
DESIGN OF AN INTERACTIVE SYSTEM FOR PROCESSING PICTURES

by

Margaret Anita Turek

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREES OF

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1974

Signature of Author
Department of Electrical Enilneering. February 8, 1974

Certified by _ _

_-~ 'I / TWesis S3upervisor

Accepted byL -.
Chairman, Departmental Committee on Graduate Students

Archives

\XN 251974



-2-

DESIGN OF AN INTERACTIVE SYSTEM FOR PROCESSING PICTURES

by

Margaret Anita Turek

Submitted to the Department of Electrical
Engineering on February 8, 1974, in partial
fulfillment of the requirements for the
Degrees of Bachelor of Science and Master
of Science

ABSTRACT

The design described here is part of a large computer
system, based on a PDP-11/40 computer, for processing pictures
in digital form. The function of the software modules
described here is that of communicating with the user and
carrying out his commands. Using these modules a user may
initiate predefined processes or define new processes for
the system.

THESIS SUPERVISOR: Donald E. Troxel
TITLE: Associate Professor of Electrical Engineering



-3-

Acknowledgements

I would like to thank Charles Lynn for his valuable

help with the entire project.



-4-

TABLE OF CONTENTS

Page

Chapter 1 -- Introduction

1.1 An Overview of the System

1.2 Structure of the Software System

Chapter 2 -- A Detailed Description of MENU and
PROCES Tasks

2.1 The Structure of Information

2.2 Initializing the MENU Task

2.3 Using the MENU Task

2.4 Using the PROCES Task

2.5 An Example of a Process Specification

Chapter 3 -- Design Considerations

Appendix -- File and Data Set Formats

A.1 The HELP.ASC File

A.2 The MENU.ASC File

A.3 The PTLIST.ASC File

A.4 The NAME.DES File

A.5 The NAME.SYM File

A.6 Task Control Block Variables Visible to
the User

A.7 Data Types

A.8 The NAME.TCB File

A.9 Task Program Format

References

6

6

7

12

12

13

13

15

20

29

33

33

33

33

34

34

36

37

39

41

43



-5-

LIST OF FIGURES

Page

1.1 The structure of an active process 10

2.1 A dialogue with MENU and PROCES tasks 21

2.2 Schematic structure of process NEWPRO 24

2.3 First version of NEWPRO.SYM 25

2.4 Second version of NEWPRO.SYM 27

A.1 NAME.TCB file format 40



-6-

Chapter 1 - Introduction

1.1 An Overview of the System

The design described here is an integral part of a large

multiprocessing picture handling system. The system is being

designed for the Associated Press to handle digital transmis-

sion of news pictures. It consists of a PDP-11/40 computer,

a number of peripheral devices for reading, writing, display-

ing, storing and transmitting pictures and a software system

that will communicate with the user and supervise the activ-

ities of the entire network.

The hardware of the system consists of numerous devices.

The user communicates with the system through a VT05 terminal,

which consists of a keyboard and a CRT display. The system's

main secondary storage device is a disk. Additionally, data

can also be stored on Dectape or magnetic tape. The picture

transmitters and receivers used have recently been developed

and are based on laser scanning. These machines, called

Laserphoto, are capable of scanning 100 lines per inch and

offer substantial improvements in the cost/performance ratio.

The TV monitor used for displaying pictures has a semicon-

ductor memory capable of storing a full frame consisting of

256 by 256 picture elements, with four bits of memory alloca-

ted to each element. A line printer and a paper tape reader

and punch are also available.

The bulk of the system's operations will consist of re-

ceiving and transmitting pictures which will be accomplished



automatically. The PDP-11/40 computer, located in New York,

will communicate via long distance telephone lines with

transmitters and receivers located in several other cities.

It will, therefore, be possible to transmit a picture from

any location to the main computer which in turn will auto-

matically transmit it to all interested parties. Addition-

ally, a user of the system communicating through a VT05 ter-

minal will be able to issue commands to display pictures on

the TV monitor, crop, enlarge, reduce, perform various tone

scale manipulations, add captions, and transmit pictures.l

The list of operations on pictures is not completely defined

at this point, and it is not necessary to do so. The system

is designed in such a way that it can be initialized and

used with a minimal number of procedures. Other procedures

can be defined and added to the system as need arises without

interrupting its operation.

1.2 Structure of the Software System

The software system will consist of the standard PDP-11

monitor, a special supervisor, known as the AP supervisor,

and various tasks and processes. The AP supervisor will

perform many monitor functions such as free storage manage-

ment, scheduling of processes, communication among tasks as

well as communication between processes and the system, and

trap handling. By using traps, a process can request ser-

vices from the supervisor such as I/O operations or storage

-7-



-8-

allocation, and signal "error" and "process completed"

conditions. The AP supervisor is necessary since the above

functions are not available under the standard PDP-11

monitor. Whenever possible the standard DEC disk operating

system monitor is used.

The entities executed under this supervisor are called

processes. They generally represent complete operations on

pictures such as reading a picture into memory, transforming

it in some way, and writing it on a secondary storage device.

