
REPORT ON COMPUTER USAGE OF ACCOUNTS
UNDER THE IBM/M.I.T. JOINT STUDY AGREEMENT

GMIS SOFTWARE DEVELOPMENT

NEEMIS Staff
Systems Programming Group

Energy Laboratory in Association with
the Alfred P. Sloan School of Management

Working Paper No. MIT-EL-76-018WP

July 1976

IBM/M.I.T. JOINT STUDY PROGRESS REPORT - PART I

GMIS SOFTWARE DEVELOPMENT

July 1976

C()NT '~ '['('' N I' 1 1TSf3

1. Introduction.. 1
2. Prloqress in Softwire Developmcntt 1

-21e. SEQ UEL 2

2.2. TPRANSACT 3

2.3. Multi-User Interface (UI) 4. . . . 4

2.4. SFQIHEL Database DEscription and ackup Utilities . 4

2.5. PAM Utilization Wcrkspace. 5

2.6. Applications Packaqes 5

2.7. New GMIS esin....... 5

2.7.1. Explnaticn cf Nw (TS Configluration 5

2.7.2. Inter-machine Communicatiorns Mechanism . .. 7

2.7. 3. ;MIS fUsage Mcnitor 7

2.7.14. Current Prrcgrss cn tplementation of New

GMIS 8

2.7.5. Query By RxamFle nhaincements 8

3. Computer Tchnoloqies Used in the GMIS Effort 8

4. Advantages of BM/MTt Jcint S0y Env:ironment in GMIS

Develorpment 9.

5. uqqestions for Technologic!i Tprovements. 1

Appenilix A: Current UJrF of I4 Accounts for Systems

Development11

Appendix B: Project GMIS Progryosq Report - August 22,

1975. 13
Appendix C: o)vrview of iscusicn Topics at I:BM San

Jose, August, 19759 18

A ppe ndix D:

Appendix :

ApFendix :

MIT-SEQUI T

Appendix :

Appe-nlix H:

Appendix I:

Appendi J:

Appendix K:

Append ix L:

Appendix M:

Appendix N:

Appendix 0:

Log of S F(tJFT "od i 'c i (n' .. . *. *

Limitations cf .SFQ!TT. :?'le.~S:' 3

Transaction n1trfcc + Y)>,scription -Reloase 3
XTRAM Fxtel sions

TPANSACT (oima.ns (Sv tax)

Fxplanation of I'RANSACT ommands

TRANSACT PrJ, Command licro Processor Proposa

Proposal for TANSACT' Transaction Fditor . .

Using the pT)FDESC Conmand...

Bulkloading of a Dnatahsc (L3)

Creating Bfi.-ackup DumpsF of S FJ FL, Da+abases .

Saving and Tcstcrii) a SFOIEL atabase

(SEQBACK, SEQPFST).

Appendix P: Savinq and Pestorivq i at.ahas (ESAVE,

DBSCAN) .

Appendix Q: Using SELPP

Appendix R: Datahase Utili2ation Analysis

. 21

-* 31

3 3

.37

.39

. 42

1. 46

64

.67

.73

. .74

. .75

.80

. 1

G1S Progre;s Po. port:

Syst-nr Programming Group

1. Introduction

This report will detail our progress to date on the
systoms programming and development effort relating to the
IB8/MIT Joint Study. This systems effort has primarily
focused on the develorment of the Generalized Management
Information System (GMIS) and its many component software
facilities.

Appendix A provides a list of each V/370 account being
used in the GMIS systems development effort, and describes
how ach account is being used.

Our last GMIS Progress Report detailing our software
development efforts, dated August 22, 1975, is included with
this report as Appendix E. W? will begin this progress
report with work done subsequent to the August 22, 1975
report.

Thore will be five majcr sections to this report:

1) A discussion of ptogress made in each area of GIS
software development.

2) A description cf the computer technologies used in
this software development effort.

3) A discussion cf the advantages of developing this
system in the sot:tware, hardware and administrative
environment provid4ed by the IRI/MIT Joint Study.

4) Some suggost icns for fechnological 1 improvments
that would improve the development process for GMIS, and
would improve the use of the system.

5) A statement of what we have learned during our
system development efforts that would assist future design
and implementation efforts of ;a system like GMIS.

2. ProqrEess in Software Dve1loment

This section descrites oftware development efforts
that have taken place since th- August 22, 1975 GMIS
Progress Report (Appendix A) . We will assume that the
reader is familiar with the motivation for GMIS, the uses of
GMI a the GIS architecture. nne document which provides
this information is "GIMIS: An Fxv'primental System for Data
Manaqemnt nd Analysis", by John J. Donovan and Henry .

-2--

Jacoby (MIT nergy .Lahoratory Working Paper MIT-EL-75-011WP,
Septemhber, 1q75).

2.1. sUL

Last summer, elease 2 of SEQUEL from San Jose was
tested extensively for performance characteristics. Our
findings were relayed to San Jse, which are outlined in
sections 3 and 5 of the discussion overview used there last
summer (Appendix C). Their overall response was to use what
we learned about the use of SEUETL in the development of
System R, but they were not enthusiastic about making
changes to SEQUEL elease 2 to improve performance.

Several changes have been made to the SEQUEL, XRAM and
multi-segment RAM code over the past year. These changes
include:

1) The data type £EC (FIXFr DECIMAL) was added to
SEQUEL to supplement the existing NUM and CHAR data types.

2) The SEQUEL Farser and transaction execution
routines were modified to accept the unary + and - operators
as prefixes to numeric literals.

3) A LOG facility was added to SEQUEL which, if
activated, sends the fellcwing data items to the STATPRI
file:

- the SEQUEL statement

- the time when the transaction was entered

-the transaction type (ANTYP)

- a list of all columns and tables referenced in the
statement.

4) Software "hooks" were installed in the SEQUEL
declaration macros tc allow security features to be
installed at the Multi User Interface (MUII) level.

5) An EXTERNAL rray called1 LPAD was added to the
SFQ[]EL Transaction nterface (TRANs) to inform UFI programs
of the number of blanks adde9 to the left of columns in
SEQUEL outptut rows for formatting purposes.

6) Several SEQUFL and XRAM routines were modified to
handle a problem that developed when inversions were made on
certain columns containing numeric data. When a column
contained a numeric value that was either nonpositive or
greater than the greatest value of a RAM ID (2**21-1), the
inversion would apparently be successfully created, but
would respond errorecusly when used. The most

-3 -

straightforward tchnique to p.vent this from occurring was
to install a checking mechanism that would permit inversions
to be creatpd and manintained only on columns with data in
the range of 1 to 2**21-1. Extonsions to XRAM were made by
Ray Fessel to implement this mechanism, and SEQUEL was
modified to activate this inversion suppression when
necessary. The result of these modifications is that the
performance benefits of SFQUEL/XPAM inversions of columns
cannot be used in columns with data that is out of a
relatively narrow numeric rang.

7) The SEQUL error messiages were revised to make them
easier to understand by users.

8) Various SF, TQUFL, XPA ad RAM bugs were identified
and fixed.

More detailed dccuuentition on these changes is
included in the following document.S:

1) Log of SQUTJT Mcdifications (Appendix D)

2) Limitaticns of SEQUL Roase 3 (Appendix)

3) Transaction Interfaco Pescripticn - MIT/SFQUEL
Release 3 (Appendix F)

4) XRAM Fxtpnsions (AFpendix r,).

2.2. TPANSACT

A version of TANSACT similar to that described in the
last GMIS Progress Rcecrt was debugged and has been
operational since September, 1)75. The following documents
detail the TRANSACT syntax -n1 explain the use of each
command:

1) TRANSACT Commands (AppeiOix _n)

2) Explanation of TRANSACT Commands (Appendix I).

A numbor of extensions to TRANSACT have een proposed,
inclu d ing:

1) The implementation f a SET LOG command, to
activate the new SEQUElT IOG -acility described in the
previous sction cf this reFort.

2) The TRANSACT FUN coiman:. macro processor. This
facility, similar to CMS FXFC, was designed and partially
implemented last summer. Tt is doscribed in the document
"TRANSACT RN Command Macro Proc-esor User Guide" (Appendix
J).

-4-

3) The, i mp lemntat i on of a TIRANSACT transaction
editor. Ono proposal fcr this rlitor is included with this
report as Appendix K.

2.3. Multi-User Interface (MUI)

The GMTS Multi - User Interface is the routine that
permits the SEQUEL data base machine to communicate with
other virtual machines containing applications programs.
The MUT is actually a SEQUEL 1iser Friendly Interface (UFI)
residing on the GMIS account as the SEQ3 MODULE. Access
control features were added to the original UI, SEQ2, which
can be invoked by specifying the option SECURE with the
START exec when activating the Transaction Virtual Machine
(TVM) .

This part of thP GMIS system is currently hbein
replaced under the new GMIS int?r-machine communication-,
facility design. The new GTS design is described in
section 2.7.

2.4. SEQUEL Database Description and Backup Utilities

Several additional SEQUEL utility programs have been
written which permit users to retrieve a description of a
SEQUEL database and to create everal different types of
backup copies of all or part of a database. These utility
routines include:

1) T)BDESCR - describes SETOrTP'L tbles and prints SFQUEL
catalog information cn the +erminal or line printer
(Appendix L) .

2) I, TB - the standard GIS bulk loader (Appendix M).

3) SFQDUMP - the first (!JUFL backup utility. An
entire SEQUEL database is dumF?d to CMS files in bulk loader
(LTDB) format (Appendix N).

3) SEQBACK and SECREST - uilize the CMS DDF command
to create and relcad a taie copy of the disks containing the
database. These routincs are faster than SEOClUMP, but arp
less flexible in their use (Appendix).

4) DBSAVE and DESCAN - uiso .SEQBACK and SEQRFST to
create multiple backup copies of SEQUEL databases on a
single tape, and creates an idlntifying label for each saved
database on the tape (Appendix P).

5) SELDUMP - a selective backup facility, which
creates ulk loader CMS files for tables specified by the
user (Appendix Q).

2.5. RAM Utilizaticn Wctrksace

Ray vessel has frcught lp an API workspace that
contains functions which masure the utilization of pages in
a AM (used by SQI'TI,) database. Instructions for its use
are in Appendix R.

2.6. Applications Packagfes

Several applicaticns packaq-s have been brought up
under VM/370 this past year for use in GMIS. Each one of
these systems can communicate with the GMIS database through
the use of punched CMS files and the VM spooling facility.
Specialized communicaticns interfaces for each package will
be built under the new MIS design (Section 2.7).

The following applications packages and systems have
been made operational:

1) TRPOLL

2) TSP

3) BMD

4) TPIAN

5) DYNAMO

6) STATPAC II

7) MPSX

The packages will bE briefly described and referenced
in thoe forthcoming GMTS U.Tc.r Gid.

2.7. New GMIS Design

Beginning in June, we launcbd an effort to redesign
the GMIS system to utilize some new VM inter-machine
communications software, and to apply what we have learned
trom the GMIS prototype system to an improved design. In
this section, a rief dEscription of the new GMIS will be
presented. More detailed sys+m level and user level
descriptions o the system are currently being written.

2.7.1. explanation of New GMIS Configuration

Figure 1 presents an cvervilw of the now GMIS. There
are five types of virtual machines defined for this
configuration, which allcws any available user application
packages to communicate with any available database
systoms. Note that the new GIS allows for more than one
database machine.

-(G-

F I ir. I

NEw IS IMPLE ENTATION VERVIEW

USER

VIRTUAL

MACHINES

CoMmuNICATION

VIRTUAL

MACHINES

TRANSACT

(PUll)

r..

'N~

MANAGER

VIRTUAL

MACH NE

APLEPLM

$1:

(ACTIVATES AND

MONITORS COMMUNICA-

TION VIRTUAL

MACHINES)

r
-'s, / . . I I/',

/ I /

/ '< ITw

DATA RASE

SEQUEUGMIS [VSAM/Gl _WES/GMIS
VIRTUAL - [_.J
vC-.HINE -

MCHINES,

GATHERS USAGE STATISTICS
AND COMMENTS FROM USER

AND DATA BASE VIRTUAL

MACHINES

PiL/I TO

IIl
INTERFACE

APLTO

SEQUEL

INTERFACEIA'

USAGE

MbNITOR

VM

! ·i, I

IImm m m ~

' -"- ---- II .'I

= . I _

,

-7-

fnier this scheme, a user vi rtiil machine (UVM) wishing
to snd a query to a partictlldl ;atabase virtual machine
(DtVM) must first signal the Manajrr Virtual Machine (MGR).
The MGR is always logged in, and is activated by signals
from UVM's. After the MGP has bpen signalled, it looks in
its MIS directory (a CS file) for the ID of Communications
Virtual Machine tat is asscciited with the signalling UVM.
When it finds the ID, the MrP ses the VM/370 Releas 3
AUTOLOG facility to log in the appropriate CVM.

