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ABSTRACT

The optimum phase-locked loop demodulator arises in
a natural way from statistical detection theory when the
received signal is an angle-modulated cosine function that
is corrupted by additive independent white Gaussian noise.
In particular, for a frequency-modulated signal the phase-
locked loop can be revamped into a non-linear feedback
system with the integrated message as an input.

The object of the thesis is to analyze the performance
of the above explained non-linear system. The primary means
of analysis is with the use of digital simulation techniques.
Secondary methods include a quasi-linear analysis and a
linear analysis. Only the simulation analysis provides com-
plete coverage of the system performance for all input sig-
nal to noise power ratios. The other two methods only have
validity over a limited range of signal to noise ratios.

For a means of comparison, the performance of a conven-
tional receiver is also analyzed. Both simulation and
analytical methods are employed to analyze the conventional
receiver.

Finally, the performance of the two types of receivers
are evaluated.

For a given message, the linear analysis predicted
equal performance for both types of receivers.

For a one pole Butterworth message the quasi-linear
analysis predicted an improvement in threshold for the
phase-locked loop of about 6 db. For a two pole Butterworth
message the theoretical improvement was predicted to be
about 11 db.
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For a one pole Butterworth message the simulation
analysis indicated an improvement in threshold for the
phase-locked loop of about 3 db. For the two pole Butter-
worth message the simulated improvement was about 6 db.

Thesis Supervisor: Harry L. Van Trees
Title: Associate Professor of Electrical Engineering
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CHAPTER 1

HISTORY AND INTRODUCTION

1.0 INTRODUCTION

The text of this thesis is primarily devoted to the

demodulation of a frequency modulated sinusoidal carrier

which has been corrupted by additive white noise from the

transmission media. Prior to delving into the demodulation

scheme it seems appropriate that we first review briefly

the fundamental ideas of frequency modulation.

Frequency modulation is a particular type of non-

linear modulation. The modulator varies the argument of

a sinusoidal function according to

S[t,a(t)] = f2P sin [w ct + (t)] (1)

Here the constant /2P is the amplitude of the modulated

carrier and P is the power in the modulated carrier. If

a(t) is defined as the analog message of interest, then

for frequency modulation

t

q(t) = df I a(u) du (2)

_00
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A constant, df is included in (2) because, as we will see

later, its presence strongly affects the performance of

the demodulator. Intuitively, df controls the band width

of the received signal and thus can be associated with the

maximum frequency deviation of the received signal. In

our system, however, since a(t) is a sample function from

a Gaussian random process and hence a(t) can take on any

value, then a "maximum frequency deviation" is a nebulous

concept.

When the signal (frequency modulated carrier) is

transmitted from one station to another it is invariably

corrupted by noise. Throughout this text, the noise will

be considered as additive white Gaussian noise defined as

n(t) = additive white Gaussian noise. (3)

The characteristics of n(t) will be considered later.

Finally, combining (1), (2), and (3) we get the

signal that is received at the demodulator

r(t) = S[t:a(t)] + n(t)

or

r(t) = /2 sin [ct + df J a(u) du] + n(t).

(4)
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1.1 TYPICAL F.M. DEMODULATORS

In section 1.0, it was observed that the information in

the received signal is contained in the argument of the sine

function. The purpose of the receiver then is to extract

that message information from the argument of the received

signal. Note that the message, is in fact, the instantan-

eous value of the frequency of the sine wave. Whatever the

makeup of the receiver, its primary function is to determine

the instantaneous frequency of the modulated carrier wave.

There has been a variety of receivers designed for this

purpose. They vary in complexity and cost. Some appeal to

one's intuition and others do not. Only a few of the many

types of frequency demodulators will be discussed in the

following paragraphs.

The receiver most commonly used for commercial use is

called the conventional demodulator. In a conventional de-

modulator the received signal is usually clipped by a limiter

so that only the time distribution of its axial crossings is

preserved. The output of the limiter is then band pass

filtered to suppress harmonics of the carrier and out-of-band

noise. The result is applied to a discriminator. A discrim-

inator is a device whose output wave has instantaneous ampli-

tude values proportional to the instantaneous frequency of

the input wave. Another filter is added after the discrimi-

nator to suppress noise at the output. Realizations of
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conventional demodulators are clearly described in Schwartz,

Black,2 and Armstrong.3

The advent of the conventional F.M. demodulator repre-

sents a successful first attempt to overcome many of the

noise problems encountered in amplitude modulation systems.

The price that is paid for improved output signal-to-noise

ratio is increased bandwidth occupancy.

One important restriction on the performance of the

conventional demodulator is the presence of a wide band

intermediate filter at the output of the limiter. This

filter passes the message satisfactorily but it also passes

a lot of noise. If there was some way to further suppress

the noise, the system performance would notably improve.

An improved receiver was presented by Chaffee.4 His

aim was to constrict the wide band intermediate filter used

in the conventional demodulator. Chaffee's demodulator

actually compresses the bandwidth of the received signal

to permit the use of a narrow band intermediate filter.

The idea is relatively simple. He used the output of the

post discriminator filter to drive a voltage controlled

oscillator. The frequency of the oscillator is centered

around wc ± WIF' When the output of the oscillator is

mixed with the incoming signal the result is:

t

sin {wIFt + [ai(u) - a i (u)] du (5)
00
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where ai(t) is the instantaneous received message and

ai(t) is the estimate of ai(t). It can be easily seen

from equation (5) that if the error is small the bandwidth

of this signal is much less than the bandwidth of the re-

ceived signal; thus allowing the narrow band filter.

Another method of achieving this narrow band effect

is by using a phase-locked-loop. The essential parts of

a phase-locked loop are shown in figure 1. Here the out-

put of the low pass filter is the instantaneous frequency

estimate of r(t).

:UENCY

IMATE

Figure 1

Phase-locked loop

The voltage controlled oscillator (VCO) physically provides

an integrating action so that an instantaneous phase esti-

mate is fed back to the input multiplier. The output of

the multiplier is a low pass signal proportional to the
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error in the phase estimate. This error signal is filtered

and used to modify the frequency of the voltage controlled

oscillator. Note that, the rate at which the oscillator

frequency can change is governed by the loop filter. We

can think of the output of the voltage controlled oscilla-

tor as "locked" in phase to the incoming signal-thus the

name "phase-locked loop" is appropriate.

The phase-locked loop can be useful for synchroniza-

tion purposes. The first wide-spread application of phase-

locked loops was in synchronization circuits for color

television. They are often used for synchronization in

space communication systems. Also they can be used for

demodulation purposes in almost any analog communication

system.

1.2 THESIS PROSPECTUS

In this thesis we are going to study the performance

of the optimum phase-locked loop analog demodulator. The

results of this study will be realized primarily through

the employment of digital simulation techniques. The simu-

lation results will be verified analytically. To obtain

a frame of reference we will examine the performance of

an "optimum" conventional demodulator. The performance

of the conventional receiver will also be analyzed by

simulation and analytic methods.



13

The thesis will proceed in a straightforward manner.

In chapter 2 we will derive our optimum, realizable, phase-

locked loop demodulator directly from non-linear integral

equations that arise from statistical detection theory.

Chapter 3 will present a complete analytical analysis of

the optimum demodulator and chapter 4 will present a digi-

tal simulation analysis. Chapters 5 and 6 will contain an

analytic analysis and simulation analysis respectively of

the "optimum" conventional receiver.

Each chapter will end with a short summary and discus-

sion of the results in that chapter. Finally, chapter 7

will be devoted to a complete examination of all the results

in all of the foregoing chapters.
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CHAPTER 2

WAVEFORM ESTIMATION AND RECEIVER FORMULATION

2.0 INTRODUCTION

In this chapter we are going to derive an optimum

receiver for the received waveform described by (4). For

this case the received waveform is modulated by a sample

function from a Gaussian random process and is corrupted

by uncorrelated, additive white Gaussian noise. The re-

ceiver will process r(t) in an optimum fashion and give

the best estimate of the original uncorrupted message,

a(t).

General results will first be derived and then they

will be applied to the specific case where we have a fre-

quency modulated, stationary, Gaussian message and additive

white Gaussian noise.

2.1 OPTIMUM WAVEFORM ESTIMATION (GENERAL)

r(t) = St:x(t)] + n(t)

As before the received signal is:

(6)t0 t t1
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where x(t) is a function of the message a(t) and S[t:x(t)]

is a sine wave modulated by x(t). It may be phase or fre-

quency modulation or even a combination of these.

A system that could generate such a signal r(t) is

shown in figure 2. Note that for phase modulation the

linear filter would be merely a straight wire but for fre-

quency modulation it would be an integrator.

Our criterion for deriving the optimum receiver will

be maximum a posteriori estimation (MAP).

Figure 2

Analog com. system

The assumptions for the following results are:

(i) The function x(t) and the noise n(t) are

sample functions from independent, continuous,

zero-mean Gaussian processes with covariance

functions Kx (t,u) and Kn(t,u) respectively.

Note that if h(t,u) represents a straight wire;

then x(t) = a(t) and Kx (t,u) = Ka(t,u).x a
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(ii) The signal S[t:x(t)] has a derivative with

respect to x(t).

After a fair amount of derivation, the MAP estimate for

the function x(t) is:

x(t) = itl
t
O

t < t < t

where, for white noise,

g(z) = ftl

t
Qn(z,u){r(u) - S[u:x(u)]}du t0o t < t 

and

Qn(z,u) = N u (z,u)
N 0

(9)

Equation (7) is the fundamental result from which the optimum

receiver will be realized.

2.2 OPTIMUM RECEIVER INTERPRETATION

Assume:

i) to = - t = +00

ii) Kx (t,u) = Kx (t - u) (stationary)

(10)

(11)

Youla, Reference 6

Van Trees, Reference 7, Chapter 5

(7)

(8)

3s[z:x(z)l tz 3)d
3:R W xt~) ~z d
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N
iii) K (t,u) = u (t - U)n2 

(white &

Then from

stationary) (12)

(9) ,

Qn(t,u) N ( t - u)
0

and from (8),

2

2 uO (z - u) {r(u)

g(z) = N {r(z)
O

- S[u:k(u)]}du

- S[z:x(z)]}

Hence, substituting into equation (7) we obtain

co

0
K (t - z) aS[z:x(z)]
x a a(z) {r(z) - S[z:x(z)] dz

(16)

Now if we choose

r(t) = S[t:x(t)] + n(t)

r(t) = ZV sin[w t + x(t)]C,

as[t:x(t)]
ax(t)

cos [ t + x(t)]
C

g(z)

(13)

-co
(14)

(15)

then,

(17)

+ n(t) (18)

(19)
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Substituting into (16) gives

00

(t) 2 j KX(t-u) c os{Iwcu + x(u) }{r(u) - ii00
-sin [wcu + x(u)]}ldu (20)

Define

Zu = cos [wct + x(t)]{r(t) - 2 sin [wct + x(t)]} (21)

then;

00

(t) = 2 f Kx(t-u) z u(u) du (22)

-00

Equation (22) is the familiar convolution integral and

can be considered as the input to a filter with an impulse

response of Kx(t - u). A block diagram realization of equa-

tions (21) and (22) is shown in figure 3. Note that

Kx(t - u) is an unrealizable impulse response because it is

an even function of time. Also because it is inside the

loop we cannot add delay to make it realizable.

