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Abstract

An ad hoc network is a group of mobile nodes that autonomously establish connec-
tivity via multi-hop wireless links, without relying on any pre-configured network
infrastructure. Traditional ad hoc routing protocols use a large number of routing
packets to adapt to network changes, thereby reducing the amount of bandwidth left
to carry data. Moreover, they route data packets along a single path from source
to destination, which introduces considerable latency for recovery from a link failure
along this path. Finally, they often use the minimum hop count as a basis for routing,
which does not always guarantee a high throughput. This thesis presents AMPER
(Ad hoc, Modular, Probabilistic, Enhanced Routing), an ad hoc routing protocol
that minimizes the routing packet overhead, allows the use of alternate paths in the
event of a link outage, and employs - without loss of generality - the expected number
of transmissions to make forwarding decisions. Following the design of AMPER, ns-2
is used to simulate it, evaluate it and compare it to other ad hoc routing protocols.
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Chapter 1

Introduction

1.1 Overview

In situations where impromptu communication facilities are required, wireless mobile

users may be able to communicate through the formation of an ad hoc network. Such

a network (illustrated in Figure 1-1) is characterized by a self-organizing and decen-

tralized communication, whereby every node acts as a router by forwarding packets

to other nodes using multi-hop paths. Ad hoc networks are commonly encountered

in the following contexts:

" Interactive lectures

" Group conferences

" Wireless offices

" Moving vehicles (for dissemination of traffic information)

" Battlefield environments

" Disaster relief situations

Some key factors should be taken into account when building a mobile ad hoc net-

work: bandwidth, power control, network configuration, transmission quality, device
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Figure 1-1: An Ad Hoc Network with Six Nodes

discovery, topology maintenance, ad hoc addressing and routing. This thesis solely

deals with mobile ad hoc networks from a routing perspective.

1.2 Motivation

Routing is the process by which nodes in a network build a path in order to send

information from a source to a destination. Routing in mobile ad hoc networks is not

a simple task, due to the dynamic topologies that result from mobility, nodal failures,

and unpredictable environmental conditions. In recent years, a variety of routing

protocols for mobile ad hoc networks have been developed [9, 11, 12]. One of their

drawbacks is that they use a large number of routing packets to adapt to network

changes, thereby reducing the amount of bandwidth left to carry data. For example,

by periodically updating routing tables, proactive protocols such as DSDV [11] induce

a continuous traffic that increases with the number of nodes and the frequency of

changes in the topology. On the other hand, reactive protocols such as DSR [9] and

AODV [12] often employ some kind of flooding to acquire routes, which is unsuitable

for large networks. Moreover, all of these protocols route data packets along a single

path from source to destination, which introduces considerable latency for recovery

from a link failure along this path. Finally, they use the minimum hop count as a

routing metric, which does not always deliver the highest possible throughput [5].

Clearly, the above protocols suffer from inherent shortcomings.
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1.3 Proposed Approach

This thesis presents AMPER (Ad hoc, Modular, Probabilistic, Enhanced Routing),

an ad hoc routing protocol that minimizes the routing packet overhead, allows the

use of alternate paths in the event of a link outage, and employs - without loss of

generality - the expected number of transmissions [5] to make forwarding decisions.

Our approach is inspired by previous work in the area of probabilistic routing [1,

3, 8, 10, 13, 15, 16], but presents many differences by relaxing the assumption of

symmetric traffic, cutting down the number of control packets used, allowing the

random routing of data packets, and making the probability entries a function of the

loss ratios instead of the hop counts. Following the design of AMPER, we use ns-2

to simulate it, evaluate it and compare it to other ad hoc routing protocols.

1.4 Thesis Organization

The thesis proceeds in Chapter 2 with a description of related work. Chapter 3 gives

a thorough overview of AMPER, and Chapter 4 describes the environment we use to

simulate it. In Chapter 5, we evaluate AMPER by comparing it to three widespread

ad hoc routing protocols, namely DSDV [11], DSR [9] and AODV [12]. In Chapter 6,

we discuss AMPER's strengths and weaknesses and propose some improvements to

overcome its shortcomings. Chapter 7 concludes this thesis.
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Chapter 2

Related Work

2.1 Overview

From a routing table structure's perspective, ad hoc routing protocols can be grouped

into two categories:

" Non-probabilistic (deterministic) routing protocols, in which the routing table at

a node n contains <destination, next hop> pairs. The next hop is the neighbor

towards which n will route its data packets to the corresponding destination.

" Probabilistic routing protocols, in which the routing table at a node n contains

<destination, next hop, probability value> triplets. In this context, one can

distinguish two main routing schemes:

- Random routing, in which any of n's neighbors is entitled to receive n's

data packets, according to the probability value corresponding to that

neighbor.

- Non-random routing, in which n exclusively routes its data packets to the

neighbor with the highest probability value in the routing table.

We begin this chapter by giving an overview of three deterministic routing pro-

tocols, namely DSDV [11], DSR [9] and AODV [12]. We then describe some of the

19



probabilistic routing protocols we found in the literature. Finally, we motivate the

need for a new protocol by exposing the drawbacks of the preceding approaches.

2.2 Destination-Sequenced Distance Vector (DSDV)

DSDV [11] is a loop-free, hop-by-hop distance vector routing protocol. Every DSDV

node maintains a routing table that lists all reachable destinations, together with the

metric and the next hop to each. Moreover, each routing table entry is tagged with a

sequence number originated by the destination station. To maintain the consistency

of routing tables in a dynamically varying topology, each node transmits updates

either periodically, or right after significant new information becomes available. It

does so by broadcasting its own routing table entries to each of its current neighbors.

Each node in the network also advertises a monotonically increasing even sequence

number for itself, and routes with greater sequence numbers are always preferred for

making forwarding decisions. If two routes have equal sequence numbers, the one

with the smallest number of hops is used.

When a link to a next hop breaks, any route through that next hop is immedi-

ately assigned an infinite metric and an updated sequence number. To describe a

broken link, any node other than the destination generates a sequence number that

is greater than the last sequence number received from that destination. This newly

generated sequence number and an infinite metric are disseminated over the network.

To avoid nodes and their neighbors generate conflicting sequence numbers when the

network topology changes, the originating nodes produce even sequence numbers for

themselves, and neighbors generate odd sequence numbers for the nodes responding

to the link changes.

2.3 Dynamic Source Routing (DSR)

Instead of hop-by-hop routing, DSR [9] uses source routing, whereby each forwarded

packet carries in its header the complete list of nodes through which it has passed. The

20



DSR protocol consists of two mechanisms: Route Discovery and Route Maintenance.

In Route Discovery, a node s wishing to send a packet to some destination d locally

broadcasts a ROUTE REQUEST packet to its neighbors. The ROUTE REQUEST

identifies the destination node to which a route is needed, and also includes a unique

identifier chosen by s. If a node receives a ROUTE REQUEST for which it is not

the target, it adds its own address to the list of nodes in the ROUTE REQUEST

packet and locally rebroadcasts it. When the packet reaches its target, the destination

node returns to the sender a copy of the entire sequence of hops in a unicast ROUTE

REPLY packet, which may be routed along any path. To reduce the overhead of Route

Discovery, each node aggressively caches source routes it has learned or overheard.

Route Maintenance is the mechanism by which a sender s ensures that a route to

a destination d remains valid despite changes in the network topology. The sender

knows that a hop within a source route is broken when it receives a ROUTE ERROR

packet from a certain node along the path. s then removes this broken link from its

route cache and attempts to use any other route to d in its cache. If it does not find

one, it can invoke Route Discovery again to find a new route to the destination.

2.4 Ad Hoc On-Demand Distance Vector (AODV)

AODV [12] is a hybrid loop-free hop-by-hop protocol that borrows the broadcast

Route Discovery mechanism from DSR, and the destination sequence numbers from

DSDV. When a source s needs to communicate with a destination d for which it has no

routing information in its table, it initiates a Path Discovery process by broadcasting

a ROUTE REQUEST (RREQ) packet to its neighbors. The RREQ packet contains

six fields: the source and destination addresses and sequence numbers, a broadcast ID

and a hop count. Each node that forwards the RREQ creates a reverse route for itself

back to s, by recording the address of the neighbor from which it received the first

copy of the RREQ. A node either satisfies the RREQ by sending a ROUTE REPLY

(RREP) back to the source, or rebroadcasts the RREQ to its own neighbors after

increasing the hop count. Eventually, an RREQ will arrive at a node y that possesses
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a fresh route to d. This node can reply only when it has a route with a sequence

number that is greater than or equal to that contained in the RREQ. The RREP

generated by y contains the number of hops needed to reach d, and the most recent

destination sequence number seen by y. As the RREP travels back to s, each node

along the path sets up a forward pointer to the node from which the RREP came and

records the latest destination sequence number for the requested destination.

When a certain next hop becomes unreachable, the node upstream of the break

propagates an unsolicited RREP with a fresh sequence number and an infinite hop

count to all active upstream neighbors; this process continues until the source node is

notified. When receiving an unsolicited RREP, the sender must acquire a new route

to the destination by carrying out a new Path Discovery.

2.5 Probabilistic Routing Protocols

In probabilistic routing protocols, the routing table at a node n contains n's neigh-

bors in its columns, all accessible destinations in its rows, and a probability entry

corresponding to every destination-neighbor pair. We give below some examples of

probabilistic routing protocols for wired and mobile ad hoc networks.

