
Solving Hybrid Decision-Control Problems Through

Conflict-Directed Branch & Bound
by

Raj Krishnan

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2, 2004

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 020047

LIBRARIES

Department of Electrical Engineering and Computer Science
February 2, 2004

Certified by
Brian C. Williams
Thpsisupervisor

(Arthur C. SmitI
Accepted by

BARKER

Author

Solving Hybrid Decision-Control Problems Through
Conflict-Directed Branch & Bound

by

Raj Krishnan

Submitted to the
Department of Electrical Engineering and Computer Science

February 2, 2004

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

there exists a large class of problems that incorporate both logical
decision and algebraic constraints. For example, in cooperative path
planning (CPP) problem, obstacle avoidance can be achieved by selecting
a direction in which to avoid every obstacle, which in turn imposes an
inequality constraint. Traditionally, these hybrid decision-control
problems (HDCPs) are encoded in a binary integer program (BIP). These
BIPs are solved using Branch and Bound (B&B) techniques. Two
problems arise with this approach. First, binary arithmetic is not a natural
representation for expressing complex logical choices. Propositional and
higher order logics offer a more natural encoding, and computational
methods exploit this encoding. Second, current BIP solution methods are
to slow to solve large HDCPs online.

To address these problems, this thesis introduces an approach that unifies
representations and solution methods for logic and mathematical
programming. To address representational adequacy, this thesis
introduces the Clausal Linear Program (CLP) formulation, which encodes
logical choice using propositional clauses and continuous control
decisions using linear inequalities. CLPs offer a more compact and
natural encoding than BIPs for many problems of logical choice. To
address computational efficiency, this thesis introduces a branch and
bound method for solving CLPs, analogous to BIP-B&B. This method is
then unified with conflict-directed search and unit propagation. The
resulting method, CDCL-B&B, searches in a best first order, while using
conflicts to steer the search away from inconsistencies. Randomized
experiments on CPP problems were performed using CDCL-B&B and a
BIP-B&B algorithm. Results showed that CDCL-B&B improved time
efficiency by as much as 50%, with no increase in memory usage.

2

Acknowledgements

First and foremost, I would like to acknowledge the guidance and support of my thesis

advisor, Brian C. Williams, in identifying an interesting problem domain, developing the

right methods for solving it, and working with me nonstop to create the thesis document.

I would like to thank Jonathan D. Kennell and I-Hsiang Shu for helping me

initially understand the concepts, goals and techniques of the MERS group. My first few

months in the group were made far easier as a result of your counsel.

I would like to thank Hui Li for her help in developing and writing the testing

software and for being a great sounding board for many of the thesis's fundamental

concepts. I wish you the best of luck in any future work on the CDCL-B&B algorithm.

I would like to thank Margaret S. Yoon for handling all the administrative details

during my RA ship, and in particular for her incredible efforts in coordinating the thesis-

writing process. This thesis literally would not exist if not for your patience and labors.

I would like to thank Tazeen Mahtab, Paul H. Elliott, Andreas G. Hofmann,

Martin Sachenbacher, and Aisha N. Walcott for proofreading and editing this thesis.

I would like to thank the MERS group, individually and as a whole. As a research

group, you provided a stimulating environment for academic study; as a group of friends,

you made my time enjoyable and memorable. I couldn't imagine a better place to work.

I would like to thank the sponsors of this thesis project, the MURI Program (Air

Force OSR Contract # 0205-G-CB222) and the Software Enabled Control Group (Air

Force Research Lab Contract #F33615-01-1850) for your continued financial assistance.

I would like to thank my friends and family for their encouragement and advice.

You kept me focused through over five years of collegiate study and put up with me

when my thesis work made me a hermit.

I would like to thank all of my teachers, instructors, and counselors from

elementary school through college. This thesis is the culmination of over eighteen years

of study, and I owe any achievements and my interest in CS to your cumulative efforts.

Above all, I would like to greatly thank my parents for their love and guidance.

You gave suggestions when they were warranted, encouragement when it was needed,

and support of every decision I made. I owe the two of you everything.

3

Table of Contents

I In tro d u ctio n .. 6

1.1 Problem Statem ent 7

1.2 T echnical C hallenges ... 7

1.3 Technical Approach Overview.. 8

1.3 .1 C lau sal L P s 9

1.3.2 Conflict-Directed Branch & Bound ... 10

1.3.3 Cooperative Path Planning... 11

1.4 C hapter Sum m ary 11

2 Encoding Hybrid Decision-Control Problems as Clausal LPs 12

2.1 B inary Integer Program s .. 13

2 .2 C lau sal L P s 16

2.2.1 Representing Choice in a Clausal LP... 16

2.2.2 Expressiveness of Clausal LPs and BIPs... 19

2.2.3 Increased Search Efficiency through Clausal LPs............................... 22

2.3 Modeling Problems in the Cooperative Path Planning Domain............... 25

2.3.1 CPP Problems Modeled as BIPs .. 25

2.3.2 CPP Problems Modeled as Clausal LP Problems.................................. 28

3 Solving Clausal LPs through Branch and Bound... 29

3.1 Review of Branch and Bound for BIPs ... 29

3.1.1 Exhaustive Search Using Incumbents for a Global Optimal Solution...... 30

3.1.2 Subspace Pruning through Bounding... 34

3.1.3 Subspace Pruning using Infeasibility ... 39

3.1.4 Subspace Pruning using Exact Integer Solutions 40

3.1.5 Restricting Search Tree Depth using Active Variables 42

3.2 Constraint-based A* for Optimal SAT.. 43

3.3 Branch and Bound for Clausal LPs .. 44

4

3.3.1 Search Tree Branching.. 45

3.3.2 Relaxed Problems ... 47

3.3.3 Restricting Search Tree Depth using Active Clauses........................... 48

3.3.4 Ordering Clause Resolution based on Clause Size................................ 49

3.3.5 Utilizing a Best-First Search Order .. 50

4 Conflict-Directed Branch and Bound.. 52

4.1 Review of Conflict-Directed A* .. 52

4.2 Conflicts in the Clausal LP Framework ... 55

4.2.1 Defining Conflicts... 56

4.2.2 Efficient Search by Using Conflicts for Pruning.................................. 58

4.3 Conflict-Directed Clausal LP Branch and Bound 60

4.3.1 Separating Best-first Search from Conflict Resolution 61

4.3.2 Identification and Global Recording of Conflicts 67

4.3.3 Retrieving the Active Conflicts at a Node... 71

4.3.4 Combined Conflict Resolution and Unit Propagation 73

5 D iscu ssion 90

5.1 Performance Analysis ... 90

5.1.1 Experimental Methodology.. 90

5.1.2 Experimental Results .. 93

5.2 Future W ork .. . 95

5.2.1 Modifications to Clausal LPs... 95

5.2.2 Conflict Extraction... 96

5.2.3 Integrating CDCL-B&B with a Planning System 97

5 .3 C o n c lu sio n ... 10 1

6 R eferen ce s ... 10 3

1 Introduction

The creation of autonomous vehicles has been an area of extreme interest for years.

Applications like self-controlled cars, intelligent robots, and unmanned military units

have captured human imagination, while recent trends in space exploration, military

tactics, and civilian urban development, have increasingly shown a need for autonomous

vehicles outside of novels.

As we explore farther into deep space and the lag in radio communicatiorn

increases, vehicles must possess greater autonomy. On the military front, the recent trend

towards small-scale warfare reduces the need for division-level strategic planning, which

is difficult to perform without humans; the focus is more on distributed vehicles

operating cooperatively for reconnaissance and combat, a narrower problem that artificial

intelligence is already working very hard to solve. Finally, social demands have

compelled us to build taller and taller structures in urban areas; in emergencies they make

ground-based search and rescue difficult, and pose significant hazards to human teams.

As urban density increases and buildings get taller, these difficulties will make automated

search-and-rescue more important.

Frequently, autonomous systems implement logical decision making in order to

evaluate differing choices. Examples include chess algorithms that implement constraint

propagation to rule out possible piece moves, or any activity-level planner that

establishes orderings on tasks. In contrast, other autonomous systems address problems

that can be best represented as algebraic constraints over a continuous domain. An

example of this type of system is a factory allocation program that distributes orders

between locations, in order to minimize production costs, while meeting minimum output

constraints.

However, there is a significant set of problems that require a hybrid coupling of

logical decision techniques with mathematical optimization. Deep space explorers must

choose between various task selections and orderings, while also addressing the need for

fuel usage optimization. Autonomous military vehicles will need to make decisions

about which targets to strike, while minimizing mission costs in terms of time, fuel, and

equipment damage. These decisions must also deal with probabilistic estimates of

6

vehicle loss in order to handle uncertainty. Urban search and rescue units must construct

and compare different complex trajectories around a dangerous area such as a fire, on the

approach to a trapped individual.

All of these applications can be solved by systems that are composed of multiple

cooperative autonomous vehicles. These vehicles must integrate elements of decision

making, such as task ordering, obstacle avoidance, and goal selection, with some form of

control-level trajectory planning that supports agile maneuvering. This thesis presents an

algorithm for solving optimization problems that combine descriptions of decision-

making logic, based on propositional clauses, with trajectory planning, based on linear

programming.

1.1 Problem Statement

This thesis addresses the problem of efficiently creating a set of fuel optimal

trajectories for a set of vehicles such that they achieve the goal locations specified in a

temporally flexible plan, given the vehicle dynamics and an obstacle map. This objective

is comprised of three separate subproblems. The first problem is to develop a formal

framework for general trajectory problems that is a hybrid between logical decision

making and mathematical control (referred to as hybrid decision-control problems or

HDCPs). The second subproblem is to develop a fast solution method for these hybrid

problems based on one-shot conflict learning. The third problem is to demonstrate and

evaluate these two elements using the cooperative path planning problem domain, which

is representative of other domains that involve hybrid logic and mathematical

programming elements.

1.2 Technical Challenges

The problem statement outlined in Section 1.1 poses a number of technical

challenges for the formulation, solution, and demonstration parts of the thesis. First, the

problem encoding must accurately reflect all the elements of the abstract HDCI*.

Modeling the decision-making component requires some way to represent choice

between actions (a disjunctive element), while the standard model for optimally solving

the control components is to construct a linear program (LP) and to use an LP solution

7

technique such as the Simplex algorithm [I]. Second, the encoding must also have a way

to incorporate all of the elements of a cooperative path planning problem. These

elements might include the vehicles' dynamics, the mission goals, uneven terrain that

might have real-valued incline gradients, and obstacles that must be avoided.

Third, the solution method must be efficient in space and time. Typically the

disjunctive elements in a control problem are far more costly to solve than a standard L15.

These are traditionally solved using binary integer programs (BIPs), described in Chapter

2, where a decision between n inequalities is split into n constraints and n binary integer

variables are used to impose the requirement that at least one of the constraints must be

true. Traditional techniques for solving BlPs, such as the Simplex algorithm augmented

with Branch and Bound (B&B) techniques, are not fast enough for the CPP domain;

therefore, our encoding must be coupled with a solution method that shows a relative

improvement in speed. This also suggests the fourth and final challenge of this thesis:

comparing the new encoding for HCDPs solved using the method introduced by this

thesis, with a traditional BIP encoding solved using a Simplex-B&B method. This

comparison requires definitive metrics of comparison, and a characterization of the types

of problems that can be solved efficiently.

1.3 Technical Approach Overview

To resolve the challenges outlined in Section 1.2, we introduce the Conflict-

Directed Branch and Bound algorithm for Clausal LPs (CDCL-B&B). CDCL-B&B is

based on three major insights. First, Clausal Linear Programs (clausal LPs, or CLPs) are

introduced to develop a general formulation for combining choice and LP elements. The

CLP framework also addresses the issue of incorporating all of the key parts of a CPP

problem. This representation borrows from much of the work of combined propositionI

and algebraic representations, as in [5] and [6]. Second, the efficiency problem is

addressed by creating an algorithm that integrates Conflict-Directed A* [10] and Branch

and Bound, modified for use on CLPs. This relies on one key idea: guiding search using

minimal sets of constraints that result in an infeasibility (conjlicts). This builds on the

combined LP/SAT solving algorithms like [4], [11], [12], and [13]. Finally, this

algorithm is demonstrated on coordinated path planning for multiple vehicles, a probleni

8

domain that has elements of both logical decision making and mathematical

programming.

1.3.1 Clausal LPs

In general, solving an HDCP involves decision-making over a set of choices. The

logical decisions that are made then result in a set of constraints that constitute a linear

program. Encoding an HDCP requires some way of representing all of the disjunctions

of inequalities. Clausal LPs are the most natural solution to this need: each clause

represents a decision to be made and each disjunct in the clause represents a choice made

for that decision. Each disjunct is an inequality that must be satisfied.

As an example, consider the task of I I I
avoiding a square obstacle in a two- y > 6
dimensional cooperative path planning - -

problem [7]. To avoid the obstacle, a vehicle eV s 7

must be one of {North, South, East, West} of X < 3

the obstacle at every time instant. Figure 1(A)

shows the boundaries of the obstacle for a y<

particular time instant, and the constraint Soth

associated with each obstacle. Figure 1(B) (A)

shows the actual clausal LP representation of x<3 V x>7 V m'n CTX

this obstacle: comprised of a disjunction of s.t. Ax = b
y9<2 V y>6 x<3

inequalities. Suppose some decision-making ()C

protocol is applied and resolves this decision
Figure 1: Modeling an obstacle in clausal

by choosing for the vehicle to be West of the LP form, and resolution of the clause.

obstacle, as indicated by the red cross. The inequality corresponding to the West disjunct

would then be incorporated in the total LP problem. Figure 1(C) shows this inequality,

"x<3", included in the LP. In the general case, clausal LPs can be used to represent any

arbitrary non-convex n-dimensional polytope (see Section 2.3.2).

9

Clausal LPs can represent simple linear inequalities in an HDCP. Constraints that

do not involve choice can be included as unit clauses. Constraints with choice can be

modeled as clauses.

1.3.2 Conflict-Directed Branch & Bound

Once Clausal LPs are defined as a way of encoding HDCPs, the next problem to

address is solving the CLP optimally and efficiently. This requires finding the best

feasible solution out of all possible selections of disjuncts across all clauses. The search

space defined from the selection of a disjunct from each clause can be viewed as an

enumerated tree, each node of which specifies a partial resolution of clauses (in other

words, a selection of a single disjunct from each clause in a subset of the total set of

clauses). For each such node, the selected inequalities combined with the non-disjunctive

constraints result in a relaxed (partial) LP problem that must be solved. Each leaf node in

this tree falls into one of two categories: 1) nodes that contain a complete resolution of

clauses, and at which the solved LP is a feasible solution to the HDCP and 2) nodes in

which the selected inequalities, when combined with the non-disjunctive constraints,

result in a relaxed LP that is infeasible.

When searching through the search tree, significant time can be wasted in

expanding subtrees that all terminate in infeasible nodes even when using best-first

search. This is particularly true because solving the LP problem at a node is the most

costly submethod in the search. To focus away from infeasible subspaces of solutions,

we use the technique of Conflict-Directed A *, a one-shot learning method that

generalizes the reason for an inconsistent solution into an identified infeasible subspace.

This is implemented through a process of identifying and resolving conflicts, sets of

constraints that are together infeasible. For each conflict, a constituent kernel is

generated. A constituent kernel is a minimal description of all states that resolve a

particular conflict; that is, those states in which the conflict is guaranteed to not occur.

Each new node in the search tree is built from a kernel, which resolves all conflicts by

selecting one constitutent kernel for each conflict.

10

1.3.3 Cooperative Path Planning

The domain selected for demonstration of the CDCL-B&B algorithm is

cooperative path planning for multiple autonomous vehicles. Problems in this domain

achieve a number of required goals. First, they contain clear logical decision elements,

such as obstacle avoidance, as described in Section 1.3.1. These are naturally modeled as

an HDCP. Second, they contain clear mathematical control elements, including

continuous constraints and a goal of optimizing some function like fuel usage; these can

also be modeled in an HDCP. Third, CPP problems can also be formulated into a BIP

and solved by the Simplex-B&B method. This enables comparison with this traditional

method. Fourth, current methods for solving these problems are not sufficiently fast for

applied use, such as for on-line vehicle control.

1.4 Chapter Overview

Chapter 2 introduces the concept of Clausal LPs as a representation for hybrid

decision-control problems, and examines the application of the clausal framework to

cooperative path planning problems. Chapter 3 reviews Branch and Bound for binary

integer programming problems and the Constraint-Based A* algorithm. It then uses

these as the basis for a Branch and Bound algorithm for solving Clausal LP problems

(CL-B&B). Chapter 4 introduces conflict-directed search for clausal LPs. It reviews

Conflict-directed A*, defines conflicts and conflict resolution in the Clausal LP

framework, and concludes with the description of a Conflict-directed Branch and Bound

algorithm for Clausal LPs (CDCL-B&B). Chapter 5 concludes with an analysis of

efficiency improvement of CDCL-B&B over BIP-B&B in the CPP domain, and a

discussion of future development with the CDCL-B&B algorithm, including integration

into the Kirk vehicle control system.

S1I

2 Encoding Hybrid Decision-Control Problems as

Clausal LPs

This chapter discusses the formulation of Hybrid Decision/Control Problems (HDCPs) in

a way that enables fast discovery of an optimal solution. It introduces a representational

formalism, called Clausal LPs, which effectively captures both the mathematical

dynamics and the control decisions that are present in these types of problems.

Specifically, Clausal LPs allow for the logical decision elements of the problem to be

specified as disjunctions of inequalities instead of being translated into mixed integer

arithmetic constraints for use in a linear program.

This chapter also demonstrates the application of the Clausal LP framework to a

particular domain of problems: cooperative path planning (CPP). CPP problems guide

multiple vehicles to cooperatively achieve a set of goals at different locations while

avoiding certain regions (obstacles, no-fly zones, etc.). One example of a CPP is control

of multiple planetary rovers to explore a list of sites of scientific interest while avoiding

craters. The CPP problem establishes a domain with which to compare the efficiency of

CLP vs. BIP. It also will be used to compare the efficiency of the CDCL-B&B algorithm

in Chapter 4 with the algorithm that will be used as an efficiency benchmark, BIP-B&B.

Section 2.1 describes previous methods for modeling hybrid decision-control

problems. The most common model for representing mathematical control elements for

optimal search is to construct a linear program (LP) and to then use LP solution

techniques like the Simplex algorithm [1]. Proper representation of HDCPs also requires

a way to encode decision-making over a set of choices. Currently in the mathematical

programming field, the standard technique for integrating these two elements is mixed

integer-linear programs (MIPs). The focus in this thesis is on a particular class of MIPs

where the integer values are constrained to be either zero or one. These problems are

known as binary integer programs (BIPs).

Section 2.2 introduces Clausal LPs and illustrates the framework by describing

the CLP encoding of a CPP problem. It then compares CLPs to BIPs in terms of

expressiveness and in terms of enabling search efficiency. It shows that any Clausal LP

can be modeled as a BIP, and that any BIP where at most a single constraint is added by

12

every decision can be modeled as a Clausal LP. It also concludes that the Clausal LP

framework is more efficient than BIPs in terms of the number of nodes that must be

searched.

Finally, Section 2.3 presents the canonical cooperative path planning problem,

and describes how to encode it in the BIP and Clausal LP frameworks. This section is

key to understanding how the key algorithm introduced in this thesis, CDCL-B&B, is

evaluated. Chapter 5 analyzes how this algorithm, which solves Clausal LPs, compares

to an equivalent algorithm for solving BIPs, BIP-B&B, in terms of space and time

efficiency. The CPP domain is used to perform this comparison.

2.1 Binary Integer Programs

Any representation of a hybrid decision-control problem must encode the HDCP's

control elements, such as vehicle dynamics to completely solve the problem. These

control elements have traditionally been represented as a set of linear constraints on a set

of real-valued variables, making them solvable using an LP solver. These linear

constraints, combined with the objective function of a hybrid problem, such as a fuel-use

minimization function, make up a linear program. The general format of a lineai

program is

minimize cTX,
subject to Ax 2 b 12.1-1}

1 s x U, 2.1-2}

where A is an m x n matrix, c, x, I, and u are n-size vectors, and b is an m-size vector [21.

Here CTX is the objective function and {2.1-1} and {2.1-2} together comprise the set of

LP constraints. Generally, Ls can require either the minimization or the maximization

of the objective function.

A MIP may augment the standard LP representation by adding the restriction that

some subset of the variables xj must be integer. A BIP further restricts all integer

variables to being binary; that is, any integer variable can only have a value of zero or

one. This restriction does not result in a loss of expressiveness; any integer variable with

n possible values can be replaced with log2 (n) binary variables that encode the same

number of possible choices, without even a significant change in problem complexity.

13

There are several reasons why BIPs are a good selection as a benchmark

framework against which to compare Clausal LPs. First, binary values are frequently

used to represent the logical values of "true" and "false". A decision between multipic

choices can be viewed as the assignment of "true" to a single choice and "false" to the

others, so BIPs are traditionally used to model problems involving logical decisions.

Secondly, the binary restriction makes BIPs easier to analyze than MIPs because all

integer variables have identical domain. For instance, in a BIP the total number of

possible assignments is exactly 2Nb, where Nb is the number of binary variables. In

contrast, in a MIP the total number is the product of the domain size of all integer

variables. Therefore complexity analysis, like that done in Section 2.2.3 below, is much

easier on BIP problems.

BIPs encode the objective function and control elements of an HDCP in the

general LP format shown in {2.1-1 } and {2.1-2}. The inclusion of binary variables

enables a BIP to model the decision elements of the HDCP as well, which cannot be

encoded in a simple LP. If the selection of a choice j in a decision i in the HDCP results

in the inclusion of a constraint Ai,jx 2 cij as one of the problem's control elements, then

choice j is encoded in a BIP as

Aj,jx - Cj 2 R(1 - b{2j) 2.1-31

where R is a negative number with an extremely large magnitude relative to the other

constants in the constraint, and bij is a binary variable [3].