If the loop shown in figure 3 was a linear system we

could make the loop filter realizable and add an unrealizable

post loop filter. We could then approximate the system of

figure 3 arbitrarily closely by including delay in the post
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Figure 3

Realization of (21) and (22)

loop filter. With this fact in mind let us see if we can

make the system in figure 3 approximately linear.

Observe that if the correlation function K(T) is

considered as the impulse response of a filter, then that

filter would presumably have a pass band in the vicinity

of the frequencies in x(t). Therefore, if the message is,

for example, human speech then the filter would resemble

a low pass filter.

Now remember

r(t) = 2LF sin [wct + x(t)] + n(t) (23)

and, zu(t) = 2 cos [ct + x(t)]{V2 sin [wct + x(t)]

+ n(t) - 2f sin [wct + x(t)] } (24)
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Using trigonometric manipulation on equation (24) we obtain

zzu(t) = /P sin [x(t) - (t)] + 2 n(t) cos [wct + (t)]

+ A/ sin [2wct + x(t) + (t)]

- Ad sin [2mct + 2(t)] (25)

Now since we argued that z u(t) is the input to a low

pass filter, we may ignore the last two terms in (25) because

the filter would not pass high frequencies like 2 c. Note

also that the last term in (25) was contributed by the

subtraction operation in figure 3. Hence we may erase that

leg of the feedback path since it contributed nothing to our

system. A new model of our system can be drawn as shown in

figure 4. In figure 4 we have replaced the K(T) filter and

the gain term by a related low pass filter, G(w).

r*) i).r,0

VARIABLE.
P HASF L

X"(t)

1£z Co5E+* ci X OSCI LLA TO R

Figure 4

Phase-locked loop

--

G ()
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This figure is familiar to us from chapter one. It

is frequently called a phase-locked loop where the multi-

plier symbol, in practice, would be replaced by a phase

detector. Note here that zu(t) consists of the first

three terms of equation (25) and that the third term is

of no consequence. Now consider the second term in equa-

tion (25). 

We first decompose the noise n(t) into in-phase and

quadrature components,

n(t) = E [-nl(t) sin wct + n2 (t) cos Wct] (26)

where nl(t) and n2(t) are sample functions from independent

low pass Gaussian processes with spectral density shown in

figure 5. In this case Wn is considered large with respect

to the signal band width but small compared to wc. If we

denote the second term in (25) by n(2 )(t) and use equation

(26) we obtain,

n(2) (t) = - nl(t) sin [- (t)] + n2(t) cos [- (t)]

+ double frequency terms (27)

n(2) (t)- n sin (t)] + n2(t) cos [(t)] (28)1 ~~~~~~~~~~~~28
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, ()

Nlo VOLTS
.t HILRTZ

-WN VWN

Figure 5

Noise Spectrum

Once again w can neglect the double frequency terms because

they will never get through the low pass filter. Now if Wn

is large compared to the bandwidth of sine [(t)] we can make

the approximation,

N
N *

K (2) ()=K Kn (t) = C (29)

Hence we can combine the past several paragraphs of

discussion to come up with a final approximation for ztu(t).

For our system then,

t) = Z(t) r sin [x(t) - (t) + n( 2 )(t)

(30)

See appendix for proof.

4

I
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The system of figure 4 now may be altered again to yield

a model shown in figure 6.

2). N.7

Figure 6

Nonlinear Realization of Equation (23)

Figure 7

Linear Realization of Equation (22)

Note that this model is still a nonlinear system cor-

rupted by additive white noise that is independent of the

message. Remember that our goal was to make our system

linear for the purpose of our in-loop filter. In figure 6,
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if we define e(t) = x(t) - x(t) to be the error in the

loop, then for small values of e(t), the system is approx-

imately linear. The linear model is shown in figure 7.

Now that we have achieved our objective (linear system),

we can make G(w) a realizable low pass filter and then add

an unrealizable post loop filter to approximate the system

shown in figure 3 arbitrarily closely. Our final linear

and nonlinear models for an arbitrary message x(t) are

shown in figures 8 and 9 respectively.

(2).

Figure 8

Final Linear Model for Arbitrary x(t)

(2)

Figure 9

Final Nonlinear Model for Arbitrary x(t)
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In figure 8, G r() is the realizable in loop filter

that replaced the G(w). Gpu () is the post loop, unreal-

izable filter with delay so that we may approximate the

system of figure 3 arbitrarily closely. Note also in

figure 8 that the filters involved can be obtained easily

by solving the Wiener filtering problem.

2.3 OPTIMUM F.M. RECEIVER

We will now use the results of section 2.2 to find a

model for the optimum demodulator. Recall that the received

signal is, for a frequency modulated signal,

r(t) = 2 sin[wct + x(t)] + n(t) (31)

and

x(t) = df I a(u) du (32)

-co00

Notice that the loop in the model of figure 8 will operate

on x(t). Since x(t) is the phase of the received message,

then the loop must be designed to minimize the error in the

loop. In other words the loop must be designed so that

x(i is in some sense the optimum estimate of x(t). We will

be using Wiener filters in the receiver which means that

i(t) will be the optimum estimate in the mean square sense.

Reference 8
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To solve the Wiener filtering problem, we use block diagram

techniques to extract the additive noise so that it and the

message are inputs to the loop as shown in figure 10.

GPo(

Figure 10

Revision of figure 8

Now it is easy to find the optimum Gr(w) that minimizes

the mean square loop error. The next section will present

some equations for finding this loop filter.

Our work is not yet finished. A realizable estimate

of the message a(t) is actually the desired output of the

receiver. Again we have a Wiener filtering problem but of

a slightly different type. When the optimum loop filter

was determined we found it by saying: "Find the optimum

filter, G(w), such that when x(t) + n(3) (t) is the input

we obtain x (t) as the output." Now to find the filter

that will give ar(t) we say: "Find the optimum filter,

Hor (w), such that when x(t) + n(3) (t) is the input weor
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obtain a (t) as the output." There is a distinct differ-
r

ence between the two filtering problems but both of them

must be executed to realize the optimum system. Figure

11 shows the results of our filtering calculations.

(3) .

-- -i I- - - - - - (5)- -_

TV - - - - - - - - - Hon(s) - - J

Figure 11

Notice in figure 11 we have maintained the integrity

of the loop. This is necessary because eventually the

sine nonlinearity will be put back into the forward path

of the loop. The filter Gpr(s) is an extra filter that

is needed to make up the difference between the transfer

function [1 + G'(s)]- Gr(s) and H (s). The relation
r r or

for finding G (s) is

Gpr (S) =pr

[1 + G(s)]
r

G (s)r

H (s)or (33)
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So far we have found the filters that will give the

optimum realizable estimate of the message a(t). If it

was so desired to obtain the optimum unrealizable estimate

aU(t) one would proceed in a similar fashion to the above

argument and find the filter G pu(s). In the simulations

of our optimum systems we will not use G p(s) so it will

be discarded at this point.

After we calculate all the filters for this linear

case, we put them back into the nonlinear model of figure

9. The result is shown in figure 12. This is the final

realizable, zero delay nonlinear model of our optimum

receiver.

(a) C Ne 

Figure 12

Nonlinear Model of Optimum F.M. Receiver

Note that in figure 12 the additive noise has changed.

That is because after the noise was brought out past the

YF', the ~V was absorbed into Gr (w). Therefore when we brought

III1III___IIIYIIP_^I__L�··I�-·�L--·IIII I__
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the noise back into the loop we had no Ad to cross; i.e.,

(3)(t) = n(2) (t)n (t) = (34)

An equivalent version of figure 12 is shown in figure

13. Here a df/jw term has been extracted from G'(w) and~~~~f r

placed in the feed back loop. When we do this the post

loop filters will change slightly as indicated by the

primed filter transfer functions shown in figure 13.

(3) CNpX
PfU l T-

A

a1, i)

Figure 13

Equivalent Optimum Model

2.4 CONVENIENT EXPRESSIONS FOR WIENER FILTERS FOR

FREQUENCY MODULATION CASE

In the final model of figure 13 note that the non-

linearity is inside the loop. This fact dictates that

when we make the linear approximation we must maintain
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the integrity of the loop so that we can put the nonlinearity

back in the proper place.

To obtain the loop filter one can first find the

realizable Wiener filter P(w) to estimate the phase

and then institute the familiar feedback formula

G (w)
p(W) r (35)

1 + G r(w)

to find G(w).

Alternatively, the G"(w) can be found directly by
r

N 2 N
Gr (W (W) + - 1 (36)

In (36) the plus superscript indicates spectral

factorization. To be specific it means that we are to

separate the left half plane poles and zeros from the

right half plane poles and zeros and include in (36)

only the ones in the left half plane. Also this formula

holds only when n(3) (t) is white Gaussian noise. The

Sx(w) is the power density spectrum of the function x(t).

To find Hor (w), the overall optimum linear filter

for estimating a(t) without delay we may use

* Reference 8.

** Reference 7, Chapters 6 and 7.
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or nHor (W) = {S (3 ) (n)}a {S ()}

Jw + f(O) (37)

[Sa() + 2 Sn I
df

Equation (37) is also valid only when S (w) is then

spectral density of white noise, (typically No/2P), where,

F df 2Sa()
f(O) = Log + 2 dw (38)

and simply represents a gain term. In general, this

integral is best evaluated numerically. In a few cases,

long hand results can be obtained.

As an alternative one can find f(O) by another method.

Consider the linearized version of figure 12. The input

to the loop is considered to be x(t) + n(3) (t). Now if

the message a(t) has a spectral density Sa(w), then the

spectral density of x(t) is,

df
Sx() 2= Sa ( W) (39)

L

* Snyder, Reference 14
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From previous results, we know that the spectral density

of n(3 ) (t) is S (3 ) ), or in our special case, No/2P.n 0

Using the frequency domain representation we write

S (Wp() P ( (w) Pr(-w)1 + = (40)
S1 (3) ) Q(W) Q(-W)
n r

Here both P(w) and Q(w) are even functions of frequency

so that the left half plane zeros for both functions have

a mirror image in the right half frequency plane. Hence

both P() and Q(w) are factorable as shown in equation

(40). If we consider the realizable part of P(w) and Q(w)

which is P (w) and Q(w) and write,

p() = + a(J)M-1 + a (J)M-2 + ... + aM (41)

and,

Q(W) = (J)M + bl(J)M + b2(Jl)M-2 + ...+ b (42)

then

f(O) = a - b1 . (43)

* Reference 10.
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CHAPTER 3

OPTIMUM F.M. SYSTEM PERFORMANCE (ANALYTICAL)

3.0 INTRODUCTION

Figure 13 of chapter 2 represents our model for the

optimum demodulator. There remains the task of determining

the performance of our optimum system. We have three alter-

natives for determining the performance. The first is to

actually build the system in the laboratory. The second is

to simulate the model in figure 13 using a computer and the

third is to compute the performance analytically.