Assuming that there a n different types of UVM (e.g.
TRANSACT, TROLL, APL), and m ifferent types of DBVM (e.g.
SEQUEL, QBX, IMS), then there arc (n x m) possible ways a
UVM's can communicate with a DPVM. For example, a TROLL
user may want to query an ITMS dat tbase, or an APL user may
want to query a SFQUEI da' tabase. Each of these
user/database combinations r-j uires a communications
interface, which will fcrmat user queries for the particular
database system, signal the DVM, format the reply from the
DBVM for the UVM, and signal the JVM that the query has been
processed. These functions wrc previously handled by the
GMIS Multi-User nterface (MUI). Now, a separate interface
program for each FJVM/DPVM combination will be written that
resides in the CVM. The UVM's and DBVM's will each have
standard interfaces, and all query and reply formatting and
intermachine communications will be handled by the CVM.
(Although there could e as many as (n x m) interface
programs, many of the iterfaces iinder consideration will be
the same). A UVM need nly activate its CVM through the MGR
with the appropriate irterfac- program, and any time a UVM
has a query to send, it simply signals its CVM, which does
the rest of the wcrk.

2.7.2. Inter-machine coinunications Mechanism

Much of the spooled virtual card read/punch mechanism
that was used for the inter-machine communications facility
of the GMIS prototype will be replaced with the new SPY
memory-to-memory inter-machine communications soft ware (from
IBM Yorktown). The SPY routines send messages much faster
than the spooling mechanism.

2.7.3. GMIS Usaqe Monitcr

A Usage Monitor VP (UMVM) will be installed that
collects data from DBVM's (e.g. quories processed, execution
statistics) and TJVM's (e.g. descriptions of applications
work being done cn the CVM). It will generate a log file
that can be rtrieved later for performance and usage
analysis.

2.7.4. Current Progress on Implementation of New GIS

At this time, the new GIS system has been partially
implemented and is heing tested in a simulated VM
environment, which runs under the production VM/37C
operatinq system at the Cambridqe Scientific Center. The
Manger Virtual Machine can AU'?OLO(a communications Virtual
Machine after eing sigral]ed hy a User Virtual Machine, and
the TRANSACT/SEQUFL interface tor the CVM is almost ready
for testing. Some of the additional CVM interfaces planned
for the near future include TROLL/SEQUJEL, APL/SEQUJEL, and
APL/GIS.

2.7.5. Quer! By xample Enhancements

We are investigating the possibility of rebuilding the
front nd of the Query By Example (QBX) database system to
generate a less cryptic rEL/DML that can take advantage of
the efficient relational operators that have been built into
QBX. This front end could make use of a TANSACT-like user
interface.

3. Computer Technologies Ued in the GMIS Effort

In developing GMIS, we have made extensive use of many
software and hardware facilities made available through the
IBM Cambridge Scientific Center. The software facilities
used include:

1) Language proce~scrs

- Assembly Language

- P/I Optimizing Compiler

- FORTRAN
. .

- APLS.V
·~~~~~~~~~~~~~~~~~~~~~~~~~~~

- SCRIPT for documentation).

2) VM/370 system software

- Modification of V ASCII translate tables for
adaptation of ASCII terminals to VM

- Us; of many I/C and communications routines that
call the CMS modules directly through BAL interfaces.

- Ulse of simulated VM1/370 under production VM/370
to test new GMIS and SPY code.

3) IBM experimental code

- _ _

- :;}OTIFI. /XpA , / r AM

- BX

- SPY

The hardware- facilitics use I in GMI.S development, in
addition to the stan.lard dvic('- 'iuod (.g. CPU, printers,
disks, tapes) ncludle:

1) Termin als

- IBM 2741

- IBM 3270

- Telctype

- TY - co~rratiY1c :i:-:-lay devices (using light
pens).

2) Telocommlnications fcl ities

- IBM 370a4 pregrammel or 2741 lines, 116 and 300
band TTY lines

- MIT extensio ns conn.-ctiel to VM/370 ports.

4. Advantages of IBM/M1 Joint t.Fdy Environment in GMIS
Develo2pment

The technicl I and c eritio?- l environment provided
through t IBM/MIT Joint Stuly h: made it possible for the
GMIS prototype to be wade opnrationa1, and for the
development of the new MTIS to pro rse, o rapidly. Some of
the reasons for this raid regress are due to the type of
technical nvironment used; tfh- VM/370 operating syst.em is
an excellent facility fcr syst{m evelopment, combining the
advantages of interactive ime qhrinrg, availability of many
language processors, ability t S_,pport different operatin
systems, a very flexible crttinnq system command language
(CMS) and many other crc .cubtl- features.

Beside hese- ad v anta (jes, hich could be accessed
through many comrnmercially available systerms, were s overal
opportunities unitie tc cur rlationship to IBM:

1) The opportunity to us' and modify IBM experimental
software, including AM, XAM, STEL, F'1LkN (be-fore it was
announced y IBM) and SPY.

2) The ability to us V i unconventional ways (e.g.
running VM under VM, accs ? i qrl CMS ru tines directl y,
modifying VM for T) L nd for 2:>Y) , with the help) of CSC'

-1 0-

personnel. Outsiel(vndors mijht not permit us to try some
of these experiments, or cur -iccers to the vendor's systems
people might be limited.

3) Our close rapport with CSC personnel for the
solution of both technical (-.g. fixing bugs, systems
design) and administrative (e.g. setting up accounts,
obtaining manuals) problems.

4) The fact that we ha-i direct access to the CSC
Machine Room, so we cculd pick up our output uickly and
make minor program changes immediately at the local
terminals.

5. Suggestions for Technological tIMrovements

After using the facilities at IBM for over two years,
there are some technical area- where improvements could e
made, from our point of view. We will list three of those
areas which cone tc mind ere:

1) Interactive Ia atase m nagement systems - After
investigating the availability of interactive database
management systems within IBM, w were disappointed to find
no acceptable offerings beyond SFOUEL and IMS. SEQUEL is
still very experimental, as we have pointed out many times.
IMS is restricted to a hierarchial view of data and is not
currently compatitle with CMS. Much more product oriented
work needs to be done in this arila.

2) Better VM irter-machino communications - The
SIGNAL&SHARE and SPY software facilities are initial efforts
to improve communications and ;ignalling between VM's.
Hlowver, these facilities should be refined and incorporated
into the VM/370 product, and ventually these intermachine
siqnalling and shared virtual mmory segment facilities
should be built into the TEM hrdware.

3) Pemote printing and display terminals - We have
fotlnd a need for faster and more sophisticated terminals
that can be connected rcmotclv to the computer through
ordinary telephone lines. Specific suggestions for
improvements in terminals that are possible today would be
to bild an asynchronous IBM 3270 display terminal so it can
be used as a remote stand-alone terminal without a
controller, and a 30 tc C character per second version of
an IBM 2741.

- 1 1 -

AFFendix A

Current iUses of IBM Accounts ~or Systems Development

July 16, 176

The following is a list of each ID being used for
systems development, the name of the principal user of the
ID, and the nature of the cwork bing done on the account:

1) Account ID: NFfEMIS6

Principal users:

Bryan Mau, Ray FPesel

Purpose of account:

All of the MIS source code resides on the
NEEMIS6 194 disk. Tho account is used to store the
code, and to make minor changes and enhancements to
the code.

2) Account ID: NEFMIS7

Principal users:

Clerical help, Louis Gutentag

Purpose of account:

All systems related documentation is entered
on this account in SCRIPT. This account is also
used for experimental applications of the
relational database software, for possible uses in
the old and new GMIS.

3) Account ID: NEEMISP

Principal users:

Bot Selirg:r

Purpose of account:

Systems rcgrcimminq account. Bob is writing
several arts of the new GMIS, and does much of his
work n this acccunt.

4) Account ID: GMIS

Principal users:

- 1 2 -

Nolln, (I, oii. (; t. lt jI r)po I.si ble)

PUt poe of a(cccunt:

This acccunt c)n+;iins all of the executable
GMTS modules and EYFC ril s for users to access
It also contains all of he TXTLIB's and MACLIB's
necessary to create? i; nodul es and tc compile
GMIS programs, but do.s riot contain the GMIS source
code. Finished SCRIPT Fil£s are also placed on
this account to ake ,T'S documentation available
to users. All GIS u,rTs link to the GMIS account
(1 /O) efore tey run ay r;MIS programs.

=-7) Account I: MT'I, GMIS2, GMIS3

Principal users:

Chat Lam, Pob Slinger, Tony Smith

Purpose of accounts:

The nw GFIS i being developed and tested
under these acccunts. GMI32 runs the simulated VM
under VM for testing of he Manager Virtual Machine
and the SPY ccde. The other accounts are used to
develop the GMIS communications handlers, interface
routines, tc.

-13-

Arpendlix B

Project GMIS Progress Report

August 22, 1975

This document will suwmarize the progress made on GIS
soft.ware develcpment to date.

After receiving t code for SEQUEL, Release 1 from San
Jose, we brought up the system using their 3270 ser
Friendly Interface (UF170). SiInce then, we have written a
number of our own UI's as described later in this paper.
We refrained from making chanjes to the actual SEQUEL code
until we received and rcught up Release 2 of SEQUEL. Our
chanqes to SEQUEL are detailed in the SEQLOG SEQUEL file on
NEEMIS6, but they fall into the following general
categories:

1) Added DTYPE array to Transaction Interface to pass
data types of transaction replies back to the UFI.

2) Added return COrE of 1 for DISPLAY ASSERTION
command.

3) Modified SEQUIEI/XFAM to handle problem of creating
inversions on columns with numeric values greater than
2**21. These inversions will now be suppressed.

4) Fixed assorted XA? and RAM bugs.

5) Extended SEQUEL implementation restrictions on
maximum degree of a table, maximum length of an identifier,
and maximum size of a character string constant. output
formatting of rows in TRANS and QUERY were rewritten for
generality (for any "magic numbers"),

Currently, we are odifying SEQUEL to accept the unary
+ and - operators as prefixes to numeric literals, and to
handle unscaled FXFD rICIMAL constants. After unscaled
FIXED DECIMAL is operational, we will extend this feature to
include scaled decimal numbers.

The current documertation on these changes is included
in these documents:

Log of SEQUEL Modifications
Limitations of SEQUEL Release 3
Transaction Interface Description - MIT/SEQUEL Rel. 3

TRANSA''LC

TRANSACT is a UFI esigne'i to give users a facility to
enter transactions and receive replies from any terminal
device supported by VM/370. A d:-scription of the current
features of TRANSACT arc incluid in the documents:

TRANSACT Commands
Explanation cf TANSACT Cmmands

We arp currently almost finishe d debugging a new
version of TRANSACT that will support the following npw
features:

1) A DISPILAY opticn which, when st ON, will display
the transaction which IRANSAC(' was processing b ?foro
displaying the reply to that transaction. The DISPLAY is
sent to the current OUTPU'I devic.

2) A PUN command macro rc)orqor has Leen written which
will allow a iuer to write ~' EC-like files containing
TFANSACT and S JUI commands. Tmplement-ed features Include
variable substitution, looping, a conlitional execution of
command lines. A draft version o a loc.lment describin,
this facility is availatlc (UN COmmand Guile)

3) If a POFI TNSCT ~:iA i on the TT'ANSACT isoir's
A-disk, it will be PUN bcf£or,' cuxecution of the first
TRANSACT command.

We have also pr~ Farp'd a proposal for a TRANSACT
interactive transaction (editor, which will allow TRANSACT
users tc modify transactions ;tfter they have: been -ntered
(e.(. to correct errors). A ;elective dumping facility is
also planned for THANSPCT. This fAcility will permit users
to put th' result cf any *3u rv into a CMS file i bulk1
loader format. tUsing this facility, any ;elected portion f
a database may be savcd, deleted from tth current databas~,
and rstored to the database at ?rny future' time.

Multi-User Interface (UI)

A UFI named SFQ? has he'n implemen-ntf1 which p-,rmits
external virtual machines to 'eT(i tratisaction? to a comman
Transaction Virtual Machine (Vr) with SiOJUEL dat.aasp.
Communications facilit is are provided through the ulse ot
shared multi-write CM, transaction and reply iles, and
interprocessor signall ig by means of virtual card raders
and punches. This facility is described fully in I ouis

-1 -

Gutentag's Master's Thesis, Section 4.2.

There is some room for improvempnt in performance using
this UI implementatior. However, we plan to bring up a
mod.ified version of San Jose's SIGNAL&SHARE to replace our
slow system.

TransRarent TRANS Interface for the MUI

A procedure called IRIFUFI has been written to simulate
the SQUELt Transaction Interface for the MUI. This means,
for example, that a call tc SEQ{IPL using TIFUFI instead ot
TRANS will actually write STRING into a transaction file,
signal the TVM to process the transaction, and wait for the
TVM to signal that it has written the reply file.

This procedure permits u to use our existing tFI's
(e.g. IRA NSACT) in a multi-user env ironment without
modifying their scurce code. An EXEC called EMGEN on GMIS
191 performs the same function as CRTMOD, but uses TPIFUFI,
so resulting modules will run only with the MUI instead of
running on a machine with its own database.

APL Interface

A series of assembly code rout.ines and PL functions have
been writteOn to allow SQUIT transactions to e passed to a
TVM through the Mlti-User Interface. Transactions are
passed to the SEQUFL machine (TYVM) through the use of the
following APL statement:

Z <- QFPY '<SEQUET translction>'

where Z is the return code from EQUEL. The results f the
transaction are stored as vectors or matrices in API,
variables, which are named a fer t he column:, that they
represent.

APL / TRANSACT

A subset of TANVSAC has -henT imilemented as an API.
function to allow user in the APL environment to display
th rsults of queries i a tabular format without having to
leave APL. Complete cocumnntation on the A Interface and
on APL TRANSACT must still t'e written.