The components of a process are called tasks. A typical

process might consist of a control task, an input task, a

transform task and an output task. Each task is a program

written in pure code, i.e. in such a way that no data is

stored in the program itself and therefore several processes

can timeshare one copy of a task program in core. Any data

or pointers to data belonging to a particular instance of a

task is stored in the task's task control block, the TCB.

Each active process, therefore, will correspond to a number

of task control blocks in core containing all the information

unique to that process.

Data being operated on by a process, usually picture

lines, will be passed between the TCB's of a process by the

supervisor. The TCB's of a process contain pointers telling

the supervisor in what order the tasks contained in the

process will operate on data. The T.DAD pointer in a TCB

points to the task's father, the task from which the current



-9-

task expects data. The T.BRO pointer indicates the task's

brother, the task that is to receive the same data as the

current task. The T.SON pointer indicates which task is to

receive the current task's output data. When a process is

being activated, the supervisor receives a pointer to the

TCR block, a single block of memory containing a TCB for

each task in the process. Using the information contained

in the TCB block the process can be executed. When a pro-

cess is completed, the supervisor notes this and purges the

process by deleting the TCB block from its list of active

processes and returning it to free storage.

The relationships between tasks, task control blocks,

and some variables in the TCB's are illustrated in Figure

1.1. TCB's one, two and three make up one process consist-

ing of tasks one, two and three. TCB's four and five rep-

resent a second process consisting of tasks one and four.

Task one, therefore, is shared by both processes.

Two tasks, the MENU task and the PROCES task, serve

special purposes even though they do follow the above rules.

The MENU task always displays the menu, a list of processes

currently defined and available for activation. The menu

display also indicates what parameters must be provided to

activate each process. Given a user request for process

activation consisting of the process name and parameters,

it is the job of MENU task to convert this request into a

TCB block and pass it to the supervisor for execution.



-10-

TCB 1 TASK 1 TCB 4

TCB 2
"I _.- _

TCB 3

4 T T)ArT

'' r f 
1Pcnh

j K

TASK 2

TASK 3

tr- I

TAQ T A

TCB 5

Figure 1.1 - The structure of an active process

T. DAD

T. SON -

X.NEXT

T. PROG-

T DAD

X T. SON

X. NEXT

-T. PROG

T T An
1 .- -

T.SON 0-
Y MN7YVT
T- . D "n.. -.

T P 

T nAn _

T. SON

V MV VT _JA . Cit'* A J1A
_ _ r DD n r,

1. VIN

-*X. NEXT

T.PROG0;

X . _ 

7 .P

I

I

f 
II

'I

L

t-

·Ir -- .. WI

3
i

i,# --
- 7 L- j

.

_
I

i
FL

_ .l .. !-. 1. -- - - L J.IX J %

. · I I · ·

_ 
_ 

-

n II c

L 

e>
... " LI II- It

v-

- ·



-11-

The main job of PROCES task is that of expanding the capabil-

ities of the system by adding new tasks and processes. A

program that is to become a new task must follow certain

rules and must be previously written and assembled elsewhere.

After it is added to the system it can be used as part of a

new process. The creation of a new process involves spec-

ifying exactly how a number of existing tasks should interact.

This description is checked, processed and stored by PROCES

task. When that is completed, the new process will appear

on the menu display and can be activated just like any other

process. The number of processes and tasks that can be

defined in this manner is limited only by the amount of storage

space available on disk. The design and use of these two

tasks is the topic of this thesis.



-12-

Chapter 2 - A Detailed Description of MENU and PROCES Tasks

2.1 The Structure of Information

All the information concerning currently available tasks

and processes is contained in a number of files residing per-

manently on disk. These files can be accessed through MENU

task, but can only be altered by using PROCES task. This set

of files consists of the following:

MENU.ASC - contains the menu display

PTLIST.ASC - an ASCII file containing a list of all processes

and tasks; it is referenced by PROCES task to determine

whether or not a given process or task exists

HELP.ASC - file introducing a new user to the use of the system

NAME.DES - the user must create a NAME,DES file for each new

process or task he defines; it should contain a short

description of the process or task

NAME.BIN - file containing the actual assembled task program

NAME.SYM - file describing a process to PROCES task

NAME.TCB - file containing information about process NAME;

used by the MENU task to activate the process; created

by PROCES task by transforming the NAME.SYM file

Formats of all of the above files are described in

detail in the appendix.



-13-

2.2 Initializing the MENU Task

The MENU task is designed in such a way that no init-

ialization procedure is necessary. The following files are

assumed to exist on disk: ASCII files HELP.ASC, MENU.ASC and

PTLIST.ASC and assembled tasks MENU2 and PROCES. MENU1

should be loaded and execution started at relative location

zero. Current contents of the MENU,ASC file will be displayed

and MENU will wait for a request from the user. The user can

now add new tasks and define new processes by using PROCES

task. MENU task can be initialized in this manner both as a

minimal system described above and after several tasks and

processes have been added to it, provided that the files on

disk created by PROCES task have not been altered or deleted.