To physically build the system in the laboratory would

be quite time consuming and would require a good facility

for circuit design.

The second alternative seems somewhat more palatable.

Computer simulation would be faster. Either an analog

computer or a digital computer could be used for this pur-

pose. Simulation techniques for both types have been well

advanced in the past few years.

An analytical analysis of our model is also a reason-

able approach. However, note that a complete analytical
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analysis of a nonlinear system is in no sense trivial.

For most messages, a(t), a complete analysis is not known.

However, we can investigate the linear regions and get

some idea as to where the system becomes nonlinear.

Booton11 advanced a technique for evaluating the perform-

ance of this system in the region where it is just begin-

ning to become nonlinear.

In this thesis we will use two of the above methods

to evaluate the performance of our demodulator. The first

will be to analytically construct the performance using

Booton's quasi-linearizing method and the second will be

to simulate the model of figure 13 on a digital computer.

This chapter will be devoted to the analytical ap-

proach and the next chapter will explain the simulation

techniques.

3.1 PERFORMANCE CRITERION

Before we can evaluate the performance of the demod-

ulator we must establish some kind of framework from which

we can judge how well the system is working. Remember from

chapter one that the message that we are trying to recon-

struct is a sample function from a random process, a(t).

The output of the demodulator is an estimate of that random

process, ar(t). Hence we can define an error
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e a(t) = a(t) - r(t). (44)

Since both a(t) and (t) are random functions then so is

e (t). Therefore we can talk about the variance of the

error ea (t) and it will be defined as

of = VAR[e a (t) 

The subscript "f" denotes frequency demodulation. Note

that if the error is small, the variance of the error is

correspondingly small and our demodulator is working well.

On the other hand, if the error is large, then af2 is

large. Thus if we consider the ratio 1/af2 , large values

imply good demodulator performance and low values imply

poor performance.

Another parameter which is important to this case is

the carrier-to-noise power ratio in the message equivalent

bandwidth. In symbols

SNR A N hertz 1 (45)NB
eq

where P represents the carrier power and NBeq represents

the white noise power in the message equivalent bandwidth.

In receivers that employ a phase-locked loop there

are two more parameters that give information about how

well the system is performing. They are the phase error

* See appendix for explanation
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variance, x and cycle skips.

The phase error variance is actually the variance

of the loop error, e(t) as shown in figure 13. Formally,

2Gx2 = VAR[e (t)] = VAR[x(t) - x(t)] (46)For small values of the system of figure 13 is operating
x

in the linear region of its performance characteristics.

For large values of a 2 interesting things happen and thex

performance degrades rapidly. By plotting 1/ 2 versus A

we can obtain an additional insight as to what level of

SNR our system begins to fail.

Consider figure 13, and recall that the sine operator

is a modulo-2rr device. When

el(t) = 2 + (47)

the sine operator views this as

e(t) = E (48)

As a consequence of this, the actually large error of

2n + is viewed by the loop as a small error. The

result is that we get insufficient feedback from the loop

and thus a larger error between x(t) and r(t). This

action of the loop is called cycle skipping and its occur-

rence implies degradation of receiver performance. Cycle

skipping is therefore another measure by which we can

judge the performance of our system.
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3.2 ANALYSIS BY THE QUASI-LINEARIZATION TECHNIQUE

In figure 13 when sin [el(t)] = e(t) the sine oper-

ator can be approximated by unity and the system is com-

pletely linear. When this is the case it is straightforward

to compute the error variances. However, we know that e(t)

is not always small, especially for low SNR. When this is

the case the nonlinear operator creates a drastic change in

the performance curves.

Complete analytical analysis of the non-linear system

is difficult. However, Booton11 postulated that if the

sine operator were replaced by an equivalent gain term,

instead of unity, then the resultant quasi-linear system

would perform more like the nonlinear system. A derivation

of Booton's equivalent gain term is given in the following

paragraphs.

If our system was linear and the input to the system

2
was Gaussian with mean M and variance ax , then every vari-x x
able in the system would be Gaussian with mean Mx and vari-

2 *
ance a . However, in general, nonlinear operations on

x

an input function change the shape of its probability

density function. Thus, in our system, when the amplitude

of x(t) - (t) is small, and the linear system approxima-

tion is valid, then et) can be considered approximately

* Reference 17, Chapter 8.
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Gaussian with zero mean and variance a2. With

approximation in mind we can proceed to find an

alent gain" to replace the sine operator.

The incremental gain of a sine operator for

Y [or e(t)] is

ddY [sin (Y)] = cos (Y)

Now since we have determined that Y is approxima

Gaussian then the expected gain can be written a

y2

. ¢ 2ax 
00 x

this

"equiv-

an input

(49)

tely

s

2

cos (Y) dy = e 2 (50)

If we define

2

(:x )
v - e

then

2

2
e

(51)

(52)
1

V 7V

By replacing the sine operator in figure 13 by its equiv-

alent expected gain (52), we obtain the quasi-linear system

shown in figure 14.

Given the quasi-linear model, it remains to compute

2 2
a and af for a given SNR. Using block diagram reduction
OX
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(3) r- C

Figure 14

Quasi-linear model

e4) n i1 -\

Figure 15

G C (S))

A

Figure 16

Complete, zero delay, linear, realizable model

0()

f, _
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we obtain figure 15 from figure 14. Now if,

a(t) <== S () (53)

then

df2
x(t) < ~ Sx() = Sa (W) (54)

and

(4) () oSn (X) Pv . (55)

In general the phase error is caused by two sources.

There is an error due to distortion in the filters and

there is an error due to the presence of additive noise

in the system. If H(w) is the system function that oper-

ates on the phase of the received signal [i.e. x(t)] then

00

X = {Sx(w) 11 - H(w) 12 + S ( 4 ) (w)IH(w) 12 } 2dw (56)

-0c

For this case,

df G (w)
JW

H(w) (57)
df G"(w)

1 +
JW
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Likewise, if H(w) represents the overall transfer function

from a(t) to a(t), then

2= { () I1 - H(w) 2 + S (4) ( 2) ) 12 dw
of I s n 9 I } T (58)

where

H(w) = H(w) G(W)pr()
(59)

For the purpose of investigating equation (56) and

(58) we will use the Butterworth class of power spectral

densities. This family is defined by the two sided spectra,

Sa(w:n) =

2n Tr
k sin 2

+ (/k) 2n
1 + (w/k) 2

for all integers n > 0. The gain term in Sa(w:n) is designed

so that the variance of the spectra will be unity for all n.

2n . W

k 2n dw =

1 + (w/k)2n 2 
1 (61)

-03

Observe that we have a choice on how we are to proceed.

We may choose to design the system filters for one of two

cases. One case is shown in figure 15. Here the signal

(60)
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that must be filtered is x(t) + n( 4) (t). The other case

is shown in figure 16 where the input to the loop is

x(t) + n(3)(t). In either case the resultant filters

will be arranged in the quasi-linear model as shown in

figure 14.

In the body of this thesis, the system filters will

be designed according to the system of figure 16. The

other case will be considered in the appendix.

Example 1

Some details of the operations indicated in equations

(56) and (58) will be carried out for the single pole

Butterworth message Sa (w:l). Only results will be pre-

sented for the higher order Butterworth messages.

Consider figure 15 when a(t) is zero mean and

Gaussian with power spectral density

S () 2 (62)+1

and the additive channel noise is zero mean and white

with double sided power spectral density,

N
Sn(W) = 2 (63)



Now using the symbols indicated in figure 15,

2

df 2

Sx () 2 2 1
oW w +1

(4) ) NSn 2P V .n 2P

Before we can proceed we must compute the in-loop

and post-loop filters for our system. If we revert back

to the completely linear model shown in figure 16, then

the filters G(s) and G pr(s) may be computed with equa-
r pr

tions (36) and (37).

The results are:

,, 1
G (s) =fr df

(y - 1)s + 6s + 1

G,' =2(Y 1)
pr(s) 2s + (y + 1) (67)

where

Y = 26 + 1

43

and

(64)

(65)

and

(66)

(68)
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2 2
6 =d A

f

4P

KN
o

(69)

(70)

Substituting these results into equations (56) and

(58), we obtain:

+J.

2 1

.JOO

or

xx

2 [(y-1)s + 6] [- (-l)s + 6]} + 2df2 V

{~s2 + V + (-1)]s + 6{V S2 -[V + (-1)] s + 6}

(71

2

d+ 6 [(-1)2 + 1 + df~~~[( -l 5vf

ds
*

)

(72)

6v+[v + ( - 1)]

Similar computations with equations (58) and (59)

yields,

2
f =

2v 6 + ( - 1)2 (v + 2)

26v + 26v(r - 1)
(73)

Note that equation (72) is a rather complicated

formula. It can be reduced to a transcendental equation

2 2
involving only ax , df and A. By assuming values for ax

* A table of integrals of this kind are found in reference 12

-
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we can compute the corresponding values for A. In this case

for the one pole Butterworth message, equation (72) may be

inverted to form a fourth order polynomial in A.

a4 A +a 3J + a + aA1A+ + a = 0 (74)

where

a4 = 2dfx 2

2 2 a 2 2a3 = (ax Cyxv

a2 = 8dfox2v -2(x2 - oX2v) (dfv2v + 2df

al = 4xav - 2(ax2 - vax2) (2v) - (df 2vd + df

aO = 8dfv - 2(dfv + 2vdf + df)(2v+)

Once (74) is solved for a set of ax2 and A, then

equation (73) can be solved for the mean square demodula-

tion error. Plots of equations (72) and (73) are shown

in figures (17) and (18).

When similar calculations are carried out for the

second order Butterworth message the following results

are obtained.
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" M s + Ls + NG (s)
df s2 + /2 s + 1

1 T2s + 3
pr (S) M 2s + Ls + N

(75)

(76)

2M2 [ (MN) (--+1) + (L2-2N) N + N2 ( M+ 2) + - 2 M + ]
r J3 J.f 

2MN [_ MN + (ML + 1) +
/v-- -v + v12

(77)

----- +2 (MN) 2 M[ (MN) (ML + 1) + T3 -] + 2/[ (M) ( + /) + _]4 2/7 / /7 /7 /7
2MN [_ MN + (ML + 1) ( -M

/7 /7 /7 / -
+

(78)

M= 2y - f

L = (2y - 1)/M

N = y/M

y = Adf 2

4 = 4 P
N o

a 2
x

v = e

26 - 2/'y + 1

Y+ - 2y + vT3 =

2

2
of =

where

T2 =
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The results of equations (77) and (78) are plotted

in figures (19) and (20) respectively.