-16-

Bulk loader.-,

The original LSDB bulk cader received from San Jose
has gone through several asses of revisions. First, thE
loader was enhanced to permit rows that spanned more than
one 80 byte record to be loaded. This bulk loader was
called LTDB.

The next series of changes to LTDB were designed to
make it compatible with our new version of SEQUEL that
permits identifiers f up to 16 characters. For generality,
LTUB was extended in the fcllcwing ways:

1) Free format control cards.

2) Multiple card primary ky descriptions. A :FNDKFY
control card was added to permit this extension.
Previously, the $PRIKEY card only supported primary keys of
seven columns or less.

SEQUE. Release 2 includes a facility for making
integrity asserticns on tables in the database. LTDB calls
XRAM directly, and bypasses this integrity facility, which
is implemented at the SQUFI level. Therefore, we generated
two new bulk loaders tc replace LTDB. LTDBA is the same as
LTDB and calls XPAM directly. LTDrRB is functionally
equivalent to LTDBA, but is really a SEQUEL UPI which bulk
loads rows into tables by means of NSFRT commands. The
tradeoff between using the two loaders is this: LTDBA is
fast and ignores integrity assertions, and LTDBB is very
slow and checks each inserted row against the stored
integrity assertions. The document "Bulkloadinq of a
Databas,,e" describes the use of the current bulk loaders in
qreater detail.

SEQUEL atabase BackuL, Utilities

Th(re are currently two mthods to create backup copies
of SEQUEL databases: sing th SQDUT)MP stand-alone utility
program or the CMS uti lity Dn.

SEQDT)UM i a SEQTET. FI which dumps a complete copy of
the database +o CMS files in hulk loader format. This
permits users to add that data to their database at any
time, using tho hulk lcader. The DDR program dumps a
"snapshot" of the disks; containing the database, ad can he
used only to rstore the database to its state of integrity
at the time it was dumped. The tradeoff here is that
SEQDJUMP creates a ,nore f exible backup, but is slow when
dumping because it as to issue many S'OUEL transactions to
perform the dump. DPR, on the other hand, dumps the

-17-

.at ahase quickly, but. any exi-;inql ,atiah.se is reRlaced at
restoration time by the version that was dumped by DD:.
SEQDUMP is described i the piper "Creating Backup Dumps of
SEQUEL atabases", and information on the use of DDR can be
obtained from Ray Fessel c Bryan Mau.

RAM Utilization Wcrks a c_

Ray Fessel has written an APT, workspace that plots the
amounts of disk space being util.izd by a multi-segment RAM
database (used fcr SF ClEt) at ny given time. See Ray
Fessel for further information.

TSP

A version cf the Time Series Processor statistics
package is crrently teing broqht. up under CMS by Tony
Smith and Kai Wong. This is tho vrsion that is being used
at. the MIT Tnformation rrocessing (Center. After our CMS
version of TSP is debugged, we will explore methods to make
it an interactive system, and to add an interface to our
GMIS Multi-User In+erface.

TROLL

We are also in the p 'LOCo'S' of bringing up a ccpy of thp
TROLL econometric modeling system under the VM/370 system at
the Cambridqe Scirntitic Cent.gr. There are several problems
which are causing delays in cur progress on this project.
First, the VM versicn of 'rOl L from NBER requires
modifications to the VM/370 op.rating system to support
their shared memory sgment and inter-processor signalling
functions. These modifications must be made compatible with
other existing versions cf shared memory and signalling
(e.g. San ose, Yorktewn, CSC). Also, TROLL is invoked
under VM/370 as a namf-d system (like CMS), and uses its own
unique fil{e system. This makes the process of building an
efficient interface between TROLL and the GMIS Multi-User
Interface a formidable task. Towever, as always, we can
provide intorim solutions tiy binging u TROLL on a VM under
VM, and we can lise virtual card readers and puncles to
communicate with GMIS.

Arpfentix C

Visit to I San Jose P(etarch Laoratory

AucuFt 27-2 ° , 1975

I ouis M. iutpntag

Overview of Topics for Di,!cus ;ion ;tand] resentation

1. Proqress update cn T Bi /MTT Joint Study softwar4
developm nt

2. Presentation of Prcjcct NFMIS applications.

3. Performance analysis of SFQUE, Release 2.
Identification of areas where performance is especially
weak, and could be improved in current release:

I. 1 SFQUFL level (cbectivc in most cases is to rduc
calls to XRAM).

3.1.1. Abse-nce cf GOUIP Y operator.

3.1.2. Ilnetficient handling of joins through
nested queries.

3.1.3. Inefficient rsolution of compl¢ex
predicates (too many calls to TSTNODE)

3.1.4. Creaticr ((x non-creatioln) of temporary
inversions on NM and CHAR dtiomains in SQUEL
predicates dloes not fully utilize inversion
facility.

3. 1.5. Technique used to generate SEQUL
projecticns cau-es excessive time to b spent
in ?YRAM (really an XRAM design problem).

3.2. XPA.M level

3.2.1. ptimization of page etches vs. memory
resident page searches.

3.2.2. Cptimization of code in specific XRAM and
mu1+i-sQoEnt RM routines.

4. Discussion of short and long term goals of San Josh
Data Base Grcip.

4.. Applications crientation vs. research
orie nta t ion.

-19 -

4. 2 l've lopent f jcs r intrfae:.

4. Time frame for roll t i.o: ot p+,rformance i:x;ues.

4. 4 Exploration cf altornate approachies to system
developient cr inc rloration of existing IBM
products (.q. IMS).

4 .5. Plan for release of systems (e.gf. System R) to
wider user adience for testing and feedback:.

5. Analysis of System 1, as v,';teelm t.o meet future needs
of IBM/MIT Jcint Study.

5.1 Performance analysis r ystem P.

5.1.1. Apply hat we hve larned from SEQUEL.

5.1.2. Handling cf jirn.r.

5.1.3. Reduction and ortimiza.ion of transactions
to some ncrral f'rm (i..:. make D)ML truly
non-proced r al) . at- h:, 3 accessinI
techniques.

5.1. . Data clusterin] and Ijarh a,,7 collect ion,
other space utili7ation is:s.

5. 1 Automatic (us,'r-trnspar-nt) reorganization
of database strulctures ase d on types of user
transactions apllie, to dm tabase over ti me.

5.1.6. p+imiation anri minri; li,;ltion of u:;c of
virtual stcrtage i V.

5.2 Feature analysis of i;yv+cm .

5.2. 1 Compatibility of FEO.)U'L v.S. Sy:eom t

Transact ion TnterF'aces for t Laiis tr of
o xistin IFFT's aO rplaci.mont ot XRAIq with
RSI (how much dehl'iling will RSI need?)

5.2.2. Data yFes supportod (7TXPn DElCIMAL, IX:D
BINARY, FLCAT TN.'-Y, fIi:I~CT).

5.2.3. Handling o)f NI I,. vailues;, -specially for
returned values of 1-atistical functions.

5.2.4. Eixtensibility oF DMI., especially for
addition cf statistic l fu Inctions and
possibl macro d ef initions. Gneriral
extensior of "_ ystemi n con utational
capabilities to rduce dependence on APL and
UFI's f r numeric +ransformations.

-2 -

5.2.5. Possihb. impl-mntation restrictions (. g.
"magic nutbers" prrchle i SFOU1L, maximum
of rows in tab'.l,, miximum of pages/segment,
running cut of ID's)

5.2.6. User views ani acc¢ssing of system tables.

5.2.7. DependEncies on SIGNAT&SHARF modifications
to V.

5.2.7.1. Exrlcre probloms relating to
acceptance oft oditications by I or at
customer instal1lations.

5.2.7.2. Discuss NR modifications to M for
TROII - compitibility and efficicncy
issues. Ne l to agree onr st.anda rd
interface for 'lifferent implementations
of SIGNAL9SHAPf-.

6. Discussion of docu}entaticn roblems.

6.1. SEQUEL Languace Referenc? Manual.

6.2.. Improvedt documentation of code and algorithu;s
used.

- 2 1 -

Ar- [.n!iix ?,

Loan of SFCIfFt odifications

4/30/75 L. Gutentag

Modified UFIDCL to include arr.ly called DPYPE which contains
t.he data types of output columns, declared DTYPE
(MAXDEGREF) BIN FIXED X.

5/1/75 L. Gutentag

Modified QUEPY tc s-t E'l YPE to the datai types of output
columns.

5/13/75 . Fessel (loggqed y . (l1tntag)

Modified TRANS so hat all calls to EQUEl with FTLESW='1'B
will return through the in+nr face. Previously, if
FILFSW=' 1'B and COnf=C, the next statem(:nt in the file would
be read without a new call to SF(T1 .T by the tUFI.

5/14/75 P. Fessel (logq(d y . tnntag)
5l / 5 . ' q d] . r. t

Modified DDASERT so that a DISPT. AY AS.i RTiON command will
return with COPE=1 instead of COr?=1).

5/29/75 R. Fessel (logged y . u(31:tenta:)

Modified XPARSE so that the size of BJFFER is declared as
CHAR (QSTRING_ IENGTH+l) VAP.

6/24/75, R. Fessel

Modified XRAM routine RINV so t- it ,returns 9 in FCOrP
when an attempt is made to creat* an inversion but one of
the domains contains nurhber outsile th,? range between 1 and
2**21. In this case, the inversion cntrol tuple for the
relation must be testedt tc see v- ich domains failed to have
inversions created becausse~ for to'sc . domains where inversion
creation is possible, such i nv,,rnins are actually created.

6/25/75 P. Fessel

Modified CRTINV so that it detect-; . return code of 9 from
XRTINV. In this case an rror nossage is composed with a
return code of 99 and the na.m: of th. failed column(s) is

-22 -

appended to the message. Additionally th-; type 9 relafions
originally created for these inv,-rsion, - are dropped. Any
inversions which succeed roce,-di normally.

6/30/75 . Fessel

Modified GENINV so that if it jet3 an CODE of 9 from XINV
when called to creat a temporarv ivrsion, it returns a
special value in CODE t PASS3, na;jily 999.

7/1/75, RP. Fessel

Modified XPAPSE routin. sc thit i:' the STATIST bit is on,
and the FILFSW bit is on, evory + ime a record is read from
the query file, it is also writ+;:-n out to the statis+ics
file. Thus the statistics ouplti + will. always contain the
query, even if it is injut from a `:ile.

7/8/75., P. Fessel

,odified IXFCLCK ASSFMFIF fil s:) that virtuai and total
times are now retiirred in mil.liseconds rather than
microseconds. This prevents fix-o= overflows in stat istics
package.

7/9/75 R. essel

Modified PASS3 routinIe in accordT nce with suggestion from
Mort Astrahan so that it rop-rlv handles a node which it
tries to create a temporary invrf-sion for tut for which
GENINV returns a code ct 999, indicating that the column
contained invalid numeric ati. In this case the node in
question has to dc multirle scnc- of the relation.

7/9/75 FE. Fessel

Modified IXECLCK routine aain so ta timesc are returned in
units of 10 micrcseconds. This will still prevent fixed
overflows in statistics packar.q while still retaininq
adequat e resoluticn.

7/14/75 . Fessel

Modified XPAn routi ne (RINV so t hat ZGDEL internal
subroutine does nct modify vira.hlei; used elsewhere. This
modification means that the type 9 XRAM relations are now
correctly dropped when either XRnRTIV is invoked or when an
inversion relation is d roped i nt,,rnally because it contains

-2 3-

numeric data outside the range btwt?,n 1 and 2*21.

7/15/75 R. Fessel

Modified XRAM routines XRFETCr a XRFTCHT so that the pare
pointed to by pointer 2 is now unlocked. This page contains
the XRAM relation used(in th, arguments to these 2 ent.ry
points.

7/15/75 R. Fessel

Modified DPINV so that it oes not call XRDROP to drop the
type 9 relation associated with th:- inversion since XPAM now
drops this relaticn autcmatically.

7/15/75 . Fessel

Modified CTINV so that it no loner does an explicit call
to XRDROP for the typ 9 r-lati.cn associated with an
inversion that failed to t cr -4t -'1.

7/15/75 . Fessel

Modified NINV so that it nc lcnfvYr does an explicit call
to XRDROP for the ty[:c 9 ri- 1.i tion associated w i. h an
inversion that failed tc l.:c cr:eat,1.

7/17/75 R. Fssel

Fixed ug in RAM routine 7ZPHFELIrD (in assembly ZGFTID) so that
control block is not c.lchbbere, wLhen the last ID on a
relation page is free: ane d thh- third [page in the cell ha-.,
not. been allocated. Additionally, lthe ;age which had its
last ID deleted was not eing markd as; empty and rlation
pages were not being reused.

7/23/75 R.Fessel

Modified RAM routins r,~ VFLnW a nd % ?IN GF. Reinstalled
changps to correct bugs fcr vrv large relations which had
been put in about 18 months ago but had got lost in the San
Jose version.

