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Abstract
This paper deals with certain aspects of a conjecture made by B. Kostant in 1983 relating
the Coxeter number to the occurrence of the simple finite groups L(2, q) in simple complex
Lie groups. The first chapter of my thesis presents a unified approach to Kostant's
conjecture that yields very general results for the rank two case. The second chapter
examines when the conjecture gives rise to certain presentations of the Lie algebra as a
sum of Cartan subalgebras for the rank two and exceptional cases. The third chapter
looks at restricting representations of the the Lie group to the finite subgroup L(2, q) and
some resulting invariant theory.
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Introduction

This work centers around a conjecture made by B. Kostant in 1983 in A Tale of Two
Conjugacy Classes ([17]). He proposed a link between a certain intrinsic number of a
simple Lie group, called the Coxeter number, and the occurrence of certain finite simple
groups. The conjecture has fueled quite a bit of research and turns out to have many
connections to other areas of mathematics. Although a complete statement of Kostant's
conjecture may be found in Theorem 2.1.1, let us outline the conjecture broadly in the
following paragraphs.

The finite simple groups in question are the families alternately known as PSL(2, q)
or L 2(q), where q is a prime power. To recall the definition of these groups, first write
Fq for the field of q elements and write SL(2, q) for the set of two by two matrices
of determinant one with entries in Fq. Then L2(q) is defined as SL(2, q) modulo its
center (which consists of ±I). These groups are of fundamental importance in group and
representation theory since they often play the role of building blocks.

Now if we have some complex simple Lie group G, let us write h for the Coxeter num-
ber (see Table 2.1 for a list or [14] for a definition). Then, roughly, Kostant's conjecture
states that when 2h + 1 is an odd prime power, then L 2(2h + 1) sits inside the Lie group.
Moreover, it sits inside the Lie group in a special way. The conjecture states that the Lie
algebra breaks up into certain "principal series" representations and subrepresentations
of L 2(2h + 1) depending on the exponents of G (see Table 2.1 or [14] again). These
principal series representations will be dealt with explicitly in Section 1.1.

Now considerable work has been done on finite subgroups of Lie groups (e.g. Cohen
and Wales in [4] and [3]) and, in particular, on Kostant's conjecture ([3], [4], [6], [13],
[23], and [13] of Cohen, Griess, Kleidman, Lisser, Meurman, Ryba, and Wales). The
conjecture is verified easily in the non-exceptional cases by using a character table and
Schur indicators (see [13] or [5]). However, the exceptional cases are much more difficult.
The following table indicates the papers responsible for checking the conjecture in each
case (note: a computer is relied upon in many of the papers below).
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G2 [23] and [3]

F4 [4]
___ [4]

E7 [13]

___ [6]

My research works with Kostant's conjecture in three broad ways. The first way
examines a unified approach to the conjecture that yields very general results in the
rank two case. The second way explores some geometry of certain Cartan subalgebras
associated with the conjecture (primarily in the rank two and exceptional cases). The
third way looks at restricting representations of G to L2 (2h + 1) and some invariant
theory that arises from these finite groups. In the following paragraphs, I will go into
more detail.

The first avenue my thesis explores is an attempt to prove Kostant's conjecture. The
conjecture has been checked in all cases as noted above. However, most proofs have relied
on a computer and this was the case for E8 in particular ([6]). In fact, it was mainly this
one result of L 2(61) sitting inside Eg that remained outstanding in the classification of
all finite simple subgroups occurring in complex simple Lie groups (only L 2(2, 29) for E7

and only L2(31), L2 (32), and Sz(8) for E8s are still in doubt-see [5], Table 1). Of course,
it is desirable to have a proof that does not need a computer.

One of the aims of my research is to provide such a proof. In fact, I propose to do
something even stronger: I hope to start with L 2(q) and construct the corresponding Lie
group out of knowledge of this finite group and its representations. In my thesis, this
construction is completely carried out in the rank two case.

To explain in more detail, I begin with three pieces of data: a principal series rep-
resentation of L2 (q) on a vector space V, a L2(q) invariant symmetric non-degenerate
two-form (,) on V, and a L2(q) invariant alternating three-form (,,) on V. With these,
I define a L 2(q) invariant algebra structure [, ] on V according to the rule:

(vI, V2 , V3 ) = ([vI, 2], V3 ) (0.1)

for vl, v2, v3 E V. Then the idea is to see when it is possible to get a Lie algebra
by this method, i.e, when does [, ] satisfy the Jacobi identity. If this can be done, then
automatically L 2(q) injects into the automorphism group of the Lie algebra. For instance,
if this were done in the case of E8, it would prove Kostant's conjecture. A central result of
my thesis is the following theorem (Theorem 1.11.2, Corollary 1.12.1, and Theorem 1.9.1):

Theorem 0.0.1 For V an irreducible principal series representation of L2(q) with q an
odd prime power subject to Restriction 1.1.1, the above construction can make V into
a non-trivial Lie algebra if and only if q = 7, 9, or 13. Moreover, in these cases, the
resulting Lie algebra is A2, B2, and G2, respectively.
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The above theorem proves Kostant's conjecture in the rank two case. In the course
of the proof, certain interesting facts appear. Chief among them is the connection be-
tween the Jacobi identity in the rank two case and the problem of tiling the plane. It
turns out that in most cases, the Jacobi identity forces certain integrality conditions (see
Theorem 1.11.2) that are equivalent to the condition of being able to tile the plane with
triangles, squares, or hexagons.

In the second part of my thesis, I study some geometry. In the setting of Kostant's
conjecture, L2 (q) injects into a simple Lie group G with Lie algebra g. Thus L2(q) acts
on g by the Adjoint action. It turns out that a Borel subalgebra of L 2(q) fixes a Cartan
subalgebra of g. Hence it is easy to see that there are q + 1 Cartans, IIp indexed by
p E P(Fq) (the projective line), such that L 2(q) permutes the Cartans Ip in the same
way that L 2(q) acts on p E P1(Fq) by linear fractional transformations.

What can be hoped is that there is some good way to decompose g as a direct sum of
a subset of the [op. Questions of this sort have been much studied, e.g. by Alekseevskii,
A. Kostrikin, I. Kostrikin, and Ufnarovskil in [20], [21], [22], and [1]. Such situations
lead to many interesting theorems. For instance, one may consider groups that preserve
some aspect of such a decomposition (see [19] or [32] for E8 and the finite simple sporadic
Thompson group).

My work on the subject centers on decompositions with respect to two special con-
jugacy classes, namely Kostant and Kac elements ([17]). It is hard to overestimate the
importance of these elements, especially the Kostant element. Let us write h for the
Coxeter number. Then one has a standard theorem saying:

Theorem 0.0.2 For G a complex simple Lie group with trivial center, a Kostant ele-
ment is a element g E G satisfying either of the two following equivalent conditions:
(1) g is regular and the order of g is h, or
(2) there exists a Cartan subalgebra, [j, normalized by g such that Ad(g) 14 is a Coxeter
element.

An element g E G is said to be a Kac element if it satisfies the following condition:
(1') g is regular and the order of g is h + 1 .

Moreover, the set of Kostant elements form a single conjugacy class and the set of
Kac elements form a single conjugacy class in G. Finally, if X is the character of any
irreducible representation of G, then the value of X on either a Kostant or a Kac element
lies in the set (-1,0, 1).

For additional properties of these elements (including characterizations by their eigen-
values on a Cartan), see [17],[12], and [14]. For some applications, see e.g. [16] for re-
lations to the Macdonald formulas, [18] for relations to the McKay correspondence, and
[12] for relations to the Legendre symbol. Also see [17] for a result of Bomshik Chang
that states that (except in the case of B2) one can always choose a Kostant element and
a Kac element which will together generate a Z-form of G.
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Since these two classes are so important and, moreover, will manifest themselves as
members of L 2(q), the question that I attempt to answer is whether it is possible to write
g as a sum of certain Bp lying in orbits of either a Kostant or Kac element. In my thesis,
this question is answered in the case of the rank two and exceptional Lie algebras in a
surprising way. The theorem says (see Corollary 2.6.1) that a decomposition is always
possible-but either the Kostant element works and the Kac element fails or vice versa:

Theorem 0.0.3 Let G be one of the following: A2, A 4, B2, G2, F4, E6, E7 , or E8. With
respect to Kostant's embedding of L 2(q) - G, g admits an invariant decomposition as
vector spaces

s= e bu
UEPA

by a Kostant element, A E L2 (q), if and only if h is odd (i.e., A2 or A4).
Similarly, g admits an invariant decomposition as vector spaces

s= )u
uEPK

by a Kac element, K E L2(q), if and only if h + 1 is odd (i.e., B2, G2 , F4 , E6, E7, or E8).

In proving this result, the main tools come from number theory. Gamma, Jacobi, and
Bessel functions and their generalizations are used with the Stickelbeger Relation pro-
viding the key lemma. For instance, in Theorem 2.2.3 proving the existence of a Kostant
element invariant decomposition reduces to knowing that two Jacobi sums (related by
the Legendre symbol) are not equal.

The last part of my thesis centers on characters of the finite group and some ap-
plications to invariant theory. I calculate formulas for determining how an irreducible
representation of G (in terms of its highest weight) breaks up into representations of L2(q)
in the rank two cases (see Theorem 3.3.1, Theorem 3.3.2, and Theorem 3.3.3). Using
these formulas, one may look at one-parameter families of representations and construct
generating functions. Work such as this has been much studied (e.g. [24] and [25]).
While the theory of Poincare series is very old, my results seek to generalize Kostant's
elegant results in [18].

In the case of A2 with L2 (7) (Theorem 3.6.1), the best generalization I found turns
out to include a formula already known to Springer in [30]. However, for B2 with L2 (9)
(Theorem 3.7.1), the results seem to be new. Unfortunately, for G2 with L2 (13) (Sec-
tion 3.8), the answers completely lose their simplicity. Nevertheless, in Section 3.5, I have
written formulas by which such results may be effectively computed even in complicated
cases such as G2.
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Chapter 1

The Construction in the Rank Two
Case

In this first chapter, we take a principal series representation of L2 (q) and determine
when it can be made into a Lie algebra according to the recipe given in the introduction
relating to Equation 0.1. To do this, we will first need some information about these
principal series representations.

1.1 The e-basis
Throughout this paper, let q = p be an odd prime power. The main group under
consideration will be L2 (q) = PSL(2, q) = the group of 2 x 2 matrices of determinant 1
over the field Fq of q elements modulo its center. Since q is odd, we may write

q = 2h+1 (1.1)

with h an integer. This number, h, will end up playing the role of the Coxeter number
in Lie theory.

It is well known that

2

= 2(h + 1)h(2h + 1) (1.2)

where I L2 (q) I is the order of the group.
The product decomposition exhibited in Equation 1.2 corresponds to three special

subgroups of L2(q). The first, denoted by A, consists of diagonal matrices. It is cyclic of
order h. The second, denoted by /, consists of the upper triangular matrices with ones
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on the diagonals. Its order is q = 2h + 1 and it is cyclic only if p = q. Together, these two
subgroups generate B, a Borel subgroup of L 2(q) consisting of upper triangular matrices.
The third special subgroup, denoted , is cyclic of order h + 1. It is more complicated
than A and J\f and will be discussed in detail in Section 2.5.

For the present, the study of B will be the most important task. Of course one has

I L 2(q)/B I = q + 1.

Basically, all this says is that L2(q)/B may be viewed as the projective line, P'(Fq) -

Fq U{oo}, over the field Fq. Thus if we take a complex character r of B and induce the
representation up to L2 (q), we get a q+ 1 dimensional representation. It is precisely these
principal series representations that play a central role in Kostant's conjecture. Even
though they are well understood, it will be useful for us to write them out explicitly.

Notation: To begin with, we fix a generator A for the multiplicative group F =
Fq\{O}. This generator will be fixed throughout the paper. Next fix r to be a complex
multiplicative character of F, such that r(-1) = 1. Thus, for each integer m where
1 < m < h, there exists such a character uniquely determined by rm(A) = e2 ' "im/h. The
reason for choosing r to be trivial on -1 is that by using the obvious homomorphism from
F; onto A (with kernel {±1}), we may view 7r as a character of A. Next, by extending r
to be trivial on J, we may view r as a character of B. We will view r interchangeably
as a character either of Fq or of B as context dictates.

Now let V, be IndL2()(r), the induced representation of r from B to L 2(q). The
notation will be simplified to just V whenever r is understood. As in [26], we may
consider V to be the set of all complex valued functions f on L 2 (q) satisfying

f(bg) = r(b)f(g)

for all b E B and g E L 2(q). With this, we have the action gf(x) = f(xg). The
appropriate theorem regarding the nature of V is standard. For instance, it may be
found in [26] §5.4:

Theorem 1.1.1 V,m is an irreducible representation of L2(q) if and only if r 2$ 1.
Moreover, Vm and Vn are equivalent if and only if lm = Tn or rm- Irn 1.

It will be useful to write out a "delta" basis for V ,i.e. each basal element is supported
on one right coset of B\L 2(q). To this end, we choose the following representatives for
B\L2(q):

Vu 1)

12



goo= (0 -1)

for u E Fq. Now let us define the e-basis by requiring that e E V and

ev(g,) = v,u

for all v, w E P'(Fq) where 6v,, is 1 if v = w and 0 otherwise. It is obvious that these
functions form a basis for V. It is also well known and easily checked that L 2(q) acts
on this basis as an (inverse transpose) linear fractional transformation on P1 (Fq) with
certain non-zero coefficients. This is detailed in the next theorem.

Theorem 1.1.2 Let u E P(Fq) and g = c d E L2(q). Then L2(q) acts on V in

the e-basis by

geu = ke,

where v E P(Fq) is determined by

du - c
V=

-bu + a

and k E C* is determined by

7r(-bu+a) ifu, v oo
k= r(1/b) if u oo butv=ooj = r(1/a) if u, v = o

r(-b) if u=oo but v oo.

Proof. Since this result is well known and just a matter of checking definitions, we
omit the details. Part of it may be found in [26] . O

It will be useful for us to write out this action for a few elements in L 2(q) that will
be particularly important to us. Namely, define

A = 0 A-l (1.3)

N 1 z (1.4)

M (1 ) (1.5)
XI
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S= (0-1) (1.6)

where x E F*q and we recall that A was the fixed generator for Fq*. For simplicity, we will
refer to N1 as N and to M1 as M. The action on these elements is given by:

Corollary 1.1.1 Let u E Fq. Then with the preceding notation, L2 (q) acts on V by
(1) Aeu = r(A)eu and Ae,, = r(A-l)e,
(2) N,eu = r(-xu + 1)e :+ if u 5~ 1/x, Nei = r(x-')e,, and Neo = r(-z)e
(3) Meu = eu_, and Meoo = eoo
(4) Se, = r(u)e- and Seoo = eo.

Our goal in Chapter 1 will be to determine when a principal series representation
can be made into a non-trivial Lie algebra by the recipe given in Equation 0.1. To
get our desired results, throughout Chapter 1 we will need to place a restriction on
the type of principal series we consider or require more of Kostant's conjecture to hold
(Theorem 2.1.1). Specifically, we will always assume that:

Restriction 1.1.1 We will only consider in Chapter 1 those principal series represen-
tations V,m where we assume that if h is even and m is odd, then rm(A) is a primitive
h 'th root of unity, i.e., that m and h are relatively prime. Alternately, if we change our
goal from determining when V,,n is a non-trivial Lie algebra to determining when it is a
Lie algebra satisfying all Kostant's conjecture (namely, Theorem 2.1.1 part(4)), we could
drop this hypothesis.

1.2 The f-basis
For reasons that will become apparent later, it is convenient to introduce a "fourier
transform" of our earlier e-basis. For now, we can view it as a way of diagonalizing the
operators M.. To this end, fix a non-trivial additive character X of Fq. This character
will also be fixed throughout the remainder of the paper. The next definition gives the
f-basis.

Definition 1.2.1 For u E Fq, define

f = X(au)ea
aEFq

and let f = e.

14



We will also need the following "Bessel" and "Gamma" functions since they will come
up often:

Definition 1.2.2 For i,j E Fq, let

1 i
r,j = Z + ja)7r(a).

q F a

Note that F0,0 = 0.

Though we will not need any properties of the ri,j at this moment, we will eventually
need a few of their elementary properties. Thus we prove:

Lemma 1.2.1 The ri,j satisfy the following relations:
(I) r,j = ri,_j
(2) r,j = r,,i
(3) ri,j = r(l/j)ri,, for i E Fq and j E Fq
(4) ri,j = ir(i)r,,ij for i E Fq and j E Fq
(5) rl,oro,l = 1/q. In particular, r 0,1 is non-zero.

Proof. Part (1) follows by the substitution of a -- -a and the fact that 7r(-1) = 1. Part
(2) uses the behavior of the characters under conjugation and the substitution a -+ 1/a.
Parts (3) and (4) simply use the substitutions a -- a/j and a -- ia, respectively. Part
(5) is merely the fact that in this case, our definitions reduce to Gauss sums. One checks
this below using the substitutions c = ab and d = 1/b:

rl,oro, = l/q2 Z X(1/b+ a)r(ab)
a,bEF;

= l/q2 E r(c) ~ X(d(c + 1))
cEF; deF;

= l/q2 E r(c)[-6c+1o + (q - 1)c+,=O]
cEFq

= 1/q2 [7(-1) + (q - 1)7r(-1)]

= 1/q

where condition is 1 if the condition is satisfied and 0 otherwise. O

It is now easy to check how the f-basis behaves under the operators M, A, and S from
Equations 1.5, 1.3, and 1.6. In the following, recall that A was the fixed generator of Fq,
7r is the fixed multiplicative character of Fq, X is the fixed additive character of Fq, and
the r's are as defined above.
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Theorem 1.2.1 For u E Fq,
(1) Mrfu = X(xu)fu and Mfoo, = foo
(2) Afu = 7r(A)fA2, and Afoo = r(A-)foo
(3) Sfu = EiEFq(,(ifi) + foo and Sfo = 1/q EiEF; fi.

Proof. Using Theorem 1.1.2 for part (1) we have:

Mfu = (au)Mea = j X(au)e.-
aEFq aEFq

- x((a + 1)u)ea = x(u)fu.
aEFq

In a similar fashion, Mkf, = X(ku)f,. For part (2) we have:

Afu = E X(au)7(A)ea/A2
aEFq

= Z X(aA 2 u)ea
aEFq

= 7r(A)fA2u.

For part (3), we use the trivial observation that e = 1/qEaEFqx(-au)f., i.e., the
"inverse fourier transform:"

Sfu = E X(au)7r(a)el/a +eo
aEF;

= 1/q E x(au)7r(a)x(b/a)fb + eO
bEFq aEF;

= 1/q : rb,ufb + e,
bEFq

The computations for fo are similar. O

1.3 PGL(2, q)

Since we have noted earlier that the action of L2 (q) on the e-basis is basically a linear
fractional transformation action on P'(Fq), it will be useful to bring the group PGL(2, q)
into the picture. The definition of PGL(2, q) is the set of all 2 x 2 non-singular matrices
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with entries in Fq modulo its center. The order of this group is

I PGL(2,q) I = q(q2_ -1).

One observes that the PGL(2, q) has twice the order of L 2(q). This is because L 2(q)
sits inside of PGL(2, q) as a normal subgroup of index two. This can be seen using the
determinant. Now the determinant function on PGL(2, q) is only well defined up to
multiples by squares in Fq, but this is enough to pick out L 2(q) inside of PGL(2, q). It
is trivial to verify that L2 (q) is precisely those elements of PGL(2, q) whose determinant
is of the form U2, u E Fq.

The usefulness of PGL(2, q) will arise from the fact that it acts on Pl(Fq) by linear
fractional transformations in a very nice way. Specifically, the Fundamental Theorem of
Projective Geometry says that any three distinct point of the projective line may always
be sent to any other three distinct points by a unique element of PGL(2, q), i.e., it is
strictly 3-transitive. For future use, we give the determinant of the following specific
maps (determined up to a square in F):

Theorem 1.3.1 Let s, t, v be distinct elements in Fq. The determinant of the unique el-
ement in PGL(2, q) that maps the triple (1,0, oo) to the triple (s, t, v), (oo, t, v), (s, oo, t),
and (s, t, oo) is, respectively, the following: (s - t)(s - v)(t - v), (t - v), -(s - v), and
(s -t).
Proof. One has only to examine the following matrices, bearing in mind that the

determinant is only defined up to a square: ( -(s-t) -(s-t) -) ( -vt 1 

-v --1 ). ( s - t O 
-(s- ) 0 t 1 

1.4 The Invariant Two-form
In this section we wish to examine the nature and existence of L 2(q) invariant two-forms
on the induced representation V. Of course, if V is irreducible then there is at most one
(depending on whether it is self-dual or not). One way to see abstractly there is only
one invariant symmetric two-form is by using the Fundamental Theorem of Projective
Geometry and the "linear fractional" action of the e-basis. While this is easy, we will
need an explicit description. The f-basis provides a very nice formulation of our invariant
two-form.

Theorem 1.4.1 For ir2 non-trivial, up to a constant multiple, there exists a unique L2(q)
invariant symmetric non-degenerate two form (,) on V characterized uniquely by
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(1) (fu,f-_) = l/ir(u) for u E Fq
(2) (fo, foo) = (foo, o) = q - rl,o
(3) All other pairings between the f-basis are zero.

Proof. We first comment on the requirement that r2 - 1. This will actually be useful
in the proof. However, the real reason for it lies in Theorem 1.1.1 which makes it the
requirement for V to be irreducible. If r2 were trivial, one could easily check that there
would be two different invariant two-forms on V. Namely, the one above and a second
one defined only on the diagonal parts (es, en). However, this will not be needed.

As already noted, there are many ways to check the existence of a non-zero L2 (q)
invariant two-form. Since this' is easy, we merely record that in any character table for
L2(q) (say in [26]) one may check that the characters for V are all real valued so that V
is self dual and there exists such a form (as noted earlier, it is possible to see this directly
by using the FT of Projective Geometry). Let us write (,) for a non-zero choice of an
invariant two form.

First note that by A invariance (see Corollary 1.1.1) and the fact that 7r2 : 1, it is
easy to see that (ex, e ) = 0 for E P'(Fq). Next, since the Fundamental Theorem of
Projective Geometry says that PGL(2, q) is strictly three transitive on P (Fq), it is easy to
see that L 2(q) will be two transitive. In particular, if (eo, el) were zero, then by invariance
we would have (e, e) zero for all x, y distinct in PI(Fq). However, by definition (,) is
non-zero which forces (eo, el) yA 0. One may also see that (,) is symmetric using the
L2 (q) action, but we will let it follow from the calculations done below. All we will need
is that (eo, el) is non-zero so that we will be able to re-normalize it.

Now let (,) be the unique non-zero invariant two-form on V that we have from the
proceeding paragraph. Then for x,y E Fq, we have (using M, invariance-see Corol-
lary 1.1.1):

(fi, f) = 1/q2 X(ax + by)(e, eb)
a,bEFq

= 1/q2 E X(a + by)(eo, eb-a).
a,bEFq

Setting c = b- a yields

(fi, f) = x(a + ay + cy)(eo, e)
a,cEFq

- Z x(cy)(eo, er) E x(a(x + y))
CEFq aEFq

= q6 +y=o Z X(cy)(eo, e)
cEFq
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- q6+y=o E X(cy)(eo,ec) (1.7)
cEFq

where again 6 condition is 1 or 0 depending on whether the condition is satisfied or not.
Now we make use of the invariance again. For b E Fq, we know that Nbeo = e and
if b 7 1, then Nbel = r(1 - b)e by Corollary 1.1.1. Observe now that the images

-b+l
of 1 -t bi in Pl(Fq) as b varies over {b E Fqlb 1} is precisely Fq. Therefore
{c E F*} = I b # 1}. Thus we may continue Equation 1.7 to write:

(f.,fy) = q-=y E X( Y)(e, e)
bE,bfl + 1

= q6-_=Y X( Y )(Nbeo, Nbel)r(-b + 1)-
b~ -b + 1

q_=y(eo, el) X()1 7r( 1-b

By setting a = -lb and using Definition 1.2.2 and Lemma 1.2.1 part (3), we get

(f.,fy) = q6-=y(eo,el) E x(ya)7r(a)
aEFq

= q2&6=y,(eo, el)ro,y

= q2 6.Y,7(1/y)ro, (eo, el).

This gives us the desired formula for (f,, fy) when x, y E Fq. Let us compute the formulas
for the remaining cases, namely when x or y are oo. Again by A invariance, we know
that (f, foo) = 0. Thus it only remains to evaluate (foo, f,) (the calculation for (f2,, foo)
is similar). We shall use techniques similar to the ones above, however, let us now use

/0 -1
9d 1 -d

instead of Nb. This element (using Theorem 1.1.2) satisfies gdeo = eoo and gdel = ed+l.

This will allow us to write:

(foo,f~) = E x(a)(eoo, e)
aEFq

= x((d + 1)X)(gdeo,gdel)
dEFq

= (eo, el)x(x) X(dx)
dEFq
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= q=O(eo, el).

By re-normalizing (eo, el) properly (which, as seen earlier can be arbitrary), we have
finished the proof. Merely recall that rl,oro,l = 1/q by Lemma 1.2.1 part (5). 0

As a result of this theorem, we get a formula for the e-basis as well.

