,(L-L o)x > (6.2)
j=l ' 06J

The lemma which follows proves the following fact: to every

compact subset K of X and every O-neighborhood V of Z(H),

there is a continuous linear map Lo: X + 2 (H) with

finite rank such that (L-Lo) (K) C V. Using the representa-

tion (6.1), we take K = {xj {0} and

V = {yly 2,..}.O'/ Z lajl. We then have J<f,L-L >1 < C
j=l

as desired. t

The lemma required for the above proof, which we give

below, basically amounts to showing that Z* = 4(H)

satisfies the-approximation property, that is for every
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Banach space X the finite rank operators are dense in

~(X,Z*) for the topology of uniform convergence on

compact subsets of X. It is not known whether every

locally convex space satisfies the approximation property;

this question (as in the present situation) is closely

related to when the canonical mapping X i Z + X ~c Z

is one-to-one.

Lemma 6.1. Let X be a Banach space, H a Hilbert space.

For every L E 4(X, 2(H)), every compact subset K of X,

and every O-neighborhood V in - (H) there is a continuous

linear map Lo: X -+ (H) with finite rank such that

(L-Lo) (K) C V.

Proof. Let Pn be projections in H with Pn + I, where

I is the identity operator on H (e.g. take any complete

orthonormal basis {Oj,j( J} for H; let N be the

family of all finite subsets of J, directed by set inclusion;

and for n EN define Pn to be the projection operator

Pn(O) = z <lj>%j for 4 e H). Suppose L e 4 (X, 4(H)).

Then PnL E X (X, / (H)) has finite rank and converges

pointwise to L, since (PnL) (x) = Pn(Lx) -* Lx. Moreover

{PnL} is uniformly bounded, since IPnLI < IPnI' ILI = ILI.

Thus, by the Banach-Steinhaus Theorem or by the
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Arzela-Ascoli Theorem the convergence PnL - L is uniform

on compact sets. This means that for every O-neighborhood V

in ; (H) and every compact subset K of X, it is true

that for n sufficiently large

(L-PnL) (K) C V. DJ

Corollary 6.2. Let S be a locally compact Hausdorff

space, H a Hilbert space. The canonical mapping

C (S) I 'r(H) + C (S, T(H)) is one-to-one, and the

canonical mapping M(S) d t(H) -+ M(S, T(H)) is one-to-one.

Proof. This follows from the previous theorem and the fact

that Co (s ) $s Z may be identified with C o (S,Z) with the

supremum norm, for Z a Banach space. Similarly

M(S) e0 Z = M(S,Z) with the supremum norm. t

Remark. In Theorem 3.4, we explicitly identified

,(S) (H)
(Co (S) (H))* = (C o (S), (H)) and (CO (S) 0 t(H) =

CO (S, T(H))* with the measures m e 1(&, i ( H)) having

finite semivariation and finite total variation, respectively.
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7. Quantum Estimation Theory

7.1 Introduction

The integration theory developed in the previous sections

is needed in studying the problem of Quantum Estimation Theory.

We now develop estimation theory for quantum systems.

In the classical formulation of Bayesian estimation

theory it is desired to estimate the unknown value of a

random parameter sE S based on observation of a random

variable whose probability distribution depends on the

value s. The procedure for determining an estimated

parameter value s, as a function of the experimental

observation, represents a decision strategy; the problem

is to find the optimal decision strategy.

In the quantum formulation of the estimation problem,

each parameter s S corresponds to a state p(s) of the

quantum system. The aim is to estimate the value of s by

performing a measurement on the quantum system. However,

the quantum situation precludes exhaustive measurements

of the system. This contrasts with the classical situation,

where it is possible in principle to measure all relevant

variables determining the state of the system and to specify

meaningful probability density functions for the resulting

values. For the quantum estimation problem it is necessary
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to specify not only the best procedure for processing

experimental data, but also what to measure in the first

place. Hence the quantum decision problem is to determine

an optimal measurement procedure, or, in mathematical terms,

to determine the optimal probability operator measure

corresponding to a measurement procedure.

We now formulate the quantum estimation problem.

Let H be a separable complex Hilbert space corresponding

to the physical variables of the system under consideration.

Let S be a parameter space, 4ith measurable sets 3.