The purpose of b,j in this constraint is to govern whether choice j is selected or

not. If j is not selected, then this constraint should have no impact on the LP solution. If

j is selected, then this constraint should be included in its original form in the LP. To do

this, let the assignment of bij = 0 mean that j is not selected, and the assignment of bij =

1 mean that j is selected. If b,j = 0 then {2.1-3 becomes Ai,jx - cj 2 R. Since R is a

very negative number, this constraint is trivially satisfied regardless of the values

assigned to x, and so the constraint has no impact on the LP solution. If bij = 1 then

{2.1-3 } becomes Ai,jx - cj 2 0, which is equivalent to the original constraint Ai,jx 2 cij.

The last element to complete the representation of a decision problem as a BIP is

to add one constraint for every decision i that ensures that at least one choice in i is

selected. Therefore for a decision i

14

Ij bi,j 1 {2.1-41

is added to the LP. In order for the sum of the b1,j's across all j's of decision i to be more

than 1, at least one of the bij's must equal 1. This is equivalent to saying that at least one

of the choices j must be selected from decision i.

As an example of the BIP representation, consider the following resource

allocation problem, which incorporates the same elements as a hybrid decision-control

problem. A manufacturing company is trying to set production levels for the coming

year, and also decide which one of its three plants will remain open. The company

produces to types of products, x and y. Production costs are $30 per unit of x and $40 per

unit of y. It is known that demand for x will be at least 400 units, demand for y will be at

least 180 units, and total demand for either product will be at least 600. Company

policies require that all demand must be met in the coming year. The three factories each

have different constraints: factory one can produce unlimited y but a maximum of 410 x,

factory two can produce unlimited x but a maximum of 190 y, and factory three can

produce a maximum total of 590 products. One of these three factories can be chosen as

a production facility. If the goal is to minimize total cost, what should the company do?

The first step in modeling the problem as a BIP is to identify the objective

function. The goal is cost minimization, so the function would be

minimize 30x + 40y {2.1-5}

Next, consider the constraints that do not involve any decisions, the demand constraints.

These are modeled as standard LP constraints:

subject to x 400 12.1-6}
y 2 180 {2.1-7}
x + y 600 {2.1-8}

Each of the remaining constraints, the production limits for each factory, is only relevant

to the LP if the corresponding factory remains open. The constraints for each factory, in

order, would be x 410, y 190, and x + y 590. To establish a consistent form for

the constraints, these can be converted to greater-than inequalities: -x > -410, -y 2 -190,

and -x - y 2 -590.

The factory production constraints are composed into a single decision with three

different choices: keeping open factory one, two, or three. Therefore three binary

15

variables b1,1, b1,2, and b1,3 are created and the constraints in greater-than form are

modeled as in {2.1-3}:

-x + 410 2 R(l - b1, 1) {2.1-91
-y + 190 2 R(l - b1,2) {2.1-10
-x - y + 590 2 R(l - b1, 3) {2.1-11

where R is some very negative number, like -10,000,000. If factory one is kept open,

then b1, 1 = 1 and {2.1-9} becomes -x + 410 2 0, which is equivalent to including the

original factory one constraint in the LP. Otherwise, b1,1 = 0, which makes {2.1-91

become -x + 410 2 -10,000,000. This is trivially satisfied for any reasonable value of x

and y. {2.1-10} and {2.1-11} operate in the same way.

Finally, a constraint must be added that ensures that at least one of the factories is

chosen to remain open. Modeled after {2.1-4}, the constraint

b1, 1 + b1,1 + b1,3 1 {2.1-12i

completes the BIP formulation.

2.2 Clausal LPs

This section introduces Clausal LPs as an alternative way of modeling hybrid

decision-control problems. The primary difference between the CLP representation and

the BIP representation is the way in which logical decisions are handled. While BIPs use

binary variables to enumerate logical decisions, CLPs instead represent a decision as a

disjunctive clause made up of terms that are LP constraints. For example, a clause in a

CLP might be x 2 40 V x s 20.

Each subsection details a key advantage of CLPs over the BIP formulation of

decision problems. Section 2.2.1 describes the creation of a CLP from a hybrid problem,

and shows that CLPs are a direct encoding of inclusive choice. Section 2.2.2 performs a

comparison of the formulation in terms of expressiveness and identifies the subclass of

BIPs that can be modeled as CLPs. Finally, Section 2.2.3 performs a comparison in

terms of enabling search efficiency, and concludes that Clausal LPs enable faster search.

2.2.1 Representing Choice in a Clausal LP

The Clausal LP representation uses disjunctive clauses as a way of encoding the

decision component of a hybrid decision-control problem. In the most general case, any

16

decision problem that involves selection of a certain set of constraints versus another set

can be modeled as a Clausal LP. More specifically, the decision problems that can be

encoded consist of Nd decisions, with the ith decision consists of Ni choices. This thesis

only considers decision problems where selecting choice j of decision i means the

inclusion of a single linear inequality in the resulting control problem. In principle,

however, the definition of Clausal LPs can be expanded to include the encoding of

decision problems where an arbitrary number of additional linear inequalities are added

when each ij is chosen. Chapter 5 briefly examines what future modifications could be

made to incorporate arbitrary-size constraint sets.

The Clausal LP represents each decision i in the HDCP as a disjunctive clause

Ci,1 V c,2 V ... Ci,Ni {2.2-11

where cij is the inequality constraint added when choice ij is made. Each term in a clause

is known as a disjunct; the clause in {2.2-1 }, for example, has Ni disjuncts. For the

Clausal LP to be solved, at least one disjunct from each clause must be satisfied by the

LP solution; this is known as resolving the clause.

In general an HDCP will also contain additional inequalities that do not involve

any choice; these constraints are part of the control problem regardless of what choices

are made. In a Clausal LP these constraints are modeled as unit clauses: disjunctive

clauses with a single term. In the Clausal LP framework there is no need to distinguish

between these two types of constraints. Similar to LPs, clausal LPs also contain an

objective function that establishes a cost or value to any solution point. This objective

function holds over all choices of constraints.

For example, consider again the simple manufacturing cost-minimization problem

used to illustrate BIP formulation in Section 2.1. In the Clausal LP framework, the same

problem would be encoded as

minimize 30x + 4 0y, (2.2-21
subject to x 2 400 (2.2-31

y 180 (2.2-41
x + y 600 {2.2-51
-x 2 -410 V -y 2 -190 V -x - y -590 12.2-61

In this encoding {2.2-2} is the objective function, {2.2-3}, {2.2-4} and {2.2-51 are unit

clauses, and {2.2-6} is a clause with three disjuncts.

17

An important characteristic of Clausal LPs is that they encode the logical choice

in a direct form: clauses are an actual representation of the disjunctive decision in the

HDCP. This is in contrast to the BIP encoding, where logical choice is encoded as a

series of conjunctive constraints like {2.1-3} and a single summation of the form of {2. 1-

4}. Hence a CLP offers a more natural representation of decision-making problems than

a BIP does.

The direct representation of disjunctive choice in the CLP formulation is similar

to the LCNF formalism developed in [4]. The LCNF formalism encodes disjunctions that

represent decisions, and adds constraints to a linear problem as specific choices are made.

In this regard, LCNF is similar to the Clausal LP framework. The key difference,

however, is that LCNF does not encode any objective function, and is used instead only

to find aftasible solution. CLPs extend the LCNF formalism by ranking solutions based

on the value of an objective function, evaluated at that solution. Therefore, CLPs enable

search for an optimal solution over a set of possible candidates. Additionally, the

semantics of LCNF are slightly different: clauses do not directly contain constraints, but

instead store a disjunction of propositional variables. Assigning "true" to any of these

variables entails a particular constraint, as encoded by a series of implications.

A similar formalism is MATH-SAT, described in [6]. This encoding is capable of

representing Boolean logic and algebraic constraints as a series of disjunctions and

conjunctions. One of MATH-Sat's key differences is that its math-formulas, equivalent

to sets of clauses, contain both linear inequalities and simple propositional variables. For

example

-, 2, V A

-~ {2.2-71

where A1, A2, and A3 are propositional variables; by comparison, every term in a Clausal

LP is a linear inequality. Most importantly, MATH-SAT, like LCNF, does not encode

any objective function. While this thesis focuses on optimal solutions, the solver

introduced by [6], MATH-SATSolver, only identifies whether or not a math-formula is

feasible.

18

2.2.2 Expressiveness of Clausal LPs and BIPs

Sections 2.1 and 2.2 showed how certain limited-scope HDCPs can be

represented, respectively, as binary integer programming problems and Clausal LPs.

Therefore there exists a domain of problems for which the two representations are

mutually transformable. In particular, problems where every disjunct of every clause

consists of a single constraint, not a conjunction of constraints, can all be modeled as

either BIPs or CLPs. Hence the two representations are equivalent for this class of

HDCPs. 2.2.2.1 gives the general transformation of a CLP to a BIP, and 2.2.2.2 gives the

reverse transformation from a BIP to a CLP. Chapter 5 discusses a potential modification

to the Clausal LP framework that could enable them to be as expressive as BIPs in

general as well.

2.2.2.1. Clausal LP to BIP Transobrmation

First consider the mapping from a CLP to an equivalent BIP. Suppose CLP is an

arbitrary Clausal LP with Nd clauses, and suppose the ith clause of CLP consists of Ni

disjuncts, with each Ni > 2. Suppose further that there is an additional Nd' clauses which

each consist of a single disjunct. In this case CLP can be transformed into a BIP that

consists of

Nb = i=1 to Nd Ni {2.2-8}

additional binary variables and Nb + Nd' + Nd constraints.

To perform this transformation, create a new binary variable bij for each

constraint Ai,jx 2 ci,: the jth disjunct of the ith clause of CLP. Replace each clause i with

the following Ni + I constraints:

Ai,1x - ci,1 R(1 - bi, 1) {2.2-9}
Ai,2x - ci, 2 2 R(1 - bi, 2) {2.2-10}

Ai,NiX - Ci,Ni R(1 - bi,N) {2.2-11}
Y-j=1 to Ni bi,j 1 i {2.2-12}

where R is a negative number with an extremely large magnitude relative to the other

constants in the constraint. In this encoding, each of the constraints {2.2-9} through

{2.2-11 } represents a single choice in the clause. Selecting the jth disjunct of the ith

19

clause in the Clausal LP framework is equivalent to assigning bij = 1 in the BIP

framework; all other binary variables for disjuncts in clause i can be assigned to be zero.

If the binary variable corresponding to a constraint is set to zero, the constraint becomes

Ai,jx - cij R in the BIP. Because R is a very negative number, this constraint is

trivially satisfied regardless of the values of x and so has no impact on the solution. This

is equivalent to not selecting the corresponding disjunct in the Clausal LP. Constraint

{2.2-12} ensures that at least one of the binary variables is assigned to be 1; this is

equivalent to requiring that at least one disjunct in a clause be selected. Nd clauses

contributing Ni + 1 constraints each add a total of (1i=1 to Nd N1) + Nd constraints to the

BIP problem. From {2.2-8}, this is equal to Nb + Nd constraints.

The remaining Nd' constraints in the BIP derive from the Nd' unit clauses in the

Clausal LP. For each unit clause, add the clause's single disjunct as a constraint in the

BIP. Since each disjunct of a unit clause must be met in the Clausal LP in order to

resolve the clause, these disjuncts are also required constraints in the BIP. The final step

in the Clausal LP-to-BIP transformation is to use the objective function of the Clausal LP

as the BIP objective function as well.

As an example of this transformation, again consider the simple manufacturing

problem used previously. The Clausal LP formulation of this problem is given in {2.2-2}

to {2.2-6} in Section 2.2. In this problem Nd' is 3, Nd is 1, and Ni for i=1 is 3. Therefore,

from {2.2-8}, the number of new binary variables to be created is

Nb = 1i=1 to Nd Ni = i=1 to 1 Ni = N1 = 3 {2.2-13}

These binary variables will be termed b1, 1, b1,2, and b1 ,3, since there is a single clause

with three disjuncts. Following the format of {2.2-9} to {2.2-12}, clause {2.2-6}

becomes

-x + 410 2 R(1 - b1,1) {2.2-14}
-y + 190 R(1 - b1 ,2) {2.2-15}
-x - y + 590 2 R(1 - b1,3) {2.2-16}
b1,1 + b1,2 + b1,3 12.2-17

The constraints {2.2-3 } to {2.2-5 } are each disjuncts in separate unit clauses, and

so are added into the BIP without modification. Finally, the Clausal LP objective

function in {2.2-2} is also used as the objective function in the BIP. Note that the BIP

that consists of {2.2-2} to *2.2-5} and {2.2-14} to {2.2-17} is identical to the initial BIP

20

formulation of the manufacturing problem in Section 2.1. There are a total of seven

constraints, and Nb + Nd' + Nd is 3 + 3 + 1 = 7.

2.2.2.2. BIP to Clausal LP Transformation

To complete the proof of equivalence, now consider the mapping from a BIP to a

CLP. Performing the reverse transformation is complicated by the fact that in general a

BIP is not guaranteed to have entire constraints multiplied by a single binary variable.

That is, not all BIP constraints will necessarily be of the form Ai,jx - bij 2 cij - bij

(which is equivalent to the disjunct of a Clausal LP clause) or of the form Ai,jx 2 cij

(which is equivalent to the disjunct of a Clausal LP unit clause). Even in the restricted

case where the BIP only contains linear constraints, the general constraint form might be

1papbp + lqaqXq 2 C {2.2-18}

For example, 3-b1 + 3-x 2 5 is one such constraint.

In the most general case, a BIP can be converted into a Clausal LP by

enumerating all possible assignments to the binary variables and explicitly making each

of those assignments a disjunct in one large clause. This would result in a total of 2 Nb

disjuncts where Nb is the number of binary variables. Constraints that do not contain

binary variables would become disjuncts in unit clauses. For example, {2.2-17} would

present four possible assignment possibilities for the two variables b1 and b2. The

following table shows the resultant constraint for each of the combination:

(b1, b2) Resulting Constraint

(0,0) z :5

(0, 1) y + z 2 5

(1,0) x + z 2 8

(1, 1) x +y + z 2 8

Thus the clause that would result from this constraint would be:

z25 V y+z 25 V x+z :8 V x+y+z :8 {2.2-19}

The fact that this transformation can take place proves equivalence, but does necessarily

provide a compact encoding for CLPs. A total of 2 Nb states exist by using the

transformation given above. Chapter 5 examines possible methods for reducing the total

number of states.

21

2.2.3 Increased Search Efficiency through Clausal LPs

Clausal LPs offer a direct logical encoding of choice between alternative

constraints. For HDCPs in which the decision element is primarily this type of choice,

CLPs offer two major search efficiency improvements over BIPs. First, the size of the

B&B search tree for CLPs is smaller than the tree that is searched when using a BIP

encoding. Second, frequently the structure of a CLP enables it to be naturally relaxed to

a propositional logic problem, which abstracts away the LP details of the constraints.

This relaxation enables optimal satisfiability algorithms to be employed in order to

perform pruning and guide search. This is a variant on the idea presented in [5] for

reducing linear inequalities to propositional formulas. [5] restricts the inequalities to

contain at most two variables, that is, the inequalities are of the form vi vj + c where vi

and vj are variables and c is a constant. In contrast, the Clausal LP formulation allows

for unrestricted linear inequalities.

The search efficiency of a Clausal LP representation and its BIP transformation

can be compared by analyzing the worst-case number of search tree nodes in each

representation. In the Clausal LP representation, each non-leaf node is branched into Ni

children because of the resolution of clause i by selecting one its Ni choices. Given a set

number of choices, the worst case number of nodes occurs when the product of all the

Ni's are largest. This occurs when all clauses have an equal number of disjuncts; let this

value be No. In this case, each node branches into No children. There is I node (the root)

at the 0 th level, No nodes at the I s level, N0
2 nodes at the 2 "d level, and No' nodes at the it"

level. Hence the worst-case number of nodes in the Clausal LP formulation is

li=O to Nd No = (No Nd+ - 1)/(No - 1) i2.2-20t

if there are Nd total decisions to be made.

The search tree of a BIP encoding looks identical to the Clausal LP case, but with

every node expanding to exactly two children. Hence the equation for determining the

number of nodes looks like {2.2-20}, but No = 2. There are also Nb binary variables to

resolve, instead of Nd clauses to resolve, and so Nd in {2.2-21 } is replaced by Nb. These

values are the same regardless of the distribution of choices among the decisions, so there

22

is no need to identify a worst-case situation. Hence the number of nodes to explore in a

BIP is

i=0 to Nb 2 Nb+1 _2.2-21}

Note that most search algorithms will prune subtrees of the search tree, and so the

average case complexity in practice is a function of algorithm efficiency as much as

encoding efficiency.

S2 4 8 12

BIP CLP BIP CLP BIP CLP BIP CLP

N: 1 7 3 31 5 511 9 8191 13

2 31 7 511 21 131071 73 3E+07 157
4 511 31 131071 341 9E+09 4681 6E+14 22621
8 131071 511 9E+09 87381 4E+19 2E+07 2E+29 5E+08

12 3E+07 8191 6E+14 2E+07 2E+29 8E+10 4E+43 1E+13

Figure 2: Comparison of the total number of nodes in a binary integer programming formulation versus the
worst-case Clausal LP formulation. These values are based on the number of decisions (Nd) in the source
HDCP, and the number of choices per decision (fixed at NO).

There exist two alternate methods of determining the comparative size of {2.2-

20} and {2.2-21}. Consider first the encoding given in 2.2.2.1 for converting CLPs to

BIPs. In this transformation, the number of binary variables needed is defined by {2.2-7}

as Ei=1 to Nd Ni, which is equal to the number of disjuncts. Recall that the worst-case

Clausal LP formulation occurs when the disjuncts are equally distributed, while the

number of binary variables in the BIP is unaffected by the distribution. If each clause has

No disjuncts, then Nb = NO-Nd, and the number of BIP nodes is 2 No*Nd +1 _ 1 .2.20}

gives the number of CLP nodes also as a function of No and Nd. Figure 2 compares the

number of nodes given varying values of No and Nd, and shows that the CLP formulation

consistently has fewer search nodes.

This determination of the relationship between No, Nd and Nb is specific to the

particular encoding given in 2.2.2.1. In the general case, consider the encoding of any

HDCP with Nd decisions and the ith decision having Ni choices. As a Clausal LP in the

worst case (even distribution of disjuncts), the number of nodes is still governed by {2.2-

20}. As a BIP, recall that the number of created binary variables equals the total number

23

of choices across all decisions. This number is Nb - 1i=1 to Nd Ni = No-Nd . Therefore the

total number of nodes is again given by {2.2-21 }. Therefore the results in Figure 2 still

hold.

The worst-case efficiency improvement of Clausal LPs over BIPs discussed so far

is based only on the total size of the B&B search tree. It is also important to consider

how the Clausal LP representation enables algorithms to explore the search tree in less

than worst-case time. Search efficiency in exploring a tree is increased dramatically

through pruning. A node n can be pruned when all leaf nodes that are below n are

guaranteed to not provide an optimal solution to the problem. This reduces the total

number of nodes to explore by the size of the subtree; if n is high in the tree, a significant

part of the tree may be ignored.

In B&B-based techniques that solve BIP problems, pruning is performed by

constructing relaxed LPs. These are problems where only a subset of all binary variables

are assigned binary values; the rest are unconstrained and may be assigned real values.

These relaxed problems are solved at intermediary nodes between the root of the tree and

the leaves, and can be used to identify subtrees that can be pruned. Chapter 3 explores

relaxed problems in more detail and shows how similar LP relaxations can be constructed

for CLPs.

However, Clausal LPs have the added benefit that they can be represented as

propositional sat problems. In this representation, every clause is viewed as a simple

selection between multiple choices, much like a direct formalization of only the decision

elements in an HDCP. A given disjunct in a clause is only a symbolic term, and the

specific LP details of the constraint that the disjunct maps to is abstracted away. This is

also equivalent to viewing clauses as variables needing assignments, with each variable's

domain equal to the set of disjuncts for the clause. With this view, subtrees with relaxed

clauses that are unsatisfiable on the propositional level can be identified and pruned.

Chapter 4 outlines a method for identifying these prunable nodes and introduces the

CDCL-B&B algorithm, which combines pruning from B&B methods with pruning from

SAT.

24

2.3 Modeling Problems in the Cooperative Path Planning Domain

This section details how a cooperative path problem consisting of vehicles, goals,

and obstacles can be encoded into either a binary integer program or a Clausal LP. Many

of the elements of a CPP are identical between the BIP and Clausal LP encodings; their

only difference lies in the way they encode obstacles. This is because an obstacle is the

only element in a CPP problem that allows for some type of disjunctive choice.

CPP problems have clear criteria upon which to evaluate problem complexity: as

the numbers of obstacles, vehicles, and waypoints increase, so does the difficulty of

solving the problem. It is therefore possible to intuitively construct a problem of any

particular level of complexity.

2.3.1 CPP Problems Modeled as BIPs

A CPP problem aims to find a set of control vectors for v vehicles that maneuver

them to reach a set of goal locations, while avoiding z zones where the vehicles are not

allowed. In addition, the control vectors that are discovered must minimize the value of

the objective function f(s). It may be possible to model a complete CPP with multiple

intermediary waypoints and final goal points as a BIP or Clausal LP; however, this

complete modeling is beyond the scope of this thesis. Instead only CPP problems limited

to a single final goal state will be modeled. Note that an executive planner can break up a

multi-waypoint problem into seperate single-waypoint problems in order to develop a

solution to the overall problem. Constraints between different goal points, such as timing

bounds, can also be resolved outside of the single-waypoint model. This method does not

guarantee overall optimality of the solution, however. Chapter 5 discusses this idea

further.