2.5.1 Ant-Based Control (ABC)

ABC [16] was proposed in 1996 as an approach for load balancing in circuit-switched

networks. The protocol relies on the operation of routing packets called ants. Ants

are periodically launched with random destinations, and they walk according to the

probabilities they encounter in the routing tables for their particular destination.

When an ant sent from a node n arrives at a node c through another node b, the

entry in the routing table of c having n as a destination and b as a next hop sees

its probability increased. This is known as reinforcement learning, since more ants

sent along the same path will result in a reinforcement of the backward route. Data

packets are routed independently of the ants, according to the highest probability

value for each destination (probability values are set to be inversely proportional to
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paths lengths).

2.5.2 AntNet

AntNet [3] is another probabilistic routing protocol used in wired networks. It shares

some similarity with ABC, but it introduces the concept of forward ants and backward

ants. Every node n contains a routing table with probabilistic entries, and an array

of data structures defining a parametrical statistical model for the network delay

conditions as seen by n. At regular intervals, a forward ant is launched from each

node towards a randomly selected destination, in order to discover a minimum hop

path and investigate the traffic conditions of the network. The forward ant saves its

path in a stack, as well as the time needed to arrive at each intermediate node. When

the destination node is reached, the forward ant generates a backward ant, transfers

to it all of its memory, and dies. The backward ant takes the opposite path, but is

sent on a high priority queue to quickly propagate the information accumulated by

the forward ants. During this backward travel, local models of the network status and

the routing table of each visited node are modified as a function of the path followed

by the backward ants. As in ABC [16], higher probability values correspond to

shorter paths, and data packets are routed deterministically according to the highest

probability value for each destination.

2.5.3 The Ant-Colony-Based Routing Algorithm (ARA)

ARA [8] borrows many characteristics from DSR [9] and applies the concept of for-

ward and backward ants to mobile ad hoc networks. Specifically, Route Discovery is

achieved by sending forward ants to the destination and backward ants to the source.

Once the forward and backward ants have established a route between the source and

the destination, the flow of data packets through the network serves to maintain that

route. ARA prevents loops by letting the nodes recognize duplicate packets based on

the source address and sequence number. In the event of a link failure, the protocol

tries to send the packet over an alternate link. If it does not find one, the packet is
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returned to the previous node for similar processing. A new route discovery process

is launched if the packet is eventually returned to the source.

2.5.4 Other Probabilistic Routing Protocols

We have arbitrarily chosen ARA [8] as an example to illustrate probabilistic routing

in mobile ad hoc networks. Other protocols abund in the literature, but we have

opted not to cover them in depth because they share many characteristics with ABC

[16], AntNet [3] and ARA [8]. In PERA [1], forward ants explore routes and record

local traffic statistics in an array at each node. Backward ants use the information

contained in the forward ants to change the probability distribution at each node. In

ANSI [13], proactive ants are used for local link discovery and maintenance, whereas

reactive ants are deployed on demand for non-local route discovery. Adaptive-SDR

[10] performs node clustering during the initialization stage, and distinguishes between

colony ants and local ants. Each node has a colony routing table and a local routing

table. Colony ants find routes between clusters, and local ants are confined within a

colony. Termite [15] borrows some features from ABC [16] and AODV [12], and uses

four types of control packets for route discovery and maintenance.

2.6 Drawbacks and Limitations

2.6.1 Overhead

Any ad hoc routing protocol involves four major types of overhead:

" An algorithmic overhead stemming from the protocol's basic nature.

" An overhead caused by inefficient updates - i.e. sending update packets when

nothing significant has changed in the network.

" An overhead caused by the slowness to notice link failures or other network

changes - i.e. sending packets over stale routes.
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e An implementation overhead due to coding, packet formats, separate routing

packets and/or piggybacking.

We will use the following parameters to determine the significance of each type of

overhead:

* Bandwidth usage

" Cost of acquiring the wireless channel

* CPU and memory usage

The algorithmic overhead is mainly due to the amount of state used by the pro-

tocol, and to the number of messages sent and the manner they are routed. It goes

without saying that such an overhead affects bandwidth, channel access cost, and

CPU and memory usage altogether. The amount of state maintained in routing ta-

bles is O(N) for deterministic routing protocols like DSDV, DSR and AODV, and

O(N x M) for probabilistic routing protocols, where N is the number of nodes in

the network and M is the number of neighbors around a node (M < N). Modern

laptops and handheld devices should not suffer from this problem, especially when

the network size is relatively small1 . The algorithm that dictates the sending of mes-

sages produces a substantial overhead, but the latter cannot be easily avoided since

it relates to the protocol core.

The second type of overhead occurs when a node keeps sending update packets

even if little2 or no change has occured in the network. Although this improves 3 the

nodes' accurate knowledge of the current network state, it unneccesarily consumes

bandwidth and requires additional cost to access the wireless medium. The solution

to this problem involves adapting the update frequency to changing circumstances,

in order to balance accuracy and efficiency. We believe that the existing protocols

surveyed above deal well with this problem.

'Our aim is to design a protocol that behaves well in small networks.
2This introduces a tradeoff that is outside the scope of this thesis; there is an interaction between

the frequency of changes in the topology and the periodicity of the updates.
3or at least does not degrade.
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The third type of overhead arises when nodes do not quickly react to network

changes, and end up sending packets over stale routes. This again wastes bandwidth

and involves additional cost to access the medium. However, this kind of overhead

tends to be negligible, mainly because is it only incurred during a short period of

time4 .

The implementation overhead can be significant, depending on the choice of rout-

ing strategy. If separate control packets are used, they will certainly consume band-

width, but their most pronounced effect will be to increase the cost needed to gain

access to the wireless channel. In fact, the cost spent to acquire the medium in order

to transmit a packet is significantly more expensive in terms of power and network

utilization than the incremental cost of adding a few bytes to an existing packet 5 [2].

Moreover, protocols that send a large number of routing packets can also increase the

probability of packet collisions and may delay data packets in network interface trans-

mission queues. In DSDV [11], the control message overhead grows as O(N 2 ), where

N is the number of nodes in the network. In AODV [12], the broadcast route discovery

mechanism prevents the protocol from scaling to large networks. The flooding mech-

anism used in DSR [9] has the same shortcoming, and the extra overhead caused by

the presence of a source route is incurred not only when the packet is originated,but

also each time it is forwarded to a next hop. The probabilistic routing protocols sur-

veyed above use a large amount of routing packets, which increases with the number

of nodes and the frequency of changes in the topology. If piggybacking onto data

packets is used, the bandwidth consumed is practically the same, but the cost of ac-

quiring the wireless channel drops drastically. For all these reasons, it becomes clear

that the routing packet overhead is the main source of "avoidable" overhead, which

makes us believe that diminishing it will result in performance improvement.

4 The implicit assumption is that the recovery mechanism works reasonably well.
5This is due, in part, to the substantial overhead caused by RTS and CTS packets if they are

used.

26



2.6.2 Slow Recovery from Link Failures

The second drawback resides in the way data packets are forwarded. In DSDV [11],

DSR [9] and AODV [12], every forwarding node selects one neighbor only towards

a given destination, which implies that data packets are routed along a single path

from source to destination. This introduces considerable latency for recovery from a

link failure along this path, since the intermediate nodes discovering the failure will

then have to find a new route to the destination or notify the source to issue a new

routing request. Probabilistic routing protocols do not suffer from this problem, since

they can relay packets along alternate routes. However, the probabilistic protocols

surveyed in Section 2.5 all launch control packets randomly, but deterministically

route data packets according to the highest probability entries for each destination,

the reason probably being the avoidance of packet reordering. We believe that random

routing deserves further investigation, since it is not examined in any related work

we have surveyed.

2.6.3 Unrealistic Probability Update Rules

While the supposition of symmetric links is plausible in modern networks, the proba-

bilistic routing protocols mentioned in the previous section go beyond it by assuming

symmetric traffic. When a node d receives a packet from a node s through a node n,

d will increase the probability of choosing n as its next hop towards s. This is not

realistic because the receipt of a packet by d should instead increase the probability

of s choosing n as a next hop to d.

2.6.4 Throughput with Minimum Hop Count

Finally, all of the protocols described above use the minimum hop count as a routing

metric. De Couto et al. [6] show, using experimental evidence, that there are usually

multiple minimum-hop-count paths, many of which have poor throughput. As a re-

sult, minimum-hop-count routing often picks marginal links and chooses routes that

have significantly less capacity than the best paths that exist in the network.
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The shortcomings exposed above lead us to the following question: is it possible

to invent an ad hoc routing protocol that minimizes the routing packet overhead,

swiftly recovers from link failures, uses a routing metric that reflects network state

better than minimum hop count, and - if applicable - realistically updates probability

values? The answer turns out to be affirmative.
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Chapter 3

Protocol Description

This chapter provides a thorough description of AMPER. Following a brief overview,

we state our assumptions and then delve into the actual details of the protocol.

3.1 Overview

Let us recapitulate the goals we set out to achieve with our protocol. First, we would

like to minimize the routing packet overhead, keeping valuable bandwidth resources

available for data packets. Secondly, we ought to employ a routing metric that reflects

network state better than minimum-hop-count. Finally, we intend AMPER to be able

to quickly and efficiently shift to alternate routes upon link failure.