7/24/75 L. Gutentag

Modifiel FIDCL to include new "magic numbers":

-24 -

MAXDEGREE=32 (was- 15)
MAX NAMELENGTH=16 (was H)
MAXSTRING LENGTH =128 (was 6)
QSTRINGjE.NGTH=42, (was 2G0)

Added new magic numbers for us,. in QCAT and UFI's:

SKIPNAME=MAXNAM" LFNGTH+1;
NAME_ SPACE=MAX_NAME_LF4GIYH-2;
DOMAIN FOIREAT=MAX NAMlF IFNGTH+17;
TABLE LENGTH=MAX NAE LFNG'IH +2;
DOMAN SPACE=MAX NAME I.FNGTH-4;

TABLEFORMAT=2*MAX NAM E ..ENG'IH+21;

7/24/75 . cutontag

Modified TANDCI to i]lud n "ic numltrs":

COLUMN_ SIZE=40 (wis t)
DOMAIN_SIZE=40 (was 3))
NUMBERSST2E=256 (wa 3)
STRINGS_SIZE=256 (was 3C)

7/24/75 . Gutentag

Modified all SFQTIJT, routiln i whic t h "magic numbers"
appeare. as c6rinstants. 'Ie ; :ortr-rt r?procossor variable
was substituted for each consti n+. Th, greatfvst occurrences
of these constants were. in rout ines utilizing the shadow
catalogs and in QCAT.

7/24/75 L. Gutentag

Modified TRANS starting n lin- 14601 to revise the technirqu
used in GETROWS to format cutpit rowr; in Q3TRING(. Now, all
output columns will be cnterc<d tinder thefir column titles.
This new code wil 1 not be a fected by a chanrge in
MAX NAME LENGTH a was t [revic'li codi.

7/24/75 L. Gutentag

Modified, QUERY start ing at. i i n 750 to format column
headings in a general way. ', !'pr:vious code was written
assuming MAXNAMELEN(;'rT=E. Now, r--gariless of the value of
MAXNAME _LFNGTH, all column tit ,; will be centered over the
column ata formatted by GFT{O.S in TA1S.

7/24/75 L Gutentag

-25-

Deleted the declarationl for EPAR.F[NTRY in TRANS; included
that declaration in lTIInCI.

7/30/75 R. Fessel

Fixed RAM routine ZTRIAE in accordance with insructions from
Raymond Lorie. ScIved Frcblem with retrieval from relationt
with a single B-ring on an A paqe and several C-rings on C
paqes. Symptom was that when NEXT was invoked until end of
relation was returned, every entry was retrieved twice.

7/31/75 R. Fessel

Made 2 significant charges to SEQUEL routine XPARSF. All
declarations generated by the parser generator are now
brought in with a %INCIODE statement from a library member
called PARSDC1. Similarly, all he semantic routines in
subroultine SYNTHESIZE (part o XARSE) are now brought in
with an INCLUDE statement front a library member called
SEMANTIC. The file PARSDCI COPY was generated from the
parser generator using as inpt. the grammar deck received
from Jim Mehl which is the grammar for SEQUJEL, Release 2.
The file SEMANTIC COPY was crett.el by editing it out of the
old copy of XPARSE.

7/31/75 . Fessel

The SEQUEL grammar was modified to include unary + and -
operators prefixing numeric liter-il;. This modified grammar
was then run through th, parse table generating procedure to
produce a new versicr cf PR~nCL COPY. Also the file
SEMANTIC COPY was modified to include semantic routines for
the new productions.

8/5/75 R. Fessel

GENC(AT was modified to put the string DEC' in the SYSCHAR
class relation. this ccnstant is necessary sc that various
SEQUELT roulltines will t.e ;bhl.? to recognize decimal data
type.

8/6/75 R. Fessel

The variable CDECTID was ade, to te catalog declarations
in the fil XRMDCT. COPY. This varinle will be initialized
to the TI) of the string ' FC' in the SYSC HiA? class
relation.

- 2 6 -

8/6/75 . Fessvl

The SEQUEL grammar was modified to make DEC a valid domain
type. The new grammir is in the filie DECIMAL, (GRAMMAR. This
file: was used to gencrate a new version of PARSDCI. COPY.
Also the file SEMANTIC CCPY wvt modified to include a
semantic routine for the new P:roduction. These modified
files were then used to qenora te a nw object deck for
XPARSE.

8/6/75 R. Fessel

SEQUEL routines INITCAT, QCAT, DFDOl, DL)ELDOM, and DFTAP
were all modified to hardle dcmain- with a data type of DEC.
The internal code for tis datt yp? was assigned as 3.

8/7/75 . Fessel

Modified NIJMDCL COPY fi l tc i ncl,]d a preprocessor
declaration for DECTMALTYEF which is set to 3.

8/7/75 R. Fessel

Modified TRANDCT. COPY fil t include a declaration for a
DNUMBER array which hcleds the decimal representation of
numbers in a SEQULFT stateunt.

8/7/75 R. Fessel

Modified SEMANTIC COPY file so tha+ all numeric literals in
a SEQUEL statement ar, ut intc the NUMBER array as ell as
the NUMBERS array. The same index, NUMX, is used for both
arrays. This modifiod file wa';- used to generate a new copy
of XPARSF TFXT.

8/7/75 R. Fessel

Modified ASSERT routi ne so that no spcial processing is
done for a predicate with a BETWF,'1J! ... ND clause. Instead,
such predicates will handle] by SELECT, as are all other
predicates crrently.

9/3/75, . Fessel

Modified XRAM routine XTTNV in accordance with directions
from Raymond Lorie, adding loop to lock buffers containing
tuple id lists at top of main loon creating RAM relations
for the inversions.

-27-

10/8/7 RP. Fessel

odified UFIDCL CCPY, TFANS an: Y¥nARSF to i)-lewflt t(LOif
facility. Added to UJFIDCL a now, sinqle bit var.iahl in
static external called LCG. iodii fied TRANS and XPARSF so
that if LOG is on, t SEQUEL statement is always sent to
the STATPRI file, along with a ti mstamp. Also st to the
STATPRI file is the trarsaction typ? (TRANTYP) and lis of
all columns and tables reference i the statement.

P. Fesscl 1/20/75

Modified PAm routin, ZPHAStI o that it no longer rt.irnls a
hash value of 0 for dta ages whose last 2 hrx ligit;- arc--
X'7F or rlation pawes which nd in X'FF'.

R. Fessel 10/21/7 c

Modified routine TSTNOFE in accor-iarice with itruc ti)ns
from Mort Astrahan so that +,]pl nrelicates with inulti lo5!
columns are handled properly.

P. Fssel 11/18/75

Corrrctod XRAM routir.n 7(FTF so .-lti t , u[ppr limit o t-
DO l)op for finding ovrrflow coll.! 'ith nmpty pag(-s is nw
correct.

11/q19/75 . Fessel

Corrected QTJFL routin TNS fnr -r:rors introduced in the(
output formatting whenr the nam:: l,:uths woeL, increased o 1f
characte rs.

11/28/75 . Fessel

Modified (GENCAT so that LL,, ot entries for
FLNAME,CNAMECOLNAMI, an i ECMNA1, in both SYSTAB and DOMCAT

are initialized t 1((MAX_NAME_, TNGTrH). This was done to
obviate ncessity of udqitinq tfci ;elations when domains,
columns,assertions, and tabl-is ar: created either using
SFQUEL or the ulk loalder.

12/1/75 R. essel

Modified PAM routine Z t'I to correct error introduced while

makin: fix note' ;-.i;t:ve. Upper limit o-f 0 loop for scan of
overflew cis was off ty 1.

1/12/7({ B. Mau

Installed scurity features for SEOEL database. Modified
UFIDCL to include xterral bit (1) variable S. CURTY-indicates
to SEQUEL whether or not to perform access rights checking.
Modified routine TABINIT--insert~d a check just before final
return to test SECUPTY and call the access checking routine
(SECCHK) if indicated. Modified routine WTAPL to signal
condiation 'PLXXX' if crrcr linking 340 or error accessing
it; signal should he picked up by the UFI (SE(3); this is
to prevent error on part of calling machine from stopping
the FT. Modified rcutinp TRANS5ACT to set SECURTY to
'0'B--default is no scurity for -inqle-uspr mode. Updated
routine SEQ2 to implement security design; new version
renamed SFQ3. SEQ3 to call hrce new routines: FILECHK,
SECSIZE and SFCCHK. Insert.dA ON-block into SEQ3 for
condition ' PLXXX '--ca u.ies TIFU ..sim)ply ignore present
request and return to XAPI. Allowed for 2 new parameters
to SEQIF: ' NODI1SC' suppr cs;-s t h disconnect command;
'SECURE' invokes th:b' ecurity iuec!-nism.

1/15/76 . Fessel

Modified XRAM routin.r~ 7CF1TP anm 7 (;,FTB to change algorithm
used to find whether ra[agc r b1ock which is requested is
already in a buffer. New algri+hm is that, it it is not
the most rec,nttlv requeted page or block, the page or block
number is hasled and tho corresponding hash table entry is
tested. If the ihigh ordrT it i off, the page or block in
the uffer poi nted to by th h s. table (,ntry is tested. If
it is the right cne, te reqilest-d pao or block has beenii
found. Otherwisp the chain f } uffLr control blocks is
scanned to find if +the right pa-Je or block is in one of
them. This solves the problem which occurred when an
overflow paow was emptied a it. bhif-or was freed. When
this occurs, the hig}, crder bit its hsh table entry is
turnTed on. If a sbsefcuent rquost was made for a page or
block whos!e ha:h value conflicts with the released page, it
would apper tha+ that age was not in a huffter because the
high order bit o its hsh t l],:' Pntry was on even though
that: page might rally e in a bl!ffor.

1/20/76 B. Mau

Modified IJFIDCt to include array I, PAD (MAX DEGRPFE) -- to
contain for each coluirn (cr ret1rn rom (FTrROWS) the number
of extra blanks added .+ te left)o: the' column's field in
QSTRING. 4odified TA 4 to set+ T nAD in (,ElTRCWS. Modified
SEQDUJP to use LPAD to g the proper part of QST}PItG into

-2 9-

it,- ,vltplut tile in thcs¢ cas?s wher" +the column name is
lontr thaln 8 chardcters or tho u . for the column.

2/10/7, B. au

Modified routine XPARSF. Alphabet Pxtended to include?
several hretofore ivalid special characters (eg ?, g, *).
Also error messages revised.

2/10/76 B. Mau Modified routine GETROWS; replacd with new
algorithm for stuffing CSTRING. Also modified routine
SEQUEL to set TRANTYP t PARSNOTR7C if response from routine
PARSE indicates that it lid not complete the parse
(preciously, TRANTYP remained unchanged through a call to
SEQUEL if the parser failed). Also modified macro NUMDCL to
include ew transaction tyre PR.SN3TREC (999).

2/10/76 B. Mau

Modified routine QU F Y to sq-t LPAD external array.
Previously, TRANS did this.

2/12/76 P. Fessel

Modified AM routine 7RIAT so tt: it checks each ntry in
a binary relation to mdake sur? tat it is loss than 2**21.
Previously, entries were checked and rejected only if they
were zero or negative.

2/12/76 P. essel

Modified RAP routine RAMLECMP o that it prints the AMB1OMB
code at the terminal whenever it is invoked.

2/18/76 P. Fessel

Modifiod XAM routine XINV so %% tt when it is scanning a
page for tuples in a articular relation, if it finds an
entity that is not a tup1e in th- relation, it does not
unlock that entity if it is the master control tuple for
that relation.

3/11/76 P. Fessel

Modified RAM routine ZFIBIK so t.it when the first bit map
for free pages is filld, i... to? first 20348 physical pages
are all in use, swit ching to t second it map is handled
correctly.

4/2/76 R . Fessel

Modififl XRAM routine XFIuFrT so t Ji+ when a control tuple is
being updated, no entry i ad,' in any inversions which may
exist on the domains eing upla+d. This is true for all
control tuples except fcr the invrsicn cntrol tuple which
cannot be updated by XUFET.

4/6/76 R. essc1

Modified XPAM file NBCLEN which contains entry points
XROPEN,XPCLOSF, etc. with sever -l modifications to bring
modulo up to date with respect to modifications ade i San
Jose.

4/9/76 R. Fssel

Modified XPAM file YPRAM which co:tiains entry points ROPEN,
XPDEF, XPRMAKE, etc. with -;everd, modifications to bring
module up to date wit rs}Tect +o modifications made in San
Jose.

4/29/76 . Fessel

Modified XAM decks XRAM, NOPFN, and XINV so that when a
call is made to either YXMAEF or XRUPDT and the new or
modified tuple would caus! an invalid value to be put into
any existing inversior, than an RCODE of 9 is returned and
the inversions(s) in qicsetien is auitomilatically dropped. The
only way to find out which inve:sion(s) are dropped is to
examine the inversion cntrcl tple after the call to XMAKE
or XRUPDT.

-31-

Appendix F

Limitati s cf SQULT Release 3

1. Maximum degree of relaticn = 32 (was 15 in SEQUEL Release
2)

2. Maximum length of name of relation or column or domain =
16 characters (was 8 ir el. 2).

3. Maximum length of character string data item = 128 (was
64).

4. Data types suFported tfor database: integers (NUM) and
varying length character strinqs (CHAR)

~. .