Each se S specifies a state p(s) of the quantum system,

i.e. every p(s) is a nonnegative-definite selfadjoint

trace-class operator on H with trace 1, A general

decision strategy is determined by a measurement process

m('), where m: -+ s (H) is a positive operator-valued

measure (POM) on the measurable space (S,3) --

m(E) E s,(H)+ is a positive selfadjoint bounded linear

operator on H for every E 6 &, m(S) = I, and m(-) is

countably additive for the weak operator topology on ts (H).

The measurement process yields an estimate of the unknown

parameter; for a given value s of the parameter and a

given measurable set E e . , the probability that the

estimated value s lies in E is given by

Pr{s 6 Els} = tr[p(s)m(E) . (7.1)
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Finally, we assume that there is a cost function c(s,s)

A
which specifies the relative cost of an estimate s when

the true value of the parameter is s.

For a specified decision procedure corresponding to

the POM m(-), the risk function is the conditional expected

cost given the parameter value s, i.e.

R (s) = tr[p(s)fc(s,t)m(dt)i. (7.2)
m

If now p is a probability measure on (S,O) which

specifies a prior distribution for the parameter value s,

the Bayes cost is the posterior expected cost

Rm = fR (s)p(ds). (7.3)(7.3)

The quantum estimation problem is to find a POM m(-) for

which the Bayes expected cost R m is minimum.

A formal interchange of the order of integration yields

Rm = trff(s)m(ds) (7.4)
S

where f(s) = fc(t,s)p(t)p(dt). Thus, formally at least,
S

the problem is to minimize the linear functional (7.4)

over all POM's m(.) on (S,~). We shall apply duality

theory for optimization problems to prove existence of a

solution and to determine necessary and sufficient conditions
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for a decision strategy to be optimal, much as in the

detection problem with a finite number of hypotheses (a

special case of the estimation problem where S is a

finite set). Of course we must first rigorously define

what is meant by an integral of the form (7.4); note that

both the integrand and the measure are operator.-valued.

We must then show the equivalence of (7.3) and (7.4); this

entails proving a Fubini-type theorem for operator-valued

measures. Finally, we must identify an appropriate dual

space for POM's consistent with the linear functional (7.4)

so that a dual problem can be formulated.

Before proceeding, we summarize the results in an

informal way to be made precise later. Essentially, we

shall see that there is always an optimal solution,_.and

that necessary and sufficient conditions for a POM m to

be optimal are

ff(s)m(ds) < f(t) for every te S.
S

It then turns out that ff(s)m(ds) belongs to Ts(H)
S 5

(that is, selfadjoint) and the minimum Bayes posterior

expected cost is

Rm = trff(s)m(ds).
S



60

7.2 A Fubini theorem for the Bayes posterior expected cost

In the quantum estimation problem, a decision strategy

corresponds to a probability operator measure m E ? (8 ,s (H))

with posterior expected cost

R m = ftr[p.(s)fC(t,s)m(dt)]y(dt)
S S

where for each s, p(s) specifies a state of the quantum

system, C(t,s) is a cost function, and v is a prior

probability measure on S. We would like to show that the

order of integration can be interchanged to yield

R = trff(s)m(ds)
m

where

f(s) = fC(t,s)p(t)P b)
S

is a map f: S + Zs(H) that belongs to the space

M(S) do t(H) of functions integrable against operator-

valued measures.

Let (S,a ,) be a finite nonnegative measure space,

X a Banach space. A function f: S + X is measurable iff

there is a sequence {fn } of simple measurable functions

converging pointwise to f, i.e. fn(s) - f(s) for every

s ES. A useful criterion for measurability is the
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following [Dunford-Schwartz (1966), III 6.9]: f is measurable

if it is separably-valued *and for every open subset V of X,

f l(V)c . In particular, every fE Co(Sx) is

measurable, when S is a locally compact Hausdorff space

with Borel sets . A function f: S - X is integrable

iff it is measurable and flf(s)j'V(ds) < +, in which case
S

the integral ff(s)p(ds) is well-defined as Bochner's
S

integral; we denote by L1(S,4,P;x) the space of all

integrable functions f: S - X, a normed space under the

L 1 norm Ifil = f(s)Iip(ds). The uniform norm I|*| on

f8nctions f: S + X is defined by Iflf = supIf(s) ; M(S,X)
stCS

denotes the Banach space of all uniform limits of simple

X-valued functions, with norm |I'|, i.e. M(S,X) is the

closure of the simple X-valued functions with the uniform

norm. We abbreviate M(S,R) to M(S).