Theorem 1.4.2 Suppose r2 1. Extend 7r to Fq by setting r(O) = 0. Then for u, v E
Fq, the invariant symmetric two-form on V satisfies
(1) (eU, e,) = rl,o/q (u - v)
(2) (eu, eo) = rlo/q
(3) (eoo, eoo) = 0.

Proof. By A invariance, we have already noted that (eu, eu) = 0 for all u E P1 (Fq). For
x, y E Fq, take the "inverse fourier transform" of the e-basis to get the f-basis and use
the above theorem:

(e, ey) = 1/q2 E X(-ax - by)(fa, fb)
a,bEFq

= 1/q2 E X(-ax - by)a+b=or(a)- '
a,bEFq

= l/q2 E x(a(y - x))7(l/a)
aEF;

= l/qry-,o
= (x - y)rl,o/q.

Next

(e,,eoo) = 1/q E X(-ax)(f,foo)
aEFq

= 1/q(fo, foo)
1

= l/q 
qro,

= rl,o/q.

O
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1.5 The Invariant Three-forms
We would like to examine the nature of L 2(q) invariant alternating three forms on V and
get an explicit description of them. In other words, using our L 2(q) invariant symmetric
non-degenerate two-form to get V isomorphic to V*, we are interested in A3 V, the third
exterior power of V, and its orbit structure under L 2(q). As a first step, let us look at
the action on ®3 V, the third tensor power of V, which may be regarded as the space of
all 3-forms.

If we work in the e-basis, it will be sufficient to look at the action of L2(q) on elements
of the form e, 0 ey 0 e where x, y, z E P1(Fq) since this basis is preserved by L 2(q) up
to non-zero scalars (Theorem 1.1.2). As a second refinement, it is enough to look at
the action of L 2(q) on the L2(q) invariant subspace of &3 V spanned by {e, 0 ey, e Il
z, y, z are distinct in P(Fq)}). Let us call this subspace D ®3 V. The reason we may
restrict our attention to D ®3 V is because we will eventually want to look at alternating
forms (A3 V) and the fact that elements in the natural complement to D ®)3 V will project
to zero under anti-symmetrization.

As a next step, let us "projectivize" the action. That is, for the moment let us ignore
the (non-zero) constants of Theorem 1.1.2 and concentrate on the "linear fractional"
aspect of the action. Thus we look at the action of L2(q) on D (3 P1(Fq) = {x y z I
x, y, z are distinct in P1(Fq). Now the previous discussion in Section 1.3 on PGL(2, q)
basically amounts to the fact that whereas PGL(2, q) breaks this set into a single orbit,
the action of L 2(q) yields two orbits depending on whether the cross-ratio of x, y, z is
a square or not in F (Theorem 1.3.1). Thus there cannot possibly be more than two
L2 (q) invariant forms that have a hope of being alternating. Using Theorem 1.3.1, we see
that the determinant of the element in PGL(2, q) taking 1 0 O 0 -1 to A 0 0 -A (via
1 0 0 0 co) is A3, a non-square. Thus, these are representatives of the two L 2(q) orbits
in D )3 P'(Fq).

Now let us put the constants back in and look again at D (3 V. First we show that the
stabilizer of 1 0 0 0 -1 and the stabilizer of A 0 0 O -A also fixes el e el- and
ex e e_x , respectively. However, both stabilizers are trivial by the Fundamental
Theorem of Projective Geometry. Thus the orbit of each defines an invariant 3-form.
Hence we are allowed to make the following definition.

Definition 1.5.1 Let (,,)+ and (,,)_ be the two L2(q) invariant three-forms on V de-
fined by
(1) (el, eo, el)+ = 1 and (ex, eo, ex)+ = 0
(2) (el, eo, e_l)_ = 0 and (eA, eo, e,\)_ = 1.

As a result of the above discussion, we see that any non-zero invariant 3-form on V,
for V irreducible, that has a possibility of being an alternating form must be a linear
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combination of (,,)+ and (,,)_. Since each of these forms will be so important to us, we
will give explicit descriptions of their structure. First we make the following notational
definition:

Definition 1.5.2 Let u E Fq. Then define the symbol /rus E Fq to be

V- = { v if u = 
2 for some v E Fq

0 if u is not a square in Fq.

Note that if u $ O, then vfI 6 is only well defined up to ±1. However, this will be sufficient
for our purposes.

Theorem 1.5.1 Let x,y,z E Fq. Recalling that r is extended to all of Fq by r(O) = 0,
one has:
(1)

(es, e, e)+ = 7r(/2(x - y)(x - z)(y- z)),

and

(e, e, e,) = r(/2A( - y)(x - z)(y - z) ).

(2) (e, e, e,)+ = r(2(y - z)) and (eo e, e)_-= r(V2A(y - z)),

(s) (e, eo, e)+ = -r( -2( - z) ) and (es, eoo,, e)_ = r(-2(x - z) ),
(4) (e,, e, e")+ = 7r(2(x - y) ) and (es, e,, eo)- = (/2(x - y)).
In particular, if u, v, w are not distinct, then (eu, e,, et,)+ = (e, e, e,)_ = 0.

Proof. First observe that since r(±1) = 1, everything above is well defined with
respect to the symbol 6 . Now all we need to use is Theorem 1.3.1. Consider (la) first.
The element g' E PGL(2, q) that takes the triple (x, y, z) to (1, 0, -1) is

,_ 2 1 - Y) : - y 
0 1 V-y(X-z) -(x-z)

whose determinant is d = 2(x - y)(x - z)(y - z). Now, if d is not a square in F*, then
g' is not in L2(q) and thus the triple (x,y,z) is not in the L 2(q) orbit of (1,0,-1) but
necessarily in the (A, 0, -A) orbit. Hence by definition, if d is not a square, (es, e., e,)+ =
0. On the other hand, if d is a square, then we may consider g = I g' as element of
L 2(q). Then using Theorem 1.1.2, we check the equation using invariance of g:

(ex,ea,ez) = (gex,gey,gez)
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= r((x - y)(-x + z))r(1 - 2)r((x - y)(-y + z)

r(O - 2)ir( )T(-)(el, e, eo)+
x- Y

( 2(x - y)(x - z)(y -z) )(el, eo, eo)+

= r(2(x - y)(x - z)(el, eo, e,)+.
Finally, we use use that (el, eo, eco)+ = 1 to finish the proof.

For (b), make use of

t( 2A A Az - )
A2 - Ay(zx-z)

x-y
-A(x-z) )

which has determinant d" = 2A3(x - y)(x - z)(y - z). Since this
calculations are similar, we omit them.

and the remaining
0

We note that had we used (1,0, oo) and (A, 0, oo) as our starting points in Defini-
tion 1.5.1 instead of (1,0, -1) and (A, 0, -A), the "2's" and "3" would have not appeared
in the formulas in Theorem 1.5.1 above. However, we chose (1,0,-1) and (A, 0, -A)
since it will make the formulas a bit more symmetrical for the f-basis (below) which will
be much more important to us. A more fundamental problem with the above formulas
for the e-basis is the presence of the V/ . It is very difficult to proceed when one is
constantly being concerned with whether or not an object is a square in the field or not.
The formulas we present next for the f-basis, while not as pretty as those for the e-basis,
nevertheless avoid talking about things such as V/.

Theorem 1.5.2 Let x, y E Fq. Then
(1)

(f.) f-b-y, fy)+ = /2 C X( ax-bY )7r(a(a - b)(a + b))- l
a,bEFq,a#O,b a(a - b) a(a + b)

(2)

(fx, f-x-y, fy)- = q/2 E
a,bEFq,aO,±Ab

Ax Ay (a( - Ab)(a + Ab))-'a(a - Ab) a(a + Ab)

(3) (foo, f-x, f)+ = q/2 EF; X()r(2a) - 1
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(4) (foo, f-, f)- = q/2 EaEF; X(2-A)'(22a) 1

(5) (fo, f-., f) = (f., f, f)+ = (f_-, ., fo)+
(6) All other pairings in the f-basis are zero.

Proof. We shall make use of the matrices Mu (Equation 1.5) and the matrices

a b
0 a)

Using M. invariance in the second line, we calculate:

(f=, f, fy)+ = a x(ax + cz + by)(ea, e, eb)+
a,b,cEFq

= E X(ax + cz + by)(ea-c, eo, eb-c)+
a,b,cEFq

= Z, x(a'x + by + c( + y + z))(ea', eo, eb)+
a',b',cEFq

= q6 +y+z=o E X(a + by)(ea, eo, eb)+ (1.8)
a,bEFq

Now it is clear that (1,0,-1) and (a,O, b) are in the same L2 (q) orbit if and only if
(a, O, b) is of the form g(1, 0, -1) for some g E L 2(q). Since (ea, eo, eb)+ vanishes unless
(a, O, b) is in the (1, 0, -1) orbit, we may ignore the terms not of the form g(el, O, el)C*
in Equation 1.8. Now note that by Theorem 1.1.2, the only g E L 2(q) that preserve the
element 0 E P'(Fq) are of the form ga,b for a, b E Fq, a 0 O. Explicitly, the action is given
by

ga,b(el, eo, e) = ir(a-b)r(a)ir(a + b)(e-i, eo, e-1).a-b r

For this to be of the form (e, 0, ed)C* for c, d E Fq, we only need that a(a2 - b2) 0.
Using this formula and the FT of Projective Geometry, it is clear that {ga,b(1, 0, -l1)la, b E
Fq, a(a 2 - b2) O0} is equal to {(a,O,b)la,b E Fq, (a,O,b) E L 2(q)(1,0,-1)}. It is also
clear that the map (a, b) - g,b(1, 0, -1) is 2-to-1 since g,,b = g-a,-b in L2(q). Putting
this together in Equation 1.8, dropping terms that are zero, and using invariance, we
continue:

(f=,A,/,)+ : ~ ++ : 0 ya-a(fh,fy)+ - '+i+z=O X(xa1 a
2 a,bEFq,a(a 2 -b 2 ) b a b

ga,b(el, eo l e)+7r(a(a 2 2))- 1

Then Definition 1.5.1 finishes (1).
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For (2), we have similar arguments, however, things will be non-zero if and only if
they are in the (A, 0, -A) orbit. Since these and the remaining calculations are contain
nothing new, they are omitted. O

To make a simple observation that will be useful later, let us introduce the following
notation.

Definition 1.5.3 Let x E P1(Fq). Define the symbol Ixl by

0 ifx = oo.

Then we may note that Theorem 1.5.2 now tells us that

(fIfyfz) = 0 if Il +lY+ IzI 0. (1.9)

The following theorem gives some useful elementary properties of our invariant 3-
forms.

Theorem 1.5.3 Let x, y, c E Fq, c O. Then
(1) (f, f_Xy, fy)_ = (flA fA(--y), ay)+
(2) (foo, f-, f)- = (f., f-oA3, f-3)+
(3) (f, f__, fy) - (, f+, f)+
(4) (fc2,, fc2(_--), f2y) = (fx, f fy)ir(c)
(5) (foo, f-c2, fC2)i = (foo, f-, fX)±7(c)-.

Proof. To get (1), use the substitution b -, b'/A in Theorem 1.5.2 part (2) above. (2)
follows from the above theorem part (4) by b - b'/A2 . (3) follows from the above theo-
rem part (1) and (2) by b - -b'. (4) and (5) follow by A invariance and Theorem 1.2.1. 0

Next we wish to see when these forms can be fit together to make alternating forms.
To do this, we first consider a, b, c E P 1(Fq), distinct, and a a permutation of a, b, c. Then
observe that by Theorem 1.3.1, the element in PGL(2, q) mapping (a, b, c) (via (1,0, oo))
to (aa, ab, ac) has a -1 entering into the determinant for each transposition. This tells
us that the map g,a,b,c E PGL(2, q) taking the triple (a, b, c) to a(a, b, c) = (a, ob, ac)
has determinant sgn(a).

Let us now work in the e-basis for V. By definition and by the discussion so far, we
know that if (e,, eb, ec)± is non-zero, then a(ea, eb, ec)± = (ea, eab, eac) is non-zero if
and only if (a, b, c) and a(a, b, c) are in the same L2 (q) orbit, that is, if and only if sgn(a)
is a square in Fq.
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Say that sgn(a) is a square. Then we claim that actually,

a(e,,eb, ec) -= ir(sgn()(e, eb, ec) . First we note that it is sufficient to check this
statement for any particular (ao, bo0, co) in the L2 (q) orbit. To see that this is enough,
let g E L 2(q) such that g(a, b, c) = (ao, bo, co). The FT of Projective Geometry says that
gu,a,b,c = 9g-lg,aoboxcog. Hence, checking the statement for (ao, bo, co) will check it for
g(a, b, c). It will be easiest if we choose (ao, bo, co) = (1, 0, oo) and use Theorem 1.5.3 to
extend the results from (,,)+ to (,,)_ (or vice versa depending what orbit (1,0, oo) is
in). However, this case is easily checked using Theorem 1.3.1 and Theorem 1.1.2. This
allows us to prove (recalling h from Equation 1.1 and that A is the fixed generator for
F;):

Theorem 1.5.4 Using the symbol Fq2 to denote the set of squares in F and recalling the
notation from Section 1.1 so that r(A) = e2rim/h, then the alternating invariant 3-forms
on V are described eplicitly as follows:

(1) If-1 E Fq2 (i.e., h is even) and m is odd, then there are precisely two linearly
independent invariant alternating 3-forms. They are of the form

c+(,,)+ + c_(,,)_

for any c+, c_ E C. If m is even, there are no invariant alternating 3-forms.
(2) If -1 V Fq2 (i.e., h is odd), then, there is only one invariant alternating 3-form

up to scalar multiplication. It is of the form

c+(,,)+ + c_(,,)-

for any c+ E C with c_ = -C+r(-/))- 3 .

Proof. Let us recall the result of our above discussion. With the same notation as
above so that a permutation a acts by a(ea, eb, ec) = (ea,, eab, eoc), we derived:

0 if sgn(o) q F 2

o(e,, eb, e,) ( S )(eeb ec) else. (1.10)

With our old notation, this may be more compactly written as

ca(ea,eb, e,) = t (sgn(o )(e., b, eC).
In case (1), we see that Equation 1.10 says that both the "+" form and the "-" form

are already alternating if m is odd since then ir(/=T") = -1. If m is even, they are never
alternating since 7r(--T) = 1 . By our discussion at the beginning of this section, we
are done.

Let us consider case (2). By Equation 1.10, we see that if sgn(a) = 1, we already
have a(e,, eb, ec)+ = sgn(a)(ea,, eb, ec). Thus to see how to combine things in order to
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get alternating forms, it is sufficient to consider the case where sgn(o) = -1. Therefore
it is enough to consider a to be a transposition. Moreover, since we will see that all
the calculations are similar, let us just do the calculations for the fixed permutation a
where o(a,b,c) = (b,a,c). Also let z E F. so that 2 A = -1, that is, 2 = -1/A (since
-1 ~ Fq2).

For a, b, c E Fq and c+, c_ E C, consider the form (,,) = c+(,,) + c_(,,)_. It will
be convenient to work now in the f-basis to find out what restrictions on c+ and c are
needed to make the form alternating Making much use of Theorem 1.5.3 part (1), (3),
and (4) and Equation 1.10, we calculate:

(fa, fb, fc) = (foa, fGb, fc)

= (fb,fa,fc)
= c+(fb, fa, fc)+ + C- (fb, f fc)-

= C+(f-c, fa,f-b)+ + c-(fc, f-, f-b)-
= C+(f.2A, f2A, f2Ab)+ + C_(f2C, f2Aa, f2Ab)

= C+(fS2C f2, f.2b)- + C_(fi2\2C, fi2A2, fZ2A2b)+

= c+(fc, fa, fb)_r(x)- 3 + c-(fc, f,, fb)+r(Ax)- 3

= c+(fa, fb, fc)-r(z)- 3 + c-(fa, fb, fc)+r(Ax)- 3

Now for (,,) to be alternating, we need '(fa, fb, fc) = -(fa, fb, fc). By the above cal-
culations, this is true if and only if c+/ir(x)3 = -c_ and c_/7r(Ax)3 = -c+. In fact,
these two conditions are equivalent. To see this, observe that the second equation gives
c- = -c+r(AX) 3 . But since x2 = -1/A, we have (AX)3 = A3 6 /X3 = X-3A 3 (x 2 )3 = -3.

Thus the two requirements are the same. One may similarly check that if one of the
a, b, c are oo, the same result appears. Thus we have the stated result. o

We record for future use an immediate consequences of this theorem in three cases:

Corollary 1.5.1 Up to scalar multiplication, there is precisely one 3-form on V for q = 7
and two 3-forms on V for q = 9 or 13 that are L2(q) invariant and alternating.

0

1.6 The Algebra Structure
Now that we have non-zero L2(q) invariant alternating 3-forms and a non-degenerate
symmetric 2-form, we are in a position to define an invariant skew-symmetric algebra
structure, [,], on V. To do this, first fix (,), the unique 2-form from Theorem 1.4.1,
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and (,,), any non-zero invariant alternating 3-form. We then may make the following
definition.

Definition 1.6.1 Given the fixed 2-form and 3-form above, let [,]: V x V - V be the
non-zero L2(q) invariant skew-symmetric algebra structure on V defined by

(VI, V2, V3 ) = ([V 1 , V 2 ], V3 )

for all v 1, v2, v 3 V. Note that [, ] depends on our choice of the 3-form (,,).

It is very useful to compute explicitly what this algebra structure looks like. It is
particularly nice in the f-basis as the next theorem demonstrates.

Theorem 1.6.1 Let (,,) be a non-zero L 2(q) invariant alternating 3-form and write [,]
for the corresponding algebra structure on V. Then for p, q E Fq,
(I) [fp, fq] = (fq, fqp, fp) r(p + q) fp+q if p + q 0
(2) [fo, fq] = (fq, f-q, fo) r(q) fq
(3) [foo, f] = (fq, f-q, fco) 7(q) fq
(4) [fo, fo] = 0
(5) [fp, f-p] = (fp, fo, fp)/rI,o fo + (f-p, fo, fp)lrl, fo.

Proof. This follows easily by Definition 1.6.1, Theorem 1.4.1, and Equation 1.9. For
instance, let us check (1). First of all we may write [f,, f4] = rEP(Fq) crfr for some
constants c, E C. Then applying (., f), s E Fq, to both sides gives

(fp, f, s) = C-, S(s-

Thus c_ = r(s)(fq,f, fp) (by Equation 1.10). In particular, we have c = 0 unless
s = -p - q which gives the stated result. The other cases are similar. o

Now of course this algebra structure on V will be a Lie algebra if and only if it satisfies
the Jacobi identity

[[v1, 2 ],v3 ] + [[v3, v], V2 ] + [[v2, V3 ], V] = 0 (1.11)

for all v1 , v2, v3 E V. As a corollary of the above work, we get an expression for the Jacobi
identity in terms of the 3-form. Part (3) below will be very useful later in the paper.

Corollary 1.6.1 Let p, q, r E Fq and s = -(p + q + r). Then the 3-form (,,) makes V
into a Lie algebra if and only if the following three conditions hold:
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(1) When none of the subscripts are zero, one must have:

(fpf--, f)(fr, fp+q, f) + (fr, f-r-, fp)(f, fr+p,A) + (fq, f-q-r, fr)(fp, fq+r, f) 
(fp+q, f-p-q) (fr+p, f-r-p) (fq+r, f-g-r)

(2) When none of the subscripts are zero, one must have:

(fp, f-p, fo)(fq,f-, foo) + (fp,f-p,foo)(fq, f-q, fo) (fq,f-p-q,fp)2 (fq,fpq,f_) 2

(fo, foo) (fp+ f-p-) (fp-q f-p+q)

(3) Let 0 E {O, oo). When none on the subscripts are zero, one must have:

(fp+q, f-p-+q fa) (fq, f-q, fo) (fp, f-p, f) 
(fpf__~, fp)(- ( x X+ f xx) + ,+ x fX) = 0.

(fp+q ,f-p-q) (fq,f-q) (fp,f-p)

Proof. The proof of this is just a straightforward application of the various cases of
Theorem 1.6.1 applied to Equation 1.11. We omit the details as they are trivial and not
very enlightening. 0

1.7 The Four-form
We have seen that any L 2(q) invariant alternating 3-form gives rise to an algebra struc-
ture. Since we will be concerned with the veracity of the Jacobi identity, let us make the
following definition.

Definition 1.7.1 Let x,y,z,w E V. Given a non-zero L 2(q) invariant alternating 3-
form and the corresponding algebra structure [, ], define a 4-form (,,,) on V by

(, y, , w) = ([[x, y], z]+ [[y, z], x]+ [[z, ], y], w)

where (,) is the fized 2-form. Note that (,,,) depends on [,] which in turn depends on
the 3-form.

Theorem 1.7.1 The above 4-form is a L 2(q) invariant alternating form on V. More-
over, it is identically zero if and only if V is a Lie algebra under [, ].

Proof. That the 4-form is invariant is obvious from the invariance of (,) and [, ]. The
fact that it is alternating follows from:

(x,y,z,w) = ([[x,y],z]+ [[y, z],x]+ [[z,x],y],w)

= ([, y], z, w)+([y, z], x, w)+([z, x], y, w)
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= (z, w, [x, y]) + (, w, [y z]) + (y, w, [z, x])

= ([z, ], [, y]) + ([X, w], [y, z]) + ([y, w], [z, x]).

The statement about being a Lie algebra is clear since (,) is non-degenerate and it is
precisely the Jacobi identity that appears in the definition of the 4-form. 0

We now record a simple calculation for future use.

Theorem 1.7.2 Up to scalar multiplication, there are precisely no 4-forms on V for
q = 7 and one 4-form on V for q = 9 or 13 that are L2(q) invariant and alternating.

Proof. It is possible to give explicit expression for these 4-forms just as we did for
the 3-forms earlier. However, since we will only need results for q = 7,9, and 13 and
then only of a quantitative nature, we simply calculate the number of times the trivial
representation of L 2(q) occurs in A4 V. Here we recall that if p is a character of a finite
group, then the character of the fourth exterior power of p evaluated on some g E L 2(q)
is given by

A4p(g ) = g(9)4 - 6p(g)2 p(g2 ) + 8p(g3)#(g) + 3p(g2 )2 - 6p(g4 )
24

Using a character table for L2 (q) (see Theorem 3.2.1), the calculations needed to apply
the Schur orthogonality relations to the theorem are easy and omitted. 0

1.8 The Clifford Algebra
It turns out that the 4-form has a nice connection to Clifford algebras which we develop
in this section. First recall some notation from Exterior algebras. Let W is a finite
dimensional vector space over C equipped with a non-degenerate symmetric two-form
(, ). Then one may extend (,) to all of A W by requiring (Ak W, Al W) = 0 if k # I and
letting

(w1 A ... wk, W A ... w) = det[(wi,w )]

for all wi, w E W.
There are also two standard maps of A W that will be useful. Fix w E W. The first

map is (w): Ai W - Ai+ l W defined by

c(w)u = w A u

for all u E A W. Clearly (w)2 = 0. The second map is (w) : A'W -- A'- by setting
t(w) = (w)t, the transpose. Thus it is clear that (W)2 = 0 also. Moreover, it is well
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known that there is an explicit formula for (w) given by

k

t(w)(wi A ... wk)= (-1)'+'(w, wi)wl A .. i A .. wk
i=l

where the wi means to omit the wi term.
Now to prepare our coming connection with Clifford algebras, we define the operator

L,:AW -- A W by

L, = (w) + (w).

It is classical that

L' = (w, w)l. (1.12)

(This follows from the easily checked equation (w)e(w) + e(w)l(w) = (w, w)l).
Let ® W be the tensor algebra of W. Then we recall that the Clifford algebra, C(W),

is just

C(W) = W/(< w®w-(w, w) >).

Now there is an interesting bijective map of C(W) onto A W. To see this, first observe
that we have a map ,t: W --, End(A W) by w -, Lw. This naturally extends to a map
of the same name : & W -, End(A W) in the obvious way. Next, Equation 1.12 tells
us that the map descends to the quotient : C(W) -, End(A W). At last, let us
define T1: C(W) -, A W by

IF(x) = ()(1)

Explicitly, let wi E W and consider elements of the form wl,... wk E W C C(W).
One easily checks that,

qT(w1 ) = ((w 1 ) + (wi))l = W,

and

%P(w1W2) = ((wl) + (Wl))w 2 = t, 1 A W2 + ( 1, W2)1 (1.13)

and in general,

(wl ... wk) = wl A ... wk + Z terms in Ak 2 i W . (1.14)
i>O

With this, we may now state the well known bijection of C(W) and A W. This
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material may be found in many places, e.g., [2] Chapter 1 §6.

Theorem 1.8.1 With the above definitions,

I: c(W) -A w
is a C-linear one-to-one onto map. Thus, Clifford multiplication induces a second algebra
structure on A W. This new multiplication will be denoted by placing two elements of
A W next to each other (i.e. with no A in between).

We observe that by Equation 1.13 that for wi E A1 W, the new "Clifford" multipli-
cation in A W is:

wlw 2 = wl A w2 + (wl, w2)1.

We also observe by the same sources that if wl,... Wk are mutually orthogonal with
respect to the two-form (,), then

W . . Wk = W A ... Wk.

