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Abstract

The special purpose computer described in this the-
sis is designed to convert an input string of phonemes,
together with prosodic information, into a set of vocal
tract model parameters. A post-processoi uses these
parameters to produce natural sounding synthetic speech.
Three major requirements necessitated the development
of a processor with a customized architecture and instruc-
tion set: real-time processing capability, low cost,.
and compact size. Efficient, high-speed operation has
been ensured by matching the processor hardware and
software with the algorithmic needs of the specific task.
The processor has been designed, constructed, and tested.
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CHAPTER 1

1.1 Introduction

The development of machines capable of producing
synthetic speech has been an area of active research for
decades. Early devices, dating back to the nineteenth
century, employed mechanical bellows, reeds, switches,
and acoustic resonant chambers, controlled by a person
to mimic human speech. With practice, a trained operator
could manually vary the system parameters to produce a
few spoken words.

Recent advances in linguistic theory, digital
computers, and digital signal processing have led to
electronic analogs of the vocal tract with parameters
that can be updated easily and accurately under computer
control. Such systems require a large number of compu-
tations, and real-time speech production requires large
and expensive computers. Rapid technological development
in large-scale integrated (LSI) circuitry, however, is
having a tremendous impact on the size, price, and speed
of digital computing machines. These advances are
instrumental in changing speech synthesis from merely a
laboratory curiosity into a practical device for insti-
tutional or even individual use.

The subject of this thesis is the design and construc-
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tion of a processor, using state-of-the-art technology,
to implement a compact, inexpensive, natural sounding
speech synthesizer capable of real-time speech production.
These constraints necessitated the development of a
special purpose digital computer, tailored for efficient
execution of speech synthesis programs. The machine has
been successfully built and tested. The prototype
includes approximately 150 integrated circuits and costs
under $3000. Current trends in LSI technology, coupled
with large volume production, will certainly reduce the
size and cost substantially. There is little doubt

that the development of a practical, cost-effective

speech synthesizer lies in the forseeable future.

1.2 Applications

The applications of speech synthesis hardware are
plentiful. Throughoﬁt the years we have witnessed man's
greater reliance on both mechanical and electrical
machines. He has been forced, however, to communicate
with machines on their level by using switches and key-
boards for input, and printers and cathode ray tube
displays for output. Since speech is perhaps man's most
convenient form of communication, there is little
question that the ability to speak to a machine and to

receive a spoken response would greatly facilitate man-
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to-machine communication.

Speech synthesis could provide for automatic voice
readout of computer-stored information in a form easily
assimilated by the human user. A user could request
information from a central computer, perhaps over a
telephone line, and the computer would respond verbally.
Data could be entered either manually with a push button
telephone as a keyboard or perhaps verbally once the
accuracy of speech recognition devices is improved.
Functions performed efficiently on large digital compu-
ters, such as automatic information retrieval and numeri-
cal computation, would be as far away as the nearest
telephone. At present it seems most efficient to have
both the phonemes and speech waveforms generated by the
central cdmputer, so that no special devices are employed
at the terminals. However, once speech synthesizers
are cheap enough, the waveform synthesis could be built
into the terminals, thus greatly reducing the data
channel bandwidth.

Channel bandwidth reduction may be another applica-
tion of speech synthesis on crowded voice transmission
lines. Reasonably accurate reproduction of speech from
unencoded digitized samples requires approximately 50,000
bits/second. Delta modulation and pulse code modulation

can reduce this figure by perhaps a factor of five, but
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a system in which only phonemes and prosodic information
is sent and reconstructed into speech by a synthesizer
could conceivably operate at less than 10C bits/second.
The bandwidth of existing speech channels could be
increased by a factor of 500.

Although the savings in bandwidth is impressive,
the conservation of channel capacity is not the overriding
issue it once was (due to new broadband transmission
techniques using lasers, fiber optics, and guided
millimeter waves). Furthermore, to conserve bits in a
speech synthesis transmission system, certain qualities
of an individual's voice are lost, so all voices are
more or less indistinguishable. So for the time being,
speech synthesis will be attractive only for long-haul
channels where bandwidth is still at a premium.

One of the most exciting applications of speech
synthesis, and of particular interest to Professor
Allen's group at MIT, is the development of reading
machines for the blind. Ordinary books could be read
with an optical scanner and the characters grouped
together as phonemes. Phonemic and prosodic information
would then be fed into the synthesizer which would
produce speech. Such a machine would overcome the
shortcomings of braille, which include the limited avail-
ability of braille documents and the difficulty in ac-

quiring proficiency in braille, especially for the aged
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and those with a loss of tactile sensitivity.

Deaf people and others with vocal impairment could
also benefit from speech synthesis. A typewriter
operated voice for those who cannot speak is certainly
feasible.

In the more distant future, a translator from one
foreign language to another could be built by coupling
a speaking typewriter to an automatic voice recognition
system.

Finally, a speech synthesizer with controls that
closely model the human vocal tract could be used as a
research tool. By varying the model's parameters one
can perform detailed and controlled experiments on
various aspects of human speech production and recogni-
tion. This will have application to the further under-
standing of the psychology and physiology of speech

formation and perception.

1.3 The MIT Text-to-Speech System

In the applications mentioned above, the feasibility
is dependent upon the availability of a small and inex-
pensive speech synthesizer capable of producing intelli-
gible speech from unrestricted text. One possible approach
to the problem would involve recording all the words in

the vocabulary, digitizing the signals, and storing the
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bits in a computer memory. Words to be spoken would
simply be looked up in the memory and the bits would
be reconstructed by a digital-to-analog convertor to
produce speech. This system may be feasible for small
vocabularies, but the English language contains hundreds
of thousands of words and would require an unwieldy
memory. In addition, there would be no flexibility to
accommodate variations in intonation and stress based
upon context. Producing speech by piecing together one
word pre-recorded segments thus sounds very unnatural.
Speech synthesis without recourse to any vestige of
human speech seems to be the most attractive alternative,
since it allows a large and sophisticated vocabulary in
a form flexible enough to generate arbitrary messages
while minimiziing storage requirements. An overview of
the complete text-to-speech system being developed by
the Natural Language Processing Group at MIT is shown in
Fig. 1. This illustrates how the processor developed
in this thesis fits into the larger picture. 1In the
first block an optical character reader converts printed
text into an alphanumeric list of characters. Ultimately
it must be able to read a complete range cof type fonts
from bound books. In the next section this list is
scanned to generate phonemes. An attempt is first made

to decompose each word into its morphs, the basic build-
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Fig. 1 Block diagram of the text-to-speech system
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ing blocks of English words. The phonemic transcription
is then looked up in the morph dictionary. If the word
cannot be decomposed into morph entries of the lexicon,
another program containing letter-to-sound rules is
invoked to produce phonemes. Speech reconstituted from
these phonemes sounds monotone as it lacks stress and
intonation information: this is extracted from context
in the next block using linguistic and syntactic rules.
By parsing each sentence, phrase and sentence level
stress marks can be generated. These prosodic features
are necessary to effect natural sounding speech.

The phonemic and prosodic string is then submitted
to a processor to calculate control parameters for a
dynamically controlled vocal tract model. The hardware
implementation of this processor is the subject of this
thesis. The last blocks in the figure include the
vocal tract model, a digital-to-analog converter, a low

pass filter, and finally an electro-mechanical speaker.
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CHAPTER 2

Speech Synthesis by Rule —-- The Klatt Model

The basic program for speech synthesis employed by
the Natural Language Processing Group was developed by
Dennis Klatt. The first step in the design of a hard-
ware processor to implement his algorithms was careful
examination of his code. Flowcharting two different
versions of Klatt's code (the older one written in
assembly language and FORTRAN for execution on a
Digital Equipment Corp. PDP-9, the newer one written
in PDP-~10 FORTRAN) made clear certain frequently used
procedures.

With the objective of an inexpensive, compact mach-
ine capable of performing the necessary computations in
real-time, it is obvious that the architecture and
instruction set of the processor must match closely the
algorithmic tasks specified by the program. By isolating
functions that occur frequently and providing for special
hardware and software to execute these functions more
efficiently, the processor speed has been maximized while
minimizing memory requirements. The emphasis has been on
maximizing the performance/cost ratio.

The next two sections briefly describe the vocal
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tract model and its control strateqy. The last section
discusses the software and hardware design guidelines

derived from Klatt's model.

2.1 The Vocal Tract Model

The Klatt model is based on the theory originated
by Fant (Fant, 1960) that the transmission characteris-
tics of the vocal tract are well approximated by a
cascade of resonators (poles) and antiresonators (zeros)
whose band-widths and center frequencies may be indepen-
dently controlled. Speech can then be produced by
dynamically altering the vocal tract resonances (formants)
and supplying the necessary excitation source. The
primary building block in Klatt's approach is a digital
time-invariant linear filter, a device with transfer
function comparable to an analog resonator. Two para-
meters, the frequency and the bandwidth, specify the
input/ocutput characteristics according to the second-

order difference equation illustrated in Fig. 2.

y(nT) = A+x(nT) + Bey(nT-T) + Cey(nT-2T)
where:

A=1-B-°¢C

B = 2¢exp[-m(BW) (T)] e cos[2n7(F) (T) ]

C = - exp[-27(BW) (T) ]
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and n = sample number

BW = resonator bandwidth

T = period between samples
F = resonator frequency
x( ) = input sample

y( ) = output sample

y (nT)

UNIT
DELAY

Fig. 2 Difference equation to realize a
digital resonator
A special piece of digital hardware is currently

being constructed at MIT to implement this filter
function. This device consists of a single high speed
filter section that can be time multiplexed to effective-
ly model all the resonators in Klatt's vocal tract model.
Time multiplexing reduces the amount of hardware signi-

ficantly: 1/n of the time the single high speed filter
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simulates one of the n filters required by the Klatt
model.

The model of the human vocal tract built from these
digital filters is shown in Fig. 3. (Klatt, 1975) The
input to the synthesizer is a set of 38 control parameters
that are updated every five milliseconds, fast enough
for the most rapid formant transitions. These parame-
ters specify the resonant frequencies and bandwidths of
the vocal cavity and the excitation applied to it.

The Klatt model provides for three separate excita-
tion sources: voicing, aspiration, and frication. The
voicing source is specified by the fundamental frequency
(F@), voicing amplitude (AV), break frequencies of a
glottal shaping network (FGl' FG2)' and bandwidths of

the glottal network (BWGl' BW F@ controls the fre-

G2’
quency of an impulse generator which simulates the vocal
cord vibrations. Aspirated sounds like "huh" and frica-
tives such as "sh" or "th" are caused by a turbulent air
stream, and are modelled as white noise. Sources of
aspiration and frication are derived from samples of a
pseudo-random number generator which are passed through

a low pass filter with cut-off frequency F There

NOISE®
are independent controls for the amplitude of each (AH,

AF).

The vocal tract transfer function for nasal and
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laryngeal sources is modelled by seven digital resonators
connected in series with independent control parameters
for the frequency and bandwidth of each filter. The
first two resonators model nasal poles and zeros
respectively. A separate transfer function for frication
sources uses five digital formant resonators, each with
its own aﬁplitude control (A2-A6), in a parallel
configuration. AB specifies the amplitude of the by-
pass path. Bandwidths for this section are calculated

by multiplying the bandwidths, BW.-BW_ by a bandwidth

1 6

scale factor (BW ). This parallel (as opposed to

SCALE
serial) arrangement has been shown to better model
fricatives.

To summarize, the control parameters are as follows:

F@ fundamental frequency 1
FGl'FGZ glottal shaping network frequencies 2
" 11] 1] :
BWGl,BWG2 bandwidths 2
FNOISE noise filter cut-off frequency i
AV amplitude of wvoicing 1
AH " " aspiration 1
AF " " frication 1
AVMAX maximum amplitude of voicing 1
LL] " " . .
AHMAX aspiration 1
AF " " " frication 1
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FNP'FNZ Nasal frequencies 2
BWNP,BWNZ " bandwidths 2
Fl""'FG Vocal tract frequencies 6
BWl,...,BW6 " " bandwidths 6
BWgoarE bandwidth scale factor 1
AB Amplitude of bypass path 1
A2,...,A6 Resonator amplitude controls 5
AT period between input parameter 1
updates
SAMP output sampling rate 1
NFRMT number of formants to be 1
simulated
Total 38

These 38 variables allow for extreme flexibility,
however it is possible to set some to constant values.
For example, ali the bandwidths and the fourth, fifth,
and sixth formant frequencies can be set to constants
with only a small loss in speech quality. In doing so
the number of control variables is reduced and the data

rate necessary to drive the vocal tract model in real

time is correspondingly reduced.

2.2 The Control Strategy

In the discussion thus far, the function of the

control parameters has been described but no mention has
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been made of the source of these parameters. The design
and construction of a special purpose processor to pro-
duce these control parameters from an input string of
phonemic and prosodic information demanded a careful
study of Klatt's control algorithm. |

Klatt's voice syntheéis program takes a string of
phonemes, stress markers, word boundaries, and syntactic
brackets as input and computes parameter values for the
vocal tract model. For each phoneme in the input string,
an acoustic description is retrieved from a stored table.
This phoneme dictionary contains constants such as typi-
cal duration, formant frequencies, and formant bandwidths
for isolated phonemes. Information classifying the
phonemes by feature (e.g. voiced, vowel, nasal, diphthong,
«s.) is also included in the dictionary. The program
then calculates duration and pitch inflection based
upon stress markers and syntactic brackets. It is
interesting that duration rather than intensity of a
vowel segment often determines which syllablie is per-
ceived as stressed. Phrase and sentence level stress
markers determined from context are used in the genera-
tion of the pitch contours.

The next section of code uses a set of rules to
compare features of adjacent phonemes and, based on

their mutual effects, calculate formant transitions to
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produce smooth, free flowing speech. The stored con-
stants in the phoneme dictionary are treated as boundary
values from which continuous parameter values are com-

puted by interpolation.

2.3 Hardware and Software Implications

It cannot be overemphasized that the real-time
computing capability and compact size necessitated a
special purpose processor with a customized instruction
set. Currently availakle low-cost minicomputers with
general purpose instruction sets are simply too slow.
Klatt's programs run ten to twenty times slower than
real time on a DEC PDP-9. The speed and space constraints
imply that in addition to a special instruction set, the
computer must make use of parallel processing wherever
cost;effective in order to improve the machine's cycle
time. A strictly serial machine could be built but
would require higher performance components at a much
greater cost.

In all of Klatt's programs there is a large amount
of array processing. Typically, the stored constants in
the phoneme dictionary are accessed by a variable offset
within a given array. The computed parameter values
are also stored in an array with a similar data structure.