Let us divert briefly from the quasi-linear analysis

and consider the system when it's operating in its linear

region only. That is to say,

sin et) = el(t) (79)

or equivalently,

2 2
a < a (80)x - cr

where ace is just an arbitrary constant that implies (79).

2 2
When ax < a c we will say that our system is linear.

For a linear system with a message and white noise

as its input, Yovits and Jacksonl3 derived a useful closed

form expression to compute the variance of the error.

That expression is

co

aopt- NyLog [1 + S()] (81)
~opt ~N 2,f

-C0

Now apply (81) to our special case, the variance of

the loop error can be written as, (see figure 16)
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-No df2
2 N 2P + 2 a)

ax= Log 2 a 2 (82)
:x 2= J2P N 2r' °x - cr

_Co 2P

Also, a convenient expression for the message error

variance as given by Snyderl4 is,

2 1 N 3
of = 2 (2P) f(O) + F(O) (83)

3df

where

2P S () dwf(O) = J Log [1 + N 2 o
N 2 2]7r

2 20 wdf

and

dfF(0) - df2 Log [1 + N 2 ] 2~2P -C o

(84)

Plots of the linear relations are given in figures

21, 22, and 23 for the Butterworth family, n = 1, 2, and

5. Notice that these curves are valid only when the system

is approximately linear. The constraint a2 < a2 must be
x for the linear equations (82) and (83) to hold tcr

true for the linear equations (82) and (83) to hold true.
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3.3 DISCUSSION

The results of this chapter are all embodied in figures

17 through 23. Figures 17 through 20 indicate the perform-

ance of our optimum receiver during operation in the linear

region. In addition they indicate where the system becomes

nonlinear and hence where the performance begins to drop off

rapidly. For the one and two pole cases, Booton's quasi-

linear method shows that the systems become nonlinear when

x2 one radian2. Comparing the one and two pole cases we

see that the linear region performance is a whole order of

magnitude better for the latter case. Also notice that for

larger values of df, the threshold occurs at a considerably

lower value of SNR. Booton's technique was not applied to

the fifth order Butterworth case because of the complexity

of the computations.

Figures 21 through 23 are the results using strictly a

linear analysis. As would be expected, these linear analysis

results do agree with the quasi-linear analysis results for

large values of SNR.
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Two pole message

Realizable - zero delay mean square error
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Five pole message

Realizable - zero delay mean square error
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CHAPTER 4

DIGITAL SIMULATION OF OPTIMUM DEMODULATOR

4.0 INTRODUCTION

This chapter will be devoted to the performance

analysis of the system in figure 24 by using digital

simulation techniques.

II) C M JJ

Figure 24

Optimum Receiver

Note that Figure 24 is the optimum receiver that was

derived in chapter two. It is redrawn here merely for

convenience. The filters used in this model will all be

zero delay, optimum Wiener filters.

C

· ll , . .P.,. l . __
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4.1 DIGITAL MODELING

An obvious difficulty with figure 24, as far as

digital simulation is concerned, is that it is an analog

system. The message a(t), the noise n (3 )(t) and the im-

pulse response [hi(t)] of the filters are all continuous

waveforms. Our problem then is to find an equivalent

digital model for these three components. The following

three sections will explore the digital modeling of hi(t),

a(t) and n(3 ) (t), in that order.

4.1.1 SAMPLED DATA MODEL OF CONTINUOUS FILTER

From the process of Wiener filtering we automati-

cally obtain the frequency domain representation for the

continuous optimum filter.

In the continuous case the relationship of the input

x(t) and the output y(t) of a linear filter is given by

the familiar convolution integral (figure 25)

00

y(t)-= h(T)x(t - iT) dT (85)
-00

If x(t) were as shown in figure 26-a then a sampled

data version of x(t), call it Xn(t), is shown in figure

26-b. Mathematically

coCO

xn( t) = I x(nT) u(t - nT)
0 

,~~~~~1 1 _. 1_ .
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Likewise, if h(t) is the impulse response for the

continuous filter, then

o

hn (t) = h(nT) uo (t - nT) (86)
0

is the impulse response of the sampled data filter. The

problem then is to find the frequency domain expression

for hn(t). If we consider (86) as being the product of

function h(t) and a unit impulse train

0(n) u(t - nT) 

Figure 25H

Figure 25

.1

b

Figure 26

I__IP _ IU�I__�___1 -^II�-)ILLIIPIIIIII·11�1
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L{h(t)} = H(s) (Laplace transform)

L {T(nT)} = L I
0

uo(t - nT)
1
-sT1- e

h (t)n

or

H (s)n

= h(t) T(nT)

= H(s) * 1
1 - e

where the symbol * indicates the complex convolution

operation. t Formally,

H(p)
1

1 -T(s-p)

If

LIM H(s)
s500

has all its poles in the left half s plane,

t Reference 15.

where,

and

60

then

(88)

(89)

(90)

j) ooHn (5) - 21J

-j
dp (91)

= 0

and H(s)

(92)

then

- - * - - - A n - -
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by applying the methods of contour integration where the

contour encloses the entire left half plane, then

Hn (s) = X Residues of{H(p)
poles of H(p)

If we define

sT
z = ea

then we can rewrite (93) as

H(z) I Residues of{H(p)
poles of H(p)

1
_ (. (93)

1 - e

(94)

1

1 - epT z-1
(95)

Example 1

Find H(z) for,

H(s) = 2 1
s + V s + 1

Hence

1

(p) = (p + P1) (p + P2)

(96)

(97)

where

-p 2 [1 + J]
Pl 2 2 (98)



then

RES (P) - PTz]
1 - e pTz1P

P=P1

1

+2(1+J)T -1
1 - e z

(99)-

and

RES [H(p) 1

P1 -e-pTP 2-P=P2

' 1

Z2--1
+-e z(-J)T -1

1 - e z

(100)

Summing (99) and (100) and combining the result gives

the answer:

-J T
2

H(Z) =
sin [(//2)Tl z -1

(101)

- /2 T
1 - 2e

-1 -+ e T -2
cos[(/2/2)T]z + e z

The problem remains to interpret H(z) so that we may

realize it on a digital computer. Consider H(z) to be the

transfer function for a digital input X(z) and digital

output Y(z),

H (z =Y (z) P(z) (102)
X(z) Q(z)

62
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Cross multiplying (18) yields

Y(z) Q(z) = X(z) P(z)
*

(103)

By converting back into the time domain difference

equations we can realize the filter on the digital com-

puter. An example will serve well in demonstrating the

technique.

Example 2

Using the system function in (101) we obtain

- V T
2

Y(z) -H(z) X z)
sin [(/2 /2)T] z-1

2 T

1 - 2e
-1 -/2 T -2+e z

(104)

or

2 T
Y(z) = f e 2

- -T
+ 2e 2

sin [(/J/2)T]}X(z) z-1

-1 -[e/2 TY(Z -2
-[e ]Y(z) z

(105)

* Reference 16.

cos [ -2) TI 

cos [(V-22)TIY(z) z
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From transform theorems we know that, in general, if

we multiply a function in the frequency domain by e as , then

the time domain expression is delayed by "a" seconds. Like-

wise if

F(z) v f(t)

then

F(z) z n > f(t nT) (106)

Applying (106) to (105) yields

- 2 T
y(nT) = { e 2

- -T
+ {2e 2

sin [(/2/2)T] x(nT - T)

cos [(/-/2)T]} y(nT - T) - e Ty(nT - 2T)

(107)

Rewriting (107) yields

y(nT) = bx(nT - T) + b2y(nT - T) - b3y(nT - 2T) (108)

where the b are obvious.
1

Equation (108) is immediately realizable in a block

diagram representation that is compatible with the digital

computer. See Figure 27.
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(TT)

3 II -

Figure 27

Digital model of H(s)

(Circles indicate a unit delay and squares indicate gains)

As a summary of this section we will outline the

method. First, Wiener filtering yields a continuous filter

H(s). Second, find the digital equivalent H(z) by using

(95). Third, rewrite the transfer function as in equation

(103). Finally convert (103) to the time domain and inter-

pret the result as a block diagram. In the appendix we

list some filters and their digital equivalents.

4.1.2 SAMPLED DATA MODEL OF MESSAGE a(t)

For our system a (nT) is to be a sample function from a

zero mean Gaussian random process. In addition, it is to

have a known spectral distribution and unit variance.

We will generate a(t) using the digital computer. In

so doing we are automatically taking care of the requirement
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that a(t) be converted to a sampled function, a(nT). It

remains to give a(nT) the proper statistical and power

characteristics.

For our first problem we will make a(nT) a zero mean

Gaussian function. The IBM-7094 computer has in its

library a random number generator the output of which has

a uniform distribution between zero and one.

%

Figure 28

First let x1 and x2 be two independent variables from

px(x) and then define

= 2x 1 (109)

z = i-2 Log(x2) (110)

(111)ql = z sin 

(112)q2 = z cos 
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If the transformation (109) - (112) are correct, then gl

and g2 will be independent zero mean Gaussian random

variables. To prove this, one needs only to show that,

given gl and g2 e is a uniform distribution and

Z = v' 2 + g22 is a Rayleigh distribution. Hence

41 z sin 
- -= tan 8

92 z cos 

8 = tan 1

g2
(113)

Davenport and Root1 7 shows that (113) is a uniform

distribution, and

2
z = -2 Log (x) (114)

2
z

x = e (115)

P(z) = - -1 (116)

Carrying out the indicated operation in (116) we obtain,

2

P(z) = (l)ze

Suppose, gl and g2 were independent N(o,l); then if

L

(117)
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2

gi
z =gl 2 + g2

2 and P(gi) = e 2 (118)

and we make a suitable change of variable to polar

coordinates, then

2
2rr z

P(z) 2e 2 de

P(z) = ze (119)

Since equation (117) and equation (119) are the same,

then we can deduce that gl and g2 are in fact independent

zero mean Gaussian random variables. The transformations

(109) - (112) are easily executed on the computer.

We have made our source Gaussian so the next problem

is to mold the spectrum of a(nT) into one of our choice.

First we will make a(nT) have a flat spectral distribution

and then pass it through a filter of our choice to obtain

the final message.