Proposition 7.1. Let S be a locally compact Hausdorff

space with Borel sets J3 , P a probability measure on S,

and H a Hilbert space. Suppose p: S + ts(H) belongs

to M(S, Ts(H)), and C: S x S - R is a real-valued map

satisfying

t* C(t,.) e L1(S, ,;~M(S)),

Then for every s ES, f(s) is well-defined as an element

of Ts(H) by the Bochner integral
5
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f(s) = fC(t,s)p(t)v(dt); (7.5)
S

moreover f fM(S) ' ts(H) and for every operator-valued

measure m e (#, ds(H)), we have

ff(s)m(ds) = fp(t) [ C(t,s)m(ds)]p(dt) (7.6)
S S' S

Moreover if t - C(t,.) in fact belongs to L1 (S, , ; C o (S) ))

then f (C o (S) t s(H).

Proof. Since t '+ C(t,-) i L 1 (S, ,pi;M(S)), for each n

there is a simple function Cn L 1 (S,oO,P;M(S)) such that

fIlC(t,.)-C n ( t ,)l (dt) < (7.7)
S n

Each simple function Cn is of the form

k
n

Cn(t,s) = Z q (S)lE nk(t)
k=l nk

where En,1... ,Enk are disjoint subsets of O and
n

gnl'',gnk belong to M(S) (in the case that
n

t + C(t,') L 1 (S,"D, ;C o ( S ) ) we take gnl...gnk in
n

Co (S )). Since pE M(S, t (H)), for each n there is a

simple -measurable function Pn: S + Ts(H) such that

sup I (t)-P (t) < I-.i (7. 8s)
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We may assume, by replacing each set Enk with a disjoint

subpartition corresponding to the finite number of values

taken on by pn' that each pn is in fact of the form

kn

Pn(t)= E PnklE k(t).
k=l nk

Define fn: S + s(H) by

fn(s) = Cn(t,s)pn (t)p(dt)

kn

k-lgnk(S)P nk (Enk) .k=l

Of course, each fn belongs to M(S) 08 -s(H). We shall

show that fIn} is a Cauchy sequence for the 1'- norm on

M(S) @ T s (H), and that fn(s) - f(s) for every sE S;

since the | . -limit of the sequence fn is a unique

function by Theorem 6.1, we see that f is the ' In-limit

of {fn} and hence f belongs to the completion

M(S) 0o T (H).

We calculate an upper bound for Ifn+l n|f Nown+l n N

fn+l(s)-fn (s) 

kn+1 kn

- k,{g n +lj(S) [Pkn+l,j Pnk n,k]+[gn+lj(s)-gn k(s)]Pn ,k}
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and hence

Ifnl'fn I < (7.9)

k kn+l n

jZ k {Ig n+l,jlI IPn+l,j-Pn,kltr+Ign+l, j'gn k I'oPnkltr}W(En+l jAEnk )
j=l k=l ' '

Suppose En+l jrEn,k $ 0, i.e. there exists a tog En+l,jO En, k

Then from (7.8) we have

'Pn+l,j-Pn,kltr < !Pn+l,j-p(to)Itr + IPn,k-P(to)Itr

1 1 1< + < n
(n+1)2 n n2n+l

Thus, the first half of the summation in (7.6) is bounded

above by

kn+l kn
7. i Z Z Inlj Et 1 dn2 -l j=l k=l nk1 Sfn+lj nk) n2 St)

n- 111 ICn+11 11
n2

< - n-ll IC+ Il )
n2

where by I ICI 1 we mean the norm of t # C(t,-) as a

element of L 1(S,a ,4;M(S)), and the last inequality follows

from (7.7). Similarly the second half of the summation is

bounded above by
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kn+1 k n
( I P +1) Z Z gnl,,j -g, k ~--~(En+- j E )

j=1 k=l n+l,j

n2

where again the last inequality follows since

I Cn-CI I < - n by (7.7). Let a be a constant larger
n2

than 1 + ItChl1 and 1 + IP!K; adding the last two

inequalities from (7.9) we have

Ifn+l-fn l < n-2 

Hence for every m > n > 1 it follows that

m-1 x no
I'fI< EI fl < z a < a- 3a

Ifm-fn!_ I _ JnIfj+l-fj jI n-2 n 2a_ n
j=n J n j=l 2

Thus {fn } is a Cauchy sequence for the | | norm on

M(S) 0 T (H), and hence has a limit fo M(S) TT s(H).