[7] presents a method for modeling problems in the limited CPP domain as BIPs.

The initial encoding to be examined is for a single vehicle; multi-vehicle encodings

simply duplicate the constraints for all vehicles and add some additional collision-

avoidance constraints. The variables that must be assigned values in this encoding are

the state vectors at each instant in time and the control or force vectors at each instant in

time. The BIP objective function encodes three solution goals. First, each vehicle

absolutely must achieve the final goal state; solutions that do not achieve this requirement

25

should be significantly penalized (assigned a much lower utility). Second, the solution

should minimize fuel usage. Finally, this BIP encoding also prioritizes solutions wherein

each vehicle reaches its goal state faster. An objective function that encodes these

requirements is:

min f(s) =

it [q' I si - sf + r' I ui l]+ P' I ST - sf 1 2.3-1}

where si is the state at time i, sf is the goal state, ST is the state at time T, or the final state,

and ui is the force vector at time i. q', p', and r' are different weights. The q' I si - sf I

term minimizes the average distance from the goal across all states, r' I u1 I minimizes

fuel usage across all states, and P' I ST - Sf I minimizes the distance between the final state

and the goal state. If p' is given a much higher value than q' and r', any solution that

does not achieve the goal state will be severely penalized, which means every solution

will reach the goal.

The first set of constraints in the BIP encodes the dynamics of each vehicle; in the

simplest case, this requires constraints that indicate how the state vector changes due to

the force vector. These changes will follow standard physics rules; therefore examples of

such constraint for a single vehicle include:

Vi'x = Vi. 1,x + Ui.1,x {2.3-2}

Pi,x = Pi-1,x + Vi-1,x {2.3-3}

where vi,x indicates the velocity at time i in the x direction, pi,x indicates the x-position at

time i, and vectors v and p together comprise the s vector used in 12.3-1}. These

equations would then be repeated for all vehicles, at all times, in all dimensions of the

problem.

Finally, the obstacle avoidance constraints must be encoded. Avoidance of a

convex obstacle can be viewed as a selection of a particular side on which to pass the

obstacle. For instance, avoiding a square obstacle could be accomplished by passing it on

the north, south, east, or west. Thus avoiding an obstacle involves the decision to select a

particular choice of direction; this language implies that obstacles can be naturally

represented as logical decisions in an HDCP. To create this representation for an

arbitrary convex obstacle, the outside boundaries of the obstacle are linearized and an

inequality constraint is introduced to describe each linear segment. The clause that

26

consists of a disjunction of each inequality constraint therefore defines a boundary that is

equivalent to the obstacle.

,3 L

Figure 3: Illustration of the conversion of a non-convex obstacle, (A), into two convex obstacles, (B) and
(C), which are then linearized.

This idea was applied to simple square objects in Figure 15 in Chapter 4. For an

example of this process for an arbitrary object, consider Figure 3. Here a non-convex

obstacle, (A), is first split into two convex obstacles, (B) and (C). The boundaries of each

of these obstacles are then divided into segments which can each be linearized and

represented as linear inequalities (Lb,1, L,, 1, etc.). Examples of some of the resultant

inequalities might include

Lb,1: -100-x + y + P1 2 0 {2.3 -4
Lb,2: -2-x + y + P2 0 {2.3 -5}
Lc,1: -100.x + y + P1 0 {2.3 -6}
L,, 2: 3-x + y + p3 > 0 {2.3 -71

and so on, where P1, P2, and p3 are various points on the map. This process of

linearization enables any level of detail: to more accurately represent the obstacle

boundary, break the boundary up into smaller segments. Note that no claim is made

regarding the efficiency of the conversion to this representation, only that obstacles in a

CPP can be accurately represented in this way.

27

The requirement that one boundary segment must be selected for each obstacle

can be encoded in a BIP program in the form of equations {2.1-3} and {2.1-4} from

Chapter 2. Thus equations {2.3-4} through {2.3-7} would become

Lb,1: -100-x + y + pi -R(1 - bb,1) {2.3-8}
Lb,2: -2-x + y + P2 s R(1 - bb,2) {2.3-9}

L,1: -100-x + y + pi R(1 - bc,1) {2.3-10}
Lc,2: 3-x + y + P3 -R(1 - bc,2) 12.3-11}

and so on, where each of the ba,'s are binary and R is a very large number. To make sure

that at least one segment is selected for each obstacle the constraints

2i bb,i 2 1 {2.3-12}

Ii bci 2 1 {2.3-13}

and so on, are added to the BIP as well.

2.3.2 CPP Problems Modeled as Clausal LP Problems

Many of the constraints used to encode a Cooperative Path Planning problem as a

BIP are also used in the Clausal LP representation of CPPs. {2.3-1}, {2.3-2} and {2.3-3}

do involve any logical choices, and so are used exactly as they are. Thus the objective

function and state transition constraints are identical between the BIP and CLP versions

of a CPP. The CLP representation also relies on the linearization of convex obstacles as

described earlier. However, instead of using a series of n+l constraints for each obstacle

that is linearized into n inequalities, a CLP uses a single n-disjunct clause to model the

selection. The form of this clause is like that of {2.2-1} from Chapter 2. Hence instead

of constraints {2.3-8} through {2.3-13}, the clauses

Lb,1 V Lb,2 V ... {2.3-14}
Lc, 1 V Lc,2 V ... {2.3-15}

would be added to the Clausal LP. These avoidance constraints must be repeated for

every combination of obstacle, vehicle, and time instant, because every vehicle must

avoid every obstacle all the time. Thus a v-vehicle, z-obstacle, t-timestamp CPP problem

would result in a CLP with v-z-t total clauses.

28

3 Solving Clausal LPs through Branch and Bound

Branch & Bound is one of the most effective pruning methods for effeciently solving

BIPs. The key idea in B&B is to compute an optimistic bound on the solution costs for

nodes within a subtree of the search space, and to prune that subtree whenever the bound

is proven to be worse than a feasible solution already found. This chapter introduces a

method for solving Clausal LP representations of hybrid decision-control problems

(HDCPs) that is analogous to the combined Simplex-B&B method for solving binary

integer programs (BIPs). The key difference between the algorithms is in the way they

create branches in the search tree. The Clausal LP B&B algorithm introduced here

branches by selecting a disjunct from a clause rather than an integer assignment from the

domain of possible assignments. As we showed in Chapter 2, the advantage of this

approach is that the growth in the size of this search tree tends to be substantially less

than that for the equivalent encoding of the CLP as a BIP. In addition CLP provides a

building block for Conflict-directed Branch & Bound, introduced in Chapter 4.

Section 3.1 first reviews the traditional use of Simplex-B&B techniques to solve

BIP problems. This BIP-B&B provides the basis for the modified Branch and Bound

algorithm for Clausal LPs, introduced in Section 3.3. CL-B&B then provides a building

point for the complete Conflict-directed Branch and Bound algorithm, introduced in

Chapter 4, which completes the unification of the search efficiency of B&B with conflict-

direction and the powerful Clausal LP representation introduced in Chapter 2.

3.1 Review of Branch and Bound for BIPs

The Branch and Bound technique has traditionally been applied to MIP problems,

and many of the key concepts of the algorithm carry over naturally to solving Clausal

LPs. The parallels between a B&B solver for MIPs and a B&B Solver for Clausal LPs

are particularly strong when one considers the restriction of MIP problems to the binary

case (BIPs). This section describes the B&B algorithm for BIPs as a foundation for the

clausal LP algorithms of this thesis. The motivation for the algorithm and the basic

search process are introduced in Section 3. 1.1. Sections 3.1.2 to 3.1.4 review traditional

methods for improving search efficiency by identifying subsets of the search tree that can

29

be ignored without a loss of solution optimality. Each of these methods relies on the

discovery of a special type of node midway down the tree. These special types are,

respectively, 1) nodes more costly than the current best solution (the incumbent), 2)

infeasible nodes, and 3) new incumbent nodes. Section 3.1.5 outlines an additional

modification that improves search efficiency by reducing the depth of the search tree.

3.1.1 Exhaustive Search Using Incumbents for a Global Optimal Solution

The solution to a BIP problem must assign values to both the real-valued

variables and the binary variables of the problem. A straightforward method for deriving

such a solution is to consider all possible assignments to the set of binary variables.

Given a particular binary variable assignment, the best solution that is consistent with this

assignment can be found by solving a single LP over the remaining unassigned, real-

valued variables. The optimal solution to the BIP is the best solution over all possible

individual assignments.

X1 0 X = 1

X2 0 X2= X2 0 X2

x1=0 x,=1 x=O x3 =1 x 3 =0 x=1 x,=0 x= 1

Figure 4: Search tree enumeration for Branch and Bound applied to Binary MIPs.

To keep track of the best solution at every step in an exhaustive search of all

possible assignments, the algorithm uses the concept of an incumbent. An incumbent

solution 1) assigns integer values to all binary variables; and 2) is more optimal (less

costly) than any previously discovered feasible solution. The incumbent solution is

continuously updated as better feasible solutions are found during the search. Therefore,

for minimization problems, the cost of the current incumbent sets an upper bound on the

30

possible cost of the best solution. Any LP problem that results in a solution that is more

costly than the incumbent will be discarded.

BIPBB(root)
1 U = +oo
2 incumbent = null
3 q = empty queue
4 q.insertFirst(root)
5 while (q not empty){
6 current = q.removeFirst()
7 cost = solution to relaxed LP at current
8 if (current is infeasible)
9 go to line 5

10 if (cost > U)
11 gotoline5
12 noninteger found = false
13 for each binary variable j, while (! noninteger-found) {
14 if (value of j is non-integer) {
15 non integerfound = true
16 p1 = copy of current
17 add constraint "j = 0" to p1
18 q.insertFirst(pl)
19 p2 = copy of current
20 add constraint "j = 1" to p2
21 q.insertFirst(p2)
22 }
23 }
24 if (! noninteger-found) {
25 U = cost
26 incumbent = current
27 }
28 }
29 return incumbent's variable assignment

An enumeration tree is used to establish and keep track of the order in which

assignments to the binary variables are considered. Figure 4 shows this tree structure. At

every level an unassigned binary variable is selected; each tree branch is labeled with one

of the assignments to that variable. This is called resolving the variable at that level. All

nodes from that branch downward include the assignment of that variable to that value.

Each leaf node at the bottom of the tree contains a complete assignment for all binary

variables. Solving the LP that includes the assignments at any leaf may also provide a

feasible, possibly non-optimal solution to the original binary BIP problem. The solution

at any of these nodes would serve as an incumbent if the value at that node was more

optimal than any previously discovered incumbent.

31

Figure 5 provides the pseudo code for the complete B&B algorithm for BIPs. The

variable incumbent stores the current incumbent node, which includes the particular

assignment to the binary variables and the cost of the LP solution with those assignments.

U stores the cost of the incumbent (or io when no incumbent exists). A queue q keeps

track of the order in which the nodes in the search tree are explored. Note that nodes are

added to and removed from q from the front. This LIFO policy results in a depth-first

search exploration pattern. During the iteration of the main loop, current references the

current node being examined that may be expanded into children nodes. Finally, the

boolean flag non_integerjfound is true during an iteration if and only if one of the

binary variables is assigned a non-integer value in the solution to the LP. Certain parts of

the pseudo code, such as the concept of relaxed problems and the pruning in line 10, will

be discussed later in this section.

For each iteration, a node in the tree is selected (6) and the LP at that point is

solved (7). The problem is framed as an LP instead of as a BIP by allowing any

unassigned binary value to take on a real value between 0 and 1. The purpose of this

relaxation is to identify prunable subspaces quickly, a process that is explained in Section

3.1.2. If the solution at the current node has all integer values for the binary variables and

if the cost is not greater than or equal to the incumbent cost already found (checked on

line 10), then the new solution provides an incumbent with lower cost (25-26).

Otherwise, the algorithm creates a new level in the tree by branching into two descendant

nodes (15-21). These new nodes are modified from the parent through the addition of

constraints (17, 20). These constraints impose distinct integer values onto a binary

variable (selected in line 14) that is assigned a non-integral value in the solution of the

parent's LP. Only variables with non-integral values are considered for this assignment

in order to ensure that no tree level adds dominated constrains that do not affect the

solution; the rationale behind this selection criterion is explained more in Section 3.1.5.

The two subproblems that result from adding the new constraints are inserted back into

the queue (18, 21).

Figure 6 illustrates how the search process uses incumbent solutions at the leaf

nodes of the tree to track the best global solution found thus far. The initial BIP problem

with no assigned binary variables is shown to the right of the root node at the top (0

32

level) of the tree. As the search progresses, each branch of the tree adds the assignment

of 1 and 0 to a particular binary variable. Using a depth-first search policy, first the root

node is expanded and the nodes on the 1" tree level are created by assigning values to xi.

The left node on the first level is then expanded to the 2nd level by assigning values to X2.

mln 3x1 + 4x2
s.t. x1 + x 2 2 0.5

x1, X2 2:0

xy ,x2 C t, 1)

\ /

4 3 7

min 0 min 4 min 3 min

s.t. 0 2 0.5 s.t. 1 2 0.5 s.t. 1 2 0.5 s.t.
020 120 0 0

3+4
1 + 1 2 0.5
1 0

Figure 6: Illustration of the search process using BIP B&B. Numbers in the circles are the cost of the

LP solution at a particular node. Integer value assignments to the binary variables are shown along the

tree branches. Double circles indicate an incumbent node and filled-in circles indicate infeasibilities.

The first node created at the second level of the tree (displayed as a filled in circle

with no numeric value) contains the assignments x1 = 0 and x2 = 0. These two

assignments together with the original LP constraint x1 + x2 0.5 result in an infeasible

problem. Its sibling node, containing x1 = 0 and x1 = 1, results in a solution cost of 4. At

this point, no incumbent nodes have been found. Therefore, this node meets the first and

second characteristic of incumbents: it assigns integer values to all binary variables, and

it is more optimal than any previously discovered incumbents) characteristics of

incumbent. Hence the node is stored in incumbent.

33

Since none of the nodes on the second level can be expanded, the algorithm

expands the right branch of the lt tree level next. The node with cost 3 (which assigns x1

= 1 and X2 = 0) becomes the new incumbent because it assigns integer values to the

binary variables and is less costly than the last incumbent (which had an objective

function value of 4). The final, rightmost node at the 2 "d level assigns xi = 1 and X2 = 1.

It therefore would not qualify as an incumbent even though it assigns integer values to

the binary variables, because an incumbent with lower cost (its sibling with cost 3) has

already been found. The globally optimal solution for this problem is the lowest-cost

incumbent, the node with cost 3.

Note that the entire search tree contains approximately O(a") leaf nodes, where a

is the average number of values that each integer variable can be assigned, and n is the

number of such integer variables. Hence an exhaustive search over binary assignments is

exponential in time. Branch & Bound speeds up this search process by pruning the

search tree under several conditions, described in the next three sections.

3.1.2 Subspace Pruning through Bounding

The process of searching through the sets of binary variable assignments can be

significantly sped up using the concept of bounding. As discussed in Section 3.1.1, the

cost of an incumbent sets an upper bound on the cost of the overall solution to the BIP. If

the algorithm can determine that all of the nodes in a particular search subtree will have

higher cost than the current incumbent, the entire subtree can be left unexplored. This is

called pruning the subtree, and is the "bound" part of the Branch and Bound algorithm.

This pruning can only occur when an incumbent has already been discovered earlier in

the search process. Pruning also requires a way to identify whether or not a subtree

contains solutions with cost worse than the incumbent, and must perform this

identification quickly.

34

The algorithm identifies subtrees that consist entirely of nodes worse than the

incumbent by solving a relaxed LP problem at the root of each subtree. The solution of a

relaxed LP at a node is an optimistic estimate of the cost of all nodes in the subtree below

min 3x1 + 4x 2(A) 1.5 s.t. x1 + x 2 2 0.5

x11, X2 2 0

I01

min

> 0.5 2 (B) (C) 3 .t.
2: 0

(D)

min 4

3 + 4x2
1 + x 2 2 0.5
X2 > 0

S.t. 1 ? 0.5
1 2: 0

Figure 7: Illustration of relaxed LPs and the use of bounds for pruning the search tree in B&B.
Numbers in circles are the cost of the solution to the relaxed LPs, shown next to each node. Double
circles indicate an incumbent node, filled-in circles indicate infeasibilities, and diagonal lines through a
node indicate that the subtree rooted at that node is pruned.

that node. If this optimistic bound is greater than the cost of the incumbent, then the

subtree need not be expanded. Given a current node being visited during a search, a

relaxed LP for the node is derived from the original BIP problem by relaxing all of the

unassigned binary variables to be real-valued variables. More specifically, unassigned

variables are allowed to have any real value between zero and one. As a result, only real-

valued variables exist in the problem, hence the problem is an LP and can be solved using

Simplex. In addition, the solution of this LP is guaranteed to be at least as good as the

solution of any leaf node of that subtreee.

Figure 7 illustrates the use of relaxed problems in the B&B search process. The

most relaxed LP results from making all integer variables real valued (removing all

35

min 4x2
s.t. X2

x
2

integrality constraints), and serves as the relaxed problem for the root node of the search

tree. The node at the 0 th level of the tree (A) contains the most relaxed LP that results

from relaxing the integrality constraint for both xi and X2. Each deeper level of the tree is

constructed by selecting a relaxed binary variable to resolve (by assigning it to be either 0

or 1) and leaving relaxed the remaining binary variables that are not already resolved at

the parent node. For example, the first level of the tree in Figure 7 resolves xi and leaves

x2 relaxed. Next to each node in the 1 St tree level is shown the relaxed LP contained in

that node. In the next iteration, another fringe node is selected and one of its relaxed

binary variables is resolved. For example, the subtree that extends node (B) resolves X2,

leaving no variables relaxed. In this way, all variables at any node are either relaxed or

resolved. As mentioned, since only real-valued variables exist in every problem, an LP

solver can be used to solve the problem at every node.

As pointed out earlier, using relaxed LPs enables the algorithm to identify

subtrees that can be pruned because the solution to a relaxed LP at any node sets a lower

bound on the cost of the LP solutions at all descendant nodes. At each level of the search

tree, the only difference between a child node and its parent is the addition of a constraint

that assigns a value to a previously real-valued binary variable. For example, the only

difference between the nodes at Figure 7 (A) and (B) is the addition of the constraint x1 =

0.

The list of constraints in the LP grows monotonically with the depth of the tree;

that is, no constraint that restricts the feasible region is ever removed, and every

descendant of a node has a feasible region that is at most as large as the ancestor's

feasible region (the feasible region weakly decreases in size with tree depth). The

objective function for all nodes is the same, and the optimal solution for each node is

simply the point in the feasible region that has the lowest cost, based on that function. As

a consequence, a child node will either have an optimal solution at the same point as the

parent, or will have a more costly optimal solution at another point in the restricted

feasible region.

36

min xI y
3 s.I. x= 3

x=0

t y=3
77- y=-0

3 Y-x-~2

(B)

(A)

min x y
3 s.I. x = 3

y=3
y= 0

3

min x +y

3- s.t. x= 3
x=0

y=3

y=0

(C)

Figure 8: Illustration of how the LP feasible region either shrinks or remains the same in descendant
nodes. The filled dot indicates the optimal solution for each node. Note that the optimal solution in (C)
is also within the feasible region in the parent (A), indicated by the lightly shaded dot. Since it is in

general true that no new points will become feasible in descendants, no descendant can ever have a

more optimal solution than its ancestor.

For example consider Figure 8, which illustrates this idea using a minimization

problem. The parent node (A) contains four constraints that bound a feasible region

(arrows indicate the direction of the constraint, and hashed lines on one side of a line

indicate the infeasible region. Within this region the optimal point is at (0, 0), indicated

by the solid dot. Note that the lightly shaded point (0, 1) is within the feasible region.

The first descendant node (B) adds the constraint y-x -2 to the constraint list,

which shrinks the infeasible region. This does not affect the solution value, however,

because (0, 0) is still feasible and no new points have been introduced. Descendant node

(C) adds constraint y+x 2 1, which makes (0, 0) infeasible; the new solution at (0, 1) is of

greater cost. (C) could not have had a better cost solution than (A) since (C)'s feasible

region is entirely contained within (A)'s. More generally, (A) sets a lower bound on the

cost of the LP solutions at all nodes in its subtree.

37

As mentioned earlier, the B&B algorithm uses the upper bound set by an

incumbent (from Section 3.1.1) combined with the lower bound set by the root node of

any subtree to identify subtrees that can be pruned. If a node is discovered with cost

greater than that of the current incumbent, this node is guaranteed to not be an optimal

solution to the overall BIP, since its cost exceeds the upper bound. Further, all

descendants of this node have greater cost than it, and therefore have greater cost than the

incumbent's upper bound. Therefore, all descendant nodes can be ignored: the subtree

that is rooted at the higher-cost node can be pruned.

min 3+4x2
s.t. 1 + x 2

x
2

min 3x, + 4x2
(A) 1.5 s.t. x1 +x 2 2 0.5

x11, X2 2 0

mi 0

0.5 3 (C) (B) 2 s.t.
0

(N

(D) (E)

min
S.t.

4
1 >0.5
1 * 0

Figure 9: Pruning process due to lower and upper bounds on the cost of solutions.

To summarize, relaxed LPs are a good way of identifying prunable subtrees.

First, they can be used to discover subtrees that consist entirely of nodes that are

guaranteed to not contain the optimal solution to the overall BIP. Second, because an LP

solver can be used to solve the relaxed LP, they are efficient to use.