The variables gl and g2 can be represented as in

figure 29a. Each rectangle represents an independent

Gaussian variable so that we may consider their statis-

tical character easily. The letter T is the sampling

rate. Since the variables have zero mean, then their

L
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(a)

Independent Generated Variables, Gaussian Distributed

T

.R (r)

?
T

(b)

Correlation function of gi

_L
T

, SJ(f)

0

(c)
T

Power spectral density of gi

T (d) T
Normalized power spectrum of gi

Figure 29

f

- - - - - - - - - - - - - - - - - - - - - -

-~~ w !v 

r

I - . . - .
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covariance function equals their correlation function. The

correlation function for the process in 29a, is shown in

29b. We know that the power spectral density for a sta-

tionary random process is given by the Fourier transform

of the correlation function. For completeness, by defini-

tion

Si(() = R(T)e - dT, = 2f (120)

Carrying out the indicated operations yields

S() = T [sin T2 (121)
wT

A sketch of Si ( ) is shown in figure 29c. This

spectrum still does not appear flat with unit height. If

we pass gi through a gain of 1//T then we obtain the spec-

trum shown in figure 29d. Note that if we pass S(w)

through a filter whose highest frequency of interest, fh'

is much less than fm = l/T, then we can consider S(w) flat

with unit height. The point here is that the sampling rate

T must be sufficiently small so that the approximations

f f T (122)

and

S() = 1 If < fh (123)

are valid.
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In this thesis we will only consider the Butterworth

family of messages given by

2n Tr
= sin 
K n 2n

Sa(:n) =2n

+ (K)

(124)

where K will be taken as unity for simplicity.

The above discussion is best summarized with an

example:

Example 3

Suppose we wanted to generate the message

(125)S (w:2 ) = 4
w +1

Sa(w:2) =
( /22 ) (2r2 )(_-2 + ) jw + 1)( 2

From transform theorems and S(w) = 1

Sa(w:2) = S(w) IH(w) 12

Sa (w:2) = IH() 12

Sa( :2) = H(w) H*(w)

(126)

(127)

(128)

(129)
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S (w:2) J2f -
H(w) = 2 (130)

H*( ) s + 2 s + 1

Hence to generate Sa(w:2) we have merely to pass the

normalized version of gl through the filter given by

(130). Naturally the filter H(w) will be realized in

the sampled data framework.

4.1.3 SAMPLED DATA MODEL OF NOISE n(t)

The last continuous system variable that we need to

cast into the digital framework is the additive noise,

n(t). In 4.1.2, when we were developing the Gaussian

structure of the message, we were dealing with two inde-

pendent Gaussian random variables. We need only to take

the other variable and treat it as the additive, independ-

ent, zero mean, white Gaussian channel noise. All of the

arguments that went into developing the message also hold

for the noise. Instead of going through it all again only

the significant results will be presented here.

We want the channel noise to be white with two sided

spectral density of No/2. Hence the normalizing factor

for g2 will be No /2T so we get the result shown in figure

30. Once again the approximation (122) must be maintained

to insure
N

Sn() = If fh (131)

where fh is the highest message frequency of interest.
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We will not use a filter on the noise source because

the loop filter will take care of the out-of-band noise.

4.2 OPTIMUM F.M. DEMODULATOR, DIGITAL MODEL

By applying the results of section 4.1 to the continu-

ous F.M. system shown in figure 24, we can obtain the equiv-

alent digital model shown in figure 31.

I _ amT1

Al.
Z

$

Figure 30

Additive "white" channel noise spectrum

Figure 31

Digital model of F.M. demodulator

_ \

)
71
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Even though the message and the noise are in digital

form we will still define them as a(t) and n(t) respec-

tively and leave their digital nature implied. When the

three filters are expressed in their appropriate digital

form, then figure 31 is the complete digital model of the

demodulator. The system is now ready to be simulated on

the digital computer.

Let us divert from the complete model for a moment

and concentrate on the two integrators in figure 31. Note

the presence of the "T" in the gain term for the integra-

tors. Intuitively it is clear that the "T" is necessary.

Mathematically the presence of the "T" is difficult to

18
justify but it has been done by Papoulis. The "T"

factor must premultiply all filters that are expressible

as ratios of polynomials in the frequency domain and whose

numerators are at least one degree less than the denomina-

tor. For filters with equal powers in the numerator and

in the denominator we are required to divide them out so

that the numerator is one power less. The "T" term is then

to be placed in the remainder term.

Example 4

s+3 2
H(s) = s + 1 = 1 + [see figure 32] (132)

Now we can revert back to the complete digital re-

ceiver. In the simulation we compute the phase error
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Figure 32

Realization of H(S)

variance and the mean square demodulation variance as it

was explained in chapter 3, section 3.1.

2
f = VAR [a(t) - a(t)] (133)

and

2

°x = VAR [x(t) - (t)]

For the sampled data model, (133)

(134)

and (134) can be

written as:

2 1 Ma = -I

2 1 M
ax = i-

i=l

[a(t) - a (t)]2r

[x(t) - r (t)12r

(135)

(136)

j

)

I
i

i
i
II

I

I

II
I
I
I
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where M is the total number of Gaussian random numbers

put into the system. Clearly, the greater we made M, the

more confidence we have in the resultant. Also, if we

make N independent runs with M numbers in each run, then

2

2 af
afN =- (137)

In other words the variance of the mean square error

variance, afN ' decreases linearly with the number of runs.

Ideally, then for our system we want to make M and N as

large as possible. Computer availability precludes this

ideal situation so we have to compromise between the length

of a run and an acceptable confidence level. After one

performs a few simulations he gets a feeling for the length

of time it takes for the system to reach a statistical

steady state. In the next section, we have an example

that demonstrates the length of time that it takes for a

typical system to reach steady state.

4.3 SIMULATION RESULTS AND DISCUSSION

Optimum receivers for the first and second order

Butterworth messages were simulated on the digital com-

puter. Also, a second order receiver was used to demodu-

late a fifth order message. For the latter simulation

* References 17 and 19.

L.
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the system was sub-optimum so that only limited conclusions

may be drawn from the results.

Performance curves for the first order case are shown

in figures 33 and 34. Referring to figure 31, the appro-

priate filters for the first order message are

Ga(s) = s+l (138)

G"(S) =(y - )s + 6 (139)
r s(s + 1)

' (s) = + 1 (140)pr ( 1 - l)s + 6

where

2 2 44P62 df2A A
=f , A KN

y = V26 + 1, K = 1

In figure 33 we see that the nonlinearity enters into the

system performance when the mean square phase error is

2
approximately 0.5 radian . Note how nicely the simulation

reveals the performance characteristics below threshold.

That portion of the curves would be nearly impossible to

plot using any other method except the actual laboratory

experimental situation. Figure 34 shows how the loop

performed in estimating x(t). This plot is made modulo-27.

* Zaorski20 did a similar simulation.
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Performance curves for the second order case are

shown in figures 35 and 36. The Wiener filters for this

case are described by

Ga (s) = 2 (141)

M s + Ls + NG"(s) =M s +Ls + (142)
r - df s2 + s + 1

, = 1 T2s + 3
G (s) = m 2 (143)

s + Ls + N

where

M 2y - 2 T2 = 2 - 2/ y+ 1

L 2- -1 =3 y 2y+ V2

_ 2

M = df A

for tescnodrafK= 1 A 4-=K
KN

0

Figure 35 shows the mean square demodulation perform-

ance. Notice for this case that the linear region per-

formance is about an order of magnitude better than for

the one pole case. Also, the threshold for the corre-

sponding curves for a given d has measurably improved

for the second order case.
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For this second order case the threshold occurs very

2roughly at a phase error variance of 0.2 radians . It

appears that the ao2 at threshold might be an inverse

function of df.

The fifth order simulation is shown in figure 37.

For this case we put a fifth order message into a second

order system. Hence these are sub-optimum performance

curves.

For all of the above simulations a sampling rate of

.002 seconds was used. This value of T was at least

twenty times faster than any of the time constants en-

countered in the above systems. Also, .002 seconds is

about 500 times faster than the message correlation time

so that the spectrum input to the message generation

filter surely looked flat.

In the last few paragraphs of section 4.3 we consid-

ered the characteristics of the variance of the mean

square error variance. In the simulation results this

parameter manifests itself clearly. Figure 37.1 is an

example showing how the mean square error variance varies

with the length of the simulation. Observe that the var-

iance settles down after an initial transient condition.

This demonstrates clearly that afN + 0 as N + o (afN

is the variance of mean square error variance). These
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particular data were taken from a system operating below

threshold. Much smaller transients occur when the system

is above threshold

Often in commercial systems, bandwidth occupancy is

an important consideration because of bandwidth constraints

put on the system. In the analysis of this chapter we have

implicitly assumed that we have sufficient bandwidth in the

transmission media to accomodate the frequency modulated

signal for all values of df. This tacit assumption may

have given us biased conclusions in comparing the one pole

case and the two pole case. For example, we concluded that

the linear region performance of the two pole case was ap-

proximately an order of magnitude better than that of the

one pole case. We did not, however, investigate the possi-

bility that perhaps the two pole message occupied more

bandwidth than the one pole case.

In the sequel we will not consider bandwidth as a

system constraint and thus will not pursue this question

any further. Hence, our performance criterion will be

restricted to unconstrained linear region performance and

threshold levels.

The results of this chapter will be further examined

in chapter seven when we have all of the analytical and

simulating data at our disposal.

I
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Second order phase-locked loop
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CHAPTER 5

CONVENTIONAL DEMODULATOR THEORETICAL ANALYSIS

5.0 INTRODUCTION

It is the stated purpose of this thesis to investigate

the performance of the optimum phase locked loop demodulator.

In the foregoing chapters we have displayed the optimum sys-

tem performance in detail but we have left one question un-

answered. That question is: "How well does the optimum

receiver perform?" To answer this question we must have a

frame of reference. We will use the performance of a con-

ventional demodulator as a reference for the performance of

the optimum phase locked loop demodulator. Before we plunge

into the analysis of the conventional system a brief quali-

tative description of the system seems appropriate for the

sake of completeness.

An idealized conventional receiver is shown in figure

38. The received signal is first passed through a rectangu-

lar unit gain filter H(s) centered on the transmitter car-

rier frequency o The signal is then heterodyned into the

intermediate frequency filter H2 (s), which is also rectangular



88

with unit gain. Both filters H (s) and H2(s) are presumed

to have bandwidths wide enough so that they create only a

negligible amount of distortion in the transmitted message.

The purpose of the filters is to reduce the out of band

noise thus keeping the signal to noise ratio at the input

to the discriminator as high as possible. Frequency demodu-

lation takes place in the discriminator, which is a non-

linear device that responds only to variations in instanta-

neous frequency. We model the device by saying that when-

ever the input to the device is

x(t) = b(t) cos [t + ¢(t)] (144)

the output is

d
y(t) = [(t)] (145)

W(t) rzc os W, t

t

S(t) .= /2 cos (wot + df I a(u)du] (146)

W(t) = white Gaussian additive channel noise

Figure 38

Idealized Conventional F.M. Receiver

i

I
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As it turns out in an actual system the discriminator

is moderately sensitive to amplitude variations so it is

necessary to include a limiter to clip off the amplitude

variations.

The final stage in our system is a filter H3 (s) which

is designed to eliminate noise outside the message a(t)

band. In many physical systems H3(s) is merely an RC

filter. In our system H3 (s) will be the optimum Wiener

filter. Since we are ultimately going to compare the

phase locked loop with this conventional system, we want

this conventional system to be the best one possible so

that we don't derive false conclusions about the comparative

performance.