A convenient method of implementing such a data structure
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utilizes a base and index register: the address of the
Nth element of the array can be determined simply by
adding the contents of the Base Register, START, (which
is a pointer to the beginning of the array,) to the

index register:

MEMORY
Location  Contents

Base Register

START START | ARRAY (1)
ARRAY (N-1)
+ ARRAY (N)

Index Register START
N +N

Fig. 4 1Indexed Addressing of Arrays

Due to the high frequency of occurrence of this kind of
data manipulation, it is desirable to provide for rapid
indexed address calculation. Furthermore, the segment
of code to implement this type of addressing should be
concise to conserve instruction memory. This is discuss-
ed in detail in Chapter 3.

Phonemic feature testing is another type of process-
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ing employed throughout Klatt's programs. Different
blocks of code are executed depending upon the compared
features of adjacent phonemes. A typical section of

flowchart is shown below in Fig. 5:

Phoneme is a
voiced, fricative

Test
Current
Phoneme

Phoneme is
Test a vowel
Next

Phoneme

4

Block Block
of code of code

r
Continue } [ /

Fig. 5 Section of flowchart exhibiting feature testing

This kind of testing can be conveniently implemented
in the following way: a 40 bit data word is generated
for each phoneme, each bit corresponding to a specific
feature. Setting the bit to ONE means that the feature
is present; ZERO means it is absent. ‘Processing an
input phoneme requires retrieving this feature word from

the phoneme dictionary. Then, to perform a test for a



-27~

given feature, the feature word is logically ANDed bit-
by-bit with a mask containing all zeros except for the
feature bits being tested. With this scheme it is easy
to check for several features concurrently simply by
setting the appropriate mask bits.

The frequent occurrence of this program structure
motivated the development of two special instructions:
Skip on Mask and Jump on Mask, which are described in
detail in Chapter 3.

A significant amount of computation is involved in
calculating the coefficients A, B, and C for the
difference equation of Fig. 2. The derivation of the
coefficients involves addition, subtraction, multiplica-
tion and the transcendental functions cosine and exponen-
tial. One of the countless number of hardware/software
trade-offs that had to be made centered around which
functions to include in the instruction repertoire and
which ones to leave in the form of software subroutines.
It was decided to include hardware and appropriate
microcode for the arithmetic functions and leave the
transcendental functions as subroutines. Among the
factors influencing this decision were:

1. Addition, subtraction, and multiplication occur

often throughout the program. A hardware/firm-

ware multiply instruction has a small incremen-
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tal cost and executes approximately ten times
faster than a corresponding subroutine.

The cost of providing for transcendental func-
tions in hardware is significant. If implemen-
ted in firmware, the microcode and its memory
would double in size and price.

The important criterion in determining which
functions should be sped up at the expense of

increased complexity and cost is:

relative frequency of the instruction's
occurrence of a X execution time
given instruction

The execution time of e® and cosine is relative-
ly unimportant since they account for less than
0.2% of the total number of instructions. A
tenfold (1000%) increase in their execution
speed would improve the overall performance of
the machine by less than 2%.

Transcendental functions can be calculated with
sufficient accuracy from the first three of

four terms of a Taylor series or by interpolation
in a table of stored values. Either method
involves addition, subtraction, and multiplica-

tion. Thus the inclusion of the multiply in-



-29-

struction greatly enhances the execution speed

for the transcendental functions.
Although not used as extensively as multiplication, a
hardware/firmware divide has been included in the
instruction set. Both multiplication and division are
fixed point (vs. floating point) to minimize circuit
and firmware complexity as well as execution time.
Keeping track of the location of the binary point is
the programmer's responsibility. Since it may be
necessary to scale numbers for multiplication and divi-
sion, a single and double word shift instruction has
been included.

For flexibility, a processor to handle speech syn-
thesis programs should include some method for dealing
with subroutines. Absence of recursion in the exising
programs was partial justification for not using a
stack architecture. An extensive discussion of the
machine architecture will be found in Chapter 4.

The use of pointers and indirection, although not
found in Klatt's code, will facilitate the handling of
certain arrays. For example, to insert or delete an
item from a list normally involves recopying part of
the list. If one wanted to add the letter B to the
following list, C, D, E, and F would have to be recopied

into locations 4, e, £, and g:
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original list new list

location contents| | location contents

a A a A

C C \ c B

e 5 e D
f F f E
g - g F

Using po

inters, only the pointer from location a would

have to be changed and an entry created for B. The

example given assumes the list is scanned from top to
bottom:
original list new list
location data pointer location data pointer
a A c ) a A b
c C d c . C d
d D e d D e >
e E f e . E b
£ F - £ F -
g - - b B c
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The input/output requirements of Klatt's control
program have certain implications for the design of a
special purpose processor. The only input is a phonemic
transcription of printed text from an external computer;
the only outputs are the coefficients and parameters
transmitted@ to a third device, the vocal tract model.
Although a bidirectional I/O bus could have been used
to communicate with the other machines, separate input
and output buffers simplify the design and are better
suited to the task.

Furthermore, an interrupt system is not necessary.
If the machine is ready for the next phoneme but the
input buffer is empty there is no processing required
until the next phoneme is delivered. The machine simply
enters a wait cycle until new data is entered into the
buffer.

For output the situation is similar: once the 38
parameters are ready the processor dumps them into the
output buffer as fast as possible. A small, high speed
memory reads the parameters from the output buffer and
stores them for 5 msec. for the vocal tract model. A
special instruction, OUTPUT, has been devised to transmit
all the coefficients at a rate exceeding two million/sec-

ond.
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At a later date, when the entire processor can be
reduced to several chips, the program will be stored in
a nonvolatile memory (i.e. Read Only Memory ~- ROM), so
that the program remains intact even when the power is
turned off. A separate read/write memory will still
be needed, however, to store all the variables. Keeping
this in mind now, the processor has separate program
and data memories. Separate memories are actually an
asset, since they allow for concurrent referencing and
therefore faster processing.

Further details of the actual instruction set and
computer architecture design that were dictated by Klatt's

algorithm follow in Chapters 3 and 4.
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CHAPTER 3

Instruction Set Design

After studying Klatt's algorithms, the next step
in the design of the processor was the development of

the instruction repertoire. The issues of instruction

encoding, the number of different instructions, the
precision of the data representation, and the size of
the memory all influenced the detailed design of the
instruction set. An instruction word that is too short
in length limits the bits available for the operational
code (OP code) and/or the operand address, and can
severely restrict the machine's computational power.

On the other hand, an instruction that is too long is
more powerful but wastes valuable memory space. A well
chosen instruction length allows several shorter instruc-
tions to be combined into one and can increase processor
speed by reducing the number of instruction fetches from
memory. By tailoring the instruction set to the parti-
cular task, a compromise can be reached that maximizes
the computing power and flexibility of each instruction,
while minimizing memory requirements. In addition, if
the instructions reflect the structure of the underlying

algorithms, programs will be easier to write, debug,
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modify, and comprehend.

In general, most instructions need five pieces of
information:

1. OP code, i.e. the function to be performed

2. The location of the first operand

3. The location of the second operand

4, The location for deposit of the resultant

5. The location of the next instruction
Different machines can be designed depending on whether
these data are explicitly or implicitly defined. 1In a
4-address machine all four addresses, in addition to
the OP code, are specified by the programmer. The in-
herent wide instruction word provides a flexibility
rarely needed at a high cost in memory. A 3-address
machine assumes the program will be executed sequentially
except for jump and skip, and thereby eliminates the
next instruction field. The next logical step in short-
ening the instruction is the 2-address machine which
performs the function on the two specified operands
and deposits the result in the location of one of the
operands (i.e. A + B -+ B).

The most common addressing scheme, especially among
minicomputers, %g single addressing. Operations are
performed on the specified operand and an implicit regis-

ter called the accumulator (AC). The resultant is
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deposited in the accumulator (i.e. AC + B - AC). A
zero-address machine, sometimes called a stack machine,
has all addresses defined implicitly. The next instruc-
tion is maintained in a program counter, the two operands
are the top two cells of a pushdown stack, and the

result is returned to the top cell of the stack. Stack
machines are particularly good for arithmetic processing
where equations are expressed in reverse Polish notation,
and for machines with a heavy reliance on recursion.

By writing parts of Klatt's code for each of these
machines and by comparing their hardware implementation
costs, the 2-address format was chosen as a reasonable
compromise with relatively good coding efficiency. With-
in the specific context of Klatt's algorithm: the 4-
address machine is too general and therefore inefficient;
there are not enough skips and jumps to justify a 3-
address machine; as shown below the single address mach-
ine requires more instructions; finally a stack machine
is unjustified due to the inefficiency in addressing
registers low in the stack, and since the program
makes little use of recursion.

Multiple high-speed registers within the CPU reduce
the amount of data movement, save macroinstructions,
and reduce the number of references to memory. A program

for a single address machine which adds the contents of
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location A and location B and deposits the result in

location B is shown below:

memory reference

Accumulator (AC) < loc A yes
AC <« AC + loc B yes
AC <« loc B yes

By having a large number of registers, the program can
be written to increase the likelihood that the contents
of location A and location B already have been fetched
from memory and reside in one of the high speed internal
registers. If this is the case, the above code can be

reduced to a single line without any memory references:

Register B + Register A + Register B

In the speech processor, register-to-register instructions
utilize the high-speed registers and can operate almost
twice as fast as those that reference memory.
The computer's CPU includes 17 internal registers:
a. Register O (microprocessor buffer register --
Reg. MB) is invisible to the user. It is used
for temporary storage by the microcode.

b. Register 1 is a dedicated program counter (PC).
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c. Registers 2-7 are reserved as index or base
registers. They are especially useful in array
addressing and table look-up.

d. Registers 8-15 are general purpose working
registers.

e. Register "Q" is invisible to the user and is
used by the microcode in multiplication,

division, and shifting.

3.1 Memory Reference Instructions-Address Calculation

Throughout this chapter the following symbols are
used:

() - refers to the contents of the memory
location or register enclosed in paren-
theses

+ - "is transferred to"

N - logical AND

U - logical OR

T -~ one's complement

Reg.- register

Reg. D - destination register

E - effective address

I - indirection

MSB - most significant bit
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LSB - least significant bit
LABEL: - the colon indicates the variable to
the left is a label corresponding
to the address of that location
] - sign bit
Each memory reference instruction includes informa-
tion necessary to calculate the absolute address from
which data is stored or fetched. Addressing information
is contained in three distinct fields occupying bits
0-11. Bits 0-7 are the displacement, 8-10 the base

register bits, and bit 11 the indirect bit.

11 10 9 8 7 6 5 4 3 2 1 0 BIT #

BASE

I REGISTER DISPLACEMENT

The displacement is an 8 bit signed number in two's
complement notation with an octal range of -200 to +177.
When the base register specified is non-zero, base
addressing occurs; the displacement is added to the
contents of the base register to generate a memory
address. If the base register is 0012, the program coun-
ter is chosen. This provides for relative addressing, a
feature especially useful in altering the normal program

sequence by jumping relative to the location of the
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current instruction. The programmer should note that due
to instruction overlap fetching, the PC points two
locations beyond the current instruction. When the

base register bits are 000 rather than adding the

27
displacement to Reg. O, the displacement is treated
as an absolute address with a range of 000—3778.

If the indirect bit is 0, the effective address has
already been calculated from the base register and dis-
placement bits. However, when the indirect bit is 1,
addressing is indirect and the machine retrieves another
address from the location of the address already speci-
fied. There is only one level of indirection.

Indirection is desirable especially in programs
using pointers. After reviewing Klatt's program, it
became clear that pointers and indirection could simplify
the handling of data. In a sequence requiring indirect
addressing, an instruction capable of indirection can
replace two normal instructions, thereby saving memory
and increasing execution speed.

Another type of memory reference instructions was
included to handle the accessing of variable entries
within a list. These instruction, LDX and STX are

described in section 3.3.
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3.2 Single OP Code (Class I) Instruction

Class I instructions have a 4 bit OP code, usually
reference memory, and follow the general pattern shown

below:

BIT # 19 18 17 16 1514 13121110987 6543210

OP Code Reg. D I |Base |Displacement
Reg.

A summary of all instruction mnemonics and formats,
including the various modifier fields is given in

Appendix C.

OP Code Function Explanation
Mnemonic
008 ADD To summarize the calculation of

the effective address E from

bits 0-11:

if the Base Reg # 0 and

I=0 then E=((Base Reg)+Signed

Displacement
or

LABEL

I=1 then E={((Base Reg)+Signed]

| Displacement)
or

| (LABEL)

if the Base Reg = 0 and

I=0 then E=(Positive displacement
or
LABEL
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I=1 then E={(Positive displacement)
or

(LABEL)
The contents of this address are
added to the D register (one of the
15 internal registers). The D reg-
ister also serves as the destination
register. All data are in 2's com-
plement notation. Using the above
notation:
(E)+(Reg.D) + (Reg. D)
(E)-(Reg. D) + (Reg. D)
(E)V (Reg. D) + (Reg. D)
(E)N (Reg. D) + (Reg. D)
(E) » (Reg. D)
(Reg. D) + (E)
Increment Skip if Zero. The first
step is (E)+1 - (E). If the final
result equals zero, the program coun-
ter (PC) is incremented to cause the
subsequent instruction to be skipped.
The D register field is not used.
Additional hardware could use these
4 bits as a modifier field to create
more instructions. Presently, the
increased complexity was considered
unnecessary.

Skip if Different Contents. If
(E)#(Reg. D), the next instruction

is skipped. The next instruction is
executed normally if the two operands
are equal. In both cases the contents
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of E and Reg. D remain unchanged.

 Skip on Mask. The complement of (E),

TEY is bit-by-bit logically ANDed with
(Reg. D). The result is not deposited
or stored, however the next instruction
is skipped if all the resultant bits
equal zero. In other words a skip occurs
when:

[TE,)n (Reg. Dy) JVI{E{In(Reg. Dy)1V...

[ZEISSA(Rég. Dls)] =0

where the subscripts refer to the bit
being tested.

This function has applications in
feature testing, a technique used exten-
sively in speech synthesis programs. Sup-
pose in Reg. D each bit represents a fea-
ture such as voiced, nasal, fricative,
etc. Setting a bit to 1 means the fea-
ture is present. For example, part of
the code for a voiced, fricative phoneme
may look as follows:

VOICED NASAL FRIC. SONORANT

Reg. D 1 0 1 0
If one wanted to test the phoneme to
determine whether it is voiced, the
following mask would be used.
E 1 0 0 0
to produce (E)N (Reg. D)

1 0 0 0

Since all bits are not equal to zero, the

next instruction is executed. Now if the
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same phoneme undergoes a nasal test the
mask: |
E 0 1 0 0
produces

0 0 0 0

and the next instruction is skipped since
the phoneme is not nasal. To summarize,

the subsequent instruction is skipped if

the feature tested is not present.