5. Constraints on Numeric rata:
A) nly numbers in the following range can be entered

intc numeric columns:

-2,147, 483, 4 P8 to 2,147, 4 3, 6 4 7

B) Inversions on numc-ric columns can only be created
when all data in t.he columrns is in the following more
restrictive range:

1 ! n ! 2,397,151

6. Additional constraints on table, column and domain
names:

A) The followinq are invalid as table, column and
domain names:

AND AET . S ET T A35SERTION AVG
13BETWEEN CHAF CO'- PHTE COUNT CRPEATF
DELETE DFSCRIBE ;3[ST1.AY DOMAINq DOMAINS
DPOP EMPTY PR(CM IN INSERT
I NT- T ANVE SSI(NS rSFY KEYS
LI ST A X MIN NrlM ON

OR S !L C ET T B TABLES
TOT UN CU 7P P IT WHERE

-32 -

n) The follcwing characters may not b included in a
table, column or dcmain nD me:

(period)
(comma)

; (seaicolon)
: (colon)
< (less-than)
> (greater-tban)
= (equals)

((left-parer)
) (right- parr)
+ (plus)
- (minus)

(asterisk)
/ (left slash)

(logical nct)
J (logical or)
! (exclamation)

7. An input SEtQUEL query cannot he longer than 4200
characters unless it is input via a file (was 2000 bytes
in Rel. 2).

8. Maximum amount of resting in a SEQUFL query: 3 levels
(outer block plus 2 lvels of nlestiuig).

9. The maximum number of odes in thc parse tree of a SEQUEL
query is 100.

10. The following featutrs of th- T3NP syntax of SEQUEL are
not impl¢mented:

<SET-COMP> (production f(9)

+ - * / may nDot b IIlsf+] in a <SFT-CLAIS E>
(production 3)

<UNICIJE-PPFPD> (rciuctirn 71)

- 3 3 -

A r-:e ,-ndi i x

Transacti on Inter arce escription

ITT-SEQUEL Rl~.se 3

The UPI (User Friendly Interface) interfaces with the rest
of the SEQ(JELT system by callinq the procedure TRANS. The
UFI shares the following external variables with TRANS:

QSTRIN(; CHAR(420C) VAR,
DTYPF.(32), CCILEN(32), LPAD(.2), DWIDTH(32) BIN FIXED,
(TRANTYP,CODF,,DrEGRFF,CARDIN, NUJMROWS,DISPPROW) BIN FIXED,
(FtLESW,REPPO'T,STATIST) BIT (1)

TRANS has five entry cints: TRANSIN, S F QUE L, GETROW S,
SEQSTOP, and WINDUP, which are descrihed below. The valid
return codes for each entry point are listed. If CODE.
contains any other nutrher after return fron TRANS, the
number is a cod. for some us.r r system error, and a
message describinq the rrcr ay h found in QSTRING.

TRANSIN: Must b called at beginning of user session to
initialize the system. .4ormal return cod = 0.

SEQUEL: If IIESW='0'F, a SEQUET statement to be processed
is in QSTPING. If FLFSW='1'B, one or more SEQUEL
statements are in the CS file SEQSTAT SEQUEL. (In
this 'latter case, succ.ssive calls to SEQUEL
process t'he statements one at a time.) Normal
return codes:

COD=0: T e SFQUEt stitement was successfully
executed. The type-: of. the statemelnt is
ird icated by 'Ar NTYP:

102 Insert
103 Update
.~: ~ 104 Delete

- 106 Create Domain
107 Drop Domain
1R Create- Table
10) Drop Table
110 C r a t- Invo rsion
111 Drop nYversion
112 Assert

'9 113 Drop A.qsertion
114 Display .ssertion

CODE1: The $QU ET ;tat em en t was a DISPLAY
A$S FETION cI)mMarlnd. The assertion
statement i; "ound i.-n STRING as it was
oril.inally -n red.

- rI t"in f-Ilt Wi z '1I .. IUry w ii L(.'tIq' }. " $,C '171' T.
Vai 1 -f r,1,

i n fcr r +! c
Th to ()11 owinr'

'?PANTY =
PT, FF =

CA ' r 1 N =

'TYF' (T) =

CC I T F N ()

U I" r I 'N (o

(T r aIct
o i- i 1 E (]

lr"1 ;!,'lnote's <tue ry.
* !b -de:Irqe of

11r (r .iniiality of
r('9 I:l+ .
, ' ,t ,1 type of c

i-' .lq, yr: ¥ .t^llt, w
1 - N?!'i , aI!d
> - wit (i ;n ch
- ',,' width (in cd

I ,"c i : l(ds i. n1 QS
Crrt r '."; ion (to column

t h (ue r ,'

the

o lumn
here

j II(e ry

I of

ractcrs) f
P, NG th at

o ' i) 1- t hO C 1 n lT -namef;:s o f he

'] r k .p It c entered in
CO T1 ;, t ie i e lds ot width
-l)T, l1 (T) chiaract<rs.

u I rw:; o the query y he
b, <- .l l iiv :!';~TR.OWS.

addli ir
rFT U are
1F PI, a t

i h f cai

i, eh

: ()' 1 h

111 (s;)

t. wo arrays; PAT) a n:
hl,- after the call to
the'y are not useful

to G.E;RpoWS.

C()a : , ;') FI, wa, called ' with FI.SW' 1 ' B to
&roce~-,;< th uc.,~>t -t.;-tat.mnt in the file
SF,I FT AT-3'1 'FIT. btit he last tatement

.. ,~~~~~~~~~~~~~~~~~ i. 1f..t1;a" ; rc 1~, '' i',,;?n pro c-. O(e1 (ent of fi l1
rf'({,ac d) .

COW=4: tie S11CtIT t't . 'nnt wis a u ry which
oVl1utcf tc Iu .' -i ni 1 constant. rT IIe
y1 e rl1-y rc:-;e l If, in 'tchtracte.r string form,
i; in (~)S% I !S , . P.. PTYrE(1) cotairs t. h1
3.ata type f +i-? *- Lrv result.

'(. !T = ,: ' l= *h c ' P3C(UFL
D'O M I N S .

QSrTING, c,)n
lnam., type,
longest erst
A (L) X (?)
of lo ai 11 -;
10 5.

CO=, T) =7 The S Er r L

TA UI F; * .
nfml f r'(r of:
t o t ahle
10- 1 y t ! i

-+tem l - | was of type "LIST
Trl,, list of tdoains is . in
+.i,.Tninq for each domain its

'.1s(jC counlt, and lenqth of
r', ill format (16), X (2) ,
(), X (2) , F () . Thle number

i - in NTJMR)WS. TRANTYP =

S:temi'?t WaS Of type "ITST
(T "!A7YP = 15. WIl'iPOWS = the
-a:l, '', .) rQSTRING contain-: all

! tn" ?;, left- jus-t iie d in
'-ld ;1 .

In

S3 F ()

!)l f

- t -

('r p'?, 2:
+- () I

T) i -. -ivailahlp:

-35-

CODE=8: Tb SFQTJTL statement was of type
" Fn SCRIS P TAfLE." IRANTYP = 105.
NUMFCS = the number of columns of the
table describe<. QSTRING contains the
name cf the2 table (A(16)) followed by a
description of each column: name,
domain, type, encoding, part of key
(yFs/NC), i ,:v ersion exists (YES/NO):
A(16), X(2), A(16), X(2) , A(4), Y(2),
F(1), X(2), A(q), X(2), A(3).

Other return code; in icate an error condition.
Tf TRANTYP c99, +h<on the parser did not
rpcognize the command; otherwise, IRANTYP should
indicate what tyFe of command was attempted.

GETROWS: Called repeatedly to obtain the actual rows of a
query result af ter call1ing S'QUEEL with CODE = 2.
Caller must st ISFROW = the number of the first
row he wishes returned. ETROWS will place as many
full ows as possible in QS'LING, cncatenating
them. The format of each row is identical for
each row that is pult into QSTBING, and is
determined by the arrays COLLEN, LPAD and DTWIDTH.
Within each row, there are (DEGREF) fields
concatenated together--one for each column of the
row. The total width of each column field is
given by CLLPN--that is, column I has a field of
width rCOLITN (I). Within that field, there are
LPAD () spaces on tlhe left, added for centering
purposes, +hen the data item itself, DWIDTH(I)
characters wide, an]l thi (possibly) some
riqht-paddin g spaces (that is, the number of
right-padding spaces is given by COLLEN(T) -
T!PAD (I) - DWIDf (t}) . (Note: either or both of
T PAD (I) and rwIEfH(I) my hbe 0). The number of
rows placed in CSTRING is returned in NUMROWS.
Normal return ccde = 0.

SEOSTOP: SQ TTEI has previously been called with
FTIESW=' 1' B. Sce statements may remain in the
file. SPQSTOP cause; +t he system to ignore the
r-malining s+atefents a n close the file. Normal
r(eturn code = 0.

WINDUJP: Miust be called to clean up the system at the end
of a user session. ormal return code = 0.

Whrenever a call is made tc any of he entry points of TPANS,
the following two bits govern the behavior of the system:

REPORT: If PEPCT=' 1 'E, the system types out on the

-3 6 -

terminal a diagnostic trace of all routines
entered.

STATIST: If STATTST='1'B, th, system keeps statistics on
time spent in variou aspects of processing;
before returning, it prints the statistics
together with the current SEQUF1 statement on the
STATPRI LISTING file.

-37-

Appendix

XRAM Extensions

F. Fessel

May 13, 1976

This document describes extensions which have been made to
XRAM since the publication of the original XPAM
documentation.

The following XRAM routines have been functionally modified:

XRINV

A code of 9 is now returned it a least one of the domains
upon which an inversion is being created contains data which
is not in the inclusive range of 1 to 2**21-1. The only way
to tell which domain r domains contain such data is to
examine the inversion control tpie upon return from XINV.
When a code of 9 is returned, the type 9 relation(s)
corresponding to the offending domain or domains is
automatically dropped.

XRMAKE

When a new tuple is added to a type or 5 relation and the
addition of that tuple wculd cause at least one domain of
the relation which has an inversion defined on it to contain
invalid data (not in the inclu~-ive range between 1 and
2**21-1) , then the inversion (s) in question are
automatically dropped, the corresponding type 9 relation(s)
are dropped, and a code of 9 is returned to the caller.
Again, the only way to determine tahe offending domains is to
examine the inversion ccntrcl tuFlI.

XRUPDT

When a domain in a regular relation is updated and that
domain has an inversion defined on it, and the updated value
for the domain is invalid, then the corresponding inversion
is dropped, the associated type 9 relation is dropped, and a
code of 9 is returned to the calling program.

-38 -

A new entry point has been added to XRAM. Its purpose is to
count the number of unique entries in a domain of a regular
relation which has an inversion defined on it. The format
of this call is:

XRUCNT (rid,m,k)

rid is the relation id of the relation in question. m is
the domain number for which ccimnt of unique entries is
desired. The count of unique ntries is returned in k, the
third argument.

Return codes:

0: Action performed- nc error.
3: Invalid relation id.
4: Not a regular relaticn or invalid domain number.
6: Specified domain does ot have an inversion defined on
it.
100: System error.

-39 -

Appenlix

TRANSACT Commands

1.

RU I fn1
RUN If n

I

I

I

-1

r- -- I
I r--1 II
Ift Ifml II;
I TRANSACT I A 11 1 1
I 11H

L L--j
-- J I_

2.

I r- -,
OUTput [TO] I TER~inal ILINE TZ7F nnnI [CRT]

I I 80 1
I_ _J

I r- -- I
I DISK 1iINESIZE nnni Ifn
I I 8 0 I 1
I ,L -J I

-I

I

I

I

I

---I1 II
I r- - I
I ft f II
IREPOMT A II

L- -J
LIL--

11 I

- I I
-J I

I I-1 r-
I PRinter IIINES'TZE nnn Ioptions froml
I 1 301 ICP SPOOL I

I I I command I
-- _J L-

IL--
J I

1

i
I I

I

I

I

I

i

I

I

I

I

r
RF PO PT I

I
L

STATISTICS

CASF
r 1
I UPPE RI

I LOW ~PlI
L

r I
ROWNUM JON I

L J IL -I

T IT L E
r 'I
I CN I
I FF I
I ' <tifle1'/' titl e2>'/ I
L

OUTput

REPORT

STATi stics

CASF

ROWNUM

TITL E
--J

5.

CP <command> ;

1
ON

FI
]

r I
IoCN I

I F I
L J

SET

J

-I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

-J

4.

J

r-

I

I

I

I

I
Qu er ?yI

I

I

1

I

I

;

I

I

I

I

I

I

I

I

I

I

I

-4 1-

6.

at f < (o mm tf >;

7. Any SEQUEL trinsacticn.

8. QuIr;

-4 2 -

Pppenii T

Explanaticn of 1TRANSACT commands

1. RUN (not implemented)

Fexecutes the transacticns in tho file specified by fn ft
frm. Only the transactions described on the ages labelled
SEQUEL SYNTAX should be included in a run file. Transactions
will be processed seguentially and the system will respond
with the message TRANSACTION COMPLETED after the last
transaction has been processed. Errors may or may not cause
processing to terminate, dependiig on the nature of the
particular error involved. Run files must consist of
variable length records (in CMS EDIT.T type RECFM V)

2. OUTPUT

Directs all output except for messages to the device
specified.

OPT-O9_S

LINESIZE

The user may indicate a linesiJe for terminal, disk, or
printer as long as it conforms to the limitations of the
output device. Unless therwise set the following L1NFSIZF
values will be in effect:

for terminal - LINESIZ 80
for disk - LINESIZE 80
for printer - LINESIZE 130

TERMINAL

All output will be displayed a the terminal. If the CRT
option is not specified output tahles will be folded.

CRT

This option will enable the resultant tables from the SELECT
command and the catalog queries LTST DOMAINS, DESCRIBF TABI.E
to be displayed in "window" format.
Commands which may be used with the window are:

-43-

Up n 1
r_ _~,

I own In] I

Next I
L_

Left [n
Eiqht (n]
Continue

UP n, DOWN n, LEFT n, RIGHT n will cause a displacement of n
rows or columns in the ccrresponding direction. CONTINUE
will allow the system t accept the next TRANSACT command.