In this chapter we will theoretically establish the

performance of a conventional receiver. In the next chapter

we will verify the validity of these results using simula-

tion techniques.

5.1 CONVENTIONAL F.M. RECEIVER ANALYSIS THEORETICAL

Consider the received signal r(t) that is shown in

figure 38,

t

r(t) = /2 cos [ct + df J a(u)du] + n(t). (147)I f
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The amplitude A2 and the carrier frequency are constants

and n(t) is a narrow band Gaussian noise whose power

spectrum is N/2. a(t) is the message that we are trying0

to decipher and for our purpose a(t) will be of the

Butterworth family. The noise n(t) is the filtered ver-

sion of the white channel noise and is independent of the

message a(t). We can write n(t) in its in-phase and

quadrature components as

n(t) = -n c(t) cos wCt - f2ns(t) sin w ct (148)

Hence (147) becomes,

t
r(t) = [J2 + n( t)] cos [Wct + df a(u)du] - A n (t)sin wct

c c fj s c
-O

(149)

t
r(t) = R(t) cos [act + dfj a(u)du + ] (150)

-00

where

- / n (t)
6 = tan (151)

22P + n (t)
c

when the input carrier to noise power ratio is large, nt)

and n (t) are much smaller than /2 most of the time, then

n t)
(t) (152)
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Hence, most of the time

t n
n (t)

r(t) R(t) cos [w t + d a(u)du + ] (153)

-00

is the input to the discriminator. The discriminator output,

as stated before is the instantaneous frequency of r(t)

;
A (t)

f(t) = df a(t) + (154)

In the frequency domain the power spectrum of (154) is,

2
(w) = df Sa(w) + N( M) (155)

' 2 o
(~) = fSa(w) + 2P (156)

A graphical description of how the noise enters into our

problem is shown in figure 39.

Equation (156) is the power spectrum of the output of

the discriminator. This is the spectrum that must be

filtered. If we consider the first and second order

Butterworth messages, the appropriate zero delay Wiener

filters can then be determined. The spectra and the

associated filters are given in table 5-1.
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2
A =A = 1 + a + ¥

a2 = df2 A
2 A

2 2 1
w +1 s + ys + a=/ 2 + 1

2Z: als + a21~ = /~ 2:e + 1A - N0

2y= d A
f

-a+ = 2y± - 2v/2 + 1
2/-2 a~lS + 24~ I + 3]s+ s + ½_+1 Ls +Y a] [2 + Y 2y7 + -

4V P
A= N
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Table 5-1

Post Discriminator Filters

The problem remains to compute the mean square

demodulation error,

2
(157)

where a(t) is the delivered message and a(t) is the estimate

of the message at the output of the Wiener filter. Again,

7-
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Oa

f = J {Sa ( ) I1 - H3(W) 12 + N(w) IH3(w) 12} (158)

is the appropriate equation for the mean square error. If

we proceed to apply (158) to the terms in equation (156) and

table 5-1, we will obtain a straight line performance curve.

Obviously this could not represent the true performance of a

conventional receiver because we know for low SNR the system

should become nonlinear and exhibit a threshold. The problem

with the above development is that it does not take into ac-

count the system nonlinearly. The source of our error is in

the approximations (152). There we assumed that the received

carrier power was much greater than the received noise power.

Rice21 conjectured that the discriminator output noise

spectrum was not just one term but two terms and is given by

N2 2 N
N () = {4r [N + N] + 2 } (159)

Here N+ and N are the expected number of times per

second that the discriminator input noise phase increases

and decreases by an odd multiple of radians respectively.

Lawton22 applied Rice's ideas to the case of a zero

mean Gaussian modulating signal. Some of Lawton's results

will be presented here. For the Gaussian message,
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N = IF B e - u 1 + 2au2 du (160)
+ 3 ivU 1e

where p is the carrier to noise power ratios in the IF

bandwidth at the discriminator input (see figure 39-a)

P P
._

2 2
P =N N

2 IF+ BF2 IF 2 I

P
N BiFo IF

(161)

(162)a df2 3[power in a(t)]222BiF
IF

BIF is the IF bandwidth expressed in Hertz.

Carrying out the indicated operations in (160), we obtain,

/
/ BIF )2(-_-)

N+ = 1 /2 dfe- / 1 + / df
4 T V'Wff f / 3 p

4/

(163)

Since we are dealing with a random process we may assume

N = N and proceed to find an expression for (159). That

is
N

N () 2 + 2 (164)
a 2P{2+m}

and

and



P . .
N B

2 = (4P)V2w dfe IF
0o

/ B 32
/ 2' BIF + 3 X

/ f N(
o

Note that (165) diminishes rapidly for large P/NoBIF

and thus yields our previous noise term N w2/2P. Now we0

can calculate the mean square error for our system with a

degree of confidence. Proceeding with (158) for the

one pole Butterworth and using table 5-1 and (164) we

obtain,

1

2

af

1 + a + 
2 3 ~ t+

1 2 (2y - 1)(y + 1) - ( - 2 )a + a2
~1 ~~ + - + -(l+a+)¥(1 +e + 7 2 (1, + a + y)

(166)

where in this case

4P
A -

NO

and

4B 2 BIF A
7rde I / I3

l/ df2 A
(167)

For the two pole Butterworth case

1

of

1

2/2 I5 +Y I

* Newton, Gould & Kaiser Integral Tables, Reference 12.

96

(165)

(168)
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where

[2al2,y + a2y. ] + 2[ 12y + 2a22y]I

b) 15= 2 A + 2al1m 2 + [(2y - a) 2 - 4y ("

+ ( - a 2 ) 2m 4 }

a1 = 2y+ + 1

2 = - 2 y +

a 3 = 2y

a4 = 2+

+

+ 2 /V y +

a5
= Y + 22 +

a 6 = 2 y + 2yi

+ a5a6

a 3 a 6

k) m3 = (a5m2 - a3ml)/y

1) m = (a 5m3 - a 3m2)/y -

m) A5 = y7((a6 m
4 - a4m3 +

a) I3

c)

d)

e)

f)

g)

h)

1

2y*

i) m

j) m,

m2)

-r

- a2)IM3

=-Y 
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and,

'4' V P
A ' (169)

N0

and

A

4t~B / ~- B 32
*2 = V- BIF Af2/- B IF IfBIF ~IAde / (170)

d A

The performance curves associated with equations (166) and

(168) are plotted in the next section.

5.2 CONVENTIONAL RECEIVER THEORETICAL RESULTS AND DISCUSSION

Figure 40 shows the theoretical performance of the con-

ventional receiver when the first order Butterworth function

is the message. These curves do exhibit a threshold and

except for location, the general shape seems to be consistent

with the theoretical curve-sets for the phase-locked loop

case. Notice in the conventional case that in the linear

region, the curves conform exactly with the phase-locked

loop case. Hence preliminary observations indicate that if

the phase-locked loop is to perform better, then it must

give improved threshold occurrence (i.e. threshold should

occur at lower SNR). These conventional receiver curves

were obtained by plotting equation (166).

Figure 41 is the theoretical conventional receiver

performance for the second order Butterworth case. For
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this case the performance in the linear region is more

than an order of magnitude better than the one pole case.

Observe, however, that the threshold occurrence has de-

graded from the one pole case. This is an important dif-

ference from the phase-locked loop case where the threshold

performance improved for the higher order system. These

second order curves were obtained by plotting equation (168).

In the next chapter we simulate the conventional system.

In doing so, we are required to use an intermediate frequency

filter prior to the discriminator. It was found that the

best intermediate filter was one that had a band width of

1.3.df K. Now in the foregoing performance analysis we have

assumed an ideal intermediate filter. In the actual simula-

tion situation we have no such device. Since we are using

a low pass filter of band width 1.3.df-K in the simulation,

then for our analytical analysis we have used the noise

equivalent band width of that low pass filter. For example,

if df = 50 radians per volt, then BF = 32.5 Hertz. A short

discussion of equivalent band width is included in the

appendix. Since both the first and second order Butterworth

messages have the same 3 db point, we have assumed that

the same intermediate filter should serve both systems

equally as well. The validity of this assumption has not

been tested.

The next chapter will describe the simulation of the

conventional receiver.
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CHAPTER 6

SIMULATION ANALYSIS OF CONVENTIONAL DEMODULATOR

6.0 INTRODUCTION

In this chapter we will apply the technique of digital

simulation to the performance analysis of the conventional

demodulator. In general the digital generation of the mes-

sage and noise will be the same as in chapter four. The

filter modeling techniques that were discussed in chapter

four also apply. Since the performance of this system will

be used as the bases of comparison for the optimum system,

then we shall use the same Butterworth family of messages
Act

in an effort to establish a meaningful comparison.

6.1 CONVENTIONAL F.M. DIGITAL MODEL

Consider the conventional receiver shown in figure 38

of chapter 5. The input to the limiter-discriminator com-

bination can be written as,

r(t) = 2 cos [ct + (t)] + n(t) (171)c~~~~~~~~11
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t

(t) = df{ a(u) du (172)

and n(t) is narrow-band, zero mean, white Gaussian noise

across the intermediate filter bandwidth. As before n(t)

can be written as

n(t) = [nc(t) cos (ct - ns(t) sin wCt], (173)

and n(t) is independent of the message a(t).
*

By expanding

(171) and introducing (173)

r(t) = [l cos (t) + / n(t)]cos Wct - [ sin (t)

+ 2 n (t)]sin wct.

(174)

Define, Xc(t)

Xs(t)

= 2P cos (t)

= 2'P sin (t)

(175)+ J2 n (t)

+ V2n (t) (176)

By standard trigonometric manipulations,

r(t) = /Xc 2(t) + X cos [ t + tan-12 (t + Xs

* Reference 17, Chapter 8.

I

where

Xs(t)

Xc (t)
(177)
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Notice that the magnitude of (177) is not a constant

but some random function of time. We assume that the limiter

will take care of that problem. Now the output of the dis-

criminator, as we stated before, is the instantaneous value

of the phase of the input signal. In this case the phase is

explicit in (177):

(178)
-1 Xs(t)

0(t) = tan 1 s ct)
[c (t

and the instantaneous value of (t) is merely given by its

derivative,

(179)
e~t d -l X (t)

(t) = - tan [ X(t)

Carrying out the derivative in (179) yields,

Xc (t) X s(t) - s(t) Xc t)
0(t) = c 

X 2 (t) + X 2 (t)
C S

and we can rewrite (175) and (176) as

t n (t)

Xc(t) = cos [df J a(u) du] + cc f JD~~~~~Y

t

Xs(t) = sin [df J a(u) du] +

(180)

(181)

(182)

,·v

n (t)
5

-
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where the division by 2P to obtain (181) and (182) has

no effect on (180). As before n (t) and n (t) are also
c s

independent zero mean Gaussian random processes with the

same spectral density as n(t), namely,

N
0

Sn() = Sns () =Snc() = 2 (183)

As a check on our result, if we let n (t) and n(t)
c s

be zero in (180) then we obtain

0(t) = dfa(t) , (184)
n(t) I0n(t)-0

which is clearly the desired discriminator output.