2.3 Using the MENU Task

The purpose of the MENU task is to provide the user with

information about the system and to activate processes.

Following every user request, MENU task will display the menu,

execute the request, display an error message if necessary,

and then wait for another request. User requests will appear

on the general communications area of the screen. All dis-

plays will appear on another area of the screen, especially

reserved for that purpose, and will remain there until a new

display is shown. The menu is a list of processes currently

available for activation. Each line of the menu display will

have the following format:



-14-

NAME PP 2' 'P M; Q =V 1
' Q2 =V 2

'... 'QN=VN

where NAME is the name of a process, P's are descriptive

names of required parameters Cparameters that must be spec-

ified to activate the process), Q's are descriptive names

of optional parameters, and V's are default values of

optional parameters.

The following commands are available to the user

under MENU task:

HELP

HELP is a request to display the HELP.ASC file, a

file that lists and describes the commands available under

MENU.

HELP NAME

This is a request to display the NAME.DES file, a file

containing a description of a process named NAME.

DISPLAY NAME.EXT

This is a general request to display an ASCII file

named NAME.EXT residing on disk.

NAME ARGUMENT-LIST

This is the basic command format for activating a

process. NAME is the name of a process listed on the menu

display and must be followed by at least one space. ARGU-

MENT-LIST contains values for required and optional para-

meters. Required parameter values must appear first as a

string of values separated by commas. The values must

appear in the order specified on the menu display. A semi-



-15-

colon indicates the end of the required parameter string.

Optional parameters follow, in the order specified on the

menu, as another string of values separated by commas and

followed by a carriage return. Any number of optional

parameters and any number of commas at the end of the line

may be omitted. Default values will be used in place of

the missing optional parameters.

In addition to activating processes through the user

terminal, processes can also be activated internally by

other tasks. This is accomplished by creating another

instance of the MENU2 task. A single TCB must be created

and the following TCB variables must be set:

T.PROG - pointer to the program control block (PCB) of the

MENU2 task

X.LNTH - number of words allocated for the TCB (must be a

multiple of four)

T.NARG - number of arguments to the task (must be set to one)

T.PAR1 - a pointer to a user line, an ASCII file formatted

exactly as a line buffer containing a user request

to activate the process

In order to activate the process, this TCB must be

passed to the AP supervisor by using the M.PROG trap.

2.4 Using the PROCES Task

The main job of the PROCES task is expanding the system

by adding new tasks and processes. In all respects, PROCES



-16-

task conforms to the rules set for all tasks., It is designed

to be executed as a one task process with no parameters.

It is therefore invoked simply by typing "PROCES" when MENU

task is in control. Once PROCES task is in control it will

identify itself by displaying the words "PROCES TASK" on

the screen. To indicate that it is ready to accept a new

command, it will display a "#" and wait for the user to type

a command on the keyboard. Whenever an error is encountered,

an error message will be displayed and PROCES task will wait

for the next command. The following commands are available

under PROCES task:

HELP

Same as under MENU task, see section 2.3.

HELP NAME

Same as under MENU task, see section 2.3.

DISPLAY NAME.EXT

Same as under MENU task, see section 2.3.

EXIT

This request terminates PROCES task and returns control

to MENU task.

TASK NAME [ON DEVICE]

This is a request to add a new task to the system. The

task program and the NAME.DES file (see section A.4) must be

created prior to this command. The task program must conform

with all the rules in section A.9, and must be assembled in a

file named NAME.BIN. Both NAME.DES and NAME.BIN must be on



-17-

Dectape zero if no device is specified in the request, or

else on the device specified (see section A.7).

CREATE NAME

This is a request to create a new process named NAME.

It is assumed that NAME.DES (see section A.4) and NAME.SYM

files have been created prior to this request and are res-

iding on disk. The NAME.SYM file is checked and the NAME.

TCB file created. The process is added to the MENU.ASC

and PTLIST.ASC files. If any errors are encountered, the

process is not created and an error message is displayed.

The NAME.DES file describes the new process in a free

format for the benefit of a future user of the process.

The NAME.SYM file, on the other hand, has to be much more

precise since it is interpreted by PROCES task and a process

is created according to it.

As previously described, a process consists of a number

of tasks and task control blocks, one TCB for each task in

the process. A process is specified by creating the appro-

priate TCB's. The function of the NAME.SYM file is to

describe the TCB's of a process by specifying how many are

involved and what values the TCB variables in various TCB's

should contain.

Six of the TCB variables, T.PROG, T.NARG, X.NEXT, T.DAD,

T.SON, and T.BRO, describe the structure of the process.

These variables must be set permanently when the process is

created. The user activating the process at a later time



-18-

will have no access to these variables. The other TCB

variables that can be set by the user, T.DEV, T.PRTY,

T.DIR, and T.PAR1 through T.PAR5, may be assigned values

at any time. The description of a task, the NAME.DES file,

should be checked to see which variables in the task's TCB

ought to be assigned values at all. If a variable is to

be assigned a value, it must be classified as a constant,

a required parameter or an optional parameter. In the first

case, a constant value must be assigned at process creation

time. In the second case, the user will be required to

supply a value at process activation time. In the last

case, a default value is provided at process creation time.