Since it certainly follows that fn - fo pointwise (in

fact in the uniform norm since I- < | 17), and since

it is straightforward to show that fn(s) + f(s) for

every s ES, fo = f. Moreover in the case that

t + C(t, ) e L 1(S, ,v;C (S)), we have fn E C (S) 0 ts(H)
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and hence f = I'll-lim fn belongs to Co(S) Ts(H).

It only remains to show that (7.6) holds. Essentially

this follows from the approximations we have already made

with simple functions. Now clearly

kn

fn (s)m(ds) = Z Pfnk (Enk )fg nk (s)m(ds)
k=l S

fPn(t) [Cn (t,s)m(ds) ] p (dt), (7.10)
S

so that (7.6) is satisfied for the simple approximations.

We have already shown that fn - f in M(S) T s (H),

so that ]ffn(m)m(ds) - ff(s)m(ds) tr < Ifn-f lm (S) * 0

and the LHS of (7.10) converges to ff(s)m(ds). We need only

show that the RHS of (7.10) converges to the RIS of (7.6)

But applying the triangle inequality to (7.10) yields

IfPn(t) [fC n (t ,s)m (d s)] p(d t)- f p(t)[fC(t,s)m(ds)]P(dt) tr

< I P (t) f [C (t,s)-C(t,s)n (ds)j t ri(dt)

+ fI (Pn(t) t (t)) fC(t,s)m(ds) Itr (dt)

< IPn IOOf Cn (t,-)-c(t, ) I-,i(s)u(dt)

+ IPn-P f C (t,) Im(S) (dt)

< (IPI.+l)-m(S)- ICm-CI 11 + p-PI M (S I ICI Il

< 1 + m(s * 0(I I 1."+ lln= (S) n2l n (S)CII1 
n2n n2n '
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where the last inequality follows from (7.7) and (7.8) and

again Ic l = fIC(t,.) jI(dt) denotes the norm of C
S o

as an element of LI(S,I, I;M(S)).
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7.3 The quantum estimation problem and its dual

We are now prepared to Precisely formulate the

quantum estimation problem in the framework of duality

theory of optimization and calculate the associated

dual problem. Let S be a locally compact Hausdorff space

with Borel sets i . Let H be a Hilbert space associated

with the physical variables of the system under consideration.

For each parameter value s d S let p(s) be a state or

density operator for the quantum system, i.e. every p(s)

is a nonnegative-definite selfadjoint trace-class operator

on H with trace 1; we assume p M(S, T (H)). We assume

that there is a cost function C: S x S - R. where C(s,t)

specifies the relative cost of an estimate t when the true

parameter value is s. If the operator-valued measure

m m (a , s (H)) corresponds to a given measurement and

decision strategy, then the posterior expected cost is

Rm = trfp(t) [fC(t,s)m(ds)]p(dt),
S S

where p is a prior probability measure on (S, ). By

Proposition 7 this is well-defined whenever the map

t ' C(t,) belongs to L 1 (S,2 ,p;M(S)), in which case

we may interchange the order of integration to get

R = trff(s)m(ds) (7.11)
S

A
where f CM(S) On s(H) is defined by
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f(s) = fp(t)C(t,s)p(ds).
S

The quantum estimation problem is to minimize (7.11) over

all operator-valued measures m i ( , Zs (H)) which are

POM's, i.e. the constraints are that m(E) > 0 for every

E 6 o and m(S) = I.

We shall now assume that the reader is familiar with the

duality theory of optimization in infinite-dimensional spaces

as for example development in [Rockafellar (1973)]. To form

the dual problem we take perturbations on the equality con-

straint m(S) = I. Define the convex function F: ~(x,x(H))+R b

F(m) = 6 >(m) + trff(s)m(ds), m -6 h(, &s((H)),
S

where 6>0 denotes the indicator function for the

positive operator-valued measures, i.e. 6 o(m) is 0

if m( 2 ) C Z (H)+ and +o otherwise. Define the

convex function G: s (H) + R by

G(x) = 6 (x) x s()

i.e. G(x) is 0 if x = 0 and G(x) = + if x # 0.