Feature Not
P 2
resent Tested Present
Y
Execute instruction
from location N
T {

¥

Execute instruction
from location N+1

It is possible to test more than one
feature at a time. To test whether a phoneme
is "voiced OR fricative", in this example one
would use the mask:

1 0 1 0

causing the next instruction N to be execu-
ted.
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Testing for "voiced AND fricative" invol-
ves including one bit in Reg. D for voiced
and another for fricativeé. The actual test
performed, "voiced OR fricative" is logically
equivalent to "voiced NAND fricative". 1In
this example, the features tested (voiced OR
fricative) are not present so the instruction
N+l is executed. Given the function NAND,

AND can be realized by reversing the roles
of the two possible branches as shown below.

Test

Both voiced AND Both noF
Present fricative Present
Execute

instruction N

1 Y
Execute
instruction N+1

Multiply the signed numbers (E) and (Reg. D)
to generate a double length product. The high-
er order bits of the product are found in
Reg. D and the lower order bits are found in
Reg. D+l. Reg. D must be located on an even
boundary (i.e. must be an even register). A
few extra logic elements together with clever
microprogramming provides for a 16x16 bit
signed multiplication in slightly over 3
microseconds.

In performing signed multiplication of
16 bit numbers (1 sign bit and 15 magnitude
bits), the magnitude of the product is 30
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instead of 31 bits long. The actual algorithm
used produces two equal sign bits in the two
MSB's of Reg. D (bits 14, 15) corresponding

to the sign of the product

(E)X(Reg. D) » (Reg. D, Reg. D+1)

Final conditions:

Reg. D S | S| Product MSB's

Reg. D + 1 |' Product LSB's

DIV Initially the double length dividend is found
in Reg. D (high order bits) and Reg. D+l
(low order bits). The divisor is found in
(E).

Initial conditions:

Reg. D S Dividend MSB's
(15 bits)
Reg. D+1 Dividend LSB's Don't
(15 bits) Care (1l bit)
Loc. E S Divisor (15 bits)

By convention, the absolute value of the
dividend must be smaller than the absolute va-
lue of the divisor to prevent overflow.

Before the division is performed a test for
overflow, if affirmative sets the OVERFLOW
Flag. As in all arithmetic operations, the
programmer must keep track of the binary
point. For cgrtain operations it may be
necessary to scale operands to maintain
enough significant bits.
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After the division is complete, Reg. D con-
tains the 16 bit quotient. The signs are
as follows:

Original Original Remainder Quotient
Dividend Divisor

+ + + +

+ - + -

- + -~ -

- - - +
Finally:
Reg. D S Remainder
Reg. D+1 |s Quotient
Loc. E S Divisor

Once again Reg. D must be an even register.

Jump-Jump to Subroutine. There are two kinds
of jumps depending upon whether Reg. D=0000.
When Reg. D#0000, the address of the next
instruction (PC+l) is first stored in Reg. D
and then the subroutine's starting address
is placed into the PC. This provides for a
simple yet effective means of jumping to and
returning from subroutines. If Reg. D5=0000
the PC is not saved and an ordinary uncondi-
tional jump is performed. In both cases the
effective address is computed and specifies
the address of the next instruction to be
executed.

To summarize the effects of
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JMP Reg. D, |Base Reg, Displacement]:
or
LABEL
Effective Addresél

If Reg. D = 0000 then E + (PC)
If Reg. D # 0000 then (PC)+1 » (Reg. D)
E » (PC)

In the following example, when the first
JMP instruction is encountered, the return
address NEXT is saved in Reg. 11 and the
subroutine is then executed:

JMP 11, SUBROUTINE (PC)+1=NEXT+(Reg. 1l)
E=SUBROUTINE~+ (PC)

NEXT: .

SUBROUTINE: .

JMP 0,11,0 E=(Reg. 11)=NEXT-(PC)

At the conclusion of the subroutine, by jump-
ing to the address contained in Reg. 11,
program execution continues at location NEXT.
If many subroutines are being used or there
is a shortage of working registers, the re-
turn may be stored in a temporary location

as shown below:

SUBROUTINE: STORE 11, TEMP (Reg.ll)=NEXT-
(E)=(TEMP)

JMP INDIRECT 0, TEMP
E =(TEMP)=NEXT~>
(PC)
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TEMP : NEXT

148 OUTPUT This special instruction provides for easy,
rapid transfer of blocks of data from the
data memory to the output buffer. E specifies
the first word and (Reg. D) contains the
number of adjacent words to be transferred out.
With OUTPUT, somewhere between 1-2 million
words/second can be moved directly from the
memory to the output buffer without passing
through the CPU. Comparing codes for cut-
putting data:

Using OUTPUT

LOAD 8, THIRTYS: (E)=(THIRTY8) =38+ (Reg.8)
OUTPUT 8, gTART

THIRTYS: 3810 # of words to be transferred
START: STARTADR Starting address

Conventional
LOAD 7, NTHIRTYS (E)=(NTHIRTY8)=-38+(Reg. 7)
LOAD 6, END (END) =LASTWRD~ (Reg.6)

BACK: LDX 9,6,7 ((Reg. 7)+(Reg. 6))+(Reg. 9)
STORE 9, OUTPUT (Reg. 9) - OUTPUT Buffer

INCZ 7 (Reg. 7)+1»>(Reg. 7) and skip
on zero.
JMP 0,BACK =BACK~+(PC) {e.g. loop 38 times)

.
o
.

NTHIRTYS: -3810
END: LASTWRD Location of last word

In Klatt's program, it is necessary to
output 38 parameters every 5 milliseconds.
The OUTPUT instruction operates approximately



15

FLAG

-~49-

5 times faster than conventional code and
saves 20 milliseconds of computing time for
every second. The 2% reduction in overalil
execution time does not require extra hard-
ware, only microcode. The OUTPUT instruction
is a useful feature to have, but is not
essential. Its utility should be reviewed

as new algorithms and programs for speech

synthesis are developed.

The FLAG instruction has a special format:

19 18 17 16 15 14 13 12 11 1098 7 6 543210

Positive
1 1 0 1 ' ‘ I|Device Displacemeat
JMP/No JMP ---4+ { | tReset
JMP on 0/1----! L Set

The device selcts one of the eight status
flip-flops.
Bit 10

OVERFLOW
RUN
CARRY
IN
ouT

S X1

7 X2

X3

H = 2 O © © o
= 2 O O K - o oo
H O H O I O K O |m®

Bits 14,15 cause a conditional jump based
on the state of the selected flip-flop.

Bit 15 14 - Mnemonic

0 0 No Jump =
0 1 " " -
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Bit 15 14 - Mnemonic
1 0 Jump on flip-flop=0 Z(ero)
1 1 Jump on flip-flop=1 O(ne)

The address jumped to is restricted to
locations 0~-3778 unless indirection is used.
With indirection, any address in the memory

can be accessed through these locations.

After the jump test has been performed,
regardless of whether a jump actually occurred,
the selected flip-flop can be set, reset or
complemented according to bits 12,13.

Bit 13 12 (Mnemonic)
0 0 Flip-Flop (FF) unchanged (=)
0 1 Reset FF to 0 (R)
1 o0 Set FF to 1 (8)
1 1 Complement FF (C)

The machine can be HALTed by resetting the
RUN flip-flop, in which case the computer
waits until the FF is set by an external
switch.

Jump on Mask. Special instruction well
suited for testing the state of individual
bits within a 16 bit word. This function
is particularly useful in feature testing.
The format is:

19 18 17 16 1514 13 12 11 10987 6 543210

1 1 1 0 |D Field Reg. S| PC
Mask Under Displacement
Test

LIMP on 0/1
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The register whose bits are to be tested is
specified with bits 8-10. The D.field in
this case does not represent a register, but
specifies which bit should be tested. Bit 11
determines whether to jump when the tested
bit equals 0 or 1. As an example, the instruc-
tion to jump back 25 locations relative to
the PC (recalling that the PC always points
two locations beyond the current instruction)
when bit #3 of base register 5 equals 1
would be as follows:
’ With JM
OP Code Mask JMP on Reg. Displacement

1110 0011 1 101 —2710= 110 01012

Convential Code
LOAD 8, MASK (E)=(MASK)~(Reg. 8)
ANDZ 8,5 (Reg. 5)N(Reg. 8)—+(Reg. 8) and
skip if result=0
E=(PC)-2710+(PC)

JMP 0,1, -2710

MASK: 0000 0000 0000 1000

If bit #3 equals 0, the jump does not occur
and the next instruction is executed. When
compared to conventional code, JM saves one
memory reference (this is important since the
memory is relatively slow), saves instruction
memory by replacing 3 instructions with one
and saves data memory by eliminating storage
of the masks. The JM instruction ailso
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operates almost 3 times faster than

the conventional code. In Klatt's
code, as it currently stands, JM
implies a potential saving on the

order of 500 macroinstructions together
with higher speed.

17 Class II This OP code causes the computer to
Dispatch find the required operation from the

FUNC field (bits 4-7). This simple

form of variable length coding makes

efficient use of the instruction word.

In most instructions the destination
is a register and can be represented
by 4 bits. The source in Class II
instructions, however, is a register
(again 4 bits), whereas in Class I
instructions it is an effective memory
address requiring 12 bits. It is
possible to break the instruction into
shorter words, but the additional num-
ber of memory fetches would slow the
machine substantially. The disparity
in instruction size is handled by
using a 4 bit OP code for Class I
instructions and 8 bits (OP code-4
bits, FUNC code-4 bits) plus a 4 bit
modifier field for Class II instruc-
tions.
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3.3 Class II Instructions

With the exception of LDX and STX, Class II instruc-
tions involve register to register operations. Aall
Class II instructions have the OP code llll2 which enables
another 4 bit field, called the FUNC field. The FUNC
field is decoded to represent an additional 16 instructions.
Most Class II instructions follow this format:

19 18 17 16 1514 13 12 11 1098 76543210

FUNC > =
Code <

1 1T 1 1] Reg. D Reg. A

]
Deposit Bit

All Class II instructions except SHIFT, LDX and STX

contain a four bit modifier field in bits 0-~3.

Bits 0-2 cause the next instruction to

be skipped if the condition is met.

Bit 2 1 0 Skip if result Mnemonic
0 0 O Never -
0 0 1 <0 LT
0 1 o =0 Z
0 1 1 <=0 LE
1 0 o0 >0 GT
1 0 1 #0 NE
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Bit 2 1 O Skip if result Mnemonic

1 1 O >=0 GE
1 1 1 Always A
Mnemonic
Bit 3 =1 - The result is deposited in the

destination register.
=0 # The result is not deposited. This
feature allows testing without

affecting either source register.

FUNC Code Function Explanation
Mnemonic
008 ADD (Reg.A)+ (Reg.D)+(Reg.D)
Ol8 SUB (Reg.D) - (Reg.A)+(Reg.D)
028 OR (Reg.A)U (Reg.D)+(Reg.D)
034 AND (Reg.A)n(Reg.D)+(Reg.D)
044 MASK TReg.A)n (Reg.D) +~(Reg.D)
058 MOV (Reg.A) »(Reg.D)
068 INC (Reg.D)+1~+(Reg.D)
074 DEC (Reg.D)-1+(Reg.D)
10, COM One's complement. (Reg.D)-(Reg.D)
114 NEG Two's complement. (Reg.D)+1-(Reg.D)
128 SHIFT The format for SHIFT is slightly

different from the standard:
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IR Bit# 3 2 1 0

Right/ | Double/|Shift in:
Left Single |0,1,Sign,Rotate

Bits 0-3 are a modifier field to
provide for all combinations of
shifts and rotates. The A field is
interpreted as a literal and speci-
fies the number of bits to be shift-

ed.

Bit 3 Mnemonic

1 R Right shift or
rotate

0 L Left shift or
rotate

Bit 2 Mnemonic

0 S Single word (Reg.D)
1 D Double word. Reg.D-
higher order bits
Reg.D+1-lower order
bits
Reg.D must be on

an even boundary.
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Bit 1 0 Mnemonic
0 0 z Shift in zeros
0 1 6] " " " ones
1 0 S " " " the sign of Reg.D
(0 if Reg.D is (+)
r " (=)
1 1 R Rotate

Example: Double shift Reg.l1l0 and Reg.ll to
the right 5 places and fill the
vacant bits with zeros (SHIFTRDZ).

OP code Reg.D Reg.A FUNC Modifier
1111 1010 0101 1100 0 2 00

Load Indexed. LDX and STX use the format:

19 18 17 16 15 14 13 1211 10987 6 543210

Base Index
1 1 1 1| Reg.D I Reg. FUNC Reg.

Normally the code to access the nth

entry of
a table starting at memory location TBSTRT
would be as follows:
Assume initially:
(Reg.7) = N
(Reg.8) = TBSTRT
and that the contents of these registers

must be maintained.

MOov 10, 8 (Reg.8)=TBSTRT+(Reg.lO)

ADD 10, 7 (Reg.7)+(Reg,10)=N+TBSTRT~+
(Reg.10)

LOAD 10, 10,0 (E)=((Reg.10))=(N+

TBSTRT) =DATA~+ (Reg. 10)
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TBSTRT:

TBSTRT+N DATA

The LDX and 8TXinstructions, in addition
to including indirection, @ destination regis-
ter and a base register, also have an index
register. The effective address is equal to
the sum of the contents of the base register
and the contents of the index register. The
code for the above example now is reduced
from three lines to one:

LDX Reg. 10, Reg.8, Reg.7 ((Reg.7)+(Reg.8))=
(N+TBSTRT) =DATA~>
(Reg.10)

The high frequency of this kind of memory
reference in Klatt's program was a strong
motivation for its inclusion in the instruction
set. Several hundred instruction memory
locations are saved with a corresponding

decrease in execution time.

LDX
I=0 ((Base Reg.)+(Index Reg.))->(Reg.D)
I=1 (((Base Reg.)+(Index Reg.)))-(Reg.D)

Store Indexed.
I=0 (Reg.D)~+((Base Reg.)+(Index Reg.))
I=1 (Reg.D)>(((Base Reg.)+{Index Reg.)))
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These FUNC codes are currently
vacant and allow room for new
instructions.

OVERFLOW

RUN

CARRY

IN

ouT

Set if the result of previous operation
resulted in an arithmetic overflow.

Reset with FLAG instruction.

Set externally to start the machine. Can
be reset under program control to halt
the machine.

Set by the previous operation if the
operation caused a carry out of its most
significant bit. CARRY is useful for
double precision arithmetic.

Set by external device when contents of
input buffer is valid. When program
requests data from the input buffer, the
flag is tested. Data is transferred only
if the IN flag is set (valid input). If
not set, the program will wait. The |
flag is reset after data transferral.