It will be useful to have a more general formula for this new multiplication. For our
purposes, this will be provided by

Theorem 1.8.2 Let xi be a basis for A W and let yi be its dual basis, that is, (xi, yj) =
i,j. Then for any u, v E A W, the Clifford multiplication is given by:

2 dim(W)

uv= E (xi)u A (yi)v.
i=l

Proof. This is a simple matter of checking the result in one particularly nice basis
and then using the universality of the tensor product space trick to show independence
of basis. The proof, due to Kostant, may be found in [27]. 0

Corollary 1.8.1 With the above notation,

U = E L(xi)u A (yi)u.

Now let us return to our original concern where V is our induced L2(q) module,
(,) is our invariant symmetric non-degenerate 2-form, (,,) is a fixed non-zero invariant
alternating 3-form, and (,,,) is the corresponding invariant alternating 4-form measuring
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the failure of the Jacobi identity. Now we may view (,,) and (,,,) to be elements of A3 V
and A4 V, respectively, by our 2-form. The remarkable observation of Kostant is that the
relation of the 4-form to the 3-form is encapsulated by Clifford multiplication in A V.

Theorem 1.8.3 (Kostant) Viewing (,,) and (,,,) as elements in A3 V and A4 V, re-
spectively, and using Clifford multiplication,

(,,)2 = 2(,,,) + a degree zero term.

Proof. A priori, the Clifford product of two elements in A3 V would have components
in degrees 6, 4, 2, and 0 by Equation 1.14. Let us first check that Clifford squaring of an
element x E A3 V results in only degree 4 and 0 terms. To do this, let us recall the algebra
anti-automorphism of ® V defined by (vl ®... vk) = vk ... vl. This anti-automorphism
descends compatibly with to both C(V) and A V. We observe that "*" reduces to +1
in degrees 0 and 4 of A V while it reduces to -1 in degrees 2,3, and 6. However, this
implies that on the Clifford square of a degree 3 object, "*" acts by (-1)(-1) = +1.
Hence, "*" must act by +1 on each of the components. Thus there are no 2 or 6 degree
terms.

We can now make use of Theorem 1.8.2. First recall that our 2-form (,) on V extends
to all of A V as described above. By viewing (,,) and (,,,) to be in A V, we mean that
we identify them with elements W3 and 4 in A3 V and A4 V, respectively, such that for

vi E V, (vI, 2 , v3) = ( 3 , v A v A v3 ) and (vI, V2 , v 3 , 4) = ( 4 , v A v2 A v3 A v4). To show
that the degree 4 component of 2 is 04, it suffices to show that (3, v1 A v2 A v3 A v4 ) =

(vl, v2, v3 , v4). Now choose xi to be a basis of homogeneous elements in A V and yi to
be the corresponding (homogeneous) dual basis so that deg(xi) = deg(yi). We know by
Corollary 1.8.1 that

=3Z tL(Xi)P3 A (Yi) 3.

By the fact that 03 is degree three and by the degree lowering nature of , xi and yi can
contribute non-trivially to the fourth degree component of V3 only for xi of degrees 0,1,or
2 and yi of degrees 2, 1, or 0, respectively. But since xi and yi have the same degree, we
only need to consider the above sum for xi, yi E A2 V. Hence, we have

(P,v A .. . v4) = E ( t(i) 3 A L(yi)(3,V A * ... v4). (1.15)
i,deg(xi)=2

Of course t(xi)V 3 and t(Yi)SP3 are in A2 V. We wish to "rewrite" the above determinant.
Let ai E V. Then by definition one has
(al A ... a4, v1 A ... v4) = EcES4 sgn(a)(al, v,(1)) ... (a4, v,( 4)) and (a, A a2, v1 A v2) =

E¢s2 sgn(o)(al, v,(l))(a 2, Va(2)). Combining these, one can check that the following sum
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over ( 2 ) = 6 permutations holds:

(al A ... a4, vl A... V4) = E (a A a 2, vi A vj)(a 3 A a 4, Vk A vI).
{i,j,k,l}={1,2,3,4},i<j,k>l

Applying this to Equation 1.15, we may now write

( , v A...v4)= Z Z (l(Xi)(p 3 , Vp A Vq)(L(y)(p3, V, A v.).(1.16)
{p,q,r,s}=l ,2,3,4},p<q,r>s i,deg(z,)=2

Now using i(v)t and (3, v1 A v2 A V3 ) = (V1, v2 , V3 ) = ([V1, v2], V3 ), we have

(t(v)Wo3, V1 A V 2 ) = (P3, v vAl v 2)

= ([V, V 1], 2 ).

Putting this in Equation 1.16, we get (also using the nature of the dual basis)

= E E([ i, Vp], Vq)([yi, Vr], V.)
p,q,r,s i

= ([VpI Vq], i)([Vr, V], Yi)

= E ([V, Vq], ([V, V8],, Y)i)
p,q,r,s i

= E ([Vp Vd, [V,, ,)
p,q,r,s

= (f[Vr,V,1,p],Vq).
p,q,r,s

Writing out explicitly the 6 terms of {{p,q,r,s} = {1,2,3,4},p < q,r >
arranging terms, one checks that we get precisely the desired result.

Corollary 1.8.2 There exists a second degree homogeneous polynomial map from L2(q)
invariant alternating 3-forms on V to invariant alternating 4-forms that takes any such
3-form to its corresponding 4-form.

Proof. This is an immediate consequence of the above theorem and the nature of
Clifford multiplication. o
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1.9 Existence for Rank 2
Using the results from our Clifford structure, we can now show that for q = 7,9, and
13, one may choose an appropriate 3-form on V so that the induced algebra structure
yields a Lie algebra. Of course in these cases it is clear that dim(V) = 8, 10, and 13,
respectively. We will later see that the Lie algebras obtained in this way are the simple
rank two Lie algebras A2, B2, and G2, respectively. Thus in these cases, knowledge of
L 2(q) determines the entire Lie algebra which in turn determines the Adjoint Lie groups
in which L2(q) lies.

Theorem 1.9.1 For q = 7, 9, and 13, there exits non-zero L 2(q) invariant alternating
3-forms on V making V into a Lie algebra under the corresponding bracket structure.

Proof. Since vanishing of the corresponding 4-form is equivalent to the Jacobi iden-
tity, it suffices to show that there always exist non-zero 3-forms whose 4-forms vanish.
By Corollary 1.5.1 and Theorem 1.7.2, we already know that for q = 7, 9, and 13 there
are always one more L 2(q) invariant alternating 3-forms on V than there are invariant
alternating 4-forms. In particular, for q = 7 we are done since there are no 4-forms.
However, for q = 9,13 there is a 4-form. But by Corollary 1.8.2, we have a homogeneous
polynomial map taking 3-forms to 4-forms. Thus by choosing a basis for q = 9,13, we
have a map C2 - C of the form ax2 + bxy + cy2. But by the quadratic formula this
always has a non-trivial zero so we are done. n

Using a character table (Theorem 3.2.1), let us work backwards and make some
general remarks about the groups in the cases of q = 7, 9, 13, 5:

L 2(7) has exactly two 3 dimensional irreducible representations. This gives two non-
isomorphic injections of L2(7) into SL(3, C). One may arrange things so that the the
outer automorphism of L 2(7) corresponds to an outer automorphism of SL(3, C) which
interchanges the two non-isomorphic representations of L 2(7). Of course, this outer auto-
morphism is a Lie algebra automorphism of SL(3, C) even though it is not an intertwining
operator for L2(7). Next note that L 2(7) has only one irreducible 8 dimensional represen-
tation. In fact, one may readily see that it is obtained by composing either of the two 3
dimensional representations with Ad and letting L2 (7) act on 5(3, C). The intertwining
operator for these two equivalent representations may be obtained by conjugating by the
outer automorphism of SL(3, C). This is now simultaneously a Lie algebra automor-
phism and intertwining operator for L 2(7). This must be the case since since there is
only one invariant alternating three-form up to scalar multiplication (Corollary 1.5.1) so
that there is only one invariant Lie algebra structure up to automorphisms. This will be
reflected in Figures 1-1 and 1-2 in later sections which will show that the possible Lie
algebras differ by an outer automorphism.
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L 2(9) has exactly two 5 dimensional irreducible representations. The Schur indicator
of each is +1 so that we have L2(9) embedding into S0(5, C). We note however, that
L 2(9) does not have any four dimensional representations so that it does not sit in the
simply-connected covering of S0(5, C), Spins(C) - Sp 4(C) (even though SL(2, 9) does
have four dimensional representations, these do not descend to PSL(2,9) = L 2(9)).
Regardless, we still have two embeddings of L2(9) into S0(5, C). Unlike the above case
for q = 7, these two embeddings cannot be related by an outer automorphism. Next note
that L2(9) has only one irreducible 10 dimensional representation. It is easily checked that
either of the 5 dimensional representations composed with Ad yields the 10 dimensional
one. Thus there will be a L 2(9) intertwining operator. However, there is no reason to
suppose that this map will be a Lie algebra automorphism as was the case for q = 7. This
makes perfect sense since we have seen in Corollary 1.5.1 that up to scalar multiplication,
there are two invariant three forms. By the quadratic nature of Corollary 1.8.2, one would
expect there to be two different ways of making V into a Lie algebra under L 2(9). We
will actually see that this is the case later on. It will be reflected in Figures 1-3 and 1-4.

L 2(13) also has exactly two 7 dimensional irreducible representations. The Schur
indicator of each is also +1 so that we have an embedding into S0(7, C). In fact, we will
later see that L2 (13) actually lies inside of G2 inside of S0(7, C). These two inequivalent
7 dimensional representations also cannot be related by an outer automorphism of G2

as they were for q = 7. Composition of either with Ad will yield a 14 dimensional
representation. One may check that both 7 dimensional representations give the same
14 dimensional representation (in fact, in the notation of Theorem 3.2.1, Xg by either
Theorem 1.5.4 part (1) or Theorem 3.3.3). Just as with q = 9 above, one expects that
there are two ways of making V into a Lie algebra under G2. Even though there is a
L2(13) intertwining operator, it need not be a Lie algebra automorphism. This will be
reflected in Figures 1-5 and 1-6 in later sections.

Let us also make a few comments about q = 5. For this value of q, Theorem 1.1.1 tells
us that the only principal series representation of L 2(5) is reducible. This 6 dimensional
representation breaks up into two (non-isomorphic) 3 dimensional representations. In
fact, it is easy to see that each of these 3 dimensional spaces becomes (by analogous
techniques) the Lie algebra s[(2, C). Thus one can check that we have L2(5) injecting to
the Adjoint group PSL(2, C). However, L 2(5) has no two dimensional representations
so it does not sit in SL(2, C).

1.10 A Family of Subalgebras
A fundamental step in understanding the nature of semi-simple Lie algebras arises by
examining the various z5(2, C)'s that naturally embed in the semi-simple Lie algebra.
This will be important for our study. As usual, fix an alternating, L2(q) invariant, non-
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zero 3-form on V so that we have [,] as the corresponding algebra structure. We have
already seen in Theorem 1.6.1 that the subalgebra spanned by the vectors fo and f,
"wants" to be a rank two torus of V with root vectors fp, p E Fq. Because of this, it is
natural to consider the following analogues of s[(2, C).

Definition 1.10.1 Given an alternating, L 2(q) invariant, non-zero 3-form on V, let 9p

be the subspace of V defined by

9p = span{fp, fp, [f,, fp, ]}

for each p E Fq. Note that 9p = q if and only if-p = q.
Define the number

- (fp, f-p, fo)(fp, f-p, foo)
(fp,f-p)(fo, fo) (1.17)

Observe that dp is non-zero if and only if both terms in the numerator are non-zero.
Within p, single out the following elements:

xp = fp

YP = f-p

hp = [fp, f_]
_(fp, f-P, ,oo) (f p f-P, o)fo + fo foo.

(fo, foo) (fPf fo)

Theorem 1.10.1 Given the above notation, one has

[xp, yp] = hp
[h ,, xp] = 2dpxp

[hp7, yp] = -2dp y p .

In particular, S9p is a Lie algebra.
Moreover, if dp # 0, then hp 0 0. Thus by replacing yp and hp by yp/dp and hp/dp,

respectively, we see that gp is isomorphic to the three dimensional 5[(2, C).
Consider what happens when dp = 0 (see Equation 1.17). In the case where only

one term in the numerator of dp is zero, then hp $ 0 and gp is still a three dimensional
algebra, however, hp is in the center of 9p. Thus gp is isomorphic to the three dimensional
Heisenberg Lie algebra. In the case where both terms in the numerator of dp are zero, we
see that hp = 0 and so gp is the two-dimensional Abelian Lie algebra.

Note that even without V necessarily being a Lie algebra with respect to [,], 9, is
always a Lie algebra.
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Proof. This follows simply from the definitions and Theorem 1.6.1.

The next goal is to show that if V is both irreducible and a Lie algebra under [,],
then each gp is forced to be a s[(2, C). We will need the following results.

Lemma 1.10.1 Suppose that r2 # 1 and let (,,) be as above. If (v,v', v") = 0 for all
v', v" E V, then v = 0.

Proof. Since (,,) is L2(q) invariant and since V is an irreducible representation of
L 2(q) (Theorem 1.1.1), v 0 implies that (V,v',v") = 0 which implies that (,,) = 0.
However, this contradicts the choice of the non-zero 3-form. 0

For the next theorem, recall Definition 1.5.3 for the symbol IxI.

Theorem 1.10.2 For r2 1 and the above notation, the center of V is trivial. In
particular, for r E P1(Fq), (f,, f,, fq) cannot be zero for all q, s E P'(Fq) where Irl + I1I +
Iq =0.

Proof. The first part comes from Lemma 1.10.1, the definition of (,,) = ([, ], ), and
the non-degeneracy of (,). The second part follows by Theorem 1.6.1. 0

Recall Theorem 1.10.1 and suppose that for some p one has (fp, f_p,fo) = 0 or

(fp, f-p, foo) = 0. In other words, suppose that gp is not isomorphic to s5(2, C). Our goal
is to show that this would imply that fo or f,, respectively, would be in the center of V
and then to use Theorem 1.10.2 to get a contradiction.

In the where (fp, f-p, fo) = 0 or (fp, f-p, fo) = 0, we claim that it will follow that
f+a2p, a E F*, commute with fo or f,, respectively. This follows by the invariance of the
three form under the powers of the element A, Theorem 1.6.1, and Theorem 1.5.3 part
(3).

In the case where -1 is not a square in Fq (i.e., when en = h is odd or equivalently
when there is only one invariant, alternating three-form), then we are already done
(without reference to Jacobi!) since the set {(a 2 } exhausts all of F*. However, we will
need to do more work (and definitely require Jacobi) for the case where -1 is a square
in Fq. Nevertheless, we record what we have found.

Theorem 1.10.3 For 7r2 1 and the above notation, if h is odd (i.e., -1 is not a square
in Fq), then each gp is isomorphic to s[(2, C).

For the general case, let us first proceed towards showing that p cannot be the
Abelian two-dimensional algebra if V satisfies Jacobi (noting that by the above theorem,
we may assume that -1 is a square in the field). Suppose the Abelian case were possible
(Theorem 1.10.1). Then fix some po E F; so that (fp, f-po, fo) = (fpo, f-po, fo) = 0. We
define the subspaces:
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Definition 1.10.2 For Po fixed in F, let F1, F,, and I be the following subspaces of V

F1 = span{fa2pla E F}
F = span{fa2po la E Fq}

= span{fo, foo}.

Observe that V = F1 (D 1 D F\ and that each of the subspaces is invariant under A and
M (see Equation 1.3 and Equation 1.5).

Definition 1.10.3 For r E Fq, define the "root" ac E Ib to be the linear function defined
by the two relations

ar(fo) = (fr, f-r, fo)
(fr, f-r)

where E {0, oo}. Note, that by Theorem 1.6.1 if h E , then

[h, f] = ar(h)fr.

Lemma 1.10.2 For r2 y! 1, if V is a Lie algebra and Ipo is Abelian, then F and FA
are both ideals in V with [ F, F] = 0 and [, F] = FA.

Proof. Throughout we may take -1 E Fq to be a square so that if fq E F, then
f_q F where x E { 1, A}. We will make much use of the Jacobi relation given in
Corollary 1.6.1 part (3). Combined with Theorem 1.6.1 and Definition 1.10.3, it says
that for r, s E Fq with r + s 0, either

[fr,fs] = 0 or (1.18)
t + c - ar+ = 0. (1.19)

For later convenience, let us note that by using A invariance, one easily checks

ca2r(fo) = 7r(a)-1a,(fo) (1.20)
Ca2r(fo) = r(a)r(foo).

By checking the definitions, the fact that we are in the Abelian case just comes down to
meaning that aa2p0 = 0. In particular, aa2 0p(fo) = 0 where o E {0, 0o}. But since there
is no center (Theorem 1.10.2), neither fo nor fo can commute with everything. This in
turn gives us that a2p(fo) $ 0 by A invariance and Definition 1.10.3.

Using Theorem 1.6.1 and these facts, let us check the theorem. We already know that
ad()) will commute with itself, kill F1, and preserve Fx (in fact fo and f will not kill
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anything in Fx since they preserves the f-basis and must be non-trivial on each fXa2po to
avoid being in the center). Thus we need only consider the action of F1 and FA.

We show first that [F1, F1] C Fl. By the Abelian assumption, it is enough to show
that [fa2po, fb2po] = 0 if a2 + b2 = Ac2 for a, b, a + b E F*. Thus suppose that a2 + b2 = Ac2.

The left hand side of Equation 1.19 reduces to a,cpo. But by our previous remarks,
this is not zero. Hence, Equation 1.18 must hold which gives us that [fa2pO, fb2 0 ] = 0 as
desired.

Next we show that [F,, F1 ] C FA. Suppose that Aa2 + b2 = c2. Then Equation 1.19
reduces to aC2po which, we have seen, is non-zero. Thus, as before, we get [F,, F1] C F,.

At this point, let us make the assumption that 7r(A) is a primitive h'th root of one.
This assumption will be in force for the following three paragraphs (see Restriction 1.1.1).
After that, we will show why it is sufficient to consider this case. Let us only record that
so far (without this assumption) we have already proved:

[Fl,F] C F] (1.21)
[F,F,] C F,. (1.22)

Next we show that [F,,FA] F f I. Suppose that Aa2 + Ab2 = c2 . Then the
left hand side of Equation 1.19 evaluated at f (fo would work equally well) yields
CaApo(foo)(7r(a) + r(b)). The first part of this product is non-zero. The second part will be
zero if and only if 7r(a) = -r(b). If we denote by i some J/T in F*, then this situation
will occur if and only if a = ib (note that 7r(A) is a primitive h'th root of unity) so that
this will occur if and only if a2 = -b 2. For c 0, we must therefore have Equation 1.18
which tells us that the corresponding bracket is zero. For c = 0, the bracket will lie in .
Hence [FA, FA] will never have a F1 component and we have shown that [Fx, F] C Fx (D ).

Similarly, we show [FA, F1] C Fl. Suppose that Aa2 + b2 = Ac2. In this case, Equa-
tion 1.19 evaluated at (say) fo yields aXpo(fo)(r(a) - r(c)). As before, this can only be
zero if a2 = c2 . But this would tell us that b = 0 which is not possible. Hence we get
[FA, F] C Fl.

We complete the picture in the case of r(A) primitive by noting that F1 n Fx = {0}
so that [Fx, F] = 0 at last. O

It will be useful for us to introduce the following notation for a particular basis for V
consisting of eigenvectors for A.

Definition 1.10.4 Write ¢ = e2fi/h. Then for k = 0,1,..., h- 1, let wlk and wk be
as follows.

h h
Wl,k = A-lkAkfop = ((0k(A))lf

1=1 1=l
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h h
W, = (-'lkAkfApo = ((-k.(A))fA2,+1P.

1=1 / =1

From this, it is clear that wl,k and WA,k are distinct eigenvectors for A corresponding to
the eigenvalue Ck. If we also note that fo and f, are eigenvectors for A of eigenvalue r(A)
and r(A) -', respectively, then it is clear that the set {Wl,k, w,k, fo, foo I k = 0,..., h- 1}
is a basis for V consisting of eigenvectors of A.

Lemma 1.10.3 Let m E 1,..., h - 1 be such that (m = r(A). Then for x E {1, A}, we
have:
(1) the fo component of Sw.,k in the f-basis is r(xpo)-'ro,lh6 )+k
(2) the f. component of Sw.,k in the f-basis is h6h)k
(3) Sfo = 7(p)rl,O[W,- + 7r(A)w,,_m] + foo
(4) Sfoo = 1/q[wl,m + WA,m + fo]
where 5(h) denotes 1 if r = 0 mod (h) and 0 else.

Proof. These are all simple calculations that follow from Theorem 1.2.1, Defi-
nition 1.10.4, and Lemma 1.2.1. We will only work out part (1) since the rest are
similar or obvious. The fo component of SW/,k is simply = l((-kir(A))lrox2'p =

=1 r(l(m-k)r0,((xA2p 0o)-1 = (po)-lro, 1 -l(m+k) which gives us the desired re-
sult. 0

Lemma 1.10.4 With the assumptions of Lemma 1.10.2, there exists ko such that
Swl,ko = CkowA,-ko for some cko # 0.

Proof. Recall S from Equation 1.6. First we observe that S, A, and Mu generate
L 2(q). Since V is an irreducible L 2(q) module, then any proper subspace of V invariant
under A and Mu can not be S invariant. Thus, SF, must have vectors with components
in f) F.

In fact, we claim that SF, must have vectors with nontrivial components in just F,.
If this were not so, then we have SF, C F, _ 4F. But we will see that this is not possible.
First recall the notation m from Lemma 1.10.3 and consider the vectors wl,,m in Fl. We
will apply S to them.

Since SAS = A - 1, S will carry a k eigenvector of A into a ¢-k eigenvector. Thus, a
priori, we may always write:

Swl,-m = awl,m + b,m + cfo
Swl,m = ewq,-m + fwA,-m + gfoo (1.23)
SWA,m = e'w1,-m + fWA,-m + g'foo
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Where a, b, c, d, e, f, g, e', f', g' are certain numbers in C. By Lemma 1.10.3, we also know
c, g, g' explicitly. In particular, none of these are zero. Now using the fact that S2 = Id,
we get the following equations by applying Equations 1.23 twice and using Lemma 1.10.3
parts (3) and (4):

1 = ae + be' + cr(po)rl,o (1.24)
0 = af+bf' +cr(Apo)rl,o (1.25)
0 = ag+bg'+c. (1.26)

If we were to assume that SF 1 C F1 D , this implies that b = f = 0 in Equations 1.23.
However, Equation 1.25 then would imply that c = 0, but we have already seen that this
is not so.

Hence, there exists some non-zero v0o E V such that Svo = vl + h + vA, written with
respect to the decomposition V = F1 E 1j ( Fx, such that v 0. We have already seen
(say in Lemma 1.10.2), that ad(fo) does not kill anything in FA. On the other hand, it
kills everything in F,1 D . Thus, if we let v' = [fo, Svo], then we see that vo E FA and is
non-zero. However, since S preserves the bracket structure and since F1 is an ideal, SF1
is also an ideal. Hence vO is also in SF1 . Thus we have shown that SF1 n FA is nontrivial.

To finish the proof, it suffices to note that F1 and FA are A invariant. Since A - =
Ah-l and SAS = A -1, SF1 is also A invariant. Thus SF1 n FA is a non-zero A invariant
space. Therefore it consists of eigenvectors of A and we are done. O

Lemma 1.10.5 With the notation from Lemma 1.10.4, either Swl,m or Swl,-,m is con-
tained in FA ) .

Proof. Let ko be from Lemma 1.10.4 so that Swl,k 0 = CkowxA,-ko, Cko # O. We know
that [fo, wA,-ko] 0 so that S applied to it is non-zero. Using Lemma 1.10.3 part (3)
and the fact that we are in the Abelian case (so that Lemma 1.10.2 applies), this gives
us that [lr(p0)rl,0wl,_m, c 1 wol,o] O0. Thus we have

[Wl,-m, Wl,kol 0 0. (1.27)

With this done, let us use the notation from Equation 1.23 again and make heavy use of
the Abelian case while we consider the following.

[W1,-m, Wl,kol = S2 [Wl,-m, W1,kol

= S[bwx,m + cfo, CkWA,-ko]

= [be'w,.-m + cir(po)rl,owl,-m, Wl,kol

= (be' + c(po)rl,O)[w,-m, Wl,ko]-
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Hence Equation 1.27 implies that be' + cr(po)1r,o = 1. Thus, Equation 1.24 tells us that
ae = 0. Therefore, we have a = 0 or e = 0 which is exactly the desired result. o

Theorem 1.10.4 For r2 $ 1 and p E Fq, if V is a non-trivial Lie algebra, then gp is
not Abelian.

Proof. Suppose not. Then we would be in the position of Lemma 1.10.5. Let us
carry over all of its notation so that we have either Swl,m or SWl,-,, contained in FAx ( (.

In other words, ae = 0. Suppose that e = 0 so Swl,m C Fx ( [l. Then we would have:

[Swl,m, foo] = [fW,.-m, foo]

= f[WAx,,m, fool.