38

4x
2

K
2

(2

0.5
0

Figure 9 illustrates the overall pruning process for B&B. In this example, the

assignment of a binary variable to 1 is incorporated into the first sibling, and the

assignment to 0 into the second. The relaxed LPs at nodes (B) and (C) are solved first.

Node (B) assigns x1 = 1 and X2 = 0. It therefore becomes the first incumbent. The

solution at node (C) assigns xi = 0 (it is resolved) and x2 = 0.5. All variables are not

integral, so this node is not an incumbent. Node (B) is not expanded because a subtree

rooted at an incumbent is guaranteed to not contain the optimal solution to the problem

(see Section 3.1.4). When Node (C) is expanded next, one of its descendants is infeasible

(E). The other descendant, node (D), has a higher cost (4) than the current incumbent's

cost of 3. Therefore node (D) and all its descendants would be ignored and the subtree

rooted at (D) - if there was one - would be pruned. In this particular scenario the subtree

rooted at (D) consists of only a single node. The remainder of the search process in this

example is discussed in later sections.

The pseudo code in Figure 5 shows the implementation of the process of pruning

because of bounds. Line 10 performs an initial check to see if the cost of the solution at

current is more than U, the cost at incumbent. If so, the algorithm returns to line 5 and

performs no processing on current. Since no children are added to q and current has

been removed from q, the entire subtree rooted at current is pruned.

3.1.3 Subspace Pruning using Infeasibility

Another method employed by B&B to of improve search efficiency is based on

identifying subtrees that consist entirely of nodes that are guaranteed to be infeasible.

B&B prunes infeasible subtrees in a way similar to the pruning of suboptimal subtrees

discussed in the previous section.

During the search process, the relaxed LP problem at a node may be found to

contain a set of constraints that results in no feasible region. This is discovered by the LP

solver. When this occurs, no leaf node below the infeasible node can provide a feasible

solution to the original BIP problem. This follows by using the same argument that was

used in Section 3.1.2. Recall that the feasible region of all descendant nodes are either

smaller or the same size as the subtree root node. If the root node is infeasible, meaning

the feasible region is empty, then all descendants must also have empty feasible regions.

39

Thus all descendant nodes are guaranteed to not provide a feasible solution to the BIP

and can be ignored. This process of identifying prunable subtrees is efficient because it

only requires solving a single LP.

As an illustration of pruning using infeasibility, consider Figure 9 again. (E) is

infeasible because the selected constraints x1 = 0 and x2 = 0 are not compatible with the

requirement that x1 + x2 0.5. Thus (E) and all descendants in its subtree (in this

example the subtree consists of only one node) are ignored. Lines 8 and 9 in Figure 5

implement pruning based on infeasibility. They mirror lines 10 and 11, which were used

for pruning based on bounds. If current is infeasible then the execution point restarts at

line 5 and current is ignored.

3.1.4 Subspace Pruning using Exact Integer Solutions

This section reviews a third way of improving search efficiency through subspace

pruning. This approach can be used when the exact optimal solution of a subtree can be

identified from the relaxed solution at the subtree root. This allows the algorithm to

avoid explicitly exploring and solving the LP at every node in the subtree. In particular,

the relaxed LP at the root of a subtree may return as its optimal solution an assignment

where all relaxed variables are given integer values. If this occurs, the relaxed solution at

the root node must also be the optimal solution at all leaves of the subtree. .

If all the binary variables of a relaxed problem at a node N have been assigned

integer values, then the only difference between the unrelaxed LP at N and the relaxed LP

at N is that the unrelaxed LP includes constraints that require the relaxed variables to be

integers. These constraints can have no impact on the solution to the relaxed LP, since

this solution already assigns integer values to all variables. Therefore, the solution to the

relaxed LP at N is the same as the solution to the unrelaxed problem at N.

For example, consider Figure 10, which completes the search process for the

problem used in Section 3.1.2 and 3.1.3. At node (A), x1 is resolved and X2 is relaxed.

Hence x1 is already assigned an integer value while X2 is not constrained. However, the

optimal solution to the relaxed LP (shown beside the node) assigns x2 = 0. Therefore the

solution to the relaxed problem assigns integer values to all binary variables. The

unrelaxed problem, which would require X2 to be 0 or 1, would still be solved by this

40

assignment. Since the addition of a constraint cannot improve the solution, the optimal

solution for the unrelaxed problem is also (xi = 1, X2 = 0). The solution at (A) is an exact

integer solution. None of (A)'s descendent nodes is a superior solution: (B) has the same

cost and (C) is even more costly. Hence pruning the subtree rooted at (A) would not

reduce the optimality of the overall discovered solution.

min 4x2
s.t. x2

x
2

min 3x, + 4x 2
1.5 si. x1 + x 2 2 0-5

x 1 , x 2 2 0

101

min 3+4x2
2 0.5 2 (A) 3 -.t 1 + x 2 0.5
20 x2 2 0

4 (B) (C)

min 3 min 3+4
s.t. 1 > 0.5 s.t. 1 + 1 > 0.5

0 0 1 20

Figure 10: Illustration of B&B pruning based on the discovery of an exact integer solution. Double
circles indicate an incumbent node with an exact integer solution, and diagonal lines through a node
indicate that the node is pruned.

When B&B discovers an exact integer solution, it acts based on one two cases:

either the solution has a cost equal to or greater than the cost of the current incumbent

solution; or the solution has a lower cost than the current incumbent solution (which is

identical to the case when no prior incumbent has been found). In the first case, the node

does not improve on the incumbent, and so it is ignored and its subtree is pruned. In the

second case, the newly discovered solution meets all the requirements of a new

incumbent solution: it assigns integers to all binary variables, and has a lower cost than

41

any previously discovered incumbent solution. Hence it is recorded as the new

incumbent and its subtree is pruned. In summary, a new exact integer solution is

discovered exactly when a new incumbent is discovered.

In Figure 5, the process of pruning because of incumbent discovery is already

reflected in lines 14-22. If current really is a new incumbent, it will be neither infeasible

nor have a lower cost than U, and execution will proceed past lines 9 and 11.

Additionally, no binary variable j will be discovered to have a non-integer value in line

14. Therefore, lines 15-21 are never executed, and so nonintegerjfound will still be

the default value of false at the end of the loop. Lines 25 and 26 are executed, and so the

discovery of the new incumbent is noted by updating variables incumbent and U.

Finally, because lines 15-21 are never executed, the insertEndo function will not be

invoked for any children of current, and the subtree rooted at current is pruned.

3.1.5 Restricting Search Tree Depth using Active Variables

The final search efficiency improvement focuses not on subspace pruning, but on

reducing the number of tree levels by restricting the possible choices for variable

resolution. This is accomplished by not splitting on binary variables that are

serendipitously assigned integer values by Simplex. More specifically, a binary variable

is resolved in order to ensure that it has an integer value. If at least one relaxed variable

is assigned a non-integer value, then at least one variable must be resolved in order to

find the unrelaxed solution. Relaxed, unresolved variables that are assigned non-integer

values at a particular node are called active variables at that node. The set of active

variables is different for each node, based on the variable assignments. For example,

node (B) in Figure 7 assigns X2 = 0.5, and so X2 is an active variable at node (B). On the

other hand, node (C) in the same figure assigns X2 = 0, and so X2 is not an active variable

at node (C).

If variable v is non-active at a node being expanded, then v does not need to be

explicitly resolved for during the expansion. Since the variable is already integral,

nothing is gained by resolving it and explicitly setting it to be integral. Furthermore,

resolving other variables that are active may eventually result in a solution where no

variables are active, without having ever explicitly expanded v. If this occurs, an exact

42

integer solution (as discussed in Section 3.1.4) has been discovered. This removes an

unnecessary level of the subtree entirely, and reduces the total number of nodes that are

explored. Therefore whenever a node is expanded, only the active variables at that node

are considered for resolution. This is reflected in the pseudo code by the fact that block

15-21 in Figure 5, which adds a level to the tree, only occurs if the Boolean expression in

line 14 returns true. Line 14 returns true only if the binary constraint on j is not met,

which means j is active.

This concludes the review of B&B for BIPs. To summarize, B&B performs

search by solving incrementally less relaxed problems at each level of the search tree.

The discovery of infeasible nodes, incumbents, and nodes less-optimal than the current

incumbent allow B&B to prune subtrees and thus reduce the total computational work

necessary to solve the problem. To further increase efficiency, activity is used as a

criterion for choosing which variable to branch on at every level. This ensures that each

new node advances the algorithm towards discovery of a feasible solution with all binary

variables assigned either 0 or 1.

3.2 Constraint-based A* for Optimal SAT

Constraint-based A* is an algorithm that builds from the concepts of DPLL SAT

and A* search to solve optimal satisfiability problems. There are also strong connections

between C-b A* and Branch and Bound. The primary feature of C-b A* is the use of

decision variables to explicitly select constraints to include in the LP that is solved at

every node.

C-b A* frames optimal CSPs as state space search problems by equating each

search state with a (partial) assignment of values to a set of decision variables. To build a

solution it solves for the unassigned variables in the problem by relaxing the

corresponding constraints and solving the partially constrainted problem. At each level it

branches on the possible values for a particular decision variable, adding constraints to

the children nodes. In this way the algorithm makes progress towards assigning values to

all decision variables and arriving at an overall optimal solution.

The second key feature of C-b A* is the use of mutual preferential independence

to select an admissible heuristic. In the case where the cost function of the optimal CSP

43

is MPI, the cost of a particular state is minimized by minimizing the cost of each

assignment at that state. Each estimated search state places a lower bound on the cost of

the overall solution, since the current assignment may end up being inconsistent later in

the search process. Since the estimated cost at each node is optimistic, the heuristic is

admissible.

The final key feature of C-b A* is the restriction on the number of children

expanded at every tree branch. For every node that is expanded, only a single child node

is created, corresponding to the child with the best (lowest-cost) assignment, out of all

potential children nodes. This can be done because there must exist some leaf node of

the least-cost child that has a more optimal solution than all leaf nodes of any other child.

Therefore the best-cost unexplored state within the expanded node must be a leaf node of

the least-cost child. Until one or more states within the least-cost child have been

eliminated, C-b A* therefore ignores all other children of the expanded node. When the

least-cost leaf node has been eliminated, the next best sibling is expanded. This process

significantly improves the efficiency of the search process, from 0(nb-n) to O(n), where

b is the maximum variable domain size and n is the number of algorithm iterations.

3.3 Branch and Bound for Clausal LPs

This section details the unification of the Branch and Bound method discussed in

Section 3.1 with the Constraint-based A* of 3.2. These two methods are typically used to

solve distinct types of problems: B&B as described is used for solving binary integer

programming problems while constraint-based A* is used for solving optimal decision

problems with logical constraints, such as propositional clauses. Therefore the unified

algorithm is perfectly tailored to solve the unified problem formulation presented in

Chapter 2: clausal LPs. Clausal LPs offer an effective way to model hybrid

decision/control problems, and the algorithm presented in this section, Clausal LP Branch

and Bound (CL-B&B), in turn offers an effective way to solve Clausal LP problems.

The unified algorithm lifts a number of features from each of its parent

algorithms. CL-B&B branches its search tree by resolving unsatisfied clauses in the

same way as C-b A* (Section 3.3.1), thus eventually arriving at a solution that solves all

clauses. It solves relaxed problems iteratively (Section 3.3.2), enabling efficiency

44

improvements through pruning. It restricts tree depth by using activity as a clause

selection criterion (Section 3.3.3), like BIP-B&B. It also uses clause size as a secondary

selection criterion in order to minimize the branching factor of the search tree (Section

3.3.4). Finally, it explores the search tree in a best-first order like C-b A* (Section 3.3.5).

All of these methods are implemented for Clausal LPs using modifications on concepts

borrowed from the BIP-B&B algorithm introduced in Section 3.1. Pruning subtrees

based on bounding and exact integer solutions is not implemented in CL-B&B because

incumbents are not used (see Section 3.3.5); however, infeasibility-based pruning still

occurs.

3.3.1 Search Tree Branching

The first key feature of the Clausal LP Branch and Bound algorithm is the

construction of the search tree. A node is expanded by selecting disjuncts for resolving a

previously unresolved clause. A clause is resolved at a particular node if one of the

clause's disjuncts is explicitly included in the LP at that node. Resolution of a clause

occurs by selecting one of the clause's disjuncts for inclusion in the problem. Thus

during each iteration of the CL-B&B, a deeper level of the search tree is created by

branching based on the disjuncts in the clause being resolved. Leaf nodes of the tree

resolve all the clauses in the initial problem. Therefore each leaf node contains an LP

that consists of the root node LP plus a distinct set of clause disjuncts. The best solution

to the original Clausal LP is the best solution across all leaves.

This tree structure generalizes from the branching process utilized in Constraint-

based A*. In particular, CL-B&B adds a constraint to every node at every tree level, with

each clause corresponding to a decision between constraints; this is similar to the

assignment of values to decision variables in the branching process of C-b A*. CL-B&B

also solves optimal CSPs that start are complete relaxed of all decisions/clauses at the

root of the search tree, and completely unrelaxed at the leaves. However, CL-B&B does

not restrict the number of children expanded to only the optimal child; instead it uses a

best-first search process (see Section 3.3.5) to restrict the node that it solves to that with

the lowest cost.

45

The enumeration trees in the vehicle path planning problem of Figure 11 illustrate

the branching process using obstacles which can be represented as clauses with four

disjuncts each, as described in Chapter 2. Objective function values are inside of each

node. Hashed/partially filled nodes indicate the current node, and solid nodes with no

(A)

st As 8

*1

I
4

'U

*

.- ao

S 6

@k

T& A

S . :

(C) I
Figure 11: Pictorial progression of tree expansion for the Branch and Bound for Clausal LPs. The
vehicle path that results from the solution at the current node is shown on the map on the left at
each step, with the cross representing the vehicle's start location and the triangles representing
waypoints. Lightly shaded obstacles without arrows are unresolved. The current enumeration tree
is shown to the right of each map, with the cost of the relaxed LP solution written inside each node
and the current node lightly shaded. Below the current node at each step is the relaxed LP at that
node and the dynamically expanding queue, Q.

objective value indicate infeasible subproblems. The matrix equation "As b" is an

abstracted view of the vehicle dynamics. At each tree level, the children represent

avoidance of the obstacle by going (when reading left to right) South, North, East, and

46

(0)

71

West. Thus each expansion of the tree creates four branches to four children, each

representing one of these selections. Moving from (B) to (C), for instance, exhibits the

selection of "north" as the way to avoid obstacle 2 (or alternatively, to resolve clause 2).

In the corresponding map in (C), the vehicle's path adjusts to avoid obstacle 2 by going

north of it. In (D), obstacle/clause 1 is resolved through the selection of "south", and the

map in (D) reflects this choice.

Figure 12 shows the pseudo code for CL-B&B. current and child once again

store nodes of the enumeration tree, while solution and cost contain specific node

components. Branching is handled between lines 13 and 19. Each child is an exact

replica of the parent current (14) except for the inclusion of the constraint disjunct

from clause c (15). child is then added to q if it is feasible (18). The process of

determining which clause to branch on is discussed in Sections 3.3.3 and 3.3.4.

3.3.2 Relaxed Problems

The second key idea in CL-B&B is the use of relaxed problems midway through

the enumeration tree. Like BIP-B&B, CL-B&B solves a relaxed problem at each node,

and nodes at lower levels in the search tree

B&B, a relaxed problem is created by

ignoring some subset of the original

problem's clauses that have not been

resolved. This is in contrast to B&B for

BIPs, which removes integrality

constraints, and is similar to Constraint-

based A*, which relaxes any unresolved

clause at a particular node by removing

it from the relaxed problem at that node.

Recall that the leaves of the search tree

consist of nodes that resolve all clauses

and the root node (Ot1 level) of the tree

includes no clauses at all. Nodes in

between the root node and the leaves

are less relaxed than their ancestors. For CL-

ClausalBB(root)
1 cost = solution to relaxed LP at root
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

q = empty queue
q.ordered Insert(root)
while (q not empty) {

current = q.removeFirst()
activeList = empty list
for each unresolved clause c in current

if (c is violated at current)
activeList. ordered Insert(c)

if (activeList empty)
return solution to current

c = activeList. remove First()
for each disjunct in c {

child = current
add disjunct to child
compute relaxed LP at child
if (child feasible)

q.ordered Insert(child)

}

Figure 12: Branch and Bound for Clausal LPs

47

contain partially relaxed problems that resolve some of the disjunctive clauses and relax

the rest. Every node in the tree also has an exact replica of the root node's LP (the

objective function plus the non-disjunctive constraints).

As an example of relaxed problems in CL-B&B, again consider Figure 11. In the

initial problem, the presence of obstacles 01, 02, and 03 impose constraints on where

the vehicle (designated by the cross) can maneuver to. However, the algorithm first

solves relaxed problems, higher in the search tree, while ignoring the constraints imposed

by some of these obstacles (B). As the algorithm progresses, it incorporates more and

more constraints and the LP problems that it solves get less relaxed (C, D). By the end of

execution the algorithm is solving an LP that incorporates all of the obstacle-based

constraints (E).

In Figure 12, the initial problem solved is the completely relaxed LP contained in

root (1). At each newly constructed tree level, a particular disjunct is added to each

child (15), which creates a slightly less relaxed problem than current. The relaxed LP at

the new child is then solved (16) before insertion into the queue.

3.3.3 Restricting Search Tree Depth using Active Clauses

The third key feature of CL-B&B is that it applies the concept of activity to

clauses in order to determine which clause to branch on during every iteration. This is in

contrast to BIP B&B, where the branching takes place on a binary variable, based on

variable activity. A clause is active at a particular tree node if and only if all of its

disjunct inequalities are violated by the solution to the relaxed problem at that node. The

principle behind this definition is similar to the definition of active variables. An inactive

variable is one that does not need to be resolved because it is already satisfied by the

current solution to the relaxed problem. Similarly, an inactive clause does not need to be

resolved because it is satisfied by the current relaxed problem solution. Specifically, the

clause is satisfied if at least one of its disjunct inequalities is satisfied by the current

relaxed problem solution.

Figure 13 illustrates the concept of active and inactive clauses. The problem in

this example is used again extensively in Chapter 4. The node being examined is a root

node, with no resolved clauses. The list of clauses in the overall Clausal LP is listed to

48

the left of the node. The solution to the LP with no added disjuncts assigns x = 200 and y

= 200. At this solution point, three of the disjuncts in clause c are satisfied: x 2 80, x 2

60, and x > 30. Therefore the current solution does not need to change at all to resolve

clause c; it is possible that resolving just clauses a and b will result in a solution to the

original unrelaxed clausal LP without explicitly resolving c. Thus C is non-active and is

not a candidate for resolution. None of the disjuncts in clause a or b are satisfied and

therefore both of these clauses are active.

Lines 6-12 in Figure 12 perform the selection of the branching clause using clause

activity. activeList stores the list of active clauses and is initialized to be empty (6). For

each clause c that is not explicitly resolved by having a disjunct included at current (7)

CL-B&B adds it into activeList if it is active at current (8-9). If no active clauses exist

(10-11), every clause is resolved by current and a solution has been found and is

returned (Section 3.3.5 explains why a solution found here must be the globally optimal

solution).

Unresolved Clauses Node Relaxed LP LP Solution

a: x S 100 Vy5 50 max x + 3y x = 200
b: x:5 10 V y:5 5 V y < 4 r s.t. x: 200 y = 2 0 0

V V Vy<5 y 5 200 f = 800

Figure 13: Illustration of active and non-active clauses. To the left of the node is the list of clauses,
with the non-active clause and its satisfied disjuncts faded and in italics. To the right of the node is the
LP with no additional disjuncts, and to the far right is the LP solution at this node.

3.3.4 Ordering Clause Resolution based on Clause Size

The fourth key idea in CL-B&B is using size as a secondary criterion (after

activity) for the selection of clauses to branch on. In the case where multiple clauses are

active at a parent node, the algorithm selects the clause with the fewest number of

disjuncts. This concept builds from the most-constrained variable heuristic used in other

search algorithms [8]. This heuristic selects for assignment the variable with the fewest

remaining choices in its domain. It has the benefit of trying to delay assignment of

variables with large numbers of choices, which would create many tree branches. The

assignment of the most constrained variable sometimes restricts the choices available for

other variables and reduces the overall average branching factor of the search tree.

49

In the clause-selection domain, the analogous heuristic used is termed thefewest-

disjunct clause heuristic. It has the benefit of trying to delay resolution of clauses with

large numbers of choices, which would also tend to increase the tree branching factor

considerably. This reduces the number of children created for the parent node; in general

this tends to reduce tree width at shallower levels. As discussed above in Section 3.1,

branch and bound algorithms will sometimes prune a subtree and not explore deeper

levels. Therefore delaying the increase in tree width to deeper in the tree may have the

effect of avoiding the width increase entirely; this will tend to improve search efficiency.

In addition to checking clause activity, lines 6-12 in Figure 12 also performs

clause selection based on clause size. The insertion of clauses into activeList is ordered

on the number of disjuncts, so clauses with fewer disjuncts are stored at an earlier

position in the list. Therefore the first element of activeList will be the active clause

with the fewest disjuncts. If an active clause exists, the first c of activeList is retrieved

(12) and used for branching (13-19).

3.3.5 Utilizing a Best-First Search Order

The fifth and final key concept in CL-B&B, based on C-b A*, is the order in

which nodes in the search tree are explored. CL-B&B uses a best-first search order. This

is in contrast to the depth-first order used by the BIP-B&B algorithm introduced earlier.

A best-first order maximizes search efficiency by keeping the algorithm from deeply

exploring a subtree that is known a priori to contain only high cost nodes, relative to

other subtrees. However, use of BFS comes with some tradeoffs. For example, memory

usage of BDS is O(bd) where b is the maximum number of disjuncts per clause and d is

the number of clauses. By comparison, depth-first search only uses O(b+d) memory.