Set when contents of output buffer has
been transferred to an external device

and therefore the buffer is free. Flag
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is tested when output buffer is
requested. Data is transferred from the
common bus to the buffer only if the OUT
flag is set. Program will wait if the
buffer is already full. The flag is
reset after the buffer is filled.

X1l Controls the write enable line of the
instruction memory.

X2,X3 Currently these flags are not used.

3.5 Input/Output

The input and output buffers are treated as data
memory locations. They are accessed using the ordinary
memory reference instructions. The machine currently has
a 4Kx16 data memory which requires 12 address lines
(212-4096) . since the data word is 16 bits, the 4 MSB's
(bits 12-15) are available for other purposes. Setting
bit 15 of the address to ONE causes data from the input
buffer rather than the data memory to be placed on the
bus. If the buffer has been already loaded by the exter-
nal source (the host computer) and the flag is set to
indicate the data is valid, the data is transferred
immediately. On the other hand, if the flag has not yet

been set, the computer will wait until valid data is
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available. For Klatt's program this is not a limitation;
the machine cannot proceed without having the latest
phoneme in memory. The fact that once input is requested
the machine must wait eliminates the need for an interrupt
system with its complexity of hardware and software.
Examples of inputting data:
l. LOAD 11,7,0 (E)=((Reg.7))~(Reg.11)

Reg.7 must contain

1000 0000 000G 0000
2. LOAD INDIRECT 11, INPUT (E)=((INPUT))~>(Reg.1l)
INPUT: 1000 0000 0000 0000

It is possible to test the input flag with the FLAG
instruction and continue processing other data until the
input data is valid.

N: FLAG 0 INPUT,50 Jump to N+50 if INPUT

* flag is set to ONE. ELSE

continue processing

N+50: LOAD INDIRECT 11,INPUT Load data from input
buffer into Reg. 11.
Output is handled in a similar fashion. Data can
be transferred to the output buffer with either the
STORE, STX, or OUTPUT instructions. Once again the

buffer is treated as a data memory location. Bit 14 of
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the effective address must equal ONE for the output to
be the destintion rather than the data memory. The flag
is tested before the buffer can be loaded; the machine
waits until the flag is reset indicating the buffer is
free.
Examples of outputting data:
l. STORE 11,7,0 (Reg.11)+(E)=(Reg. 7)
Reg. 7 contains 0100 0000 0000
0000
2. STORE INDIRECT 11, oUT (Reg.11)~(E)=((0OUT))
OUT: 0100 0000 0000 0000
3. OUTPUT 12, START If Reg. 12 contains the
number N, N adjacent mem-
ory locations starting at
location START are trans-
ferred to the output buffer.
The machine checks that
the data has been recieved
by the external device
before transferring more
data.
The FLAG instruction can be used to test the output
flag and continue processing other data until the output

buffer is free to accept more data.
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CHAPTER 4

Computer Architecture

Computer architecture refers to the organization
and interconnection of the components of a computer
system. Some of the basic building blocks include
memories, registers, Arithmetic Logic Units (ALU's),
multiplexers, and buses. These blocks can be configured
iﬁ a wide variety of ways to implement a given task.
Certain design constraints such as cost or speed help
the computer architect choose the best way to select,
connect, and control the various modules to perform
their functions most efficiently. Very often there is
a direct tradeoff between performance and price, so to
minimize cost the machine should be designed to just
meet the given design specifications. These constraints
force the computer architect to be creative in his
design.

The overall architecture for the speech synthesis
processor is shown in Fig. 6. Only after designing and
reviewing dozens of alternatives was this particular
structure chosen for its modularity, simplicity, speed,

low cost, and flexibility.
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4.1 Bus Organization

The processor uses a single bi-directional data/
address bus which is shared by the input buffer, output
buffer, data memory, instruction memory, and the CPU.
The bus contains 20 wires (wide enough for the 16 bit
data words as well as the 20 bit instruction words), so
information is transferred in parallel. Many machines
have two or more buses and all data must first pass
through the CPU, however the single bus arrangement
allows direct communication among all devices. For
example, data can be transferred from the data memory to
the output buffer while the CPU is busy performing an
entirely different operation. This bus structure is
extremely modular and easily expandable. The processor
as a research tool will almost certainly undergo changes,
and other memories, processors, and peripherals can be
attached directly to the main bus with only minor hard-
ware alterations.

In a single bus system, during a given cycle, only
one device can transmit data while one or more devices
can receive data. A problem that frequently arises in a
single bus system is one of arbitration, that is, two
devices may request to transmit data on the bus at the
same time. In this machine, only the input buffer, data

memory, and CPU can supply data to the bus. The micro-
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program control has been designed in such a way that
there is never a conflict; the machine never wastes a
cycle while a device requests the use of the bus. The
use of single bus combined with tri-state logic (the
three stable states are 0, 1, and a high impedance
disabled state) maximizes the number of direct data
paths while eliminating the need for all but one multi-
plexer.

The one multiplexer shcwn controlling the source of
data for the CPU was included for the case when the
dispiacement field must be obtained from the Instruction
Register (IR), altered by the CPU, and transmitted to
the bus all in one machine cycle. If this multiplexer
were omitted and the IR fed the instruction directly onto
the bus an extra cycle would be required: during the
first cycle the contents of the IR would be entered into
the CPU via the bus, and during the second the CPU resul-
tant address would be transmitted on the bus. This
savings is significant since it is realized for every
macroinstruction executed. The overall processor speed
is increased by approximately 20% at the cost of oniy

four additional integrated circuits.

4.2 Input/Output

All instructions and data are entered into the
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machine via the input buffer which momentarily holds
information being transferred into the computer. This
buffer is loaded asynchronously from either the front
panel or an external source (i.e. another computer).

A separate output buffer provides the interface to the
vocal tract model. A single bit flag for each buffer
is set when the buffer is busy and reset when it is
free. Both buffers appear to the programmer as data
memory locations and can be used in any memory reference
instruction. The need for special I/O instructions is
replaced by the ordinary LOAD and STORE instructions.
When loading from input the processor checks the status
flag and waits for valid data. Similarly, when storing
data in the output buffer the machine waits until the
buffer is ready to receive more data.

In machines where the external devices operate
several orders of magnitude slower than the computer, it
is desirable to incorporate interrupts so that the mach-
ine can continue processing as it waits for data. This
is not a problem in the speech processor, so an interrupt
system is not included. Interrupts require significant
overhead since the state of the processor must be saved
before handling the interrupt request and restored

afterwards.
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4.3 Data and Instruction Memories

The computer contains separate data and instruction
memories. The data memory (4K X 16 bits) has a Memory
Address Register (MAR) which is loaded with the address
of the location to accessed, and a Memory Buffer
Register (MBR) which contains any data to be written
into the memory. These registers hold the address and
data for the duration of a memory cycle which is almost
three times slower than the CPU cyé¢le time. Once they
are loaded the bus is freed so the méchine can continue
processing concurrently with the memory reference.

The instruction memory is currently 4K X 20 bits.
Together with the data memory this is large enough to
hold present and projected speech synthesis programs.
The instruction memory has its own address register, but
no data buffer register. Referring back to Fig. 6, the
output of the instruction memory goes directly to the IR
without first passing through a memory buffer register.
Elimination of this buffer reduces the chip count with-
out limiting the machine's power (since the particular
memory chip used contains internal data buffers).

During program loading (a relatively infrequent operation)
the instructions are passed directly from the Input
Buffer to the instruction memory. This is the only time

the instruction memory is written into: instructions
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cannot be altered during normal program execution.

The basic storage device for both memories is a
4K X 1 bit static NMOS random access memory (RAM). The
memories can easily be expanded in width or length by
simply extending the buffer registers and using more
memory chips. The length of the instruction word can
also be increased by single bit increments, to increase
the power of the instruction set. The memory length
can be quadrupled with a 16K X 1 bit RAM that is
pin-for-pin compatible with the 4K's and is expected to
be introduced into the commercial market during the
next year. To use these, the two extra leads that are
not connected for the 4K RAM would become the two most
significant address lines. The control signals for such
a memory would remain unchanged.

It is important to realize that the data and instruc-
tion memories are not only separate but of different
widths. The reasons for this somewhat unconventional
arrangement are:

l. Separate memories allow for concurrent reading
and/or writing of data and instructions. Al-
though a high speed memory (215 nanosecond
access, 400 ns cycle time) is used, the CPU
cycle time is only 150 ns. Since the memory

is the slowest part of the system, it is desir-
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able to be able to read or write in the data
memory while reading the next instruction from
the instruction memory. Performing these
functions together can save up to 400 ns from
the macroinstruction cycle, depending on the
particular instruction.
Different size words maximize the efficiency of
each memory. It appears that 16 bit precision
is sufficient for all data, while being too
restricting for the instructions. The extra
four bits makes each instruction more powerful
and versatile, thus reducing the number of
instructions and memory references in a program.
The wider word therefore reduces the effect
of the relatively slow instruction memory.

Even faster execution times are obtained
and less memory is required when several ordin-

ary assembly language macroinstructions are

.combined into a single "super" instruction.

Super instructions often require more than 16
bits to specify all the operands and conditions.
Ultimately when the synthesis program is perfect-
ed, the instruction memory will be replaced by

a Read Only Memory (ROM). Advantages over a

read/write memory include non-volatility, higher
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speed, lower cost, and higher bit density per
chip. For the time being, the read/write
capability allows for testing, debugging, and
altering programs.
The inability to change the contents of the
instruction memory during program execution
ensures the use of pure code. Most agree that
pure code is easier to understand, debug, and

document.

Central Processing Unit

The

CPU is constructed with four high speed 4-bit

bipolar microprocessor slices cascaded to form a 16 bit

machine.
is shown

The

The basic architecture of the composite machine

in Fig. 7.

processor contains essentially a 16 word by 16

bit two-port RAM and a high speed Arithmetic Logic Unit

(ALU) with the associated decoding and shifting capabili-

ties and

data paths. In a single machine cycle (which

lasts approximately 150 ns) data can be

1.

2.

read simultaneously from the A and B ports of
the RAM,
routed through the ALU, with the option of

placing the result on the bus,



-71-

i 1

0 REGISTER

SHIFTER

RAM
SHIFTER
i
16x16 RAM — A
REGISTER FILE ADDRESS

READ A AND B

Q REGISTER

WRITE B e B ADDRESS
A B
bara LoGIeAL
INPUT ; B
SELECTOR
R s
Y ]
—— CARRY
ARIEgg?gIC > OVERFLOW MICRO-
. . SIGN INSTRUC -
UNIT PION
———= =0
DECODE
1
TRI-STATE
-1 M
MULTIPLEXER OUTPUT
ENABLE

l

OouTPUT

Fig. 7

CPU Architecture




The
selector
from the

l.

-72-

\

shifted one bit to the left or right if desired,
and finally be written into the register
specified by the B address.

processor has a two-address architecture. - The
chooses the two source operands simultaneously
following and passes them to the ALU:

the contents of the RAM register specified by
the A address

the contents of the RAM register specified by
the B address

data from the input port

logical zero

the contents of the Q register, a separate
register intended primarily for multiplication,

division, and shifting.

The ALU is a combinatorial logic circuit that can

perform three arithmetic and five logical functions:

1. R+ S 5. R AND S
2, 8 -R 6. R AND S
3. R-5 7. R EX-OR S
4, ROR S 8. R EX-NOR S

The ALU output can be routed to several destinations

including the RAM, Q register, or the tri-state output.
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The data can be shifted left, right, or not at all before
being written back into the RAM or Q register.

The CPU architecture is clean and conceptually
simple, yet extremely versatile. By controlling the
CPU in a proper fashion, virtually any digital process
can be performed. Since the sequence of operands and
operations is determined by a microprogram resident in
the control unit, the functions performed by the computer
can be drastically altered by simply changing the control

program, while maintaining the same hardware structure.

4.5 Microprogram Control

The Controller orchestrates the functions of all
the other blocks: its commands activate data paths
and determine the function (if any) to be executed by
the ALU. Traditionally the control information is per-
manently built into the system with dedicated hardwired
logic for each macroinsturction. With microprogramming,
a technique employed in the processor's control section,
the control is implemented in "firmware" which lies
conceptually somewhere between hardware and software.
Each macroinstruction is broken down into a number
of smaller, more basic steps called microwords, and
the execution of a given machine instruction could be

though of as the execution of a small program written
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in microcode. A microinstruction is the lowest level

of instruction the computer can execute. The micro-
instructions are stored in a high speed 256 x 44 bit
Programmable Read Only Memory (PROM). Once fetched from
this memory by the microcode sequencer, the microword
issues the appropriate signals to units internal and
external to the CPU for initiating proper processor
action. The microinstructions control the actual trans-
fer of information from one register to another. The
path can be either direct, through the ALU or through
other logical networks. They specify not only which
path will be activated, but also the function performed
by the ALU, the address of the next microinstruction,
and other special operations such as control of the
memory read/write lines. The microinstruction provides
exact timing and designates which operations occur simul-
taneously and which ones occur sequentially.

Microwords tend to be quite wide, often ranging
between 20-100 bits. The highest speed and flexibility
can be achieved with a microword having one bit for each
control line -- a type of coding commonly called hori-
zontal. This allows one to issue many control functions
in parallel. Unfortunately, pure horizontal micropro-
gramming requires a very wide word and does not use the

microcode memory efficiently.
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The microword can be shortened however by encoding
mutually exclusive bits. A good example is the control
of the ALU, whose eight possible functions can be
expressed in three bits. 1In each machine cycle, only
one ALU function is performed, so this type cf coding,
vertical coding, uses three bits instead of eight. The
cost of vertical coding is the expense of the decoder and
the time to perform the decoding. Another good applica-
tion of vertical coding is in the control of the tri-
state devices sharing a common bus. Only one device
should be enabled at any given time: enabling more than
one will short the outputs and destroy the devices.
Vertical code ensures that only one device is enabled.

The speech processor has been designed with a 44
bit microword that combines vertical and horizontal
coding to exploit the best features of each. (See Fig. 8)
Mutually exclusive control functions are vertically
coded, whereas all functions that can be performed con-
currently are horizontally encoded. Details of the
microcode are given in Chapter 5 and Appendix B.

The microcode is stored in PROM's rather than RAM's
for several reasons. PROM's are non-volatile: they
retain information even when power is removed. This
feature eliminates the need to reload the microcode

each time the machine is turned on. At current prices,
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PROM's are over seven times cheaper than comparable
RAM's -- a strong incentive to use PROM's. Of course,
once PROM's are programmed they cannot be erased
(actually erasable PROM's do exist but they are much too
slow for the speech processor and they cost more).