At activation time, the value can be changed if so desired.

The exact format of this specification is described in sec-

tion A.5. Every TCB variable that can be assigned a value

at activation time must be assigned to a parameter number.

These numbers correspond to parameters provided by the user

at process activation time. The exact type, range of per-

missible values and purpose of each parameter must be des-

cribed, by the person creating the process, in the NAME.DES

file.

The six variables describing the structure of a process

must be specified for each TCB. The T.PROG entry specifies

the task that will use the TCB. The T.NARG variable tells

how many parameters the task specified in the T.PROG entry

expects. The four remaining variables specify how the tasks



-19 -

of the process will interact.

A task receives its input from its father (T.DAD pointer

in the task's TCB) and passes its output on to its son (T.SON

pointer in the task's TCB). Brothers, tasks linked by T.BRO

pointers, always receive the same input. If a task has

several sons, it will point to one of them by using its T.SON

TCB entry. The remaining sons will be chained through their

T.BRO pointers, starting with the T.BRO pointer in the TCB

pointed to by T.SON. The T.DAD, T.SON, and T.BRO pointers

should form a tree. The tree should connect all the TCB's

in the process. Care must be exercised to prevent loops

in a process, cases where a piece of data could be passed

repeatedly between a group of TCB's. Only tasks expecting

input data should have fathers, and, similarly, only tasks

producing data should have sons.

The X.NEXT pointers in TCB's link all TCB's of a process

into one chain, which is used by the scheduler to locate a

task to be executed. These pointers should link the TCB tree

from the bottom up for most efficient execution. This means

that an X.NEXT pointer may point to a TCBts father or brother,

but never a son.

PURGE NAME

This is a command to purge a process of a task from the

system. Purging involves deleting all references in PTLIST.

ASC and MENU.ASC as well as deleting NAME.BIN, NAME.SYM,



-20-

NAME.DES, and NAME.TCB files from the disk. This command

should be used with caution since a purged process or task

cannot be easily recreated. As a safety precaution, after

this command is issued, the user will be asked to confirm

his request. A "YES" answer will activate the process, but

any other character string will cancel the request.

STORE NAME

This command is used when a currently existing process

is being altered. It assumes that one of the files describing

process NAME (NAME.DES or NAME.SYM) has already been changed.

MENU.ASC and NAME.TCB files are updated.

2.5 An Example of a Process Specification

In order to clarify the use of the MENU and PROCES tasks

this section presents an example of a dialogue between a user

and the system. The process and the individual tasks described

here do not exist in reality, but they do follow all the rules

described previously and should provide a comprehensive

example. The commands described here are also shown in

Figure 2.1. The underlined words are generated by PROCES

task and everything else is typed by the user.

Let us assume that the four tasks, CNTRL, INPUT, TRANS,

and OUTPUT, have already been created. One can check if

this is true by typing "DISPLAY PTLIST.ASC". This request

will display a complete list of currently available tasks

and processes. To get more information about a particular

task or process, say CNTRL, one can type "DISPLAY CNTRL.DES"



-21-

DISPLAY PTLIST.ASC

HELP CNTRL

DISPLAY INPUT.DES

EDIT

PROCES

PROCES TASK

CREATE NEWPRO

error message

EXIT

EDIT

PROCES

PROCES TASK

CREATE NEWPRO

EXIT

NEWPRO GIRL

Figure 2.1 - A dialogue with MENU and PROCES tasks



-22-

or "HELP CNTRL". Either one of the above requests will

display the contents of the file CNTRL.DES. Let us assume

that the four tasks of interest are partially described as

follows:

CNTRL.DES

This task requires no inputs and generates a monoton-

ically increasing string of integers in T.OUT. The constant

increment for successive integers is taken from T.PAR1. No

other parameters are used.

INPUT. DES

This task expects a picture directory block pointer in

its T.DIR TCB entry and a line number as input in T.IN. The

desired picture line is read and a pointer to it is entered

into T.OUT. No parameters are required.

TRANS. DES

This is a task that transforms picture elements using

numerical parameters provided in T.PAR1 and T.PAR2. No

other parameters are used. T.IN is assumed to contain a

pointer to a picture line, and T.OUT becomes a pointer to

a transformed line.

OUTPUT. DES

This task outputs pictures. It expects a pointer to

a picture directory block in T.DIR and a pointer to the

current picture line in T.IN. No outputs are produced and

no parameters needed.



-23-

Given the above information, let us now create a process

named NEWPRO. NEWPRO will read a picture, transform it in

two different ways by using two instances of the TRANS task,

and write the two new pictures on disk. The schematic view

of the process is shown in Figure 2.2. Vertical arrows

indicate that the output of one task becomes the input of

another one. A horizontal arrow indicates that two tasks

receive the same input. As described above, CNTRL task

does not receive any input from any other task and both

output tasks produce no output for other tasks. Figure 2.3

shows a possible NEWPRO.SYM file. The first three lines of

the file indicate that the process consists of six tasks,

has one required and three optional parameters and 378

constants. The total number of variables

given mus

follow.

specify t

the flow

chain all

required.