Thus [Swl,,, fool] is zero if and only if f = 0 since f does not kill anything in Fx and
WA,-m ft. However, by applying S to [SWl,m, fo], we get [wl,m,(1/q)w,m] which is
equal to 0. Since S is invertible, this gives us that f = 0. In other words, e = 0 implies
f = 0. But looking at Equation 1.23, this translates to saying that Swl,-m = cfo. This
would imply, though, that wl,-, = cSfo. But this is a contradiction by Lemma 1.10.3.

To see that a = 0 also gives a contradiction, repeat the same argument as above, but
this time start out with [Swl,m, fo]. It is easy to see that everything is similar. Thus
we are done. 1

Since we have shown that the Abelian possibility of Theorem 1.10.1 cannot occur if V
is actually a Lie algebra, this leaves only the possibilities of 5(2, C) and the Heisenberg.
Next, we will show that Jacobi also excludes the Heisenberg case.

First we need a "nilpotent" argument.

Lemma 1.10.6 If r2 1 and V a Lie algebra, then for p, q E F*, there exits n in Z+

such that ad(fp) fq = O.

Proof. First, by Theorem 1.6.1, we observe that ad(fp)nfq C Cfnp+q. Suppose
ad(fp)fq 0 O. Then since Jacobi is satisfied, Equation 1.18 tells us that ap+q = crp + aq.
If ad(fp) 2fq is also non-zero, then ad(fp)fp+q 0 0. Hence we get a2p+q = ap + ap+q =
2ap + aq. In general, suppose ad(fp)nfq 0. Using induction, we get

aOnp+q = nap + aq. (1.28)

Assume that the lemma is false. Since V is a Lie algebra, we have already seen that
each gp must be three-dimensional. In particular, this will give us (see Definition 1.10.3
for ap, Theorem 1.10.1 for the three-dimensional properties, and Definition 1.10.1 for dp)
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that each ap is a non-zero element of *. However, by definition of the finite field Fq,
there are only a finite number of "roots" o, r E Fq. But Equation 1.28 would imply (by
taking arbitrary n E Z+) that there were an infinite number of distinct "roots". Hence
we have a contradiction. O

Next, we present the standard "bracket" relations for gp.

Theorem 1.10.5 In the case where p is three dimensional, using the notation of Def-
inition 1.10.1, suppose that [x, fq] = 0 for some q E F. Then, if we define vo = fq and
vi = ad(y)ivo for i E Z+ , we have

ad(y)vi = (i+ 1)vi+l
ad(h)vi = (aq(h)- 2idp)vi
ad(x)vi = (aq(h) + (1 -i)d)vi_l

where aq is given in Definition 1.10.3. In this case,

(xq(h) = (fp, f-p, fo)(fq, f-q, foo) + (fp, f-p, foo)(fq, f-q, fo)
(fq, f-q)(fo, foo)

Note that by Lemma 1.10.6, if [fp, fq] were not equal to zero, we could always "push" fq
up (in a non-zero way) with ad(fp) to some f, = fp+q so that [fp, fq,] = 0.

Proof. This is just the standard z[(2, C) type proof. It follows by induction on the
bracket relations given in Theorem 1.10.1 and the Definitions in 1.10.1 and 1.10.3. We
omit the details as they are well known. o

We are now in a position to exclude the Heisenberg case.

Lemma 1.10.7 Let r2 1 and V be a Lie algebra. Then gp is not a Heisenberg algebra.

Proof. Assume not. Then pick q' E Fq. By Lemma 1.10.6, let q = np + q' be such
that ad(fp)nfq, 0 but [fp, fq] = 0. We are now in a position to use Theorem 1.10.5
so we will adopt the Theorem's notation. Since gp is a Heisenberg, we know that either
(fp, f-p, fO) (call this case I) or (fp, f_p, fo) (call this case II) is equal to zero, but not
both. In either case, we have dp = 0. Hence, we have the relations

[f_, vi] = (i + 1)vi+i

[h, vi] = aq(h)v,
[fp,vi] = q(h)vi-l (1.29)
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where v0 = fq and v = (1/i!)ad(f_p)ivo. However, Lemma 1.10.6 tells us that for large
i, vi is zero. Using an i such that vi = 0 but vi- 1 # 0, Equation 1.29 tells us that we
must have aq(h) = 0. Hence fp kills each vi. In particular, looking at the beginning
of the proof, we must have q' = q. Thus we have aq,(h) = 0. However, looking at
Theorem 1.10.5 for an explicit form of a,q(h), we must have (fq', f-ql, fo) = 0 in case I
or (fq', fq, fo) = 0 in case II. However, q' was arbitrary. Thus, case I implies that fo is
in the center while case II implies that f, is in the center. Either possibility contradicts
Theorem 1.10.2 This finishes the proof. o

Concluding this section, we state:

Theorem 1.10.6 Assume that r2 # 1. Suppose there exists a non-zero L2(q) invari-
ant alternating three-form that makes V into a Lie algebra. Then each p, p E F, is
isomorphic to 5[(2, C).

Proof. This is an immediate corollary of the previous theorem and earlier discussion.
o

1.11 Necessity of Rank 2
In this section and the next, we will be able to show that the only time V can be made
into a non-trivial Lie algebra is in the cases of A 2, B2, and G2. To do this, we will exploit
certain "integrality" conditions that will follow from Jacobi. To some degree, the basic
reason that only q = 5, 7, 9,13 are allowable stems from the fact that

2cos(27ri/h)

is only an integer for h = 2,3, 4,6 (Theorem 1.11.2, Equation 1.35).
It will fall out of previous work that the set of {ap} forms a root system. To start,

let us make use of Theorem 1.10.6 and Theorem 1.10.1 to redefine the basal elements in
gp of Definition 1.10.1.

Definition 1.11.1 For V a non-trivial Lie algebra and p E Fq, normalize a basis for gp
as follows:

xp = fp
1

YP = df-p

ph =
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(fp,f-p) (fpf-p)
(fpfp,fO)f + (fp f-pfoo

Note that this is the "standard e, f, h" basis of 5[(2, C).

Let us note for future reference the value of a "root" on our new hp. From the above
definition and Definition 1.10.3, we see

(h) = (fp,f )(ff-,fo) (fqf- ,f f- ) (1.30)
(fq,f-) (fxp, f-p,o) (fpf-p, foo)

for p, q E F. Now we prove the first integrality condition.

Theorem 1.11.1 Let V be a non-trivial Lie algebra and let p, q E F*. Write r, s E Z as
the largest integers satisfying ad(fp)°fq $ 0 and ad(f_p)rfq 5$ O. Then

aq(hp)= -(s-r).

In particular, aq(hp) is always an integer.

Proof. Since gp is just a [(2, C) and we have renormalized h so that it is the
standard "h", this is simply a well know fact that follows easily by the bracket rela-
tions and finiteness of r and s (see [9]). One way to see this is the following. Using
vo = fq+sp and the fact that v,+,+l = 0 but v+, # 0 in Theorem 1.10.5 (with dp = 1),
we get 0 = ad(fp)vo+,+ = [aq+sp(hp) + (1 - (s + r + 1))]v,+, so that we must have
0 = aq+sp(hp) - s - r = aq(hp) - sap(hp) - s - r = aq(hp) + s - r which gives us our
result. 0

Since our L 2(q) invariant two-form (,) is non-degenerate when restricted to I4, it is a
simple matter to transfer all the structure we have on to 4[*. Using the results on the
"roots" {ap} and the above integrality condition, it is not too hard to check that the set
of cap is indeed an honest (reduced) root system when V is a Lie algebra. Hence by the
dimension of 4I, we would get as a corollary that the root system so obtained must be
isomorphic to the one of the following root systems: Al + Al, A2, B2, G2, or BC 2. Then
as a corollary of this, one gets limits on the values of q.

While this line of attack is possible and will be followed up in the next section, most
of the time we do not really need to rely on the classification of root systems. Instead,
the Jacobi identity forces us into the situation where each gp is a (2, C). As it turns
out, this alone will usually give us that q must be equal to 5, 7, 9, or 13. However, when
q = 5, then 7r2 = 1 so V is never irreducible. Thus, we will get that only q = 7,9,13 is
possible. (It is easily seen that for q = 5, V will split into two copies of s5(2, C) as we
have already remarked at the end of Section 1.9).
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Theorem 1.11.2 Assume that 7rm' 1 and that V,,m is a non-trivial Lie algebra with
Irm(A) a primitive h 'th root of unity, i.e, (m, h) = 1. Then q = 7, 9, or 13.

Proof. Let p, q E Fq. Using Equation 1.30, the fact that d, 0, and the invariance of
the two and three-forms with respect to A (see Theorem 1.4.1 and Theorem 1.5.3), let us
calculate (by factoring out the (fi, f-l, fo) and (fx, f-x, fo) part in each and canceling
where appropriate):

Cq2(hp2) = r(q/p) 2 (ir(p/q) + I(p/q) 3 )

= 7r(q/p) + ir(p/q) (1.31)

atq2(hAp2) = r(q/p) + ir(p/q) (1.32)

Caq,(hAp2) = r(1/)(r(q/p)(f ) + (p/q)(f, f_ Ifo) (1.33)

(f, f-, foo) (f, f-, fo)cA,72(hp2) = (A)(r(q/p) (f + r(p/q) (fA, f- ) f (1.34)(fi, f-1, f.) (fi, f-, o)
We will only need the first equation for this proof, but we listed the others as they will
be useful later. Let r = q/p. Then as q and p vary, r will vary over all of Fq. Thus
Theorem 1.11.1 and Equation 1.31 imply that the expression:

7r(r) + 7r(r)- ' (1.35)

is always an integer for all r E F*. However, since 7r(A) is a primitive h'th root of unity,
this is the same as saying that

2cos(27ri/h)

is an integer. It is trivial to check that this implies that h = 2, 3, 4, or 6. In turn, this
gives us that q = 5, 7, 9, or 13. However, as we have already noted, if q = 5, then r2 = 1.
Hence we must have q = 7,9,or 13 as desired. 0

1.12 Structure of the Roots
We note that the condition of Equation 1.35 being an integer is precisely the relation
needed when one considers the problem of tiling the plane. And in fact it is clear that
the h values 3,4,6 are precisely the only values for which the tiling may be done: for
the triangle, the square, and the hexagon. Another way of saying this is that the only
Dihedral groups that preserve a lattice in the plane are D3 , D4 , D 6.

Next let us examine the "roots." It will show that only q = 7,9,13 are allowable
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under Restriction 1.1.1. To do this we first extract roots and so let us transfer our
nondegenerate 2-form (,)l to t*. For any E i*, let u, E be the unique element
satisfying p(h) = (u,, h) for all h E . With this, we define a non-degenerate symmetric
L 2(q) invariant 2-form on i* by letting

(p, ) = (u/,u )

for all /u, v E b*. In particular, for each p E F, u is the unique element of fI such
that ap(h) = (u,, h) for all h E j. Using the definition of the bracket structure and
Definition 1.10.3, we note that ap(fo) = (fp, f-p, f)/(fp, f-p) = ([fp, f-p, f , fp).
This gives us

Up P f-
(fp, f-P)'

Moreover, if we define
hop = 2u,,p/( ap, ap),

it is also easy to check that these "coroots" satisfy the relation hop = hp from Defini-
tion 1.11.1.

Let us use the standard notation

< I > = 2(p, )/(v,v).

Thus if we write a, for the reflection across the hyperplane perpendicular to p, we have
the usual formula:

a(v) = V- < I > .

We will need one more relation. Namely,

< ap aq > = < hq hp >

= ap(hq). (1.36)

Since this is the standard phenomenon and since the above is simply a matter of checking
the definitions, we leave it to the reader. With this notation, we are now ready to consider
root systems.

Theorem 1.12.1 For 7r 2 1 and V a non-trivial Lie algebra, the set of ap, p E Fq,
form a rank two (reduced) root system of order q - 1 within their real span.

Proof. First, let us check that the real span of the ap really is only two dimensional
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(over R). To do this, we claim that for q E Fq, the following identity holds:

aq = [2aq(h) - aq(hx)a\(hl)]aCl + [2aq(h) - aq(h)al(h)]aA. (1.37)

To check this equality, merely evaluate both sides at fo, E {0, oo}, using Defini-
tion 1.10.3 and Equation 1.30. Since it is an easy calculation, we omit the details.
However, Theorem 1.11.1 tells us that we have actually expressed any aq as an integral
linear combination of al and a,. In particular, since Z C_ R, the real span of the roots is
no more than two dimensional. We will show below that al is not a multiple of ax which
will give us that the real span is exactly two dimensional as desired.

Let us show that all the roots are distinct and that the only multiples of roots that are
still roots are ±1. This is just the standard argument. First note that by the alternating
nature of the three-form, we have:

-a = (ap. (1.38)

Fix a = aq. By Theorem 1.10.6, we know that gq is isomorphic to [s(2, C). For each
c E R, let L be the real span of all vectors fp, p E F, such that ac = ca. Then
put L = L. Thus by the Jacobi identity (see Equation 1.19), V' = LD C V
is a finite dimensional representation of gq, i.e., of z[(2, C), under ad. Since we have
ad(hq)lLc = (2c)Id, we must have c E Z by elementary [s(2, C) theory. Also since
gq + C V' is an invariant subspace of the representation that contains all occurrences of
the 0-weight for ad(hq), we see that 0 and ±2 exhaust the even roots in V'. In particular,
twice a root is not a root. Then we also have half a root is not allowable either since a
is a root. In particular, 1 is not a weight. Thus 5[(2, C) tells us that only c = ±1 yield
non-zero L, and that V' = L1 () E L-1 = gq + D. Since each fp is distinct, we have
shown that each aq is distinct and that the only multiples of aq that are roots are ±aq.

Next, let a and be two roots. Then if - ra,... P + sa is the maximal a root
sitting through /3, then Theorem 1.11.1 has already told us that a(h,) = r - s. With
this, one easily check that a,(/) is still a root.

Finally, we we have already shown that < ap I aq >E Z by Equation 1.36 and Theo-
rem 1.11.1. This finishes the proof. o

We also prove:

Theorem 1.12.2 For r2 1 and V a non-trivial Lie algebra, V is semi-simple of rank
2.

Proof. Since r2 1, V is irreducible. Since [,] is L 2(q) invariant, the first derived
algebra of V, [V, V], is invariant and thus either 0 or V. But since there is no center,
[V, V] = V. In particular, V is not solvable. But since the Killing form (being constructed
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out of invariant things) is L 2(q) invariant, it must be a multiple of our two-form. In fact,
it must be a non-zero multiple by Cartan's criterion. Hence, since the two-form is non-
degenerate, the Killing form is non-degenerate. Thus V must be semi-simple. The rest
follows basically from Theorem 1.12.1. Another way to see it follows.

We claim that b is a maximal Abelian semi-simple subalgebra of V. If not, then by A
invariance and the fact that the f-basis diagonalizes ad(fo) and ad(foo), would commute
with all of F1 or F, (see Definition 1.10.2). But we have already seen that this is not
possible. Hence we are done since Fl is two dimensional. o

Corollary 1.12.1 Assume that r2 : 1 and that Vm is a non-trivial Lie algebra with
m subject to Restriction 1.1.1. Then q = 7,9, or 13 and m is an exponent of A 2, B 2, or
G2, respectively.

Proof. This follows easily from Theorem 1.12.2. Since V has dimension q + 1 and
must be rank two, q + 1 must be either 6,8,10, or 14. Since we have already seen that
5 is not allowable owing to irreducibility, we have q equal to 7,9, or 13. The exponent
statement is obvious for q = 7, 9 since the exponents are the only possibilities anyway.
For q = 13, simply apply Theorem 1.1.1 and Theorem 1.5.4 part (1). 0

Corollary 1.12.2 For r2 1 and V a Lie algebra, the root system obtained from the
set of ap must be isomorphic to A 2, B2 , and G2, for q = 7, 9, and 13, respectively.

Proof. Corollary 1.12.1 has already told us that the only allowable q are 7, 9, and
13. Now by using Theorem 1.12.2 and Theorem 1.12.1 and noting that in each case we
must have 6, 8, and 12 roots (since I F = q - 1), respectively, it is a trivial to check
that the above listed root systems are the only rank two possibilities with the correct
number of roots. Note: had we not insisted on r 2 1, then A1 + Al would have been
the corresponding root system for q = 5. 0

Let us look at each of these cases, q = 7, 9, 13, to see how the roots are situated.
F7. As we have seen, the root system must be A 2. Fix A = -2 as a generator for F;.

Using the fact that -1 = A3 and Equations 1.31, we calculate that cl(h,\) = -_l(h,) =
- r(A)-r(A) - '. Since r(A) is a primitive third root of unity, this tells us that acl(h,) = 1.
Similarly, we calculate that a1 (h5s) = -a_l(hs) = 1. In other words, between al and
aA and between al and a\5 there is a 60 degree angle. Thus, up to isomorphism, the root
system in this case must be as in Figure 1-1 or Figure 1-2 (this also can be seen using
the additive structure of the roots). Note that the roots go around in order of powers of
A and that the element A (multiplication by A2) acts as the Coxeter element, rotation by
120°.
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aA cA!A3 -4- QAo

CSA5

Figure 1-1: q = 7, possibility 1

YA4 aA5

OCA3 QAO

CAl

Figure 1-2: q = 7, possibility 2
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Also, using Equation 1.33, Theorem 1.11.1, and our explicit determination of the
roots above, it is now easy to calculate that in either case

(fi, f-, fo)
(f, f-, fo) - )2

(fh, f-,, f.)

by solving two linear equations in two unknowns, e.g., a2(hA) = 1 and aA4(h5) = 1.
In principle, these numbers and L 2(7) invariance (up to normalization) determine the
three-form which in turn determines the bracket structure.

Moreover, using the notation of Theorem 3.2.1 and looking at a few character values
(say by Theorem 3.3.1), one may say that the representation X2 is associated to Figure 1-1
and X3 to Figure 1-2 in the standard representations.

F g: Here we know that the root system must be B2. First of all, one may check using
the definitions and invariance that

2dq
7.2d 0 0) (1.39)7r(q)2(fo, f) '

In other words, all roots of the form ac2q have the same length (this can also be seen by
A invariance). Fix a generator A of F; with the property that A2 = 1 + A and 1 + A2 = A7

(such a generator exists). Then using that the roots must add according to the field (if
their sum is another root then ap + aq = ap+q, p, q, p + q E F 9) and that all aq2 have the
same length, we see that only two possibilities can happen. If al is a short root then we
must have the root system isomorphic to the one in Figure 1-3. If al is a long root then
we must the root system isomorphic to Figure 1-4. In either case we may calculate (as
above for q = 7) that in the first case we have:

(fi, f-i, o)
-1- r()

(f,I f-, fo) = (A)
(fU, f-A, f.)

and in the second case

(f, f-, fo) = (1 - 7r(A))-

(fh, f-A, o)
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0 A2

FA3 q A6 aA5

Figure 1-3: q = 9 with al short

Figure 1-4: q = 9 with acl long
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(fh, f-i, foo)

Moreover, using the notation of Theorem 3.2.1 and looking at a few character values
(say by Theorem 3.3.2), one may say that the representation X3 is associated to Figure 1-3
and X2 to Figure 1-4.

F13: Here we know that the root system must be G2 and m an exponent of G2. Again
by Equation 1.39 or A invariance, we know that all roots ac2q have the same length. Fix
a generator A = 2. On the roots of the same length, use a similar argument as with the
A2 above. Combining this with the addition being indexed by the field, is trivial to check
that again only two possibilities occur. If al happens to be a short root, the roots must
be as in Figure 1-5. If al is a long root, then it must be as in Figure 1-6.

aCli

Ca1

a1!3

aA4

aYs

aA2

aCYloa,\10

a09

a,\ 9

aL5

Figure 1-5: q = 13 with al short

As before, we can calculate that in the first case:

(fi, f- , fo)
(fx, f-A, fo)
(fi, f-l, fo)
(fx, f-, foo)

= -3r(A)/(1 + r(A))

= -3r(A)2/(1 + xr(A))

and in the second case we get:

(fi, f-i,fo)
(fA, f-A, fo)

= -1/(-1 + 7r(A) 2)
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aA4

q6

CaAs
aAo

Figure 1-6: q = 13 with al long

(fi, f-, fo)fAfiAf- fax) = 1/(-1 + ~r(A)-2).

Moreover, using the notation of Theorem 3.2.1 and looking at a few character values
(say by Theorem 3.3.2), one may say that the representation X2 is associated to Figure 1-5
and X3 to Figure 1-6.

Note 1.12.1 As a final observation, we note that the appearance of two possibilities for
the root configuration in the above examples is due to our choice of labeling Ml and M
in L 2(q) or in our choice of V,,m and V,_,. In a sense, they can be interchanged. For
more details, see the discussion following Theorem 1.9.1 and Theorems 3.3.1, 3.3.2, and
3.3.3.
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Chapter 2

The Geometry of the Cartans

In this chapter we will explore the possibility of using Kostant's conjecture in decompos-
ing the Lie algebra into a sum of Cartans with some invariant properties. To begin, we
will state Kostant's conjecture in its full generality.

2.1 The Cartan Subalgebras
Note that if one allows computer proofs, then Kostant's conjecture below has been
verified-see the Introduction. For the following, please recall the notation of the Intro-
duction and Section 1.1 and 1.2 so that we have A a generator for Fq, r a multiplicative
character of Fq, X an additive character of Fq, V, a principal series representations, and
ro,l the gamma function depending on r and X.

Theorem 2.1.1 (Kostant's Conjecture) Suppose G is a simple complex Lie group with
trivial center such that 2h + 1 = q = pf is an odd prime power where h is the Coxeter
number of G, then the following holds:
(1) There is a homomorphism v embedding:

L2(q) G.

(2) Under the Adjoint action of this embedding, L2(q) decomposes g = Lie(G) into a
direct sum of principal series representations Vm (or a component of V,,, in the case
that mi = h/2) where 1 < mi < h/2 are the exponents of G less than or equal to h/2.
(3) v(A) is a Kostant element (globalized Coxeter element) and v(K) is a Kac element
in G where A is an element of order h and K is an element of order h + 1 in L2(q).
(4) There exists a Borel subalgebra of L 2(q) which, under Adov, fixes a Cartan subalgebra
B of g. An element of order h in the Borel acts as the Coxeter element on [j and the
elements of order p in the Borel act trivially on it.
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Remark 2.1.1 See Sections 1.1 and 1.2 on the e-basis and the f-basis to recall the basic
structure and notation of the principal series representations appearing in part (2). In
particular, we have a fixed non-trivial additive character X of Fq. For each exponent
m, choose an e-basis e(m) (thus by using the same additive character X we also get an
f-basis f(m)), u E P(Fq), for each V,,m just as we did before. Please note that when
rm is understood we will omit the exponents (m) and subscripts m and r. The only

additional information needed will be for the case h/2 E Z (see Theorem 1.1.1) where
Vrh/ 2 is reducible. In this case, the two irreducible components of V/2 are

Vh/2 = span(f,2, Fo,lfoo + fo I u E Fq)}Espan(fxu, 0 ,1f - fo I u E Fq)

where of course the e's, f's, and r's all depend on our choice of multiplicative character
rh/2. This is a simple and well known fact to check. For a reference, see [26] §2.5.6.

To begin with, note that the dimensions agree in Theorem 2.1.1 part (3). We will
check it in the case that h/2 is not an exponent (the other case is similar). First recall
that the dimension of g is l(h + 1) (where is the rank of g). Since the dimension of Vm
is q + 1 = 2(h + 1), the dimensions agree since since there are 1/2 exponents of G less
than h/2. Next let us exploit part (4) above.

Lemma 2.1.1 Under the embedding of L 2(q) in G, a Borel subgroup of L 2(q) fixes a
Cartan subalgebra oo of g and the L 2(q) action on the set of Cartans {gOo, I g E L 2(q)}
is equivalent to the action on P'(Fq) by (inverse transpose) linear fractional transforma-
tions.

Proof. If B is a Borel subalgebra of L 2(q), then it is clear that L2 (q)/B is just the
projective field Pl(Fq) (see the discussion in Section 1.1) under the appropriate linear
fractional action. Thus we only need to check that there exists a Cartan subalgebra whose
stabilizer in L2(q) is a Borel subalgebra to prove the theorem. Existence of of a Cartan,

oo, fixed by B is given by Kostant's conjecture part (4). To see that the stabilizer of
oo in L 2(q) is only B, suppose that more than the Borel fixes the Cartan. If so, then

since the Borels are maximal proper subgroups, all of L 2(q) fixes oo. But then Io is
a representation of L 2(q) of dimension 1. But Kostant's conjecture part (2) also would
imply that 0o, would be a sum of principal series representations (or components thereof)
and thus would have dimension a multiple of (h + 1). In particular, (h + 1) would divide l
which at the least would give 1 > (h + 1) which is a contradiction to the fact that h > . o

In particular, L 2(q) always permutes (q + 1) = 2(h + 1) Cartans. Since dim(g) =
l(h + 1) and dim(f) = 1, it could be hoped that g might be written in some interesting
way as a sum of half of these Cartans. This is what we propose to examine. To do this,
let us give names to these Cartans and (without loss of generality) pin down a Borel
subalgebra of L2 (q).
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Definition 2.1.1 Let 3 be the lower triangular matrices in L2(q). Let boo be a Cartan
subalgebra in g fixed by B as in Theorem 2.1.1 part (4). For each u E F, define (via the
Ad action of the embedding):

, = N-l1 ,uoo and 4o = Smoo

to be the q + 1 Cartans that L 2(q) permutes according to (inverse transpose) linear frac-
tional transformations where recall

Nu ( 1 ) and S= ( 

from Equations 1.4 and 1.6.