To minimize explicit control packet transmissions, AMPER appends internode

communication information onto data packets. Whenever a node sends its own or

forwards another node's data packet, it prepends an AMPER protocol-level header to

it. As packets are sent throughout the network, all nodes promiscuously listen to the

AMPER headers in order to learn updated information about the conditions of the

network. We use the expected number of transmissions (ETX) [5] as an initial choice

of routing metric; however, we have designed AMPER in such a way that we can plug

in different metrics as the need arises (i.e., AMPER is not dependent on any particular

choice of routing metric). Finally, we use probabilistic routing, whereby packets are

forwarded along a given link with a certain probability. This will allow AMPER to
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better adapt to alternate routes upon link outages: if a link towards a given neighbor

breaks, the sending node can immediately choose some other neighbor(s) to route its

packets. In theory, it should also have the desirable side effect of allowing nodes along

any path to transmit data from time to time, so that their neighbors remain aware

of their existence and state. The probabilistic routing mode is also modular and can

easily be flipped from random to non-random and vice-versa.

3.2 Assumptions

Although a node may have several physical network interfaces, it selects a single IP

address by which it will be known in the ad hoc network. We assume that each node

has sufficient CPU capacity to run AMPER, and is willing to forward packets to other

nodes in the network.

MAC protocols such as IEEE 802.11 [4] limit unicast data packet transmission

to bi-directional links, due to link-layer acknowledgments and to the required bi-

directional exchange of RTS and CTS. Therefore, the assumption of bi-directional

links is needed.

Finally, every node should be capable of enabling promiscuous receive mode on

its wireless interface hardware, which causes it to deliver every received packet to

the network driver software without filtering based on link-layer destination address.

Promiscuous mode increases the CPU software overhead and may raise the power

consumption of the network interface hardware, but is a valuable feature in AMPER

for reasons that will become clear as this chapter unfolds.

3.3 Initialization and Node Joins

The correctness of AMPER does not depend on any explicit activity on initialization

or node joins. A node joining the ad hoc network can simply turn on promiscuous

receive mode and start running AMPER . If it needs to send packets and has not

overheard any information that it finds useful for doing so, it can send an explicit
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F frequency of major state update

f frequency of minor state update
td destination reachability timeout
tr request timeout
t link loss ratio sampling window length
tn silent neighbor timeout

mret maximum number of request retries

Table 3.1: AMPER parameters

control packet to ask. We have experimented with HELLO packets [12] as a possible

optimization, but they have resulted in an overall performance degradation.

3.4 AMPER Parameters

The significant parameters that we varied in our implementation of AMPER are given

in Table 3.1. The exact meanings of these parameters will become clear throughout

the protocol description. The numerical values we adopted for these parameters will

be presented in Chapter 5.

3.5 Node State

Every node n maintains the following pieces of information:

* The current time (at node n

maintain to be synchronized).

there is no need for the times that all nodes

* Timers to determine when n will make its next periodic state update. Specifi-

cally, these timers go off at the frequencies given by F and f.

* The set of neighbors of n. These are the nodes from which n has heard some-

thing within the silent neighbor timeout t, and/or which have heard something

from n within that time.1

'The exact definition to use is clear from the context; n learns which nodes have heard from it
within the timeout because they list it as such in the headers of the packets they transmit - see
Section 3.7.
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. Loss ratio state:

- The times at which n sent packets (to anyone) within the link loss ratio

timeout t1.

- For each neighbor m of n, the times at which n heard m send a packet

(to anyone) within that same timeout ti.

- For each neighbor m of n, the link loss ratio of packets sent from n to m,

as sampled over a window of length tj.

- For each neighbor m of n, the link loss ratio of packets sent from m to n,

as sampled over a window of length t 2.

" Routing state:

- A list of reachable destinations.

- A list of unreachable destinations, with timestamps of when it was decided

that each of them was unreachable.

- For each reachable destination d, the metric value Mn(d) for sending pack-

ets from n to d.

- For each reachable destination d and each neighbor m of n, the metric

value Mm(d) for sending packets from m to d.

- For each reachable destination d and each neighbor m of n, the probability

pn(d, m) of sending a packet destined for d to neighbor m. Note that

EmPn(d, m) = 1 for fixed n and d.

" Node cooperation state:

- What destinations n would like to learn about3 in order to send data to

them.

- What destinations n has heard its neighbors ask about (within the request

timeout tr).
2 The loss ratio calculations are valid even if the nodes are not transmitting packets continuously.
3 i.e., discover its neighbors' metric values for
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- Which of those destinations n itself needs to learn about in order to answer

its neighbors.

- What requests for information n made within the request timeout t, when

the last time n made each of those requests was, and how many times n

made each of those requests.

- How far to propagate a request for information; an expanding ring search

is implemented on such requests (see Paragraph 3.9.2 for more details).

This state is dynamic, which means that its size can grow and shrink based on

the node's knowledge of the current topology. Except for the clock, which we assume

is updated continuously and correctly,4 this state changes only when a node hears

a transmission, transmits a packet, or makes periodic updates (see Section 3.8 for

details). One can easily see that the maximum (theoretical) amount of state that any

node may have to maintain is N 2 + Nx, where N is the number of nodes in the ad

hoc network and x is the number of times any node has recently sent a packet.

3.6 Routing

When a node n wants to send (or forward) a packet to a destination d, it checks

its state to see whether d is reachable.5 If d is determined to be unreachable within

the destination reachability timeout td, n drops the packet. If d is neither known

to be reachable nor known to be unreachable, n puts the packet in a wait queue,

records the fact that it wants to find out how to get to d, and sends packets to other

destinations.6 If d is reachable, n looks up the probability distribution corresponding

to d and routes the packet according to that probability distribution.

In this thesis, we investigate random probabilistic routing, in which every neighbor

is entitled to receive the packet with the probability given in the distribution, and

4The "periodic update" functions get called when the time comes for them.
'Unless, of course, n is d, in which case it hands the packet up the network stack.
6If n finds itself with queued packets but no packets on which to piggyback the requests, n

can send an explicit control packet to make its requests. In particular, this will likely happen on
initialization.
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Next Hop Probabilities
Dest mi M2 M3

di 0.20 0.30 0.50
d2 0.90 0.05 0.05
d3 0.80 0.15 0.05
d4 0.10 0.75 0.15

Table 3.2: Routing Table for a Node with Three Neighbors and Four Accessible
Destinations.

non-random probabilistic routing, in which the packet is always sent to the neighbor

with the highest probability value in the routing table. Consider, for example, a node

node with the routing table shown in Table 3.2. In random mode, it routes a packet

for destination d2 to neighbor m 1 with probability 0.9, and to each of neighbors m 2

and m 3 with probability 0.05. If non-random mode is used, node node will route the

packets destined to d2 to neighbor m 2 only.

As mentioned in Section 3.1, the modular structure of AMPER allows us to switch
7between the two modes if the need arises

3.7 Internode Communication

The motivating philosophy behind AMPER is that control packets have a deleteri-

ous effect on network performance. Therefore, as much internode communication as

possible is piggybacked on data packets. Specifically, whenever a node n sends (or

forwards) a packet to a neighbor m, n prepends an AMPER packet header to said

packet 8 , which all the neighbors of n promiscuously overhear and use to update their

state. The recipient m of the data packet removes this header and appends its own

before forwarding the packet to the next node'. The packet header contains:

* Loss ratio information:
7This is outside the scope of this thesis, but one could also imagine a "semi-random" mode, in

which we would aim to be as random as possible while handling the constraints of TCP.8ft is easier to prepend a header than append it in ns-2; besides, a prepended header may be
better for snooping.

9For simplification, we assume that the MAC layer's maximum segment size is bigger than its IP
counterpart.
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IP Header # recently Metric Fulfilled Requests
seen packets Value < destination, metric >

Loss ratio FROM each neighbor Issued Requests
< neighbor, ratio >

Transport
Header Header
Length

Figure 3-1: Conceptual AMPER Header

- The number of packets n has sent (to anyone) within the link loss ratio

window time tj.

- For each neighbor m of n, the sampled link loss ratio for the packets sent

from m to n.

" Routing information:

- The metric value M,(d) of n for the destination of this packet.

" Node cooperation information:

- A list of destinations that n would like to get information about, but has

not asked its neighbors about within the request timeout tr. This includes

destinations that the neighbors of n have asked about, but whose requests

n cannot honor for the lack of said information.

- If any neighbor of n has requested information on any destination d' 74 d,

and n has such information but has not yet honored that request, the

metric value Mn(d') of n for each such destination d'.

A conceptual view of the AMPER header can be seen in Figure 3-1. The size of

this header is variable, so it also includes an appropriate length field. If the wireless

links can be assumed to be symmetric, then it may not be necessary to send the loss

ratios, which would diminish the header size significantly. We do not experiment with

this assumption as it would constitute a loss of generality.
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3.8 Node State Update

A node n updates its state (described in Section 3.5) under three circumstances:

whenever n hears a packet transmitted by one of its neighbors, when n transmits a

packet itself, or as n makes periodic updates. The process of such updates is described

in detail below.

3.8.1 Updates on Sending

Whenever a node n contemplates sending a packet, it updates its state as follows:

" If n believes the destination d of that packet is unreachable (i.e., n has recently

found it to be so, within the destination reachability timeout td), drop the

packet and do not change state.

" If n does not know how to reach d and is not certain d is unreachable, add d

to the list of destinations n would like to learn about, and delay sending this

packet (send others instead).

" If n attempts to send the packet but the MAC layer is unable to establish

contact with the neighbor for which it is intended, remove that neighbor from

the neighbor list (with all attendant state clearing and reshuffling of probability

values) and try to send the packet again to a different neighbor.

Otherwise:

" Add "now" to the set of times when n sent a packet.

" If this transmission makes any requests for information, record them.