Then the quantum detection problem may be written

Po = inf{F(m)+G(I-Lm): m t ( , s (H))}

where L: ? (o, 5 (H)) + . (H) is the continuous linear

operator

L(m) = m(S).
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We consider a family of perturbed problems defined by

P(x) = inf{F(m)+G(x-Lm): m e ((o, 4s(H))}, x e6 s(H).

Thus we are taking perturbations in the equality constraint,

i.e. the problem P(x) requires that every feasible m

be nonnegative and satisfy m(S) = x; of course,

P0 = P(I). Since F and G are convex, P(.) is

convex R (H) - R.

In order to construct the dual problem corresponding

to the family of perturbed problems P(x), we must calculate

the conjugate functions of F and G denoted as F* and G*. We

shall work in the norm topology of the constraint space S (H),

so that the dual problem is posed in 5s(H)*. Clearly G*- 0.

The adjoint of the operator L is given by

L*: s (H)* ((,H))*: y ~ (m v.m(S))

To calculate F*(L*y), we have the following lemna.

Lemnma 7.2. Suppose y 6 s(H)* and f M(S) eO Ts(H)

satisfy

y-m(S) < trff(s)m(ds) (7.12)

for every positive operator-valued measure m tE)b(at, s(I()+).

Then y < 0 and Yac < f(s) for every sE S, where

y = Yac+Ys is the unique decomposition of y into
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Ya e ts(H) and Ysg 6 7s(H) 

Proof. Fix any so E S. Let x be an arbitrary element

of ~s(H)+, and define the positive operator-valued

measure m6? (O ,czs(H)+) by

x if so E

m(E) = , E f e .

0O if so( E

Then y.m(S) = y(x) = tr(y acx)+ysg(x), and trff(s)m(ds) =

trf(so)x. Thus, by (7.12) tr[yac-f(so)]x+ys (x) < 0;

since xes (H)+ was arbitrary, it follows

that Ya < f(s ) (i.e. f(so)-YacE Z (H)+) and

Ysg < 0 (i.e. Ysg - [s (I)+C X(H)' ) 

With the aid of this lemma it is now easy to verify that

F*(L*y) if Yac < f(s) s S, and ysg < F*(L'y) =- sg -
+co otherwise

= <f(Yac) + 6<o(Ysg)

It now follows that P*(y) = F*(L*y) + G*(y) is O if

Ysg < 0 and Yac < f(s) for every s ES, and P*(y) = +a

otherwnise. The dual problem Do = *(P*)(I) =

sup[y(I)-P*(y) is thus given by
y
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D = *(P*) (I)
0

=suptrYac+Ysg(I): Y e s(H)* ysg < , y < f(s)s

We show that P (-) is norm continuous at I, and hence there

is no duality gap (Po=Do) and D o has solutions.

Moreover we shall show that the optimal solutions for

Do will always have 0 singular part, i.e., will be in

'tUs (H).

Proposition 7.3. The perturbation function P(.) is continu-

ous at I, and hence aP(I)7 Z, where UP denotes the subgradient

of P. In particular, P =Do and the dual problem D has optimal- 0 0 0

solutions. Moreover every solution yeZs(H)* of the dual problem

D o has 0 singular part, i.e. Ysg = and y = 
sg 'ac

belongs to the canonical image of ?s(H) in s(H)**

Proof. We show that P(.) is bounded above on a unit

ball centered at I. Suppose x se s(H) and Ixl < 1. Then it

is easily seen that I+X > 0. Let so be an arbitrary element

of S and define the positive operator-valued measure

m et(, (s(H)+) by

I+x if s o E
m(E) = , E .

0 O if s o E

Then m is feasible for P(x) and has cost
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trlf(s)m(ds) = trf(sO )(I+x) < 2 f(s o ) Itr

Thus P(I+x) < 21f(s o) t r whenever Ixi < 1, so P(.)

is bounded above on a neighborhood of I and so by

convexity is continuous at I, and hence from standard

results in convex analysis, it follows that aP(x ) 7 o,

hence PO = D --and-D has solutions. Suppose now that.

9y6 s (H)* is an optimal solution for Do. If sg f 0,

then since sg < 0 and I.int4 s(H)+ it follows that
A A

tr( a)+Ysg(I) < tr(Yac). Hence the value of the dualac sg ac

objective function is strictly improved by setting

Ysg = 0, while the constraints remain satisfied, so

that if y is optimal it must be true that Yg = 0.