T.PAR1, t

four, if

and constants

t equal the number of assignment statements that

In the case of NEWPRO, the first ten assignments

he relationships shown in Figure 2.2 and determine

of data in the process. The next five assignments

tasks in an order reverse to the data flow, as

The next three lines describe the control task.

he increment, will get its value from parameter

specified, or else will have the value two. The

input task expects all information about the picture, its

name and, optionally, device, from parameter one. The two

identical transform tasks are invoked with two different

sets of arguments to produce two different transformations



-24-

Figure 2.2 - Schematic structure of process NEWPRO



-25-

TASKS = 6

VARIABLES = 1,3
CONSTANTS = 37
1:T.SON = NU:2
2:T.DAD = NU:1
2:T.SON = NU:3
3:T.DAD = NU:2
3:T.BRO = NU:5
3:T.SON = NU:4
4:T.DAD = NU:3
5:T.DAD = NU:2
5:T.SON = NU:6
6:T.DAD = NU:5
6:X.NEXT = NU:4
4:X.NEXT = NU:5
5:X.NEXT = NU:3
3:X.NEXT = NU:2
2:X.NEXT = NU:1
1:T.PROG = TA:CNTRL
1:T.NARG = NU:1
1:T.PAR1 = NU:PAR 4, '2
2:T.PROG = TA:INPUT
2:T.NARG = NU:O
2:T.DIR = PI:PAR 1
3:T.PROG = TA:TRANS
3:T.NARG = NU:2
3:T.PAR1 = NU:177770
3:T.PAR2 = NU:125252
5:T.PROG = TA:TRANS
5:T.NARG = NU:2
5:T.PAR1 = NU:177700
5:T.PAR2 = NU:52525
4:T.PROG = TA:OUTPUT
4:T.NARG = NU:O
4:T.DIR = PI:PAR 2, NEW PICA
6:T.PROG = TA:OUTPUT
6:T.NARG = NU:O
6:T.DIR = PI:PAR 3, NEW PICB

Figure 2.3 - First version of NEWPRO.SYM



-26-

of the same input picture. In this case, the TRANS

parameters have been specified as constants and therefore

cannot be altered at activation time. Finally, the two

output tasks will create pictures named PICA and PICB on

disk unless something else is specified

and three at activation time.

Figure 2.4 shows a shorter version

This version contains exactly the same

version in Figure 2.3. It has been sho

multiple assignments on a single line.

this the numbers of constants and varia

justed. The two versions will produce

The first version of NEWPRO.SYM may be

the second version will produce a short

in parameters two

of NEWPRO.SYM.

information as the

rtened by using

Note that to do

bles must be ad-

identical TCB blocks.

easier to read, but

er NEWPRO.TCB file.

In order to completely define NEWPRO, a NEWPRO.DES

file must be created. The first line of NEWPRO.DES, which

will also become a line of the menu display, might look as

follows:

NEWPRO PICTURE; OUTPICTURE1, OUTPICTURE2, LINE-INCREMENT

The remainder of the NEWPRO.DES file would describe the mean-

ings of the parameters named above and the function performed

by NEWPRO.

NEWPRO.DES and NEWPRO.SYM must first be created using an

editor. Once that is done, PROCES task can be invoked to

create the process. In the example shown, an error is detected

during the first attempt to create NEWPRO. To correct it,



-27-

TASKS = 6

VARIABLES = 1,3
CONSTANTS = 17
1:T.SON, 3:T.DAD, 5:T.DAD, 3:X.NEXT, 3:T.NARG, 5:T.NARG = NU:2
2:T.DAD, 2:X.NEXT, 1:T.NARG = NU:i
2:T.SON, 4:T.DAD, 5:X.NEXT = NU:3
3:T.BRO, 6:T.DAD, 4:X.NEXT = NU:5
3:T.SON, 6:X.NEXT = NU:4
5:T.SON = NU:6
1:T.PROG = TA:CNTRL
1:T.PAR1 = NU:PAR 4,2
2:T.PROG = TA:INPUT
2:T.NARG, 4:T.NARG, 6:T.NARG = NU:O
2:T.DIR = PI:PAR 1
3:T.PROG, 5:T.PROG = TA:TRANS
3:T.PAR1 = NU:177770
3:T.PAR2 = NU:125252
5:T.PAR1 = NU:177700
5:T.PAR2 = NU:52525
4:T.PROG, 6:T.PROG = TA:OUTPUT
4:T.DIR = PI:PAR 2, NEW PICA
6:T.DIR = PI:PAR 3, NEW PICB

Figure 2.4 - Second version of NEWPRO.SYM



-28-

EDIT task is invoked again. After correcting the error

and invoking PROCES task the second time, NEWPRO is created

successfully and control is returned to MENU task. In

order to activate NEWPRO, any one of the following commands

may be used:

NEWPRO OLD GIRL

NEWPRO OLD GIRL; NOISE1, NOISE2

NEWPRO OLD GIRL;,,5

NEWPRO OLD GIRL; DEFAULT, DEFAULT

In the first case, default values will be used for the number

of picture lines to be skipped and the names of the two new

pictures. In the second case, pictures NOISE1 and NOISE2

will be created by using every other line (the default value)

of picture GIRL. In the third case, default picture names

will be used, and only every fifth line of the original

picture will be included. Finally, in the fourth case,

random names will be generated for the two new pictures.