" Remove any requests for information honored by this transmission from the list
10of not yet honored requests for information

" If the neighbors of n have made any requests for information that n is unable

to honor due to the lack of said information, record them.
10Handling recovery from lost packets is outside the scope of this thesis - the reliability and

recovery mechanisms are not incorporated in AMPER.
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3.8.2 Updates on Receiving

Whenever a node n hears a packet P transmitted by a node m (not necessarily

destined for n), n updates its state as follows:

" If m is not on n's neighbor list, put it there and initialize the per-neighbor state

to appropriate zero and null values.

" Loss ratio state:

- Add "now" to the list of times n has heard m send anything.

- Set the link loss ratio for packets sent from n to m to the value reported

in the header of P. This is how n learns whether m has heard anything

from it within the silent neighbor timeout t,.

- Recalculate the link loss ratio for packets sent from m to n based on the

number of packets m has sent (from the header of P) and the number of

packets n has heard (from n's state).

* Routing state:

- If the header of P mentions previously unknown destinations, add appro-

priate null values for them and continue.

- For each destination d for which the header of P has data, update Mm(d)

to the value reported in the header of P.

- For each such destination d, update the probability distribution pn(d, *)

in accordance with the probability distribution update rule.

- For each such destination d, recalculate Mn(d)."

- For each such destination d, if n wanted to learn about d and now has

enough state to reasonably send packets to d, remove d from the list of

destinations that n would like to get information about.

"To do this, it is necessary for M to be local enough to be computed from the metric values of
the neighbors, the link loss ratios to them, and the probability distribution for sending packets to
them.
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* Node cooperation state:

- If the header of P contains a request for information, record it.

- If the ultimate destination of P is n itself, n treats this as an implicit

request for information about itself."

3.8.3 Periodic State Updates

Every node n periodically updates its state as follows:

" Update the timers that govern n's next periodic state update.

" If n has heard nothing from some neighbor m within the silent neighbor time-

out to, remove m from the neighbor list, and delete all its per-neighbor state.

Recompute the probability distributions and metric values accordingly.

" Loss ratio state:

- If any packets n has sent or heard are not within the link loss ratio timeout

tj, remove their times from the list of recently sent or heard packet times.

" Routing state:

- For each destination d, update the probability distribution p,(d, *) ac-

cording to the probability distribution update rule.

- For each destination d whose probability distribution has changed, recom-

pute the metric value Mn(d).

- If the declaration of unreachability on some destination has expired, re-

move that destination from the list of unreachable destinations.

" Node cooperation state:

"We have discovered this to be a very good idea, to ensure that the destinations of traffic talk
(whether they need to or not) and the network does not lose track of them as they move about.
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- If n has made an information request that was due to need on n's part 13,

has not been answered, but has had its request timeout expire, schedule it

to be made again.

- If n has made a request for information more than mret times without

success, give up and declare that destination unreachable.

- If a request for information that has been made of n has had its request

timeout t, run out, but n has not yet managed to honor it, forget about

it.

- If n has information it would like to acquire or disseminate, but no packets

to send on which to piggyback the request or answer, send an explicit

control packet containing all the usual header data (including the request

or answer in question).

3.9 Remarks on Requests and State Updates

3.9.1 Frequency of Updates

We have found that it is very much worthwhile to perform the node cooperation

updates quite often (with frequency f), so that destination requests are propagated

reasonably swiftly even when there is little or no traffic to piggyback them on; this

proved especially valuable during initialization. On the other hand, we allow the

other periodic state updates to occur less frequently (with frequency F>f).

3.9.2 Expanding Ring Search

We implement expanding ring search on information requests, which is reminiscent

of the DSR Route Discovery mechanism [9]. Whenever a node makes a request, it

attaches a "ring size" to it. Every time the node retries the request, it increments the

ring size. Every time the request is forwarded, the ring size is decremented. When the

ring size reaches zero, the request is not dropped, but it is only forwarded piggybacked

1
3 rather than that of one of n's neighbors
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on data packets, so extra explicit control packets are not generated for it. However,

a control packet is generated if a node needs to honor a request whose ring size has

reached zero (but has no data packets for this purpose).

3.9.3 Explicit Control Packets

We believe that the explicit control packets generated for the purpose of propagating

and answering information requests should not be terribly burdensome on the net-

work, at least in the random probabilistic routing mode. The reason is that if there

is a great deal of traffic around a node, then that node will be called upon at least

occasionally to forward some of it, and it can then propagate the requests and an-

swers it cares about. If a node ends up generating a control packet, then that control

packet probably doesn't interfere with much data traffic. We have not been able to

reliably test this hypothesis.

3.10 Choice of Routing Metric and Probability Rules

In this section, we outline the metric we use for routing, and explain the mapping

between the metric values and the probability values in each node's routing table.

3.10.1 Routing Metric

As mentioned in Paragraph 3.8.2, AMPER is modular in the sense it can accomodate

a wide variety of metrics. The only condition is that the chosen metric be local

enough to be computed from the metric values of a given node's neighbors, the link

loss ratios to them, and the probability distribution for sending packets to them.

First off, we avoid using the minimum hop count for the reasons explained in

Section 2.6. Choosing the end-to-end delay is possible, but this metric changes with

network load, which makes it difficult for good paths to be maintained. Using the

product of per-link delivery ratios as a throughput measure fails to account for in-

terference between hops: this metric will pick a lossless two-hop route instead of a
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one-hop route with a 1% loss ratio, although the latter has almost twice the through-

put. The same inconvenience arises if we select the useful throughput of a path's

bottleneck as a metric [5].

In this paper, we choose to experiment with ETX [5], which finds paths with

the fewest expected number of transmissions (including retransmissions) required to

deliver a packet to its destination. It is clear that the ETX from a source to a

destination is the sum of ETX values between the intermediate nodes on the path.

ETX accounts for asymmetric link loss ratios, solves the problem of interference

between successive hops of multi-hop paths, and is independent of the network load.

Although ETX does not perform well with burst losses, it remains a valuable metric

to use in AMPER. In the near future, we plan to investigate other metrics that satisfy

the "locality" condition, and to draw a comparison between them.

Formally, the ETX from a node n to its neighbor m is defined in terms of the

forward (dn,m) and reverse (dm,n) delivery ratios by:

ETX (m) = 1 (3.1)
dn,m x dm,n

The ETX value along a path is the sum of the ETX values on the individual links in

that path. Under random probabilistic routing, the ETX value from some node n to

a destination d is given as follows (the sum ranges over the neighbors of n):

ETXn(d) = 1pn(d, m) (ETX (m) + ETXm(d)) (3.2)
m

Unlike [5], AMPER need not send dedicated link probe packets to calculate the

forward and reverse loss ratios between nodes and their neighbors. As explained in

Chapter 3, both can be deduced by using the node state and packet header informa-

tion.
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3.10.2 Metric-to-Probability Mapping

We now describe how the ETX values of a node n's neighbors and the link loss ratios

from n to them are used to choose the probability distribution with which n will

route packets to those neighbors. This mapping is also modular, since it can easily

be changed without affecting the overall AMPER structure.

We choose a mapping that heavily favors neighbors promising a lower workload

to deliver the packet. Specifically, a node n computes, for each neighbor m, the

"directed ETX" for that neighbor - the ETX n would experience if it routed to that

neighbor alone. This is given by:

DETXn(d, m) = ETXn(m) + ETXm(d). (3.3)

We then subtract 1 from these values, and set the probability of routing to each of

n's neighbors to be proportional to the inverse square of the result for that neighbor.

Let us illustrate this by an example. Suppose a node n possesses three neighbors

M 1 , M 2 , and m 3 having the delivery loss ratios and ETX values to the destination of

interest given below:

dn,mi = 0.9, dn,m2 = 0.8, dn,m3 = 0.95,

dmi,n = 0.3, dm2 ,n = 0.9, dm3,n = 0.95.

ETXmi(d) = 1.1, ETXm2 (d) = 1.3, ETXm3 (d) = 1.2,

Using Equations 3.1 and 3.3 produces the following directed ETX values:

DETXn(d, ml) - 4.804,

DETXn(dm 2) = 2.689,

DETXn(d,m 3) 2.308.

Subtracting 1 and taking the inverse squares, the probability values turn out to be
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proportional to about

0.069, 0.351, 0.584,

for a net probability distribution of

pn(d, ml) e 0.068,

pn(dm 2 ) ~ 0.350,

pn(dm 3 ) r 0.582.

Observe that the chosen mapping is static - it keeps no record of history infor-

mation (except what is needed to compute link loss ratios), and does not in any way

evolve, but simply translates the directed ETX values into probabilities. We chose

a static mapping for ease of implementation - had we chosen a dynamic one, it

would have been much more difficult to verify that it was being correctly updated.

Moreover, we believe that a dynamic mapping would produce a similar trend for the

probability distribution, without any exorbitant differences in probability values.

Having thoroughly described AMPER, we are now in a position to simulate it and

evaluate it. However, before proceeding to the actual results, we ought to expose the

environment in which we carry out our simulations.
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Chapter 4

Simulation Environment

To evaluate AMPER, we use the ns-2 network simulator [7], together with the Rice

Monarch Project wireless and mobility extensions [14]. ns-2 is a discrete event simu-

lator widely used in network protocol research. It is written in C++ and uses OTel

as a command and configuration interface. The Monarch Project wireless and mobil-

ity extensions provide arbitrary physical node position and mobility, with a realistic

radio propagation model that includes effects such as attenuation, propagation delay,

carrier sense, collision and capture effect.