DISK

Output will be directed tc the file indicated by fn ft f.

PRINTER

Output will be directed to the printer. Any arguments from
the CP SPOOL PRT command ay be used to modify the spooling
control options. Standard CP SPOOL defaults will be used.

3. SET

R EPORT

If REPORT is ON, the system types out on the terminal a
diagnostic trace of all rutines entered.

STATI STICS

If STATISTICS is ON, the system keeps statistics on time
spent in processing. The statistics are printed, together
with the current SEQUEL statement on the STATPRI LISTING
file.

CASE

If case is set to LOWEF, all quoted strings will be passed
directly to SEQUEL withcut conversion to upper case. Thus,
SET CASE LOWER will enable all literal character strings
entered at the terminal tc remain as they are typed in. SET
CASE UPPER will cause character strings to be converted to
upper case.

'POWNUM

If ROWNUM is ON, the rows generated by a SELECT command will
be numbered for both folded and "window" output table
format.

-l 4 -

T1I T L.E

This option provides an optional titling faculty for
reports. When a title is specif id it will be centered at
the top of all output tables (Pxcept those output to a
CPRT). SET TITLE OFF stops the printing of the current title
but allows the title to be retained in the system. SET
TITLE ON causes the current title to be printed with the
output tables as described above. Lines of a title may be
specified by using SET 'IILP, '<titlel>'/'<title2>'/... a
maximum of 6 lines is allowed. Fach line must be enclosed
in single quotes and salatel by v slashes. A single quote
may be used in the text cf a title by entering it as two
single quotes.

4. QUERY

Displays the options which are currently in effect for the
OUTPUT and SET commands.

5. CP

Allows CP commands to be Pcxecuted in the TRANSACT
environment.

6. CMS

Allows the following subset of CMc; commands to be executed
in the TRANSACT environment:

ACCESS LISIFII.E RENAME
CP PRINT RETI rN
DISK PUNCH SET
ERASE QU E Y STATE
EXEC REArCARD TYPE

If CMS commands other tan thos;e listed are issued, an error
message will be typed ad the command will be rejected.

7. See SEQUEL BNF for valid querins.

8. QUIT

Fnds the session.

NOTES:

1) All commands must e followc:l by a semicolon (nested

-459-

quories require more than one ;omicolon)

2) Transactions may require moT' than one input line. A
transaction may be deleted by tvning (%). If you wish to
use () as a percent sign, enter (%).

3) TRANSACT senses the end of a transaction if the last
character entered on a line is a semicolon. Therefore, to
avoid premature termination by TRANSACT of transaction
input, make sure that a smicolci within a command (e.g. a
COMPUTE clause) is not the last character entered on a
line.
4) When TERMINAL LINESIZE is changed in TRANSACT, CP
TERMINAL LINESIZE is alsc chanqed.

5) To enter the single-user TRANSACT environment from CMS
type:

transact

and wait for the RFAY; m ss-.ge.

6) If you want to use TRANSACT to communicate with a
disconnected Transacticr Virtual Machine with an id of TVM,
for example, type:

transact tyvm

and wait for the RfAY; messa]e.

-4 6-

Appndix J

TPRANSACT PlN Comonand Macro Processor Proposal

EFAFT CPY

This publication is i rtended for those GIS users who want
to use the TANSACT RN facilities. It includes information
on writing a RUN procedure, using the TRANSACT BRUN
facilities and RUN contrcl statements, and building RUN
procedures. The reader should have an understanding of
elementary programming techniques such as branches, loops
aad loop control as wll as an understanding of TANSACT
operating procedures, ccmmands, anl the CMS editor.

-47-

INTRODUCT TON

The TRANSACT IIN f cilities perm(t, T. user to define new

TRANSAC'T commands that are combinvf Oiors of existing TRANSACT

and S FQU.I commands. The nw commands, called RUN

procedures, are usuall y create u: ing the CS Fditor.

When a RUN procedur i invoked, it represents a sequence
of commands that are executed according to the logic control
statements defined in te PUN procedure. The TRANSACT user
can create simple FUN i roced,]rs that execute several
frequently used queries, or h can devise complex RUN

procedures that etst sveral logical conditions before

deciding whether or nt to execute a query. The logical

capailities in the PUN processor are controlled with

statements simil r to the IF/THEN, GOTO, DO and LOOP

statements familiar to ,igh level language sers.

A run procrdure is created by lacing a selected sequence

ot commands in a UtlN file. A RUIN file can have any valid C S

filename, filetype(and filemode, ut it is recommended that

the filetyp- he TAANSAC so as to avoid confusion. PUN
files are flad up of aryin 1enjt h records up to 130
characters lonj F(Ich record consists Qf one TRANSACT/SEQUEI,
command or UN control statement.

Although TtN files are usually created by using th CS
Editor, they can also be created by reading a card file from

the sers virtual rader or by a user program.

INVOKING A RN PCCEDUP

To invok a UN prccedure, b%~ user simply enters the
TRANSACT command 9'UN, followed by th, filename, filetype and

filemode of the "TIN file wanted, and optionally, a list o

arguments. A UN procedure can be invoked just by entering
the filename if t filctye and filemode are 'TRANSACT' and
'Al' respectively. These are tho default values taken for

the PUN file.

When a IN fil< is invokedi, thlr? UN interpreter ccntr.ols
the execution cf the prccedure, 7zllstittiting values for UN

variables wh¢ere requlircd, anl pa sing ontrol to T\NSAC"

for the execution of T nPNSACT cmmInds.

The RUN interpreter car manirulate paramneter lists, thus

allowing the user to [ass ar jument: to the PUN procedure

when it is invoked. 9cfcre a command in the UN file is

executed, each variah e in it is ti-orarily replaced by the
corresponq argument from the 9,arameter list tha- was

specified when the RTM rocedurr, 1as invoked. Use of hese

variable arguments thus permits reat flexibility in cmmand
execution within the FPUN Proce.lure.

The contents introduced in thp preceding paragraphs are
discussed in greater detail later in this document. At this
point, however, the user can see that the RUIN facilities
provide him with a powerful tool that he cant use to develop
his own command languaqge or set of operating procedures.

-49-

USING THE TANSACT RUN FACItITTES

This section describes the three ma jor parts of the TANSACT
FUN facility:

.1. The RUN command which initiates TRANSACT execution of a
RUN file.

2. The RUN files, which contain sequences of TRANSACT
commands and RUN ccrtXcl stateaments.

3. The RUN interpreter, which analyses each statement in a
RUN file before T NSACT executes the procedure. Each
of these items is described in greater detail under a
separate heading.

-5 0-

RUN FLES

A RUN file is a CMS data file that can contain TIANSACT
commands and RUN control statement;.

RUN files can be created with he CMS editor, by punching
cards or by a user progran. 'rho file should be of varying
record length with a maximum record length not greater than
130.

RUN files consist of two typos of statements: executable
and nonexecutable. Fach tyre is discussed below.

NONEXECUTABLE STATEMENTS

A nonexecutable statement in PUN file is one that begins
with an asterisk (*) and may or ay not contain text. These
statements are for use as comment statements and are ignored
during RUN interpretaticn and processing.

EXECUTABLE STATEMENTS

An executable statement in a UN file is any statement that
does not begin with an asterisk. hese statements consist of
data items which are strings of contiguous nonblank
characters separated by blanks. Three classes o executable
statements are recognized by the UN interpreter:

1. Null statements.
2. TRANSACT commands.
3. Control statements.

Each of these statement classeis is discussed under a
separate heading. n addition, a section on labels and
comments is also given.

Null Statements

A null statement is an execuatable statement in which the
number of data items is zero. blank line is a null
statement.

TRANSACT Commands

The RUN interpreter considers an executable statement as a
TRANSACT command if the first data item does not start with
an ampersand, an asterisk or a hyphen. Data item
replacements are made cn the statement and then TRANSACT
executes the command immediately.

Any valid TANSPhCT ccnzand may - incluled in a RN f i.
Another PUN procedure may be invoke by simply entering
another RN command and setting the rcursion nesting option
to be described later.

Control Statements

An executable statement i a control statement if the first
data item is a RUN control word. Examples of control words
are:

$GOTO
& EXIT
&IF

Control satements begin with a control word, which is
usually followed by a list of data items and, in some cases,
by additional lines of data. Control statements provide the
means by which the user can con--ol thn oxortion of hi RN
procedure. The IF control word, for exampie cn estubisi
a conditional test arnd a branch (&GOTO) can be taken if
the condition is met.

Labels and Comments

A label in a RUN procedure begins with a hyphen (dash), and
contains up to fifteen additional alphanumeric characters. A
label can be placed in front of a TRANSACT command or RUN
control statement. A label is often the object of a
branching control statement, uch as GOTO or &LOOP. When
searching for a label, the RUN interpreter examines only the
first word on a line.

A comment in a RUN procedure begins with an asterisk (
star). the remainder of the line may contain any
combination of valid characters desired. A comment is
included in the count of the number of lines read in from a
file for execution (for use in references to line numbers
or references to the sccpe of an FLOOP), but the text is
ignored. See the section describing the &** control
statement for alternate methods; of ntering comments.

-52-

THE RUN COMMAND

The RN commanld gives one the ability to execute one or
more TRANSACT commands c FUN control commands contained in
a specified file, by issuing a single command. The format of
the RUN command is:

] RUN I FN PT FM [NEST/NONEST] (args...)

where:

FN
is the filename of a file containing one or more
TRANSACT commands to be executed.

FT
is the filetype cf that file. It can be any valid
CMS filetype but if it is left out, it is assumed to
be "TRANSACT".

FM
is the filemode cf the file. Again, it can be any
valid CMS filewode but. if it is left out, it is
assumed to be "Al".

NE ST/NONEST
indicates how titles and other features are to be
handled for recursive commands. That is, those RUN
files which invcke cther RN files.

arqs
are the arguments to reFlace the numeric variables
in the RUN file specified. Within a RUN file, up to
thirty symbolic variables may be used (each one
indicated by an ampersand () followed by an integer
ranging frcm one to thirty) to indicate values which
are to be replaced when the RUN file is executed.
The arguments are assignerd to symbolic variables in
the order in which they appear in the argument list.
For example, each time an Fl1 appears in a RIJN line,
the first argument specified with the RUN command
temporarily replaces the $.1, the second argument
specified within the RN command replaces 2, and so
on, to argument N of the RUN command.

If the percent sign is ued in place of an argument,
the corresponding variable (N) is ignored in all
the commands which refer to that variable. f the
specified RUN file contiins more variables than

-53 -

arguments given in the RIJN command, the higher
numbered variables ark aslmed to be missing, and
are ignored when the commands are executed.

-5 4 -

RUN CONTROL STATEMENTS

An executable statement is a control statement if the
first data item is a RUN control word (the only exception
are those control statements preceeded by labels). Control
statements begin with a control word which is usually
followed by a list of data items. Control statements provide
the means by which the user can control the execution of his
RUN procedure. Fach FUN control statement is described
below. (Note that all can be truncated down to a minimum
length of 2 characters. Truncations starts from the
rightmost character in the control verb.)

-595-

&ARGS CONTROL STATFMENT

r1
I &ARGS ([argl [arg2 ...]])
L--___-_-_-__-__-_-_-__-_-__-----J--J-J----J-J----J--J-J----J--J--J--J-J -J

Redefines the arguments 1, &2, ... with the value of
'argl', 'arg2' ...

NOTES:

List of arguments enclcsed in parentheses, separated by
blanks Strings with embedded blanks can be enclosed with
single quotes. Quctes within a quoted string are
represented by two adjacent single quotes. In a normal
string however, they are represeated by themselves. A
per cent sign () is used to inlicMe a null value for
given argument in a list.

SBETYPE CONTROL STATEMENT

r~~~~~~~~~~~~~~~~~~~~~j~~~~~~~~-

&BEGT YPE

linel1
line2
line3

I *

I .

I .

linen

I &END IT)
L .

Displays 'line1' 'line2', .. at the terminal. No

argument replacement is perormed.

NOTFS

&BEGTYPE must have a matchinj &,END control statement for
delimiting lines to te rinted.

-C6 (-

&CCNTINUE CONTFOL STATEMEN'

r -...

I &CONTINUE
L -------

Provides a branch addrEss fcr the &GOTO control statement
and conditional braching statements.

&BETURN CONTROL SATEMENT

r£~~~ -~- --- - -------- --- -- ----__ __r~~~~~ I r 1

I &RETURN I returncode{

i I C I
L J

L--

Exits from RUN file with the given return code.

NOTES

Return code must bE between and 9. If larger code is
given, only the first digit of that number is used. If an
invalid code is giver , or one is missing, 0 is assumed.

-57-

&ERROR CONTROL STATEM1FNT

I FRR
I &F RROR

I

I

r
I executable statenlment
I blank line I
L j

L -- J-_-_-_-_-_-J

Specifies a given action to b taken when an error occurs
during execution. Entering PPEROR followed by a blank
line resets the action to the normal system response. The
normal response is tc print out the string being
processed at the time of the error and then request a
replacement line from the console.

SGOTO CONTROJ STATEMENT

r…-- -"- --- 1
I GOTOI
I & GOTO

I

I

r
I TOP

1

I line_ number I

I label I
L J

Transfers control tc the top of the RUN file, to the
given line number or t the line starting with '-label'.