Insertion into a min-priority queue (see the implementation discussion below) also

requires more time than the stack manipulation required for depth-first search.

Another result of using best-first search is that incumbents are not used. The

reason is that any solution that is discovered in a BFS ordering and would qualify as an

incumbent solution would also qualify as the optimal solution. This is because a solution

must assign integer values to all binary variables in order to qualify as an incumbent. But

since nodes are extracted from the queue and examined in a best-first order, every

50

examined node must also be more optimal than any node that has yet to be examined.

Therefore the current incumbent node is a solution to the overall unrelaxed problem, and

is the best solution possible; hence it can be returned as the optimal solution. As a result,

incumbent nodes never need to be stored. Without incumbents, it is meaningless to try to

prune using bounding (as discussed in Section 3.1.2) or prune using exact integer

solutions (Section 3.1.4).

Certain elements of the pseudo code implementation reflect the modified search

ordering. Instead of q being a simple stack that is pushed into and popped from, the

algorithm uses a min-priority queue that orders nodes by cost (3, 18). Therefore lowest-

cost nodes are resolved earlier. This requires that a node's relaxed problem is solved

before insertion into the queue (16) instead of after removal. This also guarantees that as

soon as a node that solves the problem is removed (i.e., as soon as any node with no

active clauses is found), the algorithm has discovered an optimal solution and can

terminate (11). Note that since the algorithm does not store incumbents, there is no

reference to incumbent or U.

In Figure 11, each iteration of the algorithm (B), (C), (D) extracts the least-cost

element from the queue, Q, for expansion. In (C), for example, the node with cost 100 is

at the head of the queue, followed by the remaining nodes in increasing cost order. In

(D), the node with cost 100 has been removed and expanded, while its children have been

added. The ordering of the entire queue is based first on cost; therefore the new nodes

with cost 130 and 170 are inserted before the older node with cost 190; the higher-cost

children are inserted deeper in the queue. The algorithm halts in (E) because it has found

a solution that resolves all obstacles, which is guaranteed to be the optimal solution

because of the best first order.

51

4 Conflict-Directed Branch and Bound

An effective method for quickly solving logical decision problems is conflict learning,

also known as conflict-directed search (CdS) [9]. In CdS, when a solution is found to be

infeasible, the source of the infeasibility is generalized and used to prune other infeasible

portions of the state space. This generalization is represented as a partial assignment to

variables, called a conflict. This chapter generalizes conflict-directed search to clausal

LPs, building upon the Branch and Bound algorithm for Clausal LPs described at the end

of Chapter 3. The resultant algorithm is called Conflict-directed Clausal LP Branch and

Bound (CDCL-B&B). The integration of conflict-direction into B&B reduces the

number of relaxed LP problems that must be solved, improving the total time to find a

solution. This is empirically demonstrated in Chapter 5. The efficiency improvement is

accomplished by guiding the search progression away from areas of the search space that

are known to be infeasible, based on previously discovered infeasibilities. Hence CDCL-

B&B unifies the CD-A* algorithm for Optimal Propositional Satisfiability problems with

BIP B&B analogous to the unification of Chapter 3.

Section 4.1 provides a high-level review of the Conflict-directed A* algorithm for

use in solving optimal logic decision problems. Section 4.2 then discusses the adaptation

of CD-A* and conflict learning to clausal LPs. Section 4.3 introduces in detail the

central contribution of this thesis, CDCL-B&B.

4.1 Review of Conflict-Directed A*

The Conflict-Directed A* algorithm utilizes the concept of a conflict to guide the

search process to a solution to an Optimal CSP. A conflict can be informally thought of

as a partial set of assignments that together result in infeasibility with respect to a set of

constraints. Many of the ideas used in Conflict-directed Branch and Bound, such as

conflicts, conflict-directed search, and constituent kernels, derive from the Conflict-

Directed A* algorithm. Therefore understanding the CDCL-B&B algorithm must be

rooted in a review of CD-A*. The material and figures in this section is based on [10].

A* search [11] uses a heuristic to estimate the cost of every state in the search

space. An admissible heuristic is one that provides an optimistic estimate of the cost. A*

52

only searches states with estimated cost that less than the optimal solution. However, to

guarantee optimality of the final solution, it must search every such node. In situations

where some states are infeasible, the search process can be considerably sped up by

generalizing individual infeasibilities into regions of the subspace that must contain only

infeasible states. All of these states can then be avoided based on the result of examining

a single infeasible state. In CD-A*, these generalizations are partial assignments known

as conflicts.

For example, consider Figure 14, which illustrates the search process used by CD-

A*. Whereas A* would search every single state in increasing heuristic cost order, CD-

A* is able to identify regions that share infeasibilities and skip over all the states in these

regions after exploring a single contained state.
Decreasing Decreasing

do4 SO ai I

Inconsistent
34 S OS 94 5 9

S7 S9 8g S8 5

0 0 0 Coniset 0 0 0 Con-sistei

Decreasing Decreasm g
Cost Cost

Figure 14: Illustrtion of the search process used by Conflict-diiected A*. Unfilled circles are unexplored
states, and filled circles are states that have been examined. The arrow indicates the order in which nodes
are explored.

The main CD-A* method is an interleaving of the generation of new candidae

solutions with the testing of each solution. Since the search proceeds in a best-first

manner (as in regular A* search), discovering that a candidate is feasible means that the

53

candidate is an optimal solution. If a candidate is inconsistent, the inconsistency is

generalized into a conflict, which identifies other states that are also guaranteed to be

infeasible (this generalization is discussed further below). The search node expansion is

organized such that the next candidate generated is the best candidate that resolves all

known conflicts.

A key component of CD-A* is the process of generalizing an inconsistent state

into a subspace that is known to only include states with that same inconsistency. The

first step in this process is to extract the conflict from the inconsistent state. One of the

key advantages of CD-A* is that it is flexible in regards to which algorithm is used to

perform this expansion; any CSP algorithm that performs conflict extraction is suitable.

The next step in the generalization is to map each conflict extracted so far to one or more

constituent kernels. A constituent kernel is a minimal description of all states that resolve

a particular conflict; that is, those states in which the conflict is guaranteed to not occur.

In a CSP, for instance, the constituent kernel of a conflict is a set of assignments, each of

which guarantees that the conflict cannot occur. More specifically, any state that

contains the assignments of any one constituent kernel of a conflict is guaranteed to

resolve that conflict.

For example, consider a set of variables VI, V2, and V3, each of which can be

assigned two values, G or H. Suppose during the investigation process, the state that

assigns {VI=G, V2=G, V3=H} is examined and discovered to be infeasible. Suppose

further that the conflict {Vl=G, V3=H} is identified to cause this infeasibility through

some conflict extraction process. In this case, one constituent kernel would be {VI=H},

because it ensures that V1 would not be assigned the value G, and so the conflict would

not arise. Another constituent kernel would be {V3=G}, since it ensures that V3 would

not be assigned H.

Recall that during the generate-and-test cycle of CD-A*, generated candidates

resolve all known conflicts. These candidates are constructed by first generating the

concise descriptions, called kernels, of the states that resolve all known conflicts, and by

extracting the best state from these kernels. In a CSP, kernels are constructed as the

minimal set covering of the constituent kernels of known conflicts. Hence, each kernel

contains a constituent kernel for every conflict. Finally, the next best candidate is created

54

from a kernel by assigning values to the variables that are still unassigned in the kernel.

This is done by assigning each variable its best utility value, independent of all other

assignments. Based on the property of mutual preferential independence (MPI) [15], this

method results in the next best candidate.

Continuing the above example, suppose another identified conflict is {V2=H,

V3=H}, resulting in the constituent kernels {{V2=G}, {V3=G}}. The minimal set

covering of these the sets of constituent kernels is {{V3=G}}, since this constituent

kernel resolves all known conflicts.

The final key property of CD-A* is the way in which kernels are constructed from

the constituent kernels. In the worst case, the minimal set covering technique that is used

to build the kernels is exponential in the number of decision variables. Therefore CD-A*

views the minimal set covering process as a search and uses A* to find the most optimal

state. In the search tree that is built for this search, the root node is resolves no conflicts,

the leaf nodes are kernels, and the intermediary nodes are partial set coverings of the

constituent kernels of the conflict. For example, in the example used above, the search

process would begin with a partial assignment that resolved no conflicts, {}. Next, the

least cost constituent kernel that resolves the first conflict would be identified, {V3=G}.

At the next level of the search tree, the second conflict would be resolved, but the current

partial set covering already resolves the second conflict. Thus the kernel identified would

be {{V3=G}}.

4.2 Conflicts in the Clausal LP Framework

The final objective in this thesis is to generalize the process of CD-A* to Clausal

LPs. To accomplish this first requires defining the concept of conflicts as it pertains to

linear programs. This section builds on the definitions of conflicts for satisfiability and

CSP problems to define conflicts in the LP framework. Section 4.2.1 develops conflicts

for Clausal LPs. Section 4.2.2 defines conflict resolution for Clausal LPs and describes

how conflicts can help guide the Branch and Bound search process away from infeasible

substates. The next section then develops the variant of CD-A* for Clausal LPs.

55

4.2.1 Defining Conflicts

Traditional conflicts in a CSP arise when a particular assignment of values to a

subset of all variables is impossible. As described in Section 4.1, this occurs when two or

more variable assignments are impossible to satisfy concurrently. Recall from Section

2.2.3 that a Clausal LP problem is analogous to CSP, where clauses are variables that are

resolved by selecting a disjunct ("value") from the list of disjuncts in the variable

("domain"). Viewed this way, a conflict in the Clausal LP framework occurs when a

particular selection of disjuncts is impossible to satisfy concurrently. A set of disjuncts

cannot be satisfied if the disjuncts' inequalities together denote an infeasible region.

Clausal LPs consist of not just clauses of disjuncts, but also non-disjunctive

constraints which must all also be met. However, these non-disjunctive constraints can

be viewed simply as clauses with a single disjunct (unit clauses). Therefore the formal

definition of conflicts need not distinguish between non-disjunctive constraints and

clauses. Note that an infeasibility that exists purely as a result of non-disjunctive

constraints renders the problem trivially unsolvable. CDCL-B&B assumes that these

infeasibilities are caught during problem formulation, and that the problems presented for

solving will contain only infeasibilities that involve at least one clause disjunct.

The formal definition for a conflict in the Clausal LP domain is:

A conflict is a set of inequality constraints D, taken from a Clausal LP CLP such that:
1. Each inequality in D is a particular disjunct of some clause cl of CLP.
2. The inequalities in D result in an empty feasible region.

For the remainder of this discussion, conflicts will be referenced in the form of a set { ax,

P, ...}. Each element of the set, such as a, references a particular clause a and a

particular disjunct within that clause x.

56

AU

02N

AM

(A)

____ ___ 2 = N

0 03 = S
All

Sm

(C)

(B)

- 1 vehicle avoiding 3 obstacles
at one instant of time

- Obstacles/clauses: 01, 02, 03

- For each clause i, one disjunct
can be chosen for each direction:

- N: y bN,
- S: y5 b
- E: x > bE, i
- W: x:5 by

- a = {O1=E,02=S,03=N}: feasible

- a = {01=E, 02=N,03=S}: infeasible

Figure 15: Representation of obstacles (A) as clauses in a Clausal LP, and assignments that result in
a feasible region (B) an infeasibility (C). The cross is a vehicle and the triangles are goal points. bx, i
denotes X the boundary of obstacle i.

As an example of Clausal LP conflicts, consider the following scenario in the

vehicle path-planning domain. Obstacles in this domain can be represented in the Clausal

LP framework as clauses of disjuncts. To do this, an obstacle's outside boundaries are

linearized and an inequality constraint is introduced to describe each linear segment. A

convex boundary is then described by a clause that is built from the disjunction of each

linear element of the boundary (this is discussed in more detail in Chapter 5). In the

simple case of a two dimensional square object, the boundaries linearize to four disjuncts.

57

A1

0

A vehicle can avoid the obstacle (and thus resolve the clause associated with the obstacle)

by going to the north, south, east or west of the obstacle. Based on the exact location of

the vehicle, these disjuncts are each associated with an inequality.

Figure 15(A) shows what would arise with three obstacles: 01, 02, and 03. As

shown, there is one clause that must be resolved for each obstacle. In Figure 15(B), a

particular selection of disjuncts for all the obstacles/clauses results in a feasible region,

shown in diagonal lines. This means no conflict exists in this situation. Figure 15(C), on

the other hand, shows a particular selection of disjuncts that results in no feasible region,

because the constraints requiring the vehicle to be north of 02 and south of 03 cannot be

concurrently met. Therefore, a conflict exists in this scenario, arising from disjuncts of

clauses.

Two conflicts are possible in this case. The formal definition of a conflict places

no requirement that the set of disjuncts D be of minimal size; it can include additional

disjuncts that are not necessary for infeasibility. Therefore, the conflict in Figure 15(C)

could consist of all three disjuncts {01=E, 02=N, 03=S} or simply the minimal subset

of these constraints that results in the infeasibility {02=N, 03=S}.

4.2.2 Efficient Search by Using Conflicts for Pruning

Just as conflicts are used to guide the search process in Conflict-directed A*, the

process of solving a Clausal LP can be guided using conflicts in order to identify areas of

the search space that must be infeasible. Infeasibilities tend to appear repeatedly during

the search process. For instance, suppose a search algorithm were exploring the tree

shown in Figure 16. Suppose the left branch rooted at the a1 node is searched initially,

and the infeasibility between c1 and b1 is discovered at the far left leaf node (designated

by the node with diagonal slashes). Later in the search, when the right branch rooted at

a2 is explored, the same infeasibility would be discovered again below b1 (also

diagonally slashed). Without some form of conflict detection, the algorithm would not be

able to identify {b 1 , c1} as a selection to avoid preemptively. Therefore the search

algorithm would waste time trying to calculate the solution to an LP that has no feasible

region. If instead the algorithm records the tbi, c1} conflict discovered earlier, it can

resolve the conflict and guide the search away from the infeasible subspace.

58

a: y< 100 V y<90 a2

b: x<10 V x<15 bb b2

C: x>20 V x>8

Figure 16: Illustration of multiple conflicts occurring while solving a Clausal LP. The disjuncts of the

clause resolved at each level is shown to the left of the tree, with disjuncts numbered fiom left to right.

Recall that Conflict-directed A* uses each conflict to create a constituent kernel, a

set of assignments which are each sufficient to resolve the conflict. CD-A* then uses

these to guide the search process. Constituent krenels exist in the Clausal LP framework

as well: a conflict's constituent kernel is a set of selected disjuncts, each of which is

sufficient to resolve the conflict. A conflict is resolved by a disjunct when the inclusion

of that disjunct in an LP problem guarantees that the LP will not contain at least one of

the inequality constraints of the conflict. In general, resolving a conflict {ax, $w,. .

requires selecting either another disjunct from clause a or (inclusively) another disjunct

from clause P, and so on, for all other constraints in the conflict. Therefore the set of

constituent kernels of a conflict is comprised of the alternate disjuncts for every clause

that has a disjunct in the conflict.

For example, in the problem shown in Figure 16, the conflict discovered is {b1 ,

c1}. To guarantee that this conflict does not appear in another node in the search tree,

either b1 must be guaranteed to not appear, or c1 must be guaranteed to not appear. This

can be accomplished either by resolving clause b without using b1, or resolving clause C

without using c1. Once the clause containing either disjunct is resolved some other way,

there is no reason for the conflicting disjunct to be selected. Therefore, one possible

constituent kernel for the conflict is b2: this resolves clause b and ensures b1 will not

appear in the LP. Another one is C2, since it will resolve clause c. The total set of states

59

that resolve the conflict {b 1, c1} is therefore be defined by the disjunction of the

constitutent kernels: b2 V c2.

Conflict-directed A* also introduced the concept of a kernel (as opposed to a

constituent kernel), which resolves all known conflicts. In the Clausal LP domain, a

kernel is built up from the set of currently identified constituent kernels, by incrementally

selecting a disjunct from each set of constituent kernels. However, for CDCL-B&B the

kernel selection process is different. CD-A* is able to assign each variable its most

optimal assignment in order to generate the next best candidate, and thus perform a best-

first search over kernel assignments. Identifying the next best candidate in a Clausal LP

requires solving an LP and so is more costly. CDCL-B&B instead identifies all possible

candidates that resolve all conflicts, and prunes those that are propositionally

unsatisfiable before solving any LPs. This process is discussed in more detail in Section

4.3.4.

4.3 Conflict-Directed Clausal LP Branch and Bound

Recall that conflict-directed search is based on the utilization of discovered

infeasible states to avoid future infeasible regions of the search space. This section

describes the use of conflicts in the Clausal LP framework, as defined in Section 4.2.1,

for increasing the efficiency of the Clausal LP Branch and Bound algorithm described in

Chapter 3. Section 4.3.1 introduces the idea of a two-mode search process, one mode for

normal best-first search (BFS) without conflicts, and one mode for resolving conflicts. It

also walks through the BFS mode pseudo code. Section 4.3.2 outlines the extraction and

storage of conflicts in a global database for use by all the search nodes of the algorithm.

Section 4.3.3 explains the policy that is used to retrieve from the global database the

conflicts that are relevant at a particular node. Section 4.3.4 details the conflict-

resolution mode of the search process, which resolves multiple conflicts incrementally

before solving any relaxed LP problems. Folded within this section is the use of

propositional unit propagation as a way to further narrow the search.

60

4.3.1 Separating Best-first Search from Conflict Resolution

The overall search process of CDCL-B&B is divided into two modes of

operation. The first mode ("BFS mode") performs best-first search over normal search

tree nodes, and solves relaxed LPs at each node. This process builds upon the search

structure of the Branch and Bound algorithm for Clausal LPs, discussed in Section 3.3.

The conflict-directed search extension diverges from CL-B&B only when an infeasible

node is found. When this takes place, the subtree is pruned as normal, but a conflict is

also extracted from that infeasibility. The second mode of operation ("conflict resolution

mode," or "CR mode") uses the extracted conflicts to guide the search process, without

having to solve relaxed LPs. The SIMPLIFY [11], SVC [12] and ICS [13] algorithms all

perform combined SAT and LP solving. None of them, however, generalize infeasible

states or perform conflict-directed search. A further difference between CDCL-B&B and

ICS is that ICS focuses on solving non-clausal LP problems. None of these systems,

however, extract optimal solutions.

4.3.1.1. The Two-Mode Algorithm: Motivation and High-Level Description

The need to restrict the possible candidates that resolve a conflict prior to

computing their relaxed cost motivates the use of the two different search modes in

CDCL-B&B. Since conflicts are used to describe infeasible subsets of the search space,

it makes sense to prune based on these conflicts as early as possible in the search process,

in order to minimize the amount of time wasted searching infeasible nodes. This

suggests that before any node is expanded into children that might be infeasible, all

known conflicts should be resolved. This parallels Conflict-Directed A*, in which the

next candidate assignment generated is one that resolves all known conflicts.

BFS mode proceeds in a manner similar to the CL-B&B algorithm (from Section

3.3), but also performs conflict extraction and recording whenever it discovers an

infeasibility. This mode is like the generation of the next-best candidate in CD-A*, with

each node akin to a partial candidate. Whereas a candidate in CD-A*, if feasible, assigns

values to all variables in the problem, an arbitrary node in BFS mode solves a relaxed

problem and hence assigns values to only a subset of all clauses.

61

CR mode expands the search tree through conflict resolution prior to solving any

relaxed LP, and is like the kernel generation process in CD-A*. As argued above, all

known conflicts are resolved before returning to BFS mode. The key difference between

CR mode in CDCL-B&B and kernel generation in CD-A* is that it is easy to bound the

cost of children as conflicts re resolved. However this is computationally expensive in

CDCL-B&B. CD-A* uses MPI to compute the bound of a node in time linear with

respect to the number of variables. However, identifying the optimal next child for a

Clausal LP and is worst case exponential in the number of variables. This could

undermine any efficiency improvement from conflict-directed search. Therefore, CR

mode searches systematically and performs propositional unit propagation to limit the

number of potential next-best children. It does this by pruning states that contain known

conflicts and constraining the expansion of some nodes to ensure that known conflicts do

not arise. Section 4.3.4 describes CR mode in more detail.

Figure 17 through Figure 36 illustrate the complete CDCL-B&B algorithm.

Figures containing images distinguish between BFS expansions (solid lines) and CR

expansions (dotted lines). The pseudo code for CDCL-B&B is divided into two major

methods, to reflect the two modes. Figure 17 outlines BFS mode and Figure 25 shows

the resolveConf, which performs CR mode search.

4.3.1.2. Implementation and Example of BFS Mode in CDCL-B&B

The two separate modes of search are implemented using two types of nodes,

which contain different components. These nodes are distinguished as "LP" and

"conflict resolving" ("CR") nodes. An LP node requires solving an LP, and is used in the

first mode. A CR node does not require solving an LP, and instead is used only to

resolve conflicts in the conflict resolution mode (CR nodes are explained in more detail

in Section 4.3.4). In the accompanying figures, LP nodes are indicated by circles and CR

nodes by squares. All references to nodes in Figure 17 refer to LP nodes, while Figure 25

uses only CR nodes.