In this chapter, we expose the models we utilize for the physical and data link

layers, as well as reasonable movement and traffic scenarios. We also specify the

metrics used for the evaluation of AMPER.

To ensure our simulations run smoothly, we randomly generate scenario files (see

Sections 4.3 and 4.4) in accordance with our protocol parameters, then simulate all

the protocols on exactly the same set of scenarios. This is done in order to avoid that

random flukes in setup - such as a network partition in one scenario file - cause a

protocol to perform worse than the others.

4.1 Physical Layer Model

We keep the built-in ns-2 [7, 14] signal propagation model that combines free space

propagation and two-ray ground reflection: when the transmitter is within a certain
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reference distance from the receiver, the signal attenuates as 1/r 2 ; beyond this dis-

tance, it weakens as 1/r 4 . Each mobile node uses an omni-directional antenna with

unity gain, and has one or more wireless network interfaces, with all the interfaces of

the same type linked together by a single physical channel.

The position of a node at a certain instant is used by the radio propagation model

to calculate the propagation delay from a node to another and to determine the power

level of a received signal at each node. If the power level is below the carrier sense

threshold, the packet is discarded as noise; if it is above the carrier sense threshold

but below the receive threshold, the packet is marked in error before being passed to

the MAC layer; otherwise, it is simply transmitted to the MAC layer.

4.2 Data Link Layer Model

The link layer implements the IEEE 802.11 Distributed Coordination Function (DCF)

[4]. DCF uses an RTS/CTS/DATA/ACK pattern for all unicast packets, and simply

sends out DATA for all broadcast packets. The implementation uses both physical

and virtual carrier sense for collision avoidance.

An Address Resolution Protocol (ARP) module is used to resolve IP addresses

into link layer addresses. If ARP possesses the hardware address for the destination,

it writes it into the MAC header of the packet; otherwise, it broadcasts an ARP query

and caches the packet temporarily. For each unknown destination hardware address,

the ARP buffer can hold a single packet. In case additional packets for the same

destination are sent to the ARP module, the earlier buffered packet is dropped.

4.3 Movement Model

The simulations are run in an ad hoc network comprising 50 mobile nodes moving

according to the random waypoint model [2, 9] in a flat rectangular topology (1500m

x 300m). In the random waypoint model, each node begins at a random location and

remains stationary for a specified pause time. It then selects a random destination
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and moves to it at a speed uniformly distributed between 0 and some maximum

speed. Upon reaching that destination, the node pauses again for pausetime seconds,

selects another destination, and repeats the preceding behavior for the duration of the

simulation. In our simulations, we investigate pause times of 0, 30, 60, 120, 300, 600

and 900 seconds (where Os corresponds to continous motion and 900s to no motion).

The maximum node speeds we experiment with are 1 and 20 meters per second. The

simulations are run for 900 seconds and make use of scenario files with 42 different

movement patterns, three for each pair of values of pause time and maximum speed.

4.4 Traffic Model

Data traffic is produced using constant bit rate (CBR) UDP sources, with mobile

nodes acting as traffic sources generating 4 packets per second each. We present

results with 10, 20, and 30 connections, which we believe are sufficient to illustrate

the general trends in protocol performance. The packet sizes investigated are 64 bytes

and 256 bytes. Following the Broch et al. [2] recommendation, we avoid using TCP

sources because of TCP's conforming load property: TCP changes the times at which

it sends packets based on its perception of the network's ability to carry packets. This

will hinder comparisons between protocols, since the time at which each data packet

is originated by its sender and the position of the node when sending the packet would

differ between the protocols.

4.5 Metrics of Evaluation

We choose to evaluate AMPER according to the following metrics:

* Packet delivery ratio: The fraction of data packets that are successfully deliv-

ered to their destinations. This specifically denotes data packets sent by the

application layer of a (CBR) source node and received by the application layer

at the corresponding (CBR) destination node. For CBR sources, the packet

delivery ratio is equivalent to the goodput.
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" Packet delivery latency: The average end-to-end delay required between origi-

nating a data packet and successfully delivering it to its intended destination.

" Routing packet overhead: The average number of separate overhead packets (per

second) used by the routing protocol. For packets sent over multiple hops, every

transmission - whether original or forwarding - is counted.

" Total bytes of overhead: The average number of bytes of routing overhead (per

second), including the size of all routing overhead packets and the size of any

protocol headers added to data packets. For packets sent over multiple hops,

every transmission - whether original or forwarding - is counted.

* Route acquisition latency: The time needed for the network layer to send the

first packet of a flow after receiving it from the application layer of the (CBR)

source.

48



Chapter 5

Simulation Results

Before proceeding to the simulation and evaluation of our protocol, it is worth men-

tioning that AMPER is very computationally intensive for the nodes to run, which has

the downside that running simulations of AMPER consumes a great deal of computer

time. We have not tried to design a computationally-efficient routing protocol, as we

believe that laptops with modern network cards can handle more or less anything

we can throw at them. Of course, some ad hoc applications may be using handheld

devices that do not possess substantial memory and CPU power, but this should not

be terribly burdensome when the ad hoc network is small'.

We do not compare AMPER to other probabilistic routing protocols, but rather

choose to contrast it with DSDV [11], DSR [9] and AODV [12] for the following

reasons:

" The DSDV, DSR and AODV implementations are offered as part of ns-2, which

makes it easy to simulate them, whereas the evaluation of the probabilistic rout-

ing protocols requires writing their implementation from scratch. Besides being

extremely time-consuming, the latter is a tremendous hassle since it involves

understanding those protocols in great detail 2 .

" Previous simulation results of DSDV, DSR and AODV are more detailed and

'We should mention again that AMPER is designed to operate in small-sized networks.
2 This seems like a utopic goal (at least for us); we think the papers in question contain many

unclear or questionable issues.
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more refined than their probabilistic counterparts, which allows us to better

check the accuracy of our own results.

* DSDV, DSR and AODV are popular and widely accepted among the networking

community; trying to compete with them is challenging yet rewarding.

The remainder of this chapter is organized as follows: Section 5.1 is a note on

AMPER parameter values. In Section 5.2, we present and compare the performance of

the four protocols on each of our metrics of evaluation. In Section 5.3, we present the

variation of the delivery ratio of each protocol as a function of the size of the packets

sent by the CBR sources. In Section 5.4, we present the variation of the delivery

ratio of each protocol as a function of the number of connections in the network. In

Section 5.5, we show how the overall performance of the protocols changes when the

nodes slow down to a maximum speed of one meter per second.

5.1 Values of AMPER Parameters

We varied the values of the AMPER parameters in an effort to maximize the protocol

performance. The values of the major parameters that we adopted for the simulations

presented below are shown in Table 5.1.

The frequency of major state update, F, reflects the rate at which the neighbor

list, the loss ratio state and the routing state are refreshed at each node. This pro-

cess mainly involves the removal of old neighbors and all associated information, the

elimination of destinations with expired declaration of unreachability, and the rebal-

ancing of probability values in the routing tables. F is critical for correct operation

of the protocol: if it is set to a value greater than 1.0s, performance degradation

becomes noticeable. The value of the frequency of minor state update, f, governs

the rate at which the node cooperation state updates are carried out. If f exceeds

0.1s, destination requests will not be propagated reasonably swiftly, even when there

is traffic to piggyback them on. Smaller values of F and f make the nodes better

aware of the current network state, but may involve a performance tradeoff. In fact,
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the nodes will be able to respond quicker to network changes, but if those changes

do not happen frequently, smaller values of F and f will consume more bandwidth

and will require an additional cost to access the wireless medium. Moreover, very

frequent updates may cause packet retransmissions, especially when TCP is used. In

3addition, it would make the simulations run slower

Unlike the case of F and f, AMPER is not very sensitive to the value of the

destination reachability timeout td and that of the request timeout tr. If a certain

destination is determined to be unreachable within td, the sender drops the packet

addressed to this destination. Setting td to a value less than 0.5s causes more packet

drops, whereas setting it to any value between 2.Os and 4.Os gives approximately

the same performance. The value of the request timeout, t,, affects the number of

requests for information that a node can make or listen to before clearing the previous

requests. For values of t, smaller than 0.05s, the nodes start to lag - their ability to

follow network changes becomes limited.

AMPER is extremely sensitive to the link loss ratio sampling window length: tj

directly affects the contents of the protocol header and the metric values between

nodes, which in turn determines the routing dynamics inside the network. For values

of tj smaller than 1.8s, nodes fail to get an accurate knowledge of the network state

and may route along non-optimal paths. For values of tj bigger than 2.2s, nodes start

to behave erratically when their list of neighbors changes or some nearby link breaks.

Finally, AMPER is relatively insensitive to the values of the silent neighbor time-

out t, and the maximum number of request retries met. The former determines how

long a node should wait before removing a neighbor from which it has not heard

anything, and the latter dictates how many times a request for information can be

repeated before it is dropped. Values of t, between 2s and 6s, and a range of 5 to 18

for mret both seem to deliver a consistent performance.

Since the focus of our efforts was AMPER, we did not vary any parameters for the

other three protocols, but rather trusted that their implementers had chosen optimal

values to use in ns-2.