NOTES

The label specified shoult not have a leading hyphen,
only the statement label in the text need have one to
indicate that it is a statement label. If a transfer
point is not found, a message is displayed and execution
continues with the statement directly after the &GOTO
just processed.

1 I

I

I

I

I

I

I

I

I

-58-

&IF CONTROL STATEMENT

r~~ ~ ~~~ I
r 'I

[TOKEN 1]

I EQ

I NE

I GT

I LT

I GE

I LE

I NG

I t

I

I

I I

I [TOKEN2] executable statement I

I I

I

I

I
L J

6.…__ __ __ __ __ __ __ __ __ -- __ _---_----- ------------

Executes the 'executable statement' if the condition is
satisfied.

NOTES

To compare for a null string, enter %% (double per cent
sign) as the token tc be used for the comparison. Nesting
of &IF statements is allowed so long as the entire
statement is contained on one 130 character line.

_LOOP CONTIOL STATENT
r…

I

I LOOP

I

r 1

I n I []
I label I

L~~~

Loops through the fcllcwing n lines, or down to but not
including the line indicated by '-label', for times.

NOTES

The 'label' specified hould not start with a hyphen as
only the actual statement label needs one. Nested loop
statements are not allowed. The statements passed over
by the execution of an SKIP control statement are not
included in the ccunt for the number of statements
executed in the loop.

WARNING Be careful tat the scope of the statements
inside a loop does not extend beyond the limits
of the loo itself. (i.e. an 8BEGTYPE control
statement inside a loop with its associated END

I

I

I

I

I
I & IF
I
I

I

I
I

I

I

I

I

I

-59-

control staterment ')ut!side the end of the loop.)

ERFAD CONTROL STAIEMENT

I &R1~D I.…~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Read the nxt line fromn the terminal and treats it as if
it had been contained in the RUN file.

_2UIT CONTROL STATEMENT

r1I &QtIT

Exits from the RUN file with a return code of 0. (i.e.
Same as the statement J &RTTIRN)

&SRIP CONTROL STAfEENT

r~~~ ~~~~~ ~~~~~ra-'ra----m-m---- -- -- - - -- - - -- m -- --m -- -- ________

I r ' I
I &SKIP I n I I

I I I 1
L j

Skips over the next r lines in the RUNJ file. If no value
is given, 1 is assumed for n.

I I

-60-

&SPACE CONTFOL STATEMFNT

I SPACF
I $,SP AC F

I

I

r I
In I

I 11
L J

TyeL ln ie tte emnl eal au o

Types n blank lines at the' terminal. Default value for n
is 1.

&TYPE CONTBOL STAIEMENT

I TYP
I &TYPE

I

I

r I
I n I

1I1 1
L J

L-J

Prints the next n lines fromn the RUN file at the
terminal. Default value for n is 1.

NOTES

Unlike the BFGTYPE cntrol statement, the TYPE control
statement does perform argument substitution before
printing out a giver line. It can therefore be used to
check for correct redefinition of arguments when an ARGS
control statement is executed.

I

I

I

I

I1

-61-

&** CONTPOL STATEMENT

r -

j 5** [text.]1
L-

Indicates that the text n this line is to be ignored as
a comment.

NOTES

Comments are also indicated by a '*' in column 1.
SPECIAL STATHEMENT SYNTAX

'*' (in column 1)

'-' (in column 1)

Indicates that the present line is a
comment and is to be ignored.

Indicates that this line conatins a
statement label and the first token
is therefore to be truncated from
the rest of the line before
processing.

-62-

WRITING A RUN PROCEDURE

Once a RUN procedure is designed, it can be entered into
the VM/370 system in two primary ways.

1. By punching cards, which are then read via the real
system card reader and the sers virtual reader.

2. By using the CMS Editor to enter input lines into a CS
file. The Editor ormally truncates all input lines at
8e characters. This truncation can be avoided by
specifying the RFCL option of the EDIT command with a
record length of up to 130 characters. The Editor
also normally assumes a file to have fixed length
records. This can also be changed by specifying the
RECFM option of the EDIT command to be varying.
For example:

EDIT filename RANSACT (LRECL 130, RECFM v)

BUN files can also be created by a user program. Regradless
of which method is used, the format of the entered
statements is basically the same. nly one TRANSACT command
or RUN control statement may be entered per card or card
image. TRANSACT commands must be in the same format as they
would be if entered from a terminal.

To use the CMS Editor to create a RUN file, simply enter
the command:

EDIT filename TRANSACT (LTRECL 130, RECFM V)

where the filename is any valid CMS filename, and the
filetype of TANSACT can be different. If the RUN file
specified in the FDIT cmmand is a new file, the message:

NEW FILE:
EDIT:

types out at the terminal. The user can then type in the
INPUT subcommand and start entering input lines as soon as
the Editor replies as follows:

input
INPUT:
(Begin entering irFut lines.)

Each input line is ended by pressing the return key. When
input is complete, return to the EDIT mode by pressing the
Return key again. If the file needs no corrections, simply
type in the FIIE subcommand. The data is stored and control
is returned to the CMS nvironment. A RUN file created this
way can be executed by typing in "RUN filename." Its
contents can be examined either by typing it at the terminal
using the CMS TYPE command, or by printing it on the system
printer using the CMS PINT command.

-63-

The prcedinq descril'tion of the CMS Editor identifies
only a few of the Editcr functions that may be useful in
creating and maintainirg UN fills. For a more complete
discussion of the CMS Editor, refer to the VM/370: EDIT
qu ide.

-64-

Appendix K

Proposal for IPANSACT Transaction Editor

This facility will permit a user of TRANSACT to edit
any transaction that is typed in before actually executing
it, and ill allow that transaction to be executed and
edited any number of times without. need for reentry.

Conventions

Each command entered in TRANSACT will be saved just as
it was entered, in multiple line format. The TRANSACT EDIT
command will allow that command to be modified in a manner
that parallels the CMS Editor (e.g. use of current line
pointer). Until the TRANSACT editor subcommand QUIT is
entered, TRANSACT will remain in EDIT mode, and the EDIT
subcosmmand GO must be used to execute a transaction. When
the TRANSACT user is not in EDIT mode, each transaction
entered is executed in the normal manner, and if the first
line entered after a FArY; message is not EDIT;, then the
buffer for the current transaction is cleared to accept a
new transaction.

New TRANSACT Command

EDIT;

Puts the TRANSACT user into TRANSACT EDIT mode. Any
(TRANSACT) EDIT subcommand may now he used to modify or
input the current transaction. If the current transaction
is empty, then the editor automatically enters INPUT mode.

TRANSACT EDIT Subcommands

Input

Puts the editor into INPUT mole. Successive lines are
added or inserted into the current transaction in a manner
similar to the CMS ditcr. Entering a null line returns the
editor to EDIT mode.

GO

the current transaction. After theExecutes

-65-

transaction has een xEcuted, TrANSACT returns to EDIT mode
with the current line ointer (CLP) pointing to the top of
the transaction. The trarsaction is not erased.

Type [n 1]

Types n lines of the cur-nt transaction, starting with
the line indicated by the CLP. If * is used, all lines from
the CLP to the end of the transaction are typed.

Next [nl!]

Moves the CLP down n lines.

lip [nil]

Moves the CLP up n lines.

DELete (n[*l1]

..

Deletes n lines of the current transaction, starting
with the line indicated by the CLP. If * is used, then all
lines from the CLP tc the end of the transaction are
deleted.

DROP

The entire current transaction is deleted. This is
equivalent to a TOP subcommand followed by a DELETE
subcommand.

Top

Sets the
transaction.

CLP tc the top line of the current

Bottom

Sets the CIP
transaction.

to the last line of the current

-66-

Chanqe /strinq1/string2/

Chanqes the first occuremlc of string1 to string2 on
tha line indicated by the CLP.

Quit

Leaves TREANSACT EIl mode.
processing continues.

Normal TRANSACT command

NOTE: The EDIT; command i not recognized by the RUN command
macro processor.

-67-

Appenlix

Using the DBD:;SC? Command

The DBDESCR command is used to get a general description
of each table in a database. The user selects one of two
options for the amount cf information s/he wants printed:

(a) a column description ("TESCRIBE TABLE...") as well
as a row count for each table,

or

(b) only a row count for each table.

USE

The user types DBDESCP fcllowed by one of the following
three things:

TERM
PRI NTER
(nothing)

This directs the printed output either to the user's
terminal, or to the jrinter; if nothing is typed after
DBDESCR the program assumes that the output goes to the
terminal. For example, the user might type

DBDESCR PRINTER

which invokes the program and sends the output to the
printer.

The program will respond with

DO YOU WANT THE CLUN DESCRIPTION FOR EACH TABLE? REPLY
Y/N

The user now enters ' Y' if s/he wishes the column
descriptions printed for each table (along with the row
count), or 'N' if s/he wishes only to have the row count for
each table. The program now prints out the database
description.

AFpendix

Bulkloading of a Da+abase (LTDB)

The program LTDBB loads a database from a CMS file, using
free-format loader commands and user-specified format for
the data records. The CMS file may have an arbitrary
filename, filetype, and filemodo. The program is in the
form of a stand-alone module; that is, it cannot be invoked
while using TRANSACT.

The loader can be used to:
(a) Add data to an existing table
(b) Create a new table
(C) Create a new domain.

One CS file may contain a mix of all three loader
commands.

When loading a SEQUIF table, the loader checks the data
being entered against any assertions that were in effect at
the time the loader was invoked (assertions cannot be set
using the loader, but ay be set using TRANSACT). When
loading a table, the loader only adds data to the table, and
does not affect data already present in the table.

The loader knows the input file as COMFILE in the
program. Hence, the person using the loader to load from
his or her input file called, for example, "INPUTDATA
INPUTTYPE", on the A-disk, must link "COMFILE" to
"INPUTDATA" by means of a FILEDEY:

FILEDEF COMFILE DISK INPUTDATA INPUTTYPE A (PERK)

(It is not necessary that the input file be on the A-disk.)

An easy way to invoke the loader without entering the
FILEDEF is to use the EEC command LOADDBB as follows:

LOADDBB fn ft fm

This EXEC will issue the FILEDEF for the arbitrary file "fn
ft f", and will then invoke LTDPB automatically.

There is a default assumption that all character string
data that is to be added to a table should be trimmed of
any leading blanks; this is usually desireable. If the user
does not want the leading blanks removed, eg. to be able to
line up columns in the utput of a SELECT command, he or she
must use the NOLTRIM' option when invoking the loader; the
user enters, instead of tel above command, a command of the
form:

LOADDBB NOLTRIM fn ft fi

-69-

The INPTITDATA file is a reqular CMS fike of 80-character
records (RECFM F). The lcader commands consist of one or
more records in the INFUTDATA file. ach command control
card is read in a free format - each argument must be
separated by one or more lanks. Note that this is not true
of the data records themselves - these must be in a format
specified in the $T.OADTAB card. There are five major
commands:

1. Define Domain Command

Format: $DEFDOM <domain name> <domain type>

<domain type) can be NUM (for numeric) or CHAR (for
character).

Each command creates one domain.

2. Define Table Command

This command creates a table; it defines the table
name, and for each cclumn in the table, it identifies
both the column name and domain name.

Format:
$DEFTAB <table name> <column name> domain name> ...

The order of the columns (left to right) in the table
is the same as the order of he <column name> fields in
the format description. The Define Table command must
immediately be fcllcwed by a Define Primary Key
command.

3. Define Pkimary ey Cgomand

This command must immediately follow a Define Table
command. The format is:

SPRIKEY <column name> ... $ENDKEY

Note that though it is not necessary for a table
to have a primary key, it is necessary to include
a Define Primary Key command immediately after a
Define Table command in INPUTDATA. If there is no
primary key, there must be at least 1 space
between $PRIKEY and ENDKEY.

4. Load Table Command

This command tells the system what table is being
loaded, and in what format the data to be loaded is

-70-

foind; the data--in that format--follow the command.
Note that the table indicate? in the command must have
been previously created (either by a $DEFTAB loader
command or a SEQUE CATF ABLE command).

The cmmand has twc arts: the format description and
the data cards (records)

FORMAT DESCPIPTION

$I.OADTAB table name> <column name> <1st card >
<1st position> <last cards> <last position> ..
$ENDCOL

Each column t be loaded has a group of five
tokens associated with it in the format
description:

column name
1st card # -- the index (relative to the next data

card the loader will process) of the first
card with data to be loaded into this column
(this is normally 1--that is, the loader
starts reading data off the first data card
it finds--ie the next one).

1st position -- the leftmost card column
(in the <1st card >th card) where the data
to be inserted into this column is to be
found.

last card -- the index, relative to the next
data card (that is, the same data card to
which <1st card #> is relative) of the last
card where data for this column is located

last position -- the rightmost card column
on this last card where data for this column
is located.

The effect of each set of 5 tokens is that the
loader inserts into the column <column name> all
the data between <1st position> on <1st card> and
<last position> on <last card>.

the order of the columns need not be the same as
the left-to-right order that the table maintains;
any order is acceptable, as long as the data are
in the same crder.

If some columns in the table being loaded do not
appear in the format description the system
assumes a default value of zero for that column.
This is a potential problem since some columns
have underlying domains of type CHAR. So, it is
advised that all columns in the table have an

-7 1 -

entry in the format escription.