-29-

Chapter 3 - Design Considerations

MENU and PROCES tasks have been designed with two

opposing objectives in mind, flexibility and simplicity.

Maximum flexibility is necessary to enable the user to

create any kind of a process which may be needed. Since

it is unknown what the specific needs of future processes

will be, PROCES task has been made flexible enough to accept

just about anything. It is also necessary to make the

system simple for the unsophisticated user who is not familiar

with the internal details of the system. A compromise has

been reached. The MENU task is extremely easy to use and is

self-explanatory even to someone with no previous experience

with computers. Adding new processes requires a rather

thorough understanding of the structure of the system, but

in return provides a lot of flexibility.

Originally the MENU task was going to have a question

and answer format. The user would be asked to name a process.

After naming one from a list presented to him, he would be

asked to choose values for the process's parameters in the

same manner. This approach requires short, well defined

sets of values for each parameter, a very limiting restrict-

ion. Another alternative, explaining to the user what is

wanted without listing all the possible values, would limit

the number of parameter categories, which is also undesirable.

In the present system, the person specifying a process can



ask for just about anything as a parameter value, and, by

using the NAME.DES file, can explain to the user exactly

what is needed.

PROCES task assumes the availability of an editor under

the AP system for the creation of NAME.DES and NAME.SYM

files. No editor has been included in PROCES task since an

editor ought to be a separate task, available independently

of PROCES task. The availability of an assembler (under the

AP system or elsewhere) is also assumed for assembling new

tasks.

PROCES task performs a certain amount of checking of the

process specification provided. It checks if data types

specified are compatible with the TCB variables they are

assigned to; if X.NEXT pointers actually do form a chain;

whether the value of T.NARG actually equals the number of

arguments specified for each task; if all T.PROG entires

are defined; and a few other things. There are, however,

two areas left where the user can make mistakes and PROCES

task cannot check them. First, PROCES task cannot check if

a process specification is compatible with the way the tasks

have been specified. A task may require, for example, two

parameters and an input picture line from its father. PROCES

task cannot check if requirements of this type have been

satisfied. Currently, errors of this kind will not show up

until execution time. This problem can be remedied by spec-

ifying an additional file to be created for each task.



-31-

This file would contain information, in a format under-

standable to PROCES task, showing which variables in the TCB

for this task must be assigned data and the type of data

required in each case. The second area concerns the accuracy

of the description of the process, the NAME.DES file. PROCES

task cannot possibly check if the NAME.DES file is correct

since it is written in English and does not follow any strict

format.

Currently PROCES task places a restriction on processes

by not allowing more than sixteen tasks in any one process.

It is very likely that more tasks per process will never be

needed. In case the need does arise, the restriction can be

lifted easily. The three routines checking X.NEXT, T.DAD,

T.BRO and T.SON pointers in a newly created NAME.TCB file use

sixteen bit words for the check. Removing these routines

or rewriting them to use two sixteen bit words instead of

one will solve this problem.

Another possibly undesirable restriction is the assumption

that all TCB's are the same size and thus the task control

block cannot have more than five parameters. In order to

allow a variable number of task parameters and therefore

variable size TCB's several changes would have to be made in

PROCES task. In the MENU task only the calculation of the

amount of memory necessary for the TCB block would need to

be changed.

MENU task in its current form actually consists of two

separate routines, MENUl and MENU2. MENU1 is a very short



-32-

routine permanently residing in core. It does two things:

displays the menu and, whenever a user types a command,

MENUl activates MENU2 with the user request as an argument.

MENU2 analyzes user requests and carries them out. This

arrangement serves a two-fold purpose. First, it allows any

active process to activate MENU2 and therefore any process

in the system can issue a pseudo user request to activate

any other process. The procedure that must be followed to

activate MENU2 is described in section 2.3. Second, it uses

less memory by only keeping a small routine in core perma-

nently and reading the large MENU2 routine into core memory

only when needed.



-33-

Appendix - File and Data Set Formats

The following are the exact formats of all files and

other structures relevant to MENU and PROCES tasks. Please

note that files in memory are always assumed to be preceded

by a standard three word PDP-11 DOS line buffer header, not

included in the descriptions below. A pointer to a file,

therefore, points to the header, and data is assumed to

follow immediately after the header.

A.1 The HELP.ASC File

The HELP.ASC file contains a short description of

commands available under MENU. It is intended to help a

new user in getting acquainted with the system.