Since it is not intended to make frequent changes in the
microcode, PROM's are the logical choice for the control
memory.

The microcode has been designed so that minor
changes can be made without having to discard the PROM's.
Many of the 256 possible locations are vacant. A micro-
code sequence can be altered simply by changing the
next address field to one of these free locations and
inserting the new microword there.

As more involved functions are microcoded to further
simplify the task of the programmer, it may be desirable
to increase the size of the control memory. The micro-
word can be easily expanded in width by increments of
four bits since the control memory is fabricated from
256 x 4 bit PROM chips. The board space and connections
for a twelfth chip already exist, and to expand the
microword from 44 to 48 bits one must simply insert the
extra chip. The microinstruction memory can also be
expanded in length; 512 x 4 bit PROM's are available and

are pin-for-pin compatible with the ones being used. To
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use these longer memories involves the connection of
one additional address line.

The sequencing of the microwords is done in an
interesting and simple way. Due to the large percentage
of microinstructions that require either conditional
or unconditional branching, the next address is explicit-
ly designated as part of the current instruction (rather
than having a program counter). For unconditional jumps
an 8 bit field (28 = 256) allows the next instruction
to be accessed anywhere in the PROM, whereas for condition-
al branching information from the IR and a variety of
other bits are combined with the next address field to
determine the next microinstruction. This scheme elimin-
ates the need for explicitly specifying a next address
for each condition.

These addresses are generated by replacing a bit
(or bits for multi-way transfers) of the next address
field with the value of the condition bit(s) under test.
Included in the microword is a test field which specifies
the conditional test to perform. As a simplified example,
consider the circuit to execute one microinstruction if
the contents of a flip-flop is ZERO, but the following
microinstruction if the flip-flop is ONE (see Fig. 9).
When no conditional branching is indicated the next

address is obtained unmodified from the next address
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field. When there is conditional branching the test is
enabled by setting the appropriate test bit in the
microword. This bit controls the select line of the
multiplexer, and when equal to ONE routes the output of
the flip-flop directly to the PROM's O-address line.

So for example, if the next address field of the current

instruction contains 0101 0110 the actual next address

27
will be either 0101 01102 or 0101 01112, depending on
the contents of the flip-flop.

Once the microword has been accessed it can be
modified by the logic situated between the PROM outputs
and the latches. For example, in Class II instructions,
the result is deposited back into a register if the IR
deposit bit (bit 3) is set to ONE, and not written back
of it is ZERO. If the deposit bit is tested in the
manner shown in the previous example, one of two
separate microwords would be accessed depending on the
outcome of the test. These microwords would be identical
except for the bits in the destination field: in each
case the function performed is the same. Rather than
accessing two microwords, one word can be retrieved and
its destination field can be altered depending on the
deposit bit. Some simple logic and a test enable signal
is all that is required. Conditional modification of

microwords is also employed in the shift, multiply, and
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divide routines to save slightly under fifty locations
in the control memory.

The latch of Fig. 9 serves two purposes. If not
for the latch which is clocked sequentially, the
addressing circuit would be unstable and would oscillate
with a period equal to the address-to-input delay time
through the PROM. The latch also allows for overlap
fetching of microinstructions, a technique described
later.

In actuality, the sequencing scheme is somewhat
more elaborate. (See Fig. 10) The eight PROM address
lines are divided into two groups of four, where one
group can be thought of as a row address (bits 4-7) and
the other as a column address (bits 0-3). Rather than
appearing as a vector 256 locations long, the microcode
now appears as a 16 x 16 matrix. Conditional branching
for the row address is similar in concept to the example
of Fig. 9, but now two 8-input multiplexers control the
PROM's bit 4 and bit 5 address lines. Any one of eight
tests can be performed on each bit independently. This
requires 6 bits for the row test field (3 bité for each
address line) and allows either unconditional, or 2- or
4-way conditional branching. In the 4-way branch two
different condition bits can be examined concurrently.

Some possible row branches are shown in Fig. 1lb.
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16 COLUMNS
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NEXT ROWS
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ADDRESS
CURRENT™
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] A
CURRENT NEXT
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00102 11002
[ ]
7 b) Conditional Row
Branches
A s-way
o 2-WAY
|

¢) 16-Way Column Branch

Fig. 11 Microcode Branches. The crosshatched areas are
examples of microprogram locations that may be
selected as the next address.
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The column sequencer consists of four 4-to-1 multi-
plexers, one for each address line. This provides a
method for decoding the OP code. During the OP code
dispatch, the 4 bit OP code from the IR becomes the
column address. For example, the OP code 00002 causes
the zeroth cclumn to be selected, 00012 the first column,
and so forth. In the case of a Class II instruction,

a second 4 bit FUNC field serves as the OP code, and

can be routed from the IR to the PROM. Bits 8-11 from
the IR can also be selected as input to the multiplexer
in the special case of shift instruction. Finally, the
fourth possible source of the column address is the
unmodified next address field. The l6-way column branch
is illustrated in Fig. llc. Note that row and column
branches could be combined for 32- or 64-way conditional
branches.

Using the configuration of Fig. 6 together with
the proper microcode almost any digital machine can be
emulated efficiently. Simply by rewriting the microcode,
the macro instruction set can be drastically altered
with only minor changes in hardware: the entire system
need not be redesigned. For example, provision for
floating point computations could be added using existing
hardware and a new sequence of microinstructions, with-

out special floating point eguipment. The inherent
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flexibility of a microprogrammable machine means that
the detailed microcode need not be written until late
in the design process; the system and microcode develop-
ment can proceed together. Specialized, more complex
macroinstructions can be developed and microcoded to
replace several ordinary instructions or subroutines
with a substantial improvement in execution time.

The advantages of modularity and flexibility
afforded by microcoding cannot be overemphasized. The
processor which is described here is very versatile
and its software can be easily updated to meet future

requirements.

4.6 Parallelism

Techniques such as pipelining and parallel processing
have been used throughout the machine to assure high-
speed operation. Pipelining involves splitting a process
into several sequential tasks and subdividing the work
over a number of concurrently operating units. The
concept of pipelining can be best explained with an
example. Suppose a particular task can be subdivided
into two distinct sequential processes, Pl and P2, both
requiring 1 unit of execution time. Assuming only one
‘process can be performed at a given time, it takes 2

units of time to process both pieces of data as shown
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in Fig. 1l2a.

P1 P2 Pl P2
0 1 2 3 4 Time &)
[ P ey |
= Coaun |
Start lSt data 2nd data
ready ready
P1 P2 P1 P2
N s A L j b)
Pl P2 Pl P2
0 1 2 3 L 5
[E— [ . |
e —ie o,
Start ISt data 3r data
ready ready
e Pt omf
2nd data 4th data
ready ready

Fig. 12 Simple example of pipelining.

In Fig. 12b both processes are performed concurrently.
Overall execution proceeds in an assembly line fashion.
Each piece of data takes 2 units to process as before,
but notice that once the pipe is started, the throughput
is twice as fast. Pipelining is most efficient when

the processes each take approximately the same amount

of time, and the pipe is kept full.

In the speech processor, both micro and macro
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instructions are overlap-fetched or piplined. Fig. 13
shows how the next microword fetch is performed concur-
rently with the execution of the current microword. The
pipelined system operates twice as fast as the ordinary
approach. The additional hardware consists merely of a
latch to store the current microword while the next

one is being accessed.

Microword Execute Microword Execute
! 1. 1 1 i
Fetch #1 #1 Fetch #2 #2

a) Serial processing

Microword , Execute | Microword , Execute

Fetch #1 #1 Fetch #3 #3
Microword , Execute ,Microword , Execute .
Fetch #2 {#2 Fetch #4 4

b) Pipelining. Microinstrucitons are overlap fetched during
the CPU executrion cyle.

Fig. 13 Overlap fetching of microinstructions.

Macroinstructions are overlap-fetched from the
instruction memory: the next instruction is accessed

while the current one is being executed. The saving in
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execution time for both a typical Register-to-Register
instruction (RR) and a Memory-Reference instruction (MR)
is one cycle as shown in Fig. 14b. Notice that the
memory access time (the time required to read valid
data) is 2 microcycles, whereas the cycle time (the

time before another memory reference can be made) is 3
microcycles. Instruction overlapping minimizes the
effects of a slower instruction memory. When a skip or
jump is encountered in an overlapped section, the next
instruction which is being fetched is incorrect. The
correct instruction can be accessed by updating the ?C,
performing an additional fetch, and then returning to
the normal sequence for a total of three extra steps
(see Fig. 1l4c). The only extra hardware to allow for
instruction overlapping is the IR. If the processing
were strictly serial, the instruction at the output of
the instruction memory would not change during execution
and would not have to be latched.

Fig. 144 shows how concurrent memory referencing
from the instruction and data memories saves another
microcycle for MR instructions.

The average execution time for an ordinary RR
macroinstruction (made up of a sequence of macroinstruc-
tions) using overlapping is dependent upon the number

of skips or jumps:
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Average RR Execution Time = (# of microcycles in sequence
without branches

# of skips or jumps
*lactually performed
total # of macro-
instructions

+ # of cycles in correction
sequence

To be worth implementing, this time must be less than
the RR execution time for serial processing. Replacing
the variables with actual numbers:

[fraction of skips or
Average RR Execution Time = 3 + 3 L jumps in program

As a very rough estimate, 20% of the instructions involve

some type of branching. Assuming a two-way conditional

branch where a jump or a skip is actually performed

50% of the time, the fraction in the above equation

equals 0.1. Statistically speaking, RR average execution

time equals ~3.3 microcycles. Instruction overlapping,

in this case, saves approximately 18% in execution time.
For an ordinary MR instruction with overlapping

and concurrent memory referencing, average execution

time can be calculated in a similar way:

Average MR Execution Time = 5 + 3 (0.1) = 5.3
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Using parallel techniques saves almost 25% in execution

time.
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CHAPTER 5

Algorithms and Microcode

Certain functions of the speech synthesis computer
are implemented directly in hardware, but the majority
are implemented in microcode. Microprogrammable machines
have shifted the emphasis in computer design from pure
hardware to the development of microprogram algorithms.

Data flow graphs for the various functions performed
by the machine and a detailed description of the micro-
word are included in Appendix B. In the data flow graphs
the boxes correspond directly to individual microinstruc-
tions and the arrows indicate the sequence in which the
operations are performed. Most of the algorithms are
self-explanatory, but the ones for shifting, multiplying,

and dividing are described below.

5.1 SHIFT

The SHIFT instruction provides for both single and
double word shifts, where the bits shifted into a register
can be either: logical ONE, logical ZERO, the sign bit
of the chosen register, or the bits shifted out (this is
a rotate). The conventional approach involves the use

of tri-state multiplexers to select‘the proper bit to
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be shifted into the vacated bits (see Fig. 15A). 1In
the case of any right shift, for example multiplexer 1

is enabled and the others must be in the Frigh impedance

state.
Reg. D Reg. Q | S
Multi- Multi- Multdi~-
plexer 1 plexer 2 plexer 3
ZEgégn Sign Sign
ONE LERO ZERO
ONE ONE

a) Conventional shift logic. Not shown are the multiplexer
select and output enable lines.

Reg. D Reg. Q

b) 1In the speech processor all shifts are implemented as
a double register rotate.

Fig. 15 Shift logic

In the case of rotate, the shifted bit must pass
through a multiplexer. Even if high-speed Schottky logic
is used, the propagation delay is approximately 15 ns

and unless a variable speed system clock is used, the en-
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tire processor must be slowed for this one case of
rotate.

A completely different approach has been devised
to eliminate the multiplexers altogether, with a
corresponding 10% overall speed increase. The algorithm
performs all shifts as a double register rotate using
any one of the working registexrs in the CPU register
file together with the Q register (see Fig. 15B) To
effect a single register shift of register D, register
Q is first loaded with one of four possible bit patterns

to be shifted into register D as illustrated:

( START )

BIT TO BE SHIFTED INTO REG. D.

ONE ZERO SIGN RGTATE
Test

POSITIVE
\ , ] 1

111...11- Reg.Q [OOO...OO— Reg. Q l Reg. A- Reg. Q
1 ) ¥

CONTINUE

Fig. 16 1Initialization of register Q for shift
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Once register Q is loaded, both registers are shifted

either right or left up to 16 positions as determined

by the microinstruction.

register field (IR bits 8-11) specify the number of

positions to shift.

produce a l6-way conditional branch as shown below:

16-Way Column Dispatch |

They are used in the microcode

The four bits from the A

Using IR Bits 8-11

# Bits

to SHift 16 1 2 14 15
0000, [0001, (0010, 1110, |1111,
Y || i v

on SHIFT | SHIFT | SHIFT SHIFT | SHIFT

R € ¢ |ONE ONE ONE ONE ONE

ow oL | p1T BIT BIT BIT BIT

Micro-

code %___~ - 7

Matrix

to



-97-

Each microinstruction in the given row shifts Reg. D
and Reg. Q one bit and points to the next microinstruction
to be executed. Multiple shifts are performed by execu-
ting the number of microinstructions specified by IR
bits 8-11. For example to shift two places, the first
shift is performed by the microinstruction in column
00102 and the second by the microinstruction in column
00012. This type of algorithm occupies 16 positions
in the control memory but eliminates the need for a
separate counter. The hardware is simplified and the
speed is increased.

Double shifts are somewhat more involved. They
could be implemented easily if an extra register is
added to Fig. 15B and all three could be shifted together
in a manner analogous to the single shift example. How-
ever, the CPU allows only for 2 register shifts. The
algorithm is best described with a specific example.
Given registers D and D + 1 with contents d, perform a
double left shift inserting zeros in the LSB of register

D + 1. Starting with:

MSB LSB
Reg. D d31 ....................... d16
Reg. D + l d15 ................. OOOOQOOdO
Reg. Q -
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Register D + 1 is copied into register Q and shifted

left 1 bit with register D:

Reg. D Reg. Q
Register D now contains the correct result. Generation
of the correct bits for register D + 1 is accomplished
by setting register Q to zero and now shifting with

register D + 1:

Reg. D Reg. Q

The elimination of the shift multiplexers and the
corresponding increase in the processor speed has been
made at the expense of added complexity in the SHIFT
rountine. This can be justified by the relatively in-
frequent usage of the SHIFT instruction. The microprogram
algorithm is not only responsible for reducing the hard-

ware, but increasing overall processor performance.

5.2 MULTIPLICATION

All multiplication can be performed as repeated
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addition. The example below makes this

0110 multiplicand

x 0101 multiplier
0110
0000 partial

0110 products
0000
0011110 product

clear:

= 01012

= 0110,

5x 6 = 3039

0001 11104

Note that the product of two 4-bit numbers (each with one

sign bit and three magnitude bits) is only seven bits

long (one sign bit and 6 magnitude bits).