Let us check the uniqueness of the above definition.

Lemma 2.1.2 oo is given uniquely by the joint eigenvectors of eigenvalue one for {Mu I
u E Fq} where recall

M. 1 

from Equation 1.5.
Explicitly, too will be spanned by its intersection with each irreducible component of

L 2(q). In case m $ h/2, each fl nV,,m is two dimensional and will be spanned by the
two vectors

fo = E eu and f = e.
uEFq

If m = h/2, then h n V,lh,2 is one dimensional and it is spanned by the appropriately
signed vector (see Remark 2.1.1)

ro,foo : fo.

Proof. By Theorem 2.1.1 part (4), we know that some ,oo exists and that it consists
of eigenvectors of eigenvalue one for each Mu. By part (2), we may break up g into 1/2
(respectively (1 + 1)/2 for h/2 an exponent) irreducible representations of L2 (q). How-
ever, in each such component, Muf, = X(uv)fv and Mufoo = f where X was the fixed
non-trivial additive character of Fq by Theorem 1.2.1. But since X is non-trivial it is
clear that f, can have eigenvalue one for all Mu if and only if v = 0, oo. Thus only the
span of fo and f consists of eigenvectors of eigenvalue one for all Mu. They are the
only candidates for being in ,oo within a given irreducible component. But by dimension
counting, we see that ,oo must be exactly as described by the lemma. o
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Note 2.1.1 In the case that q = p, the above proof actually shows that M = Ml (which
will now generate all the M,) is regular and so part (4) of Theorem 2.1.1 is superfluous.

Let us make the following definition:

Definition 2.1.2 For m an exponent and u E P1(Fq), define b(m) to be the subspace

fl(m) = Bu n (the irreducible component of) Vm.

For u E F* and m h/2 an exponent, define hm) E ilm) to be

hm) = N-f (m)

Also put h) = fm) and h(m) = Sfom). Note: whenever we have a given in mind,
we will omit the superscript (m).

Using Theorem 1.1.2, it is easy to check that since fo = ezEF e,

U
hu = r(u)eoo + r( )e

zEFq,zAu

for u E Fq and

ho= eo + Er-)ez

h = e
zEFq

It is now easy to write down an explicit basis for each u,.

Corollary 2.1.1 Each tu is equal to the direct sum of the D(m) where m ranges over the
exponents of g less than or equal to h/2. For a given m, an explicit basis for B, is given
by

e(m) and h)

if m h/2 and
N-l/u(ro,lfo ± eoo) = ro0 ,hu 7r(u)-1 eu

otherwise with the ± according to Lemma 2.1.2.

Proof. This follows immediately from the Definitions 2.1.1 and 2.1.2 and Lemma 2.1.2
since

Nlufo = r(1/u)eu and N 1_/ufo = hu.
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2.2 Requirements for the A Decomposition
Let us consider the problem of attempting to decompose g into a direct sum of h + 1
Cartans that will be invariant under A (see Equation 1.3). In other words, since A]~ =
Iu/A (see Sections 1.1 and 2.2), we want to know if there is a subset PA C P'(Fq) invariant
under multiplication by A such that as vector spaces we have

g = 3 4u. (2.1)
UEPA

It will turn out the the answer to this question is directly related to some results in
number theory.

Since we will be dealing with some sort of A invariance, it is natural to introduce the
the following notation for a particular basis of eigenvectors for A.

Definition 2.2.1 Fix m an exponent of G, m $ h/2, and write = e2"i/h. Then for
k = 0, 1, h - 1 and u E Fq, let v( ' ) and v( ' ) be as follows.

h h

(k) E lkAle(m) - E (m-k)e(m)2vuk - =
1=1 1=1
h h

V(i)- ct-LkAke() C(m-k) e(n)2
/=1 1=1

From this, it is clear that for any fixed u, v() and () are distinct eigenvectors for At,k VA,k are igenvectors forA
of eigenvalue C(. If we note that e(m) and e(m) are also eigenvectors for A of eigenvalue
7rm(A) = ¢m and rm(A)- ' = C-m, respectively, then it is clear that the set
v(m), (m) , e(m), e(m) k = 0, h - 1; m ranging over the exponents of g < h/2}

u,k A L')~k, 0 ' -
is a basis for g consisting of eigenvectors of A.

As always, when working with an understood rm, these superscripts will always be
suppressed.

Note 2.2.1 Note that the apparent choice of u in the above definition is quite unimpor-
tant. In fact, it is easy to check that for t E F~:

(2) = 7rmk(t) V),k

by writing t = Ar for some r E Z and substituting u = A2 rx into the above definition:

h

V\2rx,k = C (mk)eA\- 2(1--r)
I=1
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h

= ((I'+r)(m-k)eX_-2
1'=1

= C(m-k)v ,k.

But since ril(A') = (r and ra = rab, the result follows. Thus, for instance, we see that
each Vu,k is just a non-zero multiple of either V1,k or v,k depending whether u is a square
or not in F.

Note 2.2.2 Due to the A invariance of each Vm,, and Corollary 2.1.1, the question of
being able to satisfy Equation 2.1 reduces to being able to satisfy the similar equation
within each Vm,. Namely, it is enough to know whether there is a subset PA C P1 (Fq)
stable under multiplication by A such that

Vrmr = U (m) (2.2)
UEPA

for each exponent m $ h/2 and similarly for the irreducible component of Vh/ 2 if h/2 is
an exponent.

Let us fix an exponent, m, of G not equal to h/2. We will need to define the following
numbers that will play a crucial role in our analysis of an A invariant decomposition.

Definition 2.2.2 For i = 1, 2, let 4i be multiplicative characters of F*. For each e E Fo
define c(0, 2, e) E C by

c(4,1, b2, ) := E i(1 - Ex2)4,2(x2).
XEFq, 1e- C 2#

To get at this number, let us cite some elementary facts from classical number theory.
The following definition and theorem are well known, e.g., see [11] chapter 8 §2 and §3.

Definition 2.2.3 Recall that X was a fixed non-trivial additive character on Fq. For k
a multiplicative character on F*, the Gauss sum g(4) is defined as:

g(,) = Z x(a) ,(a).
aEF

(Note that g(r) is basically our old qro,l.)

Next, for i = 1,2, let 4,i be multiplicative characters of F*. Then the Jacobi sum
J(4,1, 02) is defined as:

J(71, 2) = (a),2(b).
a+b=l,a,bEFq

61



Lastly, the Legendre symbol p is the unique non-trivial multiplicative character on Fq
of order two. It returns +1 on the squares and -1 on the non-squares.

Theorem 2.2.1 For the finite field Fq and multiplicative characters and bi, i = 1,2,
(1) if b 5 1, I g() = 
(2) if # 0 1, J(1, ) = J(O, 1) = O and J(ib, 1-) = -(-1)
(3) if 1 i and 1102 are non-trivial, J(1i, 2) I= V
(4) if 4i and 10b12 are non-trivial,

g(4')g(?k 2)
J(01, 02) = g() ·9(0112)

We can now check the following lemma.

Lemma 2.2.1 Recalling that p is the Legendre symbol, we have:

C(01, /2, e) = 2k (E)[J(4', 02) + p(A)J(4 1 , P12)].

Proof. This is checked by evaluating the definitions. Below we will make use of the
substitutions a = 1 - b and b = Ey and the fact that (1 + p)/2 is one on squares and zero
on non-squares.

C(01, 2,e) = E 11(1 -ex 2 )i2(x2 )
xEF,1l-X 2 0O

= 2 E 1(1 - Y)02(Y)
yEF2,1- ¢Cy O-q2 + -y y)= 2 E I +2 (y)0(l - ey)02(Y)
yEF;,1-cy#O

= 2 E 1 + p(be) ,(a)2(b/e)
a,bEF ,a+b=l

= 1'(E()[J( 1, 012) + p(E)-J J()1, P02)]

To apply this to the case at hand, we will need to make one more note.

Note 2.2.3 Recall that for k E Z, rk was defined on Fq* by setting 7k(A) = (k where
A was our fixed generator of Fq* and ¢ = e2 ilh. Since h = (q- 1)/2, this insures that
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rk(-1) = 1. In the future, we will want to take a "square root" of irk. The choice can
be made well defined by putting = e2 i/( 2h) = e2 'i/(q- 1) and defining the square root of
irk, written Irk/2, to be the multiplicative character of Fq defined by setting k/2(A) = k.

In passing, we note that the other "square root" will be PXrk/2.

Next we will state the theorem that ties the basic number theory into our discussion.

Theorem 2.2.2 Recall that m is a fixed exponent (m 54 h/2) and everything is taking
place within V,,. Then for u E Fq,

1 h

hu= e + rm(u)eo + E[c(7r-m mr-k 1)V,,k + C(rTrm, m-k )V,\.k]-
k=l 2

Proof. Recalling Definition 2.1.2 and Theorem 1.1.2, we have for u E F,

h = N_l/ufo
= N-1/u E ez

xEFq

= rm(-u)eo + + )e us
U Z+UxEF9,x::-u

= rm(u)eo + Y irm,( _ )e, (2.3)
x'EFq,z'#u

where we have used the substitution x' = above which may be written as = 
However, let us note the following:

h h h

E kn = E E Ckn(1(m-n)e,/ 2 1
n=l n=l 1=1

h hZ= lm ell E zn(k-I)
1=1 n=l
h

= Z hl=kClme/ 1 2l1
1=1

= hCmkez/
12 k

= hAkes. (2.4)

In particular, e =I hn=l v,,. Substituting this into Equation 2.3 and making use of
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Note 2.2.1 gives

LUs Urm1 x Vx,kh = (u)eoo e+ / ((u- )h l
xEF~q,Xku k=lF

h

= r(u)e + eo + 1/h : Tm(_- _ )v,+
k=l 2xEF2,xu U 

1 u

= rm(u)eoo + e + 11h [ M( U )rm,,k(z)vu, +
kzl zEF;,z2•1

EF; AU-2U )7rm-k(Z)VAu,k]

1 h

= eo+ rm(u)eoo + 2h [c(7r-m,7rmr , kl)vu,k + C(-mr 7m- ,A)Vu,k]-

Note 2.2.4 Equation 2.4 also lets us write down a formula for the case m h/2:

T(u )- h
N/,u(rFo,,fo ± e) = rolhu h ,Vu,k

k=1

Coupled with Theorem 2.2.2 to write h in terms of vu,k and vxu,k, we will be able to
decompose the vectors in the case of m = h/2.

With this done, we are in position to relate the number theoretic Jacobi sums too the
question of decomposing g into an A invariant sum of Cartans.

Theorem 2.2.3 In the case where h/2 is not an exponent, we can write g = u(DEPA tU
as an A invariant direct vector space sum of Cartans if and only if for each exponent m
of G, we have

J(7r-m, m-k ) J(7-m, p m2 )
2 2

for all 1 < k < h.

Proof. First observe that A acting on P(Fq) consists of four orbits: Fo = {0},
F = {oo}, F1 = {u2 u E Fq}, and FA = AFI. Obviously the order of the first two is
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one and the order of the second two is h. Since A permutes the [j, u E Pl(Fq), according
to its action on the subscripts, F0o, F,, F1, and Fx will also describe the orbits of A on
the q + 1 Cartans. If we were to have g written as an A invariant direct sum of Cartans
as in Equation 2.1, then just by counting dimensions we see that PA must consist of one
orbit of order one and one orbit of order h. Since the following argument will be true
for any of the 22 possible combinations of Fo, F, F1, and Fx for PA, let us pick (say)
PA = FOO U F1 for definiteness and check the theorem in this case (though at the end
we will see that the only important distinction between the various PA's is whether they
contain the element 1 or A).

As previously noted, it suffices to check this statement for each V,, for each fixed
exponent, m. Fix such an m $ h/2. Corollary 2.1.1 tells us that l, is spanned by e and
hu. Thus if we let VA C 9 be the A invariant vector space

VA = span{ftuIu E PA},

then VA = span{ex, h I x E F 2 U oo}. Since VA is A invariant, it will be spanned by
eigenvectors of A. Thus the question of whether VA can be equal to g reduces to deciding
if the vectors eo, e, V1,k, and vx,k are in VA for every k = O,... (h - 1).

To begin with, VA contains the span{hoo, e I E F*2 Uoo}. Call this space V C VA
so that (see Definition 2.2.1 and 2.1.2) V1 equals the span{eo, h,, Vl,k I k = ... (h-1)}.
This gives us (by hoo = fo = e + vl,o + vx,o and Definition 2.1.2)

V1 = span{eoo, eo + vx,o, V1,k k = 0,... (h - 1)}.

Thus the question of whether VA can be equal to g now reduces to deciding if each v,k
is in VA for every k = O,... (h - 1).

Now VA is equal to the span of V1 U{h, I x E Fq2}, but by Theorem 2.2.2, we have

h a

h, = e + r(u)eoo + - Z[c(r_.,, nr.,k, 1)vu,k + C(rm,,, m-k, A)v,,k].
k=l

Thus, by what we know of V1 and Note 2.2.1,

1 h-1
VA = span V U{eo + 2h £ c( -, 2 ) k E

k=O

In fact, we will see that the complicated sums in the above expression are more or less A
translates of one another (generically by the fact that ABu = iu/A2). We will next extract
this information with more care.
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By Note 2.2.1 and taking u = A2r for r = 0.... (h - 1),

1 h-i

VA = span V U{eo + -2h rm Cc(rm, T-k, A) VA,k I = 0,...(h - )}.
k=O 2

Since AsvX,k = (SkvA,k, we see that we have

1 h-1

VA = span V U{eo + 2hCm A-' y c(r_, rTm-i,, )V,k I r = 0,... (h - 1)}
k=O

1 h-I
= span U{rm(A' )A -[eo + C(-m, k A)VA,k] I r = O,.. (h - 1)}.

k=O

But let us extract the constituent eigenvectors of these A translates. By observing
that they are expressed as the sum of eigenvectors under A and using, say, the operators
Ek -'nAk for each n we get:

VA = span V1 U{eo + 2c(rm ,o, c(7r_m,Xmf-, A),k I k = 1,...(h- 1)}

Thus we arrive at

VA = span{eoo, Vl,kl, e + V,o, eo + 1C(4T-m7 m, ,)v,o, C(-,,,7rm-kI) AkA I

(2.5)k = O,. .(h- 1), k = 1,... (h- 1)}. (2.5)

If

1 : hC(V-m, rmIA), (2.6)

we get from Equation 2.5 that VA is the span of

{eo, e,, V,k,, V\,kA I kl, k; = 0,... (h - 1)

such that k satisfies c(r, rm-ka, A) $ 0}. (2.7)
2

We note that by Definition 2.2.1, Note 2.2.2, and Lemma 2.2.1 (using the fact that A is
never a square in Fq), we observe that Equation 2.7 finishes the proof of the theorem.
All that remains is to verify Equation 2.6 which we will do next.

To verify Equation 2.6, we will make use of the fact that q = 2h + 1 and m 0 h/2. We
will also use Lemma 2.2.1 and Theorem 2.2.1 parts (2) and (3). As a general preliminary,
let hi, i = 1,2, be multiplicative characters of Fq such that Pi and b1b2 are non-trivial.

66



Then we have

C(1b 1 2 , ) I J(0b1, 2 ) I + I J(01i,p0 2) V27h+ 
I I=2h- 2h h

However, it is easily checked that for h > 3, hn < 1 (in fact, equality occurs only at

When we return to our specifics, we are concerned with 1 = r-m and 0 2 = rm-k.
2

Since 1 < m < h/2, we know that r-m 1. Hence it is easy to see that the conditions
,-, 7rm-k, r ,-mrm-k $ 1 amount to the condition that k 5 +m (mod h). Using m :A h/2,

2 2
we may assume that h > 3. Thus by the above generalities, we have checked Equation 2.6
in the cases where k # ±m (mod h). We will check these two remaining cases separately
in the next paragraphs.

In the case where k = m, we get: c(7rm,rO,A) = 1(0 - J(7r-m,p)). Since m 0 h/2
(which would correspond to the character p = p-l), I J(rm, p) 1= +V and the previous
arguments will apply to an even greater degree to check Equation 2.6 in this case.

Finally, in the case where k = -m, we get: c(rm, rm, A) = r-'l(A)(-7r- (-1 ) -
J(ir-m, prm)). Again, I J(r-_,, Prm) = l and by similar arguments as above, we have
checked Equation 2.6 in the final case and completed our proof. o

Actually, we have proved more. We state a corollary of the proof:

Corollary 2.2.1 Let m # h/2 be an exponent of G and PA C P1(Fq) an A stable subset
of order h + 1. Let

VA = span{j(m )u E PA}. (2.8)

Then if 1 E PA

VA = {eo, eoo,, Vl,kl, V,kx I k, k = , . .. (h - 1)
such that kA satisfies c(7r-_m , r-k , A) O}

2

else if A E PA

VA = {eo, eoo, Vl,kl, V,,kA kl,k,\ = 0,... (h- 1)

such that k satisfies c(lrx_m, .m--, , A) $ 0}.
2

In particular, VA = V,,m and Equation 2.8 is a direct sum of vector spaces if and only
if all the c(rxm, rTm-k , A) do not vanish or equivalently if all

2

2 2
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for 1 < k < h.

Proof. See the proof of Theorem 2.2.3 in which all of the above is either proved or
proved analogously. o

Note 2.2.5 For the case m = h/2, we check Equation 2.8 will always yield VA = Vhh2.
Making use of Note 2.2.4, we have

N_l/.(ro,lfo ± eo) = ro,le + rh/2(u)Fo,leoo
1 h-1

+h [(ro,1c(7r-h/2, 7lrh/-, 1) 27h/2(u))vk +
k=O

r0, C(Ir-h/2, r h/2-k , \)V\u,k] .
2

Then by decomposing these into eigenvectors for A as in Theorem 2.2.3 and making use
of the fact that each [(h/ 2) is now only one dimensional, we see that VA = V,/2 unless
both of the following are zero:

ro,zC(rh/2 rh/2- , 1) ± 2rh/2(u)-1 and
2

r0, C(7rh/2, r h/2-k, A)

However, using Lemma 2.2.1 and Theorem 2.2.1, it is trivial to see that this is not possible.
Hence, the exponent m = h/2 (if it is an exponent) will never provide a stumbling block
to an A invariant decomposition.

2.3 A Result on Jacobi Sums
In this section we will recall the basic number theory result on determining the prime
decomposition of a Gauss sum called the Stickelberger Relation. Actually all we will need
is a related result on the Jacobi sums. It will enable us to give some explicit information
about an A invariant decomposition. Again, the proofs are standard and so will be
omitted. A reference for the material in this section is [11] chapter 14.

2w,
Definition 2.3.1 Let q = p1 be an odd prime power and e = eq-i. Denote by Dq-1 the
ring of integers in Q(,). Let B be a certain prime ideal in Dq_ lying over pZ in Z.
Let wm be the multiplicative character of Fq defined on the generator A by w(A) = mi"

and write J(w, wm) as usual for the Jacobi sum. Note: our old 7rm is W2m in the new
notation and our old r m-k is Wm-k -

2
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Theorem 2.3.1 Let 1 < n, m < q-1. Then J(Wn,w-m) E Dq-1 and moreover, modulo
, e have:

J(Wn,Wm) =-(m + n)!
n!m! ()

Proof. See for instance [11] chapter 14 exercise 1. 0

2.4 The A Invariant Decomposition
In this section we will resolve the question of the existence of an A invariant decomposition
of g in terms of the ,u for the rank two and exceptional groups.

For this it will be easiest to check the following lemma first. The lemma is of obvious
importance in light of Theorem 2.3.1. In fact, it is precisely the case for n = 2.

Lemma 2.4.1 Let q = p1 be an odd prime power and recall that h = q-. For 1 < m <
q- 1, in the equations below write the symbol "" to signify +" if m + h < q- 1 and
"-" otherwise. Then modulo pZ, the equality

(m + 2)! (m ± h + 2)!
m! 2! (m h)! 2!

holds if and only if
2m+2±h=2h (p).

Proof. Using the fact that Z/pZ is a field and the constraints upon m, the above
equality reduces to checking mod (p) that:

(m + 2)(m + 1) = (m h + 2)(m h + 1).

After one expands this and subtracts the left side from the right, it reduces to:

±h(2m + 3 h) = 0.

The fact that 2h = q- 1 = pf - 1 = -1 mod (p) assures us that h # 0. It also lets us
rewrite the equation using 1 = -2h (p) to get

2m + 2- 2h h = O

which finishes the proof. o

We will also need this well known fact on Jacobi sums.
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Lemma 2.4.2 Given Oi multiplicative characters of Fq, then

Proof. The idea is that in the expression

J(4 1, 42) = l1(t)42(1 - t),
tEFq

one makes the change of variables

1 - t
Since this is standard and simple, we omit the rest of the details. O

Corollary 2.4.1 With the notation of Definition 2.3.1 and 1 < m < q - 1 (with the 
convention of Lemma 2.4.1),

J(lr,, m) # J(ir, pwm)

if
2m+2 h 2h (p).

However for 1 < n < h,
J(7n, wm) = J(irn, pwm)

if
2m+2n±h=0 (q-1).

Proof. Recall that r,, = W2n. Then the first part is a corollary of Lemma 2.4.1 and
Theorem 2.3.1 (using = w., B n l = pZ, and (m + n)!/(n! m!) E Z). For the second,
note that w is of order q- 1 and that 7nr(-1) = 1. Then we apply Lemma 2.4.2 and solve
the equation wnlwr' = pwm. 0

Corollary 2.4.2 Let 1 < k < h. Then recalling Definition 2.2.2,

c(W_-1, 1-, ) # 0
2

if
2k h (p).

Moreover,
c(r, --.k, ) = 0

2
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if
2k=h (q-1).

Lastly, for h > 3, if q = p and 1 < m < h is such that (m, h) = 1 (that is m and h are
relatively prime), then

C(7rm,7, ,A) = 0
2

if and only if h is even and
2k = h (exactly)

Proof. The first and second part will just evoke Corollary 2.4.1 and Lemma 2.2.1.
To see this for the first part, observe first that by Theorem 2.2.1 part (2) and (3) and
Lemma 2.2.1, the first statement is automatically true for k = 1. Hence, we may assume

I < k < h. Now recall that r,1-k = -(kl) and use m = k - 1 in Corollary 2.4.1. Since
1 < k < h, we have 1 < m < h. This will imply that the ± will be a + since we will also
have m + h < 2h = q - 1. Then the criterion from Corollary 2.4.1 reduces to

2(k- 1)+ 2 + h 2h (p)

which will reduce to the desired result.
To see that the second part is true, just use the substitutions m = 1 - k and n = 2

along with the fact that 2h is congruent to 0 modulo q - 1.
For the third part, let us first prove it for m = 1. As before, we may assume that

1 < k < h. Since p = q, there is at most a unique solution to 2k = h (p) for 1 < k <
h < p. Thus by the first two parts of this Corollary and by the range of k, we see that
c(r_l, - A) will be zero if and only if 2k = h (p) with 1 < k < h. If h is even, then
k = h/2 is the only time this happens. However, if h is odd, then it is easy to check
that the the solution to 2k = h (p) must have h < k < p which is not allowable. Thus
we have finished the last part in the case of m = 1. (Actually, one may observe that the
distinction between k and k + h does not matter at all because it amounts to picking
a different square root of lr-k which will only switch the sign of the corresponding c.
One can check through similar reasoning that if h < k < p - 1, then the new criterion
would come down to solving 2k = 3h (p). But again, since 2h < 2k, 3h < 4h with
4h - 2h = 2h = p - 1, we see that this cannot be solved for h odd and h < k < p - 1.)

For the general case, we simply apply the elements of the Galois group
Gal(Q(e 2 i /( p- )) /Q ).

Let us record in Table 2.1 a list of the exponents, mi, and Coxeter numbers, h, for
the simple Lie algebras. Such information may be found in many places, e.g., [28].

With this we can state the theorem that tells us when an A invariant decomposition
can be found in the case of the Rank Two and Exceptional Lie algebras. We also have
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Table 2.1: Exponents and Coxeter Numbers

Type of g m, m 2, ... m h 2h + 1
Al 1,2,3,.. 1+ 1 21+ 3

B,Cl 1,3,5,...21- 1 21 41+ 1
Di 1,3,5,...2l-1, 1-1 2(1-1) 41- 3
E6 1,4,5,7,8,11 12 25
E7 1,5,7,9,11,13,17 18 37
Es 1,7,11,13,17,19,23,29 30 61

F4 1,5,7,11 12 25
G2 1,5 6 13

included the case of A4 for later comparison (see Corollary 2.6.1).

Theorem 2.4.1 Let G be one of the following: A 2, B2, G2 , A4, F4, E6 , E7, E8 . Write h
for the Coxeter number and q = 2h + 1. Then given Theorem 2.1.1 with L2(q) --+ G, let
PA be any of the four A stable subsets of order h + 1 contained in P'(Fq).