The records are processed one by one in the order
as they appear in TNT'JTDATA. If a column name
appears more than once in the format description,
an error conditicn will result and the program
will terminate.

DATA FCCRDS

Data records are PC0 byte card image records which
follow their respective format description. The
format of a data record is completely determined
by the format description. A set of data records
has the data for one row of a table (one tuple).
Since one row of a table may require more than a
single 80-byte record of the input file, the
loader allows each input row of a table to extend
over n data records. These data records are
assigned relative numbers 1, 2, ...,n. The
relative numbers are used in the <1st card#> and
<last card > fields of the format description to
indicate the starting and ending points of a given
column. It is therefore possible to have the data
for a single column extend over more than one
record.

If the data for a column, after being read from
data card(s), contains nothing but blanks, the
loader assumes a default of 0 for columns of data
type NUM, and UNKNOWN for columns of data type
CHAR.

End-Load arker:

The last data card must be followed by

$FNDLOAD

5. End-Of-Input Command

The last record of INPUTnAT.A must be an end-of-input
card whose frmat is:

$ FNDINP

-72-

EXAMPlE:

$DEFDOM MODELDOM CAR
$DEFDOM VOLDUM NUM
$DEFDOM MPGDOM NUM
$DEFDOM DATEDOM N UM
$DEFTAB CARSALES

MODEL MODELDOM
DATE DATEDOM
VCLUME VCLDOM
MPG MPGDOM

$PRIKEY MODEL DATE $FNrEKFY
$LOADTAB CARSALES
MODEL 1 1 1 15

DATE 1 20 1 23
VOLUME 1 28 1 34
MPG 1 17 1 19
$ENMDCOL
CHEVROLET 12474C1 33108
CORVETTE 1547401 2078
CHEVELLE 17974C1 21175
CHEVY NOVA 1877401 21464
SPORTVAN 1 274C1 1370
MONTE CARLO 1497401 15668
CAMARO 17974C1 8787
VEGA 3027401 38455
PONTIAC 1387401 10170
GRAND PRIX 1 037401 4042
FIREBIRD 17974C1 3666
VENTURA 1217401 4890
OLDSMOBILE 1107401 1 0 533
$ENDLO AD
$ENDINP

-7 3-

Appenfdix N

Creating Backur Dumps of SEQUEL Databases

A need exists for creating backup dumps of SEQUEL data
bases. A UFI has been written which fills this requirement.
It is invoked y entering

SEQDUMP filename

This will create at least cne, anl sometimes two files. The
file which will always be created has the file name filename
and filetype SEQDUMP. This file will be in bulk loader
format, and may be used to reload a reinitialized database.
Using the distributed EXEC file for execution of the dump
function, this file must be unpacked before it can be used
by the bulk loader. This is accomplished by issuing the
following command:

COPY filename SEQDUMP (UNPACK

Because each character domain is output into this file with
a width equal to the maximum width for the domain, tuples
which originally were contained in 80 characters will no
longer be so contained. Hence to reload the database, the
mnalitple card version cf the bulk loader must be used to
reload the database.

The second file which. may be created, depending on the
contents of the database, will have a file name of filename
and a file type of SEQUEl. It is in a format suitable for
use as a SEQUEL query file using a UFI which allows query
input from files. It will contain SEQUEL queries which will
reestablish any inversicns which were present in the
original database. This file is necessary because
inversions cannot be entered through the bulk loader. If
there are no inversions in the database, this file will not
be created.

If the disk space occupied by the file with filetype SEQDUMP
becomes oppressive, by editing the file SEQDUMP EXEC, this
file ay be put on taFe. This is done by modifying the
FILEDEF for ddname DUME to tape. If this is done, the COPY
command which packs the SEQDUMP file should be removed from
SEQDU9P EXEC and the FIIEDEF for ddname COMFILE in the bulk
loader EXEC file should be modified for tape input to it.

-74-

Appen'lix

Saving and Restcrin.j a SQUEL Database

The SEQBACK and SQFESI functions are used to save and
restore a SEQUEL datalase, resnectively. They are very
fast, taking only about 1 sec per cylinder; they use the
DDP command to copy each cylinder of the database (including
the non-335 disks) ontc tape (bit-by-bit), or to restore
them from the tape in like manner.

USE:

SEQBACr nn -- saves a core image of the datdbase

SEQREST nn -- reloads the core image

where nn is the number cf cylinders on the 335 disk (eg 20,
10).

ENVIRONMENT:

It is assumed that for either operation a tape is mounted at
virtual address 181 and attached; for SEQBACK the tape is
assumed to be positioned so that it can be properly written
onto, and for SEQREST it is assumed that the tape is
positioned at the beginning of the dump of the core image.

-75 -

Appendix P

Saving and Restorin a Database

Database "saves", using SQBAC, can be managed with a
single tape, using the twc (EXVC') roitines:

DBSAVF
and DBSCAN

with the help of a private Database Log. The routines
assume that the tape has alradyv been mounted at virtual
address 181 (though not necessarily rewound).

The basic organizaticu of the? tape is as follows: each
database save is stored witi a "stamp-file" inserted
directly in front of it, which id.ntifies te time and date
of the "save", the number of cylinders in the 335 area
involved, and the tables that were saved. The files on the
tape alternate: stamp-file,save ---- stamp-file,save .
stamp-file,save ---- etc. A new stamp-file/save pair is
always put on the tape immediately after the most recent one
(because it is assumed that they nver get erased).

Saviq a Database

If the tape is a clean tape (ie does not have any
previous database saves on it), the user should simply
rewind the tape, and invoke DSAYF (see below)

If there are already savers on the tape, the overall
strategy is to find the last save on the tape, using DSCAN
in conjuntion with the Database Tog, then to use DBSAVF to
store the database.

To start, the user invokes DPSCAN (no arguments), which
will respond with

COMMAND?

The user should ncw type

FIrST

and DBSAVE will find the stamp-file for the first save on
the tape, and print its name, eg.

DB 11/8 NEMTSA A1

This indicates to the user that the database save that

-76-

follows as from NEEMISA account, and was saved on Nov*mh'r
8. -

(The routine will now F:rint ollt "COMMAND?" again, anit wait
for input.)

If the user wishes to know more about the save that
follows, he enters

CONTENTS

The contents of the stamp-file will be loaded onto the
A-disk, and the user may ncw examine them by entering

T fn ft fm

where 'fn ft f' designates the stamp-file.

If this is not the last database save on the tape, which
the user can verify by consulting his log, he may skip
further down the list tfy entering either of the following
two commands (in reponse to COMMAND?'):

NEXT
SKIP n

NEXT moves on to the next save on the tape, and prints out
the name of its stamp-file (as above); SKIP moves over n
saves (default is 1), and prints the file name of each
corresponding stamp-file (so that the last stamp-file listed
is the last one read, and the save corresponding to it is
ready to be read i).

When the user has determined that he has found the last
save on the tape, he should skip over the save itself by
entering the command

LAST

which returns to CMS, and invoking the DESAVE exec.

The DBSAVE exec will now sav a copy of the database
(preceded by the proper stamp-file). It takes two
arquments: the first is the name of the account that the
user is on, and the second is the number of cylinders in the
335-area that is to be saved (the same argument as to the
SEQBACK exec). For example, the user might enter:

DBSAVF NEEMIS3 10

When the database has teen saved, the user should note in
his log the name of the stamp-file (to preserve the fact
that it is now the last one on the tape) and may rewind it.

-77-

Restorin a Database

The overall strategy is to find the particular save that
you wish to rstore, using the DPSCAN exac, and thenre loading
it by enterinq the SFQICAt' command.

To start, the user shculd invoke DBSCAN (no arguments),
which will rspond with

CO M D?

Now the user types in "FIPST" and T)}SCAN will print out the
name of the first stamp-file on the tape, such as

DB_ 12/22 NEEMIS3 A1

This indicates to the user that the database save that
follows was from NEEMIS3, and was saved on December 22.

If the user wishes more detailed information about this
particular save, he should enter the command

CONTENTS

(in response to another 'COMMAND?'). The routine will load
the stamp-file into the A-disk; the user may now examine it
by entering

T fn ft fm

where 'fn ft fim' designates the stamp-file.
stamp-file would look like this:

A typical

20 CYLINDER DATABASe SAVED:
TIME: 22:13.05
DATE: 12/22/75

5 TABLES:

INT EGik T Y

BLOOPBIOOP
DOMCAT CATALOG DOOBY DOO

If the user does not wish tc rload this particular save,
he may scan down the tape to find the right save by using
the two commands:

NEXT
SKIP n

NEXT moves on to the next save on the tape, and prints out
the name of its stamp-file (s above); SKIP moves over n

-78-

(default is 1) saves, and prints t he f ile name of each
corresponding .tam--fil (so that the last stamp-file listed
is the last one read, and the save corresponding to it is
ready to be read in).

Note: to simply list all the saves on a particular tape, the
user may enter the 'FIRST' command followed by a 'SKIP 300'
command (which will run off the end of the tape and flag an
error, but a CMS BEW command will fix that up)

When the user has found the save to be restored (ie. has
just had the name of its stamp-file printed, or just looked
at the contents of its stamp-file using the 'CONTENTS'
command), he should enter the command

SEQLOAD nn

where na is the number of cylinders on the 335-area to be
restored (this is the same as the number of cylinders listed
in the stamp-file itself). The database will be restored,
and the user may rewind the tape. Summar of DBSCAN

In response to the questicn 'COMMAND?', the user may enter
any of the following seven commands:

FIRST -- rewinds tape, finds first stamp-file on tape,
and prints out its name

NEXT --.skips over one save", and prints name of
stamp-file ccrrespcnding to next save (if any)

SKIP n -- skips over the next n "saves" and prints the
name of the stamp-file corresponding to the n-th save
(if any)

CONTENTS--loads most recently found stamp-file onto
A-disk, and responds by printing 'ENTER TYPE COMMAND
(OR NULL LINE)'

SEQLOAD n --restcres database pointed to by most
recently found stamr-file; argument is number of
cylinders on 335-disk

LAST -- skips over the next "save" (presumed to be the
last one on the tape) and returns to CMS

QUIT--returns to C S

In response to 'ENTER TYPE COMMAND (OR NULL LINE)', the user
should:

--enter a type command (to type out a stamp-file that

-7 q -

has hbenri loaded h y thr. C TF PIS comnmand), or

-- enter i carriaqe return, to indicate no typeout.

Appe ndiY)

Usirg SELn TMP

3/1 0/7 E

SELDUtP is a selective dump facility, that oerates
throuqh the MultiUser Interface. It allow. a user to dump
selected table(s) from the DB Machine into an arbitrary
file, in bulk loadable fcrm (eq. LOADD). It optionally
includes PDEFDCM and/or $CEFFTA records for the table (s).

USE:

SELDIJMP d-accnt fn ft fn

db-accnt---the name of the atabase machine in which the
table(s) to be dubfed are located

fn ft f---specify the file tn receive the dump

Example:

SELDUMP NEEMIS ADIEAI LOAPFILE A1

Routine will respon4 with: 'WHAT TAPL?'. Enter the name
of the first table ycu wish to have (lumped. Routine will
then ask 'DO YOU WANT rEFTABS, $DEFDOMS, BOTH OR NEITHER
(T/D)/B/N)?'. Enter cne of the four letters 't', d', 'b'
or 'n' to indicate your choice--this option will only
remain in effect for this table.

The routine will now ump te tble as directed. It will
then ask you for the rame of the next table, and for your
$DEFTAB-etc. option, as abov . You may dump as many
tables as you want; when you ae through, simply enter a
carriage return (y itself) in response to the 'WHAT
TABILE?' query.

Note: recall that ycu ay not b able to dump extremely
larqe tables with this routine, due to the limited size
of the 340 area. If you need to, contact John aglio or
Bryan M an.

- 31 -

Appeadix

Procedure for Analyzinq rDatabasce Utilization

1. VMA FI,

2.)LOAD 201 SEQUTII (note,: this is a LOAD, not a
COPY)

3. PAGFS USEE (this is the API function that
calculates

utilization totals)

The terminal will print several CONFILE" messages, of
the form:

CON FILE nnnn TO xxxxxxxx COPY 01 NOHCLn

Then the program will output 5 numbers:
(a) total number of relation ages used
(b) total number of overflow pages used
(c) total number o data pages sed
(d) total number of pages in use--the sum of (a), (b) and

(c)
(e) the highest cylinder number in use

ROUGH ESTIMATE OF USAGF:

Type:
EXTENT(0;0) --using brackets. instead of parantheses

Response will list total rumber of pages that are available
to the database. Compare this number with the total given
in (d) above--(d) will e some fraction of this number,
representing percentage f total pages presently used up.

MORE DETAILED ANALYSIS:

The total number of cells allocated to each of the three
types of pages (that is, relational, data and overflow) was
determined when FORMSGT (eg SEQINIT) was last done on the
database.

Each cell can accoumodate up to 48 pages, so that
allocating 20 cells for data pages, for example, means that
there cannot be more than 2C X 48 =960 data pages.
Comparing this figure (that is, 48 X *_of_cells) to that
given in (c) above will tell you how close you are to
running out of storage for data pages (actually, to running
out of storage for control blocks for data pages).

-82-

Likewise, the rigurns used with FOPMSGT for the nulmber of
relation cells and overflow cells canrl be used, in
conjunction with (a) and (b) above, to see how close you are
to running out of those types of pages.