62

CDCL-B&B(f, clausesunresolved)
1 rootconstraints = {disjuncts d I d is in a unit clause}
2 rootunsolved = <f, rootconstraints, clausesunresolved>
3 q = empty queue
4 if (! solve&EnQ(root_unsolved, q))
5 return null
6 cDB = empty map
7 while (q not empty) {
8 current = q.removeFirst()
9 activeList = empty list

10 for each c in current.clausesunresolved
11 if (c is violated by current.state)
12 activeList.orderedl nsert(c. length, c)
13 if (activeList is empty)
14 return <current.cost, current.state>
15 conflicts = retrieveConfs(current, cDB)
16 children = resolveConfs(current, conflicts)
17 if (children not empty) {
18 for each childunsolved in children
19 solve&EnQ(childunsolved, q)
20 go to line 7
21 }
22 c = activeList.removeSmallest()
23 for each disjunct in c {
24 childunsolved = copy of current
25 add disjunct to childunsolved.constraints
26 if (! solve&EnQ(childunsolved, q))
27 cDB.insert(extractConf(childunsolved))
28 }
29 }

solve&EnQ(unsolved, q)
I relaxed-lp = <unsolved.f, unsolved.constraints>
2 feas = true if relaxed lp feasible, false otherwise
3 cost = cost of the solution that solves relaxed_lp if feasible, infinity otherwise
4 state = state that solves relaxed lp if feasible, null otherwise
5 solved = <unsolved.f, unsolved. constraints, unsolved.clauses_unresolved, cost, state>
6 if (feas) {
7 q.ordered lnsert(solved.cost, solved)
8 return true
9 }else

10 return false

Figure 17: Pseudo code for main execution of Conflict-directed Branch and Bound.

LP nodes symbolize subproblems in which bounds are computed by solving a

relaxed LP. Since execution of an LP solver is a costly step, efficiency is likely increased

by minimizing the number of LP nodes in the tree. LP nodes are equivalent to nodes in

the search tree of the B&B algorithm applied to Clausal LPs (Section 3.3). These nodes

contain all of the same elements: an objective function, a list of constraints, and a set of

63

unresolved clauses. Some of these clauses might be resolved; that is, some clauses may

contain one or more already selected disjuncts. Once an LP node's relaxed LP has been

solved, the node also contains solution values for each variable and the resulting

objective function value. The final datum stored in an LP node is the time of its creation,

which is used to keep track of which conflicts remain unresolved (see Section 4.3.3).

This time is set to zero at the start of the algorithm's execution, and is incremented by 1

after each additional node is expanded during BFS mode.

The assignment of the variables in the solution to the relaxed LP allows the

identification of which clauses are active, similar to CL-B&B. The definition of active

clauses for CDCL-B&B is the

same as for CL-B&B: active max x+3y
s.t. x < 200

clauses at a node are those that s :5 200
consist entirely of disjuncts that x 100 V y5 <50

are unresolved by the solution to x 5 10 V y 5 5 V y 5 4

the relaxed LP at that node. x 80 V x 60 V x > 30 V y5 0

For example, consider the Figure 18: A hybrid decision-control problem modeled as
a Clausal LP.

problem shown in Figure 18. This

problem will be used throughout the rest of this chapter to illustrate the concepts of

CDCL-B&B. The initialization of the search process (Figure 19) solves the root node

relaxed LP, which relaxes all clauses and contains only the unit clause constraints. The

LP solution at the root node is (x=200, y=200). Therefore clause c is not active at the

root node, since the first three of its disjuncts are already satisfied by the root node

assignment x=200. The satisfied disjuncts of clause c are italicized and faded. Because

at least one disjunct of c is satisfied, the clause is inactive, as indicated be being faded in

the figure. Clauses a and b consist entirely of disjuncts that are not satisfied by the root

node solution, and are therefore active.

Unresolved Clauses Node Relaxed LP LP Solution

a: x5100Vy550 max x+3y x=200
b: x:5 10 V y:5 5 V y < 4 S.t. x:5 200 y = 200

V V V y 5 0 y200 f = 800

Figure 19: Initialization of the CDCL-B&B algorithm with root node and initial LP solution.

64

Figure 20 shows the first expansion of the search tree from the single root node.

The expansion at this stage is like that in CL-B&B, and resolves the first of the active

clauses from Figure 19, clause a. a is selected first because it has fewer disjuncts than

clause b. Resolution of a in Figure 20 creates two children: one that includes disjunct a1,

in Figure 20(A), and one that includes disjunct a2, in Figure 20(B). Figure 20(C) shows

the state of the search tree after the first level is done expanding. The new children are

inserted into the queue, q, after their relaxed LPs are solved (required for insertion into a

priority queue, as discussed in Section 3.3.5).

In this and future figures, the newly added disjunct at every node is shown within

the node (for example, "a1" or "a"). The value of the objective function at each node is

shown to the lower left of the node (for example, the root node has a cost of 800). The

time step at which a parent node is expanded into its children is shown to the upper left of

the node (the root node was expanded at time step 1). The time step at which a node is

created is shown as a superscript within the node (both the nodes created at this

expansion are created during time step 1 and so have a superscript 1). Also displayed is

the priority queue that is used to determine which node to expand next; nodes earlier

(farther left) in the queue are those with greater value (since this is a maximization

problem) and are expanded first. As in Figure 19, the faded disjuncts are those that are

resolved by the current node and the faded clauses are inactive.

At the end of the first expansion, the node that added a1 is at the head of the

queue, since it has the highest objective function value (700) of all nodes. Hence, this

node is expanded next. To perform the expansion, an active clause at a1 is selected for

resolution. The only active clause at a1 is clause b. Figure 21 continues the illustration

of the algorithm's execution by showing the end result of this expansion, equivalent to

Figure 20(C). As the expansion takes place, the newly created nodes are inserted into the

queue based on their solution values. Therefore the node that added b1 at time step 2,

having the highest solution value (610), is at the head of the queue and will be expanded

next. The other newly created nodes have values lower than that of a2
1, and so are

inserted later in the queue.

The rest of the expansion process in this example is described in Sections 4.3.2

and 4.3.4.

65

b: x 10 Vy 5V
V V
V y 0

800

y:5 4 a {max
s.t.

al:

(A)

1 120

{}
800

700(all a2
1 {

b: x5 10 Vy 55Vy54
V V
V y < 0

max x + 3y
s.t. x < 200

y 5 200
a2: y < 50

(B)

Q: (ai)(a2 1)

1
700 350 8

(C)

Figure 20: First normal-mode expansion of search tree in CDCL-B&B algorithm.

66

x + 3y
x S 200
y 5 200
x 5 100

x = 100
y = 200
f = 700

Q: IaG) (@

x = 200
y = 50
f = 350

Q@ (b2 (@ (@2 2)b 3 1 (1

2

1, 35 0 2 l

2 3
610 115 112

Figure 21: Queue and search tree at the end of the second node expansion in the execution of CDCL-
B&B.

4.3.2 Identification and Global Recording of Conflicts

Conflicts are extracted throughout the search process and are maintained

independent of the specific node at which they are discovered. Each node is guaranteed

to resolve all conflicts that were discovered prior to the creation of that node. Resolving

all conflicts requires that conflicts be stored globally and be accessible by all nodes.

The global storage of conflicts is implemented in the CDCL-B&B pseudo code

(Figure 17) using cDB. cDB is an associative database (called a "map" in the pseudo

code) that contains the list of conflicts discovered up to the current point in the execution

process. The conflicts are sorted and are accessible by their time of creation, stored in the

form of a linked list. Each conflict has a pointer to the conflict that was discovered next.

LP nodes also store their time of creation, so it is easy to identify the first conflict that

was discovered after a particular node was created. The algorithm then uses the links to

each next conflict to retrieve all unresolved conflicts. Section 4.3.3 describes how the

time stamps are used to keep track of what conflicts remain to be resolved. To achieve

the time-conflict association, cDB maps from integer time stamps to conflicts created at

that time.

cDB is used in two places in the CDCL-B&B pseudo code. First, it is passed to

the CR mode sub process (resolveConf, at line 13). Within that sub process cDB is

accessed only to retrieve the conflicts that must be resolved. Second, it is accessed

whenever an infeasibility is discovered. When this occurs, a conflict is generated from

the infeasibility and stored in cDB (line 29 of CDCL-B&B).

67

Recall from the discussion in Section 4.2.1 that multiple conflicts can sometimes

be generated from a single infeasibility. The particular conflict that is generated and

stored can have significant impact on the efficiency of the search; in general, conflicts

made up of fewer disjuncts guide the search better. Therefore the algorithm tries to

extract a minimal conflict; that is, one such that no proper subset is also a conflict.

Conflicts are generated (or extracted) using the extractConf method, and are then stored

in cDB (29). A more detailed explanation of the need for small conflicts, the pseudo code

of extractConf, and a comparison of different conflict generation methods are contained

in Chapter 5. For the purposes of the discussion in this chapter, it is assumed that the

minimal-size conflict will always be discovered and stored.

Continuing the example from Figure 21 illustrates the conflict extraction and

storage process. Figure 22 shows the discovery of infeasible relaxed LPs and the process

by which the CDCL-B&B algorithm extracts conflicts in response. As mentioned

previously, b1
2 is the next node scheduled for expansion after the first two tree

expansions. Since clause 3 is the only active clause at this node (in fact it is the only

clause left in the entire problem), it is resolved next. The first child added in this

expansion is therefore augmented with the inequality c1, and is created at time step 3, as

shown in Figure 22(A). However, the inclusion of the c1 inequality x 2 80 is impossible

to satisfy with the b1 constraint x < 10, added at the previous tree level. Therefore an

infeasibility is discovered at cl.

In Figure 22(B), the infeasibility is translated into a conflict that identifies the

source of the infeasibility: b1 and c1. This conflict is stored in the database, labeled cDB.

ci3 , as an infeasible node, is pruned: it is not added to the queue and is not scheduled for

expansion (in the figure this is represented with diagonal slashes through the node). Note

that the time of the discovery of a conflict is recorded to its upper right within cDB.

Expansion of b1
2 then continues with the creation of the next child, augmented with the

inequality of C2 . However this node is also infeasible and a very similar conflict is

generated: {b1, C2}.

68

Q: [02)b2)(2

2

a 350a 2

610 bi2 115(b2 112(b2

{max x + 3y
c3 S. t. x:5 200

y:5 200
al: x:5 100
b,: x 10
01: X > 80(A

Q: (cDB:

2

1
1 2 a(

max x + 3y
(c? SA. x 5 200

b1
y 5 200

1a: X 100
C1 b,: x:5 10

C2: x 26 (B)

Figure 22: Discovery of infeasibility and subsequent conflict generation in CDCL-B&B algorithm.

The rest of this expansion of the tree proceeds in a similar manner. The second

conflict is added to the database, and a third child is added (Figure 23). Once again an

infeasibility is discovered, the third child is also pruned, and a third conflict is generated.

69

The fourth child is feasible: the objective function has value 10 at this node (Figure 24).

It has no active clauses, but is still added to the queue (inserted at the end) as is normally

done. Recall that just like the CL-B&B algorithm, termination only occurs when a node

that satisfies all clauses is removed from the queue, not when the node is added to the

queue. This ensures that the first feasible solution to the CLP that is taken off the queue

contains the optimal solution.

Sections 4.3.3 and 4.3.4 examine how discovered conflicts are retrieved and

resolved. The remainder of the example problem is illustrated in these sections as well.

Q:))) cDB:
{}C

2

350 2

3'

60b 12 15b22 12 b3 2

61011 112(

max x + 3y
c3 3 SAt. x:5 200

y 5 200
b1 a: x5 100

C1 C2 b,: x < 10
C3: x ? 30

Figure 23: Another infeasibility discovered during execution, resulting in another conflict.

70

Q:())1 cDB:

2

al 350 2

3

610 b2 115 b22 112(b2

{max x + 3y X = 10

c4
3 s.t. x 200 y = 0

Sy5 200 f = 10
b, bi b1 a,: x:5 100
C C2 C3 b x: X< 10

C4: y 5 0

Figure 24: The third conflict is stored in the database, and the final child is discovered to be feasible.
With an objective function value of 10, it is less optimal than all other nodes in the queue and is
inserted at the end.

4.3.3 Retrieving the Active Conflicts at a Node

As a prelude to resolving the conflicts at a particular node, the conflicts must be

retrieved from cDB. The conflict database is global, so it contains conflicts discovered at

different times and from different nodes; therefore, identifying which conflicts are

relevant is non-trivial. In particular, the goal of a conflict retrieval policy is to quickly

identify the active conflicts. In the CDCL-B&B algorithm, an active conflict at a

particular node is simply a conflict that has not yet been explicitly resolved. CDCL-B&B

uses the time stamps of conflicts and LP nodes to implement a retrieval policy that

operates in constant time. The policy is: expansion of an LP node np into its children

requires the explicit resolution of any conflicts discovered after np's creation, but befbre

the time of the expansion. If cDB is implemented as a hashtable, and each conflict has a

link to the next youngest conflict, all conflicts can be retrieved in an amortized constant

amount of time.

It can be proven through structural induction that this conflict retrieval policy

guarantees that each LP node resolves all conflicts that were discovered prior to the time

of its creation. The proof proceeds as follows. Let p(n) be defined to be true iff LP node

71

n resolves all conflicts discovered prior to its time of creation. p(no), where no is the root

node of the search tree, is true because there are no known conflicts at the start of

execution. Assume a new node n, is created as a child of nP , and that p(np) is true. At

this point all known conflicts can be divided into two categories: conflicts discovered

after the creation of np, and conflicts discovered before.

Any conflicts discovered after the creation of np are explicitly resolved at nc by

the retrieval policy, because these conflicts were created after the parent's creation but

before the time of tree expansion (the current time). Conflicts discovered before np's

creation are resolved by np because p(np) is true. Recall from Section 4.2.2 that

resolving a conflict requires guaranteeing that the inconsistent disjuncts of the conflict

will not appear. This is achieved by selecting other disjuncts that resolve clauses that

appear in the conflict. Also recall that descendent nodes inherit all the disjuncts of their

ancestors (Section 3.1.2 used this property to show that descendants all have smaller

feasible regions than their ancestors). Therefore, nc also inherits the conflict-resolving

disjuncts, and so also resolve all conflicts discovered before np's creation. Since nc

resolves all conflicts, p(nc) is true.

All nodes are descendents of the root node no. Therefore the base case of the

inductive proof was established by proving p(no), and the inductive step was proven by

showing p(np) entails p(nc) for an arbitrary parent np and child nc. Hence, by induction,

p(n) is true for all LP nodes. Thus the conflict retrieval policy guarantees that any LP

node resolves all conflicts discovered prior to the time of its creation. Note that this

policy only establishes how to retrieve conflicts from the database. Chapter 5 specifies

how to extract them before recording them in the database, while Section 4.3.4 describes

how to resolve them. The conflict database an also discard all non-minimal conflicts,

which can be identified using the TRIE algorithm [16].

Conflict retrieval occurs in the first line of the pseudo code of resolveConf

(Figure 25), the method that performs conflict resolution. To illustrate the conflict

retrieval policy, consider again the running example used in this chapter. Throughout the

BFS search mode, which has been described thus far, attempting conflict retrieval would

return nothing, because no conflicts had been identified. After the expansion of the node

72

that added b1
2, however, three conflicts have been stored in cDB. Each of these have

been stamped with the time 3.

The next node to expand in the BFS mode is az', stamped with time 1. The time

of the expansion of a2
1, which is the current algorithm time, is 4. Since all three conflicts

were created after a2
1 but before the time of expansion, all three must be resolved by CR

mode before BFS mode can continue. However, any LP node children of a21 will have

been created at time step 4. Therefore, when the time comes for their expansion, the

three conflicts will not need to be resolved, since the conflicts were created earlier. In

this way no node resolves a conflict that has already been resolved by an ancestor.

4.3.4 Combined Conflict Resolution and Unit Propagation

When an LP node is removed from the head of the priority queue in order to be

expanded, but there exists at least one conflict that has not been resolved by that node, the

algorithm switches to conflict resolution mode. CR mode constructs a set of children that

resolve all known active conflicts, retrieved using the policy from Section 4.3.3, through

the selection of one or more disjuncts. In this mode, conflict resolution takes place

instead of the normal BFS tree expansion. Recall that a conflict consists of a set of clause

disjuncts that are together inconsistent. The key idea behind resolving such a conflict is

to add the negation of one of these disjuncts to the expanded node. This specifies that

any feasible states must lie outside of the conflict. The inclusion of these negations may

result in the propositional entailment of positive disjuncts, which are identified through

unit propagation.

Inequalities contained in other clauses may hold as a logical consequence of this

resolution. These consequences are identified quickly by performing propositional unit

propagation on the LP clauses, the selected disjuncts, and any other unresolved conflicts.

When this occurs, each disjunct is treated as a simple propositional variable that may be

assigned true or false. This resolution followed by propagation cycle is repeated for each

active conflict before returning to BFS mode. In BFS mode, unit propagation does not

need to explicitly take place because the only possible entailment resulting from adding a

disjunct is the resolution of a clause. Clause resolution is already addressed by using

activity as a criterion for selecting which clause to resolve in the next expansion.

73

4.3.4.1. High-level Conflict Resolution Strategy

There are usually a number of negations of disjuncts that can be used to resolve

any given conflict. In general, for a conflict)ux, f, }, the possible negations that

would resolve the conflict would be -(x,, ,, and so on for each disjunct 6 , in the

conflict. However, a given node may not have the full scope of choices for resolving the

conflict. Generally, the possibilities for resolution are governed by four cases.

* Case 1. For some disjunct 6i in the conflict, the node has already selected

some other disjunct of clause 6, in which case the conflict is already

resolved.

* Case 2. The node has already selected some subset of the conflict's disjuncts.

This constrains the possible ways of resolving the conflict to only the

clauses containing conflict disjuncts that have not been selected.

" Case 3: The node has not selected any disjunct in the conflict, which means

that the entire range of choices for resolving the conflict is available.

" Case 4: All disjuncts of the conflict have already been included in the node,

so the node explicitly contains an infeasibility and must be pruned.

Given a node to expand and a conflict to resolve, the algorithm uses the above

case list to determine how to generate the list of possible negated disjuncts that achieve

resolution. A child node is created for each possible negated disjunct, with each node

augmented by its respective negated disjunct. The addition of a negated disjunct to a

child may entail other disjuncts. For each child, these are identified using unit

propagation, and added to the node.

Once these additional disjuncts have been added and unit propagation on the child

is performed, three cases are possible:

* Case A: If unit propagation indicates that a propositional inconsistency exists,

then the child contains an infeasibility and is pruned.

* Case B: If this is not the case and the child has resolved all known conflicts,

it is marked as an LP node and expanded using BFS.

* Case C: If neither case A nor case B holds, then other unresolved conflicts

exist. The child is queued for resolution of another conflict.

74

This conflict resolution strategy has similarities to the LPSAT algorithm developed by [4]

for solving LCNF formalism. Since both LPSAT and CDCL-B&B rely on A*-based

search, their use of conflicts for helping search in the forward direction is similar. They

differ in that CDCL-B&B prunes the possible children based on the entailed

contradictions in some children.

4.3.4.2. Nodes and Tree Branching in CR Mode

The CR nodes used for expansion in conflict resolution mode have a very

different structure from the LP nodes used in BFS mode. CR nodes can be expanded into

descendants without performing the computationally costly step of finding the solution to

a relaxed LP.

Recall that BFS mode expanded nodes by resolving a clause at each tree level.

Since only active clauses need to be resolved, and clauses are active based on the solution

to the relaxed LP of the parent node, BDS mode must solve the parent's relaxed LP prior

to each tree expansion. The relaxed LP of a node is in fact solved even earlier, because

the cost of the solution is needed to establish the ordering of the node in the queue.

In CR mode, the Clausal LP formulation provides an abstraction barrier (see

Section 2.2.3) that hides the LP details of each disjunct and enables the algorithm to

avoid solving LPs when CR nodes are expanded. Each descendant explicitly resolves a

conflict, and conflicts store disjuncts as abstracted symbolic terms rather than as

particular inequalities; CR mode can therefore also view disjuncts as terms rather than LP

inequalities. Instead of a new tree level depending on the inclusion of a new disjunct in

the relaxed LP, each new tree level depends on the inclusion of a new symbolic term,

independent of the inequality it represents. Additionally, without solving an LP for each

CR node, the algorithm can process all CR nodes quickly, relative to BFS mode. Instead

of a BFS order, CR mode instead uses a breadth-first search, and uses a FIFO queuing

policy.

Adding negations to CR nodes also has the effect of reducing the number of

disjunctive choices available for clause resolution. Sometimes clauses are completely

resolved just because of the constraints that are entailed by the addition of the negations.

This reduces the number of LP nodes that must be subsequently examined.

75

As a simple example, consider a node in BFS mode that has relaxed the clause a1

V a2. Additionally, the conflict (a1, b1) is active at this node. Two constituent kernels

for this conflict would be -a1 or -b1. If -a1 were added to the node in order to resolve

the conflict, the new negated disjunct would rule out a1 as a way to resolve the relaxed

clause. This would entail that a2 must be added to the node also. Hence the clause would

be resolved merely by the addition of the negated disjunct. This entailment process is

implemented using the unit propagation discussed in 4.3.4.4

As a prerequisite to determining what disjuncts are entailed, CR nodes need to

contain the list of already-selected constraints and a list of unresolved clauses. As

mentioned, the mathematical details of constraints and disjuncts are abstracted away: CR

nodes only contain a symbolic representation of each disjunct in a clause. Instead of "x >

10 V y < 50", for example, a CR node stores the abstracted representation "a1 V a2"

where a is the clause, and the subscripts refer to the disjunct. This formalizes the

abstraction barrier described above.

CR nodes also track as-yet unresolved conflicts, but again abstract away the

mathematical details. This is equivalent to recording the disjunction of the constituent

kernels of a conflict in CD-A*. For example, "-a1 V ,b1" would be the representation of

conflict {a 1, b1 }. Note that CR nodes store conflicts in the same manner as the conflict

database.

4.3.4.3. Pseudo Code and Example Walkthrough/fbr CR Mode

Recall that conflict resolution mode begins when a node scheduled for expansion

has not yet resolved one or more known conflicts. CR mode therefore begins with an LP

parent node and a list of conflicts that must be resolved. In the example used in this

chapter, the LP parent node is a21 and the list of conflicts is the entire contents of cDB.