A.2 The MENU.ASC File

MENU.ASC is a file containing the menu display. Each

line of the display describes a different process. The

entries have the following format:

NAME P1,P2 PN; Q=V 1, Q2=V2,..., QM=VM

where NAME is the name of a process, P's are descriptive

names of required parameters, Q's are descriptive names of

optional parameters, and V's are default values of optional

parameters. Every time a process is created or purged, the

menu display is altered accordingly.

A.3 The PTLIST.ASC File

PTLIST.ASC contains a list of all processes and tasks

currently available. The entries consist of the name of a



-34-

process or a task followed by a "P" or a "T", respectively.

This file is also updated whenever a process or task is

created or purged.

A.4 The NAME.DES File

A NAME.DES file, where NAME is the name of the process

or task, must be created by the user for every process or

task. It is an ASCII file and must contain all the inform-

ation a future user of the process or task may need. In

the case of a process, the first line of this file becomes

the menu display description of the process and therefore

should follow exactly the format specified in section A.2.

The body of the file should contain a concise description

of the function performed, names, types, default values and

use of all parameters, input/output devices that can be

operated upon, and finally, in the case of a task, a des-

cription of inputs expected from, and outputs produced for,

the use of other tasks.

A.5 The NAME.SYM File

The NAME.SYM file contains a precise definition of a

process. Note that all numbers in this file are assumed

to be octal. The first line of the file must contain

"'TASKS = N" where N is the number of tasks and therefore

also the number of TCB's involved in the process. Next

line contains "PARAMETERS = P,Q" where P is the number of

required parameters and Q is the number of optional parameters.

Next line must contain "CONSTANTS = R" where R is the number



-35-

of statements below assigning constant values. This is fol-

lowed by assignments of values and parameter numbers to TCB

variables. The assignments may come in any order, one per

line. The number of assignments must equal P+Q+R. The fol-

lowing are the three allowable assignment formats for required

parameters, optional parameters, and constant values, respec-

tively.

N: VARIABLE = TYPE: PAR X

N: VARIABLE = TYPE: PAR Y, VALUE

N: VARIABLE = TYPE: VALUE

N is a task number, VARIABLE is the name of a TCB variable

(see section A.6), TYPE is a data type Csee section A.7),

X is the number of a required parameter to the process, Y

is the number of an optional parameter to the process, and

VALUE is the actual value of the appropriate type (see

section A.7). Two or more assignments of the same value

can be combined as follows:

2: T.DAD = NU: 3

3: X.NEXT = NU: 3

is equivalent to

2: T.DAD, 3: X.NEXT = NU: 3

Any number of variables can appear on the left side of an

assignment, and the "PARAMETERS = P,Q" and "CONSTANTS = R"

lines must be specified accordingly. Parameter numbers

must be consecutive, with the required parameters being

numbered 1 to P and optional parameters numbered P+1 to Q.



-36-

A parameter may only appear in one assignment statement.

A.6 Task Control Block Variables Visible to the User

Each TCB variable occupies one word of storage and,

unless otherwise specified, has the value of zero.

T.DEV

This variable contains a system pointer to a device

control block for a task which will do input/output oper-

ations. A device type value may be assigned to T.DEV at

process creation time or at activation time.

X.NEXT, T.DAD, T.SON, T.BRO

These variables contain offsets to other TCB's in the

process. Numerical values not greater than the number of

tasks in the process are assigned to these variables at

process creation time. These values are then converted to

offsets at process activation time. The values should not

be changed at activation or execution time.

T.PROG

This variable contains a program identification code.

Task name values must be assigned to T.PROG at creation

time. The value should not be altered at process activation

or execution time.

T.STAT

This variable contains status flags used for communic-

ation between the task and the system.

T.PRTY

T.PRTY contains a numerical priority of the task.



-37-

Priority can be set and altered at any time.

T.IN

T.IN contains a pointer to a buffer containing an input

picture line. This variable contains a value at execution

time only and is set by the supervisor.

T.OUT

T.OUT contains a pointer to a buffer containing an

output picture line. This variable has a value at execution

time only, and must be set by the task.

T.TASK

This variable may be used in any manner by the task

during execution.

T.NARG

T.NARG contains a number specifying the number of

arguments to the task. This value must be set at process

creation time.

T.PAR1 through T.PAR5

These variables contain the values of the parameters

of the task. Values can be assigned at process creation or

activation time and should be of the type expected by the

task.

A.7 Data Types

The system recognizes five different data types, num-

erical data, picture names, device names, task names and

file names.

Numerical data (type O) is indicated by "NU" and accept-



-38-

able values are any octal numbers, positive or negative,

that can be stored in a sixteen bit word. Numbers preceded

by a minus are stored in two's complement notation.

Picture name data (type 1) is indicated by "PI".

Acceptable values consist of either the word "OLD" or the

word "NEW" followed by a picture name and, optionally, by a

device specification consisting of the word "ON" and a three

character device name. The word "OLD" indicates that the

picture already exists while "NEW" indicates that the picture

must be created and should not exist on the specified device.