(1) For h odd, i.e, G = A2 or A 4 ,

g = [)u (as vector spaces) .
uE'PA

In particular, an A invariant decomposition of Cartans exists.
(2) For h even, i.e., G = B2, G2, F4, E6 , E7, E8 , an A invariant decomposition does

not exist so that g may not be written as an A invariant direct sum of Cartans of the
form , u E P'(Fq). In particular, if we write

VA = span{),lu EPA}
- span{(ml)u E PA, 1 < m < h/2 exponents }

and let 0 be 1 if 1 E PA and A otherwise (in which case A E PA), then (using Defini-
tions 2.2.1, 2.1.2, and 2.1.1):

(2a) For G = B2, G2, F4 and E8, the exponents are prime to h and h/2 is not an
exponent. In this case:

Sg = VA span{v( ) 1 < m < h/2 exponents }.

In particular, VA "misses" being all of g by a rank(g)/2 dimensional subspace of the
rank(g) dimensional negative one eigenspace of A.
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(2b) For G = E7, the exponents are prime to h, but h/2 is an exponent. In this case:

g = VAespanv()ll < m < h/2 exponents }.

Thus VA "misses" being all of g by a (rank(g)- 1)/2 dimensional subspace of the rank(g)
negative one eigenspace of A.

(2c) For G = E6 , two exponents (4 and 8) are not prime to h, but h/2 is not an
exponent. In this case:

= VAe span{vmh, Vmo)ll < m < h/2, m0 = 4 exponents }.

Thus, VA "misses" being all of g by a rank(g)/2 dimensional subspace of the rank(g)
dimensional negative one eigenspace of A and by a one dimensional subspace of the
rank(g) dimensional positive one eigenspace of A.

Proof. For part (1), simply apply Corollary 2.2.1 and the last part of Corollary 2.4.2.
For part (2a) with G equal to E8 or G2, the proof is immediate again from Corol-

lary 2.2.1 and the last part of Corollary 2.4.2.
However, we will also need to invoke the first two parts of Corollary 2.4.2 to finish

off the case of G = B2, since for B2, q = 32. For this case, we only have m = 1 and
1 < k < 4. But one trivially checks that the first two parts of Corollary 2.4.2 are enough
to completely finish off this case.

Lastly for G = F4, the problem again arises since q = 52. One proceeds just as above
for B 2, however one finds that one case (up to using the Galois group) is undetermined.
Namely, the case that needs to be checked is for m = 1 and k = 11. However, for this
case, one may explicitly write out and compute J(r-m,, k-m) - J(7r-m, pwk-m). We omit
the sum. The reader may check that the answer turns out to be -2+4i which is definitely
non-zero. This finishes F4.

For part (2b), the only reason that it is not as trivial as E and G2 above, is that
h/2 is an exponent of E7 . Thus only an irreducible component of V,,/ 2 appears in the
decomposition of E7 under L2(q). However, we have already noted in Note 2.2.5 that the
V,!,/2 component is never a problem to an A invariant decomposition. Thus as with E8
and G2 in part (2), the result is immediate.

For part (2c), two problems arise. The first is that q = 52 is not a prime and the
second is that all the exponents of E6 are not relatively prime to h. That q is not a prime
conceivably could cause problems with the exponents that are prime to h. However, these
possible problems have all already been accounted for in part (2) by the calculations for
F4. That leaves only the exponent m = 4 (up to the Galois action again) and 1 < k < h.
For these values, we wish to know exactly when J(r-m, Wk-m) - J(7r-m, PWk-m) is non-
zero. As a first step, one may apply Theorem 2.3.1. The reader may check that the
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results of those computations check everything we need except for possibly k = 6, 11,
and 12. As a last step, one explicitly writes out the difference of the Jacobi sums and
finds that k = 6 and 12 yield zero (only 12 requires a computation since we already knew
this for k = 6) while k = 11 yields a non-zero answer (approximately 7.348 - 2.449i).
This finishes the proof of theorem. o

2.5 The Element of Order h + 1
It is well known that L2 (q) contains elements of order h + 1. We begin by recalling some
basic facts about this element.

Theorem 2.5.1 Let Fq be a finite field of q = pf elements, p an odd prime, with A a
fixed generator of F. Recall that h = (q - 1)/2. Then:
(1) L2(q) contains an element K of order h + 1.
(2) (After conjugation), one may realize (K), the cyclic group generated by K, as the set
of all elements of the form

Ka, ( Av 

where a, v E Fq satisfy the equality

a2- Av 2 = 1.

Moreover, K,, = Ko,, , if and only if (, v) = ±+(', .').
(3) The q + 1 solutions to the equation a2 - A 2 = 1 may be parameterized by letting t
vary over P'(Fq) and setting

1 + At 2 2ta = and v =
1 - At2 1 - At2'

Conversely, given a and v, one may solve backwards with

V
t-= a+l

Proof. Since this is well known and only involves easy calculations, we will simply
give convenient references. For part (1), one may consult [8] §38. For parts (2) and (3),
see [26] §2.5. 0

At this point, we have three special subgroups suggestively called KIC, A, and J of
orders h + 1, h, and 2h + 1, respectively. K generates IC, A (Equation 1.3) generates
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A, and N, (Equation 1.4), xi E F for 1 < i < f such that the xz form a basis for
Fq over Fp, generate N/. We would like to be able to write down an "Iwasawa" CA/
decomposition of L2 (q). However, this is not quite true. In a sense we need two of them
as we shall see. First we need some tools.

Definition 2.5.1 We will call the set of all solutions (a, v) to the equation a2 - Av2 = 1
over the field Fq the circle of radius one.

Define a map v taking the circle of radius one to P1(Fq) by

AM
v(a, V) = A.

O0

By the obvious identification, we will also extend the notion of v by letting v act on the
set of K,, by setting v(K,) = v(a, v). It is clear that this is well defined by 2.5.1 part
(2).

Lemma 2.5.1 The map

v: {K, I (a, v) circle of radius one ) -a P1(Fq)

is injective and thus

image(v) = h + 2

Moreover,
2tA

image(v) = {-A, 1 + At [ t E Fq}.

Proof. First we check that v is injective. Suppose Av/oa = Av'/a' where (a, v) and
(a', v') are both on the circle of radius one. First of all, we see that oa = 0 if and only if
a' = 0. In this case, we then get v 2 = 2 = 1/A so that v = ±v'. Thus, Ko,, = Ko,w

and this case is done. Thus we may suppose that ora 0. In this case, we may solve
a2 A- V2 = 1 and get Av2 /a 2 = 1 - 1/a2 and similarly for (', v'). Now our original

equality, Av/a = Av'/a', obviously implies that Av 2 /a2 = Av' 2 /a'2. Since we are in the
case a 0, this then implies 1 - 1/ar2 = 1 - 1/ar' 2. Thus we have a = ±a'. Then our
original equality says that v = +v' also. Thus (by Theorem 2.5.1) we have K,l = K,,"
and we have shown that v is injective. For the last part, simply apply part (3) of Theo-
rem 2.5.1. ]

Recall some of the material of Section 1.1. We have AN = the Borel of upper
triangular matrices in L 2(q) and recall that L 2(q)/B was identified with P(Fq). To
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proceed, one may use the elementary decomposition:(a b _1 ) ( a) ( n a#O
,c d =0 -1 -b - 1 - ( bd a=0.

1 0 0 -b 0 1

The reader may check this easily using ad- bc = 1. With this decomposition, the residue

of the matrix (a b ) in L2(q)/B (identified with P(Fq)) is simply the ratio c/a.

Moreover, since each element of B is uniquely written in the form .An, then by breaking
up L 2(q) into its B cosets, one sees that the above decomposition is unique. In other

words, (a d) E L 2(q) can be uniquely written in the form Mc.Af (see Equation 1.5

and 1.6 and let MOO = S). It is now apparent why the map v was introduced.

Theorem 2.5.2 Let so be any fixed element in P(Fq) not in the image of v (see
Lemma 2.5.1). Then L2(q) admits an "Iwasawa" decomposition as follows. Every el-
ement of L 2(q) may be uniquely written as either AICJr or as 1CMs,,oA so that one
has

L2(q) = KANl ICMSoAN

where U stands for disjoint union.

Proof. By the above discussion, we know that K,,,B = MV,(,)B. As a result, the only
question remaining for uniqueness of a CB decomposition is whether v(K,,,) is injective,
but this has already been answered in Lemma 2.5.1. Moreover, by counting, we see that
)CB takes care of exactly half of L 2(q)-the order of L 2(q) is 2(h + 1)(h)(2h + 1). Next,
suppose X E CBfnlCMSoB. Then X may be written as KB = K'MoB'. Rewriting
yields M o = K"B". However, the left side is in a different coset of L 2 (q)/B than the
right side (by the choice of so). Hence, we must have CB nfl1CMoB = 0. Again by
counting, we will finish the proof if we can show that when an element can be written in
the form ICM.oB, then it is unique.

To do this, it suffices to show that given (, v) on the circle of radius one and a y7 0
that the equality

can only be s 1in the case of a s 1 n (note that the 's a- rise since

can only be solved in the case of a,a = SL) and v = ne ca= 0 (note that the 's arise since
we are working in PSL instead of just SL). However, one can check that the right hand
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side multiplies out to give

a( + sv) n(a + sv) + a-vA
a(Av + sa) n(Av + sa) + a- ) 

Thus we have four equations to solve. They are:

+1 = a( + sv)

±O = n(a + sv) + a-Iv
±s = a(v + sa)
+1 = n(Av + sa) + ala.

The first and third tell us that ±a -1 = a + sv and ±sa- l = Av + sa, respectively. Ap-
plying these to the second and fourth give us a-'(±n + v) = 0 and a-'(±sn + a) = ±1,
respectively. Thus we must have v ± n = 0 and a = ±(a ± sn). Of course we then have
1 = aa- = (a ± sn)(a + sv) = (a - sv)(a + sv) = a-s2v2. But since a2 - AV2 = 1,
this implies 1 = 1 + v2(A - s2) which gives us either A = 2 or v = 0. The first is quite
impossible since A is a generator of Fq and so not a square. Thus we have v = 0. In
turn, one then sees that this will give us a2 = 1 so that a = ±1. This also will give that
a = ±1 and n = O so we are done. o

2.6 The K Invariant Decomposition
In this section again assume we are in the setting of Kostant's conjecture 2.1.1 so that we
have an embedding of L 2(q) --+ G. By the previous section, we have a cyclic subgroup
KC of L2 (q) of order h + 1. As we did with the subgroup A, we would like to examine the
possibility of writing 9 as a vector space direct sum

s= e Eu (2.9)
UE7PK

where PK C P(Fq) is a KC invariant subset. We note that since I P(Fq) = 2(h + 1),
there are two possible choices for PK.

Just as with A, we will find that this is not always possible. However, the ques-
tion for the C invariant decomposition so far admits less of a general theory than the
corresponding question for the A invariant decomposition.

There are two reasons for this. The first is that A has an elementary and explicit
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generator, namely

A=({ °)A
0 A- 1'

However, in general we may not be so explicit for IC. Even though Theorem 2.5.1 allows

us to write K = K, I (, v) on the circle of radius one }, we are still not able to
pinpoint a generator in general. Moreover, even if we did have a generator, its powers
are not nearly as nice as, say, the powers of A in A.

The second reason is that where the study of eigenvalues of A led to summing products
of 2h'th roots of unity and thus to the well studied topic of Jacobi sums, the study of
the eigenvalues of K,,, leads to the summing of h'th roots unity times h + l'th roots of
unity. This is not so well understood.

Thus we do not have so general a theory or criterion for the existence of a K: invariant
decomposition. However, as with the A decomposition, we state the following theorem
which answers the question in the case of the rank two and exceptional Lie algebras
(again, the case of A 4 is also included for the sake of comparison).

Theorem 2.6.1 Let G be one of the following: A 2, B 2, G2, A4, F4, E6 , ET, E8. Write h
for the Coxeter number and q = 2h + 1. Then given Theorem 2.1.1 with L 2(q) -. G, let
'PK be any of the two K stable subsets of order h + 1 contained in P1(Fq) where K is a
generator of KC.

(1) For h + 1 even, i.e., A2 and A 4, 9 may not be written as a K: invariant direct sum
of Cartans of the form (u, u E P'(Fq).

To be a bit more precise, any span{fulu E PK} misses being all of g by a rank(g)/2
dimensional subspace of the rank(g) dimensional negative one eigenspace of K.

(2) For h + 1 odd, i.e., B2, F4, G2, E6, E7, and Es,

UEPK

as vector spaces. In particular, a K invariant decomposition exists.

Proof. First, just as in Note 2.2.2, we observe that a K: invariant decomposition of g
as a direct sum of ul is equivalent to the corresponding decomposition of V,, as a direct
sum of m(-) for all exponents 1 < m < h/2.

Next, we remark that our current proof is quite inelegant. We are forced to check these
statements in a direct manner using Theorem 1.1.2, Definition 2.1.2, Corollary 2.1.1, and
Theorem 2.5.1. However, the methods are fairly easy to compute (though time consum-
ing) and do yield the desired information. Since the calculations become complicated,
we will only give the details for a few typical examples.

Let us check part (1). For G = A 2, we have: q = 7, h = 3, h + 1 = 4, m = 1, and
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= e2' /3 . One can also take A = 5 E Fq and

K K2,3 ( 2 ) EL 2(q).

Then one checks that the possible choices for PK are either {0,3,4,oo} or {1,2,5,6}.
Since the choice will not matter, let us choose the first to be PK and write Pk for
the second. Next, one computes h = e + el + e 2 + e 3 + e4 + e5 + e6 and ho =
el + (2e2 + Ce3 + Ce4 + C2e5 + e6 + eo. Using the fact that M,,ho C C*4f and the fact
that Me = e_, this allows us to trivially the rest of the I),'s.

If we write VK = span{l,lu E PK}, we want to know if VK can be equal to A 2. By
the nature of u, we know that VK = span{eu, hu I u E PK}. If we write out these eight
vectors in terms of the e-basis, it is simple to check the rank of the resulting matrix. In
fact, by observing that these eight vectors already contain the e, u E PK, it is obvious
that the only part of this matrix that needs to be checked with care is the part determined
by the rows indexed by the hu, u E PK, and the columns indexed by the e, u E PK. We
record that part here:

1 Z2 2 1

Z2 1 Z2 Z

It is easy to check that this matrix has rank three and not four. Thus we have shown
that dim(V) is seven and not the necessary eight to yield 9 as a K invariant direct sum.

Let us go further and find where the actual defect is. Since VK is K invariant, it will
be a sum of eigenvectors of K. Since we know that the e, u E PK are in VK, we know
that each eigenvalue of K appears at least once (out of a possible two). By the fact that
dim(g) - dim(V) = rank(g)/2 = 1, we know that we are only "missing" one eigenvector.
It is easy to check that the vector Eh+1(-l)i+lKiel = el - e6 + Ces - Ce6 is not in V
(using, say, the above matrix). Since the vector is an eigenvector for KK of eigenvalue
-1, we are done.

For G = A4, we have: q = 11, h = 5, h + 1 = 6, m = 1,2 and C = e2 'i/5. One can also
take A = 2 E F: and K = K5,_1. This gives as a choice for PA either {0, 4,5,6,7, oo}

or {1, 2, 3, 8, 9, 10}. One can also compute h) = el + (4e2 + (2e3 + C3 e4 + Ces + e5 +
(

3 e7 + (2e 8 + 4 e + e10 + eo for m = 1 (for m = 2 apply the Galois map to get the
corresponding element). Since everything proceeds exactly as before for A 2, we omit the
details.

Let us now check part (2). For G = B2, we have: q = 9, p = 3, h = 4, h+1 = 5, m = 1,
and = e21i/4. Take A to be a generator for F. As a recurrence relation to relate
the multiplication to addition, one may take A to satisfy A2 = 1 + A. Then one may
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choose K = KA,i which will give the two choices for PK as either {0, A3, A4 , A7 , A8} or
{ , A, A2, A5, A6 }. Let us choose the first and note that one may check that the choice
does not matter. Lastly one may check that ho = ( 3eA + ¢2eA2 + Cei3 + em4 + (3exa +
( 2 eA6 + Ce,7 + exs + e.

Again, let VK = span{),,ju E PK. Just as we did for part (1), we could write down
a five by five matrix and see that it has full rank in order to finish the proof for this
case. This is in fact easy, but we will do it another way. Namely, we already know that
eo C V. If we also could get e in VK, then by the nature of the K orbits above, we
would be done. In fact, this is possible. To wit, one may check that

-[2ho + (1 + C)h2 + (1 - C)h + (1 + ()h, + (1 - )h,]
6

is equal to e modulo (eo). Thus we have that g admits a K invariant decomposition
and we are done with this case.

For G = G2, we have: q = 13, h = 6, h + 1 = 7, m = 1, and C = e2 i/ 6. One may take
A = 2 E Fq and K = K3,2. The PK is either {0,2,3,6,7,10,11} of {oo, 1,4,5,8,9,12}.
Say that we choose the first. One may also check that ho = el + (5e2 + 2e3 + C4e4 +
(3e 5 + Ce6 + (e 7 + (3e8 + ( 4e9 + ( 2e0o + (5ell + el2 + eoo. As above, we may either write
down a matrix or display e as an element of VK. We choose the later. Explicitly, one
may check that

1
-[(11 - 6)ho + (1 + 3)h 2+ (4 - z)h3 + (9 + )h6 + (9 + )h7 + (4 - C)ho + (1 + 3)h]
39

does the trick.
We will not explicitly compute any of the remaining cases for two reasons. The first

is that they are long and complicated. The second is that no insight is gained in grinding
them out. We only make the following remarks that will allow the reader to perform the
analogous calculations.

For G = E8, we have: q = 61, h = 30, h = 31,m = 1, 7,11, 13, and ( = e2 i/ 30. One
may take A = 2 E F; and K = K8,1. Using the Galois group, it is enough to check
m = 1. The same techniques work as above. Since the calculations are very long and
add no more insight, we shall omit them.

For G = F4, we have: q = 25, p = 5, h = 12, h + 1 = 13, m = 1,5, and ( = e2 ri/ 2 .

One may take the generator A E Fq to satisfy the relation 2 = 3 + A and one may take
K = Kxlln. As above, one need only check the case m = 1 and the same techniques will
work.

For G = E6, we have everything the same as above except for m = 1, 4, 5. By the
above, this leaves only m = 4 to be checked. It is done in the same fashion and works.

For G = E7 , we have: q = 37, h = 18, h + 1 = 19, m = 1,5,7,9, and ¢ = e2 'ri l8 . One
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may take A = 2 E Fq and K = K15,1. With these, checking m = 1 is done as above. It
takes care of all the cases except m = h/2 = 9. For this exponent, recall that we only
get "half" of corresponding induced representation. However, it is trivial to check from
general principals (just as with Theorem 2.4.1 and the element A) that the K invariant
decomposition is always valid within the irreducible component of V,,/2. O

Now let us make a note that compares Theorem 2.6.1 and Theorem 2.4.1.

Corollary 2.6.1 Let G be one of the following: A2, A 4, B2, G2, F4, E6, E7 , or Es. Write
h for the Coxeter number and q = 2h + 1. Then with respect to Theorem 2.1.1 and the
embedding of L2(q) '-- G, g admits an invariant decomposition as vector spaces

s=D 4u
UEPA

by the Kostant element (globalized Coxeter element) A if and only if h is odd. Similarly,
g admits an invariant decomposition as vector spaces

g= e u
uEPK

by the Kac element K if and only if h + 1 is odd.
Therefore either the Kostant or Kac decomposition will always work (depending on

the parity of h), but the two cases are mutually exclusive.
Moreover, the primary reason for the failure of one of these decompositions to exist has

to do with a shortfall in the negative one eigenspace of the element A or K, respectively.
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Chapter 3

Restricting to L2(q) in Rank Two

In this chapter we will want to determine what happens when a representation of G is
restricted to L2(q) in the rank two case. It will be useful to first introduce the following
notation.

3.1 Elements of Finite Order
Following Kac (see [12], [24] §4, or [28] §4.4.8), we recall a convenient classification of the
elements of finite order in a simply connected simple Lie group G. We shall not provide
proofs since this material is rather easy and is classical (the main ingredient in its proof is
knowledge of a fundamental region of the affine Weyl group). Let us set up the notation
in the following paragraphs.

Notation: First write (,) for the (transpose of the) Killing form on the dual of a
Cartan subalgebra t*. Then for a, d E fi*, recall the notation

2(a, d)

Choose II = {at I i = 1,... l} to be a simple base in A+, the set of positive roots, where
I = rank(g). We also have the fundamental weights ire,, E b* defined by (ra,, aj) = i,j.
We may define the coroots ay E by requiring a(ca) = (a, ai) for all a E I). Lastly, we
have the dual fundamental weights 7 rV E defined by the relations ai(r' V ) = i,j.

Write for the extended Dynkin diagram of G. There are I nodes of F associated
to the standard Dynkin diagram via II and a O'th node associated to the negative of
the highest long root . If we write = Li=l niai and define no = 1, then no, . . . n are
called the numerical marks of f. Moreover, it is standard to call any node of P a tip if its
corresponding numerical mark is 1. In the case of the rank two Lie groups, the numerical
marks are (1,1,1), (1,2,1), and (1,2,3) for A2 , B2 , and G 2, respectively, where the 2
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corresponds to the short root (a) in B2 and the 3 corresponds to the short root (a) in
G2-

Let g be an element of finite order N in G and let M be the order of Ad(g) on
g = Lie(G). We will be able to classify the conjugacy class of g by conjugating to a
Cartan subalgebra and looking at its "log" within the fundamental region of the affine
Weyl group (see [24] §4). In particular, it is known that there exists unique nonnegative
integers [so,... sl] (each si corresponding to the ith node of F) with gcd(so, ... s) = 1
such that

M = Znisi (3.1)
i=O

so that if we define x E by requiring it to have the barycentric coordinates

Si

=
for i = 1,... I, then g is conjugate to exp(27rix). Thus we have attached to the conjugacy
class of g a set of integers [so,... st].

To follow the process backwards, start with a sequence [so,... sl] of non-negative
integers with gcd(so,... sI) = 1. Define M by Equation 3.1. Then let

1 l
x M L siri

and take g = exp(27rix) to get back the original element (up to conjugacy). (In to order
retrieve N, the order of g in G, see [24] §4 and Table 6.)

Let us formalize some very convenient notation.

Definition 3.1.1 In the following sections, we will allow ourselves to refer to an element
g of finite order by referring the the corresponding sequence [so,... st] via the process in
the preceding paragraphs.

For our applications, we will really be concerned with Ad(G). For this purpose, we
note the following theorem.

Theorem 3.1.1 Two elements [so,... si] and [s',... s'] are Ad(G) conjugate if and only
if their entries differ by a permutation on the tips.

Proof. The result will follow quickly after observing that [s, . . . s'] will be in the
center of G if and only if [s",... sI'] = [0,..., 0, 1, 0,... 0] where the 1 corresponds to a
tip of F. For details, see [24] §4. 0
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Note 3.1.1 Let us note the following facts. First of all, [so,... sj] will be regular if and
only if each si is non-zero since a regular element does not lie on the Weyl chamber walls.
Second, the element [1,... 1] is a Kostant element since it is regular and has Ad order h.
Third, [2, 1,... 1] is a Kac element since it is also regular and has Ad order h + 1. For
more details, see [24] §6.

3.2 Character Values of the Finite Group
At this point, we will record the character tables for L2(7), L 2(9), and L2(13). They will
be useful for both notation and later use.

Theorem 3.2.1 The following tables (Table 3.1, 3.2, and 3.3) are the character tables
for L 2(q), q = 7, 9, 13, respectively. The first line is a representative of each conjugacy
class of L 2(q) in terms of our old notation, the second line is the order of the element,
the third line is the number of elements within the conjugacy class, and the remaining
lines are the character tables.

Table 3.1: L 2(7)

I S A I K IM 1M,
ord elt: 1 2 3 4 7 7

ord conj: 1 21 56 42 24 24

Xi 1 1 1 1 1 1

X2 3 -1 0 1 67 b*

X3 3 -1 0 1 b; b7

X4 6 2 0 0 -1 -1

X5 7 -1 1 -1 0 0

X6 8 0 -1 0 1 1

where b7 = -+ and b* - -Y
2 2

Proof. This is easily gleamed from, say, [7], [8] §38, or [261 §2.5 and our previous
knowledge of S, A, K, and M. For the names of the representations, Xi, and their char-
acter values, we have tried to follow the notation of the ATLAS. 0

According to Kostant's Conjecture 2.1.1, we have L2 (q) G where q = 7,9, 13 and
G = A2, B2, G2, respectively. In Chapter 1 these embeddings were derived in great detail.
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Table 3.2: L 2(9)

11 s I K K2I M MI
ord elt: 1 2 4 5 5 3 3

ord conj: 1 45 90 7 2 7 4 4 0 40

X 1 1 1 1 1

X2 5 1 -1 0 0 2 -1

X3 5 1 -1 0 0 -1 2

X4 8 0 0 -b 5 -b5 -1 -1

X5 8 0 0 -b -b 5 -1 -1
X6 9 1 1 - -1 -1 0 0
X7 10-2 0 0 0 1 1

where b5 = -1+V and b -1- ;

For these rank two cases, we will find the character values for irreducible representations
of G restricted to L 2(q). Let us fix some general notation.