The determin-~

ation of each partial product is based on the multiplier

bit being used to generate that partial product. If

the multiplier bit is:

ONE, the multiplicand is added into the partial

product

ZERO, the addition is suppressed.

Rather than summing all the partial products as the

last step, they can be summed two at a time as they are

generated; each partial product is added to the sum of

the previous partial products.

A possible register implementation of the above

example is shown below: Reg. D
Partial Product

Reg. Q
Multiplier

Initially: 0's —8={ 0 0 0 O
Reg. MB
Multiplicand

0 1 1 0

0o 1 o (Y=

—1-1

Test LSB of Reg.Q
if=0 No Operation
if=1 Add
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After testing the LSB of register Q (= 1), the multipli-
cand is added to the partial product (initially = 0).
Register D and register Q are now shifted together one

place to the right with ZERO inserted to produce:

Reg. D Reg. Q
00 0O 01oﬂl ADD
U
Reg. MB
0110
Reg. D Reg. Q
0110 01 0 1
00—\ N\ \ YV — \ \ \ M  SHIFT
00 1 1 0 010

The partial product has been shifted to be in proper
position for the next cycle. The MSB of register Q at
the moment is ZERO and corresponds to the LSB of the
final product, thus will not be altered by further par-
tial product summations. The three subsequent add and

shift cycles are:
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Reg. D Reg. Q
0 0 1 1 00 1 (0 NOP
—1\ \ \ ° \\ \r—r SHIFT
0 oo o0 1 1 0 0 (0 ADD
1
0 I 1 0 |Reg. MB
Reg. D Reg. Q
01 1 1 1 0 0 1 SHIFT
o —a\ N\ \\\
0 0 1 1 o_(0)| NOP
L SHIFT
0 — A\ \ \\\ i
0 0 0 1 Final
—— — — / Product
Sign Magnitude

By convention, the sign of the product is duplicated in
its two most significant bits.

An algorithm for two's complemented negative numbers
is similar to the example above but requires that the
bit shifted into the partial product is the sign bit of
the partial product. A correction cycle is necessary
when the multiplier is negative.

The actual hardware contains the registers shown
above, but as mentioned in connection with SHIFT, the LSB
of register Q is wired directly to the MSB of register

D. Unfortunately, the insertion of any logic in this
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path acts to slow the entire microprocessor significantly.
Thus at first it seems that the algorithm for multiply
cannot be made to work properly with the multiplier bit
being shifted around into the partial product.

An interesting algorithm, however, has been develop-
ed to circumvent this problem. The algorithm works only
for positive numbers, so it is assumed that the multi-
lier and multiplicand are made positive, and the sign
of the multiplicand and product is restored at the end.
This function is handled by the microcode and i3 not
the concern of the programmer.

Modifications to the previous example include an
extra flip-flop (Q_1 FF) and the setting of the MSB of

the multiplicand to ONE:

-
Reg. D Reg. Q Q_1 FF
0 6 0 O 10 1 0 1 i
Partial Product Multiplier Test:
if=0 NOP
if=1 ADD
Reg. MB
M1 0 o
L

Multiplicand

The first step now is a double register right rotate to
move the LSB of the multiplier into the Q_, FF where the

conditional test for addition is performed. Four more
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add/shift cycles are repeated in an analogous fashion
to the previous example. By setting the MSB of the
multiplicand to ONE, all ONE's shifted into the partial
product are converted to ZERO's after addition; ZERO's
that are shifted into register D are unchanged. The
overall effect is to make a double right rotate appear

as a double right shift zero as required by the first

algorithm.
Reg. D Reg. Q Q_1 FF
—{1 0 0 0 0 01 0 _QIADD
1 1 1 0|Reg. MB
—=0 1 1 0 00 1 0 1| surFr
: N LN W N ¥
T8 8§ — N %\ \
0 0 1 1 0 0 0 1 (0)| Nop
L W W W W \ A A WD N —~  SHIFT
LT ) — U WY
1 0 0 1 1 0 00 1){ ADD
1
1 1 1 O/Reg. MB
0 1 1 1 1 0 00 1] surrr
L WA N, W \
AR NRWRY
0 0 1 1 1 1 00 (0)| wop
W N N W A—\——> " SHIFT
Y
0 0 01 1 110 6| Final

Product
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5.3 Division

This section covers two basic methods for signed
binry division: restoring division and nonrestoring
division. For both algorithms the binary point is
located just to the right of the sign bit. To prevent
overflow, the absolute value of the dividend must be
less than the absolute value of the divisor. Since
division is fixed point, it may be necessary for the
pProgrammer to scale the operands to maintain sufficient
precision.

Restoring division closely follows binary long
division. A flowchart is shown in Fig. 17. In the
example below of restoring division the dividend,
+13,, x 27°, is divided by a four bit divisor, 5,4 % 273,

to produce a four bit quotient and remainder:
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START

Subtract
Divisor
from
Dividend

!

Negative Positive
: L
Set Quotient Set Quotient
Bit to ZERO Bit to ONE

l [

Add divisor
back to
dividend to
restore the
original
dividend

i , y

Sufficient
Quotient
Bits?

Shift double
word dividend
left one bit

Yes

DONE

Fig. 17 Flowchart for restoring division of positive
numbers
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+1310= 11012
310 = 010, 13 x 3;6 I B
_510 B 10112 > x 2 Quotient Remainder
% 212,503
0.0 1 O
0.1 01 Jo.0 0 I 1 0 1 -~
+1 0 1 1 Subtract 5 (Add 5)
rI] 1 0 O Negative, set Q0=0
+0 1 0 1 Restore dividend
0 0 011 01 - Shift
/1))
0 011 0 1 -
+1 0 1 ‘1 Subtract 5
{I\ 1 1 0 Negative, set Q1=0
+0 1 0 1 Restore
0 01 1 0 1 - Shift
[/////
011 01 -
+1 0 1 1 Subtract 5
{Eﬁ 0 01 1 - Positive, Q_2=1
O/O/l/l/-/ Shift
+1 0 1 1 Subtract 5
111 1 0 - Negative, Q_3=0
+0 1 0 1 Restore

0 01 1 Remainder
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Non-restoring division is similar but the step of
restoring the dividend is eliminated. The same results
are generated with fewer steps. The process is best
illustrated with the flowchart in Fig. 18. For positive
partial products the two methods perform the same
steps, but in non-restoring division with negative
partial products, the steps of restoring, shifting, and
subtracting are replaced simply by shifting and adding.

The effects of these steps are shown below:

restoring non-restoring

1. restore - add 1. shift dividend
divisor (DVR) to generating DVR
negative partial 2

product (NPP)

2. shift - shifting 2. add divisor to the
the dividend (DVD) partial product
to the left has
the same effect
as dividing the
divisor by 2

3. subtract the
divisor from the
partial product

new partial _ _ DVR - DVR
dividend NPP + DVR -3 NPP + -5
= nep + 2R

The same example using the non-restoring algorithm looks

like:
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START

Subtract
Divisor
from
Dividend

—

L\\

Sign

Negative of result Positive
(partial
dividend)

\ \
Set Quotient Set Quotient
Bit to ZERO Bit to ONE

{ #
Shift partial Shift partial
dividend left dividend left
one bit one bit

|
Add divisor Subtract divisor
to dividend I from dividend

Yes Sufficient No
Quotient
Bits?
'eziizde Negative Add divisor to
g _ #= remainder
Positive
DON.

Fig. 18 Flowchart for nonrestoring division of
positive numbers
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Q% ;9,0
0.0 0
0.1 0 1 Jo0.0 0 1 1 1

1
0

+ 1 0 1 1 Subtract 5

m 1 0 01 0 1 - Negative, set Q0
[/
1 0/0 1 0 1 -

+ 01 0 1 Add divisor

n 1 0 0 1 - Negative, set Q1

// // // // // // Shift

+ 0 1 0 1 Add divisor

Positive, set Q_2=1

VI

+ 1 0 1 1 Subtract divisor
m 1 1 0 Negative, set Q_3=0
+ 0 1 0 1 Remainder correction

0 01 1 Remainder



-110-

The actual implementation uses non-restoring divi-
sion for its higher execution speed. The registers

are initialized as follows:

—S
Reg. D Reg. Q
Sign DIVTI ~T DEND Test:
if=0 Subtract
if=1 Add

Sign{ DIVISOR | Reg. MB

The divisor is subtracted from the dividend according
to the flowchart in Fig. 18. Assuming the divisor and
dividend are positive numbers, when the sign of the
result (partial dividend) is positive, the quotient
bit should be set to ZERO. Since the sign bit of the
partial product (positive = 0, negative = 1) is passed
directly to the LSB of the Q register during the left
shift, the ones's complement of the quotient is formed
in the Q register. To obtain the proper answer after
16 quotient bits have been generated, the contents of
the Q register are one's complemented.

The signs of the remainder and quotient are deter-

mined from the following table:
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original original

dividend divisor quotient remainder
+ + + +
+ - - +
- + - +

- - + -

Testing the sign of the partial dividend, setting the
quotient bit, shifting left one bit, and finally
subtracting or adding are all performed in a single
microinstruction. After 16 reduction steps, and the
appropriate remainder and quotient corrections, the

registers contain:

Reg. D Reg. Q
Sign | REMAINDER Sign | QUOTIENT
Reg. MB

Sign | DIVISOR
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CHAPTER 6

Hardware Implementation

The computer has been built and tested. Complete
schematics are included in Appendix A. At the time of
this writing, the microcode was being tested by entering
each microword manually through the front panel. Pro-
visions are now being made to "burn in" the PROM's so

that full speed testing can be performed.

6.1 Logic Families

The machine uses a variety of logic families
including Low power Schottky Transistor-Transistor Logic
(LS/TTL), Schottky TTL and NMOS with miniaturization
ranging from Small to Large Scale Integration (SSI - LSI).
Low power Schottky (LS) logic has been used wherever
possible primarily for its combined high sgeed and low
power. It requires one-fifth the power of standard
TPL and therefore reduces the cost, size, and weight of
the power supplies, and eliminates the need for forced
air cooling. Lower power implies increased packing
density and enhanced reliability. LS follows the same
wiring rules as standard TTL and can be directly inter-

faced with other TTL types.
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In sections where the pPropagation delay through the
device affected a critical timing path, regular Schottky
logic was used. Schottky logic is almost twice as
fast as LS, but uses ten times more pcwer and must follow
Stricter wiring rules. Since the rise time is 2 - 3
times steeper than standard TTL, ringing and noise are
more prevalent with Schottky logic and wires must be
kept short and close to the ground plane. Every chip
must have a decoupling capacitor. All registers that
drive the bus are Schottky for reasons of speed and
driving capability. The Schottky tri-state outputs
have a high fanout that make bus drivers unnecessary.
Special bus drivers would have been required had LS
registers been used. The microprocessors achieve their
high speed through the use of Schottky LSI. Emitter-
Coupled-Logic (ECL) was considered for its high speed
but was not used based on its high power dissipation and
incompatibility with TTL.

The memories are 4K x 1 statis NMOS RAM's. Memories
of this size are not currently available in other logic
families. NMOS seems to be well suited for large memory
chips due to its high packing density and low power
consumption. NMOS unfortunately requires three supply
voltages: +12, +5, and =5, and is fundamentally slower

than bipolar devices.
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6.2 CPU Implementation

A wide range of alternatives was considered in the
choice of the CPU. The major design constraints called
for high speed operation, versatility, and low cost.
Until recently, random logic combined with some Medium
Scale Integration (MSI) devices (e.g. ALU's and registers)
would have been the only reasonable choice.

During the last two or three years there has been
a great increase in the use of microprocessors as a
replacement for discrete logic. Complete computers on
a chip have been developed, most notably the Intel 8080,
an 8-bit machine. The 8080 uses NMOS technology to
achieve a 2 microsecond cycle for its simplest instruc-
tions. This cycle time does not include any reference
to memory, and it assumes the instruction has already
been fetched.

After careful analysis of the requirements of Klatt's
algorithm it became clear that the 8080 was not suitable.
The machine is much too slow for real-time processing
of speech. This is due not only to the relatively slow
cycle time, but also to the fixed instruction set. The
computer cannot be tailored to the specific functions
performed in speech synthesis, The other dominant
drawback is the size of the data word: 8 bits does not

provide the precision demanded by the speech programs.
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More recently, bit-slice microprocessors have
been made commercially available. They essentially
contain an ALU, registers, and déta paths for either
2 or 4 bits. Any number of these slices can be cascaded
to create a larger machine. Bit-slice machines generally
do not have a fixed instruction set and must be
microprogrammed.,

The first bit-slice machine considered was the
Intel 3001. It is a 2-bit slice single address machine
with 11 general purpose registers. Such a processor
uses Schottky bipolar LSI technology and is capable of
typical register-to-register add cycle times of less
than 125 nanoseconds (fifteen times faster than the
8080) .

The architecture of the Monolithic Memories 6701
seemed better suited to the task. The 6701 is a 4-bit
slice two address machine with 17 internal registers.
Being a 4-bit slice, only four microprocessors are
needed to configure a 1l6-bit machine. The 6701's cycle
time is 200 nanoseconds, ccnsiderably slower than the
Intel 3001.

In mid-1975, Advanced Micro Devices introduced the
29901, a 4-bit slice machine with an architecture closely
resembling the 6701. The Am 2901, however, has a cycle
time of 100 nanoseconds, draws half the power of the 6701,

and costs less. It was finally chosen as the most
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attractive solution. The current cost in quantities

of 100 is $30 and the projected cost two years hence

is $15. The overall architecture is s*raightforward

and flexible., It is likely that faster versions incor-
porating the same architecture will soon be introduced.
Motorola has just announced the MC10800, an ECL micro-
processor slice with a 55 nanosecond cycle and similar
architecture to the Am 2901. As faster, pin-for-pin
compatible chips are developed, the performance of the
speech processor can be improved simply by replacing the

old chips with the newer versions.

6.3 Selection of the Memory Chip

The SEMI 4200 4096 x 1 bit NMOS RAM's were chosen
over numerous other memory chips for several reasons. X
These chips have a fully static memory cell which
eliminates the need for the refresh circuitry found in
dynamic memories. The memory timing and control circuit-
ry is thereby simplified. At the time the chips were
purchased, the SEMI 4200 were the fastest 4K static
RAM's commercially available. They have an access time
of 215 nanoseconds and a cycle of 400 nanoseconds. They

are mounted in a 22 pin package and are inherently

faster than a 16 pin RAM which requires external multi-
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plexing. Projections indicate that lower cost, high
speed memories are on the way and will be pin-~for-pin
compacible., Even the 16K x 1 RAM's being developed
will be compatible and will only require connecting
two more address lines.