Picture names must consist of one to six alphanumeric char-

acters. The only exception is the picture name "DEFAULT"

which indicates that a random picture name should be generated

If a device is not specified, disk 0 is assumed.

Device type data Ctype 2) is indicated by "DE". Accept-

able device names are any of the following, with an appended

digit if several devices of a kind are attached to the sys-

tem: DK, DT, FXR, FXT, KB, LP, MT, SC, SI, TV, and SY.

Task names (type 3) are indicated by "TA" and their

values must be the names of existing tasks.

File name parameters (type 4) are indicated by "FI" and

their values must consist of a file name up to six alpha-

numeric characters) followed by a period followed by a file

name extension (up to three alphanumeric characters). This

may optionally be followed by a device specification consist-

ing of the word "ON" followed by a three character device



-39-

name. The default device is disk 0.

A.8 The NAME.TCB File

The user of the system will not need to concern himself

with the structure of this file since it is produced by

PROCES task for the use of MENU task only. The description

is included here for completeness. A schematic structure of

the file is shown in Figure A.1. The "Number of TCB's" entry

specifies the number of TCB's and therefore the number of

tasks in the process. "TCB block offset" is a byte offset

of the TCB block from the beginning of the NAME.TCB file

header. "First logical TCB" is the number of the first TCB

in the X.NEXT chain and need not be the first physical TCB

within the TCB block. "Offset of variable descriptions"

is a byte offset of variable descriptions from the beginning

of the file. Following these four words are six word des-

criptions of constants and required and optional parameters.

Each six word description starts with a data description word.

The left byte of this word is a one in the case of optional

parameters, zero otherwise. The right byte of this word

indicates the data type. The next four words contain the

value, a constant value in the case of constants, a default

value in the case of optional parameters and no value in the

case of required parameters. These values are updated

using the user's request line, before being inserted into the

TCB block. Finally, the last word of each description con-

tains the destination of the data, a byte offset from the



-40-

! I* I
I !

t II II -I II ztI
I I

4 1

I
i iiiL

Number of TCB's

TCB block offset

First logical TCB

Offset of variable descriptions

data description

value

value \ Constant description
value

value

pointer

data description

0

0

0

0

pointer

data description

default value

default value

default value

default value

pointer
O I

Remaining constant descriptions

Required parameter description

Remaining required parameter
descriptions

Optional parameter description

Remaining optional parameter
descriptions

End of descriptions indicator

I I

t ITCB block
I t
! t

o 4

Figure A.1 - NAME.TCB file format



-41-

beginning of the TCB block. If the value is to be inserted

into several locations, these locations will be chained.

Numerical constants are already inserted into the TCB block

and their address word in the data descriptions is set to

octal minus one. Following the descriptions is an end

indicator and the TCB block.

A.9 Task Program Format

Tasks are generally programs performing operations on

pictures. The function of a task should be limited to one

specific job. If several picture transformations must be

performed, it may be advantageous to write several indepen-

dent tasks. This alternative will offer more flexibility in

defining other processes.

A task program should be written in pure code, i.e. no

data may be stored in the program. This is desirable in order

to allow several different processes to timeshare the same

physical copy of the program in core. Each instance of a

task will have its own task control block where it can store

variables and pointers to files and allocated storage (see

section A.6). A pointer to the task's TCB will be provided

in register five. Values may also be stored in the general

registers, since these will be saved by the supervisor each

time the execution of the task is interrupted. A task should

also be position independent, or written in such a way that

wherever it is loaded, it can be executed with no need to

update any address references in the program.



-42-

A task should consist of three phases, the initial-

ization phase, the computation phase and the termination

phase. The three phases should begin at external entry points

named XY.INI, XY.CMP and XY.TRM, where XY is a mnemonic unique

to the task.

The task can expect to receive its input data through

the T.IN entry in its TCB. Usually, it will be a pointer

to a buffer containing the next line of the picture being

processed. This buffer may be read, but should never be

altered. It is the responsibility of the task to notify the

supervisor when it no longer needs this buffer. The task

must also request the space necessary for an output buffer

from the supervisor. Output is passed to other tasks by

putting a pointer to the output buffer into the T.OUT entry

in the TCB. Whenever the task cannot continue processing

because it needs data or its output buffer is full, it

should set the appropriate flags and execute a monitor call.

2The flags are located in the T.STAT entry in the TCB



-43-

References

1. W. F. Schreiber and D. E. Troxel, Digital Wirephoto
System, Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1973,
unpublished.

2. Charles Lynn, The PDP-11 Picture Processing System,
Technical Report APWP #13, Research Laboratory of Elec-
tronics, Massachusetts Institute of Technology, Cambridge,
Massachusetts, September 13, 1973.

3. Digital Equipment Corporation, BATCH-11/DOS-ll Assembler
(MACRO-11), DEC-11-OMACA-B-D, Maynard, Massachusetts,
March, 1973, p. 1-6.