Notation: Let G be a rank two simple complex Lie group with trivial center. Write
g for Lie(G) and [D for a fixed Cartan subalgebra of g. In addition, fix a positive Weyl
chamber and a,/ E b as the corresponding basis of simple positive roots. When it
matters, we will take a to be the short root. We will then write II for the simple roots,
A for the set of all roots, and A+ for the positive ones. We also have r,, E Ij* as the
corresponding fundamental weights, see Section 3.1. (All of these choices will eventually
be made explicit for each G).

Definition 3.2.1 Index all the finite dimensional irreducible representations of g by the
set of all dominant integral weights. Explicitly, we may index the representations by
pairs of non-negative integers (m, n) to which we associate the representation A(m, n) on
a vector space V(m, n) whose highest weight is mrnr + n7rp.

The representations of G are precisely those representations A(m, n) that descend to
G. (It is only different if G is not simply connected). We will use the same notation for
the representation of the group as for the algebra.

In the following, we will have the opportunity to make use of the Weyl character
formula. For convenience, we record it below. Write W for the Weyl group of G and
P = 2 SaEa+ a. fix a representation with highest weight A. Then for x E , the character
of the representation, XA, with highest weight A is given by

XA(exp(x)) = EEW sgn(a)e[,(A+P)](x) (3.2)
ZEW sgn(oje(P)(x)

85



Table 3.3: L 2(13)

II s I A A K K2 3 i M I M 11
ord elt: 1 2 3 6 7 7 7 13 13

ord conj: 1 91 182 182 156 156 156 84 84

X1 1 1 1 1 1 1 1 1 1

X2 7 -1 1 -1 0 0 0 -b 13 -b*3
X3 7 -1 1 -1 0 0 0 -b -b 13
X4 12 0 0 o -Y7 _;2 y;4 -1 -

Xs 12 0 . 0 0 -y4 -Y7 -y -1 -1
X6 12 0 0 0 y -Y 7 -y7 -Y7 -1 -1

X7 13 1 1 1 -1 -1 -1 0 0

X8 14 2 -1 -1 0 0 0 1 1

X9 14 -2 -1 1 0 0 0 1 1

-1+ b* -2 '13- 2- y7 = 2cos(27ri/7), and y;= = 2 cos(2nri/7)where b13 =

whenever ec(z) 1 for all roots a E A, i.e., whenever the denominator is non-zero.
Let us now introduce some notation that will be very useful in the next section.

Definition 3.2.2 For any prime power pf, define the function R(pf) : Z -. {0, ±1} by

R(p)=(a) {

0

1

-1

ifa=0 modp
if a is a square in Z/pf Z and a y 0 mod p
if a is not a square in Z/pf Z and a 0 mod p

Note that for f = 1, R, restricted to Z/pZ* is just the Legendre symbol, p.
For any positive integer k, define the number (k )ition E {0, 1} to be~condition 

6 (k) o
condition - 1

if condition is not satisfied mod k
if condition is satisfied mod k

Note that this is more or less the Dirac delta function on the condition mod k.

We will also need one more lemma on Gauss sums (recall Definition 2.2.3 for g(ib)).
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Lemma 3.2.1 For X a fixed non-trivial additive character on Fq and p the Legendre
symbol, then for any a E Fq, one has

1

E x(au) = 2[p(a)g(p)- ].
uEFq2

Proof. This follows trivially by writing

Z] =(a,)p(v)+l
X(au) = X(av)F 

UEFq2 vEF;

0O

3.3 Character Values in the Lie Group
Theorem 3.3.1 For the embedding of L2(7) L- A 2, the restriction of the character
XA(m,n) to L2(7) is given by the equations below. Note that A(m, n) descends to PSL(3, C)
only if m = n mod 3. These character values below correspond to the embedding in
Figure 1-1. For the oth
following.

XA(m,n) (I)

XA(m,n)(S)

XA(m,n)(A)

XA(m,n)(K)

XA(m,n) (Ml)

XA(m,n)(MA)

er embedding of Figure 1-2, switch the role of M1 and MA in the

1
= (m+ l)(n + )(m+n+2)

(-1)m+n
= \2 [(n + 1)R(2)(m + 1) + (m + 1)R(2)(n + 1)]

= -d6 nR(3)(m + n + 2)

= 2I[R(4)(m + 1) + R(4)(n + 1) - R(4)(m + n + 2)]

= -[R(7)(s) - R(7)(r)+ ((7) - 0() )ivf5]

= XA(m,n)(Ml)

where
r = m - 2n -1 and s = 2m - n + 1.

Proof. First of all, by our earlier discussion of the rank two case for q = 7, if we
need to be explicit, we may take our simple base of roots for s[(3, C) to be a = ao
and t3 = a\2 where A = -2 (see Figure 1-1). Of course in this case, half sum of the
positive roots, p, is equal to a + P. The fundamental weights are ra = 1/3(2a + /3)

87



and rp = 1/3(a + 2p/). For m, n non-negative integers, we have the dominant weight
A(m, n) = m7r, + nrp. Thus A(m, n) = 1/3(2m + n)a + 1/3(m + 2n)/3. For convenience,
let us call

x = 1/3(2m + n)

y = 1/3(m + 2n)

so that A(m, n) = xa + yf3. Of course x, y depend on m, n, but we shall suppress this in
the notation.

By this we see that A(m, n) will be in the root lattice if and only if m = n mod 3.
Thus if we wish the representation of 5[(3, C) with highest weight A(m, n) to descend to
the Adjoint group of A 2 (PSL(3, C)), then we must require that m = n mod 3. Since we
are only interested in L 2(7) L- PSL(3, C), we will make this assumption. (However, it is
not really necessary since in actuality, we really have L 2(7) L- SL(3, C)-see Section 1.9
on the discussion of q = 7-and in fact the character values given above are correct
without this assumption).

Let us make use of the Weyl character formula. In this case the Weyl group is
isomorphic to D3 , the Dihedral group. Now if we have an element x in the Cartan
subalgebra l) with

a() = a and (x) = b,

then one may quickly verify that XA(m,)(exp(x)) is

nl - n2
(3.3)d+d

whenever the denominator is non-zero where

n = ea( + l)+b(y+ l) + e-a(x+ l)+b( x-y ) + ea(- x+y)- b(x+1)

n2 = e- a(y +l )- b(x + l) + ea(z+l)+b(x- y) + ea(-++ y)+b(y+l)

d = e+b + e-+ e-b

We may now calculate the character values. To begin with, the character value for
the identity I is simply the dimension. This is standard (see for instance §24.3 of [9]).

Next comes the character value for S. Since S is non-trivial and has order 2 (recalling
Definition 3.1.1 and Theorem 3.1.1), up to conjugacy, the only possibility for S is [0,1,1].
Thus S is conjugate to exp[2iri(ir + r)/2]. But this is the same as exp[2ri(ir v - r))/2].
If we let = 2ri/2, we would like to put a = and b = - into Equation 3.3. But of
course S is not regular so this is not quite legal. Instead, we will put a = t and b = -tO
and consider the limit as t -- 1 in Equation 3.3. For this, we apply L'Hopital's rule. The
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reader may check that this gives us a character value of:

-[(-1)m(m + 1) - (_1)-m-n-2(m + n + 2) + (_1)n+l(n + 1)]

If one then simplifies this and considers the various cases of m and n being even and odd,
the result given in the theorem will follow.

Next, let us compute the character value of A. By Note 3.1.1, we already know that
A is conjugate to [1, 1, 1] since A is a Kostant element (Theorem 2.1.1 part (3)). Thus if
we let = 27ri/3, we may apply Equation 3.3 directly with a = b = . If one is careful
and remembers that x + y, x - 2y, 2x - y are all integers, then one may verify that the
result is

- [Cm+n- (1 + -m+n + C(m-) -_ -m-n+l(l + C(-m+n + Cm-n)

where = e. This however, will reduce to the given result.
Next, let us consider the character on K. Again, by Note 3.1.1, we already know that

K is conjugate to [2, 1, 1] since K is a Kac element (Theorem 2.1.1 part (3)). Thus, if we
let 0 = 2iri/4, we may apply Equation 3.3 directly with a = b = 0. The resulting formula
is very similar to the one for A given above, however, with a different value for . Using
that e = i, one may check that the result in the theorem is correct.

Next, let us consider the character on Ml. Using Figure 1-1, it is easy to find a "log"
for M1 since it is trivial on 4o. We let = 27ri/7 and take a = 0 and b = 40. When this
is exponentiated, it has the correct eigenvectors and eigenvalues. Thus it is our desired
"log". Now applying Equation 3.3 yields

EuEF;2 x(ru) - uEF;2 X(SU)

-E-EFq X(V)P(v)

where we have set
r = m - 2n - 1 and s = 2m - n + 1

and we recall that X is the additive character on L 2(7) determined by X(1) = ee and that
p is the Legendre symbol (Definition 2.2.3). Applying Lemma 3.2.1, Definition 2.2.3, and
Theorem 2.2.1 part (1), we can rewrite our above equation. If one checks the various cases
of r, s being either zero or non-zero, the result will follow. (Note: though Theorem 2.2.1
already tells us that g(p)g(p) = q, in fact one can also check that in fact g(p)2 = p(-1)q-
see [26] §2.5 equation 5.5.7.)

The character of MA could be done in a similar fashion as M1 above. However, it is
much easier to observe that the result follows from the character table in Theorem 3.2.1.
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Lastly, if we were to have chosen Figure 1-2 (basically conjugating everything by an
outer automorphism), then it is easily checked that this simply amounts to switching the
roles of M1 and M>. 0

Theorem 3.3.2 For the embedding of L2(9) - B2, the restriction of the character
XA(m,n) to L 2 (9) is given below. Note that (m, n) must be in 2Z x Z in order for A(m, n)
to be a representation of S0(5, C). Therefore make this assumption. Also, the following
character values correspond to the root configuration in Figure 1 - 3. To get the ones
corresponding to Figure 1 - 4, simply switch the roles of M1 and MA.

XA(m,n) (I)

XA(m,n)(S)

XA(m,n) (A)

XA(m,n) (K)

XA(m,n) (K2)

XA(m,n) (M1 )

XA(m,n)(MA)

1
- 3(m +1)(n + 1)(m + n + 2)(m + 2n + 3)

= 2)[(n + 1) + (m + 1)R(2)(n + 1)]

5(4) b(4)
-= a,bEO,1 - a,bE2,3

= 5(5)-(m,n)•(4,4) m=n m-n=

= XA(m,n)(K)

= 3[(m + n + 2)R(3)( + 1) - (n + 1)R(3)(m + n + 2)]

-= [(m + 2n + 3)R(3)(m + 1) - (m + 1)R(3)(m + 2n + 3)]
3

where
m ma = -- + 2n and b = - -n.
2 2

Proof. By our earlier discussion of the rank two case for q = 9, if we need to be
explicit, we may take our simple base of roots for 50(5, C) to be a = a\o (the short root)
and / = acl (the other case is a = cal (the short root) and p = aA2) where A2 + A = 1
and 1 + A2 = A7 (see Figure 1-3, Figure 1-4, and the surrounding discussion). Of course,
p = rc, + rp and one may calculate that the fundamental weights are ra = a + P//2 and
a' = a + . Thus for m, n non-negative integers, we have the dominant integral weight
A(m, n) = mr, + nro. Thus A(m, n) = (m + n)a + (m/2 + n)3. For convenience, let us
call

x = m + n

y = m/2 + n.
Then we have A(m, n) = xa + yp/. Of course x, y depend on m, n, but we shall suppress
this in the notation. We see that A(m, n) will be in the root lattice if and only if m = 0
mod 2. Thus if we wish the representation of so(5, C) with highest weight A(m, n) to
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descend to the Adjoint group of B2, SO(5, C), then we must require that m is even.
Since we only have L 2(9) 50(5, C), we will make this assumption-see Section 1.9 on
the discussion of q = 9.

Let us make use of the Weyl character formula. In this case the Weyl group is
isomorphic to D4 , the Dihedral group. If we have an element x in the Cartan subalgebra
D with

a(x) = a and (x) = b,

then one may quickly calculate XA(m,,n)(exp(x)). For this, let

n = ea(x+ 2)+ b(y+ 3/2) + e(l - 2y-l )+ b ( x- y + 1/2) _ ea (- x+ 2y+ l)+ b( y+ 3/ 2) - ea( + 2) + b(- y+1/2)

and
d = e2a+3b/2 + e-a+ b/2 _ ea+3b/2 _ e2a+b/2

then one has XA(m,n)(exp(x)) equal to

nl + rdn +f n(3.4)d+d
whenever the denominator is non-zero.

The character value for the identity I is simply the dimension. This is standard (see
for instance §24.3 of [9]).

Next, let us find the character value on S. Recalling Definition 3.1.1 and Theo-
rem 3.1.1, up to conjugacy, the only non-trivial elements of order 2 are [0,1,0] and
[1, 0, 1]. However, the trace of an element exp(x) on the Adjoint representation is simply

1 + E ey (x )

'YEA

for x E . Using the character table in Theorem 3.2.1 and the fact that the Adjoint
representation is irreducible under L 2(9) (see Theorem 2.1.1 part(2)), one may easily
check that S must have trace -2 and that only [1, 0, 1] will satisfy this condition. Thus
S is conjugate to exp[27ri(07rv + r')/2]. But this is the same as exp[2ri(2r v - r)/2].
Thus if we let = 2;ri/2, we would like to put a = 28 and b = 8 into Equation 3.4. But
of course S is not regular so this is not possible. Instead, we will put a = 2t0 and b = tO
and consider the limit as t --, 1 using L'Hopital's rule. The reader may check that this
gives us a character value of:

-1
2 [(-1)y(-x + y - 1/2) + (-1)"+'(-y - 3/2)1.

Then checking the even and odd possibilities, the desired answer is obtained.
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Next let us find the character value on A. We already know that A is conjugate to
[1, 1, 1]. Thus we let 0 = 2iri/4 and a = b = . Then Equation 3.4 will yield

1 ( 0 + (z)((- 1+X+Y + 2x-y)
2 (C

0 + C3 )

where = e . This in turn, will be equal to the above result.
Let us find the character value on K. Again, we know that K is conjugate to [2, 1,1]

so that if we let = 2ri/5, we can put a = b = in Equation 3.4. One may check that
this yields

++1/0(5) - 46(5)+ 6(5) + 3 (5) )X+y+=o x-3y=o x-3y*o/'

Further calculation gives

6(5) ( 1(-A65) +1=0+ 6x(3y=0)

which will simplify to the expression in the theorem.
For the character value on K2 , simply observe that in B 2, K and K2 are conjugate.
Next, consider the character on M1. Using Figure 1-3, it is easy to find a "log" for

M1 in Io. We let = 2ri/3 and would like to take a = and b = 0 (or a = 0 and
b = for the second case) so that ea = X(A°) and eb = X(A1) (for the additive character
X, we write any element of u E Fq uniquely in the form u = k + 1A, k, E Z3, and define
X(u) = ek"). When this is exponentiated, it has the correct eigenvectors and eigenvalues.
Thus it is our desired "log". Unfortunately, M1 is no longer regular since q # p (M1 has
order 3 not order 9). Thus we use L'Hopital's rule as t - 0 with a = and b = 2t in
Equation 3.4 to get

13( - [(m + 1)(E2+m+n _- 1-m-n) + (m + n + 2)(-n + 2 - ~n-2)]

where E = ee. The result will then follow. (If we were in the second case, then one easily
checks that the role of M1 and MA are reversed in the above equation).

Lastly, M, could be done in a similar fashion to M1 above. However, it is much easier
to observe that the result follows from the character table in Theorem 3.2.1. 0

Theorem 3.3.3 For the embedding of L2(13) ,- G2, the restriction of the character
XA(m,n) to L 2(13) is given below. The following character values correspond to the root
configuration in Figure 1- 5. To get the ones corresponding to Figure 1- 6, switch the
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roles of M1 and MX.

XA(m,n) (I)

XA(m,n) (S)

XA(m,n)(A2 )

XA(m,n) (A)

XA(m,n) (K)

XA(m,n)(K 2 )

XA(m,n)(K3 )

XA(m,n) (M)

XA(m,n)(M )

= !(m + 1)(n+ 1)(m + n + 2)(m + 2n + 3)(m + 3n + 4)(2m + 3n + 5)

= 1-[(-l)m(m + 1)(m + 2n + 3) + (-l)'(n + 1)(2m + 3n + 5) +
(-l)n+(m +n+ 2)(m + 3n + 4)]

= &[(m + 1)R(3)(m + 2n + 3) + (2m + 3n + 5)R(3)(n + 1)

-(m + 3n + 4)R(3)(m + n + 2)]
b(6) (6()-3 -6( 6) + 6(6) - 6f (6(6) ( (6) 66)+ 6 b3)b=±- a a+ b_3 a= - 3 b a+b3!

= 6(m- n1(- 63m-2n+1 +mn)
= XA(m,n) (K)
= XA(m,n)(K)

= 2 [R13)(S) - R(13 )(r) + (6= ) -6(-)

= 2[R(13)(s)- R(13)(r)- (6(=3) - =

where
a = 3m + 5n + 2 and b = 2m + 5n + 1

r = 4m + 7n -2 and s = 3m + 7n- 3.

Proof. First of all, by our earlier discussion of the rank two case for q = 13, if we
need to be explicit, we may take our simple base of roots for G2 to be a = aAo (the
short root) and = a (the other case is a = a3 (the short root) and = a )
where A = 2 (see Figure 1-5 and Figure 1-6). Of course, p = r, + ip and one may
calculate that the fundamental weights are 7ra = 2a + / and irp = 3a + 2/l. For m, n
non-negative integers, we have the dominant integral weight A(m, n) = mro + nrp. Thus
A(m, n) = (2m + 3n)a + (m + 2n)P. For convenience, let us call

x = 2m + 3n

y = m + 2n.

Then we have A(m, n) = xa + y/3. Of course x, y depend on m, n, but we shall suppress
this in the notation. By this we see that A(m, n) will is always in the root lattice for any
m, n non-negative integers.
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Let us make use of the Weyl character formula. In this case the Weyl group is
isomorphic to D6, the Dihedral group. Now if we have an element x in the Cartan
subalgebra with

a(x) = a and (x) = b,

then one may quickly calculate XA(m,,n)(exp(x)). For this, if we let

1 = ea(x+5)+b(y+3) + ea(-+3y+4)+b(-+2y+2) + ea(-2x+3y-)+b(-x+y-2)

22 = ea(-+3y+4)+b(+3) + ea(-2x+3+-l)+b(-+2y+l) + ea(-x-5)+b(-x+y-2)

d = e5a+3b + e4 a+b + e -a-2b

d2 = e4a+3 b + e-a+b + e- 5a-2b

then we get XA(m,n)(exp(x)) as

nl + n2 + n +2 (3
dl + d2 +d +d 2

whenever the denominator is non-zero.
For S, by Definition 3.1.1, the only possibility is [0, 1, 0]. Thus if we put 0 = 2ri/2,

we would like to put a = 0 and b = . But this is the same as a = 28 and b = 0. Thus
we may calculate the character on S by taking the limit as t --, 1 with a = 2tO and
b = . This time we will have to use L'Hopital's rule twice on Equation 3.5. It will end
up giving us

-1
-16 [(- +l (-y-3)(-2x+3y-1)+(-l)'+'(x-2y-1)(-x-5)+(-l)'+Y(x-y+2)(x-3y-4)].
16

This is easily checked to be the said result.
Next we need the character on A2. By Definition 3.1.1, the only possibility for a

non-trivial order three element is [1, 1,0]. Let 0 = 2iri/3. We would like to put a = 0
and b = , but this gives the same thing as a = -38 and b = . Of course A2 is not
regular so we must instead take a = -3tO and b = tO and let t --, 1. Then L'Hopital's
rule on Equation 3.5 yields

[(2x - 3y + 1)R(3)(y) + (x + 5)R(3)(-x - y + 1) + (-x + 3y + 4)R(3)(-x + y + 1)]
9

which will quickly yield the desired result.
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Next we move on to A. By Note 3.1.1 we can let 0 = 2ri/6 and a = b = 0 in
Equation 3.5. This gives us-1 W( + ( + u- + - + -+ -u+t + + ¢ + (wU + (- + -w + -w+v)

where
t = x + y + 2 and u = 4x + 5y + 5

and
v = 3t - u and w = t + 2b.

Though it is a complicated calculation, one may check the various possibilities to see
that the stated result follows.

Let us compute K. By Note 3.1.1, we can let 0 = 2iri/7 and a = b = 0 in Equation 3.5.
This gives us

7 (6+y+l'O x+y+1O - 6v--+4y=0 6-x+4yO)'

This may then be examined to give the result in the theorem.
For K2 and K3, one observes that in G2, all of these elements are conjugate.
Next, let us consider the character on Ml. Using Figure 1-5, it is easy to find a

"log" for Ml in oo. Thus we let 0 = 2i/7 and take a = 0 and b = 20 (a = 88 and
b = 30 in the second case). When this is exponentiated, it has the correct eigenvectors
and corresponding eigenvalues. Thus it is our desired "log". Now applying Equation 3.5
yields

EuEF;2 x(ru) -- F;2 X(SU)

- EvEFq X(v)P(v)

where we have set
r = x + 2y- 2 and s = -x + 5y- 3

and we recall that X is the additive character on L 2(13) determined by X(1 ) = ee and that
p is the Legendre symbol (Definition 2.2.3). Applying Lemma 3.2.1, Definition 2.2.3, and
Theorem 2.2.1 part (1), we can rewrite our above equation. If one checks the various cases
of r, s being either zero or non-zero, the result will follow. (If one takes the second case,
then r, s will both be changed by a non-square in the numerator and the denominator
will change by -1. This will amount to taking the algebraic conjugate in the formulas
or just switching the role of Ml and Ma above.)

Lastly, Ma could be done in a similar fashion to M1 above. However, it is much easier
to observe that the result follows from the character table in Theorem 3.2.1. 0

As a consistency check of Theorems 3.3.1, 3.3.2, and 3.3.3, one can easily verify that
the character values of irreducible representations on the Kostant and Kac elements A
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and K all lie within the set {0, ± 1} as required by Theorem 0.0.2. Secondly, one sees
that the following theorem also holds true in our above work:

Theorem 3.3.4 For G a simple Lie groups and x E G an element of finite order, the
set of character values X(v,,)(x) as (V, r) runs through all irreducible representations of
G is finite if and only if x is regular.

Proof. This theorem is taken directly from [24] Proposition 6.1. The proof simply
uses the Weyl character formula for the easy direction and cites the [12] for the other. 

In particular, this agrees with our above characters for L2(q) in G since the elements
I and S for L 2(7), the elements I, S, M1 , and MA for L 2(9), and the elements I, S, and
A2 for L2 (13) are all not regular in the corresponding Lie group. These are precisely the
conjugacy classes that take on an infinite number of character values. The other elements
are all regular and all have only a finite number of character values.

3.4 Finite Group Invariant Theory
In this section, we recall some basic terminology and standard facts about the invariants
of finite groups. Since this is classical, we will refer the reader to [10], [31], and [30] for
details and proofs.

Notation: throughout this section, let L be a finite group of order I L = I contained
in some GL(V) where V is a complex vector space of dimension m, called the degree of
L. We will write S = S(V) for the polynomial algebra on V and Si for the homogeneous
polynomials of degree i in S. In other words, if we fix a basis x, ... xz of V, then we may
identify S with polynomials in the variables x1 ,... xm, i.e., S = C[zl,... xz]. Of course
the action of L on V yields an action of L on each Si and S by letting (gf)(x) = f(g- 1 x)
where f E S and x E V.

We may break S up uniquely into its isotypic components:

S = m SL

where the sum is over the set of irreducible complex characters X of L (the traces of
irreducible representations of L) and we write S L for the isotypic component of S corre-
sponding to the character X of L. If we write e for the trivial character of L, then the
set SL will be abbreviated to simply S L . It is obviously a subalgebra of S and is called
the algebra of invariants. Clearly

S = {f E S gf = f for all g E L}.
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Similarly, in the special case where the character X of L is a homomorphism from L to
C, then one also has f E S L if and only if gf = x(g)f for all g E L. In this case, the
elements of SL are called semi-invariants or X-invariants.

One has the standard basic theorem:

Theorem 3.4.1 If L has degree m and order , then there are precisely m algebraically
independent invariants (over C) in SL and as an algebra, SL is generated by no more than( +m ) homogeneous invariants of degree not exceeding l. Moreover, S is finitely

generated as a SL-module by homogeneous polynomials of degree not exceeding .

A useful way to encode certain data about the algebra SL is the following Hilbert
polynomial. It is a special case of the Molien series.

Definition 3.4.1 The Poincar6 polynomial FL(t) is the formal polynomial given by

00

FL(t) = ZH,t'
i=O

where Hi is the multiplicity of the trivial representation of L in Si.

It is well known by a theorem of Hilbert that FL(t) is a rational function of t. It is
also trivial that

FL(t) = I det(I-tg)'

however, we will not need this. Instead, there is an easy way to express FL(t) in terms
of generators of the ring S L. This result is included in the next theorem part (2). Part
(1) merely states that SL is a Cohen-Macaulay algebra.