3A 40% decrease in F and f makes the simulations run approximately 3 times slower.
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F frequency of major state update 0.5s
f frequency of minor state update 0.05s
td destination reachability timeout 2.Os
tr request timeout 0.15s
t link loss ratio sampling window length 2.Os
t_ silent neighbor timeout 3.Os

mret maximum number of request retries 10

Table 5.1: Values of AMPER parameters

5.2 Performance Overview

Figures 5-1 through 5-10 give an overview of the performance of the four protocols

with respect to the five metrics we tested them on. The simulations are all run at

a maximum node speed of 20 m/s, as we believe that faster nodes present a more

appropriate challenge for the routing protocols. Each plot presents the metric versus

the pause time, and every point in these plots is the average of the values as the

connection count is varied over the values 10, 20, and 30, and the packet size is varied

over the values 64 bytes and 256 bytes. A more detailed presentation of the effects

of the packet size and the number of connections on the delivery ratio is presented in

Sections 5.3 and 5.4, and an overview of the effect of reduced maximum node speed

follows in Section 5.5.

5.2.1 Delivery Ratio

Figure 5-1 presents the ratio of application packets delivered by each protocol as a

function of pause time4 . DSDV's delivery ratio is quite low at higher rates of mobility5,

but improves as nodes slow down. The majority of the packets are being lost because

a stale routing table entry directs them to be forwarded over a broken link. AODV

and DSR have consistent trends, and deliver at least 95% of the packets in all cases.

AMPER offers excellent performance as well, and outperforms its competitors except

at the 30s pause time, where it presents a downward spike. We do not know the cause
4 We have arbitrarily chosen AMPER's random mode in all comparisons with DSDV, DSR and

AODV. Separate graphs will contrast the non-random and random AMPER modes.
5 This corresponds to lower pause times.
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Figure 5-1: Delivery Ratio Overview

of this irregularity; it may be an artifact of the random scenario files or the result of

a certain interaction between the AMPER timeouts.

Figure 5-2 presents the ratio of application packets delivered by AMPER as a

function of pause time. We investigate both the random and non-random modes, as

our ultimate objective is to conclude which one offers better performance. Aside from

the spike at the 30s pause time, AMPER delivers at least 95% of its data packets in

both modes. The random mode seems to offer a slightly superior performance, except

for pause times greater than 600 seconds, where its delivery ratio curve practically

coincides with the non-random mode's one.

5.2.2 Delivery Latency

Figure 5-3 presents the average amount of time that successfully delivered packets

took to be delivered. DSR's delivery latency is clearly larger than its competitors';

this is mainly due to the cost involved in processing the source route at each DSR

node. DSDV, AODV and AMPER all offer delivery latencies that are within 250
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Figure 5-3: Delivery Latency Overview
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Figure 5-4 presents the average amount of time that successfully delivered AM-

PER packets took to be delivered. Non-random AMPER peaks at less than 200

milliseconds, and offers lower delivery latencies at higher node mobility rates. The

cost of reordering in random AMPER seems to be the cause; however, this effect is

not noticeable for pause times greater than 300 seconds. Overall, non-random AM-

PER appears to be slightly favorable to its random counterpart when the goal is to

minimize the delivery latency.

5.2.3 Discovery Latency

Figure 5-5 presents the average amount of time that a connection waited for a route

to its destination to be initially discovered. AMPER is competitive with AODV and

DSR in this domain, and they all have possess nearly constant discovery latencies that

are within 350 ms. The high discovery latency for DSDV is mainly due to the fact

that it acts periodically and in response to network changes, rather than in response
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to application demand for routes. This explains why its discovery latency oscillates

and does not converge when the pause time reaches 900 seconds.

Figure 5-6 presents the average amount of time that a connection waited for a

route to its destination to be initially discovered when using AMPER. The random

and non-random modes both offer excellent discovery latencies, but the former seems

to be slightly better in this domain.

Maximum node speed = 20 m/s
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Figure 5-5: Discovery Latency Overview

5.2.4 Routing Overhead

Figures 5-7 through 5-10 present two measures of routing overhead incurred by the

protocols we studied. The first is the average number of routing packets each protocol

sends per second, and the other is the average number of overhead bytes each protocol

transmits per second. The latter includes both the total size of protocol packets and

the total size of headers appended to data packets. In both cases, retransmissions

of protocol packets are counted separately, as each retransmission costs the network

more bandwidth.
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Figure 5-6: AMPER's Discovery Latency

This brings up a detail that should be mentioned: when counting the "size" of

protocol-generated packets, we include the IP header as part of the overhead incurred

by the protocol, whereas on data packets we do not. The reason is that the IP header

would appear on the data packet anyway, but the IP header of the protocol packet

would not burden the network if the protocol packet were never transmitted.

Also note that we do not count any RTS/CTS expense that protocol packets may

incur. Although such expense is likely to be nontrivial, we choose not to include it

for the following reasons:

" It is not very easy to compute from ns-2 trace files which packets are RTS/CTS-

ed and which are broadcast (the routing protocols we compare AMPER against

do both).

" It is difficult to exactly determine how many times an RTS is sent before it is

answered.

" It is not immediately clear how much bandwidth an RTS/CTS exchange con-
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sumes.

* AMPER broadcasts all the control packets that it sends, so not counting the

RTS/CTS expense does not artificially improve our results.

Routing Packet Overhead
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Figure 5-7: Routing Packet Overhead Overview
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We have designed AMPER to minimize control packets. Figure 5-7 proves that

our protocol indeed sends the lowest number of routing packets regardless of the

node mobility rate. At very high speeds, DSR requires twice the number of control

packets, and DSDV sends approximately three times that number. Since DSDV is a

periodic routing protocol, its routing packet overhead is nearly constant with respect

to mobility rate. DSR and AODV are both on-demand protocols, which is why their

overhead drops as the mobility rate drops. However, AODV's packet overhead is

noticeably higher than DSR's, mainly because AODV makes extensive use of HELLO

packets for neighbor discovery.
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Figure 5-8: AMPER's Routing Packet Overhead

When ran in non-random mode, AMPER produces nearly the same graph as in

the random case (Figure 5-8). The number of routing packets sent by our protocol

does not seem to depend on the type of probabilistic scheme it uses.

Total Bytes of Overhead

When the routing overhead is measured in bytes and includes the size of the source

route header that DSR places in each packet, DSR becomes more expensive than

AODV, but still transmits fewer bytes of overhead than DSDV (Figure 5-9). The

reason behind AODV's superior performance is its creation of hop-by-hop routing

state in each node along a path in order the eliminate the overhead of source routing.

Our protocol competes well with DSDV and DSR: although AMPER's header may

look large at first glance, we have been able to optimize the usage of header space

sufficiently so that the savings on protocol packet transmissions offset the header

sizeS6.

'A more thorough discussion of AMPER's header size follows in Chapter 6.
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Figure 5-9: Total Overhead Overview

It is worth noting that most of AODV's overhead bytes are carried in many small

packets. The cost to acquire the medium to transmit a packet is significantly more

expensive in terms of power and network utilization than the incremental cost of

adding a few bytes to an existing packet [2]. Consequently, the actual cost of the

DSR and AMPER headers is effectively less than that indicated by the number of

bytes.

Unsurprisingly, Figure 5-10 shows that the total overhead incurred by AMPER

does not depend on the forwarding scheme it uses: AMPER produces approximately

the same overhead when operating in random or non-random mode.

5.3 Delivery Ratio Variation with the Packet Size

In Figures 5-11 through 5-15, we show how the performance of the four protocols - as

captured by the delivery ratio metric - varies when changing the size of the packets

sent by the CBR sources. As expected, bigger packets degrade performance. It also

60



Maximum node speed =20 m/s

10000
AMPER (random) -+-

IAMPER (non-random) --

00

8

6000

4000

E

0

122000

0 100 200 300 400 500 600 700 800 900

Pause time (sec)

Figure 5-10: AMPER's Total Overhead

appears that all four protocols degrade with roughly equal grace. In the AMPER

plots (Figures 5-14 and 5-15), the spike at the 30s pause time reappears. Once again,

it may be either an artifact of the randomness in our scenario files, or the result of a

interaction between the protocol parameters.

5.4 Delivery Ratio Variation with the Number of

Connections

In Figures 5-16 through 5-20, we show how the performance of the four protocols

- as captured by the delivery ratio metric - varies when changing the number of

connections. The plots show that varying the number of connections instead of the

packet size also produces network congestion and performance degradation, the effect

becoming seriously pronounced with 30 connections. Here again, the downward spike

at the 30s pause time shows itself.
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Figure 5-14: Random AMPER - Delivery Ratio Variation with Packet Size
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Figure 5-18: DSDV - Delivery Ratio Variation with Number of Connections
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5.5 Overview with Slow Nodes

Figures 5-21 through 5-30 illustrate the effect of slower nodes on overall protocol

performance. Whereas all of our prior results were shown with the maximum node

speed set to 20 m/s, these plots compare the protocols under the same metrics when

nodes move far more slowly (1 m/s).

5.5.1 Delivery Ratio
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Figure 5-21: Delivery Ratio Overview
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with Slow Nodes

Figure 5-21 presents the ratio of application packets delivered by each protocol as

a function of pause time. Unlike in the 20 m/s scenarios where DSDV had trouble

converging, its delivery ratio is remarkably higher and it delivers excellent perfor-

mance in the 1 m/s scenarios. AODV, DSR and AMPER all see their delivery ratio

increase and converge to approximately 99.7%, instead of 95% in the 20 m/s case.

AMPER seems to offer superior performance for pause times inferior to 300 seconds.

Figure 5-22 presents the ratio of application packets delivered by AMPER as a
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Figure 5-22: AMPER's Delivery Ratio with Slow Nodes
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function of pause time. AMPER delivers at least 98.7% of its data packets in both

modes. The random mode now seems to offer a superior performance for all pause

times.