In comparison with bipolar memories, the NMOS chip
has higher density and lower power consumption. Bi-
polars are faster (30-100 ns are typical cycle times),
but the largest ones available are 1K x 1 bit. Use of
a 4K RAM instead reduces the chip count by a factor of
4. This savings is important since board space and
wiring contribute significantly to the overall cost and
reliability. Furthermore, the cost of 4K of NMOS is
approximately ten times less than the cost of 4K of
bipolar memory. In this machine, more than $5000 was
saved by using the SEMI 4200 over a higher speed
bipolar RAM. The detrimental effects of the relatively
slow NMOS RAM's have been minimized by overlap instruc-
tion fetching and concurrent accessing of the data and
instruction memories.

Reférring to the memory schematics in Appendix A,
reading from or writing into memory requires the 12
address lines, the Read/Write line, and the data to be
stable before the Chip Select (CS) goes from 1 to 0,

The CS negative going edge clocks these data into an
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internal buffer register. To prevent device overheating,
there is a maximum chip enable pulse width of 1 milli-
second. For flexibility allowing the machine to run with
a cycle slower than 1 ms (for example in the testing
phase), iiL was necessary to include an extra buffer to
capture the valid data before the memory is disabled.
Ultimately when the machine is run at optimal speed
these buffers can be reamoved to reduce chip count.

Also for reasons of flexibility, the chip select
pulse width is determined by a monostable flip-flop.
The memory cycle time can thus be altered independently
of the system clock. Monostable timing is intended for
the prototype only; to maximize reliability it should
be replaced with a synchronous circuit such as a counter

clocked by the system clock.

6.4 Timing
For simplicity and ease of design, the computer has
a single phase system clock that drives the logic
synchronously. A worst case clock period is shown in
Fig. 19, Referring to the diagram, the following
operations are performed during the indicated subintervals:
l. On the positive edge of the system clock pulse

the microword to be executed is latched. The
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correct signals appear at the latch outputs

in less than 20 nanoseconds. Other data
registers are conditionally loaded, depending
on the details of the previous microinstruction.
During this interval the CPU fetches its two
operands and passes them through the ALU. The
110 ns includes the time for the carry to
propagate from one slice to another. This

time would be significantly longer if not for
the use of a carry lookahead chip.

Information from the current microinstruction
is passed to the PROM sequencer which generates
the next microword address. The next micro-
word is fetched concurrently with the execution
of the present one. The Sequencer uses Schot-
tky multiplexers with a worst case settling
time of 18 ns, more than twice as fast as the
Low power Schottky counterpart.

Actual reading from the PROM takes less than

60 ns.

The PROM output is decoded and modified to
produce the next correct microword. In the
case of multiplication and division, the result

of the CPU operation in (2) can modify certain
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bits of the microword. At the end of (5) the
next microword has been generated and is ready
to be latched.

6. 30 ns are required to write the result of the
furction just executed into one of the internal
registers,

7. The microcode control signals are issued during
this interval. Control signals that are
vertically encoded must be deccded and are not
valid until the end of (7A).

On the next positive edge, the process repeats.

6.5 Component Layout and Chip Count

Photographs of the computer are shown in Figures 20
to 26. Fig. 20 is a rear veiw of the processor. Three
rather large power supplies were used because they were
readily available in the laboratory. Particularly the
+12 and -5 volt supplies for the memories can be reduced
in size since the NMOS memories draw very little current.

The computer is constructed on two universal
wirewrap boards. The boards are specially designed for
Schottky logic: they have two ground planes with a
voltage plane sandwiched in between. This arrangement

minimizes the problems of noise, ringing and crosstalk.
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Fig. 23 Front Panel



Fig. 24 Underside of wirewrapped Fig. 25 Boards hinged for
board testing

Fig. 26 Back
view of
front
panel
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Generous use of decoupling capacitors contributed to
further noise reduction.

The chips have been placed to minimize the wire
lengths while maintaining their modularity. Chips
comprising the same logical unit such as the data memory,
the CPU or PROM sequencer are all located together.

Ample space has been left for further modifications and
expansion. One board contains the data and instruction
memories, their associated buffers and control, and the
I/0 buffers (see Fig. 22 and Fig. 28); the other contains
the CPU and microcode controller (see Fig. 21 and

Fig. 27).

Wires common to both boards are connected with
ribbon cable, alternating signal wires with ground to
minimize crosstalk. The boards themselves are mounted
in the vertical plane to enhance convection cooling and
obviate the need for a fan. Fig. 25 shows how the
boards are hinged to allow easy access for testing.

Great care was taken to minimize the total chip
count; more chips require more board space and connections
with a corresponding cost inerease. Furthermore, since
most integrated circuit system failures occur at the
interconnections between chips it is good design practice
to minimize their number. The cost of using a single 16

pin chip on the universal wirewrap board is approximated
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Board space $2.75
Wiring @ $.075/wire $1.20
Decoupling capacitor $ .15

$4.10 Subtotal

To this subtotal one must add the cost of the chip,

power supply (approximately $3/watt), testing, and gener-
al overhead (i.e. cabinet, fans, etc.). The cost of

most standard small scale integration logic chips ranges
from $.25 to $1.00, while MSI chips are usually less

than $5.00/chip. One can see that the cost of the chip
itself is frequently overshadowed by the costs associated
in using it in a hardware systemn. These figures provide
strong motivation to reduce the number of chips and the
power requirements.

The processor contains a total of 160 chips, includ-
ing 8K of memory and the microprocessors. Total power
consumption is under 30 watts. Nineteen chips provide
for the panel functions: bounce eliminators and pulse
synchronizers, multiplexers to drive the Light Emitting
Diodes (LED's), and some random logic. These chips can
be eliminated once the machine is prepared to stand
alone with panel controls. It is within the current

state-of-the-are to reduce the entire machine, with
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the exception of the 36 4K memory chips and the 4
microprocessors, to one or two LSI chips, bringing the
total chip count down to 42. Advances in LSI technology
is certain to increase packing densities and it is
reasonable to predict that the entire machine could be

reduced to 15 chips within 2 years.

6.6 Front Panel

The computer was designed with a relatively elabora-
te front panel so that most functions of the machine
could be tested directly with front panel switches and
LED's. The rationale behind this decision is that test
equipment designed especially for debugging parallel-
mode logic (such as the Hewlett-Packard 1600A and 1607A)
was not available.

At the top of the front panel (see Fig. 23) are 8
LED's for the status flags. The next set of 20 LED's
represent data from the Bus, Instruction Register, Out-
put Buffer or the microcode inputs to the CPU, depending
on the position of the Display Select Switch. The
ability to view all four of these sources by simply
turning a switch has greatly facilitated the testing and
the debugging of the machine. Below the LEDs are 20
switches to input data to the Input Buffer. The data is

actually written into the buffer when the Load Input
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pushbutton at the bottom of the panel is depressed.
Eventually, these 21 switches will be replaced by a
buffer to the host machine.

The next row contains 6 pushbutton switches whose

functions are described below:

1. PROG. LOAD. This is the first switch to depress
when starting the computer. It causes the PC
to be set to zero and causes all data entered
through the Input Buffer to be written sequen-
tially in the Instruction Memory. There is no
need for a bootstrap loader since the micro-
instructions for loading both instruction and
data memories are resident in the PROM's. The
LED above the switch verifies the machine is
in fact in program load mode.

2. DATA LOAD. Once the program has been loaded,
depressing the DATA load button causes data
from the Input Buffer to be written into the
Data Memory starting from location zero. An
LED lights when the computer is in data
loading mode. '

3. START. The START switch causes both the PROG

and DATA LEDs to be turned off and initiates the
program execution. The first instruction is

fetched from the Instruction Memory at location
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zero. The RUN flag is turned on.

4. HALT stops execution of the machine by turning
the RUN flag off. The system clock continues
to run but the microcode enters a wait cycle
until the RUN flag is turned on again. The
machine can also be halted under program
control.

5. CONTINUE resets the RUN glag so the machine
resumes execution where it was last HALTed.

6. INST. STEP. (Instruction Step) causes the
next instruction to be executed after which
the machine is halted.

Forty-four microcode switches are included on the
panel to enter and test the microcode without the PROMs,
This feature allows microprograms to be simulated and
debugged before dedicating them to the PROM which is an
irreversible process. In the UP position, the correspond-
ing bit of the microword is logical zero. Once the
PROMs are inserted and the microcode source switch is
moved from SWITCH to PROM, all 44 switches must be in
the DOWN position to prevent damage to the PROM outputs.
The 8~LEDs in the lower righthand‘corner indicate the
address of the next microword to be fetched and are

essential in single step simulation of the microcode.
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The CLEAR OUT pushbutton resets the OUT flag indi-
cating that the data has been copied from the Output
Buffer into the post-processor. This function will
eventually be handled by the Vocal Tract Model.

The last two switches control the system clock.
Normally the clock in ON, however it must be turned

OFF to single step through the microcode.

6.7 Wirewrapping

Generation of the wirelists and the actual wire-
wrapping is a monumental task since the machine contains
over 5000 individual connection. Despite its complexity,
wirewrapping is less time consuming to implement, and
mistakes are more easily corrected when compared with
soldering or printed circuit techniques. A computerized
system to aid in the conversion of logic diagrams to
hardwired boards greatly facilitated this task. The
program, WIREWRAP, developed at the University of
Michigan and imported to M.I.T. by Jack Allweiss, not
only generates a wirelist with the name and length of
every wire, but also prepares a paperutape for automatic
and semi-automatic wirewrapping.

The first step in using the program is writing a

logic series description in which each IC is entered
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into a macro dictionary with its cost, power requirements,
load and drive factors and pin assignment. Once this
information is entered, the programmer need never be
concerned with pin locations. In the next part of the
program, (device description) a unique signal name (net
name) is assigned to each output and all its associated
inputs. Each line of code fully describes all the con-
nections for that particular logic element.

Chips are positioned by the programmer with a
preset command which specifies the location of the first
pin. Every pin is assigned a unique name based upon
its location. The board is subdivided into 6 groups
or bays labeled A througi F. Within each group there
are 9 columns (A-J excluding I) and 50 rows (numbers
1-50). Pin names are designated by: Group - Column - Row
(i.e. A - J - 29). The program, referring back to the
macro dictionary, then proceeds to connect all inputs
and outputs that share the same net name. WIREWRAP
generates a net name cross-reference, a net name diction-
ary that lists all the pins that comprise each net, a
list of single pins, a wire list with the net name and
length of every wire, and finally a backplane plot. This
information saves time and errors, and provides accurate
documentation.

Once the circuit was entered into the program and
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debugged a tape for semi~automatic wirewrap was punched.
All wiring is point-to-point to minimize wire lengths.

In less than one week from the creation of the tape,

the entire machine was wired and debugged. Approximately
a half dozen wiring mistakes were found and corrected.
The modularity of design greatly sped the debugging
procedure. Each module was fully tested separately

before combining them and testing the overall machine.

6.8 Performance

The computer has been constructed to meet all the
design requirements. The average RR instruction execu-
tion time is approximately 500 ns and for MR instructions
is approximately 800 ns. These times include calculating
the instruction's address, fetching it from memory, and
performing the specified operation. Certain special
operators take more time. For example, both fixed
point multiplication and division require slightly over
3 microseconds.

These statistics compare very favorably with
existing minicomputers. For the given task, the speech
processor is faster than most general purpose minicompu-
ters available today.

A state-of-the-art machine of roughly similar cost
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and size is Digital Equipment's LSI-1l, the smallest
member of the PDP-11 family of computer systems. The
execution of a typical MR instruction (of the type
discussed in Chapter 3) on the LSI requires over 8
microseconds or ten times longer than the speech pro-
cessor. The worst case multiply on the LSI is 64 us
(vexrsus 3.3 pus for the speech processor) and divide is
78 ﬁs (versus 3.3 us). The LSI-11 is more flexible for
general use and costs about $1000 (single quantity

price with 4K of RAM), but runs more than ten times
slower than the special purpose processor. As a

result it is not suitable for real time speech process-
ing. The higher cost of the speech processor can be
justified in terms of its performance, and can be reduced
significantly if produced in large quantities. For its
particular application, the speed of the speech computer
is comparable with minicomputers costing well over

$10,000.

The speech computer has been designed specifically
for speech synthesis programs. Only by actually imple-
menting the complete speech synthesis system can its

performance and efficiency be truly tested. It must be
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connected to the host computer and the vocal tract model.
As new requirements become evident they should be imple-
mented in hardware and/or firmware. New instructions
can be added simply by rewriting parts of the microcode.
During these development stages it may be desirable to
write an assembler to facilitate programming. Once the
programs are perfected, they should be written into
ROM's. Advances in LSI technology will be instrumental
in further reducing the cost and size of the processor
so that a practical speech synthesis system can be

built in the near future.
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APPENDIX A

Hardware Schematics

In the following schematics note that:

1. All logic gates, unless otherwise specified
are 7400 series low power Schottky TTL.

2. The location of the first pin of each device
on the wirewrap board is given with the
notation:

Group-Column-Row (i.e. A-J-9)

3. The wire net names corresponding to those used
in the wirewrap program are shown next to the
appropriate wires. Any wire can be located
quickly by using the schematics and the
wirewrap documentation (Steingart, Jan. 1975)
together.

4. The detailed schematics of the memories have
been omitted. For each memory, all address
and control lines are connected together. Data
input and output lines are specified on the

schematics.
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APPENDIX B

Microword and

Data Flow Graphs

Details of Microword (see Fig. 8)

Bit# 1 2 3 A OPERAND
0 0 O Reg. MB
0 0 1 Index Reg. Field
0 1 o Base Reg. Field
0 1 1 Destination Reg. (Reg.D)
1 0 0 PC
1 0 1 Index Reg. Field
1 1 0 Reg. A Field
1 1 1 Reg. D Field
Bit# 4 5 D OPERAND
0 0 PC
0 1 Reg. MB
1 0 Reg. D+1
1 1 Reg. D
Bit# 6 7 8 DESTINATION
c 0 O Reg. Q
0 0 1 NOP
0 1 0 Reg. A- CPU Output
0 1 1 Internal RAM :
1 0 O " " Double Left Shift
1 0 1 " " Single " "
"1 1 0 " " Double Right "
l l l " 1) S ingle " n



Bit# 3 10 11

-150-

FUNCTION

HHEEHERFHOOOO

Bit #

HFHEFOOKHKMOO

12

HFOMFOKHOMO

R+S
S-R
R-S
R OR S
R AND S
R AND S
R EXCLUSIVE OR S
R EXCLUSIVE NOR S

CARRY IN

Bit# 13

[y
(]

ZERO
ONE

SOURCE

HFHRFRFOOOC

Bit#

HFOHHOHFHOHO

AQ
AB
0Q
0B
oA
DA
DQ
DO

OUTPUT ENABLE

Bit #17

18

=
O

CPU
DATA MEMORY or INPUT BUFFER

ROW SEQUENCER TEST

FHEEHEEFEFOOOO

HHOOHKHOO

HOFROKHOKFO

SHFF (Shift Flip-flop)

Reg. D= ZERO

I/0 Flag- Busy and felected
IR bit 1- Shift

FF A- Sign

RUN FF .