Theorem 3.4.2 (1) Let 01,... 0, be any set of homogeneous invariants of positive de-
gree such that SL is finitely generated over C[81,... .m] (such objects always exist), then
01,... ,m are algebraically independent and SL is a finitely generated free module over
C[O1,... m]. That is, there exist homogeneous .11,... l E S L such that

s L = : 77iC[i1 Om] 

i=l

(2) If Oj has degree dj and rla has degree e, then

FL(t) = L 
H? (1 - ti) '
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(3) If we arrange the degrees so that 0 = el < e2 ... es and let y be the least degree of
a det-l-invariant, then

m

= Z(di- 1)- -
i=1

In particular, e < T i(di - 1) with equality occurring if and only if L C SL(V).
(4) The dj may be taken to divide I if so desired.
(5) The action of L on the quotient ring S/(01,... 0,m) is isomorphic to s times the regular
representation of L.

0

For a given finite group L C GL(V), there are explicit ways to construct elements
01,... 9m in the above theorem (see e.g., [31], page 483). However, we will not make use
of these techniques in general. Instead, let us select a particularly nice class of finite
groups.

Definition 3.4.2 For g E L C GL(V), g is called a pseudo-reflection if exactly one
eigenvalue of g is not equal to one. Moreover, we will call L a finite reflection group if
L is generated by its pseudo-reflections.

The key theorem about finite reflection groups is the following.

Theorem 3.4.3 For L a finite subgroup of GL(V), there exist m algebraically indepen-
dent (homogeneous) invariants 81,... 9m such that SL = C[61 ,... 0,] if and only if L is
a reflection group.

0

Moreover, quite a bit is known about the invariants of these groups. In fact, knowledge
of the pseudo-reflections gives nice information in general.

Theorem 3.4.4 (1) For any L, let the notation be as in Theorem 3.4.2. Also denote by
r the number of pseudo-reflections contained in L. Then one has

sl= idi
i=l

8 m

rs+2ei =s( d, m).
i=l i=l
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Also, the Laurent expansion of FL(t) about t = 1 begins as

I(1 - t)-m + (1 - t)- m+ l + 0((1 -t)-+2).

(2) In particular, if L is a finite reflection group with SL = C[01,... Om], then

m

l= di,,
i=l

r = (d- 1),
i=l

FL(t) =

A fact we will not make use of is that if L is a finite reflection group and if bi is the
number of elements in L with precisely i eigenvalues unequal to one, then

m m

E bti = 1J(1 + (dj - 1)t).
i=O j=1

Another nice fact about reflection groups is that knowledge of SL gives very good knowl-
edge of any SL . In fact, one theorem is that if X is a homomorphism, then SL is a free
SL-module of rank one. Moreover, a generator, called fx, can be written down explicitly
using reflection hyperplanes (so S L = fSL). We will not do this here even though it is
simple, but we will use the notation fx again in Theorem 3.4.5. We note only that in the
case of X = det-, there is an alternate description of fdet-i, namely as the Jacobian of
0],. .. Om:

fdet-l = det(aOi/axj) (3.6)

(up to a non-zero scalar).
Lastly, there is a theorem due to Stanley that will be useful. Before stating it, we

simply note that there is a chain of technical conditions that a ring can satisfy with the
following names and hierarchy: polynomial ring = hypersurface =: complete intersection
:I. Gorenstein =- Cohen-Macaulay. Only the last of these have we really defined. It will
not be worth our time to go deeper into these matters, however the interested reader may
consult [31] for more details. Instead, we will allow ourselves to use the words to state
the following theorem since the part that we will make use of will be explicitly spelled
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out in the text of the theorem.

Theorem 3.4.5 (Stanley) Suppose H = Ln SL(V) where L C GL(V) is a finite reflec-
tion group. If the index [L : H] is a prime power, then SH is a complete intersection. If
[L : H]is a prime p, then SH is a hypersurface; indeed, if SL = C[ 1, ... ,m] and 77 = fx
for the character X = det, then SH = C[81,... m](1 D *... rP-).

To give some idea of what the word hypersurface means in this context, we give
the following. It has to do with the fact that if one chooses a set ,-... -yt of minimal
generators of a ring (here t = m + 1), then there is precisely one relation among the yji's
(called a syzygie of the first kind. In other words, in the above theorem for the second
case, one has generators 01,... 0m, r and there is some polynomial relation P so that
r7P = P(01,... Omq, r). Thus SL is basically C[01,... 0m, 77]/(7P - P(0 1, . Om, 77)), in other
words, a "hypersurface."

3.5 The Cartan Polynomials
To begin with, let us make some notes about Cartan powers. To do this, we will look at
various one parameter families of representations. In general, let G be a complex simple
Lie group. Denote by R(?p) the irreducible representation of G with highest weight 1pi.
Then one may may form the vector space

00oo

R = ( R(n) (3.7)
n=O

By making use of the fact that R is simply the Cartan powers of a single representation
R(O), one may put an algebra structure on R. To be a bit more specific, observe that
within R(0 1 ) ® R(0 2), R(t 1,b2) appears exactly once. Then the multiplication of R(kni )
and R(4n2) within R is simply defined to be the tensor product of the two followed by
projection onto the R(k"bn+n2) component.

The resulting algebra structure is well known. Let X be the G-orbit of the highest
weight in R(t)*, the dual of R(4'), and set Y = X, the closure of X. Write S(Y) for the
restriction of the polynomials on R(b)* to Y. It turns out that the regular functions on
X are isomorphic to S(Y) which in turn is isomorphic to the algebra R.

Let us start with some general notations that will apply in all cases.

Definition 3.5.1 Fix L to be one of the groups L2(q) for q = 7,9, 13 so that we have L
embedded inside a simple Lie group G or rank two (A2 , B2 , or G 2, respectively). Also
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fix an irreducible highest weight module R(0) with highest weight 4i. Then forming the
one-parameter algebra of Cartan powers R as in Equation 3.7, we may define a formal
polynomial Px for each irreducible character X of L by

oo0

Px(t) = EHit'
i=O

where Hi is the multiplicity of the X-isotypic component of L acting on R(Oi) inside of
R.

Of course, the above polynomials are very much related to the Poincar6 polynomials
discussed in Definition 3.4.1.

Next let us define an extension of the polynomials Px using the character formulas
that we have already calculated. We will use the Schur orthogonality relations which tell
us that if a representation of L has character X1, then the multiplicity of X2 in it is given
by

1 EL xl(g)x2(g). (3.8)

Using this equation formally in conjunction with Theorems 3.3.1, 3.3.2, and 3.3.3, one is
able to extend the polynomials Px:

Definition 3.5.2 Continue the notation from Definition 3.5.1. For i > 0, we may write
the differential of the weight 4bi in the form imr., + inr3 for some non-negative integers
m, n (see the notation in Section 3.1). These integers may be put into Theorems 3.3.1,
3.3.2, and 3.3.3, respectively, to give the character of L acting on R(ai). If we call this
character Xi for i > O, then we formally extend these definitions to the cases i < 0 by
directly putting imra + in7rp into the character formulas for i < O. Using these new Xi for
i E Z, we define the formal Laurent series Qx for each irreducible character X of L 2(q)
to be

QX(t)= E H,t'
i=-00

where Hi is the number that results from Equation 3.8 applied to X1 = X and X2 = Xi In
particular, the coefficients of Qx of positive degree are the same as the coefficients of Px.

The reason for introducing Qx is that it will allow us to do some calculations. To
see why this is so, we introduce one more piece of notation. For a formal Laurent series
q(t) = Ci°-- qit', we will write qab(t) = qata + qa+lta+l + ... qbtb where a, b E Z U{(±o}
with a < b. In particular, Qb is the part of Qx that has degree between (and including)
a and b. For instance, P = QO° '0

"X 
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What will happen is that by looking at Theorems 3.3.1, 3.3.2, and 3.3.3, we will easily
be able to find a polynomial D of some degree d such that

DQ = 0. (3.9)

Then writing Qx = Px + QXO° -' , we get

DPx = -DQ, - '.

However, since D is a polynomial of degree d and Px is a formal polynomial, by looking
at degrees, this becomes

DPx = -(DQ-d,-1)o,d-1. (3.10)

The advantage to this formula is that it is very useful for computations since (once D is
known), then after computing d terms of coefficients of Qx we have an explicit formula
for Px.

3.6 Some Invariants of A2

The finite group in this section will be L = L2 (7) inside of SL(3, C). Of course it sits in
SL(3, C) in two distinct ways. We shall choose the embedding as in Theorem 3.3.1 (the
other is just the dual).

The one-parameter family that we will concentrate the most on is the Cartan powers
of one of the standard three dimensional representations. This is because they will yield
the simplest results. Let us take in Equation 3.7 b to have differential r (see Theo-
rem 3.3.1) and form the one parameter family of representations R of SL(3, C), i.e., of
the standard representation. If we had chosen the other three dimensional representa-
tion, rp, everything would be made into its dual. Next, we would like to examine the
restriction of the SL(3, C) action on R to the finite group L 2(7). Our goal is to calculate
the formal polynomials Px,(t) in Definition 3.5.1 where 1 < i < 6 (see the notation of
Theorem 3.2.1) and to find the algebra structure of RL2(7), the isotypic component of the
trivial representation.

It will be easy find the formal polynomials Px, using Equation 3.10. By Theorem 3.3.1,
we find the characters values on the various conjugacy classes for R(k7r,) to be

XA(k,o)(I) = (k + 2)(k + 1)/2
XA(k,O)(S) = (-1)k+l[(k + 1) + R2(k + 1)]/2

XA(k,o)(A) = 6(o)

XA(k,o)(K) = [R4(k + 1) + 1 - R4 (k + 2)1/2
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XA(k,o)(M1) = [R7(k + 4) - R7(k - 1) + (6(7)1 - (7)iV7]/2

XA(k,O)(MA) = [R7(k + 4) - R7 (k - 1) - (6(7)1 - 67)3)i /2

Since Qx, (Definition 3.5.2) is put together term by term using the above character values
and the Schur Orthogonality relations, it will be true that the polynomial

D(t) = (1 - t4)(1 _ t6)(1 - t14)

will satisfy

D(t)Qx,(t) = 0.
For instance, (1 - t 4 )Q,i(t) will "kill" the contribution from the elements M1 and MX
since 14 is a multiple of 7 (the choice of 14 instead of the apparently simpler 7 will be
discussed later). Similarly, multiplying by (1 - t4 ) will "kill" the contribution of K. The
combination of (1 - t4)(1 - t6 ) will "kill" the S part (we need to apply an even degree
twice since there is also a linear dependence on k for the character of S) and the total
(1 - t4 )(1 - t6)(1 - t14) will kill the quadratic dependence on k of I.

Thus using Equation 3.10, we may compute the formal polynomials Px,,. Since the
proof is just a matter of calculating a finite number of terms and multiplying polynomials,
we will omit the calculations in the following theorem.

Theorem 3.6.1 The Cartan powers of the representation ra, of SL(3, C) restricted to
L 2(7) yield the formal polynomials

Px (t)
x -(1 - t4)(1 - t6)(1 - t4)

where the polynomials Pxi are given by

Px(t) = 1 + t2

px2 (t) = t+t 8 +t + t 1 t 16 +t 18

px3(t) = t3 + t5 + tl° + t12 + t13 + t20

px (t) = t2 + t4 + t6 + t8 + t9 + t1 + t + t 12 + t13+ t15 + t 17+ t19

Pxs (t) = t3 + t5 + t6 + t7 + t8 + t9 + t + tll + t 12 + t13 + t14 + t 15+ t16 + t18

pX.(t) = t4 + t5 + t 6 + 2t7 + t8 + t 9 + t0°+ tll + t 2 + t13 + 2t14 + t15 + t16.

We note only that of course the polynomial D(t) used above is not unique. Many
others will work and some will greatly simplify the above results. For instance, one can
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check that with this denominator (1 - t2)(1 -t 3 )(1 - t4 )(1 - t7 ), one may also write the
formal polynomials above as

P,(t) =
PX.(t) = (1 - t2)(1 - t3)(1 - t4)(1 t7)

where the polynomials Px' are given by

px2(t) = t t3 t4 +t 6 t7 - t °

Px (t) = t3 t6 _ t7 + t9 + t 10 - t 12

p (t) = t2 _ t5 + t t
p' (t) = t3 t l °

pX(t) = t4 + t5 - t - t9

We have omitted Px, since it is considerable worse with this denominator. However, the
others are much simpler. The particular choice of D(t) = (1 - t4 )(1 - t6)(1 - t14) in
the above theorem is related to the fact that we are actually dealing with something
very close to a finite reflection group and the numbers 4, 6,14 are related to the minimal
generators.

To see this, let us momentarily view L = L2(7) as sitting in SL(3, C) by the dual of
our three dimensional representation (whose differential will be rt). Then if we write L'
for the subgroup in GL(3, C) generated by L and ±I, the order of L' will be 2(168) = 336.
We have already seen that L has 21 elements of order 2 (Theorem 3.2.1) so that L' will
have 42 + 1 elements of order 2 with only 21 + 1 of them having determinant -1. It is
clear that 21 of these elements make up the set of all reflections of L' C GL(3, C). It is
also classically known and easy to verify that these reflections generate L' (see [30] §4.6).
Thus we have that L' is a finitely generated reflection group with 21 reflections. Hence,
with the notation of Section 3.4, we know that the ring of invariants of L', S(R(rp))L' is
of the form C[01, 02, 03] (Theorem 3.4.3). Moreover, Theorem 3.4.4 part (2) tells us that
if we write di for the degree of 0i, that 336 = d1d2 d3 and 21 = dl + d2 + d3 - 3. One may
quickly check that the only possible solution is dl = 4, d2 = 6, d3 = 14. Thus,

1

FL(t) = (1 - t4)(1 - t6)(1 - t4) '

Next, we of course have the order of L' in L is 2, a prime, and since L'nSL(3, C) = L,
we are in a position to apply Theorem 3.4.5. Using the fact that det maps L' to {±1}
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and Equation 3.6, to get the degree of fdet = fdet- to be 21, we get

FL(t) 1t(1 - t)(1 - t)(1 - t4)'

This, of course looks suspiciously like our result for Px (t) in Theorem 3.6.1.
The reason stems from our discussion in Section 3.5. Since the orbit of the highest

weight vector in the three dimensional representation under SL(3, C) is everything but
zero, its closure is all of C3. Therefore the algebra of Cartan powers, R, is isomorphic
to S(C3 ) as SL(3, C) graded modules and algebras. Hence we have RL isomorphic to
SL(C3). Thus, by the above results, R has elements 84, 86, 814, 821 of degrees 4,6, 14,21,
respectively, so that the first three are algebraically independent and

R = C [84 , 86 , 014 ](1 02 1 )

with 82 E C[ 4, 06,014]. Now the structure of SL(3, C) is classically known. Springer
([30] §4.6.5) has worked out by some explicit computations that the generators may be
chosen so that

021 + 014 + 067 E 0 4 SL(C3 ).

To give an idea of what these invariants are, we note that the degree 6 invariant is
basically the Klein curve of genus three, x3 y + y3 z + z 3s, and the degree 6 invariant is
basically the Wronskian of this.

We observe that if we had looked at the Cartan powers of rp instead of r,, the whole
story would be the same except one should switch X2 and X3 everywhere (this follows by
duality).

Last, we give some indication of why the Cartan powers of Iro are the only "nice" ones.
For instance, one of the next simplest cases is the case of Cartan powers of p = r, + r#.
In fact, the characters on this one-parameter family are very nice. Using Theorem 3.3.2
they are:

XA(k,k)(I) = (k + 1)3

XA(k,k)(S) = (k + 1)R2(k + 1)
XA(k,k)(A) = R3(k + 1)

XA(k,k)(K) = R4 (k + 1)

XA(k,k)(Ml) = R7(k + 1)

XA(k,k)(MA) = R7 (k + 1).

However, one may check, by techniques similar to Theorem 3.6.1 that the formal poly-
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nomials may be written as

Px,(t) : (
Pxi(t) = (1 - t2)(1 - t3)(1 - t4)(1 - t7)

where the polynomials Pxi are given by

px1 (t) = 1 - t2 + t5 + 2t6 +2t 8 + t9 - t12 + t14

p2 (t) = t3 + 2t4 + 3t5 + 2t6 + 2t7 + 2ts + 3t9 + 2tl° + t

px3(t) = px2(t)
pX, (t) = 2t2 + 2t3 + 4t4 + 4t5 + 4t6 + 4t7 + 4t8+ 4t9 + 4t10 + 2t" + 2t12

Px5 (t) = t2 + 3t3 + 3t4 +5t5 + 6t6 +6t 7 + 6t8 + 5t9 + 3t10 + 3t + t 12

pxa(t) = t + t2 + 2t3 + 4t4 + 5t5 + 7t6 + 8t7 + 7t8+ 5t9 + 4t10 + 2t + t2 + t13

The denominator used appears to give the simplest form of these rational functions.
Already everything is more complicated. However, the worst part comes when one tries
to look for generators for RL. Just by writing out a few terms of Pxl (t) and looking at
dimensions, one may check that as an algebra, RL has at least generators in degrees 3,
4, 5, two in 6, two in 7, four in 8, two in 9, and three in degree 10. Therefore, RL has
at least 16 generators and is quite intractable. The problem appears to be related to the
fact that in the Adjoint representation, L is no longer related to a reflection group.

3.7 Some Invariants of B2

Let us look at L = L2 (9) embedded in SO(5, C). In this case, the best series to examine
will be the Cartan powers of r#p, i.e., of the standard five dimensional representation.

First we calculate the characters of the conjugacy classes of L. For this, Theorem 3.3.2
tells us that the on R(krOp) we get:

XA(o,k)(I) = (k + 1)(k + 2)(2k + 3)/6
XA(O,k)(S) = [(k + 1) + R( 2)(k + 1)1/2

X^(o,k)(A) = (-- _ b-()

XA(Ok)(K) = b(5) - (5)

Xa(o,k)(K ) = XA(o,k)(K)

XA(O,k)(Ml) = [(k + 2)R(3)(k + 1) - (k + 1)R(3)(k + 2)]/3
XA(O,k)(MA) = [(2k + 3)- R( 3)(2k + 3)]/3.

Next, one sees from this (just as we did in Section 3.6) that if D(t) = (1 - t3 )(1 -
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t 4)(1 - t5 )(1 - t 6), that D(t)Qx,(t) = 0. The results of applying Equation 3.10 to this
yields the following theorem. Again, the trivial calculations will be omitted.

Theorem 3.7.1 The Cartan powers of the representation rp of S0(5, C) restricted to
L 2(9) yield the formal polynomials

Pxi (t)

Pxi(t) = (1 - t3)(1 - t4)(1 - t5)(1 - t 6)

where the polynomials Px are given by

px, (t) = + t15

Px2(t) = t + t2 + t3 + t4 + t5 + t1°+ t ll + t2 + t 13 + t14

PX3(t) = t3 + t5 + 2t 6 + t7 +x 5 + 2t9 + t10 + t 12

px4(t) = t4 +2t 5 +2t 6 +3t 7 +3t 8 +2t9 +2t1 + t°+

pX5(t) = t4 + 2t5 + 2t6 + 3t7 + 3t8 + 2t9 +2t ° + tll
px6 (t) = tZ + t3 + 2t4 + t5 + 2t6 + 2t7 + 2t8 + 2t9 + t10 + 2t + tl 2 + t13

pX(t) = t3 + t4 + 2t5 + 3t 6 + 3t 7 + 3t8 + 3t9 + 2t10 + t + tl2 .

As with SL(3, C), a more tidy denominator would have been given by, say, D(t) =
(1-t 3 )2(1-t 4 )(1 -t 5 ). However, there is a reason for the above choice. Again, the answer
deals with a closely associated finite reflection group. We will sketch the correspondence.

The first step is to make use of the classic isomorphism of L 2(9) with A 6, the alter-
nating group on 6 letters (see [7]). The reason this is useful is because the symmetric
group S6 acts as a finite reflection group (of course even as a Weyl group) on C5. It is
well known by the theory of symmetric polynomials that the degrees of the invariants
of this action are 2,3,4,5,6. Since we may pick A6 out as S6 fnSL(5, C), we may apply
Theorem 3.4.5 and Equation 3.6 to get that the ring of invariants of A6 acting on C5 to
be isomorphic to

C[0 2 , 03, 04, 05, 061(1 E 015)

where 0 d is a generator of degree d with the only relation being of the form 805 a poly-
nomial in the 's.

We would like to make use of our discussion in Section 3.5 of the Cartan powers.
First, let X be the 0(5, C) orbit of the highest weight vector in C5 (everything is self
dual here). Then X = {(zl,... z5) I z E C, Zl2 + ... z 2 = 0}. Let 2 be the second degree
polynomial z +... z52. By classical separation of variables for the orthogonal group or by
the more general techniques in [15], one knows that S(C5 ) = j 2S(C 5 ) $ H, where H are
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the harmonic polynomials. One knows that j 2S(C 5) is a prime ideal in S(C5 ) so that the
restriction of S(C 5) to X is the same as looking at S(C5 ) projected onto S(C 5)/j 2S(C 5 ).
However by our earlier discussion, this restriction is just the algebra of Cartan powers.

Since j2 is a second degree invariant of 0(5, C), we may of course take j2 to be the
degree two invariant for A 6. Hence, if we look at SA6(CS)/j2 SA6(CS), it is easy to see
that we are really looking at RL2(9)(7ro). But since we have seen that we may identify 82

with j2, we finally get that RL2(9)(7 ,r) is isomorphic to

c[0 3 , 04, 05, 6](1 D015)

where the degree of Od is d with the only relation being of the form 805 the corresponding
polynomial in the O's. Thus we recover the polynomial Px, (t) in Theorem 3.7.1 and the
basic algebraic structure of RL(r).

Lastly, this appears to be the best one-parameter family. Probably the next best
is 27r (the 10 dimensional Adjoint representation). One can write down the formal
polynomials for it easy enough, but the answers are quite unpleasant. Moreover, the
situation for generators in RL is much worse. One may check by dimensions that RL
must have generators at least in degrees: two in 4, three in 6, two in 7, and four in degree
9 which already gives at least 26 generators. Things become even worse in other one-
parameter families. For instance in the 2p (81 dimensional) family, one quickly checks
that there are already eight generators in degree 2, twenty three in degree 3, and wildly
out of control thereafter. As before with the SL(3, C) case, it seems that we are only
able to get simple results when there is a finite reflection group somehow involved.

3.8 Some Invariants of G2

For G2 , there are apparently no simple one-parameter families to consider. To show
how bad things are, we will calculate for the reader the polynomials Px1 for three of the
simplest families using Theorem 3.3.3 and Equation 3.10.

The first family we will consider is R(7r) where 7r is the standard 7 dimensional
representation. One may check that Px1 is given by

p(t)
D(t)

where
D(t) = (1 - t2)2(1- _ t3)(1 -t6)(1 _ t7)(1 _ t3)

and

p(t) = 1- 2t2 - t3 + 2t4 +2t5 - t6- 2t7+ 2t8 +3t 9 + t l
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-2t 1 + 2t13 + 2t14 + 2t5 -_ 2t17 + t18 + 3t19 + 2t20
-2t 21 - t22 + 2t23 + 2t24 - t 2s - 2t26 + t28.

As one can see, this is quite horrible. One may check that RL has generators at least in
degree 4, two in 6, one in 7, two in 8, two in 9, five in 10, four in 11, seven in 12, eight
in 13, ten in 14, and that is just the start.

The second family we will consider is R(r,) where 7rp is the 14 dimensional Adjoint
representation. One may check that Px, is given by

p(t)
D(t)

where
D(t) = (1 - t2)2(1 _ t3)(1 _ t6)(1 _ t7)(1 _ t3)

and

p(t) = 1 - 2t2 - t3 + 2t4 + 2t5 + 3t6 + t7 + 4t8 + 6t9 + 6t °

+4t ll + 7t12 + 7t13 + 9t14 + 10t15 + 9t' 6 + 7t17 + 7t18 + 4ti9 + 6t2

+6t 2 + 4t22 + t23 + 3t24 + 2t2 5 + 2t26 _ t27 _ 2t28 + t30.

As one can see, this is quite horrible. One may check that RL has generators at least in
degree 4, six in 6, four in 7, thirteen in 8, fifteen in 9, twenty-four in 10, and that is also
just the start.

The last family we will consider is R(p) where p = r, + 7r3 is 64 dimensional. One
may check that in this case Px, is given by

p(t)
D(t)

where
D(t) = (1 -t2)3(1 _ t3)2(1 t6)(1 - t 7)(1 _- t13 )

and

p(t) = 1 - t2 + 3t3 + 13t4 + 30t5 + 60t6 + 98t7

+145t8 + 188t9 + 219t0° + 238t'1 + 224t'2 + 242t'3 + 186t'4 + 140t' 5

+97t 16 + 53t17 - 53t19 - 97t20 _ 140t 21 - 186t2 2 _ 224t23

-242t 2 4 _ 238t2 5 _ 219t26 _ 188t27 _ 145t28 - 98t29

-60t 30 - 30t31 - 13t32 - 3t33 + t34 - t36.
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Again, this is horrible and the list of necessary generators for RL is really quite outrageous.
The idea of these three calculations is to say that there does not seem to be any simple

one parameter families (as far as their polynomials are concerned) for G2. Looking back
at the last two sections, this appears to be related to the fact that no finite reflection
groups are involved. (For a classification of such objects, see [29]). One possible idea
for cleaning up the results is to look at functions restricted to a different space than the
orbit of the highest weight. This area does not seem to have been very much explored to
date.
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