5.5.2 Delivery Latency

Figure 5-23 presents the average amount of time that successfully delivered packets

took to be delivered in the 1 m/s scenarios. DSR's delivery latency is substantially

lower than in the 20 m/s case, but it is still larger than its competitors'; this is mainly

due to the cost of processing the source route at each DSR node. DSDV, AODV and

AMPER still offer delivery latencies inferior to 250 milliseconds. As in the 20 m/s

scenarios, the cost of reordering in random mode did not hurt AMPER's delivery

latency performance.

Figure 5-24 presents the average amount of time that successfully delivered AM-

PER packets took to be delivered in the 1 m/s scenarios. Non-random AMPER seems

to offer lower delivery latencies for most node mobility rates, the cost of reordering
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in random AMPER being probably the reason.
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Figure 5-23: Delivery Latency Overview with Slow Nodes

5.5.3 Discovery Latency

Figure 5-25 presents the average amount of time that a connection waited for a route

to its destination to be initially discovered in the 1 m/s scenarios. AMPER remains

competitive with AODV and DSR in this domain, and they all have possess nearly-

constant discovery latencies inferior to 350 ms. DSDV's discovery latency is now

considerably lower and converges to approximately 400 milliseconds; this contrasts

with its fluctuating behavior in the 20 m/s case.

Figure 5-26 presents the average amount of time that a connection waited for

a route to its destination to be initially discovered when using AMPER in the 1

m/s scenarios. The random and non-random modes both offer excellent discovery

latencies, but the latter seems to be slightly better in this case.
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Figure 5-24: AMPER's Delivery Latency

600 700 800 900

with Slow Nodes

5.5.4 Routing Overhead

Routing Packet Overhead

Figure 5-27 shows how all four protocols benefit from the decrease to 1 m/s of the

maximum node speed. AMPER still sends the lowest number of routing packets

regardless of the node mobility rate. DSDV continues to have an approximately

constant overhead, due its periodic nature. DSR and AODV are both on-demand

protocols, which is why their overhead drops as the mobility rate drops.

When run in non-random mode, AMPER produces nearly the same graph as in

the random case (Figure 5-28). The best combination is to use random mode when

the pause time is less than 300 seconds, and non-random mode otherwise.

Total Bytes of Overhead

When the routing overhead is measured in bytes and includes the size of the protocol

header that AMPER places in each packet, our protocol performs quite poorly com-
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Figure 5-28: AMPER's Routing Packet Overhead with Slow Nodes

72

50

45 F-

40

0

a.

CL

2

E
z

25

20

15

10

5

0

3.5

3
8
0)
U)
4)
A

U

2.
Z

E
z

2

1.5

AMPER (random)
AMPER (non-random) -4--

FL

-- AM---- (nn-rand- m)-----

-

0.5

n
0

4.

30

2.5

1



Maximum node speed = 1 m/s

10000
AODV -+-

DSR - -+--

DSDV ---x
AMPER (random) -..

8000

6000-
..........

0.

2000

0
0 100 200 300 400 500 600 700 800 90

Pause time (sec)

Figure 5-29: Total Overhead Overview with Slow Nodes

pared to the others. Although all four protocols' performance improves, AMPER's

competitors benefit more from the nodes slowing down; the savings on packet trans-

missions cannot hide AMPER's header size anymore. AODV is still the leader in this

department, followed by DSR and DSDV.

Figure 5-30 shows that the total overhead incurred by AMPER does not really

depend on the forwarding scheme it uses, though random AMPER produces a slighly

better performance for intermediate pause times.
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Chapter 6

Discussion

This chapter discusses some of strengths and weaknesses of AMPER. It is intended

to be both a recapitulation of previous notions and a foundation for future work.

6.1 AMPER's Modularity

One of the greatest strengths of AMPER is its flexibility and modularity: although

our simulations reflect specific design choices, our framework is built in such a way

that switching to other schemes can be done with very little effort. Another merit of

modularity is that it allows programmers to work on a certain module while keeping

the others unaltered, which is a very useful feature for debugging and optimization

purposes. AMPER's modularity features are illustrated in Figure 6-1.

6.1.1 Random and Non-Random Probabilistic Routing

AMPER is a pure probabilistic routing protocol: the routing table at every node

contains probability values that dictate the likelihood of sending a data packet to

a given destination through a specific neighbor. Two probabilistic routing schemes

were exposed in Section 2.1: random and non-random. AMPER's modular framework

allows the use of both: given a row of probabilities, a certain function returns the

chosen neighbor when random routing is used, while another deals with the non-

75



Information Propagation
Mechanism

AMPE's 
CORE)

FRAMEWORK 
I

Metric-to-Probability Mapping

Probability Update Rule

Movement
Scenario

Traffic
Model

Figure 6-1: Illustration of AMPER's Modularity

random case; a boolean is required to specify the desired scheme (0 = random, 1 =

non-random).

6.1.2 Information Propagation Mechanism

As explained in Paragraph 3.9.2, we use the expanding ring search mechanism to

propagate information requests: the ring size is incremented for every retry and

decremented for every forward. When the ring size reaches zero, the request is only

forwarded piggybacked on data packets, to avoid generating explicit control packets

for it. We designed our code in a modular fashion that allows the modification of

the information propagation mechanism without affecting the other aspects of the

protocol. Should need arise, a node could alternatively request information from its

immediate neighbors onlyl, or send an expanding request after a specific number of

unsuccessful non-propagating requests.

'this is known as a non-propagating request.
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6.1.3 Routing Metric

We picked the expected number of transmissions [5] as a routing metric for the reasons

outlined in Paragraph 3.10.1. The ETX metric is attractive because it can be com-

posed, which means that the total ETX from source to destination is the sum of the

ETX values along individual links. Moreover, ETX accounts for asymmetric link loss

ratios and solves the problem of interference between successive hops on multi-hop

paths. AMPER's modular design allows the use of other routing metrics; the only

condition is that the chosen metric be local enough to be computed from the metric

values of a given node's neighbors, the link loss ratios to them, and the probability

distribution for sending packets to them. Some other routing metrics verifying the

locality criterion are the path cost, the communication cost, the end-to-end delay, the

product of per-link delivery ratios, and the end-to-end throughput.

6.1.4 Metric-to-Probability Mapping

As outlined in Paragraph 3.10.2, we choose a static mapping that translates directed

ETX values into probabilities 2 and heavily favors neighbors promising a lower work-

load to deliver a packet. As with the routing scheme and the routing metric, this

mapping is also modular, in the sense it can be modified without affecting the gen-

eral protocol structure: employing a dedicated function allows the selection of an-

other static or dynamic mapping scheme. We should note that a dynamic mapping

- although feasible - requires much more effort because it needs to analyze history

information and operate on previous ETX values, which is quite involved in a network

with frequent state updates.

6.1.5 Probability Distribution Update Rules

The probability distribution update rules dictate how the probability values in a

node's routing table change when a link breaks, a new neighbor is in range (or out

of range), a new destination is discovered (or is not reachable anymore), or when

2 This mapping is consistent across all nodes.
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another type of state variation occurs. This involves rebalancing the probability

values so that the entries in a row sum up to one and every value in a row is above a

predefined minimum threshold. AMPER's modularity makes it possible to modify the

probability reshuffling rules without affecting any other component of the framework.

6.1.6 Movement and Traffic Models

The movement and traffic models outlined in Sections 4.3 and 4.4 are completely

separate from the other aspects of AMPER; as a matter of fact, they are even inde-

pendent of the ad hoc routing protocol under investigation. It is possible to change

the number of nodes, the topology, the movement pattern, the pause time and the

maximum node speed in a scenario file, and run a different simulation on the fly. In

a traffic file, we have the flexibility of choosing the transport protocol', the number

of connections, the packet size and the sending rate. Our simulations are carried out

using constant-bit-rate UDP sources. Although constant-bit-rate UDP may not be

the most realistic traffic model one could employ, we adopt it for several reasons:

" It is the most widely accepted model among the networking community experts,

and is used by the authors of DSDV [11], DSR [9] and AODV [12] to simulate

their protocols.

" Due to its conforming load property, TCP changes the times at which it sends

packets based on its perception of the network's ability to carry packets. UDP

does not possess this peculiarity, and hence can produce accurate relative trends

when comparison is needed between different ad hoc routing protocols.

" TCP source nodes generate more traffic when paused at waypoint. UDP sources

generate a constant (and therefore predictable) amount of traffic.

3 or protocols, if a more sophisticated model is desired.
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6.2 Header Size Limitations

In Chapter 3, we gave exhaustive details about the AMPER header contents and

functionality, but omitted the analysis of its size characteristics.

The header implementation of AMPER makes use of a buffer size B that dictates

the length of the arrays of requested destinations and fulfilled requests. Both arrays

wrap around when their number of elements increases beyond B; for instance, if

B = 5 and a node n requests a sixth destination, then this last request will overwrite

the first. Clearly, the total header size depends on the choice of the parameter B.

Moreover, given the fact that a node n must calculate the loss ratios to each of its

neighbors, the header size will depend as well on the number of neighbors of n and,

more generally, on the total number of nodes in the network, N.

The total header size S (in bytes) is related to B and N by the following equation:

SN
S=8+4 x [ 1 +9B (6.1)

16

A 3-dimensional plot of the header size versus the number of nodes and the buffer

size is shown in Figure 6-2. Clearly, the plot has an increasing trend: the header size

jumps from 8 bytes (for B = N = 0) to 1530 bytes (for B = 30 and N = 1000). As

can be predicted, a large header will result in lengthier computations and degraded

performance.