The final stage in the conventional receiver is the

optimum post discriminator filter. We will derive the

optimum filter later because at this point we want to

interpret equations (180), (181), and (182) as our con-

ventional receiver. The block diagram representation of

equation (181) and (182) is shown in figure 42.

Note here that the quadrature components Xs(t) and

Xc(t) have contained in them additive, narrow band, white

noise. If the additive noise was not band limited the

large amount of noise power would obscure the message and

the discriminator would not operate satisfactorily. Keep
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Figure 42

Interpretation of equations (181) and (182)

this fact in mind for it will necessitate the use of another

filter in our final digital model.

Equation (180) indicates that we should take the functions

Xs (t) and operate on them as shown in figure 43.

Figure 43

Discriminator Model

7

^ /, \ A.. r
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The "/S" term in figure 42 and the "S" term in figure

43 are frequency domain representations for the mathematical

operations of integration and differentiation respectively.

Digital models of these operators are also given in the

appendix.

Now we want to realize the digital equivalent of our

entire system using figures 42 and 43 as subsystems. In

chapter 5 when we designed the digital model for the addi-

tive noise term, we made certain, by choosing an appropriate

"T", that it appeared as wide band, white noise well past the

message bandwidth. If we take that wide band, white noise

and use it in figure 42 our system would not work. Therefore

we must, in some way, filter the noise. This new filter will

be placed as shown in figure 44, between the two subsystems

of figures 42 and 43.

tS (-t)

[777 1)INI 

Figure 44

Inclusion of the I.F. Filter

...

1_
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We will call this filter the "I.F." filter for it

serves the same purpose as the intermediate filter in

the ideal conventional system of figure 38, chapter 5. It

will be a nity gain low pass filter in our case because

all our signals in this model are at base band. The band-

width, BIF, of this filter is clearly a dominant factor in

the performance of the system. If we make BIF too wide,

excessive noise is permitted to enter the discriminator.

If we make BF too narrow then the message will be dis-

torted. Therefore we must make a compromise between the

two possibilities. A reasonable compromise would be to

find that BF that gives the best system performance.

There are two alternatives for determining the optimum

BIF. We can analytically derive it or we may experimen-

tally determine it. To analytically produce the optimum

BIF would be a difficult task. This is true because we

would have to find the spectrum of

t

cos [df J a(u) du]. (185)

--OO

We do know the spectrum of a(t) but we do not know the

spectrum of (185). Middleton23 presents a method by which

the spectrum of (185) may be determined. Once we have the

spectrum one could proceed to analytically find the opti-

mum low pass filter.
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(i)

Figure 45

Conventional F.M. System-Digital Model

(C.)

ILL
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We will use the other alternative for finding BIF

optimum. Therefore the system will be assembled with a

variable bandwidth I.F. low pass filter and the BIF that

gives the best performance will be chosen as BIF optimum.

The final digital model for our conventional system is

given in figure 45.

The next section deals with the derivation of the

optimum post discriminator filters, with the determination

of BIF and with the simulation results for the Butterworth

family of messages.

6.2 CONVENTIONAL F.M. SIMULATION

To calculate the optimum Wiener filter for the output

of the discriminator we must know the power density spectrum

of the output. In general equation (180) represents the

output in the time domain. One would have a difficult time

finding the spectrum of (180) so let us explore another pos-

sibility. Suppose we consider the weak noise case when the

signal to noise ratio at the output of the intermediate

filter is high. Then we can write

t

r(t) = A2 cos [ct + df a(u) du] + n(t) (186)

-0s
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where

t

n(t) = /2 n(t) cos [t + dff a(u)du]

t

+ /2 ns(t) sin [ct + df{ a(u)du]
-co

(187)

Observe here that nc (t) and n (t) are two low pass pro-

cesses and that they multiply onto a varying frequency

sinusoid. Once again we can show

N
Nc, (W) = 2 
Combnii theCrSuls ied If < BIF (188)

Combining these results yields

df +- ci(t)

r(t) = R(t) cos t + a(u)du + tan A t
. _c f /~2 + /2 n(t)

(189)

As in chapter 5, page the output of the discrimi-

nator is

n(t)
aWN (t) = dfa(t) + nWN~~~~~~~~~/P

ns (t) I << /~ (190)
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The problem is now to filter 0WN(t) optimally where

eWN () =

d2 '2nsin 
d' · Ki2n +X No

1 + (W) n2
(191)

Here we have assumed that n(t) is independent of a(t).

Now that we have the spectrums we can proceed with

the usual Wiener filtering problem. The results for the

Butterworth family are given in table 6-1.

Table 6-1

Message Post Discriminator
Spectrum Filter Constants

a2 = d2 A
f

2 a2 1 y = 2a + 1

2 + (1 a+2(1 (+ a + y) (s2 + s + a) 4
(5~~~4

A
=A N

0

y df2 A

2/ ajS + a2 a1 = .2 - 2/: y + 1

4 + 1 (s + )(s2 + *s + ) 2=y-

4.. Pa +i Y-.A N
0
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The next problem is to find BIF optimum. A transfer

function for the low pass IF filter is

R2dfK
H(s) s + R2dfK (192)

The pole of the filter is set at R2dfK because we know that

the band width of the input spectrum is at least d times
f

the bandwidth of the message spectrum K (we will always use

K = 1). An intuitive feeling for this point can be obtained

by observing equation (186) above.

Simulations were run for various R2 in a system using

the first order Butterworth message and a df = 50. The

performance results are given in figures 46 and 47. Figure

46 shows the actual performance curves and figure 47 illus-

trates more clearly how the performance changes as a function

of the I.F. bandwidth.

Figure 46 depicts an interesting phenomenon. Notice

that the linear region of the curves that exhibit a low

threshold, remains slightly below the expected linear per-

formance. However, the curves that have high threshold

points do reach the expected linear performance. It is

believed that this phenomenon is caused by distortion in

the I.F. filter. For large values of R2, BIF is wide and

the linear region performance is high. However, we are

allowing excessive noise through the filter and this causes

�_� _I___ I�IY·IPIII^II_
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the threshold to occur early. For small values of R2, BIF

is narrow enough to provide for a good threshold but the

rounded corners of the low pass I.F. filter frequency

response is clipping off a little of the message spectrum.

This droop in the linear region performance will be herein

considered as a minor problem and hence the main criteria

for the BIF optimum will be a low threshold. Figure 46

shows that the best threshold occurs when the pole of the

I.F. filter is at about 1.3-df K. This value of R2 was used

throughout the following simulations.

Using the filters shown in table 6-1, figure 45 was

hence fully mechanized and the performance results are

given in figures 48 and 49.

6.3 CONCLUSIONS

The simulation results for the first and second order

receivers are given in figures 48 and 49 respectively.

About a 3 db loss in threshold occurred while going from

the first order case to the second order case. This is

in agreement with the theoretical results in chapter 5.

For both messages the over-all performance curves

remain slightly below that of the predicted theoretical

curves. The magnitude of the difference is about 0.2 db.

This "droop" in performance was predicted on the basis

of what we observed in figure 46
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Further examination of these curves will be made in

the next chapter.
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CHAPTER 7

OBSERVATIONS AND CONCLUSIONS

7.0 INTRODUCTION

In this chapter we will compile the results of the

foregoing six chapters. It will be done in three sections.

The first section will investigate all of the ramifications

of the optimum phase-locked loop receiver performance-

both the simulated and the theoretical cases. The second

section will examine the analytical and simulation results

for the conventional receiver. Finally the third section
' 3

4 ~will utilize the observations made on the first and second

sections to make reasonable comparisons between the optimum

phase-locked loop receiver and the conventional receiver!

7.1 PHASE LOCKED LOOP OBSERVATIONS

In this section we will evaluate solely the performance

of the phase-locked loop. There were three methods that we

used to investigate the loop. One method was the completely

linear analysis, another was the quasi-linear analysis and

the last was the simulation analysis. Figure 50 depicts
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the relationship of the three methods for the one and two

pole cases. For simplicity reasons only the df = 50

curves are shown here. The quasi-linear analysis gives

a fair approximation to the threshold but the simulation

analysis spells it out in detail. For the one pole case

the quasi-linear technique missed the actual threshold

by about 3 db. In the two pole case the error was about

3.5 db. The reason for that large error is not quite

clear. For both the one and two pole cases the quasi-

linear technique indicated threshold at a mean square

2
phase error of about one radian . We know from our simu-

lation results that this is not usually true. In the

simulations we saw that the mean square phase error at

threshold varied somewhat but that it was usually less

than 0.5 radians square.

Now let us consider the two pole message performance

versus the one pole message performance. The quasi-linear

analysis predicted that the threshold would improve by

1.5 db for the two pole case. In the simulation a 1.0 db

improvement was realized thus verifying the prediction of

the quasi-linear result.

The quasi-linear technique cannot display the per-

formance below threshold so let us now concentrate on the

experimental curves. Observe that, for the one pole case

operating below threshold, the performance falls off at



122

a rate of about 4 db per octave. However, for the two

pole case, the performance drops off at 18 db per octave.

As a result, the performance curves for the two cases

intersect at an SNR of 150 hertz . This fact indicates

that there is a range of input SNR where the first order

receiver gives improved performance over the second order

receiver. We can conclude that if our physical system

had a low SNR constraint, then, if we had a choice, we

would choose to build a first order receiver and transmit

a first order message.

Let us now consider the fifth order message simulation

of chapter four. In that case a fifth order Butterworth

message was used in a system designed optimally for a

second order message. Figure 51 compares the results of

that simulation with the results for the same system with

a second order message input. Interestingly enough, the

former case gave improved performance over the latter case.

The reason is clear. The higher order Butterworth message

has a compressed bandwidth; i.e., more of its power in toward

the spectral origin. Thus, less spectral distortion was

realized with the fifth order message than with the second

order message. Also, since the system was perturbed by the

same noise in both cases, the M.S.E. due only to the noise

would not change. The overall effect due to less distortion

and the same noise interference tends to give a smaller mean
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square error. If these observations are typical for a

Butterworth message, then we could say that any Butter-

worth message of order N will give better performance

than another Butterworth message of order M < N when

they are both considered as inputs to the receiver de-

signed especially for the Mth order message. Note that

this is an empirical observation and that it has not

been proven.

7.2 CONVENTIONAL RECEIVER OBSERVATIONS

In this section we will consider only the conventional

receiver. For the conventional receiver we applied three

analysis methods similar to those for the phase-locked loop.

The linear analysis of chapter three holds for this case as

well as for the phase-locked loop because we are considering

the same message spectra and the same additive channel noise.

For the non-linear theoretical analysis, we used the methods

developed by Rice (henceforth called the "Rician" method).