In order to show that the problem Po has solutions,

we could define a family of dual perturbed problems D(v)

for v Co (S) @7 Zs(H) and show that D(.) is continuous.

Or we could take the alternative method of showing that the

set of feasible POM's m is weak* compact and the cost

function is weak*-lsc when (O, s(H)) ) (Co(S ) ,bs ( H))

is identified as the normed dual of the space C o(S) 0 Ts (H)

under the pairing

<f,m> = trff(s)m(ds).

Note that both methods require that f belong to the
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predual Co (S) Oi Is(H) of (G, t s( )); by

Proposition 7.1it suffices to assume that t H C(t,.)

belongs to L1(S, ',i;Co(S ) ) .

Proposition 7.4. The set of POM's is compact for the

weak* - w(t (&, s(H)), CO(S) 8, 7 s(H)) topology.

If t H C(t,-) e L1(S, ,P;Co(S)) then Po has optimal

solutions m.

Proof. Since ? ( 9, s (H)) is the normed dual of

Co (S ) T TrS(H) it suffices to show that the set of

POM's is bounded; in fact, we show that m(S) = 1 for

every POM m. If 6 .H and I%1 = 1, then <Om(*) 14>

is a regular Borel probability measure on S whenever m

is a POM, so that the total variation of < im(.)I4> is

precisely 1. Hence

m(S) = sup 1<Om(.)I4>j(S) = sup 1<4m(')I)>I(S) = 1.

T(H sfiHl

Thus the set of POM's is a weak*-closed subset of the

unit ball in Y ( I, s(H)), hence weak*-compact. If now

t H C(t,-) belongs to L1(S, o,p;Co (S)) then

f e Co(S) eI ts(H) by Proposition 7.1, so m + trlf(s)m(ds)

is a weak*-continuous linear function and hence attains

its infimwm on the set of POM's. Thus P has solutions.
o0
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The following theorem summarizes the results we have

obtained so far, as well as providing a necessary and

sufficient characterization of the optimal solution.

Theorem 7.5. Let H be a Hilbert space, S a locally

compact Hausdorff space with Borel sets * . Let

p M(S, rs(H)), C: S x S -+ R a map satisfying

t H C(t,-) 6 L1 (S,J3,l;C o (S)), and p1 a probability

measure on (S, ). Then for every mE E (et, R (H)),

trfp(t) [fC(t,s)m(ds)]p(dt) = trff(s)m(ds)
S S S

where f (Co(S) , ?s (H) is defined by

f(s) = fp(t)C(t,s) j(ds).
S

Define the optimization problems

Po = inf{trff(s)m(ds): m(~(W,ts H)),m(S)=E,m(E)>0 for every EEc}
S

DO = sup{try: y6 't s(H) , y < f(s) for every s E S}.

Then P = Do, and both Po and D have optimal solutions.

Moreover the following statements are equivalent for

met ( , s(H)), assuming m (S) = I and m(E) > 0 for

every E e( :
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1) m solves PO

2) ff(s)m(ds) < f(t) for every t ES
S

3) fm(ds)f(s) < f(t) for every tE S.
S

Under any of the above conditions it follows that

y = If(s)m(ds) = fm(ds)f(s) is selfadjoint and is the
S S

unique solution of Do, with

P = D = try.

Proof. We need only verify the equivalence of 1)-3);

the rest follows from Propositions 7.3 and 7.4. Suppose m

solves PO. Then there is a y ET t s(H) which solves D,

so that y < f(t) for every t and

trff(s)m(ds) = try.
S

Equivalently 0 = trf (s)m(ds) -try = trf(f(s)-y)m(ds).
S S

Since f(s)-y > O for every s~ S and m > 0 it follows

that 0 = f(f(s)-y)m(ds) = Iff(s)m(ds)-y and hence 2) holds.
S S

This last equality also shows that y is unique.

Conversely, suppose 2) holds. Then y = ff(s)m(ds)
S

is feasible for Do, and moreover trff(s)m(ds) - try.

Since P > Do, it follows that m solves Po and y

solves Do, so that 1) holds.
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Thus 1) <=> 2) is proved. The proof of 1) <=> is

identical, assuming that trff(s)m(ds) = trfm(ds)f(s)

for every f Co(S) s Zts(H). But the latter is true

since trAB = trBA for every A e t s (H), B ts(H)

and hence it is true for every f CCo(S) e Zs(H). 1
0 ~~S
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