Let us now examine the header size variation with B when the node population

is fixed. Figures 6-3 and 6-4 are plots of the header size versus the buffer size when

N = 50 and N = 1000, respectively. The maximum value that B can reach is simply

N, and this will theoretically occur when a node is allowed to request all destinations

without overwriting a previous request. Both figures show a dramatic increase of the

header size (with a slope of 9).

As programmers, we do not have control over the number of nodes in the ad hoc

network, which suggests we should try to limit the buffer size, and if possible, choose

a specific value of B that will guarantee optimal performance. At first glance, a large

buffer size might seem to favor AMPER's correctness and prevent data packet losses.
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Figure 6-4: Header Size Versus the Buffer Size when N = 1000

This turns out not to be the case, due to the way AMPER timers work: an old

array entry will almost always be erased before the corresponding request is serviced.

Consequently, a large buffer size will unnecessarily increase the header size without

delivering additional performance.

A few simulations reveal, by trial and error, that the optimal value of the buffer

size is approximately B 0.1N, which changes Equation 6.1 to the following:

5N
S=8+4x [ 5 +0.9N (6.2)

16

For this optimal value of B, we plot in Figure 6-5 the variation of the header

size with the number of nodes in the ad hoc network. This new plot highlights the

limitations of our protocol in large networks. All of our simulations were carried out

for a node population of 50, because - as mentioned in Section 2.6 - our design choice

was to optimize AMPER for small networks. Since the largest packet size that can

be accepted at the radio layer is approximately 23000 bytes, the maximum allowable
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network size turns out to be approximately N = 10000 nodes.
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Figure 6-5: Header Size Versus the Number of Nodes when B = 0.1N

Our objective was not to build a protocol that would perform optimally for any

network size; none of the protocols we surveyed achieves this utopic goal anyway. We

rather wanted our protocol to be suitable for a specific type of applications, and our

simulation results prove indeed that AMPER delivers high performance in small-sized

networks.

6.3 Amount of State Maintained

As mentioned in Chapter 3, every AMPER node n has a routing table containing

n's reachable destinations in its rows, n's neighbors in its columns, and a probability

value corresponding to every destination-neighbor pair. In theory, n could be in range

of every other node and could reach all other nodes in the network '. The maximum

routing table size is therefore N x N, where N is the number of nodes in the ad hoc

4 including itself, of course.
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network. In addition, we have seen that every AMPER node maintains loss ratio

state (refer to Section 3.5); if a node n is capable of sending x packets within the link

loss ratio timeout ti, then the amount of loss ratio state it has to maintain is Nx.

Consequently, the maximum amount of state, M, that may have to be maintained at

a given node is:

M=N 2 + Nx (6.3)

Maximum Amount of State Maintained

2e+06 -
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le+06 -

500000 -

0

1000

800

2 400 400 Packets recently sent (x)
600 200

Number of Nodes (N) 800 10C

Figure 6-6: Amount of State Maintained versus N and x

The plot of M versus N and x is shown in figure 6-6 and is self-explanatory: the

maximum amount of state a node n may have to maintain increases tremendously

with the size of the network and the number of packets n can send within the link

loss ratio timeout tj. In particular, if x exceeds N2 , the amount of state maintained

becomes at least O(N 3 )!

Having no control over the number of nodes in the ad hoc network, we try to limit

the value of x so that good performance is achieved within an O(n 2) amount of state.
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For this purpose, we create a safety margin by forcing the condition x < N. By trial

and error, we find that a value of tj = N/25 delivers optimal performance, so we set

the rate at which a node sends a packet to R = x/t = 25x/N, which means that the

maximum allowable rate R is 25 packets/s (since x < N).

The amount of state maintained at a node does not result in a degraded perfor-

mance. On the contrary, a node storing considerable state information needs less

internode communication in order to send packets to desired destinations. The only

drawback is that simulations take much longer to run, mainly because the state up-

date functions will require substantial time to execute. However, it is noteworthy

that Equation 6.3 is an expression of the maximum amount of state that a node may

need to store; in usual circumstances, this value is considerably lower because the

routing tables are not entirely populated.

6.4 Loss Ratios and Link-Layer Retransmissions

The loss ratio calculation mechanism described in Paragraph 3.8.2 overlooks the fact

that link-layer retransmissions may hide some losses: a packet that is resent M times

appears as received, but the cost incurred by this operation is effectively Mc, where

c is the cost of sending the packet once. When making routing decisions, we have

assumed that the loss ratio is a good indicator of the quality of a link; this is very true

most of the time, but unfortunately not sufficient. To take link-layer retransmissions

into account, we propose one of the following approaches:

* Replace the link loss ratio notion by a link quality function. This practically

requires reshaping the entire protocol framework including the node state, the

header contents, the routing metric characteristics, and the way state updates

are conducted.

* Change the loss ratio computations in a way that accounts for link-layer retran-

missions, and use the "normalized" loss ratios to calculate the routing metric

values as before. For instance, if a node p sends a packets to a node q within
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the link loss ratio timeout ti, q gets b packets, and there are c link-layer re-

transmissions, a possible formula for the "normalized" loss ratio from p to q

is:

L = x (I+ - (6.4)
a d

where d is an integer to be chosen. Using the above example with a = 10, b = 8,

c = 3 and d = 10, we get a loss ratio of 0.26 (instead of 0.2 when neglecting

link-layer retransmissions). The advantage of this approach is that it does not

require any modifications to the routing metric formula.

* Keep the loss ratio calculations unchanged, but modify the formula used to

obtain the routing metric values5 . This approach is dependent on the routing

metric chosen by the user.

6.5 Control Packets

AMPER uses nearly no control packets; the only case in which it does is when a node

wants to acquire or disseminate information but has no packets to send on which

to piggyback the request or answer. Such an explicit routing packet is broadcast,

and contains all the usual header data, including the request or answer in question.

We have found it very convenient (implementation-wise) to use a similar format for

data and control packets; the number of bytes we could have saved by using a re-

duced control packet size instead is small, but this option might have been a possible

optimization.

6.6 Energy Consumption and Multicast Routing

Probably the most serious drawback of AMPER is its energy consumption. This

is mainly due to the enabling of promiscuous receive mode on the nodes' wireless

5for instance, by incorporating a multiplicative factor.
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interface hardware, but also to the piggybacking of internode communication on data

packets. The predicament is that disabling promiscuous mode would preclude efficient

collaborative learning between nodes, whereas avoiding piggybacking would make

AMPER's performance similar to DSR's [9].

To mitigate the energy consumption problem, one may unicast control packets

instead of broadcasting them; this would be energy-efficient and compatible with sleep

mode. Another possibility is to keep broadcasting control packets but to multicast

data packets, which would be more energy-efficient than unicasting routing packets.

Multicasting may be achieved by a controlled flooding of data packets to all nodes

in the ad hoc network that are within some specified number of hops of the origina-

tor; these nodes may then apply destination address filtering6 to limit a given packet

to those nodes subscribed to the packet's indicated multicast destination address.

While this mechanism does not support pruning the broadcast tree to conserve net-

work resources, it can be used to distribute information to all nodes subscribed to

the destination multicast address. This mechanism may also be useful for sending

application level packets to all nodes in a limited range around the sender.

Although desirable, we do not believe that the modularization of the data propa-

gation scheme is feasible 7; the functions that govern the dissemination of information

are scattered throughout the code and tightly intertwined with other blocks.
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Chapter 7

Conclusion and Future Work

This thesis has presented AMPER, a novel probabilistic protocol for mobile ad hoc

networks. AMPER sends a minimal number of routing packets, and replaces them

with smart piggybacking; collaborative learning is achieved by having the nodes run in

promiscuous mode and ovehear each other's packets and packet headers. Probabilistic

routing is used to reduce the latency for recovery from link failures, and routing

based on ETX1 is intended to overcome the degraded throughput that minimum-

hop-count suffers from when picking marginal links. One of the most important

features of AMPER is its modularity: one can modify the routing scheme (random

or non-random), the routing metric (e.g ETX), the metric-to-probability mapping,

the probability update rule, the information propagation mechanism, the movement

scenario and the traffic model without affecting the overall structure of the protocol.

Our extensive simulations demonstrate that AMPER delivers excellent perfor-

mance and competes with DSDV, AODV and DSR; AMPER even outperforms its

competitors when nodes are running at high speeds. Regardless of node speed, AM-

PER sends the least amount of routing information in both its random and non-

random modes. However, the size of the AMPER header clearly degrades its per-

formance with respect to its competitors, especially when the nodes operate at a

maximum speed of 1 m/s. AMPER's random and non-random modes behave very

similarly, though performance seems slightly better when the protocol runs in random

'ETX is one possible choice of routing metric; it is not a core component of AMPER.
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mode.

In the near future, we intend to improve the computational efficiency of AMPER,

so that it may be possible to simulate it within a reasonable amount of time2 . We

will also try to shrink the header size, in order to mitigate the performance degra-

dation stemming from the excessive number of bytes of overhead. Moreover, we will

try to reduce the protocol's energy consumption, and to come up with a loss ratio

calculation approach that accounts for link-layer retransmissions. Finally, we would

like to take full advantage of AMPER's modularity, by testing it on other metrics,

models and probability mappings and drawing a comparison between them. Our ul-

timate objective is to deploy AMPER on a testbed and see how it behaves in realistic

settings.

2as our simulations ran for literally thousands of CPU hours.
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