Figure 25 shows the pseudo code for CR mode, in a method called resolveConf. This

method accepts lpparent, the parent LP node scheduled for BFS expansion, and

conflicts, the list of unresolved conflicts.

This mode ends when all the CR in the current tree meet case B; that is, when all

unexpanded CR nodes resolve all conflicts. At this point the CR leaf nodes are marked

as LP nodes and returned for BFS expansion. resotveConf returns this list of LP nodes

76

on line 25, contained in the list children. The nodes in the returned list do not have their

relaxed LPs solved; this is why line 19 of the CDCL-BEtB method solves the nodes in the

list children before inserting them into the BFS queue. 4.3.4.5 discusses the return to

BFS mode in more detail.

resolveConfs(lp-parent, conflicts)
1 cr parent = <1pparent.constraints, lp-parent.clausesunresolved, conflicts>
2 cr-q = empty list
3 cr q.add(cr parent)
4 completedList = empty list
5 while (cr-q not empty) {
6 crcurr = crq.remove()
7 conf = crcurr.conflicts.mostConstrainedO
8 termsSoFar = empty list
9 for each <disjunct, -> in conf {

10 crchild = copy of cr curr
11 newTerms = empty list
12 add <disjunct, -> to crchild.constraints
13 add <disjunct, -> to newTerms
14 remove conf from crchild.conflicts
15 addSystematicityTerms(cr child, termsSoFar, newTerms)
16 if (! propagate(cr child, newTerms))
17 go to line 9
18 if (cr child.conflicts is empty)
19 completedList.add(cr child)
20 else
21 cr-q.add(cr-child)
22 }
23 }
24 children = empty list
25 for each crleaf in completedList
26 children.add(crToLp(cr leaf, lpparent))
27 return children

Figure 25: Sub-method for resolving conflicts

During initialization, the constraints, clauses, and unresolved known conflicts are

stored in a CR node. In line I of resolveConf, a root CR node called cr-parent is

created to hold this information from Lp_parent and conflicts. Figure 26 illustrates this

initialization process. Recall that the expansion of b1
2 completed with the discovery of

three conflicts and one feasible child. a2', as the head of the queue Q, is scheduled next

for BFS expansion. BFS expansion is suspended for azl because of the existence of three

unresolved conflicts in cDB. These conflicts are identified using the retrieval policy of

Section 4.3.3. Additionally, if any constituent kernel of a conflict is contained in

lp-parent.constraints, then the conflict is implicitly resolved and is not stored in

77

cr-parent.conflicts. In this example, none of the three conflicts are implicilty resolved

by a 2'. The list of constraints, unresolved clauses, and conflicts are listed to the right of

the node, with the constraints shown in their negative disjunctive representation, as

described earlier.

The main body of resolveConf is a loop that iterates until the queue cr_q

becomes empty. cr-q contains the CR nodes that have not yet resolved all conflicts in

conf List and still need to be processed. In Figure 26, only cr-parent has been added to

cr-q (specified by line 3 of resolveConf). crq uses the .add() and .remove() method

and is structured as a list. Therefore CR nodes are added to the end and removed from

the start, so expansion takes place in a breadth-first manner. As CR leaf nodes are

discovered that resolve all conflicts, they are stored in completedList, initially empty.

When all nodes have been expanded or moved into completedList, the queue of pending

CR nodes is empty (line 5). The post-processing to convert the CR nodes in

completedList into LP nodes then occurs (lines 22-25).

CDB:

2 , -b , V C1

a1 350(24 ,1b, V ,IC3
bQ V b2 V b3

3 b1 VC 2 VC3VC4
b 2 11Vb22 12 b3 2

10
bi bi b
C1 C2 C3

Figure 26: Initial constraint and clause list at the start of conflict-mode expansion to resolve constraints.

During the main loop, cr_curr refers to the CR node currently being expanded,

and conf refers to the next conflict that will be used for expanding cr-curr. During each

iteration of the loop, cr_curr is removed from cr-q (line 6). Since cr-q only stores

nodes that have one or more unresolved conflicts, cr_curr is guaranteed to have at least

78

one unresolved conflict. If there are multiple unresolved conflicts at crcurr, the conflict

that is selected is the one such that the number of disjuncts in the clauses that are

mentioned in the conflict is at a minimum. For example, {b 1 , c1 } mentions two clauses,

b and c. b has three disjuncts and c has four, so the number of disjuncts in mentioned

clauses is seven. In fact all three unresolved conflicts are identical based on this metric,

so the earliest discovered conflict, {b 1, c1}, is picked (line 7).

During each iteration of the subloop (lines 9-20 in resolveConf), a child crchild

is created to include a negated disjunct, negdisjunct, from conf. crchild is initially

only distinguished from its parent cr_curr through the addition of neg-disjunct to its

list of constraints and the removal of conf from its list of conflicts (10-12). For example,

{b 1, c1}, can be resolved using one of two constituent kernels: Tb1 or -c1. Figure 27

shows the first CR child (a square node), which adds -b 1 . Figure 28 shows the addition

of the second CR node into the tree, augmented with -c1.

Q: cDB:

2 4

all 0(a 2
1

350

bi 2 11 2 1132
115(112V b2V b3

C1 Vc 2 Vc 3 Vc 4

10
bi b, bi
C1 C2 C3

Figure 27: Creation of first conflict-mode node with a negation, followed by unit propagation.

"Younger" siblings (the 2nd, 3rd, etc. child of crcurr) are also augmented with

the negations of their older siblings' disjuncts by the addSystematicityTerms helper

method on line 13. These terms are added to ensure that siblings' descendents never look

alike; this is known as ensuring systematicity. As an example of this effect, consider

79

Figure 28, where the second CR child of a2 ' is added to the tree with disjunct -c1. Here

addSystematicityTerms also adds the negation of its older sibling's disjunct, ,b1. The

negation of ,b should logically be b1, and so b1 is also added to the second sibling.

After the required disjuncts and/or negated disjuncts are added to each child, unit

propagation is invoked to determine what effect the new constraints have on the

unresolved clauses and conflicts. This process is discussed in more detail in 4.3.4.4.

Recall from 4.3.4.1 that three possible cases can result after propagation completes.

These three cases are dealt with in lines 14 to 19 of resolveConf. In case A, the addition

of the new disjuncts resulted in a contradiction on the propositional level. The

propagate method that does unit propagation on line 14 is defined to detect this and

return false if it occurs; in this case, the algorithm returns to line 9 to consider the next

child, and no action further action is done to the child that was just created. Therefore it

is dropped from the queue and pruned, as specified by case A. In case B, the CR child

node resolves all conflicts, and no further CR expansion needs to be done to it. Thus

crchild.conflicts will be empty on line 16 and crchild is moved to completedList

for conversion into a BFS mode (line 17). When conversion occurs, all added disjuncts

are transferred to an LP node and so are retained for BFS mode (see 4.3.4.5). If neither

case A nor case B holds, then more conflicts remain for resolution, and the child is

reinserted into the queue on line 19.

1 cDB:

2 4

all a2
350

3 V -IC2

bi 2b2 2 b3 2V -1c33 2 115(112

-

V C2 V C3 V c4

b, b, b,
C1 C2 C3

Figure 28: Creation of a second CR node, containing another negation and an additional constraint (bI)
to satisfy the demands of systematic search. Unit propagation also occurs on this node.

80

4.3.4.4. Unit Propagation to find the Constraints Entailed by a Negated Disjunct

Unit propagation occurs immediately after a new node is augmented with negated

disjuncts. The goal of propagation is to quickly discover what consequences the new

negated disjuncts have on the clauses and conflicts that must be resolved. Propagation

also adds any additional terms that are entailed by the current list of clauses and

constraints. A term in this context is a single (positive) disjunct of a clause, or the

negation of a disjunct of a clause, in a purely symbolic form. In other words, the LP

elements are abstracted away, as is the case throughout CR mode. However, recall from

4.3.4.2 that propagation can reduce the number of possible disjuncts that can be selected

for a particular clause, and therefore reduce the tree branching factor. Repeated

propagation can also lead to full resolution of a clause, reducing tree depth.

At the highest level, three principles govern the unit propagation in the CDCL-

B&B algorithm. First, adding a negated disjunct to a CR node may result in infeasibility,

clause contraction (the removal of a disjunct from the clause), or conflict resolution.

Second, adding a positive disjunct to a CR node may result in infeasibility, clause

resolution, or conflict contraction. Third, clause or conflict contraction may result in

infeasibility or addition of a term (or may have no effect). Whenever a term is added to a

CR node, principle one or two is applied. If this results in the contraction of a clause or

conflict, principle three is applied. If this results in the addition of a term, principle one

or two is applied again, and so on. This process terminates when an infeasibility is

detected or when one round of applying all three principles results in no changes to the

list of terms or the list of constraints and conflicts.

To implement the first principle, unit propagation checks all clauses, conflicts,

and positive disjuncts in a CR node if a negated disjunct is added to the node. At this

time, one or more of the following cases might apply.

* Case 1: If the disjunct portion of the negated disjunct is already included as a

constraint at this node, then a contradiction has been detected. The

node is immediately pruned, and no other case is considered.

* Case 2: If the disjunct portion of the negated disjunct is contained in a clause,

then that clause cannot be resolved by the selection of this particular

81

disjunct. Hence the clause is contracted: the disjunct is removed from

the clause. This clause contraction only applies at this node and for all

its descendents, which inherit all terms.

* Case 3. If the negated disjunct is one of the constituent kernels of a conflict,

then adding it resolves the conflict, which is removed from the list of

unresolved conflicts.

" Case 4: The disjunct does not appear anywhere, so the first principle has no

effect.

To implement the second principle, unit propagation checks all clauses, conflicts,

and negated disjuncts in a CR node if a positive disjunct is added to the node. At this

time, one or more of the following cases might apply.

" Case 1: If the disjunct portion of any negated disjunct in the list matches the

newly added positive disjunct, then a contradiction has been detected.

The node is immediately pruned, and no other case is considered.

" Case 2: If the positive disjunct is contained in a clause, then that clause is

resolved. It is therefore removed from the list of unresolved clauses.

" Case 3.: If the negation of the added disjunct is a constituent kernels of a

conflict, the conflict cannot be resolved with that disjunct. Therefore

the conflict is contracted by removing that disjunct (at this node and all

its descendents).

* Case 4: The disjunct does not appear anywhere, so the identical situation

arises as in Case 4 of the first principle.

To implement the third principle, any clauses or conflicts reduced due to the first

or second principle are checked. If any of them has zero disjuncts remaining, then it

cannot be satisfied. Hence a contradiction has arisen and the node is pruned. If instead a

clause or conflict has exactly one disjunct or constituent kernel remaining, then there is

only one resolution possible. The positive disjunct or constituent kernel is added to the

list, and one of the first two principles is re-applied. If the first two principles are applied

and no clauses or conflicts have been contracted, then unit propagation terminates.

Figure 27 and Figure 28 both illustrate unit propagation in the context of the

example used throughout this chapter. Note that both CR nodes have beside them their

82

respective constraint and clause list. These lists are identical to each other and to the list

initially constructed before conflict resolution took place, shown in Figure 26, because

the clauses and constraints are inherited by the descendant nodes. However, a different

set of terms are faded, to reflect the differing effect of propagation on each node.

The first CR node expanded from LP node a2 l is augmented by a single negation,

-b1. This negation is discovered to appear in three conflicts (-b1 V -c1, -b1 V -C2,

and ,b1 V -C 3) and one clause (b1 V b2 V b3). Since each of the three conflicts

contain the actual negation, all three are resolved immediately (therefore all three

conflicts are faded in Figure 27).

propagate(cr, newTerms)
1 contracted = empty list
2 for each <disjunct, -> in newTerms {
3 if (disjunct is in cr.constraints)
4 return false
5 if (any clause containing disjunct is in cr.clausesunresolved) {
6 remove disjunct from clause
7 contracted.add(clause)
8 }
9 if (any conflict containing <disjunct, ,> is in cr.conflicts)

10 remove conflict from cr.conflicts
11 }
12 for each disjunct in newTerms {
13 if (<disjunct, ,> is in cr.constraints)
14 return false
15 if (any clause containing disjunct is in cr.clausesunresolved)
16 remove clause from cr.clausesunresolved
17 if (any conflict containing <disjunct, ,> is in cr.conflicts) {
18 remove <disjunct, -> from conflict
19 contracted.add(conflict)
20 }
21 }
22 newTerms = empty list
23 for each clause/conflict c in contracted
24 if (c.length = 0)
25 return false
26 else if (c.length = 1) {
27 add c.first() to cr.constraints
28 add c.first() to newTerms
29 }
30 if (newTerms is empty)
31 return true;
32 else
33 return propagate(cr, newTerms)

Figure 29: Pseudo code for method that performs propositional unit propagation.

83

The clause has one of its disjuncts removed (the single disjunct b1 is therefore

faded). The next step in the propagation process is to check if any clause or unresolved

conflict has one or zero terms. There are no unresolved conflicts, and the two clauses

contain two and four terms, respectively. Propagation terminates at this point. Since

there are no conflicts unresolved, this node is scheduled for return to normal mode

expansion.

The second node is augmented by both ,c1 and b1. c1 resolves the {b1, c1}

conflict and removes one term from clause c. b1 resolves clause b, but removes one term

from each of the unresolved conflicts. This is the condition that Figure 28 shows.

Checking the clauses and conflicts shows that the two unresolved conflicts are both

reduced to a single term, which means that propagation continues. Figure 30 shows the

result of the next round of unit propagation. Each of the conflicts that were reduced to a

single term contribute that term to the constraint list: -C2 and -C3 are added. Propagating

on these terms further reduce the number of disjuncts in clause C, so that only C4 remains.

This means that clause c is down to a single term, so that term must be added and

propagated. Figure 31 shows the result of this final propagation: C4 is added and clause C

is resolved, leaving no unresolved conflicts or constraints.

The propagate helper method (Figure 29) is invoked in line 14 of resolveConf

and returns false if any contradictions are discovered. Recall that in this case crchild is

an infeasible node and is pruned, as mentioned previously (case A of 4.3.4.1). Execution

then moves on to the next child of crcurr (line 15). If propagate instead returns true,

indicating no contradictions, crchild is either put into comptetedList (case B, on line

17) if it has resolved all conflicts or put back into cr-q if it has not (case C, line 19). In

the example in this chapter, both nodes are put into completedList for conversion back

into LP nodes. This conversion is discussed next in 4.3.4.5.

84

Q: (b 2 2)c~ (c43) 1 cDB:

2 4
al1 350 a2

1)

3

115 112 b3
2

10C
4

3

b,
C2

b,
C3

Figure 30: Continued unit propagation results in
the remaining unresolved clause.

bi
C,

12
115 8

11 2
11128

10
b,
C2

(b
C3

Figure 31: Final propagation for the CR node.

4.3.4.5. Conversion of CR Nodes and Return to BFS Mode

Leaf nodes in conflict-mode expansion eventually achieve a state where they have

resolved all known conflicts. At this point they are scheduled for return into the first

85

the inclusion of more negations, which further impact

V C4

1 cDB: ,

2 4

350

3
i2

b1,
C1

expansion mode, by being stored in completedList. The final step of resolveConf is

the post-loop processing, where the completed CR nodes are converted back into LP

nodes and returned to the main CDCL-BEtB method (see lines 22-25 of resolveConf and

Figure 32). Both the CR nodes in the example have resolved all three known conflicts

with a single conflict-mode expansion. Therefore both are ready for conversion back into

LP nodes.

crToLp(cr, parent)
I Ipunsolved = <parent.f, cr.constraints, cr.clauses>
2 return lp_unsolved

Figure 32: Helper method for converting from CR nodes to LP nodes.

Figure 33 shows the conversion of the first child, and Figure 34 shows the

conversion of the second. Note that since the first child was only modified from its

parent, a2
1, with the addition of a negation, which will not affect the LP, the solution

value is the same as a2
1. Also note that the new LP node is stamped with the time of its

creation, which is still time step 4, since conflict-mode expansions do not count as extra

time steps. The node's unresolved clauses reflect the state of the clause and constraint

list at the end of propagation (Figure 27): clause b, which had one of its terms removed

during propagation, only has two disjuncts here. The second child, which did have new

non-negated constraints added to it, has a different solution than its parent. It also has no

unresolved clauses, since propagation eliminated them all. It too is marked as being

created at time step 4. Both nodes are inserted into the queue Q at the appropriate

location (the first child at the head of the queue and the second child at the end) based on

their new solution values (350 and 10, respectively).

86

Q:1 cDB:

2 a 3504 2

33505

b: y <5 V x =0

10 V f = 350
b b, b1 V
C C2 C3 V

y!5 0

Figure 33: Conversion of first CR node back into an LP node.

Q:1 cDB:

2 4

350

3 b 1 b 2 b 24
115 112 "C2 'C3 max x + 3y

350C s.t. x < 200
y 200

c 4a 2: y 5S5
b 00 b1: X:510

Sb 1 C4: y 0
C C2 C3

x = 10
y= 0
f = 10

Figure 34: Conversion of second CR node back into an LP node.

The remainder of this example problem is completed by using only non-CR

search mode expansion. Figure 35 shows the expansion of the node into two more

87

children nodes, one of which is inserted at the head of the queue. This node, b2
5 , has

resolved all clauses, and so when it is removed the algorithm terminates with x = 200, y

= 5, and the final solution value (returned by the CDCL-BEtB method) equal to 215

(Figure 36).

115

C
10

c DB:

4
all a2

1)

15

112 10

215 212

Figure 35: End of LP expansion at time step 5.

88

3

b
C1

b0
C2

b1
C3

cDB:

2 4

all a2 1

Qb 35

cl

-nbi 4
10 -IC2 -IC3

cs

b3 5

"'Ho91 '~ 'I

x
y
f

200
5
215

(b32) (c43)

112(3

(\~)

bC
c 2

b,
c 3

11 5(b2

4
10

89

1) 1 r%

5 Discussion

5.1 Performance Analysis

This section provides an analysis of performance of the Conflict-directed Clausal

LP Branch and Bound algorithm (CDCL-B&B). This algorithm, introduced in Chapter 4,

solves hybrid decision-control problems represented as Clausal LPs. The Cooperative

Path Planning (CPP) domain described in Chapter 2 is used to provide the evaluation

problems. The Binary Integer Programming Branch and Bound (BIP-B&B) algorithm,

described in Chapter 3, is used as a benchmark against which to compare the

performance of CDCL-B&B.

Section 5.1.1 explains the experimental methodology used to compare the

algorithms. The two metrics used for comparing the time efficiency of the methods arc

the number of LP nodes expanded during the search process and the average size of the

tableaus that are solved at each LP. These provide processor-independent measures of

computational time. The maximum size of the queue generated during each method is

used to compare the space efficiency of the algorithms. This section also describes the

types of problems generated to perform the comparison. Section 5.1.2 then presents the

performance results of the two algorithms and analyzes these numbers.

5.1.1 Experimental Methodology

Comparing BIP-B&B and CDCL-B&B can be accomplished on the basis of time

efficiency and space efficiency. Both of these metrics are affected by both the efficiency

of the algorithms themselves as well as the compactness of the Clausal LP encoding as

compared with the BIP encoding. More specifically, the time efficiency of the methods

is compared using:

1. The total number of LP problems that are solved before reaching an optimal

solution to the problem.

2. The average size of all LP problems solved.

and the space efficiency is compared using the maximum queue size. These two criteria

provide significant indication as to how efficient an LP-based search algorithm is. The

90

bulk of computational effort in both algorithms takes place in solving repeated LP

problems. The total number and size of these problems defines the total computational

effort involved in solving the decision problem. Comparing the optimality of the final

solutions generated by each method would provide no information, because they both

terminate only when one of the optimal solutions is discovered. Using the amount of

real-world time elapsed until termination as a metric would likely distinguish the

methods, but this criterion is easily influenced by processor speed, number of background

processes, efficiency of the LP solver used, and other factors of secondary importance.

In particular, processor speeds are a continuously moving target, with typical upgrades

occurring once every eighteen months.

In our metrics for assessing CDCL-B&B, the total number of LP problems solved

does not include the cost of conflict extraction. Although different extraction procedures

were examined during the course of this research project, optimizing the extraction

process is outside the scope of this thesis.

The average LP size affects the time for solving each relaxed problem insofar as

computational time increases with the number of constraints in the LP (the rate of

increase is dependent on the LP solver used). The average LP size is therefore identified

by looking at the size of the tableaus that must be solved. The size of a tableau is defined

by its width, which is the number of variables in the LP, and its height, which is the

number of constraints in the LP. The number of variables in an encoding of a particular

HDCP is different depending on whether the encoding is a Clausal LP or BIP. However,

the number of variables is the same for all search tree nodes for a particular problem.

The value used to determine the average tableau size in this section is the average number

of constraints across all LPs solved. Because the nodes shallower in the tree will have

LPs with fewer constraints, and an efficient algorithm will try to focus on expanding

shallow tree nodes, the average number of constraints is a valid efficiency criterion.

To empirically evaluate performance, the CDCL-B&B and BIP-B&B methods

were coded in Java. Both implemented systems used a Java Operations Research library

created by [17] to solve any LP problems. The only types of problems handed to this

library are linear programming problems with all variables real-valued; any binary

variables in the BIP B&B program are either explicitly assigned a value or relaxed. A

91

random CPP problem generator is used to create path planning problems with varying

numbers of variables and decisions (clauses). For a given number of variables and

clauses, a set of ten problems is created with vehicle starting points, obstacle locations,

and goal points randomly generated. The data provided is the average results over all ten

problems, excluding infeasible problems. The percentage change is also provided,

calculated by finding the difference between the BIP B&B and the CDCL-B&B values,

and dividing by the benchmark BIP B&B value.