NEXT ADDRESS (From Latch)
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Bit#20 21 22 } ROW SEQUENCER TEST
0 0 O -
0 0 1 X1FF (X1 Flip-flop)
0 1 0 IR bit 2 (shift D/S)
0 1 1 IR bit 11 (Indirect bit)
1 0 O IR bit 0 (Shift)
1 0 1 FF B- Sign
1 1 O SKIP FF
1 1 1 NEXT ADDRESS (From Latch)
Bit# 23 24 COLUMN SEQUENCER
0 0 IR bits 8-11 (For SHIFT)
0 1 OP Code Dispatch
1 0 FUNC Dispatch
1 1 NEXT ADDRESS (From Latch)
Bit#25 26 27 SKIP FIELD
0 0 O CARRY OUT
0 0 1 JM Test
0 1 o Always
o 1 1 ZERO
1 0 O SIGN
i1 0 1 FLAG Conditions
1 1 0 IR Class II Skip Conditions
1 1 1 NEVER
Bit# 28 INSTRUCTION MEMORY REFERENCE
0 READ or WRITE
1 NOP
Bit# 29 DATA MEMORY REFERENCE
0 READ or WRITE
1l NOP
Bit# 30 DATA MEMORY WRITE ENABLE
0 WRITE
1l READ




Bit#31 32
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LOAD

0 O

e =
o M

Bit#33 34

35 36

Data Memory Buffer Register (MBR)
or OUTPUT Buffer

Instruction Memory Address Register
(IMAR)

Data Memory Address Register (MAR)

NOP

SPECIAL

HHRFRHMHEFEFOOOODOOOO
HFRFOOCOOHHHKREFOOOO

=
-

Bits 37-44

OCOHFHHFHOOHMFOOHMFOO

=

HFOHOHOHFOHOHFOMO

= o

CSHFF (Complement SHFF)

SGNEN (Load Signs into FF A and B)
MULTST (Enable Multiplication Test)
pIvrst ( " Division ")
INSEL (Select INPUT Buffer)

OUTSEL ( " outTpUT " )

IREN (Load IR)

FLGEN (Enable FLAG Logic)

JMSEL ( " JM ") ‘e

SHTST (SHIFT Test)

B7TST (Modify bit I7 of Microprocessor
Microword- Use for SHIFT and
Deposit)

FCHTST (Fetch Test)

NEXT MICROWORD ADDRESS
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MICRCCODE DATA FLOW GRAPHS

( START ’

Depress PROG. LOAD

(Generate microcode

starting address
0100 0000

and set X1FF. to ONE

Program Load

00...0-Reg. MB

R v

INSLT (Input Buffer
Select)
Sequencer Tests:
IOFLG (Test if Input
Buffer is busy)

X1FF
i
DATA LOAD has Input Buffer is Input is
been depressed Ready not ready
setting X1FF to ‘
ZERO Reg.MB -~ IMAR f
Reg.MB+1 +~Reg.MB Loop
DATA
LOAD INSLT

DOE=1 (Enable Input
Buffer's Tri-state
output)

INSLT, IMREF, DOE=1
Write contents of Input »>

Buffer into Instruction
Memory
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DATA
LOAD

00...0+Reg. MB

INSLT
Seq. Tests:
IOFLG
X1FF
X1FF=0 y X1FF=1
START has Input is Input is
been depressed Ready » Not Ready
setting X1FF Reg.MB~MAR '
to ONE
Reg.MB+1 -Reg.MB
Go to microcode Loop
(Load Data Mem.
Location MAR and calculate
0000 0000
next address |
[ [
00..0+PC,IMAR INSLT
(Reset PC to DOE=1
ZERO) DMWE

Set SKIP FF

Data Memory Load and Start Sequence

Load MBR with
contents of
Input Buffer

[

DMREF ,DMWE , INSLT

Write into Data

Memory )




Fetch
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PC +» IMAR
Sequence PC+1 -+ PC
CPU Data(For next
microinstruction):
IR Displacement -
FCHTST (Modify next
microinstruction if
Base Reg.=0,
Seq. Tests: RUNFF
SKIPFF
Conditional OP Code
Dispatch
| |
Halt Halt Run Run
No skip Skip No Skip Skip
’ ]
Wait Wait IMREF (Read Next
Set SKIPFF Set SKIPFF Macroinstruction)
to ZERO to ONE
FCHTST FCHTST ‘
{ Memory Wait
Load IR
Set SKIPFF=0
FCHTST

16-Way OP Code Branch

Class II
Column Seq.:
SDC

16-Way FUNC Code Dispatch

FUNC Dispatch

ADD

OR

LOAD

SM MULT

DIV | OUTPUT

ONT.1
ADD
OR
MASK
INC
COM

SUB
AND
ggg Set SKIPFF on
NEG IR Conditions

Load IR

[
Perform CPU
Function
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If Base Reg.=0:
Data-»MB,MAR

Execution If Base Reg.#0:
DatatBase Reg.-»MB,MAR
(the CPU Data is the IR
Displacement)
IMREF (Start reading next
i macroinstruction
DMREF (Read Data Memory)
Seq. Tests:
Indirection
TOFLG
]
No Ind. Ind. No Ind. Ind.
Input Input Input Input
Buffer Buffer Buffer Mnffer
is Free is Free is Busy and is Busy and
Selected Selected
f | r
DOE=1 DOE=1 Seq. Test: Error
(Enable tri- MAREN IOFLG
state outputs (Put data
of Data Mem. or just read [
Input Buf. from memory
CPU Data: Bus back into MAR)

Col. Seq.: OP Code]

!

DMREF {Read) )
Seq. Test: IOFLG —

lﬁ—WayVOP Code Dispatch

!

ADD Perform CPU
SUB Function

OR Operands are:
AND CPU Data Input

LOAD Reg. D

BOEO

>

Sz
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Base Reg.+ Index Reg. Base Reg. + Index Reg.

MAR, Reg.MB MAR, Reg.MB
Sequencer Test: Seq. Test:

Indirection | Indirection
| 1
Ind. No|Ind. Ind. No |Ind.

[ —11 —}f
DMREF DMREF DMREF Reg. D MBR
(Read from DMWE

Data Mem.)

Y i
Memory Wait FMemory Wait Memory Wait DMREF
Load MAR CPU Data: Bus Load MAR DMWE

(Write into

1 Y i | | Data Mem.)

{ Data Reg. D

-_ @

Special Class II

Instructions @ *Single Register

Reg.D Reg.D
Set SKIPFF on sign
of Reg.D

Seq. Test:
IR bits 0,1

1

ZERO

ONE IGN ROTATE

i

Positive ‘ Neg. | SKIPFF | ’

Seq. Test:

00...0 Reg.Q
B7TST (Modify
Destination
Left/Right)
Col Test:

11...1 Reg.Q Reg.D Reg.Q
B7TST B7TST
Col. Test: | Col. Test:

IR bits 8-11 IR bits 8-11

IR bits 8-11

—3 16-Way Dispatch r y

ARRXER ATTENIAR]
16 Separate Microwords to Rotate Reg.D

and Reg.Q One Bit

T AR AR AR AT~
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Data-»Reg.MB, MAR (Base Reg.=0)

or
Datat+ Base Reg.» Reg.MB,MAR
(Base Reg.#0)

Seq. Test:

Reg. D=0

Indirection
No Indirection Ind. No Ind. Ind.
Reg.D=0 Reg.D=0 Reg.D#0 Reg.D#0
1 ] 1 — ]
Reg.MB=PC DMREF PC-+Reg. D PC-~Reg.D
Set SKIPFF (Read) 7
Load IR

1

Memory Wait

DOE=1 (Enable Data Mem.
output buffer)

CPU Data: Bus

Y

&

No
Jump

Data PC
Set SKIPFF

JM and JMP Instructions

Load IR

IMREF (Start reading next
macroinstruction)
CPU Data: JMSEL
(Select Mask from JM
Demultiplexer)

l
Reg.ANReg.T

Set SKIPFF on JM Conditions

!

CPU Data: IR Displacement
Load IR

Seq. Test: SKIPFF

Jump |
PC + Data-sPC

@ ' Set SKIPFF
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Data-+Reg.MB,MAR
(Base Reg.=0)

(Base Reg.#0)

Data + Base Reg.-»Reg. MB,MAR

DOE=0 (CPU Out Enable)
Seq. Test: Indirection

Indirection No Ind.
} ! 6
DMREF Seq. Test:
(Read) IOFLG
. * Output
Memory Wait Buffer
Data Mem. Output is Busy
MAR and
Selected

Else

A

&

DEN

Reg.D-»MBR or Output Buffer
(Depending if Output Buffer
is the selected destination)

DMREF
DMWE

Load IR

(Write into Data Mem if selected)

&

Seq. Test:

IOFLG -

SKIPFF
Output] SKIPFF=1| Output
Buffer] (Reg.D=0) Buffer
Busy Free

SKIPFF=0
Loop
FETCH '
Reg. MB +1

STORE and OUTPUT Instructions

—+Reg. MB,MAR

v

Data Mem. Output
—# OQutput Buffer

)

DMREF (Read)
Reg.D - 1

Set SKIPFF on
Reg. D=0

—»Reg.D |——



o
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e

FLAG,SDC Data Reg.MB,MAR
and ISZ IMREF (Read next macro
Instructions instruction)
FLGEN (Set SKIPFF to
contents of Flag
selected, then
set,reset,or
complement on IR
bits 12,13)
)
Seq. Test: SKIPFF
No Jump
Jump
lSeq. Test: Indirection
No Ind. Ind.
\ Reg .MB-»PC DMREF
Set SKIPFF (Read)
j
emory Wait
OE=1
CPU Data: Bus
Data -»PC
FETCHJ™® Set SKIPFF
Data-gReg.D Reg.MB + l-o-Reg.MB,MBR
Set SKIPFF: DMWE
Result=0 ‘
DMWE ,DMREF (Write)
Reg.MB»Reg.MB
Set SKIPFF: if result=0

FETCH
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S
\

SIGNEN (Copy Multiplier and multi-
cand signs into the A and
B FF's)

Use CPU Destination 010

2

11...1-+=Reg.( MULTIPLY

\
00...0 RegD+l
Double Right Rotate (DRR)
Generate 100...0 in
Reg.D+1
Seq. Test: SIGNA (Multiplicand)

+ -
\ .
,Reg.D+1 + Reg.MB+>MB Reg.D+1 - Reg.MB-#Reg.MB
Seq. Test: SIGNB 2's Complement
) Seq. Test: SIGNB (Multiplier

‘”’ " | l

Y ~ I
IReg .D+Reg.Q -Reg.D*>Reg.Q
_ '(Make multiplier
I positive)
..__' * [

00...G-+Reg.D

DRR

Y ;
Q_,FF= 0 NOP
Q ,FF= 1 Reg.MB + Reg.D-»Reg:D
~1

DRR,MULTST

15 Times -'

RR

Feg.D-’Reg.D
Seq. Test: SIGNA,SIGNB
[]

+/+ +/- 4 =/+] -/ -
[Reg.Q Reg.D+l| [-Reg.Q Reg.D+l| [-Reg.Q Reg.D+l| |Reg.Q Reg.D+l|
2's Complement 2's Complement
Y

Seq. Test:CARRY Seq. Test: CARR
1L 0 1} 0 ‘

-Reg.D Reg.D(2's Compl.)l -Reg.D Reg.D(l's Compl.)
1 ' - T




Dividend/Divisor Signs‘
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SIGNEN

Use CPU Destination 010
(Copy sign of divisor aiid dividend
into A and B FF's)

|

Reg.D+1-+ Reg.Q
Seq. Tests: SIGNA,SIGNB

Division

+/+

"

~/+ l -/~

-Reg .MB-» Reg.MB ~-Reg .MB#»Reg .MB ’

(2's Compl.) (2's Compl.)

1

Reg.D-Reg.MB - Reg.D
Double Left Rotate(DLR)

Fleg .DHReg .MB*Reg.D
DLR

!

Y i
SHFT(RAM MSB): =0 Reg.D-Reg.MB+®Reg.D
=1 Reg.D+Reg.MB+Reg.D
DLR,DIVTST :
L
14 Times
Reg.D-Reg.MB-» Reg .MB
or
Reg.Di+-Reg.MB-®»Reg.MB
Set SKIPFF on MSIGN
Seq. Test: SIGNA_
Reg.D-#Reg.D eg.D-»Reg.D
Single Right Shift Single Right Shift
Seq. Test: SIGNB Seq. Test: SIGNB
3 | SKIPFF
+/1| -/1] +/0] -/0 +/1} -/1] +/Q -/0'
1 \
MR+D-»D -MB+D+D| |MB+D~D -MB+D+ D
— — ] !
-Q=D+1 -Q +D+1j 1+Q—Q-D1_l] o Q®D+l
T, v A
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APPENDIX C

Instruction Mnemonics
and Formats

Class I Instructions

( ADD sDC

SUB SM
OR MULT
< AND DIV —} Destination Base Displace-
LOAD JMP I Reg. (Reg.D), Reg., ment
STORE OUTPUT) |
\ ISZ Indirection
FLAG 4§z g Device, Positive Displacement
0]
] C
i H
Jump -~ Flip~flop conditions:
Conditions: Reset
Zero Set
One Complement

7 PC Dis-
JM 0 Test bit #, Reg. under test, placement

Jump conditions:
Zero
One

Class II Instructions

sLDX - Destination Base Index
STX I Reg, (Reg. D), Reg., Register

Indirection



ADD
SUB

OR

AND

MASK

MOV
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[~
LT
Z
LE
ﬁGT - Destination
NE #
GE .
\ A "

ld
'd

Reg. (Reg.D), Reg. A

P \# causes result not to be

7

- deposited

Skig on:

N

INC
DEC
COM
NEG

Never

Less than ZERO

Zero

Less than or equal ZERO
Greater than ZERO

Not equal to ZERO

Greater than or equal ZERO
Always

N
~
~N
~N
~N

- GT

LT NE 213 Destination Reg.

Z GE
LE A

Z
R/ |S 0
SHIFT 5LI$§; e
/, { R\\\
. b ‘ N~
Right/ ' S~
Left Single register/ =~ S8hift in:

Double register

Zeros
Ones
Sign
Rotate

(Reg.D)

Reg. D, #of bits to shift
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