The simulation analysis was again used to evaluate the system

above, at, and below threshold. Figure 52 shows the combined

conventional F.M. results for both the one and the two pole

cases. Once again only the d = 50 curves are shown for
f

simplicity reasons.

First let us consider the theoretical versus the simu-

lated results. The Rician method provided amazingly accurate
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predictions about the conventional receiver performance.

The graph shows essentially no measurable difference in

the threshold. Also below threshold the rate at which

the performance decays is almost identical for the the-

oretical and the corresponding simulated cases. However,

notice in figure 52 that the Rician model did not account

for everything. In general the simulated curves lie a

little below the theoretical curves. The reason for this

difference is clear. Rice's model made an assumption that

is not actually true. He assumed that the intermediate

frequency filter was an "ideal" filter that was wide band

enough so as not to cause any distortion in the message.

Hence he proceeded to derive his model only on the basis

of the noise that was passed by the intermediate filter.

In our system not only do we pass noise through the I.F.

filter but we also create distortion that manifests itself

as reduced receiver performance. It is that extra distor-

tion term that is not included in the theoretical analysis

that is the underlying cause for the difference between the

corresponding curves.

Now let us consider the two pole message performance

versus the one pole message performance. The theoretical

curves predict that there should be a 2 db loss in threshold

for the two pole case and the simulations confirm this fact.

Also, below threshold, the rate of decay for the two pole
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case is 11 db/octave and the one pole case decays at

about 5 db/octave. An intersection of the curves occurs

-lat about an SNR of 450 hertz .

7.3 PHASE-LOCKED LOOP vs. CONVENTIONAL F.M. RECEIVER

Finally we have come to the point where we can make

a valid judgement on the performance of our optimum

receiver. Observe that in figure 53 we have replotted

the simulation curves for df = 50. Included are both the

phase-locked loop simulations and the conventional receiver

simulations. Some points are immediately clear. In both

the one and two pole cases the phase-locked loop gave su-

perior threshold occurrence. For the one pole message

there was a 3 db improvement. For the two pole case there

was a 6 db improvement. The 6 db figure arose because two

things occurred. When we went from the one pole case to

the two pole case, the phase-locked loop model improved its

threshold and the conventional model relaxed its threshold.

Notice in the linear regions that the conventional

receiver curve lies slightly below the phase locked loop

curve. Once again, the I.F. filter problem is showing

itself. In the phase-locked loop we do not generally

have an IF filter so we are not pestered with that diffi-

culty.
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In conclusion we can say that the performance of the

realizable, zero-delay, phase-locked loop receiver is

superior to that of the best conventional F.M. receiver.
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APPENDIX

This appendix will treat those subjects referenced

by the text of the thesis. In addition it will explore

some additional inroads for applying Booton's quasi-linear

analysis technique to the receivers of chapter three.

i) Proof of equation (29)

N
Kn(2) (T) = KC ( Kn T) = u() (29)
n

Consider equation (28)

~~~~~~~~~~~~~(2)n (2)t) = n(t) sin [t)] + n2 (t) cos [t)] (28)

If Wn is large compared to the bandwidth of sin [x(t)] and

cos [x(t)] we can make the approximation

N
Kn (T) = Kn2 (T) = u (T) (A1)

Using this approximation, it follows that a(t1) is inde-

pendent of n(t 1) and n2 (t1). Hence the conditional

covariance function



K (2) (t,u)/x = Knl (t,u)/x + K2
nn

Where

Knl (t,u)/k
ni

= E{nl(t) sin [(t)] nl(u) sin [ (u)] }

.2
= sin

. 2= sin

[k(u)] E[n l(t) nl (u)]

N
[x (u) ] (t - u)

Likewise,

(tu)/ = cos2 N
[ (u)] 2 u (t -

Thus

K (2) (t,u)/ =
n

. 2sin

2+ COS

K (2) (t,u)
n

N
= - 2u(t - u)

Q.E .D.
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(t,u) /x (A2)

UO0 (A3)

K
n 2

u) (A4)

N o

[x(u)] -T Uo(t

N
[3(u)] - uo( t

- u)

- u)

(A5)



ii) Digital Filters
da

a) H(s) = S

b) H (s) = s

c) H (s) +b
s + b

133

Y(nr)

Y(n 1)

d) H(s) n
2s + 2cw sn

P1 = e wnT sin[wnTVl-c 2]

-c T
= 2e n cos[ nT/l-c 2]

-2c T
P3 = e

s + w
e) H(s) = A 2 n

s + 2cw s + 2
n n

-c Tn

= 2e
-c Tn

cos[w nT/l-c 2 ]

cos[w TVl-c2 ]n

-2c T
n

P 3

+ 2
n Y(nr)

P1
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iii) Alternate Receiver Design

Up until now we have used Booton's technique to analyze

the optimum receiver as in chapter 3. As shown in figure

15, G"(s) is an ordinary zero-delay Wiener filter and the
r

1//7 is the gain term advanced by Booton:

2
Cy
x

1 2
- = e (A6)

Suppose we consider a different course of development

than what we followed in chapter 3. Instead of completely

linearizing the system as we did in figure 16, let us find

the in-loop filter for figure 15. In other words, we want

to find the in-loop Wiener filter that minimized the mean

square phase error when

N

Sx ( ) + v (A7)

is the input to the loop. For the one pole Butterworth

message, this in-loop filter is:

g(s a 2) = ( - 1)s + 6 (A8)
s(s + 1)

where 62 d 2 y 2 6 + 1
v f

2
ax 4P

v = e A =
RNo
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Now to find the corresponding post loop filter we

have to find the overall transfer function that minimizes

the mean square demodulation error [i.e., we desire a(t),

not x(t) as before] when (A7) is the input. Carrying out

this Wiener filter problem yields,

H = s[6 - ( - 1) ]
opt s2 - s +6

(A9)

and using feed back techniques we can find the post loop

filter as

2go (s' ) = 6 - ( - 1)
( - 1)s + 6

Now our receiver filters (A8) and (A10) are functions

of the mean square phase error. The new nonlinear system

is shown in figure Al.

Figure Al

Nonlinear System with Booton-type Filters

(Al 0)

. f hi -)
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Actually to theoretically analyze the system, we do

not need to find the filters. Develet24 proposed a

method that will be used here.

For the one pole case, define

2
Sa (W) = 2 2 (All)

W +1

N 2
N () = (A12)

a 2P ~ 2a df

N
N(~) = 2 (A13)x 2

then,

Sa (W) P (U) PR(-w)
1 + Sa () Q (w) (A14)

Carrying out (A14) we find

P(s) = s2 + /2 + 1 s + 6 (A15)

Ql(S) = s + sQ (iS) = S 2 s (A16)

S = 3



If we use Lawton's10 general result that

(A17)Ix T - T
x 11

2Cx = NxIx x x (A18)

and

N
Cf=2 1 {(T1 1) [(T1 - 1)T1 + 2 2] - (T3 - 3) }

df

where Ti and i are defined by

N N-1 N-2P () = s + SN-1 + T SN-2 + ...
z 1 2

and

Q (s) = sN + sN - 1 + N-2 + ...

Then for this low pass case,

T1 =

T =

v26 + 1 1 = 1

2=0

3== 0
T3

137

and

(A19)

(A20)

(A21)
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Hence

I = 26 + 1 -
X

1

22 _2df
2

_ ___

x- 2 [426 + 1 - 1]

2 Ix [I + 1]
f x xC f -2

and

6= 6(a 2 ) = dfAv

A plot of (A24) for df = 50 is shown in figure A2.

Remember that this plot describes the performance of a

receiver that contains Booton-type filters and that Booton's

quasi-linear analysis technique was used to analyze it.

Figure A3 appropriately shows the arrangement.

t IL (N.?

Figure A3

Quasi-Linear Receiver with Booton-type Filters

(A22)

(A23)

(A24)
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Also plotted in figure A2 is the corresponding d = 50
f

curve for the quasi-linear analysis of a receiver with the

usual linear filters (as in chapter 3).

The same sort of analysis as described above was per-

formed for the two pole message. Only the results will be

included here.

Ix = 2p1 - 2 (A25)

2 2~ v2 2 p2 - d 2 [2p - /21] (A26)

af2 2 [3 p - 4/2 p + 4 p - /] (A27)
af - P

where

Adf2

p -

A -N
0o

A plot of (A27) is also shown in figure A2 along with the

corresponding curve for the linear filter case.
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The system of figure Al was simulated on the digital

computer for the one pole case. We first conducted the

simulation for

0 = e(°) = 1 (A28)

which in effect is exactly the same one pole case that

was simulated in chapter four (curve number 1, figure A4).

For the next simulation (curve 2) we used those values of

mean square phase error that were obtained in the first

run

2
axo

=e > 1 . (A29)

We expected to see an improvement in performance but instead

the performance degraded somewhat. Because of the degraded

performance shown by curve number 2, we decided that perhaps

2the a 2 values that were used in run 2 were too large. Sub-x
sequently, curve number 3 was run using smaller values of

2
a 2x The specific values are listed on the graph.x

Curve number 4 was obtained by using the theoretical

2 2
values of 2 for figure A3. These values of a were com-x x
puted using equation A23.
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These results are somewhat surprising because, according

to figure A2, the receiver should perform slightly better

when the Booton-type filters are used. These results show

2.that the best value for a2 is zero which reduced the Booton-X

type filters to those used in chapters three and four.

iv) Equivalent Rectangular Bandwidth

In some texts this concept is referred to as the equiv-

alent noise bandwidth. The idea is best described with an

example. Consider the first order Butterworth spectrum

2K
Sa) = 2 K2 in figure (AS-a):a +

Snc'L)

C

2

o ' o K

(a) (b)

Figure A5

The total power, P, in the message is the area under Sa(w).

In this case P equals one. Now the E.R.B. is the bandwidth

of a rectangle of height S(0) and area P. For this caseaBE -K

E.R.B. = I

P=) P=1 I1

K

r-
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Booton type filters in P.L.L.

,H (w)a 2

Simulation Results

Input Data Output Data 

2

p400 0.0 10.62 0.31 -

(1 200 0.0 6.01 0.83 35
LiQO 0.0 2.45 2.89 14 6J

.. i....i...... CT analyticala~~~~~~~~ xi
[400 0.31 10.59 0.33 4

102.89 1.04 7.6226(2) 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. .3 1.29 56 .. . .2,
400 0.1 10.63 0.31 3,.-..:. -.

0~~~~~~~~~~~~~~~~~~~~~~~: 5 ....... 
(3) 200 0.3 5.84 0.98 41

100 0.8 1.85 3.71 152

423 0 .26 10.85 0.30 31- * 

(4) 249 043 685 0 76 30
147 100 280 261 87j

jo .. j 500 _ _ _ _ _ __~~~~~~~~~~~~~~~~~~~~~~~~~~~........... ~ .i .' ' ' :]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.. .... A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0i
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