Although the LP problems solved during conflict extraction in CDCL-B&B are

not included in the results, the policy used to perform conflict extraction is still relevant

because the effectiveness of this policy in identifying minimal conflicts impacts the

overall performance of CDCL-B&B. Recall from Section 4.2.1 that for a given

infeasibility, multiple conflicts can generally be identified. Smaller conflicts result in

fewer CR mode branches and fewer LP nodes to explore. Discovering the conflict with

the smallest size, however, is exponential in the number of constraints in the worst case.

The extraction policy used during the analysis process was Incremental Linear Addition

& Removal (ILAR). Section 5.2.2 describes ILAR in more detail and briefly examines

alternative extraction policies.

92

5.1.2 Experimental Results

The results of the analysis described above is:

NUMBER OF RELAXED LPS SOLVED

Variables: 36 60 90
BIP B&B CDCL-B&B % BIPB&B CDCL-B&B % BIPB&B CDCL-B&B % BIPB&B CDCL-B&B _

Clauses: 0 1 1 0% 1 1 0% 1 1 0% 1 1 0%
20 2 2 0% 5.1 3.2 -37% 13.3 4.8 -64% 17.4 6.1 -65%
48 23.1 5.4 -77% 34.9 9.3 -73% 45.9 15.5 -66%

41.5 9.2 -78% 118.7 16 -87% 163.2 24.7 -85%

RELAXED LP SIZE (NUMBER OF CONSTRAINTS PER PROBLEM)

Variables: 18 36 60 90
B1PB&B CDCL-B&B % BIP B&B CDCL-B&B % BIP B&B CDCL-B&B % BIP B&B CDCL-B&B %

Clauses: 0 3 33 % 56 56 0% 114 114 0% 156 156 0%
20 54 38 -30% 81.5 54.1 -34% 132 114.9 -13% 170.5 158.4 -7%
48 131 64.3 -51% 160.7 118.4 -26% 200.8 158.2 -21%
80 188.5 74.4 -61% 216.5 117.2 -46% 240.1 159.3 -34%

MAXIMUM QUEUE SIZE
variables: 18 36 60 90

BIP B&B CDCL-B&B % BIPB&B CDCL-B&B % B1PB&B CDCL-B&B % BIP B&B CDCL-B&B %
Clauses: 0 1 1 0% 1 1 0% 1 1 0% 1 1 0%

20 2 2 0% 2.4 2.6 8% 2.8 2.4 -14% 3.4 3.8 12%
4E 4.2 2.4 -43% 3.5 3.6 3% 3.8 3.2 -16%
8C 4.4 3.6 -18% 5.1 4.4 -14% 5.8 5 -14%

The most important result of note is that the CDCL-B&B algorithm explores

fewer nodes during its BFS search than BIP-B&B does, for any problem with at least one

clause. The inclusion of conflict-direction improves search efficiency, in some larger

problems by a factor of over 50%. Additionally, the number of constraints in the average

relaxed CDCL-B&B LP problem is significantly smaller than the number of constraints

in the average relaxed BIP-B&B problem, sometimes by as much as 60%. This is

because every possible choice for avoiding every obstacle is encoded as a constraint in a

BIP, while obstacles are encoded as disjunctions in a Clausal LP. These disjuncts are not

included in the LPs that must be solved at each node. Resolution of a clause does

increase the number of constraints by I at each deeper tree level, but even in the worst

case this adds z constraints to a leaf node, where z is the number of obstacles. By

comparison, even the root node of a BIP search tree has 5-z extra constraints because of

obstacles: one for each direction and one extra for each obstacle being avoided.

The performance of the algorithms is identical for problems involving no

obstacles (meaning no disjunctive clauses), because these problems require encoding no

decisions. In general there are v-z-t decisions to encode for a problem with v vehicles, Z

obstacles, and t time steps. Each decision has four choices, for the four ways to avoid an

obstacle (North, South, East, and West). A CPP problem with no obstacles means that

the BIP encoding requires no binary variables and no extra constraints, and that the

Clausal LP encoding requires no clauses. Therefore no search takes place, and a single,

identical LP is solved by both algorithms

The next result to note is that the difference in the number of LPs solved and in

the LP size increases in real numbers with both the number of vehicles and the number of

obstacles. This result is also not surprising, since the number of total decisions is a

function of both these values, as previously shown. As the number of decisions

increases, the comparative benefits of encoding in a Clausal LP form and of conflict-

directed search increases as well.

The final result of note is that the maximum queue size of CDCL-B&B is around

10% smaller than BIP-B&B. This is despite the fact that CDCL-B&B uses a best-first

search policy, which has a larger memory usage, O(bd), than the depth-first search used

by BIP-B&B, O(b+d). The reason for the reduced CDCL-B&B queue size is likely

because the number of nodes to explore in the search tree is so much smaller than in BIP-

B&B. In other words, b and d are so much smaller for an HDCP encoded as a Clausal

LP than for the same HDCP encoded as a BIP that the overall memory use by CDCL--

B&B is slightly smaller. Another factor in the smaller queue size is the more effective

pruning policies used by CDCL-B&B. While traditional depth-first B&B has a queue

size that is at least as large as the maximum depth investigated, the pruning of infeasible

nodes (which are not enqueued) also serves to keep the maximum queue size very small.

In summary, using the Clausal LP form and conflict-directed search can

significantly improve the efficiency of solving hybrid decision-control programs, and this

improvement becomes greater as problem complexity increases. This efficiency

improvement is dependent on identifying minimal conflicts for infeasibilities, which can

be a time-consuming process. Hence, a vital area for future investigation is improving

the efficiency of the conflict extraction process. This and other potential enhancement

will be examined in the next chapter.

94

5.2 Future Work

This chapter reviews some areas for potential future work building on the Clausal LP

framework and the CDCL-B&B algorithm presented in this thesis. Section 5.2.1

describes methods for reducing the total number of states in a CLP that is built directly

from a BIP. Section 5.2.2 looks briefly at the problem of extracting conflicts, which was

deferred when conflict resolution was discussed earlier. Finally, Section 5.2.3 describes

how the CDCL-B&B algorithm can be integrated with a cooperative path planning

system.

5.2.1 Modifications to Clausal LPs

It may be possible to reduce the number of assignments that need to be explicitly

considered from the complete enumeration of 2 Nb (identified in Chapter 2) to a smaller

number. If two binary variables do not ever appear in the same constraint, then the

constraints that contain them can be mapped into independent clauses. More generally,

each clause in the Clausal LP corresponds to a partition of the total set of binary

variables; each variable in the partition must be independent of any variable in any other

partition. The greater the number of partitions in the binary variable set, the further

reduced the enumeration of assignment possibilities. For example, if a BIP included only

constraint {2.2-18} and constraint

x-b 3 + y 2 2 (5.2-21

then the BIP could be translated into a Clausal LP containing clauses {2.2-20} and

y 2 V x+y 2 {5.2-221

Together these two clauses enumerate only 6 possible disjuncts instead of 2 Nb = 2 3

The extreme case occurs when every binary variable in the BIP never appears in the same

constraint as any other binary variable, in which case only 2- Nb disjuncts are required.

A final possibility to consider in translating a BIP to a Clausal LP occurs when a

binary variable appears in multiple constraints. Enumeration of the possible assignments

in this scenario requires a Clausal LP that can add an arbitrary number of additional

inequalities when a particular choice is made, not just one inequality. For example, if a

BIP included the constraints

x-b 1 + y 5 15.2-23

95

x - y-b 1 3 15.2-24k

then the Clausal LP would need to contain a clause

(y 5 & x 2 3) V (x + y 2 5 & x - y 2 3) {5.2-25s

While a disjunct containing this kind of conjunction of inequalities is not considered in

this thesis, a slightly modified version of the Clausal LP framework would easily be able

to deal with this more general type of clause. Instead of associating each disjunct with a

single inequality, a given disjunct could be associated with multiple inequalities that

would all be added to a relaxed LP when the disjunct is selected. When clauses are

viewed as simple propositional variables, the multiple inequalities would all be abstracted

away, and each disjunct could be viewed as a single symbolic term.

5.2.2 Conflict Extraction

Conflict extraction and kernel generation must balance two competing

requirements. On the one hand, as the number of constraints used in a constituent kernel

decreases, the number of ways to resolve the conflict decreases as well. Therefore

conflict resolution would identify fewer states. This is very cost-efficient since more

states can be ruled out without performing any intensive computation. On the other hand,

exhaustively searching all possible combinations of constraints for the smallest conflict

that results in infeasibility is a problem of non-polynomial complexity. This

computational cost is made worse by the fact that the only way to check feasibility of a

subset of constraints is to run Simplex or an equivalent algorithm. This is self-defeating,

since the entire motivation behind conflict-direction is to reduce the total number of LPs

that had to be solved. Therefore performing an exhaustive search to find the smallest-

size conflict is not viable.

We can use heuristic methods for identifying "sufficiently" small conflicts. The

use of heuristic methods during conflict extraction does not in any way compromise the

optimality of the overall solution. Failure to find the smallest possible conflict only

reduces the effectiveness of the conflict-direction technique in guiding the overall search,

and so reduces speed, not optimality. In the extreme, failure to find any conflicts at all

would nullify the conflict-direction element of the algorithm entirely, and simplify it to a

96

simple best-first search, which will still find the optimal solution but only through an

inefficient search that investigates many infeasible nodes.

The most basic way to guarantee a minimal size conflict - that is, one where the

removal of even a single element of the conflict results in a feasible set of constraints - is

to add constraints until an infeasibility is discovered, and then try to remove each added

constraint to see if it is required for infeasibility. This is the Incremental Linear Addition

and Removal Policy, which was used to develop the results of Section 5.1.2. The

Addition phase where constraints are added to an initially empty set till infeasibility

occurs tends to keep the final conflicts small. The Removal phase where constraints are

removed if they are not required for infeasibility guarantees a minimal size conflict.

There are two major drawbacks to the ILAR policy. First, it does not guarantee

the smallest size conflict possible, which generally takes exponential time with respect to

the number of constraints. Second, each check of feasibility currently requires solving

another LP, which can lead to hundreds of additional LP problems being solved just to

extract a single conflict. This tends to undermine any efficiency improvement from the

inclusion of conflict-directed search. This last issue could be solved by considering a

policy that does not even guarantee a minimal size conflict but requires fewer LP

solutions, such as only performing the Linear Addition phase of the ILAR. Another

tactic might be to establish a cutoff point; when the number of constraints exceeds the

cutoff, conflict extraction halts and no conflict is generated. This would make conflict-

direction occur much less frequently.

Another avenue that shows promise is to find a faster way of identifying if a set of

constraints is infeasible. For instance, the ILAR policy repeatedly solves LPs that are

only slightly different from one another; using this similarity to reduce the amount of

work in solving subsequent LP problems could greatly improve conflict extraction speed.

Non-LP methods for identifying if an infeasibility exists also deserve future investigation.

5.2.3 Integrating CDCL-B&B with a Planning System

The application of the conflict-directed algorithm has greater relevance when

described in light of integration with a full cooperative path-planning system. The Kirk

path planning system performs high-level goal planning for multiple vehicles, goals, and

97

obstacles, and creates a set of control vectors that can be passed to simulated or real

vehicles. Chapter 2 introduced problems in this domain as illustrative examples for the

CDCL-B&B algorithm. These problems are also used as a metric for comparison with

the benchmark: a mixed integer-linear program formulation solved using a combined

Simplex-Branch and Bound technique. This section details the architecture of the unified

Kirk-CDCL-B&B system; meeting the interface required by this architecture places

certain demands and constraints on the HDCP problem formulation, which are reflected

in Chapter 2.

5.2.3.1. Unified Activity and Trajectory Planning

Integration of Kirk's higher-level activity planner and the CDCL-B&B-based

trajectory planner must maintain two characteristics: optimality of the final hybrid

solution, and efficiency of plan generation. Plan optimality is threatened by the fact that

the Kirk activity planner ignores terrain details and vehicle dynamics, when it selects a

roadmap path-plan. This means that its cost estimate for each candidate will be

optimistic, and it may not return a candidate that is optimal under the detailed model. For

example, Figure 37 shows that pursuing trajectory planning for the activity plan with cost

12 results in a solution with cost 15, while a less optimal activity plan might result in a

more optimal set of trajectories. Efficiency must be explicitly ensured because trajectory

planning for an unbounded problem for all possible plans is highly complex and is likely

to be intractable. Since much of the planning may take place online, it is vital to

minimize planning cost.

5.2.3.2. Unified Architecture/fbr Global Optimality

To achieve the goals of efficiency and optimality, Kirk and CDCL-B&B can be

integrated using A* search within a generate-and-elaborate cycle. The higher-level

activity planner generates a candidate plan using an optimistic cost estimate. The plan is

then elaborated and the cost is updated using the trajectory planner. Figure 37 shows this

separation between activity planning (top) and trajectory creation (bottom). The

combined planner generates candidate activity plans and elaborates their trajectory plan

98

up until the point that the next best candidate plan has cost worse than that of the best

elaborated trajectory plan.

Activity-level Planning
Using PRMTPN

0

0 0o

16 17 12 13

Physics-based
Planning using
Terrain 15 14

Figure 37: Generate-and-test cycle between activity-level planning and trajectory planning.

- Trajectory over plannrmt horizot

Connectirag line of sight
Trajectory asso.cated with teruIinal

penalty, with turing time penalty

WkQ+H x(k-H

x(k)"

Execution
Horizon

Planning
Horizon

Figure 38: Trajectory planning using a receding limited horizon; courtesy of [7].

Overall optimality is guaranteed as long as a purely optimistic admissible

heuristic is used to estimate the cost of the solutions generated by the activity planner.

This can be accomplished using, for example, a visibility graph-based estimate of cost,

which is optimistic since it does not take variable terrain complexities into consideration.

The higher-precision trajectory planner, using detailed vehicle dynamics, and terrain

maps, can extends the visibility graph estimates. Any admissible heuristic estimate for

plan cost can be substituted for a visibility graph for this methodology to be effective.

99

In Figure 37, for instance, initial optimistic cost estimates for the plans using a

visibility graph are 16, 17, 12, and 13. Extending the lowest-cost plan, the combined

algorithm achieves a trajectory with cost 15; but there is a candidate activity plan with

lower cost. When Kirk-CDCL-B&B extends the cost-13 candidate plan, it discovers a

trajectory of cost 14, which is superior to all other complete trajectory plans and all

candidate activity plans, and hence the algorithm terminates.

Because trajectory calculations are generally more costly than activity plan

generation, the complete trajectory plan is created only over a receding limited horizon

[7]. Instead of using a model of the entire map, CDCL-B&B only plans within a limited

planning horizon, shown in Figure 38. Beyond this horizon, a faster, less accurate cost

estimate such as a visibility graph estimate is used. As execution continues, the estimated

path is incrementally brought inside the planning horizon and the cost and path are

updated using CDCL-B&B.

5.2.3.3. Impact of Unified Planning on Kirk-CDCL-B&B Interface

The described unification of activity and trajectory planning has an impact on the

required encoding of HDCPs in three ways. First, the CDCL-B&B-based trajectory

planning algorithm must be able to interface with Kirk, and accept as one of its inputs the

goal plan generated by Kirk. Second, use of a generate-and-test cycle makes it possible

to run the more costly trajectory planning on only a single goal in the goal plan. Finally,

the limited-horizon approach restricts the total number of time steps in the problem, and

reduces the problem complexity.

The first requirement of interfacing with the Kirk planner impacts the I/O

specifications for the module containing the CDCL-B&B-based planner. Figure 39

shows the blackbox-view of this
Input Elements

Physics-based Path Planning module. The inputs consist of the

Vehicle Dynamics- Encoder CDCL ratories goal plan, a description of the

pAgorithm vehicle dynamics, and a

Figure 39: I/O specification for trajectory planner. representation of the terrain map.

After planning is complete, the

100

module returns as output the optimal trajectories or control vectors that achieve the goal

plan and achieve obstacle and collision avoidance for all the vehicles in the problem.

Integration with Kirk imposes a clearly-defined goal plan syntax that must be

recognized by the trajectory planner. The goal plan takes the form of a temporall

flexible plan, where individual nodes specify activities that must be accomplished by

vehicles, but without specific time stamps assigned to the nodes a priori. The time at

which these nodes are resolved must instead be explicitly scheduled.

However, the goal plan does contain temporal constraints that place upper and

lower bounds on the time duration of the activities and the arcs between activities. Only

the nodes that involve movement of the vehicles between locations are relevant during

trajectory planning; these must be extracted along with their associated temporal

constraints. The relevant goal plan structure, therefore, contains nodes that associate

vehicles with locations on the terrain map, combined with upper and lower bound

temporal constraints between nodes.

5.3 Conclusion

This thesis addresses the problem of efficiently solving problems that are

classified as hybrid decision-control problems; that is, problems that contain both logical

decisions and linear constraints. As an example, we presented the cooperative path

planning problem, which contains a fuel-usage function that must be minimized, a set of

linear constraints that govern vehicle movement, a set of goal states, and a set of

obstacles that must be avoided. An obstacle can be avoided by choosing a particular

direction for a vehicle to maneuver past it; this involves selecting a particular inequality

constraint from a set of possible constraints. Traditionally, these types of hybrid

problems are encoded using binary variables and binary arithmetic constraints within a

binary integer programming formulation. The worst case solution time of BIPs is

inherently exponential. The standard approach to solving BIPs is to use techniques for

solving linear programs, such as the Simplex algorithm, augmented with Branch and

Bound techniques, in order to prune sub optimal and infeasible portions of the search

space. This thesis aims to improve on the solution time of hybrid decision control

problems by unifying Branch and Bound with efficient methods for logical satisfiability.

101

The first contribution of the thesis is the introduction of the Causal LP framework.

Clausal LPs encode decisions, not using binary arithmetic, but using clauses, each of

which is a disjunction of inequalities. A feasible solution to the Clausal LP satisfies at

least one disjunct from each clause. This encoding more naturally represents logical

choice, and reduces the rate of exponential growth in complexity, enabling faster search.

The second major contribution of the thesis is the CDCL-B&B algorithm, which

unifies Branch & Bound techniques for BlPs with conflict-directed search and unit

propagation. Like Constraint-based A*, CDCL-B&B performs a best-first search over

problems that partially satisfy the Clausal LP, by resolving a subset of all clauses. Like

BIP-B&B, CDCL-B&B prunes infeasible search tree nodes. Finally, like Conflict-

directed A*, when a search tree node is found to be infeasible, CDCL-B&B identifies

conflicts, representing minimal sets of linear inequalities that produced the infeasibility.

Every new search tree node that is explored by the algorithm is first guaranteed to have

avoided all known conflicts.

The performance analysis of CDCL-B&B, when compared to BIP-B&B, indicates

reductions in the total number of LPs executed, and in the average size of these LPs. At

the same time, maximum queue size did not significantly change. This indicates an

improvement in time efficiency without higher memory cost. Future work will explore

more expressive encodings of HDCPs as Clausal LPs, and more efficient methods for

extracting conflicts from infeasible LPs.

1O-2

6 References

[1] Kiinzi, H.P., H.G. Tzschach and C.A. Zehnder. Numerical methods of mathematical
optimization. Academic Press, New York, 1968.

[2] Beasley, J.E. Advances in Linear and Integer Programming. Oxford University
Press, London, 1996.

[3] Hillier, F.S. and G.J. Lieberman. Introduction to Operations Research. McGraw-
Hill Book Co., Singapore, 1990.

[4] Wolfman, S.A. and D.S. Weld. "The LPSAT Engine & its Application to Resource
Planning," in Proceedings of JJCAI-99, 1999.

[5] Strichman, 0., S.A. Seshia, and R.E. Bryant. "Reducing Linear Inequalities to
Propositional Formulas," in Proceedings qf CA V '02, vol. 2404 of LNCS, 2002.

[6] Audemard, G., P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. "A SAT
Based Approach for Solving Formulas over Boolean and Linear Mathematical
Propositions," in Proceedings of CADE '02, 2002.

[7] Schouwenaars, T, E. Feron and J. How. "Safe Receding Horizon Path Planning for
Autonomous Vehicles," DARPA Software Enabled Control Program, AFRL
contract # F33615-01-C-1850.

[8] Bitner, J.R. and E.M. Reingold. "Backtrack programming techniques,"
Communications of the Association Jbr Computing Machinery, 18(11), 1975.

[9] Williams, B.C. and P. Nayak. "A reactive planner for a model-based executive," in
Proceedings of IJCAI-97, 1997.

[10] Williams, B.C. and R.J. Ragno. "Conflict-directed A* and Its Role in Model-based
Embedded Systems," in Journal of Discrete Applied Math, 2003.

[11] Detlefs, D.L., G. Nelson, and J.B. Saxe. "SIMPLIFY: A Theorem Prover for
Program Checking," HP Technical Report, H.P. Labs, 2003.

[12] Barrett, C., D. Dill, and J. Levitt. "Validity Checking for Combinations of Theories
with Equality," in LNCS vol. 1166, 1996.

[13] Filliitre, J.C., S. Owre, H. Rueb, and N. Shankar. "ICS: Integrated Canonizer and
Solver," in Proceedings of CA V '01, vol. 2102 of LNCS, 2001.

[14] Hart, P.E., N.J. Nilsson and B. Raphael. "A formal basis for the heuristic
determination of minimum cost paths," IEEE Transations on Systems Science and
Cybernetics, SSC-4(2), 1968.

[15] Wellman M.P. "Reasoning about Preference Models," Technical Report
MIT/LCS/TR-340, Laboratory for Computer Science, 1985.

[16] Forbus, K.D. and J. de Kleer. Building Problem Solvers. MIT Press, Cambridge,
MA, 1993.

[17] DRA Systems OR-Objects library. http://opsresearch.com, Copyright 1997-2000.

103

